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Despite the importance of power systems in today’s societies, they suffer from ag-

ing infrastructure and need to improve the effciency, reliability, and security. Two issues

that signifcantly limit the current grid’s effcient energy delivery and consumption are:

load-following generation dispatch, and energy theft. A load-following generation dis-

patch is usually employed in power systems, which makes continuous small changes so

as to account for differences between the actual energy demand and the predicted val-

ues. This approach has led to an average utilization of energy generation capacity below

55% [49]. Moreover, energy theft causes several billion dollar losses to U.S. utility com-

panies [31] [16], while in developing countries it can amount to 50% of the total energy

delivered [48]. Recently, the Smart Grid has been proposed as a new electric grid to mod-

ernize current power grids and enhance its effciency, reliability, and sustainability. Partic-

ularly, in the Smart Grid, a digital communication network is deployed to enable two-way

communications between users and system operators. It thus makes it possible to shape the



users’ load demand curves by means of demand response strategies. Additionally, in the

Smart Grid, traditional meters will be replaced with cyber-physical devices, called smart

meters, capable of recording and transmitting users’ real-time power consumption. Due to

their monitoring capabilities, smart meters offer a great opportunity to detect energy theft

in smart grids, but also raise serious concerns about users’ privacy. In this dissertation, we

design optimal load scheduling schemes to enhance system effciency, and develop energy

theft detection algorithms that can preserve users’ privacy.
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CHAPTER 1

INTRODUCTION

Electric power systems were frst installed as a luxurious novelty in the 1880’s provid-

ing electric power to only a few people. Since then the power grid has been expanded to

reach almost every person on the planet, and it is essential to support critical systems, such

as telecommunications networks, stock markets, and health care facilities. Despite the im-

portance of power systems in today’s societies, they suffer from aging infrastructure and

need to improve the effciency, reliability, and security. Two issues that signifcantly limit

the current grid’s effcient energy delivery and consumption are: load-following dispatch,

and energy theft.

Specifcally, the load demand in a power system depends on users’ daily activities

which is very dynamic and exhibits a peak-valley pattern. A load-following generation

dispatch is usually employed where power plants are turned on and off according to load

forecasts, and then minor adjustments are continuously made to account for differences

between the actual demand and the predicted values. For this approach to be feasible,

enough generation capacity is required to be available to meet the peak load plus a security

margin, which has led to an average utilization of energy generation capacity below 55%

[49]. Besides, energy users are usually several hundred miles away from power plants,
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which results in a signifcant amount of energy loss due to transmission ineffciencies. The

Energy Information Administration estimates that these losses amount to 7% of the total

generated energy in the U.S. [55].

Another signifcant problem in power systems is energy theft, which causes several

billion dollar losses to U.S. utility companies [31] [16], and in developing countries it can

amount to 50% of the total energy delivered [48]. Legitimate users are also affected in the

sense that utility companies impose higher energy rates to amortize losses due to energy

theft. In addition to fnancial losses, energy theft enables criminal activities, such as illegal

substance production [16], and jeopardizes the stability of the power system.

Recently, the Smart Grid (SG) has been proposed as a new electrical grid to modernize

current power grids and enhance its effciency, reliability, and sustainability. Specifcally,

in the SG, a digital communication network is deployed to enable two-way communica-

tions between users and system operators. It thus makes it possible to shape the users’

load demand curves by means of demand response (DR) strategies, i.e., to encourage cus-

tomers to change their usual electricity consumption patterns by fnancial incentives. One

such strategy is real time pricing (RTP), in which system operators charge users a price

that varies according to real-time energy generation cost. Since usually generation cost

increases as the amount of generated energy increases, users may want to shift their load

demands from peak hours to other times. Therefore, RTP can reduce the peak-hour load

demand in the power system, which in turn lowers the requirement on system generation

capacity. Another key feature of the smart grid is distributed generation (DG), where users

install and take advantage of renewable generation resources, and energy storage devices.
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Thus, DG can help reduce the energy loss due to transmission ineffciencies and alleviate

congestion during peak hours.

