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In this dissertation, we describe a new approach for gene finding that can utilize pro-

teomics information in addition to DNA and RNA to identify new genes in prokaryote

genomes. Proteomics processing pipelines require identification of small pieces of pro-

teins called peptides. Peptide identification is a very error-prone process and we have

developed a new algorithm for validating peptide identifications using a distance-based

outlier detection method. We demonstrate that our method identifies more peptides than

other popular methods using standard mixtures of known proteins. In addition, our al-

gorithm provides a much more accurate estimate of the false discovery rate than other

methods. Once peptides have been identified and validated, we use a second algorithm,

proteogenomic mapping (PGM) to map these peptides to the genome to find the genetic

signals that allow us to identify potential novel protein coding genes called expressed

Protein Sequence Tags (ePSTs). We then collect and combine evidence for ePSTs we gen-

erated, and evaluate the likelihood that each ePST represents a true new protein coding



gene using supervised machine learning techniques. We use machine learning approaches

to evaluate the likelihood that the ePSTs represent new genes.

Finally, we have developed new approaches to Bayesian learning that allow us to model

the knowledge domain from sparse biological datasets. We have developed two new boot-

strap approaches that utilize resampling to build networks with the most robust features

that reoccur in many networks. These bootstrap methods yield improved prediction ac-

curacy. We have also developed an unsupervised Bayesian network structure learning

method that can be used when training data is not available or when labels may not be

reliable.

Keywords: peptide validation, proteogenomic mapping, outlier detection, novel gene gen-

eration, novel gene evaluation, Bayesian network
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CHAPTER 1

INTRODUCTION

One of the major accomplishments in biology over the past 20 years is the development

of technologies for determining the genomic sequence of living organisms. The genome

of an organism can be viewed as a sequence of four nucleotides (abbreviated A, T, C,

and G) comprising its DNA and containing all of the biological information needed to

build and maintain life. The size of genomes varies widely from 5386 characters for the

virus Phi-X to 3.3 × 109 characters for human [43]. Each character is called a base-pair

(bp) due to the double stranded nature of DNA. The explosion in genome sequencing has

driven the development of computational techniques to identify functional elements such

as genes in the genomes [20]. Most computational gene finders use the sequence of known

genes and features of the nucleic acid sequence to build models of gene structure that can

then be used identify genes in the genome [7, 20, 56]. Figure 1.1 shows a simplified

version of the Central Dogma of Molecular Biology and illustrates how genes (DNA) are

transcribed to messenger RNA (mRNA) and then translated to protein. In this dissertation,

we will describe a new approach for gene finding that can utilize proteomics information

in addition to DNA and RNA to identify new genes in the genome. The first step in this

process is identification of small pieces of proteins called peptides. Peptide identification

is a very error-prone process and we have developed a new algorithm for validating peptide
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identifications using a distance-based outlier detection method. Once peptides have been

identified and validated, we use a second algorithm to map these peptides to the genome

to find the genetic signals that allow us to identify potential new genes called expressed

Protein Sequence Tags (ePSTs). We then collect and combine evidence using supervised

machine learning techniques to evaluate the likelihood that the ePST represents a new

protein coding gene based on the training dataset provided by biological experts. We have

applied Bayesian networks to learn models of these potential novel protein coding genes

and to determine the likelihood that the potential new genes are actually protein coding

genes. We have developed a new data-driven unsupervised Bayesian learning algorithm

and used the models learned by this algorithm to evaluate potential new genes.

Figure 1.1

Central Dogma of Molecular Biology

1.1 Brief Biology Background

All hereditary information about an organism is contained in its genome [43]. The

genome is organized in chromosomes that are composed of long strands of deoxyribonu-
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cleic acid (DNA) [43]. Discrete units of the chromosomes contain the code for proteins

and these units are called genes [43] as shown in Figure 1.1. The DNA is transcribed to

mRNA and then translated to protein. While both DNA and RNA are composed from a 4-

letter alphabet, proteins are composed of long chains of amino acids and can be viewed as

strings from a 20-letter alphabet [43]. Proteins are the major functional molecules in cells.

The genetic code is used by organisms to translate from the 4-letter DNA/RNA alphabet

to the 20-letter protein alphabet as shown in Figure 1.1. Each amino acid in a protein is

specified by at least one 3-letter DNA/RNA codon. In addition, there are special codons

called stop codons that specify the end of a gene.

Organisms such as bacteria that do not have membrane bound organelles (prokary-

otes) have a much simpler gene structure than organisms such as plants and animals with

membrane bound organelles (eukaryotes). In this dissertation, we focus on gene-finding

in prokaryotes.

1.2 Motivation

The explosion in genomic sequencing has led to the availability of a large number

of genomes over the last decades and these genome sequences are now publicly available

[40]. However, the genome sequences by themselves are of little use. True value is derived

from the genome sequence only after the genes have been identified (structural annotation)

and the function of the protein product has been determined (functional annotation). After

a genome has been sequenced, gene prediction programs are used to predict genes. For

example, most computational programs for structural annotation in prokaryotes (bacteria)

3



are based on features in the nucleic acid sequence. GeneMark [56] and Glimmer [20]

are popular gene finding tools, and both are based on Hidden Markov models (HMMs) at

the nucleic acid sequence level. Although these tools are widely used, they are known to

have a number of shortcomings including false negative identifications (failing to identify

genes that exist), false identifications, and incorrect identification of gene boundaries [47].

Because of the high false identification rate obtained for prediction of short genes, these

algorithms usually use a somewhat arbitrary length cutoff and are therefore particularly

ineffective at identifying novel short genes.

Mass spectrometry [57] is a popular technique for detection of proteins in biological

samples. It provides direct molecular evidence of the existence of the protein in the living

cell. Proteins are typically identified using mass spectrometry by computationally match-

ing experimental mass spectra against theoretical spectra derived from a protein database.

However, several groups have recently reported the use of mass spectral data to identify

genes on the genome [47]. This process was named proteogenomic mapping by Jaffe

et al. [40]. We have designed algorithms that use experimental protein data from mass

spectrometry to find genes on genomes.

Mass spectrometry cannot be used to identify proteins directly. Instead, the proteins

are cleaved into small pieces called peptides by enzymes such as trypsin that cut the pro-

tein in specific places. The peptides are assigned to mass spectrometry and identified by

matching the resulting spectra against a database of theoretical spectra. Once the pep-

tides have been identified, they are mapped to the parent protein. Peptide identifications

based on mass spectrometry are extremely noisy and represent a mixture of true and false

4



identifications. Most popular proteomics search algorithms such as SEQUEST [16] and

Mascot [46] provide a set of scores for each peptide assignment. There are usually many

more false identifications (noise) than true identifications

and thus the true identifications can be viewed as outliers in the search-score-space as

shown in Figure 1.2. The x and y axes in this graph represent two scores commonly used

for peptide validation with the SEQUEST search algorithm. We have developed a distance-

based outlier detection algorithm [5] to distinguish correct peptide identifications from

noise. Based on the distances to the K nearest known false identifications in search-score-

space, we build a probabilistic model that is used to calculate the probability that a peptide

with a certain distance score is a true identification. This method can be used to validate

peptides identified by searching against either a protein database or a translated nucleotide

database. We demonstrate that our new algorithm identifies many more peptides than the

most popular methods with standard datasets of known proteins. In addition, our new

algorithm identifies as many peptides as a new algorithm recently published in [45] but

with a much more accurate false discovery rate.

In proteogenomic mapping, peptides are identified by matching mass spectra against a

database generated by translating the genomic sequence. Once peptides searched against

this database have been validated, they can be mapped back to genomic sequence to iden-

tify potential protein coding genes. Many of these will be a part of proteins from known

genes, but some others will map to places in the genome where no genes have been iden-

tified and thus they represent potential novel protein coding genes. We map peptides to

the genome and then extend the nucleotide sequence corresponding to the peptide in both

5



Figure 1.2

Distribution of known correct and incorrect peptide identifications for a control sample in
search-score-space

directions identifying a possible start codon (beginning of a gene) and a stop codon (end

of a gene). This extended sequence is called an ePST. But even with accurate peptide iden-

tifications, we know that some of the ePSTs may not correspond to genes. Therefore, we

collect orthogonal evidence for the validity of each ePST as a gene. We represent this evi-

dence in a feature vector and use machine learning techniques to determine the likelihood

that an ePST is a true protein coding gene.

1.3 Statement of Hypothesis

Our hypothesis is that a computational proteogenomic mapping pipeline for structural

annotation of bacterial genomes can be used effectively to confirm the existence of pre-

dicted genes, to identify novel genes, and to correct boundaries of predicted genes. A de-

sign for the pipeline is shown in Figure 1.3. Two key components of the pipeline are novel

algorithms for 1) validating peptides and 2) integrating evidence supporting or refuting

novel genes discovered by the pipeline. A semi-supervised machine learning technique is

used for accurate assignment of peptides to spectra (peptide validation) using probabilistic

6



Figure 1.3

Proteogenomic Mapping Pipeline

approaches that model the distribution of noise and true signal. Integration and evaluation

of the evidence supporting or refuting novel genes is accomplished using machine learning

techniques.

1.4 Contributions

The dissertation describes a set of algorithms that have been developed and experi-

ments that have been conducted making the following contributions:

1. We demonstrate the efficacy of a concatenated database when using a target-decoy

strategy to determine the false discovery rate during peptide validation.

2. A new algorithm for validation of peptide identifications based on outlier detection

combined with Bayesian reasoning has been developed.
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3. A new algorithm for discovering potential novel protein coding genes (ePSTs) has

been developed. This algorithm combines results from searching MS/MS spectra

against both a genome database translated in 6 reading frames and a protein database

to identify those peptides that represent potential novel genes or that can be used to

correct gene boundaries.

4. A new algorithm has been developed for collecting relevant features of potential new

genes and using the features with machine learning algorithms to evaluate the like-

lihood that the ePSTs represent novel genes or corrections to boundaries of known

genes.

1.5 Organization

The remainder of this dissertation is organized as follows. Chapter 2 provides a review

of the background literature in computational gene finding, peptide validation and gene

evaluation. Chapter 3 presents the algorithm for peptide validation based on a distance-

based outlier detection method. Chapter 4 presents our proteogenomic mapping algorithm

for discovering potential new genes, and for collecting features describing these potential

new genes, and for evaluating the likelihood that the genes are “real.” Chapter 5 describes

Bayesian learning approaches for evaluating potential novel genes and a new unsuper-

vised Bayesian network model. Finally, we summarize the algorithms developed and their

significance and discuss future extensions.
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CHAPTER 2

LITERATURE REVIEW

The explosion in genomic sequencing has produced many publicly available, complete

genomic sequences [81]. Recently developed sequencing technologies are producing com-

plete genomic sequences at an unprecedented rate [27]. At the time of this dissertation,

863 complete microbial genomes have been deposited in the NCBI GenBank database.

These new genomes contain thousands of new genes, which are put into public databases

and become the basis for further research. Therefore accurate microbial gene identifica-

tion is becoming more important than ever. Computational gene-prediction algorithms are

the standard method for identification of genes in newly sequenced genomes with man-

ual curation used only as a last step. Therefore it is essential that these algorithms be as

accurate as possible.

Currently, there are three categories of computational methods for identification of

new genes in prokaryotic genomes. Homology search methods, such as BLASTX [2, 30],

FASTA [3] and ORPHEUS [2, 26] discover new genes in a genome based on sequence

similarity to known genes in other species . Computational gene finding programs that

do not rely on sequence similarity include the GeneMark series [9, 56], Glimmer [20],

ZCURVE [34], GS-Finder [70] and MED [89]. These algorithms use a variety of methods

to build models of genes including Hidden Markov models, Z-curve representation, and

9



other statistical techniques. One system, EasyGene, combines model building and homol-

ogy search [53]. In recent years, tandem mass spectrometry [16, 29, 48, 83] has been used

increasingly for high-throughput analysis of protein samples. Using the advances in pro-

teomics, a number of researchers [38, 40, 46, 47, 57, 60, 84] have demonstrated using a

combination of genomic and proteomic data can be used to improve structural annotation

of genomes. This process has been termed proteogenomic mapping by Jaffe [40]. This

dissertation describes new algorithms for proteogenomic mapping in prokaryotic genomes.

This chapter first provides an overview of traditional methods for computational gene

finding based on sequence similarity and on models of genes in genomic sequence. Be-

cause the method that we have developed for gene finding is dependent upon accurate

identification of peptides in complex protein mixtures analyzed by MS/MS, we have de-

veloped a new method for peptide validation. We therefore review previous work in pep-

tide validation and then describe previous work in proteogenomic mapping. Because our

work also includes a component that evaluates gene models, we also review prior work in

gene evaluation methods.

2.1 Computational Gene Finding and Evaluation in Prokaryotic Genomes

This section reviews two major approaches for computational gene finding in prokary-

otic genomes and some methods used to evaluate predicted genes.

2.1.1 Homology Search Gene Finding Methods

Early computational gene prediction methods were based on sequence similarity search

using program such as BLASTX [2, 30], FASTA [3] and ORPHEUS [2, 26]. Sequence
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similarity between a translated nucleotide sequence and a known biological protein can

provide strong evidence for the presence of a homologous coding region, even between

distantly related genes [2]. For example, the computer program BLASTX [30] translates

the nucleotide query sequence in all six possible reading frames and then searches a pro-

tein database for the sequences similar to the translated sequences. The sensitivity of

BLASTX recognition is characterized to the presence of substitution, insertion and dele-

tion errors in the query sequence and to sequence divergence [2]. BLASTX can be used

with large scale sequencing projects, even when the sequence may contain errors such as

frame shifts. The BLAST family of algorithms is the most widely used bioinformatics

program and is undergoing constant improvement [2, 30]. FASTA is another sequence

similarity algorithm [3] that includes a heuristic to generate a gapped alignment and that

has been used for homology based gene finding [2, 3, 30]. However, many genes in newly

sequenced prokaryotic genomes do not show significant similarity with known genes and

therefore cannot be identified using homology search [69].

2.1.2 Model Building Gene Finding Methods

Major methods used for gene finding in prokaryotes are based on signal processing

methods: Hidden Markov Models and Z-curve. The most widely used tools are Gene-

Mark and Glimmer. The GeneMark series [8, 9, 56] and Glimmer [19, 20] both employ

inhomogeneous (frame dependent) Markov models trained with existing gene data. The

learned model provides an estimation of the likelihood that a DNA segment belongs to a

protein coding sequence. GeneMark [9, 56] and Glimmer [19, 20] build Markov chains
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for both coding and non-coding regions and combines these models with Bayes’ decision

making. This yields an Interpolated Markov Model [19] that combines Markov models

from 1st through 8th order, weighting each model according to its predictive power.

