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Agricultural production has observed many changes in technology over 

the last 20 years. Producers are able to utilize technologies such as site-specific 

applicators and remotely sensed data to assist with decision making for best 

management practices which can improve crop production and provide 

protection to the environment. It is known that plant stress can interfere with 

photosynthetic reactions within the plant and/or the physical structure of the 

plant. Common types of stress associated with agricultural crops include 

herbicide induced stress, nutrient stress, and drought stress from lack of water. 

Herbicide induced crop stress is not a new problem. However, with increased 

acreage being planting in varieties/hybrids that contain herbicide resistant traits, 

herbicide injury to non-target crops will continue to be problematic for producers. 

With rapid adoption of herbicide-tolerant cropping systems, it is likely that 

herbicide induced stress will continue to be a major concern. To date, 

commercially available herbicide-tolerant varieties/hybrids contain traits which 

allow herbicides like glyphosate and glufosinate-ammonium to be applied as a 



     

    

        

           

      

         

      

      

          

       

     

    

 
     

broadcast application during the growing season. Both glyphosate and 

glufosinate-ammonium are broad spectrum herbicides which have activity on a 

large number of plant species, including major crops like non-transgenic 

soybean, corn, and cotton. Therefore, it is possible for crop stress from herbicide 

applications to occur in neighboring fields that contain susceptible crop 

varieties/hybrids. Nutrient and moisture stress as well as stress caused by 

herbicide applications can interact to influence yields in agricultural fields. If 

remotely sensed data can be used to accurately identify specific levels of crop 

stress, it is possible that producers can use this information to better assist them 

in crop management to maximize yields and protect their investments. This 

research was conducted to evaluate classification of specific crop stresses 

utilizing hyperspectral remote sensing. 

Key words: crop stress, herbicide drift, remote sensing 
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CHAPTER I 

INTRODUCTION 

Agricultural production has gone through many changes in technology 

over the last 20 years. Producers are able to utilize technologies such as site-

specific applicators and remotely sensed data to assist with improving crop 

production while providing protection to the environment. Tools which collect 

remotely sensed data, such as multispectral and hyperspectral sensors, can be 

utilized as a means to assess specific conditions within a given field which relate 

to crop yield (Seidl et al. 2004). For example, crop stress induced by pests, 

moisture or nutrient availability, or the crops reaction to a specific management 

practice can be monitored with remote sensing tools (Tartachnyk et al. 2006, 

Lichtenthaler 1996). Therefore, remote sensing systems have proven to be 

useful for many applications in production agriculture. These applications include 

detecting crop stress from lack of nutrients and moisture (Barnes et al. 2000), 

weed infestations (Chang et al. 2004), yield performance (Chang et al. 2003), 

crop stand density (Thorp et al. 2008), and injury from herbicide applications 

(Thelen et al. 2004, Henry et al. 2004). Ground-based systems, aerial imagery, 

and satellite imagery are options for obtaining remotely sensed data. Everman et 

al. (2008) utilized both a handheld spectroradiometer and aerial imagery to 

evaluate the effects of herbicides on the spectral reflectance of corn. Satellite 
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imagery has been used to measure the nutrient uptake of winter cover crops 

(Hively et al. 2009). The use of such systems can provide valuable information 

about plant health from reflectance measurements of the crop canopy. 

Herbicide induced stress on a crop is not a new problem. However, with 

increased acreage being planting in varieties/hybrids that contain herbicide 

resistant traits, herbicide injury to non-target crops will increasingly become 

problematic for producers. With rapid adoption of herbicide-tolerant cropping 

systems, it is likely that herbicide induced stress will continue to be a major 

concern. To date, commercially available herbicide-tolerant varieties/hybrids 

contain traits which allow herbicides like glyphosate and glufosinate-ammonium 

to be applied as a broadcast application during the growing season. Both 

glyphosate and glufosinate-ammonium are broad spectrum herbicides which 

have activity on a large number of plant species, including major crops like non-

transgenic soybeans, corn, and cotton. Therefore, it is possible for crop stress 

from herbicide applications to occur in neighboring fields that contain susceptible 

crop varieties/hybrids. Crop stress from herbicides is often a result of 

unintentional applications. This phenomenon is often referred to as off-target 

herbicide deposition. The Environmental Protection Agency (EPA) defines spray 

drift as “The physical movement of a pesticide through air at the time of 

application or soon thereafter, to any site other than that intended for application 

(often referred to as off-target)” (Environmental Protection Agency 2009). There 

are many variables which can influence off-target deposition of herbicides. These 

factors include environmental conditions at time of application (i.e. wind speed, 
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temperature, and humidity), herbicide formulation, application pressure, 

application speed, boom height, nozzle type, and droplet size (Carlsen et al. 

2006). 

A major challenge in an off-target herbicide incident is that injury may 

occur that cannot be detected by the human eye but can still cause yield 

reductions. Therefore, a producer may not realize that crop injury has occurred 

until harvest. Previous research has shown that ultra-low rates of glyphosate can 

reduce corn yield (Rowland 2000). Experiments conducted to simulate 

glyphosate drift in corn showed yield reductions of 78, 43, and 22% for simulated 

applications of 140, 70, and 35 grams acid equivalent per hectare (g ae/ha) of 

glyphosate, respectively (Ellis et al. 2003). Roider et al. (2007) found a 43% 

decrease in wheat yield when glyphosate was applied at 70 grams active 

ingredient per hectare (g ai/ha), which is approximately 6% of the normal use 

rate for this herbicide. Ellis et al. (2003) found height reductions and foliage 

discoloration from sub-lethal applications of glyphosate to both rice and corn 

crops were minimal, but negative effects on yields were significant. 

Nitrogen and moisture stress as well as stress caused by herbicide 

applications can interact to influence yields in agricultural fields. Remotely 

sensed data can be used as a tool to assess these stresses (Barnes et al. 2000). 

The theory behind the utilization of remote sensing to detect plant stress is based 

on the assumption that stress is interfering with photosynthetic reactions within 

the plant or the physical structure of the plant and therefore affects the 

absorption of energy from light which changes the reflectance of energy from the 

3 



 

 

       

          

          

        

       

    

          

    

     

         

      

        

          

     

     

      

      

          

       

         

      

         

      

plants (Riley et al. 1989, Hatfield and Pinter 1993). The nitrogen content found in 

leaves of many crops is an important indicator of growth status, quality, and yield 

(Cui et al. 2009). Nitrogen stress reduces the amount of chlorophyll and can 

result in increased reflectance of photosynthetically active light (Clay et al. 2006) 

and decreased reflectance in the near-infrared light (Cui et al. 2009, Yoder and 

Pettigrew-Crosby 1995). Water stress can influence reflectance due to reduced 

photochemical activity of chlorophyll (Clay et al. 2006, Souza et al. 2004). 

Herbicide applications to sensitive crops have also shown variations in 

reflectance. A reduction in NIR reflectance in corn was found when glyphosate 

was applied at 0.433 kg ae/ha, which is approximately 50% of the normal use 

rate for this herbicide (Irby 2009). Vegetation has unique characteristics 

regarding solar irradiance. Reflectance in the visible light spectrum (400-700 nm) 

is very low, transmittance is zero, and absorptance is high (Thelen et al. 2004). In 

the near-infrared (NIR) portion of the spectrum (700-1350 nm), both reflectance 

and transmittance are high and absorptance is low (Thelen et al. 2004). Because 

of these characteristics of reflectance of vegetation, multiple spectral vegetation 

indices have been developed. The normalized difference vegetation index (NDVI) 

is commonly used as an indication of plant vigor. NDVI is the ratio of NIR-

Red/NIR+Red. Clay et al. (2006) used NDVI to measure water and nitrogen 

stress in corn while Henry et al. (2004) used NDVI to classify herbicide injury to 

soybeans and corn. Crop water stress indices (CWSI) have been used to map 

water stress in crops. This index uses canopy temperature and environmental 

conditions to calculate a value which describes water stress on a scale from 0 to 
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1, with 0 being no water stress and 1 being complete water stress. Barnes et al. 

(2000) used the CWSI paired with NDVI to map water stress in cotton. 

Experiments have shown that hyperspectral vegetation indices can provide a 

more accurate assessment of crop parameters than did equivalent indices from 

multispectral sensors (Thenkabail et al. 2002). However, hyperspectral data are 

more complicated when compared to multispectral data due to the volume of 

data which is obtained (Karimi et al. 2005). For example, data collected with the 

SpecTIR™ aerial hyperspectral imager contain 128 bands ranging from 400 to 

994 nm with a spectral resolution of 3 nm at 700 nm and 10 nm at 1400/2100 nm 

(Anonymous 2012). In order to extract useful information from larger 

hyperspectral data sets, it is important to first select a range of wavelengths that 

can be used to describe information about the specific target. 

Remotely sensed data can provide valuable information about the overall 

health of a plant in instances where crop injury is suspected but not visible. Some 

factors that should be considered when using remotely sensed data in this 

capacity include time of day/year, topography, soil type, and crop type. Previous 

research has shown that reflectance values in tilled fields were primarily 

influenced by soil characteristics during the early stages of the growing season 

(Huete et al. 1985). Chang et al. (2003) reported that characteristics of spectral 

reflectance are influenced by plant factors more than soil factors as the growing 

season progresses. 

The ability to rapidly detect and assess herbicide induced stress to a crop 

would be beneficial in many aspects. From a producer’s standpoint, a rapid 
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response time is needed in order to make a management decision about the 

stressed crop. In the event of herbicide injury to a crop, producers could use the 

information obtained from the remotely sensed data coupled with data showing 

yield reductions correlated to reflectance measurements to make informed 

decisions for replanting or leaving the injured crop in the field. 