Moreover, in the Smart Grid, traditional meters will be replaced with cyber-physical

devices, called smart meters, capable of recording and transmitting users’ real-time power

consumption. Due to their monitoring capabilities, smart meters offer a great opportunity

to detect pirate users in smart grids. However, since they are vulnerable to more types of

attacks compared to traditional mechanical meters, i.e., cyber-attacks, energy theft may

be an even more serious problem in smart grids. Although some schemes have been pro-

posed for system operators to detect energy theft in smart grids, they require users to send

their private information, e.g., load profles, to the system operators, which violates users’

privacy. In particular, users’ private information may be sold to interested third-parties.

Insurance companies may buy load-profles from the utility companies to make premium

adjustments on the users’ policies. For example, they could fnd electricity consumption

patterns that increase the risk of fre in a property and increase insurance premiums ac-

cordingly. Marketing companies may also be interested in this data to identify potential

costumers. Moreover, criminals may utilize such private information to commit crimes.

For instance, the robbers may analyze the energy consumption pattern of the potential vic-

tims to deduce their daily behavior. They can even know if a robbery alarm has been set at

their target location [43].

The goal of this work is to design practical algorithms capable of realizing the Smart

Grid vision of a more effcient, secure, and sustainable power grid. To this end, we propose
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algorithms for optimal energy management under RTP and DG, and privacy-preserving

energy theft detection.

In Chapter 2, we consider a third-party managing the energy consumption of a group

of users, and formulate the load scheduling problem as a constrained multi-objective opti-

mization problem (CMOP). The optimization objectives are to minimize energy consump-

tion cost and to maximize a certain utility, which can be conficting and non-commensurable.

We then develop an evolutionary algorithms (EA) to obtain the Pareto-front solutions. To

further improve the algorithm effciency, we present an ǫ-approximate EA that obtains ǫ-

Pareto fronts of the objective space. The algorithms are validated by extensive simulation

results.

In Chapter 3, we investigate the optimal energy management problem in the smart

grid under uncertain energy user demands, distributed renewable energy resources, and en-

ergy storage devices. We aim to optimally schedule the usage of all the energy resources

in the system and minimize the long-term time averaged expected total cost of support-

ing all users’ load demands. In particular, we frst formulate an optimization problem,

which turns out to be a time-coupling problem and prohibitively expensive to solve. Based

on Lyapunov optimization theory for event-driven queueing systems, we reformulate the

problem and develop a dynamic energy management scheme that can dynamically solve

the problem in each time slot based only on the current system state. We conduct exten-

sive simulations to evaluate the performance of the proposed dynamic energy management

scheme.
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In Chapter 4, we address the energy theft problem with distributed, privacy-preserving

energy theft detection algorithms. Specifcally, utilizing peer-to-peer (P2P) computing with

a neighborhood’s smart meters as nodes, we solve a linear system of equations (LSE) for

users’ ”honesty coeffcients”. If a user’s honesty coeffcient is equal to 1, this user is hon-

est. Otherwise, if the honesty coeffcient is larger than 1, then this user has reported less

consumed energy and hence is committing fraud. The users’ privacy can be preserved

because they do not need to disclose any of their energy consumption data to others. Ex-

tensive simulations are carried out and the results show that the proposed algorithms can

effciently and successfully identify the fraudulent users in the system.

In Chapter 5, we conclude this dissertation and discuss future work.
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CHAPTER 2

MULTI-OBJECTIVE ENERGY CONSUMPTION SCHEDULING IN SMART GRIDS

2.1 Introduction

In power grids, generation capacity is required to meet peak-hour load demand plus

a security margin. However, according to recent studies, the average utilization of the

generation capacity is below 55% [50]. This leads to ineffcient operation of power grids

because a portion of generation plants is largely unused or underutilized, but must still

be maintained and supervised to guarantee its reliability. On the other hand, as energy

demand, and peak load demand as well, continue increasing, additional generation capacity

will be needed to accommodate future load demand, which requires a large investment and

might lead to even lower utilization.