ZCURVE [33, 34] is based on the Z curve representation of the DNA sequences and

relies on global statistical features of protein-coding genes by taking the frequencies of

bases at the three codon positions into account. In ZCURVE, a total of 33 parameters are

used to characterize the coding sequences.

Another group of tools uses the same basic approaches for gene finding as GeneMark

and Glimmer, but follows the basic gene finding step with an evaluation phase that eval-

uates evidence that the potential ORF is a true gene. Tools that use this approach are

reviewed below.

ORPHEUS [26] combines diverse evidence to recognize genes in completely sequenced

bacterial genomes. It is based on the assumption that coding regions derived from similar-

ity searches are more reliable than statistical data. The analysis starts with a database sim-

ilarity search to identify reliable gene fragments (seed ORF). The reliable gene fragments

are then used to derive statistical characteristics of protein-coding regions and ribosome-

binding sites, and used to calculate coding potential parameters. At the next step, the

sample of ORFs with possible start codon is used to derive the RBS recognition matrix.

The ORF with start codon having strong RBS is selected as potential novel gene.

Easy Gene [53] estimates the statistical significance of a predicted gene. The first step

is to apply a gene finder based on a hidden Markov model. The HMM is estimated by

extracting a training set of genes from the genome using extensions of similarities in a
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comprehensive protein database. Putative genes are then scored with the HMM, and based

on the score and length of the ORF, the statistical significance is calculated. The measure

of statistical significance for an ORF is the expected number of ORFs in one megabase of

random sequence at the same significance level or better, where the random sequence has

the same statistics as the genome in the sense of a third order Markov chain.

MED [89] is a non-supervised gene prediction algorithm for bacterial and archaeal

genomes. It is based on a comprehensive statistical model of protein coding Open Reading

Frames (ORFs) and Translation Initiation Sites (TISs). MED first applies an ORF model

based on a linguistic “Entropy Density Profile” (EDP) of coding DNA sequence to identify

potential coding ORFs. This sequence is used as input for a TIS refinement component

that checks for several relevant features related to translation initiation. The flow chart of

process of MED is shown as Figure 2.1. This approach is similar to ours in a broad sense

in that it first looks for potential ORFs and then looks for additional evidence to support

the ORF as a protein coding gene.

FrameD [76] was initially designed to predict coding regions in GC rich bacterial

genomes that may contain frame shifts. FrameD is based on a graph model where gene

overlap is specifically modeled leading to a good specificity of its predictions. This model

includes RBS finding, probabilistic coding models and possible protein similarities.

GS-Finder [70] finds bacterial gene start sites with a self-training method without pri-

ori knowledge of rRNA in the genomes concerned. GS-Finder includes a two step process.

The first step is finding potential novel ORFs using existing gene finding programs, and

the second step is evaluating potential novel ORFs. Features evaluated include mononu-
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Figure 2.1

Flow chart of gene prediction process with MED system
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cleotide distribution patterns near the start codon, the start codon itself, the coding poten-

tial, and the distance from the left-most start codon to the start codon. The self-training

method is also used to relocate the translation start sites of putative ORFs of genomes.

All of these methods are based on analysis of genome sequence and on the assumption

that all genes in the organism will have the same characteristics as previously known genes.

2.2 Outlier Detection

Our peptide validation method is an outlier detection based method. An outlier is de-

fined by Hawkins as “an observation that deviates so much from other observations as to

arouse suspicions that it was generated by a different mechanism” [35]. In other words,

an outlier can also be viewed as an exception of a dataset. Outlier/exception detection

is one of many general categories of knowledge discovery. Some applications of outlier

detection include detections of credit card fraud [25], network intrusion detection [24],

monitoring of criminal activities in electronic commerce [21]. In the current study, Pep-

tide identifications generated from SEQUEST search results are mixture of correct and

incorrect identifications and correct identifications can be viewed as outliers of incorrect

identifications (noise). Thus, an outlier detection approach can be used to discriminate

correct peptide identifications from incorrect peptide identifications.

Outlier detection approaches include supervised-based methods, where each example

is labeled as exceptional or not [25], and unsupervised-learning based methods, where la-

bels are not needed [5, 21, 24]. The existing supervised outlier detection approaches are

statistical-based models where the data is assumed to follow a certain parametric distribu-
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tion [25]. These statistical model-based approaches do not work well in high-dimensional

spaces, and it is also hard to find the right distributions to describe the dataset. To over-

come these limitations, researchers have proposed non-parametric approaches including

distance-based approaches [5, 21, 24], clustering-based approaches [1], and density-based

approaches [54].

In the real world, labeled datasets are not always available, and thus unsupervised-

learning based outlier detection methods are widely used. Distance-based outlier detec-

tion approaches were first presented by Knorr et al. [5, 21, 24], who define a point to be

a distance outlier if at least a user-defined fraction of the points in the data set are fur-

ther away than some user-defined minimum distance from that point. The distance-based

outlier detection can be done for large datasets and for multi-dimensional datasets. When

the dataset is huge, the calculation of distance among the points becomes expensive. Also

when the data variables are scaled in different ranges by normalization, the distance can

avoid the bias from the data variables. Related to distance-based methods are methods

that cluster data and find outliers as part of the process of clustering. Points that do not

cluster well are labeled as outliers [86]. In density-based approaches to outlier detection,

a local outlier factor (LOF) is computed for each point [58]. The LOF of a point is based

on the ratios of the local density of the area around the point and the local densities of its

neighbors.

Angiulli et al. [5] proposed an algorithm based on K-nearest-neighbor distance for

outlier detection and prediction. There are two steps of the algorithm. A distance-based

outlier detection method finds the top outliers and provides a subset of the outliers called
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the outlier detection solving set. This solving set is used to predict the outlierness of

new objects. The solving set includes a sufficient number of points that can be used for

detection of the top outliers by considering only a subset of all the data. The properties

provide subquadratic time requirements for detection and prediction of a new point. In the

dissertation, a K-nearest-neighbor distance based outlier detection method with Fabrizios

strategy is used for peptide validation.

2.3 Peptide Validation

The goal of proteomics research is to identify the set of proteins expressed in a cell

or tissue. In recent years, tandem mass spectrometry [16] has been used increasingly for

high-throughput analysis of protein samples. As shown in Figure 2.2, proteins in a sample

are digested into peptides and the peptides are then ionized and fragmented to produce

signature MS/MS spectra that are used for identification. Peptide identifications are made

by searching MS/MS spectra against theoretical spectra generated from a protein sequence

database and finding the best matching spectra. The identified peptides are then mapped

back to the protein sequences and protein identifications are made based on peptide identi-

fications. Thus, accurate identification of peptides is essential for accurate identification of

proteins. In addition, in our proteogenomic mapping pipeline, we identify potential novel

genes based on peptide identifications and thus accurate peptide identification is also an

essential component of this process.

A variety of algorithms for automated identification of peptides based on matching

their masses and fragmentation patterns have been developed including SEQUEST [64],
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Mascot [46], and X!Tandem [16]. These algorithms compare an observed MS/MS frag-

mentation pattern from an unknown peptide (observed spectrum) with those fragmenta-

tion patterns predicted (theoretical spectra) for all peptides of equivalent mass within a

given protein database and return the peptide sequence with a theoretical spectrum that

best matches the observed spectrum. Each returned peptide sequence is assigned a set

of scores that reflects various aspects of the fit between the observed spectrum and the

theoretical spectrum. Figure 2.2 illustrates the process of protein identification.

Figure 2.2

Protein identification

All of these algorithms may lead to false positive peptide identifications due to noisy

spectra, imperfect matches, or a coincidental similarity in MS/MS fragmentation pat-

terns. The current challenge for high-throughput proteomics is to use database search
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results generated by searching large volumes of MS/MS spectra to derive true identifica-

tions from the database search results. In small datasets, manual validation by experts

can be used to achieve this goal. However, this time-consuming and labor-intensive ap-

proach is not practical for high-throughput peptide analysis. The most commonly used

methods for distinguishing correct peptide identifications from incorrect peptide identifi-

cations are threshold methods [4, 7, 23, 46, 47, 55, 64, 65, 66, 67, 68, 73, 75, 82, 84],

target-decoy strategies for false positive rate measurement [22, 38, 46, 73], or statistical

models [13, 22, 42, 45, 49, 72].

2.3.1 Threshold Methods

Threshold methods treat peptides that are identified with database search scores above

a user defined threshold as correct identifications and those with scores below the threshold

as incorrect. Figure 2.3 shows the basic idea of threshold methods for peptide validation.

The different database search algorithms use different scoring systems for the quality of

peptide assignments to mass spectra. In this example, the MS/MS spectra for a known

mixture of 18 proteins [50] has been queried against a database containing the sequences

for these proteins using the SEQUEST search algorithm. The values for two quality scores

generated by SEQUEST(∆Cn and Xcorr) are shown for all peptide identifications. Xcorr

is the cross correlation between the theoretical and observed spectrum and is used to pro-

duce the final ranking of the candidate peptides. ∆Cn is a measure of the difference of the

Xcorr for a peptide assignment compared to the Xcorr of the next best hit. In Figure 2.3 the

red points represent scores of assignments known to be correct and those in blue represent
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assignments known to be incorrect. For a specific database search algorithm, empirical

methods are used to determine cutoffs for a set of scores. Note that when analyzing a

proteomics sample, the scientist will not have prior knowledge of which assignments are

correct and which are incorrect.

Figure 2.3

Threshold method for peptide validation.

For example, for the widely used SEQUEST search algorithm for peptide identifica-

tion, Yates et al. have published several widely used sets of thresholds for Xcorr and

∆Cn [4, 7, 23, 46, 47, 55, 64, 65, 66, 67, 68, 73, 75, 82]. Two of the Yates cutoffs are

shown in Figure 2.4. Other thresholds have been determined for other algorithms such as

Mascot and X!Tandem [46]. The threshold method has a number of shortcomings due to

its dependence on the database search algorithm, database size, sample complexity and

peptide charge states. Trade-offs between sensitivity and specificity are not supported by

this method and the user cannot choose an error rate (false discovery rate) indicating the

level of confidence in the search results [4, 7, 23, 46, 47, 55, 64, 65, 66, 67, 68, 73, 75, 82].
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2.3.2 Target-Decoy Strategy

Recently, a target-decoy strategy [22] has been widely adopted as a method for es-

timating the false discovery rate for peptide identification [13, 67]. The target database

contains all possible protein sequences for a given organism. The decoy database con-

tains an equivalent number of nonsense protein sequences that should not be present in the

sample. The decoy database can be generated by randomly scrambling or reversing the

sequences within the target database or by using a Markov chain derived from the target

database [13, 22, 67]. The basic assumption of most methods that use the target-decoy

strategy is that the number of peptide assignments made against the decoy database should

reflect that of coincidental peptide assignments drawn from the sequences of real pro-

teins [13, 22, 67, 73]. For example, Qian et al. [73], conduct separate searches of MS/MS

spectra against the target database and decoy database, and then, after applying a threshold

x, calculate a false discovery rate as

#decoyhit > x

#targethits > x
(2.1)

Figure 2.4 illustrates how this target decoy method can be used to compute the false

discovery rate when thresholds are used for peptide validation. Other groups such as

Huttlin, Elias and Gygi [22] advocate searching the spectra against a concatenated target

and decoy database. In this case, the false discovery rate is computed as

2 × #decoyhit > x

#decoyhits > x + #targethits > x
(2.2)
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Although the controversy of whether to use concatenated or separate searches contin-

ues to be debated in the literature [13, 22, 72], it is widely accepted that the target-decoy

strategy combined with the threshold method provides a reasonable estimate of the false

discovery rate. In addition, the target-decoy strategy is easy to implement and requires no

manual analysis by the researcher. The target decoy strategy is also employed by several

tools for peptide validation based on machine learning or statistical modeling as described

in the next section.

Figure 2.4

Peptides using Yates’ low cutoff (∆Cn>0.1 and Xcorr>2.0) and false discovery rate of
254/1483=17.13% computed using target decoy strategy of Qian.

2.3.3 Machine Learning and Statistical Modeling Approaches

Unlike threshold methods, statistical modeling and machine learning methods develop

a model of the distribution of incorrect and correct peptide assignments and determine a

decision boundary based on this model.

The most widely known statistical method is Peptide Prophet [49]. Peptide Prophet

first computes a single linear discriminant score for each peptide based on several different
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SEQUEST scores such as Xcorr, and ∆Cn as shown in Equation 2.3 where x1, x2, ..., xS

are scores from the search algorithm, c0 is a constant weight, and c1, c2, ..., cS are weights

for each search score from the search algorithm.

F (x1, x2, ..., xS) = C0 +
S

∑

i=1

Cixi (2.3)

The form and parameters of the discriminant function are learned based on a training

dataset. For a specific dataset, the discriminant scores are calculated for all peptides and

then a histogram is generated for these scores. Peptide Prophet assumes that the discrimi-

nate scores for noise follow a Gamma distribution and the discriminant scores for correct

identifications follow a Gaussian distribution. An Expectation Maximization (EM) algo-

rithm is used to learn the parameters of the two distributions and Bayesian statistics are

used to compute the probability that a match with a given discriminant score is correct.

Choi and Nesvizhskii [14] have recently described an extension to Peptide Prophet that

uses a decoy database to estimate the parameters of the noise distribution.

The statistical model, Peptide Prophet, uses a linear function to combine some search

scores to a single discriminant score and consider all scores simultaneously. The probabil-

ities computed by Peptide Prophet can be used to estimate the likelihood of the presence of

peptide. Although Peptide Prophet has been used successfully to develop statistical mod-

els for peptide validation, it still has some limitations. Peptide Prophet needs a training

dataset to build an accurate discriminant function (learning the coefficients of the discrim-

inant function). Peptide Prophet also assumes that correct hits and incorrect hits follow

certain standard distributions. This assumption has not been theoretically proved. And the
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parameters of these standard form distributions are learned by an EM algorithm, which is

sensitive to a starting point. The improved Peptide Prophet with the target-decoy strategy

avoids EM learning, but it still assumes standard forms for the distributions of correct and

incorrect hits.

Kunec’s product method [52] assigns a product of Xcorr and ∆Cn for each peptide,

and discriminates incorrect assignments from correct assignments based on the product

score for the target and decoy search results, and calculates the FDR as:

FDRproduct =
#decoyhits > T

#totalhits > T
, (2.4)

where T is the threshold of product of Xcorr and ∆Cn.