Remotely sensed data could also allow for a rapid detection tool in the 

event of agriterrorism, where intentional application of herbicides or biological 

agents was made in order to harm the nation’s food supply. Many commonly 

used herbicides are readily available and, if used intentionally to destroy crops, 

could have detrimental effects to our nation’s food supply. Utilizing remote 

sensing tools could allow assessment of the level and quantity of damage or the 

lack thereof of herbicides or biological agents intentionally applied to our food 

supply. 
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CHAPTER II 

THE DEVELOPMENT OF A GROUND-BASED SPECTRAL ACQUISITION 

SYSTEM TO EVALUATE OFF-TARGET HERBICIDE DEPOSITION 

Introduction 

Agricultural production systems have observed many changes in recent 

years. Technological advances have allowed producers to utilize tools such as 

internet, mobile phones, global positioning systems, site-specific applicators, and 

remotely sensed data to assist with decision making pertaining to best 

management practices to improve crop production and provide protection to the 

environment. Producers who are adopting these technologies can combine many 

of these tools to assess equipment performance, monitor environmental 

conditions, and evaluate the condition of their crops at any given time. 

Tools which collect remotely sensed data, such as multispectral and 

hyperspectral sensors, can be utilized as a means to assess specific conditions 

within a given field which relate to crop yield (Seidl et al. 2004). For example, 

crop stress induced by pests, moisture or nutrient availability, or the crops 

reaction to a specific management practice can be monitored with remote 

sensing tools (Tartachnyk et al. 2006, Lichtenthaler 1996). Therefore, remote 

sensing systems have proven to be useful for many applications in production 

agriculture. These applications include detecting crop stress from lack of 
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nutrients and moisture (Barnes et al. 2000), weed infestations (Chang et al. 

2004), yield performance (Chang et al. 2003), crop stand density (Thorp et al. 

2008), and injury from herbicide applications (Thelen et al. 2004, Henry et al. 

2004). Ground-based systems, aerial imagery, and satellite imagery are options 

for obtaining remotely sensed data. Everman et al. (2008) utilized both a 

handheld spectroradiometer and aerial imagery to evaluate the effects of 

herbicides on the spectral reflectance of corn. Satellite imagery has been used to 

measure the nutrient uptake of winter cover crops (Hively et al. 2009). The use of 

such systems can provide valuable information about plant health from 

reflectance measurements of the crop canopy. 

A particular area of interest where remotely sensed data can be a benefit 

is the evaluation of stress in a producer’s crop. Examples of stress which can 

affect a crop and ultimately the crop’s yield include nutrient stress, moisture 

stress, and herbicide stress. Herbicide induced stress on a crop is not a new 

problem. However, with increased acreage being planting in varieties/hybrids that 

contain herbicide resistant traits, herbicide injury to non-target crops continues to 

cause problems for producers. As the industry continues to develop new genetic 

traits that will allow multiple herbicide chemistries to be applied safely to the 

target crop, it is likely that herbicide induced stress will continue to be a major 

concern in non-target fields. To date, commercially available herbicide-tolerant 

varieties/hybrids contain traits which allow herbicides like glyphosate and 

glufosinate-ammonium to be applied as a broadcast application during the 

growing season. Both glyphosate and glufosinate-ammonium are broad 
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spectrum herbicides which have activity on a large number of plant species, 

including major crops like non-transgenic soybeans, corn, and cotton. Therefore, 

it is possible for crop stress from herbicide applications to occur in neighboring 

fields that contain susceptible crop varieties/hybrids. 

Crop stress from herbicides is often a result of unintentional applications. 

This phenomenon is often referred to as off-target herbicide deposition. The 

Environmental Protection Agency (EPA) defines spray drift as “The physical 

movement of a pesticide through air at the time of application or soon thereafter, 

to any site other than that intended for application (often referred to as off-target)” 

(Environmental Protection Agency 2009). There are many variables which can 

influence off-target deposition of herbicides. These factors include environmental 

conditions at time of application (i.e. wind speed, temperature, and humidity), 

herbicide formulation, application pressure, application speed, boom height, 

nozzle type, and droplet size (Carlsen et al. 2006). 

A major challenge in an off-target herbicide incident is that injury may 

occur that cannot be detected by the human eye but can still cause yield 

reductions. Therefore, a producer may not realize that crop injury has occurred 

until harvest. Previous research has shown that ultra-low rates of glyphosate can 

reduce corn yield (Rowland 2000). Experiments conducted to simulate 

glyphosate drift in corn showed yield reductions of 78, 43, and 22% for simulated 

applications of 140, 70, and 35 grams acid equivalent per hectare (g ae/ha) of 

glyphosate, respectively (Ellis et al. 2003). Roider et al. (2007) found a 43% 

decrease in wheat yield when glyphosate was applied at 70 grams active 
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ingredient per hectare (g ai/ha), which is approximately 6% of the normal use 

rate for this herbicide. Ellis et al. (2003) found that height reductions and foliage 

discoloration from sub-lethal applications of glyphosate to both rice and corn 

crops were minimal, but negative effects on yields were significant. 

The theory behind the utilization of remote sensing to detect plant stress is 

based on the assumption that stress is interfering with photosynthetic reactions 

within the plant or the physical structure of the plant. Therefore crop stress can 

influence the absorption of energy from light which changes the reflectance of 

energy from the plants (Riley et al. 1989, Hatfield and Pinter 1993). Vegetation 

has unique characteristics regarding solar irradiance. Reflectance in the visible 

light spectrum (400-700 nm) is very low, transmittance is zero, and absorptance 

is high (Thelen et al. 2004). In the near-infrared (NIR) portion of the spectrum 

(700-1350 nm), both reflectance and transmittance are high and absorptance is 

low (Thelen et al. 2004). A reduction in NIR reflectance in corn was found when 

glyphosate was applied at 0.433 kg ae/ha, which is approximately 50% of the 

normal use rate for this herbicide (Irby 2009). Because of these characteristics of 

reflectance of vegetation, multiple spectral vegetation indices have been 

developed. The normalized difference vegetation index (NDVI) is commonly used 

as an indication of plant vigor. NDVI is the ratio of NIR-Red/NIR+Red. Clay et al. 

(2006) used NDVI to measure water and nitrogen stress in corn while Henry et 

al. (2004) used NDVI to classify herbicide injury to soybeans and corn. 

Remotely sensed data can provide valuable information about the overall 

health of a plant in instances where crop injury is suspected but not visible. Some 
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factors that should be considered when using remotely sensed data in this 

capacity include time of day/year, topography, soil type, and crop type. Previous 

research has shown that reflectance values in tilled fields were primarily 

influenced by soil characteristics during the early stages of the growing season 

(Huete et al. 1985). Chang et al. (2003) reported that characteristics of spectral 

reflectance are influenced by plant factors more than soil factors as the growing 

season progresses. This is expected due to the methods by which many of our 

agricultural crops are grown. Typically, row crops are planted in a variety of 

spacings both between the rows as well as within each row. These spacings are 

chosen based on the optimum plant population which will maximize yield and 

provide canopy cover to efficiently use light energy in the plant’s photosynthetic 

processes. Therefore, as the season progress, the crop canopy begins to cover 

the soil surface allowing spectral reflectance to be influenced more by plant 

factors rather than soil factors. 

The ability to rapidly detect and assess herbicide induced stress to a crop 

would be beneficial in many aspects. From a producer’s standpoint, a rapid 

response time is needed in order to make a management decision about the 

stressed crop. In the event of herbicide injury to a crop, producers could use the 

information obtained from the remotely sensed data coupled with data showing 

yield reductions correlated to reflectance measurements to make informed 

decisions for replanting or leaving the injured crop in the field. This type of 

situation is often the most difficult decision that a producer might have to make. 

Factors such as the type of injury and time of year play important roles in this 
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process. Having tools in place which can assist in rapidly making these decisions 

could allow producers to salvage their investment rather than accepting a total 

loss. Experiments have shown that hyperspectral data can provide a more 

accurate assessment of crop parameters than did information from multispectral 

sensors (Thenkabail et al. 2002). However, hyperspectral data are more 

complicated when compared to multispectral data (Karimi et al. 2005). One 

available tool to gather hyperspectral information about a crop is aerial imagery. 

Utilizing aerial imagery to gather spectral data is an excellent method for 

collecting information over a large area in a short amount of time. However, 

some forms of aerial imagery can be quite expensive. For example, a single 

hyperspectral image can provide a tremendous amount of information but can 

cost between $30,000 and $40,000. This is not a practical means for gathering 

spectral information about suspected stress in a crop. In addition, handheld 

sensors can often be tedious and may require more time to gather the same 

amount of information when compared to the aerial imagery. Therefore, it is 

important to develop an economic and efficient method for collecting this 

information to assist producers in making final decisions about handling stressed 

crops. The objective of this research was to develop a ground-based spectral 

acquisition system to be utilized for evaluation of off-target herbicide deposition. 

Materials and Methods 

Experiments were conducted at the Black Belt Branch Experiment Station 

in Brooksville, MS to compare classification results of hyperspectral data 

acquired by an aerial platform to data acquired through a ground-based spectral 
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acquisition system. Field corn (Zea mays) was planted in a field measuring 2.3 

hectares in size. The field was planted according to standard agricultural fertility 

and crop row spacing practices. The seeding rate for corn was 69,000 seeds per 

hectare. In order to gather as much spatial variability as possible, field plot size 

measured 7.70 meters wide by 30.5 meters long. Herbicide applications 

consisted of glufosinate-ammonium, the active ingredient in the herbicide 

Liberty® 280 SL. Glufosinate-ammonium was applied to a corn hybrid which is 

sensitive to this herbicide. Herbicide applications were made when corn reached 

the V6-V7 growth stage. Glufosinate-ammonium application rates included the 

recommended labeled rate (1X) of 0.59 kilograms of active ingredient per hectare 

(kg ai/ha) as well as 0.30, 0.15, 0.07, 0.04, and 0.02 kg ai/ha, which correspond 

to 1/2X, 1/4X, 1/8X, 1/16X, and 1/32X fractions of the recommended labeled rate. 

An untreated check was included for comparison purposes. Herbicide 

applications were made using a tractor mounted spray boom equipped with 

shields to minimize contamination to neighboring plots. All herbicides were 

applied at an application volume of 140 liters per hectare. Data collection 

consisted of hyperspectral data collected using the Analytical Spectral Devices 

(ASD™) Fieldspec Pro handheld spectroradiometer and the SpecTIR™ airborne 

hyperspectral imager. Ground-based hyperspectral data were collected over a 14 

day period with collection timings of 1, 4, 7, and 14 days after herbicide 

application, depending on the weather. Due to the cost of the aerial 

hypserspectral imagery, a single image was collected 4 days after herbicide 

application. Handheld spectroradiometer data were collected in conjunction with 
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a Topcon HiPer Lite Plus real time kinematic (RTK) global positioning system 

(GPS) to ensure that each data point received a fixed spatial information 

description. Principal component analysis and stepwise linear discriminant 

analysis techniques were utilized for selecting spectral features which can be 

utilized to describe the actual herbicide concentrations applied in the field. The 

resulting data were then utilized to generate classification matrixes providing 

classification accuracies of the system’s capability for identifying spectral 

features associated with the various herbicide concentrations.  