Recently, the Smart Grid (SG) has been proposed as a new type of electrical grid to

modernize current power grids to effciently deliver reliable, economic, and sustainable

electricity services. One of the key features of the SG is the replacement of conventional

mechanical meters with smart meters to enable two-way communications between users

and grid operators. Using the communication infrastructure of the SG, it is possible to

shape the users’ load demand curves by means of demand response (DR) strategies. One

promising DR strategy is real-time pricing (RTP), where utility companies charge users

with a price that varies according to the generation cost, i.e., the higher the generation cost,
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the higher the price. The advantage of RTP is threefold. First, users may reduce their

energy consumption when the price is high, and hence lower their electric bills. Second,

peak-hour load demand can be reduced, thus reducing the redundant generation capacity

needed to meet reliability requirements. Third, off-peak load demand can be increased,

which can increase the utilization of the available generation capacity.

Most current research on real-time pricing focuses on how to optimally schedule all

users’ energy consumption given their predefned energy demand. In particular, Mohsenian-

Rad et al. [33] propose an autonomous load scheduling algorithm based on cooperative

game theory, where each user is a player and their load schedules are the strategies. Agar-

wal and Cui [2] propose a load scheduling noncooperative game among users that can

be reduced to a congestion game. In both studies, the single optimization objective is to

minimize the electric bill of the users, while the reduction of the peak-hour consumption

is considered as a desirable secondary effect. Moreover, Samadi et al. [45] propose an

auction based scheme where users provide their utility functions and energy constraints

to the utility company, who then replies with a set of prices that maximizes users’ utility

functions. A similar auction scheme is also proposed by Li et al. [28].

Notice that previous study mostly aims at a single objective, e.g., to minimize users’

cost. In this chapter, we formulate the load scheduling problem as a constrained multi-

objective optimization problem (CMOP). Specifcally, we consider a third-party managing

the energy consumption of a group of smart grid users. All users submit their energy

requests to the third-party, which then optimally schedules their energy consumption so

that its two objectives can be satisfed. The frst objective is to minimize the total energy
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consumption cost, while the second one is to maximize its utility measured by a certain

utility function. This third party can be a company, who schedules its departments’ energy

consumption in order to minimize the cost and maximize its gross income. Or, it can be

a community manager, who schedules the residents’ energy consumption so that the total

energy cost is minimized and its utility (e.g., life comfortness living in this community) is

maximized.

We note that these two objectives considered in this study are conficting and non-

commensurable. In the literature, evolutionary algorithms (EAs) have been proven to be

effective in fnding good approximations of optimal solutions to multi-objective optimiza-

tion problems [10, 12, 22, 25, 56, 59]. In particular, EAs aim to fnd a set of solutions that

approximate the Pareto-optimal front in the objective space, which all follow two basic

steps iteratively: variation and selection. Variation consists of choosing some solutions

from the existing (maybe random) solutions to be combined and produce new ones. Then,

selection is performed to keep the good solutions and discard the bad ones. Different

ways for selecting the best solutions and storing them have been proposed in the literature.

In this study, to solve the formulated CMOP, we frst develop an evolutionary algorithm,

called LSEA, to retrieve a set of Pareto-optimal solutions and show the trade-offs between

energy consumption cost and the utility. Then, in order to further improve the algorithm

effciency, we present an ǫ-approximate evolutionary algorithm, called ǫ-LSEA, to obtain

ǫ-Pareto fronts of the objective space. Extensive simulations have also been conducted to

evaluate the performance of the two proposed algorithms.
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The rest of this chapter is organized as follows. Section 3.2 introduces system models

considered in this study. We describe the constrained multi-objective optimization problem

in Section 2.3. Section 2.4 details the proposed evolutionary algorithms for solving the

CMOP. Simulation results are presented in Section 4.6. Finally, we conclude this chapter

in Section 4.7.