Lukas Käll et al. describe their tool Percolator [45] that uses a semi-supervised ma-

chine learning method based on support-vector machines to discriminate between correct

and incorrect peptide assignments. Percolator uses a three phase process. In phase 1, Per-

colator runs separate searches of MS/MS spectra against target and decoy databases using

an algorithm such as SEQUEST. For each spectrum, the top-scoring peptide match (PSM)

against each database is stored. For each target and decoy hit, a vector of 20 features is

computed including scores generated by SEQUEST plus some additional features. The

set of decoy hits are divided into two sets, one half of the hits are used in phase 2 and the

remainder in phase 3. Phase 2 is an iterative process where each iteration consists of three

steps: 1) selecting a subset of high-confidence target PSMs to serve as a positive training

set; 2) training a SVM (Support Vector Machine) to discriminate between the positive and

the decoy PSMs; and 3) re-ranking the entire set of PSMs using the trained classifier. After
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a fixed number of iterations, a stable SVM is built. In Phase 3, the trained SVM is applied

to the entire set of target PSMs and second set of decoy PSMs. The resulting ranked list

gives an estimate of the q-value for each target PSM.

Percolator does not assume that correct and incorrect hits are linearly separable; in-

stead, it trains a Support Vector Machine based on decoy hits as negative examples. Al-

though Percolator avoids the assumption of distributions for correct and incorrect hits, the

SVM training has limitations. The SVM is trained based on the high-confidence target

hits as a positive set and decoy hits as negative hits. Therefore it does not have detailed

information about “borderline” positive examples and thus may misclassify some correct

hits with relative low-confidence scores.

Zhang et al. [87] describe a method that uses a linear discriminant function (LDF) with

the concatenated target-decoy strategy to filter SEQUEST database search results. Their

linear function is of the form dCn = k(b − Xcorr). An estimated false discovery rate

is calculated for each (k, b) pair using Equation 2.2 where k and b are varied by a fixed

increment within a range determined from the data. The number of target peptide hits is

recorded for each (k, b) pair that yields an FDR close to the desired FDR. The (k, b) pair

that yields the largest number of hits is used for the final LDF for peptide validation.

Zhang’s method also assumes that correct and incorrect hits are able to be separated

linearly but does not assume that they follow certain distributions. The method only takes

into account two search scores Xcorr and ∆Cn.

Artificial neural networks have also been used for peptide validation. Baczek et al. [6]

use a set of 13 features and a small training set of known proteins to build a neural network
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that classifies a peptide identification as valid or invalid. Jane et al. [74] use a target decoy

strategy when building their neural network. Identifications from the decoy are used as

negative training examples and those from the target are used as positive training examples.

After training, all target identification are classified using the neural network.

The advantages and disadvantages of using neural networks for peptide validation with

and without a target-decoy strategy are similar to those encountered when using Support

Vector Machines. The neural network model trained using the high-confidence hits for

positive examples and decoy hits as negative examples may exhibit a bias to when classi-

fying correct hits with low-confidence scores.

2.4 Proteogenomic Mapping for the Structural Annotation of Prokaryotic Genomes

Accurate genome annotation is a critical step in genomics. Most current methods

for genome annotation in prokaryotes are based exclusively on features of the genomic

sequence. More recently, mass spectrometry data searched against translated genome se-

quence has been used as a complementary method to provide direct evidence of expression

for genome annotation. Here we present a review of research on the use of mass spectral

data for structural annotation of genomes.

Jaffe et al. [40] at Harvard Medical School first proposed the use of proteomics data

to annotate genomes in 2004. Jaffe et al. predicted the set of ORFs in the genome of

Mycoplasma pneumoniae based principally on expressed protein-based evidence. They

queried the mass spectra against a database consisting of the genome translated in six

reading frames, selected high confidence peptide identifications, mapped these peptides
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onto the genome, and extended the peptide hits into Open Reading Frames (ORFs) bound

by traditional genetic signals such as start codons, stop codons, etc. The resulting an-

notation was called a “proteogenomic map” of potential novel protein-coding genes. The

ORFs generated by mapping a peptide to its genome were used to confirm predicted ORFs,

to detect new ORFs, and to correct boundary errors such as various N-terminal extensions.

Subsequently, a number of other researchers have reported the use of proteogenomic

mapping to annotate other prokaryotic genomes [18, 63, 85]. All of these researchers

use essentially the same process described by Jaffe et al. [40]. Little research has been

reported on evaluation of the potential ORFs identified by proteogenomic mapping. There

has also been some research extending proteogenomic mapping to eukaryotes where the

gene structure is more complicated [15, 77, 81].
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CHAPTER 3

PEPTIDE VALIDATION

The most widely used tool for identifying the sets of proteins that are present in a com-

plex biological mixture is mass spectrometry followed by database search algorithms such

as SEQUEST, Mascot, or X!Tandem. As introduced in Chapter 1, proteins are first di-

gested into smaller pieces called peptides and identification is actually done at the peptide

level. The database search algorithms may lead to false positive peptide identifications due

to noisy spectra, imperfect matches, or a coincidental similarity in MS/MS fragmentation

patterns.

We have developed a machine learning model based on distance-based outlier detec-

tion to estimate the accuracy of peptide assignments to tandem mass (MS/MS) spectra.

In the model, the distribution of the quality measures from database search algorithms of

incorrect peptide assignments to spectra is estimated by searching the spectra against a

decoy (nonsense) database. A distance score for each peptide assignment is computed as

the sum of the distances of quality measures of assignments from both the target (real)

database and the decoy database to the K-nearest assignments from the decoy database.

We then employ Bayes’ rule to compute the probability of a peptide assignment being cor-

rect. The computed probabilities have allowed us to distinguish correctly and incorrectly

assigned peptides with a predictable false identification error rate without requiring the use
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of training datasets or expert participation. Using standard protein mix dataset provided by

the Institute of System Biology, we are able to identify as many peptides as state-of-the-art

computational methods, but with a much more accurate estimate of the false positive rate.

3.1 Background

A major goal of proteomics research is to identify proteins expressed in a cell or tissue.

In recent years, tandem mass spectrometry has been used increasingly for high-throughput

analysis of protein samples. Proteins in a sample are digested into peptides. Peptides

are then ionized and fragmented to produce signature MS/MS spectra that are used for

identification. Peptide identifications are made by searching MS/MS spectra against a

protein sequence database and finding the best matching database peptide. A variety of

algorithms for automated identification of peptides based on matching their masses and

fragmentation patterns have been developed, including SEQUEST [23], Mascot [71], and

X!Tandem [29]. These algorithms compare an observed MS/MS fragmentation pattern

from an unknown peptide with those fragmentation patterns predicted for all peptides of

equivalent mass within a given protein database and return the peptide sequence with a

predicted fragmentation pattern that best matches the observed spectrum. Each returned

peptide sequence is assigned a set of scores that reflect various aspects of the fit between

the observed spectrum and the theoretical spectrum. All of these algorithms may lead to

false positive peptide identifications due to noisy spectra, imperfect matches, or a coinci-

dental similarity in MS/MS fragmentation patterns.
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The current challenge for high-throughput proteomics is to use database search re-

sults generated by searching large volumes of MS/MS spectra to derive true identifications

from the database search results. In small datasets, manual validation by experts can be

used to achieve this goal. However, this time-consuming and labor-intensive approach

is not practical for high-throughput peptide analysis. The most commonly used meth-

ods for distinguishing correct peptide identifications from incorrect peptide identifications

are threshold methods [84] (add another one), target-decoy strategies for false positive

rate measurement [22, 38, 46, 73] or statistical models such as Peptide Prophet [49] [88].

Threshold methods treat peptides that are identified with database search scores above a

user defined threshold as correct identifications and those with scores below the threshold

as incorrect. The threshold method has a number of shortcomings due to its dependence

on database search algorithm, database size, sample complexity and peptide charge states.

Trade-offs between sensitivity and specificity are not supported by this method and the

user cannot choose an error rate (false positive rate) indicating the level of confidence in

the search results. More recently, a target-decoy strategy has been used to estimate false

positive rate by several research groups [22, 38, 73]. For example, Qian et al. [73], con-

duct separate searches of MS/MS spectra against the target database and decoy database,

and then, after applying a threshold T , calculate a false positive rate as

FDR =
#decoyhits > T

#targethits > T
. (3.1)

Elias et al. [22] argue that the search should be performed on a concatenated target-

decoy database with the FDR calculated as:
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FDRElias =
2 × #decoyhits > T

#decoyhits > T + #targethits > T
(3.2)

where T is a threshold such as Xcorr. The controversy of concatenated versus separate

searches continues to be debated in the literature (cite someone). We demonstrate (see

Section 3.3) that decoy hits provide a better estimate of the quality scores of target incorrect

hits with concatenated search.

Unlike threshold methods, statistical methods such as Peptide Prophet [49], develop

a model of the distribution of incorrect and correct peptide assignments. Peptide Prophet

first computes a single linear discriminant score for each peptide based on several different

SEQUEST scores such as Xcorr, and ∆Cn. The form and parameters of the discriminant

function are learned based on a training dataset. For a specific dataset, the discriminant

scores are calculated for all peptides and then a histogram is generated for these scores.

Peptide Prophet assumes that the discriminate scores for noise follow a Gamma distri-

bution and the discriminant scores for correct identifications follow a Gaussian distribu-

tion. An Expectation Maximization (EM) algorithm is used to learn the the parameters

of the two distributions and Bayesian statistics are used to compute the probability that a

match with a given discriminant score is correct. Choi and Nesvizhskii [13] have recently

described an extension to Peptide Prophet that uses a decoy database to estimate the pa-

rameters of the distribution of noise. Zhang et al. [88] adopt the discriminant score from

PeptideProphet, and demonstrate that the distribution of discriminant score of decoy hits

reflects that of target incorrect hits. They use a non-parametric Bayesian model for pep-
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tide validation that assigns each peptide a probability as true identification based on the

discriminant score of each hit shown as:

P (+|F ) =
P (F |+)P (+)

P (F |+)P (+) + P (F |−)P (−)
, (3.3)

where F is a discriminant score calculated from a linear discriminant function. FDR of

statistical model is defined as:

FDRStatisticalmodel = 1 − P (+|F ). (3.4)

Kunec’s product method [52] assigns a product of Xcorr and ∆Cn for each peptide,

and discriminates incorrect assignments from correct assignments based on the product

score for the target and decoy search results, and calculates the FDR as:

FDRproduct =
#decoyhits > T

#totalhits > T
, (3.5)

where T is the threshold of product of Xcorr and ∆Cn.

Lukas Käll et al. [45] describe their tool Percolator that uses a semi-supervised ma-

chine learning method based on support-vector machines to discriminate between correct

and incorrect peptide assignments. Percolator runs separate searches against a target and

a decoy database. The top-scoring target hits serve as positive samples, and decoy hits

as negative samples. A SVM is trained iteratively on the training dataset. The FDR is

calculated as
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FDRpercolator = π0
#decoyhits > T/#decoyhits

#targethits > T/#targethits
, (3.6)

where π0 is the estimated proportion of target hits that are incorrect, that is P (−), and

T is the Percolator score threshold. Percolator avoids the assumption of distributions for

correct hits and incorrect hits.

In this chapter we present PepOut, a robust and efficient algorithm for the validation of

peptide identifications made by MS/MS and database search. PepOut combines the target-

decoy strategy, distance-based outlier detection, and Bayesian statistics to distinguish cor-

rect peptide identifications from incorrect peptide identifications. Fig. 3.1 shows a typical

distribution of scores of peptide hits against a decoy database and a target database. The

assumption of the target decoy strategy is that the distribution of scores of hits against

the decoy database (green points in Fig. 3.1) can be used to estimate the distribution of

scores of incorrect identifications. Hits against the target database (red points in Fig. 3.1)

are a mixture of correct and incorrect identifications. The assumption of our approach is

that identifications against the target database with scores that are distant from scores of

identifications against the decoy database (outliers with respect to the decoy database) are

more likely to be correct identifications. Thus distance-based K-nearest neighbor outlier

detection in score space can be used to separate correct and incorrect identifications. We

compute a distance score for each peptide assignment which is the sum of the distances

of database search scores of assignments from both the target database and the decoy

database to the K nearest assignments from the decoy database. A peptide identification

from the target search results with larger distance score is more likely to be a true iden-
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tification since it is further away from decoy hits. The only assumption of our outlier

method is that none of the decoy hits are correct identifications and this assumption is sup-

ported by previous research by a number of different groups [22, 38, 46, 73]. Using this

assumption, the score distribution of decoy search results enables us to estimate the score

distribution of false identifications searched against the target database and to estimate the

the prior probability of false identifications in the target search results. Bayes’ Rule is

employed to calculate the probability score for each peptide with a given distance score.

Other statistical approaches such as Peptide Prophet [49] require a training dataset to build

the model and assume that the distributions of correct and incorrect peptide identification

follow standard distributions. PepOut uses a semi-supervised approach and so does not

require a training set. In addition, PepOut implements a nonparametric density estimation

technique to model the distributions of correct and incorrect assignments and thus makes

no assumptions about the form of these distributions. PepOut accepts standard SEQUEST

output and can easily be incorporated into any proteomics computational pipeline. Finally,

our method provides a probability score for each peptide and allows the user to specify a

false discovery rate for the entire dataset.

3.2 Experimental Section

Development of computational methods for proteomic data analysis is facilitated by

the availability of high quality benchmark datasets. We used ‘ISB standard protein mix’

database that contains spectra generated from ten replicate analysis of a defined mixture

of 18 proteins by the LCQ DECA XP instrument [50]. The spectra in this database were
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(a) Separate search

(b) Concatenated search

Figure 3.1

Peptide assignments identified by searching spectra of ISB Mixture 1 against target and
decoy databases for charge 2+. (a). Search conducted separately against the target and
decoy databases. (b). Search conducted against database produced by concatenation of

target and decoy database.
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quality checked and searched against a Haemophilus influenzae database appended with 18

standard proteins and known contaminants using the SEQUEST algorithm. Confidence in

peptide identifications estimated using Peptide Prophet have been previously reported [49].

Using the raw data provided for Mixtures 1, 2, and 3, we repeated SEQUEST searches

exactly as described and processed the search results with PepOut.

3.3 Methods

3.3.1 Motivation for using a decoy database

The target-decoy strategy is an empirical approach for estimating the false discovery

rate (FDR) within a given dataset [22, 46, 67]. The target database contains all possible

protein and peptide sequences for a given organism. The decoy database contains an

equivalent number of nonsense protein and peptide sequences that should not be present in

the sample. The decoy database can be generated by randomly scrambling or reversing the

sequences within the target database or by using a Markov chain derived from the target

database [22]. The major assumptions of the target-decoy strategy are that 1) all decoy

hits are incorrect, and 2) the characteristics of decoy hits reflect those of target incorrect

hits. There is a debate on how to use target-decoy strategy correctly: 1) should mass

spectra be searched against a target and decoy database separately (separate search) or

against a concatenated target-decoy database (concatenated search)? 2) does the number

of decoy hits reflect the number of target incorrect hits (number characteristics) or does
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the database score distribution of decoy hits reflect score distribution of target incorrect

hits (distribution characteristics)?