Results and Discussion 

Remotely sensed data acquisition can be time consuming and difficult as 

well as expensive. This experiment was designed to develop a technique which 

utilizes the handheld ASD instrument and RTK GPS system together to gather 

spectral and spatial information from the stressed crop. In order to develop this 

technique, it was necessary to develop a method for integrating the ASD™ 

Fieldspec Pro handheld spectroradiometer and Topcon HiPer Lite Plus RTK GPS 

for on-the-go data collection (Figure 2.1). 

Figure 2.1 Topcon HiPer Lite Plus RTK GPS and Fieldspec Pro handheld 
spectroradiometer integration. 
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The handheld spectroradiometer was set up in conjunction with the RTK 

GPS system with settings applied to assign a fixed latitude and longitude value 

with each recorded spectral record. The next step in the process was to secure a 

method for on-the-go data collection. A platform equipped with seating available 

for the operator(s) of the handheld spectroradiometer was mounted to the 3 point 

hitch of a tractor with the necessary ground clearance to move through the field 

without direct contact with the crop (Figure 2.2). 

Figure 2.2 Tractor mounted platform for on-the-go data collection. 

By applying a collection setting of the average of 10 spectral signature 

readings per second, it was possible to modify the speed of the tractor to achieve 

a specific sequence for collection of hyperspectral data as the machine moved 

through the field. For example, setting the machine speed to 4.8 kilometers per 

hour allowed the system to collect the average of 10 spectral signature readings 

every 1.3 meters as the machine moved through the field. This system offered 

the capability of collecting real time spectral information tagged with spatial 
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locations automatically as a machine travels continuously through a field. Figure 

2.3 illustrates only 1/10th of the actual locations where hyperspectral data 

sampling occurred. This system offered the capability of gathering a large volume 

of information from the target field in an efficient manner. For example, the 

experimental field measuring 2.3 ha in size required approximately 37 minutes to 

completely sample the field in 8 row increments. This provided 230 actual 

signature readings from each plot. 

Figure 2.3 Map display of 1/10th of the total hyperspectral data sampling points 
collected during 1 sample timing. 

These data were analyzed to provide assessments of the system’s 

capability to accurately classify the applied herbicide concentration via measured 

spectral reflectance. In order to compare classification accuracies of the ground-

based spectral acquisition system to the accuracies obtained from the aerial 

platform, only the information obtained 4 days after application was utilized for 

this experiment due to the fact that this was the only hyperspectral image 

obtained. Tables 2.1 to 2.4 each display a classification matrix for the 
19 



 

 

        

     

    

    

     

     

       

      

      

        

       

         

     

     

      

      

       

        

           

         

  

        

     

classification accuracies that were obtained 4 days after treatment (DAT) when 

glufosinate-ammonium was applied at various rates to susceptible corn to 

simulate off-target herbicide deposition. These classification matrixes were 

generated utilized the results of principal component analysis (PCA) and 

stepwise linear discriminant analysis (SLDA) techniques which were applied to 

both the data collected with the ground-based spectral acquisition system and 

the aerial platform. Overall, producer, and consumer’s accuracies were 

calculated for each classification matrix. The overall accuracy is the percentage 

of the correctly classified spectral features obtained with the specific system. 

Producer’s accuracy is a measure of the system’s capability to correctly classify 

spectral features which correspond to a specific herbicide concentration. In other 

words, the producer’s accuracy is the percentage of spectral features that were 

classified with the correct herbicide concentration, while the remaining spectral 

features in this category which actually belonged with the correct concentration 

were classified as a different concentration. Consumer’s accuracy is a measure 

of the spectral features that were correctly classified to correspond with the 

actual herbicide concentration that was applied. For example, herbicide 

concentration Z with a producer’s accuracy of Y% and a consumer’s accuracy of 

X% simply means that the system identified Y% of the spectral features as 

herbicide concentration Z, but only X% of the spectral features actually belonged 

with herbicide concentration Z. 

The classification matrix resulting from the data generated by the PCA 

technique (Table 2.1) applied to the hyperspectral data acquired through the 
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ground-based spectral acquisition system displays an overall accuracy of 24%. 

Producer’s accuracy results were poor for this system, with the exception of the 

producer’s accuracy for correctly identifying the 1/8X rate which received an 

accuracy of 80%. The consumer’s accuracies were low for all rates ranging from 

11 to 35%. The greatest overall accuracy of the data collected with the ground-

based acquisition system of 69% was achieved with the SLDA system (Table 

2.2). Producer’s accuracies ranged from 54 to 84% while consumer’s accuracies 

ranged from 59 to 84%. The system identified 75% of the spectral features as the 

untreated while 72% of the spectral features were actually associated with the 

untreated. Similarly, the producer’s accuracy of 72% and consumer’s accuracy of 

68% for the 1/8X concentration indicates that the system identified 72% of the 

spectral features as the 1/8X concentration while 68% of the spectral features did 

indeed correspond with this concentration. 

The classification matrixes generated from the data from the two analysis 

techniques applied to the SpecTIR hyperspectral aerial imagery are displayed in 

Tables 2.3 and 2.4. Similar results were observed for the data collected with the 

aerial platform (Table 2.3) compared to that of the ground-based acquisition 

system and subjected to the PCA technique (Table 2.1). An overall accuracy of 

17% was observed with producer’s accuracies ranging from 0 to 44% (Table 

2.3). The classification matrixes generated from the data subjected to the PCA 

technique consistently resulted in low producer’s accuracies for the three lowest 

application rates. Consumer’s accuracies were not achieved for these rates. The 

consumer’s accuracies observed for the 1/4X, 1/2X, and 1X rates were 20, 16, 
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and 15%, respectively. As was the case with the data acquired with the ground-

based system, a higher overall accuracy was observed when the SLDA 

technique was applied to the aerial imagery data resulting in an overall accuracy 

of 77% (Table 2.4). Producer’s accuracies for the untreated, 1/8X, 1/4X, 1/2X, 

and 1X concentrations were 91, 77, 91, 84, and 88%, respectively. The 

producer’s accuracies observed for the two lowest concentrations of 1/16X and 

1/32X were 49 and 52%. Consumer’s accuracies ranged from 59 to 88% for all 

treatments. 

Conclusion 

While it is often unknown what herbicide actually was involved in cases of 

off-target deposition, it is likely that the spectral response will be influenced within 

a matter of days after the occurrence due to the fact that some herbicides begin 

to influence plant structure in this amount of time. For example, plants exposed 

to a labeled rate of glufosinate-ammonium will exhibit necrosis of leaves and 

young shoots within 2 to 4 days after the application if conditions are favorable 

(Anonymous 2012). This is increasingly important for the producers whose crop 

was affected so that management decisions can be made regarding the injured 

crop. The results from these experiments indicate that the ground-based spectral 

acquisition system can be utilized to collect spectral information which provides 

useful insights to the level of injury to the crop after an off-target herbicide 

deposition occurrence within 4 days after the incident. Similar results were 

observed for both the ground-based system and the more expensive aerial 

platform system. These data also demonstrate that the ground-based system 
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had higher producer’s accuracies for the lower herbicide concentrations of 1/16X 

and 1/32X of glufosinate-ammonium when compared to the results from the 

aerial imagery subjected to the SLDA technique. This information could prove 

useful in the event of off-target herbicide deposition as it is likely that lower 

herbicide concentrations will be difficult to observe visually. Producer’s 

accuracies observed with the data from the ground-based spectral acquisition 

system for these two concentrations were 67% with consumer accuracies of 59 

and 71% for the 1/16X and 1/32X concentrations, respectively. In other words, 

this system identified 67% of the spectral features associated with the 1/16X and 

1/32X concentrations while 59 and 71% of the observed spectral features 

actually belonged to the two concentrations. These data indicate that the system 

could prove valuable for classifying spectral features associated with these low 

concentrations. If a ground-based system such as this can be implemented in a 

timely manner, it is possible to provide the producer with an estimate of damage 

that the crop may or may not have received. This could allow for proper decisions 

to be made regarding the overall health of the current crop and whether or not 

the level of injury presents a financial liability should the crop be left as is. 
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CHAPTER III 

EVALUATION OF CROP SPECTRAL FEATURES CONTAINING SPATIAL 

INFORMATION COLLECTED AFTER HERBICIDE INDUCED STRESS 

Introduction 

In recent years, producers have observed an increase in observations of 

crop stress due to herbicide drift. Herbicide drift has been referred to as an off-

target movement that could cause serious injury if contact is made with 

susceptible plants (Deeds et al. 2006). This phenomenon of herbicide induced 

stress on crops is not new. Typically, stress caused by herbicides occurs during 

an off-target deposition instance of a herbicide application in the proximity of a 

field where susceptible plants are growing. The Environmental Protection Agency 

(EPA) defines spray drift as “The physical movement of a pesticide through air at 

the time of application or soon thereafter, to any site other than that intended for 

application (often referred to as off-target)” (Environmental Protection Agency 

2009). There are many variables which can influence off-target deposition. These 

factors include environmental conditions at time of application (i.e. wind speed, 

temperature, and humidity), herbicide formulation, application pressure, 

application speed, boom height, nozzle type, and droplet size (Carlsen et al. 