2.2 System Model

In this section, we briefy describe smart grids, and energy cost model and utility func-

tion model in smart grids.

2.2.1 Smart Grids

Smart grids have been promoted by many governments as a way of addressing energy

independence and sustainability, global warming, and emergency resilience issues [53]. In

smart grids, the energy consumption of each user is monitored by a smart meter (SM),

which is also capable of controlling the user’s appliances (e.g., turning them on or off,

adjusting their settings). Due to their communication capability, SMs also enable two-

way communications between users and utility companies, via multihop wireless, wired,

or hybrid networks.

In this study, we consider a third-party managing the energy consumption of a group

of smart grid users. Each user submits its energy request to the third-party, e.g., 2 kilowatt-

hour (kWh) between 10:00 and 18:00, before a day starts (0:00). Then, the third party

optimally schedules all users’ energy consumption (either locally or via cloud computing)

so that its objectives can be satisfed, which are frst, to minimize the total energy con-
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sumption cost, and second, to maximize its utility measured by a certain utility function.

For example, this third party can be a company, who schedules its departments’ energy

consumption in order to minimize the cost and maximize its gross income. The third party

can also be a community manager, who schedules the residents’ energy consumption so

that the total energy cost is minimized and its utility (e.g., life comfortness living in this

community) is maximized.

2.2.2 Energy Cost Model

We discretize a day into H time slots of equal length, which are denoted by a set H.

A complete energy consumption schedule for user u (u ∈ U) during one day is given by a

1 2 H hvector xu = [x , x , ..., x ], where x is user u’s energy consumption in the hth time slot,u u u u 

PH
and xh = eu, i.e., user u’s required energy consumption during one day. Then, theh=1 u 

total energy consumption of all users in time slot h (1 ≤ h ≤ H), denoted by Eh, is

UX 
Eh = xu

h (2.1)
u=1 

where U = |U| is the cardinality of the set U , i.e., the number of users in this area.

Besides, we assume that the energy price functions are known to the third party. One

example for such a price function is given below:

< Gmax Ci(Er) = aiEr 
2 + biEr, for 0 ≤ Er i (2.2)

where Er is the total energy consumption of all users, ai and bi are non-negative coeff-

cients, and Gmax 
i is a upper bound on the energy consumption for this price function to

hold.
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Furthermore, in practice, the energy price function may be piecewise. In this chapter,

we consider a two-piece price function without loss of generality, which is composed of

two functions denoted by C1 and C2, respectively. Assume that a2 > a1 and b2 > b1,

i.e., the energy price increases even faster once the energy consumption exceeds a certain

threshold. Consequently, the overall cost function of consuming Er energy, denoted by

C(Er), is  
< Gmax), for 0 ≤ ErC1(Er 1 

 C1(G
max − Gmax 
1 ) + C2(Er 1 ) +M1, 

C(Er) = (2.3)

for Gmax < Gmax +Gmax≤ Er1 1 2 

 ≥ Gmax +Gmax ∞, for Er 1 2 

whereM1 > 0 accounts for a marginal cost. Notice that when the total energy consumption

≥ Gmax +Gmaxexceeds a certain threshold, i.e., Er 1 2 , the cost goes to infnity. It means that

+Gmaxthe third party is only allowed to use this much energy (i.e., Gmax 
1 2 ) at most, which

could be a constraint to ensure the stability of the neighboring areas considered from the

whole grid perspective.

2.2.3 Utility Function Model

In addition to low cost, the third party also intends to achieve high utility, which is cal-

culated by a utility function. As mentioned before, the utility could be a company’s gross

income, or a community’s living comfortness, and so on. Usually, the utility functions are

non-decreasing with respect to the consumed power, concave, and results in a zero util-
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ity value given zero power consumption [45]. For simplicity, we use the following utility

function, denoted by V (Er), in this study:

p
V (Er) = Er (2.4)

where Er is the total energy consumption of all the users. Note that the utility value may

not have the same unit as the energy cost.