Elias et al. [22] have clarified the target-decoy strategy methodology based on ob-

served decoy hit frequencies and demonstrated that the number of decoy hits are equally

likely to that of target incorrect hits on a concatenated search results. Käll et al. [45]

proposed a support vector machine classifier, Percolator, which uses distribution charac-

teristics on separate search results. Qian et al. [73] estimated a false discovery rate using

the number characteristics on separate search results. Keller et al. [49] proposed a statis-

tic method, PeptideProphet, which combines database search scores linearly to a single

discriminant score, and assume the discriminant score distribution of incorrect hits follow

standard Gamma distribution. Choi et al. [13] improved PeptideProphet in the way that as-

sumes that discriminant score distribution of decoy hits reflect that of target incorrect hits,

also learn parameters of Gamma from decoy hits. Zhang et al. [88] adopt discriminant

score from PeptideProphet, and believe that discriminant score distribution of decoy hits

reflect that of target incorrect hits, then use a non-parametric Bayesian model for peptide

validation. Choia’s and Zhang’s methods used distribution characteristics on concatenate

search results. Kunec et al. [52] used a product of scores to discriminate correct hits from

incorrect hits on a separate search results and estimates FDR by number characteristics.

Here we will demonstrate that 1) the score distribution of decoy hits reflect the char-

acteristics of the score distribution of target incorrect hits but the number of decoy hits is

not accurate estimate of the number of target incorrect hits, and 2) concatenated search

is preferable to separate search when using the SEQUEST search algorithm. Table 3.1

37



(a) Separate search

(b) Concatenated search

Figure 3.2

Comparison of the number of decoy and target incorrect hits for separate search (a) and
concatenated search (b).
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demonstrates that for each mixture, the number of decoy hits is much larger than the num-

ber of target incorrect hits when the target and decoy database are searched separately.

Table 3.1 also shows that when the search is performed on a concatenated target-decoy

database, the number of decoy hits is closer to the number of target incorrect hits but it

is still an over estimate. Fig. 3.2 shows the number of decoy, target incorrect and tar-

get correct hits grouped by rank. These results illustrate that for mix1, both separate and

concatenated searches result in more decoy hits than target incorrect hits and the problem

is much worse for separate searches. For database search algorithms such as SEQUEST,

MS/MS spectra are compared to theoretical spectra generated from sequences of the target

database. Sequences in the target database compete for the top-ranked score (Rsp score

in SEQUEST) in a single search. If the search is performed separately, no target correct

sequences compete for the top score with the sequences in the decoy database so that the

rank scores of decoy hits are higher than the rank scores of target incorrect hits. In addi-

tion, the number of peptides identified from the decoy database with certain criteria (score

threshold) is larger than the number of target incorrect peptides identified from the target

database. If MS/MS spectra are searched against a concatenated target-decoy database,

all target and decoy sequences compete for the top-ranked score and target incorrect and

decoy hits will have the same score distribution. Although the score distributions of decoy

and target incorrect hits are similar when using a concatenated search, the total number of

decoy hits is still larger than the total number of target incorrect hits and therefore the num-

ber of decoy hits does not provide an accurate estimate of the number of target incorrect

hits as shown in Fig. 3.2(b) and Table 3.1.
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Table 3.1

Number of decoy hits vs. number of target incorrect hits

Searched against decoy and target database separately
Charge +1 Charge +2 Charge +3 Total

decoy incorrect decoy incorrect decoy incorrect decoy incorrect
M1 4562 3784 3985 3007 1532 1273 10079 8064
M2 7627 6319 9614 7700 3334 2821 20575 16840
M3 3274 2733 4431 3701 2403 1882 10108 8316

Searched against a concatenated target-decoy database
Charge +1 Charge +2 Charge +3 Total

decoy incorrect decoy incorrect decoy incorrect decoy incorrect
M1 2390 2055 2403 2015 1187 993 5980 5063
M2 3777 3413 6361 5269 2628 2244 12766 10926
M3 1743 1519 2869 2711 1842 1485 6454 5715

Fig. 3.1 shows that, when Xcorr and ∆Cn are considered simultaneously, hits against

the decoy database (green dots) should provide an estimate of the distribution of incorrect

hits(blue dots). The results in Fig. 3.1 demonstrate that the search against a concatenated

target-decoy database results in similar distributions of decoy hits and incorrect hits, while

separate searches results in the different distributions. Therefore we adopt a concatenated

target-decoy search strategy.

Search algorithms such as SEQUEST assign a set of scores to a peptide identification

based on the match quality. For SEQUEST, the scores generally used to validate peptide

identifications are: Xcorr, ∆Cn, Sp and Rsp. These scores will be discussed in detail

later in section score transformation. The database search score distribution of decoy hits

should reflect that of coincidental target hits. Fig. 3.3 shows box-and-whisker plots of

these distribution of Xcorr (a) and ∆Cn (b) and Rsp (c) for ISB mix1. It is easy to see
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that the score distributions of decoy and target incorrect hits are very similar and different

from the score distribution of target correct hits. Therefore, although the number of decoy

hits is not an accurate reflection of the number of target incorrect hits, the score distribution

of decoy hits provides an accurate model of target incorrect hits.

3.3.2 Motivation for using outlier detection for peptide validation

As Fig. 3.1 illustrates, correct peptide assignments can be viewed as outliers from in-

correct peptide assignments. Outliers are observations which are far away from the rest

of the data and may be indicative of data points that belong to a different population than

the rest of the data. Outlier detection has been successfully used in a number of appli-

cation areas for identifying data points from different populations including credit card

fraud, calling card fraud, network intrusion detection and insurance fraud [5]. Because

the peptide assignments made against the decoy database provide a mechanism for mod-

eling the distribution of incorrect target hits, we can view correct target hits as outliers

with respect to incorrect target hits as modeled by decoy hits. The distance-based outlier

detection method we have used, K-nearest-neighbor, distinguishes an object as an outlier

on the basis of the distance to the K-nearest points in the normal population. In our case,

the normal distribution consists of incorrect peptide assignments.

3.3.3 Distance-based outlier detection for peptide validation

In our method, incorrect peptide assignments are viewed as noise and correct peptide

assignments are viewed as outliers from the noise. The score distribution of noisy peptide

assignments is estimated by the score distribution of decoy hits. We use Euclidean distance
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(a) Xcorr

(b) ∆Cn

(c) Rsp

Figure 3.3

Boxplot of Xcorr (a), ∆Cn (b) and Rsp (c) for ISB mix
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to measure the distance between peptide hits in score space. The Euclidean distance d(p, q)

between two points p = (p1, p2, . . . , pn) and q = (q1, q2, . . . , qn), in Euclidean n-space, is

defined as

d(p, q) =

√

√

√

√

n
∑

i=1

(pi − qi)2 (3.7)

In our method, data point p is a peptide assignment from the target hits, data point q is

a peptide assignment from the decoy hits, and p1, p2, . . . , pn and q1, q2, . . . , qn are database

search scores assigned by the database search algorithm, such as the Xcorr, ∆Cn, and

Rsp scores of SEQUEST, Ion Score and Homology Factor of MASCOT, and In Dot and

∆Dot of X!TANDEM. A peptide is detected as an outlier from the noise based on its

distance to its K-nearest-neighbors in the noise (decoy hits in our case). The Distance

score D(p) represents the sum of the distances of a target hit p to its K nearest neighbors

in the decoy hits and is used to rank the peptide assignments as outliers [5]. The weight of

a peptide assignment is defined as:

D(p) =
K

∑

k=1

d(p, qk) =
K

∑

k=1

√

√

√

√

n
∑

i=1

(pi − qi)2 (3.8)

where qk is the kth nearest neighbor of p. In our work, we have used a value of 5 for K.

This value was chosen based on empirical comparisons of the performance with different

K values. In our experiments, we are using the SEQUEST search algorithm. Some peptide

assignments in the target hits have a distance score of D = 0 because these hits have

exactly the same score values as K decoy hits and therefore the distance to their K nearest

decoy neighbors is 0. These 0-weight peptide assignments are discarded from further
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consideration because they clearly are not distinguishable from noise. Each distance D is

converted to a log distance for further analysis:

s = log(D) (3.9)

The probability distributions of the log distance score s of target hits, P (s) and of

decoy hits, P (s|−), are estimated using a standard nonparametric density estimation tech-

nique based on construction of a histogram with specified bin sizes. Figure 3.4 illustrates

from assignment frequencies using a bin size of 0.2 for a bacterial proteomics dataset (see

Section 3.3) for charge state +2. The advantage of using the histogram approach is that we

need not assume any parametric families for these distributions.

Figure 3.5 shows the distribution of distance score s for known correct, and incorrect

target hits, and of the decoy hits for ISB Standard Mixture 1. This result demonstrates that

the distribution of log distance score for decoy hits provides an accurate estimate of the

distribution of log distance score of incorrect target hits.

Based on the distribution of log distance scores of target hits and decoy hits, Bayes’

rule is applied to calculate the probability that a peptide assignment is correct given a

specific log distance score value s. We denote correct and incorrect peptide assignments

as + and -, respectively. The probability that a peptide with a log weight score s is correct

can be computed as:

P (+|s) =
P (s|+)P (+)

P (s|+)P (+) + P (s|−)P (−)
=

P (s) − P (s|−)P (−)

P (s)
= 1 −

P (s|−)P (−)

P (s)
.

(3.10)
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(a) Histogram of distance scores of matches against the target

database

(b) Histogram of distance scores of matches against the decoy

database

Figure 3.4

Histogram and derived distribution for target hits P(s) and decoy hits P (s|−) for charge
state +2 for the M. haemolytica Dataset.
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Figure 3.5

Distributions of log distance score s for correct target hits, incorrect target hits and decoy
hits using ISB standard Mixture 1.

The probability of an incorrect peptide assignment P (s|−) is estimated by the proba-

bility of decoy peptide assignments as shown by the blue line in Figure 3.5.

We know that the distribution of target hits P (s) is a mixture of incorrect peptide

assignments P (s|−) and correct peptide assignments. The basic assumption of the target-

decoy strategy is that the decoy hits can be used for modeling the distribution of incorrect

hits against the target database as illustrated in Fig. 3.4(a). The distribution of log distance

score s of decoy hits can also be used to model the distribution of log distance score s of

incorrect hits against the target database.

We use the following iterative procedure to estimate P (−), the prior probabilities of

incorrect peptide assignments and correct peptide assignments. First, the ratio of the fre-

quency of target hits over the frequency of decoy hits is computed for all weights less than

the maximum frequency weight (smax) in the decoy hits shown in Fig. 3.4(a).
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(a) Actual P(s) and P(s|−) estimated from decoy hits

(b) Derived P(s|+) and P(s|−)

Figure 3.6

The process of estimating P(-) and P(s|+).
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r =
P (s = smax)

P (s = smax|−)
(3.11)

We assume that P (s|+) does not contribute to P (s) for values less than the maximum.

Based on the initial estimate of P (−), an iterative procedure is used to choose a value for

P (−) by minimizing the absolute error between P (s)× r and P (s|−) for all weights less

than smax.

P (−) = min
r

∑

s≤smax

|P (s|−) × r − P (s)| (3.12)

The probability of a peptide assignment with log distance score s as a correct identi-

fication can now be calculated from Eq. 3.12. This probability can be used as additional

information for protein identification [13, 14].

3.3.4 SEQUEST database score preprocessing

We apply our distance-based outlier detection method to SEQUEST database search

scores Xcorr, ∆Cn, RSp. 1)Cross Correlation (Xcorr) is a measure based on the num-

ber of peaks of common mass between observed and expected spectra, and thus tends

to be larger for long peptide assignments. Short correct peptide assignments with rela-

tively small Xcorr scores are hard to distinguish from incorrect long peptide assignments

with relatively large Xcorr scores. To overcome this dependence between Xcorr and the

length of peptide assignment, we transform Xcorr to Xcorr ′ by equation:
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Xcorr′ =



















ln(Xcorr)
ln(NL)

, ifL < LC

ln(Xcorr)
ln(NC)

, ifL ≥ LC

(3.13)

where, L is the length of peptide assignment, LC is 15 for charge +2 and 25 for charge

+3. NL is 2L for charge +2 and 4L for charge +3. NC is 2*15 for charge +2 and 4*25

for charge +3. This equation is adapted from Peptide Prophet [49]. Transformations of

Xcorr score to Xcorr′ reduce the dependence between Xcorr and the length of peptide

and can significantly improve the discrimination power. In our distance-based outlier de-

tection method, the distance in score space for each peptide assignment reflects how far

the peptide assignment is from the nearest K decoy peptide assignments. Distance mea-

surements taken on large value attributes will generally outweigh distance measurements

taken on those with small values. It is well known that normalization will improve the ac-

curacy and efficiency of mining algorithms involving distance measurements [24]. There

are three major classes of normalization methods: min-max normalization, z-score nor-

malization and decimal scaling normalization. Since we are trying to detect the outliers

from the mixture dataset, z-score normalization is not an appropriate selection because it

reduces the effect of outliers that dominate the minimum and maximum. Decimal scaling

normalization moves the decimal point of values of an attribute. The number of decimal

points moved depends on the maximum absolute value of the attribute.

Min-max normalization performs a linear transformation on the original data and pre-

serves the relationships among the original data values and is the method we are using.

The min-max normalization method is applied on Xcorr′ to make Xcorr′ have the

same range as ∆Cn as:
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n Xcorr′ =
Xcorr′ − Min Xcorr′

Max Xcorr′ − Min Xcorr′
, (3.14)

where, Min Xcorr′ and Max Xcorr′ are the minimum and maximum value of Xcorr′

in dataset.

2) ∆Cn is the change in Xcorr values between the first and second best hits. Because

∆Cn is already in the range of [0, 1), there is no need to normalize ∆Cn value.

3) Sp is a preliminary score which is the score that SEQUEST uses to do an initial

scoring of the all peptide candidates. It is more efficient to compute than Xcorr, but is

considered less robust. Rank Sp is derived by sorting Sp in descending order and a rank is

assigned to each peptide sequence (e.g. the topmost entry would have a Rsp = 1). Rank

Sp is transformed by taking log on it to reduce the data spread as shown in equation:

Rsp′ = log(Rsp). (3.15)

As illustrated in Fig. 3.1, most correct peptide identifications have an Rsp value of

one. The log Rsp value is normalized Rsp′ in range of 0 to 0.1:

n Rsp′ =
Rsp′

Max Rsp′ − Min Rsp′
× 0.1, (3.16)

where, Min Rsp′ and Max Rsp′ are the minimum and maximum value of Rsp′ in dataset.