2006). 
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Problems associated with off-target herbicide deposition have been 

around for quite some time. Ellis et al. (2003) proposed that an expected 

increase in transgenic cropping systems would increase the use of glyphosate 

causing an increase in potential for off-target herbicide movement. With 

increased acreage being planting in varieties/hybrids that contain herbicide 

resistant traits, herbicide injury to non-target crops may continue to cause 

problems for producers. As the industry continues to develop new genetic traits 

that will allow multiple herbicide chemistries to be applied safely to the target 

crop, it is likely that herbicide induced stress will continue to be a major concern 

in non-target fields. To date, commercially available herbicide-tolerant 

varieties/hybrids contain traits which allow herbicides like glyphosate and 

glufosinate-ammonium to be applied as a broadcast application during the 

growing season. Both glyphosate and glufosinate-ammonium are broad 

spectrum herbicides which have activity on a large number of plant species, 

including major crops like non-transgenic soybeans, corn, cotton, rice, and 

wheat. Both of these herbicides are commonly used to control existing weeds in 

fields prior to planting. Typically, cotton and soybean crops are planted later in 

the season than rice and corn. Therefore, spring burndown applications as well 

as early postemergence applications can be opportunities for off-target 

deposition where established susceptible crops are growing within close 

proximities of fields containing transgenic crops. 

One of the major challenges associated with off-target herbicide 

deposition is having the capability to assess the level of crop injury or the lack 
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thereof. It is possible that injury may occur that cannot be detected by the human 

eye but can still cause yield reductions. Therefore, a producer may not realize 

that crop injury has occurred until harvest. Previous research has shown that off-

target deposition cases often involve herbicide concentrations between 1/100 

and 1/10 of the labeled herbicide rates (Al-Khatib et al. 2003, Al-Khatib and 

Peterson 1999, Al-Khatib and Tamhane 1999, Al-Khatib et al. 1993, Bode 1987, 

Maybank et al. 1978). Corn injury has been observed for glyphosate drift rates as 

low as 11 g/ha (Al-Khatib et al. 2003, Al-Khatib et al. 2000). Other experiments 

conducted to simulate glyphosate drift in corn showed yield reductions of 78, 43, 

and 22% for simulated applications of 140, 70, and 35 grams acid equivalent per 

hectare (g ae/ha) of glyphosate, respectively (Ellis et al. 2003). Roider et al. 

(2007) found a 43% decrease in wheat yield when glyphosate was applied at 70 

grams active ingredient per hectare (g ai/ha), which is approximately 6% of the 

normal use rate for this herbicide. Ellis et al. (2003) found that height reductions 

and foliage discoloration from sub-lethal applications of glyphosate to both rice 

and corn crops were minimal, but negative effects on yields were significant. 

Technological advances have changed agricultural production systems. 

One example of this change is the use of remotely sensed data to monitor the 

condition of a crop at a given time and location. Currently available tools which 

can be utilized to monitor crop stress include multispectral and hyperspectral 

sensors. These tools can be utilized as a means to assess specific conditions 

within a given field which relate to crop yield (Seidl et al. 2004). For example, 

crop stress induced by pests, moisture or nutrient availability, or the crops 
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reaction to a specific management practice can be monitored with remote 

sensing tools (Tartachnyk et al. 2006, Lichtenthaler 1996). Therefore, remote 

sensing systems have proven to be useful for many applications in production 

agriculture. Remote sensing systems have been utilized for detecting crop stress 

from lack of nutrients and moisture (Barnes et al. 2000), weed infestations 

(Chang et al. 2004), yield performance (Chang et al. 2003), crop stand density 

(Thorp et al. 2008), and injury from herbicide applications (Thelen et al. 2004, 

Henry et al. 2004). Ground-based systems, aerial imagery, and satellite imagery 

are options for obtaining remotely sensed data. Everman et al. (2008) utilized 

both a ground-based handheld spectroradiometer and aerial imagery to evaluate 

the effects of herbicides on the spectral reflectance of corn. Satellite imagery has 

been used to measure the nutrient uptake of winter cover crops (Hively et al. 

2009). The use of such systems can provide valuable information about plant 

health through reflectance measurements of the crop canopy. 

The theory behind the utilization of remote sensing to detect plant stress is 

based on the assumption that stress is interfering with photosynthetic reactions 

within the plant or the physical structure of the plant and therefore affects the 

absorption of energy from light which changes the reflectance of energy from the 

plants (Riley et al. 1989, Hatfield and Pinter 1993). Herbicide applications to 

sensitive crops have shown variations in reflectance. A reduction in NIR 

reflectance in corn was found when glyphosate was applied at 0.433 kg ae/ha, 

which is approximately 50% of the normal use rate for this herbicide (Irby 2009). 

Vegetation has unique characteristics regarding solar irradiance. Reflectance in 

34 



 

 

 

         

       

   

        

    

     

            

       

        

     

      

       

     

         

  

    

         

     

          

      

         

           

        

the visible light spectrum (400-700 nm) is very low, transmittance is zero, and 

absorptance is high (Thelen et al. 2004). In the near-infrared (NIR) portion of the 

spectrum (700-1350 nm), both reflectance and transmittance are high and 

absorptance is low (Thelen et al. 2004). Because of these characteristics of 

reflectance of vegetation, multiple spectral vegetation indices have been 

developed. The normalized difference vegetation index (NDVI) is commonly used 

as an indication of plant vigor. NDVI is the ratio of NIR-Red/NIR+Red. Clay et al. 

(2006) used NDVI to measure water and nitrogen stress in corn while Henry et 

al. (2004) used NDVI to classify herbicide injury to soybeans and corn. A 

common method for collection of multispectral data is through aerial mounted 

platforms. This method is relatively inexpensive and can provide useful 

information about a crop at the field level. Experiments have shown, however, 

that hyperspectral data can provide a more accurate assessment of crop 

parameters than did equivalent data from multispectral sensors (Thenkabail et al. 

2002). 

Remotely sensed data can provide valuable information about the overall 

health of a plant in instances where crop injury is suspected but not visible. Some 

factors that should be considered when using remotely sensed data in this 

capacity include time of day/year, topography, soil type, and crop type. Previous 

research has shown that reflectance values in tilled fields were primarily 

influenced by soil characteristics during the early stages of the growing season 

(Huete et al. 1985). Chang et al. (2003) reported that characteristics of spectral 

reflectance are influenced by plant factors more than soil factors as the growing 
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season progresses. This is expected due to the methods by which many of our 

agricultural crops are grown. Typically, row crops are planted in a variety of 

spacings both between the rows as well as within each row. These spacings are 

chosen based on the optimum plant population which will maximize yield and 

provide canopy cover to efficiently use light energy in the plant’s photosynthetic 

processes. Therefore, as the season progress, the crop canopy begins to cover 

the soil surface allowing spectral reflectance to be influenced more by plant 

factors rather than soil factors. 

The ability to rapidly detect and assess herbicide induced stress to a crop 

would be beneficial in many aspects. From a producer’s standpoint, a rapid 

response time is needed in order to make a management decision about the 

stressed crop. In the event of herbicide injury to a crop, producers could use the 

information obtained from the remotely sensed data coupled with data showing 

yield reductions correlated to reflectance measurements to make informed 

decisions for replanting or leaving the injured crop in the field. This type of 

situation is often the most difficult decision that a producer might have to make. 

Factors such as the type of injury and time of year play important roles in this 

process. Having tools in place which can assist in rapidly making these decisions 

could allow producers to salvage their investment rather than accepting a total 

loss. Therefore, it is important to evaluate remotely sensed information for 

classifying spectral features associated with specific sub-lethal concentrations of 

a herbicide in the event of off-target herbicide deposition. The objective of this 
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research was to evaluate spectral features associated with various sub-lethal 

concentrations of herbicides applied to susceptible crops. 

Materials and Methods 

Experiments were conducted at the Black Belt Branch Experiment Station 

in Brooksville, MS to evaluate spectral features associated with various 

concentrations of herbicides applied to susceptible crops. Field corn (Zea mays) 

was planted in 2 experimental fields which are 2.3 and 3.2 hectares in size. 

Wheat (Triticum aestivium) was planted in a single experimental field which was 

3.2 hectares in size. Each field was planted according to standard agricultural 

practices for each crop. The seeding rate for corn and wheat was 69,000 seeds 

per hectare and 95 kilograms per hectare, respectively. In order to gather as 

much spatial variability as possible, field plot size measured 7.70 meters wide by 

30.5 meters long. Herbicide applications included glufosinate-ammonium, the 

active ingredient in the herbicide Liberty® 280 SL, clethodim, the active 

ingredient in the herbicide Select Max®, and glyphosate, the active ingredient in 

the herbicide Roundup®. Glufosinate-ammonium and clethodim were applied to 

a corn hybrid which is sensitive to both of these herbicides. Glyphosate was 

applied to wheat which is highly sensitive to this herbicide. Herbicide applications 

were made when corn reached the V6-V7 growth stage and when wheat reached 

the boot stage. Glufosinate-ammonium application rates included the 

recommended labeled rate (1X) of 0.59 kilograms of active ingredient per hectare 

(kg ai/ha) as well as 0.30, 0.15, 0.07, 0.04, and 0.02 kg ai/ha, which correspond 

to 1/2X, 1/4X, 1/8X, 1/16X, and 1/32X fractions of the recommended labeled rate. 
37 



 

 

 

     

         

        

         

     

          

      

      

     

     

         

    

        

       

        

       

       

           

         

       

     

      

     

Similarly, clethodim rates were based on the recommended labeled rate of 0.10 

kg ai/ha and included concentrations of 0.05, 0.025, 0.013, 0.006, and 0.003 kg 

ai/ha, which correspond to 1/2X, 1/4X, 1/8X, 1/16X, and 1/32X fractions of the 

recommended labeled rate. Glyphosate rates for the applications to wheat were 

based on the recommended labeled rate of 0.86 kilograms of acid equivalent per 

hectare (kg ae/ha) and included concentrations of 0.43, 0.11, and 0.03 kg ae/ha 

which correspond to 1/2X, 1/8X, and 1/32X fractions of the recommended 

labeled rate. Data collection consisted of hyperspectral data collected using the 

Analytical Spectral Devices (ASD™) Fieldspec Pro handheld spectroradiometer. 