2.3 Constrained Multi-Objective Optimization Problem Formulation

In general, a constrained multi-objective optimization problem (CMOP) is defned as

follows [8]

minimize F (x) = (f1(x), f2(x), . . . , fk(x))
x 

subject to gi(x) ≤ 0, i = 1, . . . ,m 
(2.5)

hj (x) = 0, j = 1, . . . , p 

x lq ≤ xq ≤ x uq , q = 1, . . . n 

where F (x) is the set of objective functions, gi(x) is the set of inequality constraints,

hj (x) is the set of equality constraints, and xl
q and xu

q are the minimum and maximum

values of each decision variable xq, respectively. A CMOPminimizes k objective functions

simultaneously, where the objective functions represent (usually) competing or conficting

objectives.

12







In this study, we consider two objective functions, and formulate a CMOP as follows:

minimize

� HX � UX � 
hC x ,u 

H �X � UX � 
h− V xu (2.6)

x 
h=1 u=1 h=1 u=1 

UX 
subject to h ≤ Gmax +Gmax x , ∀h ∈ [1, H]u 1 2 (2.7)

u=1 
 

h xu 

≥ 0, Su ≤ h ≤ Tu 
(2.8)

 0, otherwise
HX 

eu − ēu ≤ h x ≤ eu + ¯u eu (2.9)
h=1 

1 ≤ Su ≤ Tu ≤ H (2.10)

In the above CMOP, the frst objective function minimizes the total energy generation cost

during one day, and the second objective function maximizes the utility function. Con-

straint (2.7) guarantees that in each time slot the total energy consumption does not exceed

the maximum generation capacity of the system. Constraint (2.8) indicates that each user u 

has certain energy demand which needs to be satisfed between a required starting time Su 

and a required stopping time Tu. Constraint (2.9) represents a user’ tolerance of its daily

energy consumption, i.e., the user is fne with consuming eu − ēu to eu + ēu energy in one

day. Constraint (2.10) simply means that the starting time is no later than the stopping time

for each user, which are both between time slots 1 and H .

2.4 Solving CMOPs by Evolutionary Algorithms

Evolutionary algorithms (EAs) have been proven to be effective in fnding good approx-

imations of CMOPs’ optimal solutions. The basic idea is to use the crossover, mutation and

selection principles of Darwinian evolution to combine, modify and choose possible solu-
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tions iteratively until a good approximation of the optimal solution to a CMOP is found.

Specifcally, crossover and mutation are probabilistic procedures that combine solutions in

order to make (possibly better) new solutions. Selection is a deterministic procedure that

discards the bad solutions found so far and keeps the good ones. Besides, selection pro-

cedures are based on the solutions’ ftness, which is usually assigned by an EA based on

Pareto dominance and the distance to its nearest neighbors in the objective space. Before

we dive into the details, we give some defnitions as follows.

2.4.1 Defnition 1

In a CMOP, a solution vector x is said to Pareto dominate another solution vector y

(x ≻ y), if xi ≤ yi for all i ∈ [1, k] and there exists some i ∈ [1, k] such that xi < yi,

where k is the dimension of the solution vectors.

EAs are usually applied to unconstrained optimization problems. Some different penalty

functions and defnitions of dominance have been proposed in the literature to handle con-

straints. Penalty functions are functions of the infeasibility of a solution, where larger

values are assigned to solutions farther away from the feasible space of the problem while

smaller values are assigned to solutions closer to the feasible space. In this chapter, we

adopt the dominance defnition given by Deb et al. [12], which takes constraints into con-

sideration and is described below.

2.4.2 Defnition 2

A solution vector x is said to constraint-dominate another solution vector y (x ≻ y) if

any of the following conditions is true:

14



1. x is feasible but y is not.