The maximum value of Rsp′ is adopted from previous works of PeptideProphet [49].

Here, we only consider the SEQUEST scores Xcorr. ∆Cn and Rsp in our distance

calculation. However, our approach can easily be adapted to include other SEQUEST

scores or to use scores from other search algorithms such as Mascot and X!Tandem.
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3.3.5 Results of PepOut

PepOut discriminates correct peptide assignment from incorrect ones by a distance-

based outlier detection method. As discussed previously, PepOut assigns a distance score

from a peptide to its K-nearest-neighbor decoy hits, and the farther the distance, the higher

the likelihood the assignment is correct. PepOut does not assume that incorrect and correct

hits are linearly separable as shown in Fig. 3.2(b). Correct peptide identifications are

detected as outliers of incorrect hits as modeled by decoy hits.

3.4 Results and comparison

Several major classes of peptide validation methods have been reported in the liter-

ature including threshold methods coupled with the target-decoy strategy [22], statisti-

cal models [49], semi-supervised statistical methods such as PeptideProphet coupled with

target-decoy strategy [14], nonparametric discriminant score method [88], Kunec’s prod-

uct method, and a support vector machine classification model called Percolator [45]. We

will compare the performance of PepOut to these methods using several criteria.

First, the ISB standard 18 protein MS/MS spectra [51] were searched by SEQUEST

algorithm against a concatenated target-decoy database, where, the decoy database was

generated using a 0th order Markov Chain of the target database resulting in a decoy

database of the same size as the target database. The SEQUEST results are filtered by the

following three criteria:

a. Rsp = 1

b. ∆Cn ≥ 0.1
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(a) All target and decoy hits of charge 2+

(b) FDR = 2%

Figure 3.7

Results of outlier detection program for ISB standard Mix 1 for charge +2. (a) all target
hits with correct in red and incorrect in blue. (b) outlier results with FDR cutoffs of 2%.
Red points are correct hits, blue points are incorrect hits, and green points are decoy hits

used to estimate the distribution of incorrect hits.
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Xcorr ≥ 1.0 Charge + 1

Xcorr ≥ 1.5 Charge + 2

Xcorr ≥ 2.0 Charge + 3

We will compare PepOut to other peptide validation methods using several different

measurements. Error rate gives the fraction of target hits that are correct for a specified

false discovery rate (FDR):

error = 1 − precision = 1 −
#target correct hits > T

#total target hits > T
(3.17)

Recall gives as fraction of correct hits that are found for a specified FDR:

recall =
#target correct hits > T

#total target hits
, (3.18)

where, T is threshold such as FDR, e.g. T ≤ 2%.

We also use five different statistical measures of the closeness of two distributions (P )

and (Q):

1) Non-commutative Kullback-Leibler divergence:

DKL(P, Q) =
∑

i

P (i)log
P (i)

Q(i)
(3.19)

2) Jeffreys divergence:

DJD(P, Q) =
1

2
(
∑

i

P (i)log
P (i)

Q(i)
+

∑

i

P (i)log
Q(i)

P (i)
) =

1

2
(DKL(P, Q) + DKL(Q, P )).

(3.20)

3) Jensen-Shannon divergence:
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DJS(P, Q) =
1

2
(
∑

i

P (i)log
P (i)

M(i)
+

∑

i

P (i)log
Q(i)

M(i)
) =

1

2
(DKL(P, M)+DKL(Q, M)),

(3.21)

where M = 1
2
(P + Q).

4) λ divergence:

Dλ(P, Q) = λDKL(P, λP + (1 − λ)Q) + (1 − λ)DKL(Q, λP + (1 − λ)Q), (3.22)

where λ ∈ [0, 1], if λ = 0.5, then λ divergence becomes the Jensen-Shannon divergence.

In the numerical results, we are testing the case λ = 0.3.

5) Generalized Kullback-Leibler divergence:

DGKL(P, Q) =
∑

i

P (i)log
P (i)

Q(i)
−

∑

i

P (i) +
∑

i

Q(i) (3.23)

3.4.1 PepOut vs. Threshold methods with target-decoy strategy

Elias et al. [22] contend to estimate the false discovery rate correctly, the MS/MS spec-

tra should be searched against a concatenated target-decoy database and the search results

filtered with Rsp = 1. Their false discovery rate is calculated as Eq. 3.2 for each charge

state respectively. Elias’ threshold method only uses Xcorr. We extended this method by

transforming Xcorr to Xcorr′ as discussed in Section 3.3. This transformation attempts

to eliminate the dependence between Xcorr and the length of peptide sequence for charge

state +2 and +3 respectively. Table 3.2 compares results of Elias’ method to PepOut in

terms of recall and errorrate. PepOut consistently outperforms the threshold method us-
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ing either Xcorr or Xcorr′ in terms of recall. The Xcorr′ threshold method gives better

results than Xcorr. In addition, the threshold methods overestimate the errorrate.

The threshold method with the target-decoy strategy only considers Xcorr and ig-

nores other useful scores such as ∆Cn. This method estimates the FDR by assuming that

the number of decoy hits reflects the number of target incorrect hits. We have already

demonstrated that this assumption is not valid in Section 3.3.1.

3.4.2 PepOut vs. Statistical models

PeptideProphet [49] and its descendants (semi-supervised statistical model [14] and

nonparametric statistics model [88] all assign each peptide a discriminant score which is a

linear combination of database search scores:

F (Xcorr′, ∆Cn, ln(Rsp), dM) = C0 + C1Xcorr′ + C2∆Cn + C3ln(Rsp),

where C0,..,C3 are coefficients learned from training datasets for each charge state respec-

tively. We compare the similarity of the distribution of the discriminant scores calculated

in three different ways and of our distance score to the true distribution of incorrect hits.

The original PeptideProphet assumes that the discriminant score of incorrect hits follow

a standard gamma distribution and learns the parameters of the gamma distribution using

an EM (expectation maximization) algorithm. The newer semi-supervised PeptideProphet

attempts to overcome the problem of local maximum encountered by EM by learning pa-

rameters of the gamma distribution from the discriminant scores of decoy hits. However

this semi-supervised version of PeptideProphet still assumes that the gamma distribution.

A more recent nonparametric statistical modification uses a discrete distribution of dis-
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Table 3.2

Comparison of PepOut and Elias’ threshold methods for Mix1

#total decoy hits 5980
#total target hits 10682

#total target correct hits 4806
PepOut XCorr threshold Xcorr’ threshold

Expected ER 0%

#totaltargethits 1171 1350 1077
#Correct 1171 1347 1077
Error rate 0 0.3% 0

Recall 24.5% 28.8% 22.4%

Expected ER 1%

#totaltargethits 3644 3358 3432
#Correct 3615 3343 3418
Error rate 0.7% 0.4% 0.4%

Recall 75.2% 69% 71%

Expected ER 2%

#totaltargethits 4219 3743 3664
#Correct 4141 3712 3643
Error rate 1.8% 0.8% 0.6%

Recall 86.2% 77.2% 76%

Expected ER 5%

#totaltargethits 4713 4220 4298
#Correct 4511 4126 4220
Error rate 4.3% 2.2% 1.8%

Recall 94% 86% 88%

Expected ER 10%

#totaltargethits 5120 4651 4760
#Correct 4726 4465 4561
Error rate 7.6% 4.0% 4.2%

Recall 98.3% 93% 95%
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criminant scores and does not assume the form of the distribution for discriminant scores

of incorrect hits.

In Fig. 3.8, PepOut is compared to these statistics models in terms of 1) the rationale

behind the score used and 2) the closeness of the distribution to the true distribution.

PepOut does not assume that target incorrect and correct hits are linearly separable, but

uses a distance score to indicate how far a target peptide is from its K-nearest-neighbor

decoy hits. The distance score is calculated directly from the dataset and does not require

a training dataset while the discriminant approach does.

To compare the similarity of the distributions to the true distribution, we calculate the

distance between two distributions using Eqs. 3.14-3.17, in which the smaller distance

values indicate more similar distributions. Table 3.3 and Fig. 3.8 clearly demonstrates that

the distribution of distance scores of decoy hits used by PepOut are better models of the

distribution of target incorrect hits than distributions based on a discriminant score.

3.4.3 PepOut vs. Products method

The product method performs a separate search and assigns each peptide a score that

is the product of Xcorr and ∆Cn. It then calculates the FDR as Eq. 3.5, where, T is

a product score threshold. As illustrated in Fig. 3.9, the product method distinguishes

incorrect and correct using a curve as shown in Fig. 3.9(c). PepOut and products method

are compared in terms of error and recall in Table 3.4. These results show that PepOut

identifies substantially more correct peptides and gives an expected error rate closer to the

true error rate than the product method.
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Table 3.3

Distribution closeness comparison for Mix1, Mix2 and Mix3

DJD DJS Dλ DGKL

Mix1
Discriminant score distribution
target incorrect vs. Gamma
learned from decoy hits (Semi-
supervised statistics)

0.7851 0.0322 0.0250 0.1076

Discriminant score distribution
target incorrect vs. Decoy
(Nonparametric statistics)

0.6957 0.0292 0.0230 0.0760

Distance score distribution target
incorrect vs. decoy (PepOut)

0.0650 0.0056 0.0044 0.0202

Mix2
Discriminant score distribution
target incorrect vs. Gamma
learned from decoy hits (Semi-
supervised statistics)

0.1486 0.0108 0.0089 0.1823

Discriminant score distribution
target incorrect vs. Decoy
(Nonparametric statistics)

0.0490 0.0024 0.0021 0.0649

Distance score distribution target
incorrect vs. decoy (PepOut)

0.0138 0.0003 0.0003 0.0268

Mix3
Discriminant score distribution
target incorrect vs. Gamma
learned from decoy hits (Semi-
supervised statistics)

1.6601 0.0030 0.0582 0.2605

Discriminant score distribution
target incorrect vs. Decoy
(Nonparametric statistics)

1.6018 0.0667 0.0544 0.2607

Distance score distribution target
incorrect vs. decoy (PepOut)

0.0138 0.0056 0.0028 0.0176
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(a) Mix1

(b) Mix2

(c) Mix3

Figure 3.8

Distribution closeness comparisons.
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Table 3.4

Comparison of PepOut and Products method

PepOut Products
#total decoy hits 5980 10079
#total target hits 10682 13869

#total target correct hits 4806 5811

Expected error rate 0%

#TotalTargetHits 1171 2309
#Correct 1171 2244
Error rate 0 2.8%

Recall 24.5% 38%

Expected error rate 1%

#TotalTargetHits 3644 5043
#Correct 3615 3702
Error rate 0.7% 26%

Recall 75.2% 64%

Expected error rate 2%

#TotalTargetHits 4219 5923
#Correct 4141 4087
Error rate 1.8% 31%

Recall 86.2% 70%

Expected error rate 5%

#TotalTargetHits 4713 6888
#Correct 4511 4483
Error rate 4.3% 35%

Recall 94% 77%

Expected error rate 10%

#TotalTargetHits 5120 7753
#Correct 4726 4803
Error rate 7.6% 38%

Recall 98.3% 83%
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3.4.4 PepOut vs. Percolator

Percolator runs separate searches of MS/MS spectra against target and decoy databases.

The subset of top-scoring target hits serves as a positive set, and decoy hits as a negative

set. A vector of 20 features is computed for each hit. Percolator trains a support vector

machine (SVM) iteratively on subsets of high-confidence target and decoy hits and assign

a score for each hit. Percolator calculates the FDR using Eq. 3.6, where π0 is the esti-

mated proportion of target hits that are incorrect, that is P (−), and T is Percolator score

threshold. They report results based on π0 = 0.9.

PepOut is compared to Percolator in terms of error rate and recall for different false

discovery rates in Table 3.5. PepOut consistently identifies as many or more peptides

than Percolator. Percolator always underestimates the FDR. Hulse et al. [37] has shown

that SVMs perform poorly with unbalanced, noisy datasets. In addition, Percolator uses

a separate target-decoy search and give ∆Cn substantial weight. We have shown that the

distribution of ∆Cn scores in the decoy with separate searches does not accurately reflect

the distribution of ∆Cn scores for incorrect hits. Therefore the decoy hits probably do

not provide a good training set for the negative examples. In addition, Percolator trains

the SVM based on high-confidence target hits as the positive set if examples and may

misclassify some correct hits with relative low-confidence scores. PepOut is completely

data-driven and does not require a training set.
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Table 3.5

Comparison of PepOut and Percolator

PepOut Percolator
#total decoy hits 5980 11297
#total target hits 10682 15252

#total target correct hits 4806 5661

Expected error rate 0%

#TotalTargetHits 1171 2713
#Correct 1171 2652
Error rate 0 2.2%

Recall 24.5% 46.8%

Expected error rate 1%

#TotalTargetHits 3644 4132
#Correct 3615 3983
Error rate 0.7% 3.6%

Recall 75.2% 70.4%

Expected error rate 2%

#TotalTargetHits 4219 4333
#Correct 4141 4168
Error rate 1.8% 3.8%

Recall 86.2% 73.5%

Expected error rate 5%

#TotalTargetHits 4713 4578
#Correct 4511 4354
Error rate 4.3% 5%

Recall 94% 77%

Expected error rate 10%

#TotalTargetHits 5120 4991
#Correct 4726 4568
Error rate 7.6% 7.2%

Recall 98.3% 83%
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3.4.5 Summary of comparisons

We have compare our PepOut method to several types of peptide validation tools in

this chapter: threshold methods, statistical methods, the product method, and a machine

learning method. Fig. 3.9 graphically illustrates the differences in the approaches used by

these methods. The threshold method (Fig. 3.9(a)) bases discrimination on a single score.

The statistical models (Fig. 3.9(b)) based on PeptideProphet assume the classes can be

linearly discriminated. The products model (Fig. 3.9(c)) discriminates using a hyperbolic

upper curve. PepOut (Fig. 3.9(d)) does not assume a particular shape of the discriminant

curve, but adapts to the data. From Fig. 3.9 and the data we have presented, it is clear that

PepOut identifies more peptides for a given FDR than the other methods.

Figure 3.10 demonstrates that PepOut (red line) has the closest estimation of true FDR

among other methods. Figure 3.11 illustrates that Percolator has a highest recall among

the other methods given a value of zero FDR, but it is known that Percolator has a highest

true false discovery rate at zero of expected FDR level. Given a greater 1% of FDR value,

PepOut identified the most percent of total correct peptides among these four methods.