Hyperspectral data were collected over a 14 day period for each crop with 

collection timings of 1, 4, 7, and 14 days after herbicide application, depending 

on the weather. Handheld spectroradiometer data were collected in conjunction 

with a Topcon HiPer Lite Plus real time kinematic (RTK) global positioning 

system (GPS) to ensure that each data point received a fixed spatial information 

description. Visual injury ratings were recorded 7, 14, and 28 days after 

application and were based on a scale of 0 to 100, where 0 = no crop injury and 

100 = complete crop death (Frans et al. 1986). At harvest, machine harvested 

yields were collected from the two center rows of each corn plot and the center 

1.8 meters of each wheat plot. Principal component analysis (PCA), linear 

discriminant analysis (LDA), stepwise linear discriminant analysis (SLDA), a 

multi-classifier decision fusion (MCDF), and a discrete wavelet transfer multi-

classifier decision fusion (DWT-MCDF) analysis techniques were tested in order 

to confirm which technique provided consistent results. Principal component 
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analysis, LDA, and SLDA techniques are commonly used for dimensionality 

reduction as well as feature extraction in hyperspectral data (Kalluri et al. 2009). 

The MCDF technique separates the hyperspectral data into multiple subsets 

allowing classification of each subset and ultimately a single identification of each 

class per hyperspectral signature (Prasad and Bruce 2008). Ultimately, data 

were analyzed using a MCDF technique and the results of this technique were 

utilized to generate classification accuracies of the hyperspectral data acquired 

with a ground-based spectral acquisition system after application of the various 

herbicide rates applied in the field. 

Results and Discussion 

Hyperspectral data acquired through a ground-based spectral acquisition 

system were analyzed to provide assessments of the system’s capability to 

accurately predict the herbicide rate that was actually applied based on the 

collected spectral information. Typically, herbicides will influence the plant 

structure within a matter of days after direct contact. Therefore, these data were 

collected multiple times over a 14 day period after simulation of off-target 

herbicide deposition. Tables 3.1 to 3.11 display classification matrixes of the 

handheld hyperspectral data. Overall, producer, and consumer’s accuracies were 

calculated for each classification matrix. The overall accuracy is the percentage 

of the correctly classified spectral features obtained with the specific system. 

Producer’s accuracy is a measure of the system’s capability to correctly classify 

spectral features which correspond to a specific herbicide concentration. In other 

words, the producer’s accuracy is the percentage of spectral features that were 
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classified with the correct herbicide concentration, while the remaining spectral 

features in this category which actually belonged with the correct concentration 

were classified as a different concentration. Consumer’s accuracy is a measure 

of the spectral features that were correctly classified to correspond with the 

actual herbicide concentration that was applied. For example, herbicide 

concentration Z with a producer’s accuracy of Y% and a consumer’s accuracy of 

X% simply means that the system identified Y% of the spectral features as 

herbicide concentration Z, but only X% of the spectral features actually belonged 

with herbicide concentration Z. 

Tables 3.1 to 3.4 each display a classification matrix for the hyperspectral 

data acquired 1, 4, 7, and 14 days after treatment (DAT) when glufosinate-

ammonium was applied at various concentrations to susceptible corn. The 

classification matrix resulting from the hyperspectral data acquired 1 DAT (Table 

3.1) through the ground-based spectral acquisition system displays an overall 

accuracy of 50%. Producer’s accuracy results were greatest for the untreated 

and 1X rate of glufosinate-ammonium with accuracies of 94 and 97%, 

respectively. The system had difficulty classifying the spectral features 

associated with the two lowest rates of 1/32X and 1/16X, only providing 

producer’s accuracies of 11 and 10%, respectively. The producer’s accuracies 

for the remaining herbicide concentrations ranged from 34 to 52%. The 

consumer’s accuracies ranged from 30 to 79% with the greatest consumer’s 

accuracy being observed for the untreated. 
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Table 3.2 displays the classification matrix generated from the 

hyperspectral data recorded 4 DAT of glufosinate-ammonium. The system 

generated an overall accuracy 72% 4 DAT. The producer’s accuracy of the 

untreated was 98% while 81% was observed for the lowest concentration of 

1/32X. The lowest producer’s accuracy of 44% was observed for the 1/16X 

concentration. The remaining intermediate (1/8X and 1/4X) concentrations 

received producer’s accuracies of 61 and 79%, respectively. In addition, 

producer’s accuracies of 72 and 63% were observed for the 1/2X and 1X rates. 

The consumer’s accuracy for the 1/16X concentration was 94% while the 

remaining concentrations received consumer’s accuracies of 59 to 83%. 

The classification matrix resulting from the data acquired 7 DAT of 

glufosinate-ammonium is listed in Table 3.3. In this case, the overall accuracy 

generated by the system was 64%. Producer’s accuracy results were greatest for 

untreated and the 1X concentration of glufosinate-ammonium with accuracies of 

94 and 84%, respectively. Similar to what was observed 1 DAT, the system had 

difficulty correctly classifying the spectral features associated with the two lowest 

rates of 1/32X and 1/16X, only providing producer’s accuracies of 34 and 38%. 

The producer’s accuracies for the remaining herbicide concentrations ranged 

from 51 to 72%. The consumer’s accuracies ranged from 47 to 88% with the 

greatest consumer’s accuracy being observed for the 1/4X concentration. 

Table 3.4 displays an overall accuracy of 59% of the classification matrix 

generated from the data acquired 14 DAT of glufosinate-ammonium. Producer’s 

accuracies of 81, 76, and 79% with 52, 44, and 63 correct classifications of 
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spectral features were observed for the untreated, 1/32X, and 1/4X 

concentrations, respectively. For the 1/2X and 1X concentrations, 63% 

producer’s accuracy was observed. Only 11% producer’s accuracy with 6 

correctly classified spectral features was observed for the 1/16X concentration. 

Consumer’s accuracies ranged from 47 to 77% for all concentrations. 

Tables 3.5 to 3.8 display classification matrixes for the classification 

accuracies that were obtained 1, 4, 7, and 14 days after treatment (DAT) when 

clethodim was applied at various concentrations to corn. The classification matrix 

resulting from the hyperspectral data acquired 1 DAT of clethodim (Table 3.5) 

through the ground-based spectral acquisition system displays an overall 

accuracy of 43%. Producer’s accuracy results were greatest for untreated, 1/4X, 

and 1/2X rates of clethodim with 62, 72, and 78 correct classifications, 

respectively. The system had difficulty correctly classifying the spectral features 

associated with the 1/16X rate, only providing producer’s accuracies of 1% with 

only 1 correctly classified spectral feature. The producer’s accuracies for the 

remaining two herbicide concentrations were 36 and 34% for the 1/32X and 1/8X 

rates, respectively. The consumer’s accuracies ranged from 33 to 100% with the 

greatest consumer’s accuracy being observed for the 1/16X rate, however, only 

one spectral feature was classified for this herbicide concentration. 

Table 3.6 displays the classification matrix generated from the 

hyperspectral data recorded 4 DAT of clethodim. The system generated an 

overall accuracy of 51% 4 DAT. Producer’s accuracy of the untreated was 93% 

with 77 correctly classified spectral features being associated with this treatment. 
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A producer’s accuracy of 63% was observed for the 1/32X concentration with 41 

spectral features being classified correctly. The lowest producer’s accuracy of 

18% was observed for the 1/16X concentration. The remaining concentrations 

received producer’s accuracies of 37, 31, and 21%, respectively. Consumer’s 

accuracy for the 1/16X concentration was 100% while the remaining 

concentrations received consumer’s accuracies of 42 to 65%. 

The classification matrix resulting from the data acquired 7 DAT of 

clethodim is listed in Table 3.7. In this case, the overall accuracy generated by 

the system was 62% with 45, 65, 24, 27, 37, and 66 correct classifications of the 

spectral features associated with the untreated, 1/32X, 1/16X, 1/8X, 1/4X, and 

1/2X concentrations, respectively. Producer’s accuracy results were greatest for 

the 1/32X and 1/2X concentrations of clethodim with 87 and 85% producer’s 

accuracies. The producer’s accuracies for the remaining herbicide concentrations 

ranged from 36 to 67%. The consumer’s accuracies ranged from 46 to 92% with 

the greatest consumer’s accuracy being observed for the untreated. 

Table 3.8 displays an overall accuracy of 74% of the classification matrix 

generated from the data acquired 14 DAT of various clethodim concentrations. 

Producer’s accuracies of 82, 80, 80, and 83% with 82, 68, 78, and 72 correct 

classifications of spectral features were observed for the untreated, 1/16X, 1/4X, 

and 1/2X concentrations, respectively. For the low concentration of 1/32X and 

intermediate concentration of 1/8X, producer’s accuracies of 41 and 58% were 

observed, respectively. Consumer’s accuracies ranged from 63 to 94% for all 

concentrations. 
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Tables 3.9 to 3.11 display classification matrixes for the classification 

accuracies that were obtained 4, 7, and 14 DAT when glyphosate was applied at 

1/32X, 1/8X, and 1/2X concentrations to wheat. Data were not collectable 1 DAT 

for this experiment due to unfavorable weather conditions. The classification 

matrix resulting from the hyperspectral data acquired 4 DAT through the ground-

based spectral acquisition system displays an overall accuracy of 73% (Table 

3.9). Producer’s accuracy results were greatest for the untreated with 85 correct 

classifications. The producer’s accuracies decreased as glyphosate 

concentration decreased from 1/2X to 1/32X with accuracies of 79 to 56%, 

respectively. The consumer’s accuracies ranged from 68 to 85% with the 

greatest consumer’s accuracy being observed for the 1/32X concentration. 

Table 3.10 displays the classification matrix generated from the 

hyperspectral data recorded 7 DAT of various glyphosate concentrations to 

wheat. The system generated an overall accuracy 86% 7 DAT. Producer’s 

accuracy of the 1/2X concentration was 100% while the untreated, 1/8X, and 

1/32X concentrations were 85, 73, and 86%, respectively. The observed 

consumer’s accuracies were 90, 90, 71, and 97% for the untreated, 1/32X, 1/8X, 

and 1/2X concentrations.  

The classification matrix resulting from the data acquired 14 DAT of 

clethodim is listed in Table 3.11. In this case, the overall accuracy generated by 

the system was 92% with 87, 89, 77, and 78 correct classifications of the spectral 

features associated with the untreated, 1/32X, 1/8X, and 1/2X concentrations, 

respectively. A producer’s accuracy of 98% was observed for untreated. The 
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producer’s accuracies for the remaining herbicide concentrations (1/32X, 1/8X, 

and 1/2X) were 84, 94, and 94%. The consumer’s accuracies ranged from 83 to 

100% with the greatest accuracy being observed for the 1/2X concentration. 