2. Both x and y are feasible and x Pareto dominates y, as described by Defnition 1 in

Section 2.4.1.

3. Both x and y are infeasible, but x has lower overall constraint violation.

After an EA is executed, several non-dominated solutions, in the Pareto sense, are

obtained. Each of these solutions is a compromise between the multiple objective func-

tions. In what follows, we frst propose an evolutionary algorithm to fnd Pareto optimal

solutions to the load scheduling problem formulated in Section 2.3, and then develop an

ǫ-approximate evolutionary algorithm to obtain ǫ-Pareto fronts of the solutions.

2.4.3 Load Scheduling with an Evolutionary Algorithm (LSEA)

An evolutionary algorithm is usually composed of several important processes, includ-

ing initialization, selection, crossover, and mutation. In the following, we describe such

processes, respectively.

In the beginning, N random solutions, called individuals, are created to form the ini-

tial population P0. The initial individuals satisfy constraints (2.8)-(2.10) but may not meet

constraint (2.7). Next, all individuals are compared to each other using the constraint-

dominance defnition (Defnition 2 in Section 2.4.2) and each individual is assigned a

rank according to the number of individuals by which it is dominated. For example, non-

dominated individuals receive a rank of 1, individuals dominated by only one individual

receive a rank of 2, and so on. Individuals with the same rank form a front. Besides, a

crowding distance [12] is assigned to each individual within the same front. The crowding

distance is a measure of how close an individual is to other individuals in the objective
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space, where a larger crowding distance indicates the individual is farther away from other

individuals. Specifcally, crowding distance is computed inD steps, where D is the objec-

tive space dimensionality. In each dimension d, the individuals are sorted according to their

dth objective value. Then, we obtain for each individual the aggregate distance to its two

adjacent neighbors with respect to the dth objective. The frst and last individuals in each

dimension d are assigned a crowding distance of ∞ to preserve diversity. Finally, an indi-

vidual’s crowding distance is calculated as its total aggregate distances in all dimensions.

Please refer to Function 1 in Fig. 2.1 for more details.

Once all individuals are assigned a rank and crowding distance, the next step is to

select some individuals from P0, to create a mating pool for crossover and mutation. The

selection is done using binary tournament, i.e., randomly selecting two individuals from

P0 and comparing their ranks. The individual with the smaller rank will be selected for the

mating pool. If the two individuals have the same rank, then the one with larger crowding

distance is selected. If both individuals have the same rank and the same crowding distance,

then either one is selected with a probability of 0.5. After the mating pool is flled, the

crossover process starts. Each time two random individuals are taken from the mating

pool, called parents, to create two more individuals, called offsprings, with probability pc.

Then, the offspring are mutated with probability pm. Usually, pc is large and pm is small.

After N offspring individuals have been created, they are grouped in Q0.

The ith (i ≥ 1) iteration will start by creating an aggregated population Ri = Pi−1 ∪ 

Qi−1. Then all individuals in population Ri will be assigned a rank and crowding distance.

Individuals with rank 1 are added to Pi. Recall Pi has a fxed size of N . If there are
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less than N individuals with rank 1, all individuals with rank 1 will be added to the new

population Pi. To fll in the remaining spots in Pi individuals with rank 2 are considered,

and so on. When the last front is considered, and its size is larger than the remaining spots,

individuals with larger crowding distances will be included in Pi. All other individuals

are discarded. Finally, a new offspring population is created by selecting individuals from

Pi for the mating pool, as described previously, and performing crossover and mutation.

When the number of iterations reaches a predefned threshold, say G, the algorithm stops

and the non-dominated individuals can be extracted from PG to form a Pareto-front.