Figure 3.12 shows the number of peptide identified by four methods. According to the

comparison of Fig. 3.12, Percolator identified the most peptide given a FDR zero. Recall

percolator, Percolator searches mass spectra against target and decoy databases separately,

and it means there are more peptide identifications than against a concatenated target and

decoy database. When a greater 2% of FDR is specified, PepOut identifies the most pep-

tides among these four methods.
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(a) Xcorr threshold method (b) Linear discriminant method

(c) Xcorr*∆Cn products method (d) PepOut distance-based outlier

method

Figure 3.9

Brief description of peptide validation methods.
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According the comparison results of this section, Peptide estimates true FDR rate in a

close manner, identifies almost 100% correct peptides given a 10% expected FDR.

Figure 3.10

Expected FDR vs. True FDR for four methods.

3.5 Conclusions

For the high throughput analysis of MS/MS database search results, the distance-based

outlier detection method described in the chapter can be used as efficient and cheap model

for peptide validation since 1) the method requires minimum user interaction, the web

based tool is available at http://agbase.msstate.edu/epst. The only input for validating

peptides is SEQUEST search results made from a concatenated target-decoy database,
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Figure 3.11

Recall comparison given an expected FDR for four methods.

Figure 3.12

The number of peptide identified by four methods given a FDR.

66



with a given estimate false positive threshold; 2) the method is easy to be extended to other

search scores rather than Xcorr and ∆Cn, also easy to be adapted to other database search

algorithm such as MASCOT, X!TANDEM, and there is no additional knowledge about the

search algorithm needed; 3). The outlier detection method does not need a training dataset

to building the model, and use distance-based score to avoid the parameters of discriminant

function; 4). The outlier detection method determines the trade-off between sensitivity and

specificity by using a report FDR, also the report FDR can be used for comparison to other

peptide validation method which also reports a FDR; 5) the method provides each peptide

assignment a probability as true identification, which can be used as a very important

evidence supporting protein-level validation.
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CHAPTER 4

PROTEOGENOMIC MAPPING FOR GENE MODEL DETECTION

Structural annotation of genomes (identification of functional elements on the genome)

is one of the major goals of genomics research. Most structural annotation of genomes is

accomplished by computational pipelines, and we have reviewed some of these computa-

tional methods in Chapter 2. It is well-known that these computational methods have a

number of shortcomings including false negative identifications (failing to identify genes

that exist), false identifications, and incorrect identification of gene boundaries [40]. Pro-

teomics data can be used to confirm the identification of genes identified by computational

methods and to correct mistakes. A practical solution for generating accurate gene models

for a particular genome is a combinatorial approach that includes computational predic-

tions and experimental methods. When proteomics data is used for structural annotation,

this approach is called proteogenomic mapping (PGM).

We will describe the method we have developed to use peptides identified from mass

spectrometry for structural annotation of genomes. In this Chapter, we will give a brief

introduction to PGM (ProteoGenomic Mapping) in section 4.1, describe the workflow we

have developed for discovering potential protein coding genes in section 4.2, discuss meth-

ods for evaluating the validity of potential novel genes in section 4.3, and our experiments

and results of using machine learning techniques for potential novel gene in section 4.4.

68



4.1 Introduction to Proteogenomic Mapping

The utility of a genome sequence in biological research depends entirely on the com-

prehensive description of all of its functional elements. Analysis of genome sequences is

still predominantly gene centric (i.e. identifying gene models /open reading frames). In

this chapter we describe a proteomics based method for identifying open reading frames

that are missed by computational algorithms. Mass spectrometry based identification of

peptides and proteins from biological samples provide evidence for the expression of the

genome sequence at the protein level. This proteogenomic mapping method uses pro-

teomics to both confirm computationally predicted genes and to identify novel gene mod-

els. In the chapter, we describe our proteogenomic mapping pipeline as a set of computa-

tional tools that automates the proteogenomic annotation work flow shown in Fig. 4.1.

Rapid advances in genome sequencing technologies and the resulting explosion in the

availability of bacterial genome sequences highlight the need for identifying and annotat-

ing the biological function of all nucleotides in the sequence. The functional elements in

bacterial genomes could be protein coding regions (genes), non-coding RNAs, as well as

regulatory elements that are involved the expression of proteins and RNAs [31]. Here we

focus on annotating protein coding genes and for the purposes of this dissertation, genome

annotation refers to identification, demarcation and delineation of protein coding genes.

Genome annotation for predicting open reading frames goes hand in hand with sequenc-

ing efforts, but most commonly relies solely on computational algorithms and does not

include experimental data which is often collected for model organisms as EST/cDNA

sequencing data [79]. Despite improvement in the accuracy of gene prediction programs
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Figure 4.1

Flowchart for proteogenomic mapping used for discovery of potential novel
protein-coding genes.
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over the last few years, prediction of short genes still remains challenging [32]. PGM

combines mass spectrometry-based proteomic workflows with computationally predicted

genes to confirm expression of predicted proteins, correct gene prediction start and stop

codons, identify protein post translational modifications, as well as identify novel genes

missed by initial annotation [32, 59, 60, 61].

4.2 Discovery of Potential Novel Genes

Unique peptides are segments of expressed protein sequences, and can be used to dis-

cover potential protein coding genes in the genome. To discover these unique peptides, the

proteogenomic mapping workflow requires a sequenced genome, the existing protein mod-

els for the genome, and a proteomics dataset which is specific to the prokaryotic genome

under study.

From Fig. 4.1, biological samples are trypsin digested to peptides. These samples

are run in an LC ESI-MS/MS mass spectrometer which generates mass spectra for the

samples. Mass spectra then are searched against the protein database and the genome

database translated in six reading frames. Those peptides that match the genome but not

the protein database potentially represent novel genes or annotation errors. The peptide

identifications are validated as shown in Fig. 4.1 by PepOut, the distance-based outlier

detection method discussed in Chapter 3.

Figure 4.2 illustrates the process used to identify potential novel genes or to correct

predicted genes. The genetic code uses three-letter nucleotide codons in DNA to specify

a single amino acid in protein. Because DNA is double stranded, there are six possible
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ways to translate the genome into protein sequence six possible reading frames. Some

codons for amino acids are also used as start codons, indicating the beginning of transla-

tion. The genetic code also contains special codons called stop codons that signal the end

of translation of nucleotides into proteins. Peptides with high confidence scores from Pe-

pOut are used to discover expressed protein sequence tags (ePSTs). As Fig. 4.2 illustrates,

the genome sequence is translated in all six reading frames and the validated peptides are

mapped to the translated sequence and are assumed to represent a segment of an expressed

gene. The next task is to find the beginning and end of the gene. The peptide match is

extended downstream to find an inframe stop codon. To find the start codon, we first locate

an inframe upstream stop codon representing the end of an upstream gene. The start posi-

tion of a potential protein coding gene should be located between the inframe stop codon

of an upstream gene and the beginning of the peptide. In our method, we use the first start

codon between the upstream inframe stop codon and the beginning of the peptide as the

start codon of the potential protein coding gene. If there is no start codon between the

inframe upstream stop codon and the peptide, the beginning of the peptide is used as the

start position of the potential protein coding gene.

The ePSTs generated using the process described above are considered potential novel

protein coding genes or extensions to predicted genes and are evaluated further as de-

scribed in the next sections.
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Figure 4.2

The process used to generate ePSTs from peptide sequences generated from tandem mass
spectra.
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4.3 Evaluation of the validity of potential novel genes

Due to noise from a variety of sources including the collection of biological samples,

errors associated with mass spectrometry, sequencing errors etc, many of these potential

new genes discovered by proteogenomic mapping may be false positive identifications.

The most common method used for validating potential novel protein-coding genes pre-

dicted from expressed protein evidence is real-time PCR. However, real-time PCR is an

expensive labor-intensive process and cannot be used for a large number of potential candi-

date genes. Therefore, there is a need to collect evidence of the coding potential of ePSTs

and to develop machine learning methods for automatic evaluation. Biologists provided

us with a list of potentially useful features for evaluating ePSTs. In this section, we will

describe feature information recommended by biologists for ePST evaluation and describe

how we derive this information. Table 4.1 lists the features we extract for each ePST that

we will use to train our machine learning models. Note that some of these entries corre-

spond to more than one feature. For example, for each homology search, when there is a

match we also find the length of the match and the percent identity. Values of 0 were used

for both the length of the match and the percent identity if there is no match.

Below we describe how some of the features in Table 4.1 are generated:

i. ePST probability

Each ePST may be generated by one or more peptides. All peptide matches for an

ePST provide evidence that the ePST is a true identification. The ePST probability is

calculated from the peptide probabilities provided by PepOut as follows:
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Table 4.1

Features used for evaluating the identification of potential novel genes

Column Name Description
ePST length Number of amino acids in ePST sequence
ePST Probability Probability that the ePST is a true identification based on the

probability of the peptides used to generate the ePST.
Number peptides Number of peptide matched to the ePST
Coverage Percentage of amino acids in the ePST covered by peptides

Multiple peptides matching a single ePST may overlap. Amino
acids matching several peptides are counted only one time.

StartCodon The start codon for the ePST. “-” means no start codon
NewStartCodon The start codon suggested by RBSFinder
RBS Pattern of the ribosome binding site of the ePST generated

by RBSFinder
CDD Yes if the ePST has a conserved domain identified by CDD
Homology Yes if ePST has a homologous match in the protein database for
protein match a related organism, no otherwise.

Additional information: hit length, percent identity
Homology DNA Yes if ePST has a homologous match in the genome database
match for a related organism, no otherwise.

Additional information: hit length, percent identity.
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PePST = 1 − (1 − p1)(1 − p2) . . . (1 − pn)

where P is the ePST probability, n is the number of peptides matching the ePST and

pi is a peptide probability provided by PepOut.

ii. ePST Coverage

The coverage of the ePST is the percentage of the amino acids in the ePST covered

by peptides, and is calculated as follows:

amino acids covered

ePST length

where amino acids covered is the total number of amino acids in the ePST found in

the peptides and ePST length is the number of amino acids in the ePST. Multiple

peptides matching a single ePST may overlap in different ways. Amino acids that are

covered by more than one peptide are only counted once when amino acids covered

is computed.

iii. StartCodon

A codon is a group of three bases - A, T, C, or G - that specifies a single amino acid.

A start codon is an amino acid codon that also serves as the start of translation. The

codons for methionine are most often used as start codons. Bacteriologists have found

that the most commonly used start codons in prokaryotes ranked by frequency of use

are ATG, TTG, and GTG. Our bacteriology collaborators consider the presence of one
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of these canonical start codons as positive evidence that a potential new gene is a true

identification.

iv. RBS

A ribosomal binding site (RBS) is a sequence on mRNA that is bound by the ribo-

somes when initiating protein translation [80]. An ePST with a RBS is considered to

have a higher probability as a true identification. We use the tool RBSFinder from

NCBI to identify ribosome binding sites for ePSTs. RBSFinder uses previously iden-

tified genes to compute the probability of start codons. Therefore the input file for

RBSFinder is a concatenation of descriptions of the genes previously predicted for

the organism by a computational gene finder and descriptions of the potential new

genes identified by proteogenomic mapping.

v. NewStartCodon

When RBSFinder is executed, it may suggest a new start codon suggested by RBS-

Finder based on the sequence shift. The new start codon could be used to solve the

error in the chromosome sequence. This new start codon also will be used as a feature

for ePST evaluation.

vi. CDD

Computational biologists define conserved domains based as sequence patterns that

occur in many different proteins and are assumed to serve a specific function [28]. The

CDD tool at NCBI imports domains from many databases including SMART, Pfam,

COGs, PRK, and KOG and represents these domains using a position-specific score
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matrix. To identify conserved domains in a protein sequence, the Conserved Domain

Search service uses the reverse position-specific BLAST algorithm (rpsBLAST.exe

from NCBI). We run CDD with all five conserved domain databases and if an ePST

has a conserved domain in any one of these databases, will treat this ePST as having

a conserved domain. Our biologist collaborators consider an ePST with a conserved

domain to have an increased probability of being a true identification.

vii. Homologous matches to related species

The most commonly used method for structural annotation of a newly sequenced bac-

terial genome is to find the homologous matches in the sequences of related species.

We have borrowed this idea to help verify the ePSTs we generate by our proteoge-

nomic mapping pipeline. If an ePST has homologous match in a related species, our

biology collaborators consider it to have a higher probability as a true identification.

We search the ePSTs against protein databases of related species using blastp (BLAST

from NCBI) to find matches to proteins previously identified in other species. It may

be the case that our potential new gene is found in several species but has not been

identified in any of them and therefore, we also look for homologous sequences in

the genome of related species. In our experiments, we have used two related species

for homology matches at both the protein and DNA level. Table 4.2 shows example

features collected for the bacteria Manhaemia haemolytica as described in section 4.5.

The features described above to build evaluation classifiers to assess the validity of the

potential novel genes. The training set used to train the classifiers is a subset of ePSTs
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Table 4.2

Collected features for one of ePSTs from Mannheimia haemolytica dataset.

Unique ePST id ePST2154
ePST length aa 812

ePST Probability 0.99
NumOfPeptideMatch 7

Coverage 0.16
StartCodon ATG

NewStartCodon ATG
RBS GGTAG
CDD Y

HomologyProteinMatch1 Y
ProteinHitLength1 807

ProteinPercentIdentity1 0.72
HomologyDNAMatch1 Y

DNAHitLength1 2412
DNAPercentIdentity1 0.72

HomologyProtienMatch2 Y
ProteinHitLength2 803

ProteinPercentIdentity2 0.74
HomologyDNAMatch2 Y

DNAHitLength2 2409
DNAPercentIdentity2 0.74
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that have been evaluated by biologists using exactly the same set of features used as input

to our machine learning algorithms. Machine learning algorithms were trained to classify

the ePSTs in the same way they are classified by human experts.

4.4 Experiments and Results

4.4.1 Data preparation

Our experiments were done on Mannheimia haemolytica which is the bacteria most

commonly associated with BRD. Mannheimia haemolytica has been the most commonly

isolated species. M. haemolytica biotype A serotype 1, a nonmotile, gram-negative, aero-

bic bacterium, is the most important etiologic agent of BRD [66]. While M. haemolytica

normally exists at low levels as a commensal in the nasopharynx of healthy calves, it

is readily isolated from stressed cattle and cattle suffering from BRD. Dr. Sarah High-

lander at the Baylor College of Medicine directed genome sequencing of M. haemolytica.