Visual injury ratings recorded 7, 14, and 28 DAT resulted in an expected 

stair-step pattern with the visual injury decreasing as herbicide concentration 

decreased, regardless of specific herbicide or the crop it was applied to (Table 

3.12). Visual injury was significantly greater than the untreated for all rates of 

glufosinate-ammonium 7 DAT, with the exception of the 1/32X rate. However, 14 

and 28 DAT, all glufosinate-ammonium rates provided significant injury when 

compared to the untreated, although the level of injury did decrease over time. 

Similarly, visual injury ratings recorded 7 DAT of various rates of clethodim were 

applied to corn showed a significant increase in injury when compared to the 

untreated, with the exception of the two lowest concentrations. Again, 14 and 28 

DAT, significant injury was observed for all rates of clethodim when compared to 

the untreated. Significant injury was observed 7 and 14 DAT when glyphosate 

concentrations of 1/8X and 1/2X were applied to wheat. However, by 28 DAT, no 

visual injury was observed for any rate. The 1/32X rate provided no visual injury 

7, 14, or 28 DAT of glyphosate to wheat. 

Crop yield reductions expressed as a percentage of the yield potential of 

the untreated are displayed in Table 3.13. No reduction in crop yield was 

observed after glufosinate-ammonium was applied at 1/32X, 1/16X, 1/8X, and 

1/4X concentrations to susceptible corn. A 30% yield reduction was observed 

when a 1/2X rate of glufosinate-ammonium was applied, however, this was not 
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significant when compared to the untreated. A significant yield reduction of 72% 

was observed for the 1X rate of glufosinate ammonium. After clethodim 

concentrations were applied to corn, a 19, 27, and 30% reduction in crop yield 

was observed for the 1/32X, 1/16X, and 1/8X rates, respectively. However, these 

reductions in crop yield were not found to be significant when compared to the 

untreated. Significant reductions in corn yield of 60 and 100% were observed for 

the 1/4X and 1/2X rates of clethodim. A reduction of 5% in wheat yield was 

observed following application of glyphosate at the 1/32X concentration, 

however, this was not significant when compared to the untreated. Significant 

reductions of 12 and 31% in wheat yield was observed for the 1/8X and 1/2X 

rates of glyphosate, respectively. 

Conclusion 

These data indicate that the predictive capability of this system varies for 

correctly classifying herbicide concentrations through spectral features. The 

generated overall accuracies of the systems’ capability for classification was 

highest 4 DAT when glufosinate-ammonium was applied to susceptible corn and 

14 DAT when clethodim was applied to corn and glyphosate to wheat. This can 

be expected as the spectral response of the plants will likely vary after 

applications of these specific herbicides. For example, plants exposed to a 

labeled rate of glufosinate-ammonium will exhibit necrosis of leaves and young 

shoots within 2 to 4 days after the application if conditions are favorable 

(Anonymous 2012a). Plants exposed to clethodim, however, will generally show 

symptoms 7 to 14 days after an application of the labeled rate (Anonymous 
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2012b). When susceptible plants are exposed to glyphosate, symptoms are 

sometimes visible within 2 to 4 days for some species, but can take 7 or more 

days for symptoms to occur (Anonymous 2012c). In addition, the specimen label 

for glufosinate ammonium indicates that an additional application at the labeled 

rate may be required to effectively control corn (Anonymous 2012a). This 

indicates that corn exposed to sub-lethal concentrations of glufosinate-

ammonium may recover and continue normal growth. Therefore, these overall 

classification accuracies mimic what would be expected from applications of 

these herbicides to susceptible plant species. 

Specifically, the predictive capability of this system for classifying spectral 

features associated with concentrations of glufosinate-ammonium would be 

expected to be higher immediately after application when compared to two 

weeks after the application. In addition, producer’s accuracies 1 DAT would likely 

be greater for higher concentrations or the untreated, as was seen in these data, 

due to the fact that the herbicide will not likely have taken affect at sub-lethal 

concentrations. At 4 DAT, these data indicate that lower producer’s accuracies 

were observed for the intermediate and higher rates. This may be expected as 

the plants are exhibiting similar symptoms, regardless of rate, which can be 

confirmed with the similar levels of visual injury that were noted (Table 3.12). The 

overall accuracies decreased from 64% 7 DAT to 59% 14 DAT. This could be 

due to the corn recovering from lower concentrations and beginning to grow 

normally. 
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These data indicate that it is likely that the predictive capability of this 

system for classifying spectral features associated with concentrations of 

clethodim applied to corn and glyphosate to wheat will increase over time. In 

other words, with herbicides that require a longer period of time to affect the 

plant, it may be more difficult to discern a noticeable difference in spectral 

features associated with specific herbicide concentrations immediately after 

exposure. In both of these cases, the highest overall accuracy was observed 14 

DAT. 

As described through these data, it is possible to utilize spectral features 

to classify certain concentrations of herbicides which may influence a crop after 

an off-target herbicide deposition instance. These data indicate that this system 

is capable of predicting spectral features associated with multiple herbicides. In 

doing so, it is possible that in classifying spectral features associated with 

multiple herbicides that either work rapidly within the plant or require a week or 

longer to develop symptoms, this system could be utilized to not only express the 

level of injury which may occur with off-target herbicide deposition, but also 

provide information regarding yield losses which may or may not occur. This 

would be a great benefit for the producers whose crops are affected by off-target 

herbicide deposition. This could allow for proper decisions to be made regarding 

the overall health of the current crop and whether or not the level of injury 

presents a financial liability should the crop be left as is. 
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CHAPTER IV 

DIFFERENTIATION BETWEEN CROP STRESS INDUCED FROM HERBICIDE 

APPLICATION AND STRESS DUE TO NUTRIENT 

OR MOISTURE DEFECIENCY 

Introduction 

Crop stress is a major concern for producers. Stress can influence a 

crop’s growth and development and have negative impacts on yield. There are 

many types of stresses including but not limited to herbicide stress, nutrient 

stress, and drought stress. Herbicide induced stress on a crop is not new. 

Typically, stress caused by herbicides occurs during an off-target deposition 

instance of a herbicide application. The Environmental Protection Agency (EPA) 

defines spray drift as “The physical movement of a pesticide through air at the 

time of application or soon thereafter, to any site other than that intended for 

application (often referred to as off-target)” (Environmental Protection Agency 

2009). There are many variables which can influence off-target deposition. These 

factors include environmental conditions at time of application (i.e. wind speed, 

temperature, and humidity), herbicide formulation, application pressure, 

application speed, boom height, nozzle type, and droplet size (Carlsen et al. 

2006). 
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With increased acreage being planting in varieties/hybrids that contain 

herbicide resistant traits, herbicide injury to non-target crops continues to cause 

problems for producers. As the industry continues to develop new genetic traits 

that will allow multiple herbicide chemistries to be applied safely to the target 

crop, it is likely that herbicide induced stress will continue to be a major concern 

in non-target fields. To date, commercially available herbicide-tolerant 

varieties/hybrids contain traits which allow herbicides like glyphosate and 

glufosinate-ammonium to be applied as a broadcast application during the 

growing season. Both glyphosate and glufosinate-ammonium are broad 

spectrum herbicides which have activity on a large number of plant species, 

including major crops like non-transgenic soybeans, corn, cotton, and wheat. 

Glyphosate was applied to 68 and 66% of U.S. cotton and corn acres in 2010, 

respectively (USDA NASS 2012).These applications totaled approximately 68 

million pounds of glyphosate applied in the U.S. in 2010. Therefore, it is possible 

for crop stress from herbicide applications to occur in neighboring fields that 

contain susceptible crop varieties/hybrids. 

Previous research focusing on herbicide stress has shown that ultra-low 

rates of glyphosate can reduce corn yield (Rowland 2000). Experiments 

conducted to simulate glyphosate drift in corn showed yield reductions of 78, 43, 

and 22% for simulated applications of 140, 70, and 35 grams acid equivalent per 

hectare (g ae/ha) of glyphosate, respectively (Ellis et al. 2003). Roider et al. 

(2007) found a 43% decrease in wheat yield when glyphosate was applied at 70 

grams active ingredient per hectare (g ai/ha), which is approximately 6% of the 
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normal use rate for this herbicide. Ellis et al. (2003) found that height reductions 

and foliage discoloration from sub-lethal applications of glyphosate to both rice 

and corn crops were minimal, but negative effects on yields were significant. 

Stress caused by lack of available moisture or nutrients can also cause 

reductions in crop yield. Previous research has shown significant reductions in 

soybean yield when water stress at any level was imposed during the 

reproductive phase of the crop (Kirnak et al. 2008). Clay et al. (2006) observed 

reductions in corn yield when both nitrogen and moisture stress were imposed to 

corn. 

Technological advances have allowed new or improved methods for 

producer’s to monitor the condition of their crops during the growing season. 

Producers are able to utilize technologies such as internet, mobile phones, global 

positioning systems, site-specific applicators, and remotely sensed data to assist 

with decision making pertaining to best management practices which can 

improve crop production and provide protection to the environment. Producers 

who are adopting this technology can combine many of these tools to assess 

equipment performance, monitor environmental conditions, and evaluate the 

condition of their crops at any given time. Remote sensing tools are of particular 

interest with the practice of precision agriculture. 

Tools which collect remotely sensed data, such as multispectral and 

hyperspectral sensors, can be utilized as a means to assess specific conditions 

within a given field which relate to crop yield (Seidl et al. 2004). For example, 

crop stress induced by pests, moisture or nutrient availability, or the crops 
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reaction to a specific management practice can be monitored with remote 

sensing tools (Tartachnyk et al. 2006, Lichtenthaler 1996). Therefore, remote 

sensing systems have proven to be useful for many applications in production 

agriculture. These applications include detecting crop stress from lack of 

nutrients and moisture in crops such as corn and wheat (Barnes et al. 2000, 

Ghulam et al. 2008, Barker and Sawyer 2010), weed infestations (Chang et al. 

2004), yield performance (Chang et al. 2003), crop stand density (Thorp et al. 