Funding was provided to complete draft coverage, but not a finished genome. The 2.4

Mbp genome of M. haemolytica strain PHL213, a serotype A:1 isolate from the lung of

a pneumonic calf, was sequenced to 9X coverage (156 contigs > 2000 bp). A list of

2434 predicted gene names and unique COG (clusters of orthologous group) numbers are

available at the Baylor College of Medicine M. haemolytica genome web page. Currently,

Dr. Highlander has organized a multi-institutional effort to annotate the M. haemolytica

genome to standardize its gene ontology and make the data more useful to the BRD re-
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search community. The genome sequence of another species in the genus Mannheimia,

the rumen commensal M. succiniciproducens, was recently released.

SEQUEST [42] search algorithm is used for identifying peptide-mass matches. M.

haemolytica mass spectra is search against a protein database and a genome database trans-

lated in six reading frames.

In the results, 3812 peptides were identified by PepOut with p > 0.5 and 3496 ePSTs

were generated from 3812 peptides. Software was developed to select a training subset

with all possible combinations of feature values that occur in the dataset where 10 exam-

ples are selected for each possible combination. This resulted in a training set consisting of

117 of the 3496 ePSTs generated. These 117 ePSTs in training data samples were labeled

as T (true gene) or F (false gene) by two experts in bacterial genomics (Dr. Bindu nanduri

and Dr. Mark Lawrence of the college of Veterinary Medicine). In the 117 training data

samples, there are 47 of 117 positives and 70 of 117 negatives.

Feature selection is often used prior to training a classifier because features may be re-

dundant, uninformative, or dependent. Use of feature selection reduces the search space to

the most relevant features. We used several different feature selection algorithms provided

by Weka to select a subset of the features. Since all of these algorithms have strengths

and weaknesses, we selected the features most commonly found near the top of all ranked

lists. It was obvious from our results that the biologists use the presence or absence of a

homology match in a related species as a strong indicator of a true gene, but the length

of the match or the percent identity is not a very strong indicator. Based on the feature
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selection results with a number of different feature selection algorithms, 11 of 22 possible

features were used to build the classification models shown in Table 4.3.

Table 4.3

Features selected for model learning and classification

Features selected Data Type

ePST length Integer
ePST probability Real
number peptides Integer

Coverage Real
hasCDD Boolean
hasRBS Boolean

hasStartCodon Boolean
P1 Boolean
P2 Boolean
D1 Boolean
D2 Boolean

Preprocessing of the evaluation dataset was required because our features include a

combination of real numbers and categorical data. Numerical features were discretized

based on the experts’ suggestions. The feature ePST length was discretized into three

bins: 0-50 aa, 51-100 aa, and > 100 aa, where aa is the number of amino acids. The

feature ePST probability was discretized into two bins: 0-70% and 71%-100%. The fea-

ture peptide coverage is discretized into two bins: < 30% or ≥ 30%. The feature ePST

matches is divided into the categories: S single match or M multiple matches.
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4.4.2 Model learning

We have implemented several different types of classifiers using the Weka machine

learning toolkit [39]. The machine learning algorithms include tree based classifiers, rule

based classifiers, function based classifiers and lazy classifiers. The accuracy of models

is estimated using ten-fold cross validation. As Table 4.4 shows, all of machine learning

algorithms resulted in high classification accuracy. By using a neural network model which

resulted in a highest accuracy and ROC area, 242 out of 3496 ePSTs were classified as true

genes and 3254 ePSTs were classified as false genes.

Table 4.4

Comparison of classification

Classifier TP Rate FP Rate Precision Recall F-Measure ROC
Area

Tree Classifier ID3 0.855 0.14 0.855 0.856 0.856 0.906
Tree Classifier J48 0.803 0.216 0.803 0.803 0.803 0.886
MultilayerPerception 0.838 0.158 0.843 0.838 0.839 0.933
SMO 0.838 0.172 0.838 0.838 0.838 0.833
Naı̈veBayes 0.863 0.12 0.874 0.863 0.864 0.95
Rule Based 0.889 0.11 0.891 0.889 0.889 0.89
Classifier NNge
IBk 0.812 0.147 0.846 0.812 0.814 0.923

The high accuracy of these models indicates that the biologists are using a relatively

simple and consistent set of rules to do the classification. Each of these methods has its

strengths and weaknesses. Decision tree methods provide a clear visual picture of how

the features are used to classify the ePSTs as shown in the example in Fig. 4.3. We tested
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two types of function based classifiers - back propagation neural networks, and support

vector machines. Although the neural network classifier had the highest accuracy of the

classifiers tested, the resulting model is difficult to understand. The support vector machine

resulted in lower accuracy than other classifiers. Rule based classifiers such as NNge

(Non-Nested Generalized Exemplars) find a set of rules that can be used for classification.

NNge is nearest neighbor-like algorithm using non-nest generalized exemplars which can

be viewed as if-then rules. However, the resulting rules can be quite complex and difficult

to understand as shown in Fig. 4.4. Instance based learning algorithms such as some

nearest neighbor find the training instance closest to the given test instance, and predicts

the same class as this training instance. These algorithms may result in high accuracy but

do not provide any information about the knowledge domain.

The biggest limitation of the supervised classifiers we have described is the require-

ment of a set of labeled training data. In our domain, biological validation of potential

genes is very expensive and time consuming and can only be done with a few examples

using the most widely available techniques. Use of biological experts to label the data

as we have done, relies on prior knowledge and biases of the experts. We have found

that the experts often disagree in their evaluation. We conducted preliminary experiments

with expert labeled data. After our experts examined the results in detail on a genome

browser, they decided that some of their criteria had not been valid and they re-labeled

the data based on their experience. In addition, although the ePSTs provide experimental

evidence for new genes, the experts only classified a few of the potential new genes as

true genes. This may reflect their biases rather than reality. New sequencing technologies
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Figure 4.3

Decision tree structure (J48) for classifying ePSTs as true or false genes.

Figure 4.4

NNge model
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have recently become available that will make it easier to validate ePSTs on a larger scale

by determining expression at the mRNA level. It will be interesting to examine models

based on this data compared to models based on expert evaluation when this data becomes

available.

In next chapter, we will discuss an unsupervised machine learning technique, Bayesian

Network classification, to learn a nature of the data and classify the data based on the data

self.
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CHAPTER 5

BAYESIAN NETWORKS FOR EVALUATION OF POTENTIAL NEW PROTEIN

CODING GENES

Our Proteogenomic Mapping Toolbox identifies potential new protein coding genes,

but because of noise from a variety of sources from the biological samples, the mass

spectrometry [16], and the peptide identification processes [64], many of these potential

new genes may be false positive identifications. The most common method used for vali-

dating potential novel protein-coding genes predicted from expressed protein evidence is

real-time PCR [10]. However, real-time PCR is an expensive labor-intensive process and

cannot be used for a large number potential candidate genes. Therefore, there is a need to

develop methods for automatic evaluation of potential protein-coding genes.

In this chapter, a Bayesian network classifier will be used for automatic evaluation of

potential genes. We will describe a new method we developed for the reconstruction of a

Bayesian network structure using a bootstrapping strategy and a weighted bootstrapping

reconstruction strategy. We also demonstrate a new method for unsupervised learning of

Bayesian networks.
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5.1 Background on Bayesian Networks

In this chapter a Bayesian Network classifier for evaluating potential new genes is

proposed. Supervised machine learning techniques such as neural networks [62], deci-

sion trees [39], and support vector machines [4] are able to learn a model from a labeled

training dataset and predict the quality of potential novel protein-coding genes using vari-

ous evidential features as inputs. However, the models learned by these machine learning

techniques typically do not reveal the conditional (in)dependence relations among the ev-

idential features. Gaining insight into the relationships among features is important for

biological domains. In biological research, the collected training data set is often incom-

plete and with very few data points and therefore methods that are robust to noisy data and

low sample-size are required.

In this chapter, we describe methods for learning Bayesian networks for modeling the

conditional (in)dependence relations among features of protein-coding genes and calcu-

lating confidence scores for potential novel genes based on their evidential features. To

overcome the lack of data size, bootstrap methods are applied to assess the confidence

measure on the arcs of the learned network structures and to identify a set of robust arcs

in order to construct a final model for future predictions. The Bayesian network model

learned from the current method was tested using a training experimental dataset. The

results show that the method significantly improved the accuracy of the learned model in

predicting potential novel genes.

Structural annotation of genomes is one of the main goals of genomic research. A

proteogenomic mapping pipeline (PGM) [60, 61] has been discussed in previous chapters
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for structural annotation of genomes based on proteomics data generated from mass spec-

trometry. This pipeline can be used to discover novel genes and provide experimental con-

firmation of the identification of genes predicted by computational methods. Mass spectra

from proteomics experiments are matched against both a protein database and a genome

database translated in all six reading frames. Those peptides that match the genome but

not the protein database potentially represent evidence of expressed novel protein-coding

genes. These short experimentally derived peptides are used to generate potential novel

protein-coding genes by aligning the peptides to the genomic DNA and extending the

translation in the 3’ and 5’ direction until an in-frame stop is encountered.

Although the availability of the proteogenomic mapping pipeline allows confirmation

of genes identified by computational gene finders, identification of novel genes that were

missed by the gene finding software, correction of the boundaries of genes that are pre-

dicted computationally, and correction of predicted splice sites in eukaryotic genomes,

the peptide identifications (especially those found by querying mass spectra against the

genome translated in all six reading frames) are known to generate a large number of

false positive identifications and therefore many of the predicted novel genes are incorrect.

Therefore, there is a need for methods to evaluate the potentially novel genes identified by

proteogenomic mapping based on two types of orthogonal evidence: peptide level fea-

tures and gene level features. These features have been discussed in Chapter 4 in detail.

Peptide level features evaluate the strength of evidence for the peptide identification and

include peptide probability provided by PepOut, the number of peptide matches to the

potentially novel gene, and coverage of the potential novel gene by peptides. Gene level
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features evaluate the likelihood that the predicted novel gene has characteristics expected

of a gene and include the length of a potential novel gene, the probability of the poten-

tial novel gene calculated from peptide probabilities, the presence of a start codon, the

presence of a ribosomal binding site pattern found by RBSFinder (for prokaryotes), the

presence of conserved protein domains, and homology of the potential new gene with pro-

teins or nucleotide sequences of related organisms. A detailed description of these features

description has been given in Chapter 4.

Machine learning algorithms, such as decision trees, naı̈ve Bayes [36], and Bayesian

networks [36, 41, 44], can be used to evaluate these potential novel genes. Decision trees

do not consider the correlations among the features. Nave Bayes assumes that all features

are independent. Neural networks learn a model that best fits training data set but do not

reveal dependence relationships among the features. In comparison, Bayesian networks

learn the uncertain relationships among the features and provide a better understanding of

the feature domain of genes.

Bayesian networks provide intuitive and compact representations of uncertain rela-

tions among the random variables in a domain and can be used to discover the conditional

dependence or independence relationships among random variables in a knowledge do-

main. Bayesian networks have been applied in a broad range of computational biology

problems. In biological research, it is usually time-consuming and expensive to collect

training samples. A typical training dataset has relatively few data points in comparison

to the number of random variables. For such a dataset, there may be many models that fit

the data equally well but have very different structures. Using a single learned model to
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predict new relations may generate many false positives. In this chapter, we address this

problem by applying bootstrap methods to find robust features that appear most frequently

in models learned from resampled datasets and by assembling these features into a final

model to accurately predict the confidence scores for potential novel genes.

5.2 Experimental Datasets

The bovine respiratory disease pathogen Mannheimia haemolytica strain PHL213 sero-

type A : 1 isolated from the lung of a pneumonic calf with a genome sequenced at 9X cov-

erage was used in this study. Dr. Mark Lawrence’s research group cultivated M. haemolyt-

ica, isolated the proteins, trypsin digested the proteins and analyzed the tryptic peptides

by MuDPIT as described in [66]. Tandem mass spectra generated by 2D LC ESI MS/MS

were searched using SEQUEST (Bioworks 3.2 cluster; ThermoElectron, except the mass

spectra were searched against the genome sequence translated in all six potential frames

in addition to searching against a subset of the non-redundant protein database (NRPD)

consisting of all M. haemolytica proteins. We utilized a 0th order random decoy database

and our distance based outlier detection method to assign probabilities to peptide identi-

fications. Peptides identified at p ≤ 0.5 from translated DNA sequence were compared

with peptides identified from the NRPD ( p ≤ 0.5), and peptides unique to the translated

nucleotide dataset were utilized for generating potential novel genes using our proteoge-

nomic mapping pipeline.
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5.3 Methods and Results

This chapter focuses on the use of Bayesian networks for evaluating potentially novel

genes identified using the proteogenomic mapping pipeline. These potentially novel genes

are called expressed Protein Sequence Tags (ePSTs) [60, 61]. Due to noise and in accuracy

from a number of sources, some of the potential novel genes discovered by the proteoge-

nomic mapping pipeline probably do not represent true novel genes. It is thus important to

develop methods for evaluating the quality of potential novel genes and computing their

confidence scores for being true identifications.

Construction of a Bayesian network requires identification of relevant features (vari-

ables), discretization of continuous variables. We have discussed data preprocessing and

feature selection in Chapter 4.

5.3.1 Features and Data Preprocessing

There are many evidential features which can be used for evaluating potentially novel

genes. Some features play an essential role in supporting or refuting a gene as truly novel

while others do not. There are also strong correlations among these features. A detailed

description of these features was presented in Chapter 4. Some features are categorical

values and some are continuous values. In order to learn general conditional probability

distributions (CPDs), the continuous variables need to be discretized. The continuous

variables are discretized using experts suggestion discussed in Chapter 4.
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5.3.2 Model Construction

5.3.2.1 Training dataset

To build a robust Bayesian network classifier, we collected training samples represent-

ing all possible feature combinations. Two Ph.D. level bacteriologists who conducted the

experimental work with Mannheimia haemolytica evaluated the training examples using

the same evidence supplied to our machine learning algorithms and rated the peptides on

a scale from 1-5 where 1 is lowest and 5 is highest. Based on these expert rankings, our

goal was to build a Bayesian network that can provide an evaluation score for each ePST

that is an estimate of the likelihood of a true identification.

Given the training dataset, we use Bayesian networks to analyze the correlations among

these features and compute confidence scores for potential novel genes. Bayesian net-

works can be utilized to discover the conditional dependence or independence relation-

ships of random variables in a knowledge domain.

5.3.2.2 Network Learning Using Standard Methods

We tested three Bayesian network learning algorithms in building our models: Naı̈ve

Bayes, Greedy thick thinning [78], and PC learning algorithms [12]. The naı̈ve Bayes

classifier assumes that all variables are independent, and there are no relationships among

all features. The class nodes should have arcs to all feature nodes, and the parameter

(conditional probability table) is learned from the data set. The greedy thick thinning

algorithm first creates a draft model by computing pairwise closeness measures. After
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that, the algorithm adds arcs when the pairs of nodes are not conditional independent given

conditioning variables. Finally, each arc is reevaluated and will be removed if the two end

nodes are independent. The PC algorithm is a method based on statistical testing. It first

creates an undirected graph based on the results of pairwise independence testing. Then, it

thins the model by sequentially removing edges with zero-order conditional independence

relations, with first-order conditional independence relations, and so on.