2008), diseases in wheat (Franke and Menz 2007), and injury from herbicide 

applications (Thelen et al. 2004, Henry et al. 2004). Ground-based systems, 

aerial imagery, and satellite imagery are options for obtaining remotely sensed 

data. Everman et al. (2008) utilized both a handheld spectroradiometer and aerial 

imagery to evaluate the effects of herbicides on the spectral reflectance of corn. 

Satellite imagery has been used to measure the nutrient uptake of winter cover 

crops (Hively et al. 2009). The use of such systems can provide valuable 

information about plant health from reflectance measurements of the crop 

canopy. 

Nitrogen and moisture stress as well as stress caused by herbicide 

applications can interact to influence yields in agricultural fields. Remotely 

sensed data can be used as a tool to assess these stresses (Barnes et al. 2000). 

The theory behind the utilization of remote sensing to detect plant stress is based 

on the assumption that stress is interfering with photosynthetic reactions within 

the plant or the physical structure of the plant. Therefore, stress can affect the 

absorption of energy from light which changes the reflectance of energy from the 
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plants (Riley et al. 1989, Hatfield and Pinter 1993). The nitrogen content found in 

leaves of many crops is an important indicator of growth status, quality, and yield 

(Cui et al. 2009). Nitrogen stress reduces the amount of chlorophyll and can 

result in increased reflectance of photosynthetically active light (Clay et al. 2006) 

and decreased reflectance in the near-infrared light (Cui et al. 2009, Yoder and 

Pettigrew-Crosby 1995). Water stress can influence reflectance due to reduced 

photochemical activity of chlorophyll (Clay et al. 2006, Souza et al. 2004). 

Herbicide applications to sensitive crops have also shown variations in 

reflectance. A reduction in NIR reflectance in corn was found when glyphosate 

was applied at 0.433 kg ae/ha, which is approximately 50% of the normal use 

rate for this herbicide (Irby 2009). Vegetation has unique characteristics 

regarding solar irradiance. Reflectance in the visible light spectrum (400-700 nm) 

is very low, transmittance is zero, and absorptance is high (Thelen et al. 2004). In 

the near-infrared (NIR) portion of the spectrum (700-1350 nm), both reflectance 

and transmittance are high and absorptance is low (Thelen et al. 2004). Because 

of these characteristics of reflectance of vegetation, multiple spectral vegetation 

indices have been developed. The normalized difference vegetation index (NDVI) 

is commonly used as an indication of plant vigor. NDVI is the ratio of NIR-

Red/NIR+Red. Clay et al. (2006) used NDVI to measure water and nitrogen 

stress in corn while Henry et al. (2004) used NDVI to classify herbicide injury to 

soybeans and corn. Crop water stress indices (CWSI) have been used to map 

water stress in crops. This index uses canopy temperature and environmental 

conditions to calculate a value which describes water stress on a scale from 0 to 
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1, with 0 being no water stress and 1 being complete water stress. Barnes et al. 

(2000) used the CWSI paired with NDVI to map water stress in cotton. 

Experiments have shown that hyperspectral vegetation indices can provide a 

more accurate assessment of crop parameters than did equivalent indices from 

multispectral sensors (Thenkabail et al. 2002). However, hyperspectral data are 

more complicated when compared to multispectral data due to the volume of 

data which is obtained (Karimi et al. 2005). In order to extract useful information 

from larger hyperspectral data sets, it is important to first select a range of bands 

that can be used to describe information about the specific target. 

Remotely sensed data can provide valuable information about the overall 

health of a plant in instances where crop injury is suspected but not visible. Some 

factors that should be considered when using remotely sensed data in this 

capacity include time of day/year, topography, soil type, and crop type. Previous 

research has shown that reflectance values in tilled fields were primarily 

influenced by soil characteristics during the early stages of the growing season 

(Huete et al. 1985). Chang et al. (2003) reported that characteristics of spectral 

reflectance are influenced by plant factors more than soil factors as the growing 

season progresses. This is expected due to the methods by which many of our 

agricultural crops are grown. Typically, row crops are planted in a variety of 

spacings both between the rows as well as within each row. These spacings are 

chosen based on the optimum plant population which will maximize yield and 

provide canopy cover to efficiently use light energy in the plant’s photosynthetic 

processes. Therefore, as the season progress, the crop canopy begins to cover 
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the soil surface allowing spectral reflectance to be influenced more by plant 

factors rather than soil factors. 

The ability to rapidly detect and assess herbicide induced stress to a crop 

would be beneficial in many aspects. From a producer’s standpoint, a rapid 

response time is needed in order to make a management decision about the 

stressed crop. In the event of herbicide injury to a crop, producers could use the 

information obtained from the remotely sensed data coupled with data showing 

yield reductions correlated to reflectance measurements to make informed 

decisions for replanting or leaving the injured crop in the field. This type of 

situation is often the most difficult decision that a producer might have to make. 

Factors such as the type of injury and time of year play important roles in this 

process. Having tools in place which can assist in rapidly making these decisions 

could allow producers to salvage their investment rather than accepting a total 

loss. A commonly asked question while using remote sensing tools in the event 

of off-target deposition; however, is whether or not it is actually herbicide stress 

affecting the observed changes in reflectance. In other words, is it truly the 

herbicide stress causing changes in reflectance or is it another factor such as 

moisture or nutrient stress. Therefore, this research was conducted in order to 

compare reflectance values obtained after herbicide, nutrient, and moisture 

stress was induced to corn to discern if differences exist in specific wavelengths 

that best correlate with the respective stresses. 
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Materials and Methods 

This experiment was conducted in a greenhouse environment at the R.R. 

Foil Plant Science Research Center near Starkville, MS. The experiment was 

replicated twice. Plants were grown in 3,800 cubic centimeter (cm3) pots 

measuring 15 centimeters (cm) in diameter and 19 cm in height. The pots were 

filled with masonry sand containing the appropriate levels of macro- and micro-

nutrients for corn production, with the exception of the target deficiency nutrient 

of nitrogen. Pioneer P1184HR corn seed was planted with 2 seeds per pot and 

thinned to 1 plant per pot after corn emergence. The air temperature in the 

greenhouse was maintained at 29° C during a 14-hour day and 18° C during the 

dark period. Treatments included three herbicide rates, three nitrogen rates, 

three moisture rates, and an untreated check for comparison purposes. Each 

treatment was replicated 4 times. The herbicide treatments were based off the 

labeled rate of 0.10 kg ai/ha of clethodim, the active ingredient in the herbicide 

Select Max®. The actual rates of clethodim included concentrations of 0.05, 

0.013, and 0.0016 kg ai/ha, which correspond to 1/2X, 1/8X, and 1/64X fractions 

of the recommended labeled rate. Herbicide treatments were applied at the V3 

growth stage. Treatments for the various moisture and nitrogen rates were 

applied at the beginning of the experiment. In order to simulate a nutrient 

deficiency, three rates of nitrogen were mixed with the masonry sand while all 

remaining macro- and micro-nutrients were held constant. The three levels of 

nitrogen consisted of a normal N rate of 90 kg/ha with medium and low rates of 

60 and 30 kg N/ha, respectively. This normal rate was selected as an appropriate 
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level of starter N to be applied for a dry-land corn yield goal of 11,500 kg/ha. 

Similarly, the three moisture treatments received varying amounts of deionized 

water twice daily to maintain soil moisture content at low (wilting point), medium, 

and normal (field capacity) levels. Ultimately, the herbicide treatments were 

maintained at normal nutrient and water levels, the nitrogen treatments received 

no herbicide and normal water levels, and the moisture treatments received no 

herbicide and normal nutrient levels. In addition, the untreated check received no 

herbicide treatment, normal moisture, and normal nutrients in order to maintain 

this treatment as a healthy control for comparison purposes. Data collection 

consisted of soil moisture readings in the form of percent volumetric water 

content collected using a portable soil moisture sensor, leaf chlorophyll content 

readings of a unitless value between 0 and 50 using a SPAD chlorophyll meter, 

plant heights in centimeters (cm), and leaf clip reflectance measurements using 

the Analytical Spectral Devices (ASD™) Fieldspec Pro handheld 

spectroradiometer. Volumetric water content, leaf chlorophyll content, and plant 

height data were recorded prior to herbicide application as well as 1, 3, 7, and 14 

days after herbicide treatment (DAT) which correspond to 16, 18, 22, and 29 

days after corn emergence (DAE). Spectral data were acquired 3, 7, and 14 DAT 

of the herbicide induced stress. A Normalized Difference Vegetation Index 

(NDVI) was calculated from the spectral data 3, 7, and 14 DAT. Volumetric water 

content, leaf chlorophyll content, plant height data, and NDVI were averaged 

across both experiments and subjected to an analysis of variance with means 

separated using Fisher’s Protected LSD at P = 0.05. Spectral data were 
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combined over both experiments to evaluate specific wavelengths which 

correlate to herbicide, nutrient, or moisture stresses. Correlation coefficients were 

generated to determine which spectral features were correlated with the various 

forms of stress. 

Results and Discussion 

Data were first analyzed in order to determine if the experiment was 

successful for separating stresses induced by the various treatments of moisture 

and nutrient deficits and herbicide rates. Both moisture stress and nutrient stress 

simulated by deficit of soil nitrogen were subjected to the experiment at planting. 

Data collection did not begin until herbicide stress in the form of sub-lethal 

concentrations of clethodim was induced to the corn at the V3 growth stage. A 

period of 15 days passed from corn emergence to induction of herbicide stress. 

By the end of the sampling time, corn had reached the V4 growth stage. 

Therefore, data for moisture and nitrogen stress are displayed in terms of days 

after corn emergence (DAE) while data for herbicide stress are displayed as days 

after herbicide treatment (DAT). 

Table 4.1 lists the results of the data for plant height, leaf chlorophyll 

content, and volumetric water content. Prior to herbicide application, no 

differences in plant height were observed. A significant difference in plant height 

was observed for the low level of moisture when compared to the untreated with 

height reductions of 6.2, 6.5, 6.4, and 6.3 cm 16, 18, 22, and 29 DAE, 

respectively. Plant height reductions were present for both the 1/2X and 1/8X 
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clethodim rates at 3, 7, and 14 DAT. A reduction in plant height of 5 cm was also 

observed for the medium moisture level 18 DAE. 