Figure 5.1

Network structure learned using naı̈ve Bayes algorithm.

Figures 5.1- 5.3 show the networks learned by the naı̈ve Bayes, greedy thick thinning

and PC algorithms from a training dataset with 117 samples. The naı̈ve Bayes leaning

algorithm assume that all features (e.g. ePST length, ePST probability, StartCodon etc)
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Figure 5.2

Network learned using greedy network structure learning algorithm.
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Figure 5.3

Network learned using PC network structure learning algorithm.

are independent, and the class node (node “Score”) is affected by all these features. The

greedy algorithm [78] learned a simpler network structure than the PC algorithm [12]

since the greedy algorithm only considers local closeness. The PC algorithm discovers the

conditional relationship for all pair of variables and yields a much more complex network

structure than the greedy algorithm. The PC algorithm is also much more computationally

intensive than the other two algorithms requiring more than one day to complete with 100

data samples with 12 features.

The network structures obtained show that the length of potential novel gene is highly

related to the presence of a start codon. These results indicate that longer open reading

frames are more likely to have a traditional start codon. The networks also show that a

match to a sequence in one related organism is also highly related to a match in the other
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related organism. These relationships are meaningful in biology and have been verified by

biologists. Such relationships can be used in future analysis.

We compared the classification accuracy of these learned Bayesian network models,

the results of which are shown in Table 3. 10-fold cross validation was used to obtain the

accuracy results. The results show that the model learned by the PC algorithm has higher

accuracy than the models learned by other algorithms.

The performance of a model learned by a supervised learning method is affected by

the quality and quantity of training dataset. Given that there are only few data points in

the training dataset, a natural concern is whether the learned network models are reliable.

Unfortunately, we have found that when we apply the learning methods above to different

subsets of the training data, we obtain widely varying network structures. This motivated

us to develop new methods for generating more robust models as described in the next

sections.

5.3.2.3 Network Model Evaluation and Reconstruction

Evaluating the models is difficult given so few data points. One way to address the

problem is to assess individual network features, e.g., edges. Cross-validation [44] and

bootstrapping [17] are both methods for evaluating the accuracy of a classifier or predictor

based on resampling [11]. The resulting estimates are often used for choosing among

various models, such as different network architectures. Bootstrapping performs better

than cross-validation in many cases. In the simplest form of bootstrapping, instead of

repeatedly analyzing subsets of the data, we repeatedly analyze subsamples of the data.
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Each subsample is a random sample with replacement from the full sample. There are

many more sophisticated bootstrap methods that can be used not only for estimating the

accuracy of a classifier but also for estimating confidence bounds for network outputs [17].

In our case, we have applied the bootstrap strategy to reconstruct a network structure

based on the evaluation score of the model. The main idea is to resample from the orig-

inal dataset with replacement to generate many pseudo datasets. Together, these pseudo

datasets allows a high-scoring model to be created using learning methods. These models

then serve as a set of network structures that are used to estimate the confidence of network

features. In this paper, we focus our attention on first-order features, the arcs. The net-

work features that have high confidence can be assembled to build a more reliable model.

Figure 5.4 shows an intuitive graphical illustration of the process of using the bootstrap

method to construct a robust model from a relatively small dataset. The number of times

each edge appears in a learned network is entered into a matrix. If the number of times

an edge appears is greater than a threshold value, the edge is selected for inclusion in the

final model.

Once the network structure is learned by our bootstrap method, the CPTs (conditional

probability tables) are learned from the original dataset. We applied the bootstrap strategy

to the two Bayesian network learning algorithms, PC and greedy, described previously.

Table 5.1 shows the classification accuracy of the new models based on 10-fold cross vali-

dation. It is clear that bootstrap method significantly improved the classification accuracy

of the learned models for both the PC and the greedy learning algorithms. Note that naı̈ve
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Figure 5.4

Workflow of bootstrap strategy for rebuilding a robust network model from a small
dataset.

Bayes only supports a single network structure and thus cannot benefit from this recon-

struction.

5.3.2.4 Weighted Model Reconstruction

In the process for model reconstruction described above, we simply set a threshold

count for the frequency of occurrences of arcs. The accuracy of the model containing

these arcs was not considered. In order to take into account of the quality measure of each

network model learned from the resampling sub dataset, we weighted each model by the

accuracy of the network. The confidence of the arc (A → B) is calculated as follow:

Confidence(A → B) =
N

∑

i=0

(Mi(A → B ∈ Gi)),

where N is the number of iterations, Mi is accuracy of the model i and Gi is the network

structure of model i.
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We reconstruct the network model using arcs with a confidence value above a thresh-

old. The remainder of the process is same as illustrated in Figure 5.2.

We applied the weighted bootstrap strategy to the two Bayesian network learning al-

gorithms: PC and greedy. Table 5.1 shows the classification accuracy of the new models

reconstructed by the weighted bootstrap strategy. The method takes into account the qual-

ity of each network model and yields a higher accuracy network model.

Table 5.1

Comparison of learning methods

TP Rate for Class Y TP for Class N Precision
Greedy Algorithm 78% 80% 79%

PC Algorithm 82% 81% 81.5%
Greedy with Bootstrap 81% 78% 79.5%

PC with Bootstrap 84% 82% 83%
Greedy with ranked Bootstrap 82% 78% 80%

PC with ranked Bootstrap 84% 82% 83%
Unsupervised Greedy 76% 80% 78%

Unsupervised PC 78% 81% 79.5%

5.3.2.5 Learning Network Models with Unlabeled Data

It is well known that collecting biological training samples is both time-consuming and

expensive, especially when the training samples must be annotated by experts. In order

to address this problem, we propose to first learn a network structure using an unlabeled

dataset as illustrated in Figure 5.5. Note that there is no class label in this network. The

network structure provides the prior relationships among features. It is known that all these
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features contribute to the classification of potential novel genes. Therefore, we construct

a new network by adding a label node to the network and adding arcs from the label node

to all feature nodes. Figure 5.6 shows the newly constructed network structure for our

example. After the structure of the network is determined, an EM algorithm is applied to

learn the parameters of the new network from the test dataset. Note that only unlabeled

data is used, even after adding the label node. The final model can then be used to evaluate

the confidence score of the potential novel genes.

Although the accuracy of the model learned by this unsupervised method is not as good

as for the supervised network structure learning methods, it is useful when no training

dataset is available. In addition, the training set used for evaluating the accuracy of this

model in predicting the likelihood that a potential gene is actually a gene is based on human

expertise and is therefore biased by the biologists’ knowledge of what “typical” genes look

like. This unsupervised method has the potential to provide an unbiased evaluation of the

potential genes and provides information about the intrinsic structure of the data.

5.4 Conclusions

In this chapter, we describe three new algorithms for constructing Bayesian networks

from sparse biological data. The Bayesian network is used to model the correlations

among various evidential features and to compute confidence scores for potential novel

genes in order to classify them as true or false identifications. In order to alleviate the

scarce data problem, a bootstrap method and weighted bootstrap method were developed

to assess the confidence measure of features in the learned structure and the most robust
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Figure 5.5

Network structure learned from unlabeled dataset.
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Figure 5.6

New network constructed by adding label node and arcs from label node to all feature
nodes.
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features are used to build more reliable models. We tested these methods on a training

experimental dataset with 117 data points. The results show that the bootstrap methods

yielded Bayesian networks with significantly improved accuracy. In addition, because

labeled data is often not available, we have also developed a new unsupervised network

structure learning method that learns an initial network structure from the unlabeled dataset

and then constructs a new network by adding a label node to the network and adding arcs

from the label node to all feature nodes. An EM algorithm is used to learn the parameters

of the new model from the unlabeled data. This unsupervised Bayesian network struc-

ture learning method can be used when the training dataset is not available. It can also

overcome biases of labels provided by human experts.

The work in this chapter focuses on assessing the robustness of first-order network

features, the arcs. As future work, we plan to evaluate higher-order features such as V-

structures and Markov blankets. Furthermore, there could be potential conflicts among

the learned substructures. In the future we plan to develop approaches for resolving these

conflicts in constructing a final robust and representative model.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

Structural annotation of genomes is a major goal of genome research and the traditional

tools for structural annotation of a genome are based on genome sequence. In Chapter 2,

we addressed the limitations of traditional computational tools for structural annotation

of microbial genomes. Homology search gene finding tools are based on sequence simi-

larities between unknown genome and its related genomes and can only find genes which

have been annotated in related genomes. Model building tools such as GeneMarker, Glim-

mer etc. build a Markov chain model based on existing genes and these model building

tools have limitations for finding short genes or genes that differ substantially from known

genes. The major contribution of this dissertation is to find novel protein coding genes

based on protein expression data. Gene expression data at the protein level provides evi-

dence of the existence of protein coding genes. In the dissertation, we demonstrated that

the proteogenomic mapping method can be used as a supplement for computational gene

finding tools.

6.1 Contributions

This dissertation makes several contributions to the field of data mining and genomic

research. We developed a semi-supervised distance-based outlier detection algorithm for
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peptide validation, a proteogenomic mapping algorithm for discovery of novel protein

coding genes, and an unsupervised Bayesian network model to obtain insight into protein

coding gene models.

6.1.1 Semi-supervised outlier detection for peptide validation

A unique algorithm, PepOut, was developed to estimate the accuracy of peptide as-

signments to tandem mass spectra (MS/MS) using a distance based method for outlier

detection. Unlike other supervised machine learning techniques which use a labeled train-

ing data for model learning, or an unsupervised machine learning techniques which learn

a model from data with no guidance, PepOut does not need training data for building a

classifier to discriminate correct peptide assignments from incorrect peptide assignments

and takes advantage of the target-decoy strategy which uses the decoy hits to model the

incorrect hits to drive the semi-supervised learning process.

To utilize the target-decoy strategy correctly, we performed comprehensive analysis

on SEQUEST output and concluded that the target-decoy strategy is misused by some re-

searchers. As a matter of fact, the assumption of target-decoy strategy that the number of

decoy hits reflects the number of target incorrect hits, is not precise. The distributions of

database search scores of decoy hits, however, provides an accurate model of the distribu-

tion of target incorrect scores. A major controversy within the proteomics community has

been how to perform the target-decoy search. Should the mass spectra be searched against

a concatenated target-decoy database or should the two databases be searched separately?

We addressed this question by analyzing SEQUEST search results of the ISB standard
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protein mixture. We found that searching a concatenated target-decoy database results in a

score distribution of decoy hits can be used to estimate that of target incorrect hits. When

the two databases are searched separately, the distribution of decoy match scores does not

provide an accurate estimate of the score distribution of target incorrect hits.

To better discriminate correct hits from incorrect hits, we calculate a distance score on

the score space for each target and decoy hit to its 5 nearest decoy neighbors. This distance

score does not assume that correct and incorrect hits are linearly separable. We estimate

the priori probability of P (−) based on the distance score distribution of decoy hits and

do not subjectively assume this priori probability.

We demonstrate that PepOut identifies as many or more peptides for a given expected

False Discovery Rate and that it provides a much more accurate estimate of the true FDR

than other popular methods.

6.1.2 Proteogenomic mapping for discovery of novel protein coding genes

A novel proteogenomic mapping algorithm (PGM pipeline) was developed to generate

potential protein coding genes by aligning the peptides to the genomic DNA and extend-

ing in both the 5 and 3 directions. The contribution of proteogenomic mapping algorithms

is to take advantage of proteomics data for genomic research. Our pipeline identifies po-

tential new protein coding genes and corrections to the boundaries of previously identified

genes. Analysis by biology collaborators revealed that many genes previously identified as

pseudo-genes by computational gene finders are actually expressed genes with sequencing

errors.
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We demonstrate that machine learning algorithms can be used to evaluate the evidence

in support of potential new genes as actual genes. We used a training set labeled by

biologists to build different kinds of models to predict confidence in the potential new

genes. Decision trees and neural networks were shown to be the most accurate predictors.

6.1.3 Bayesian network with bootstrap strategy for evaluation of potential novel

protein coding genes

We also use Bayesian network models for evaluating potential protein coding genes.

The contribution of this study is the development of three new algorithms for constructing

Bayesian networks from sparse biological data. A bootstrap method and a weighted boot-

strap method were developed to assess the confidence measure of features in the learned

structure and to select the most robust features to build more reliable models. We also de-

veloped an unsupervised method for learning Bayesian network structure that can be used

to learn the intrinsic structure of the data and that can be applied when labeled training

data is not available.

6.2 Future work

Although this dissertation contributed to the field of data mining and genomic research,

there are many additional issues that are worth investigating. We plan to extend this re-

search along several directions.
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6.2.1 PepOut extensions

• The version of PepOut developed in the current study is for validating peptide assign-

ments generated from the SEQUEST search algorithm. The method is easily extended

to other database search algorithms and can also be used as an ensemble method for

combining the scores of several different search algorithms.

• The current version of PepOut is not scalable for a very large datasets because its time

complexity is near O(nm) where n is the number of target hits and m is number of

decoy hits but this algorithm. However, the algorithm can be easily parallelized and we

plan to develop a parallel version of PepOut.

• The current version of PepOut is only for outlier detection. We plan to extend the

algorithm for outlier prediction. An outlier prediction model will be built based on

any mass spectra searched against a randomly generated protein database because it

is known that search score distributions of decoy hits for one genome are similar to

that of another genome. An outlier prediction model does not compute the distance

scores for all target and decoy hits to their K-nearest-neighbor decoy hits. The outlier

prediction model will provide a subset of decoy hits which will be used for distance

score calculation and also provide a score distribution of decoy hits.

6.2.2 PGM extension

• The PGM (ProteoGenomic mapping) pipeline we developed for structural annotation

of prokaryotic genomes. In the future this algorithm can be extended for eukaryotic

genomes where intron-exon structure must be taken into account.
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• PGM can also be parallelized to improve the performance.

6.2.3 Bayesian network model extension

• The current version of our new supervised Bayesian models focuses on assessing the

robustness of first-order network features, the arcs. For future work, we plan to evaluate

higher-order features such as V-structures and Markov blankets.

• When higher-order features are used, there could be potential conflicts among the learned

substructures. We plan to develop approaches for resolving these conflicts in construct-

ing a final robust and representative model.

• The network reconstruction method can be extended for gene regulation network con-

struction and other research area.
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