Significant reductions in leaf chlorophyll content were observed for the 

medium and low levels of nitrogen prior to herbicide application (Table 4.1) with 

reductions of 3.7 and 5.4, respectively. The same levels of nitrogen showed 

numerical differences 16 DAE, however, only the low nitrogen level was found to 

be significant. By 18 DAE (3 DAT), reductions in leaf chlorophyll content of 4.5 

and 6.6 were observed for the 1/2X concentration of clethodim and low level of 

moisture stress, respectively. In addition, leaf chlorophyll content reductions were 

observed for both the medium and low levels of nitrogen 18 DAE. Significant 

reductions in leaf chlorophyll content were also observed for all herbicide 

concentrations as well as the medium and low levels of nitrogen and moisture at 

7 and 14 DAT (22 and 29 DAE). 

With respect to volumetric water content, moisture treatments were 

applied twice daily in order to maintain soil moisture content at low, medium, and 

sufficient levels. Significant reductions in volumetric water content were only 

observed where moisture deficit was designed to be at the medium and low 

levels. Reductions ranging from 5.4 to 6.1% were observed for the medium 

moisture level and 10.4 to 10.7% for the low moisture level across the 5 sampling 

times (Table 4.1). 

NDVI values were calculated for the spectral data collected 3, 7, and 14 

DAT (18, 22, and 29 DAE) (data not shown). NDVI values were calculated using 
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a range of 800 to 900 nm for the NIR and 600 to 700 for the Red. No significant 

differences in NDVI were observed for any treatment. 

The results from the analysis of plant height, leaf chlorophyll content, and 

volumetric water content indicate that the experiment was successful for 

subjecting corn to various levels of stress between herbicide, nitrogen deficiency, 

and moisture deficit. As would be expected with herbicide stress, plant height 

reductions began to occur 3 DAT and continued for the remaining period of data 

sampling. In addition, when corn is subjected to moisture deficit during the early 

vegetative stages, plant height reductions can occur (Olaoye et al. 2009). This 

phenomenon was observed in this experiment as reductions in plant height were 

present for the low level of moisture 16, 18, 22, and 29 DAE. With respect to 

nitrogen deficiency, reductions in leaf chlorophyll content were observed both 

prior to as well as during the 2 week sampling time for the low level of nitrogen. 

Reductions in leaf chlorophyll content were also observed for the medium level of 

nitrogen during this same period, with the exception of 16 DAE. Also, reductions 

in leaf chlorophyll content occurred 7 and 14 DAT (22 and 29 DAE) for all levels 

of induced herbicide and moisture stress. Reductions in leaf chlorophyll content 

were also observed for the highest levels of induced herbicide and moisture 

stress 3 DAT (18 DAE). These observations coupled with the expected 

differences in volumetric water content indicate that different levels of stress 

within each of the three categories were influencing normal plant growth and 

development. 
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After confirming that the different types of stress were indeed present, the 

hyperspectral data were analyzed in order to determine which wavelength(s) may 

or may not be indicative of each type of stress in order to determine if a specific 

region of the electromagnetic spectrum can be used to separate these particular 

forms of plant stress. Correlations were made between spectral features 

associated with the most stressful treatments of herbicide and nutrient stress, 

herbicide and moisture stress, and nutrient and moisture stress 3, 7, and 14 DAT 

of herbicide stress induction (18, 22, and 29 DAE). The correlations between 

spectral features and stress type are displayed in Figures 4.1 to 4.9. Correlation 

coefficients were generated comparing the pairs of stress types to determine a 

linear relationship between each pair of stress types. This relationship was used 

to determine the correlation of spectral features (range within the electromagnetic 

spectrum) and stress type (positive vs. negative correlation). 

In terms of wavelength response to herbicide and nutrient stress, the 

observed correlation coefficients indicate that herbicide stress has more impact 

on the visible and NIR portions of the spectrum both 3 and 7 DAT (18 and 22 

DAE) (Figures 4.1 and 4.2) while nutrient stress is correlated to the infrared (IR). 

However, by 14 DAT (29 DAE), nutrient stress seems to correlate more to the 

visible and NIR portions of the spectrum while herbicide stress is correlated to 

the IR portion (Figure 4.3). This is likely due to the fact that at 14 DAT, the 

herbicide has caused severe injury to the plant as would be expected due to the 

fact that plants exposed to clethodim will generally show symptoms 7 to 14 days 

after an application of the labeled rate (Anonymous 2012). 
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Graphs displaying the correlation coefficients of spectral bands associated 

with herbicide and moisture stress are shown in Figures 4.4 to 4.6. Correlation 

coefficients of spectral bands indicate that the NIR region of the electromagnetic 

spectrum is correlated to herbicide stress 3 DAT (18 DAE) while the visible and 

IR portions of the spectrum are correlated to moisture stress (Figure 4.4). 

However, by 7 DAT (22 DAE), moisture stress was correlated to the entire range 

of wavelengths (Figure 4.5). Correlation coefficients of spectral bands calculated 

14 DAT (29 DAE) show that herbicide stress was correlated to the blue (400 to 

500 nm), green (500 to 600 nm), and NIR regions of the spectrum while moisture 

stress was correlated to the red (600 to 700 nm) and IR regions (Figure 4.6). 

The observed correlation between wavelengths associated with nutrient 

and moisture stress 18 DAE express similar spectral response as was observed 

for herbicide and moisture stress at this same time. Correlation coefficients of 

wavelengths associated with these two forms of stress indicate that the NIR 

region of the electromagnetic spectrum is correlated to nutrient stress 18 DAE 

while the visible and IR portions of the spectrum are correlated to moisture stress 

(Figure 4.7). Both 22 and 29 DAE, however, the data indicate that moisture 

stress is best correlated with the visible and NIR regions of the spectrum while 

nutrient stress is best correlated with the IR regions (Figures 4.8 and 4.9). 

Classification matrixes were also generated in order to determine 

classification accuracies for spectral features associated with the various forms 

of stress (data not shown). Overall accuracies were very low ranging from 13.8 to 
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16.3%. The low overall accuracies were likely due to the limited amount of 

hyperspectral data which were available. 

Conclusion 

The results of this experiment demonstrate a response in spectral 

reflectance from a corn crop under moisture and nitrogen stress at the time of an 

off-target herbicide deposition instance. These data indicate varying results in 

terms of correlating a range of wavelengths that may be capable of separating 

these specific forms of crops stress. At 3 days after the simulated off-target 

herbicide deposition instance (18 DAE), these data indicate that the visible to 

NIR range of the spectrum is best suited to identify herbicide stress as long as 

moisture stress is not present (Table 4.2). If moisture stress is present, then only 

the NIR portion of the spectrum is suited to characterize herbicide stress (Table 

4.2). Conversely, if herbicide stress is not present, then the NIR region is best 

suited to identify nutrient stress when it is present with moisture stress (Table 

4.2). Observations at 7 DAT (22 DAE) indicate that the visible to NIR region of 

the spectrum is best for identifying herbicide stress as long as moisture stress is 

not present (Table 4.3). However, if moisture stress is present simultaneously 

with herbicide and nitrogen stress, the visible to NIR range of the spectrum is 

more useful for identifying stress related to moisture deficit (Table 4.3). By 14 

DAT (29 DAE) of the simulated off-target herbicide deposition instance, the 

spectral data indicate that the visible to NIR region of the spectrum can be used 

to better identify stress related to nitrogen deficiency than to herbicide stress 

Table 4.4). However, this same portion of the spectrum is still capable of 
80 



 

 

 

       

            

       

   

     

          

         

    

       

        

       

       

     

     

     

      

        

         

          

     

identifying herbicide stress compared to moisture stress, as long as nutrient 

deficiency is not present (Table 4.4). If herbicide stress is not present, then 

moisture stress is better identified with the visible to NIR region of the spectrum 

compared to nitrogen stress (Table 4.4). 

While these data indicate that remotely sensed data are capable of 

identifying stress related to crops, it seems unlikely that specific stress types can 

be identified with the equipment used in this experiment if multiple forms of stress 

are present. This experiment was conducted in a controlled greenhouse 

environment. In a true cropping scenario, many variables may be present which 

interact to influence spectral reflectance. Without knowing the specific form of 

crop stress, it would be difficult to utilize remotely sensed data to accurately 

quantify negative impacts on the crop. However, if moisture stress were removed 

as may be the case in an irrigated cropping system, these data demonstrate that 

the visible and NIR regions of the electromagnetic spectrum can be used to 

separate stress related to off-target herbicide deposition when present with 

stress in the form of nitrogen deficiency. This knowledge could prove useful in 

the event of off-target herbicide deposition to a crop which is deficient in nitrogen. 

This could allow for proper decisions to be made regarding the overall health of 

the current crop and whether or not the level of injury presents a financial liability 

should the crop be left as is. 
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Figure 4.1. Spectral features recorded 18 DAE and 3 DAT which best correlate 
herbicide stress (positive correlation) vs. nutrient stress (negative 
correlation). 
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Figure 4.2. Spectral features recorded 22 DAE and 7 DAT which best correlate 
herbicide stress (positive correlation) vs. nutrient stress (negative 
correlation). 
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Figure 4.3. Spectral features recorded 29 DAE and 14 DAT which best correlate 
herbicide stress (negative correlation) vs. nutrient stress (positive 
correlation). 
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Figure 4.4. Spectral features recorded 18 DAE and 3 DAT which best correlate 
herbicide stress (positive correlation) vs. moisture stress (negative 
correlation). 
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Figure 4.5. Spectral features recorded 22 DAE and 7 DAT which best correlate 
herbicide stress (positive correlation) vs. moisture stress (negative 
correlation). 
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Figure 4.6. Spectral features recorded 29 DAE and 14 DAT which best 
correlate herbicide stress (positive correlation) vs. moisture stress 
(negative correlation). 
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Figure 4.7. Spectral features recorded 18 DAE and 3 DAT which best correlate 
nutrient stress (positive correlation) vs. moisture stress (negative 
correlation). 
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Figure 4.8. Spectral features recorded 22 DAE and 7 DAT which best correlate 
nutrient stress (positive correlation) vs. moisture stress (negative 
correlation). 
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Figure 4.9. Spectral features recorded 29 DAE and 14 DAT which best 

correlate nutrient stress (positive correlation) vs. moisture stress 
(negative correlation). 
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