Notice that the above description does not specify how to conduct crossover and mu-

tation. Next, we introduce these two processes, respectively. In particular, we adopt the

simulated binary crossover (SBX) [3] scheme for the crossover process. This procedure

creates two offsprings, y and ỹ, from two parents x and x̃ as follows. For any u ∈ [1, U ],

h ∈ [1, H], we get

hyu =
1 h[(1− βh)x
2 u 

h+ (1 + βh)x̃ ]u
(2.11)

hỹu =
1 h[(1 + βh)x
2 u 

h+ (1− βh)x̃ ]u

hwhere yu 
hand ỹu 

hare the elements of vectors y and ỹ, respectively, xu 
hand x̃u are the

elements of vectors x and x̃, respectively, and βh is a sample generated by a random number

generator shown below:

 
 

 

1
1 �c+1 
2 (2v) , v ≤ 

2
1 

β(v) = (2.12)
1 1�c+1 
2 [2(1− v)]− 1 

, v > 
2 

where v is a random variable uniformly distributed in [0, 1], and ηc is a predefned param-

eter.
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Besides, we perform the mutation process shown in the following. For any u ∈ [1, U ],

h ∈ [1, H], we have

yu
h = x hu(

1

2
+ δ) (2.13)

where δ is uniformly distributed between 0 and 1.

In the case that the kth decision variable of an offspring after crossover and mutation

fall outside the lower and upper bounds specifed in the CMOP constraints, they are reset

as follows:  
h,lo h h,lox , if y ≤ x ,u u u 

yu
h = xh,up, if yh ≥ xh,up (2.14)

u u u 

 h h,lo h h,upy , if x ≤ y ≤ xu u u u 

Algorithm 1 in Fig. 2.2 further details the evolutionary algorithm for load scheduling,

which is called LSEA.

2.4.4 Load Scheduling with an ǫ-approximate Evolutionary Algorithm (ǫ-LSEA)

The evolutionary algorithm proposed above provides a dense and diverse set of so-

lutions on the Pareto front (i.e., the Pareto optimal solutions). However, a dense set of

solutions may not be necessary because adjacent solutions provide similar trade-offs. In

the following, we develop an ǫ-approximate evolutionary algorithm for the load scheduling

problem.

We frst give some defnitions as follows [58].
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2.4.4.1 Defnition 3

Let a and b be two vectors of dimension k ′ in the objective space. Then a is said to

ǫ-dominate b for some ǫ > 0, denoted as a ≻ǫ b, if

ǫ · ai ≥ bi ∀i ∈ {1, ..., k ′ }. (2.15)

2.4.4.2 Defnition 4

Let Y be the objective space and ǫ > 0. Then a set Yǫ is called an ǫ-approximate

Pareto front ofY, if any vector b ∈ Y is ǫ-dominated by at least one vector a ∈ Yǫ, i.e.,

∀b ∈ Y, ∃a ∈ Yǫ : a ≻ǫ b. (2.16)

The set of all ǫ-approximate Pareto fronts ofY is denoted as Pǫ(Y).

2.4.4.3 Defnition 5

LetY be the objective space and ǫ > 0. Then a setYǫ 
∗ ⊆ Y is called an ǫ-Pareto front

ofY if

1. Yǫ 
∗ is an ǫ-approximate Pareto front ofY, i.e., Yǫ 

∗ ∈ Pǫ(Y), and

2. Yǫ 
∗ contains Pareto points ofY only, i.e.,Yǫ 

∗ ⊆ Y∗ .

The set of all ǫ-Pareto fronts ofY is denoted as P∗ 
ǫ (Y).

The main idea of ǫ-LSEA is to choose a parent from a variable size population A,

called the archive, and another parent from a fxed size population P . After crossover,

the resulting offspring may be accepted into the archive depending on whether or not it ǫ-

dominates any individual inA. Similarly, the offspring may be accepted into the population

depending on its dominance relation to individuals in P . After a predefned number of
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offsprings have been generated, the solutions in the archive form a diverse ǫ−approximate

Pareto front. In what follows, we explain in details the archive acceptance and population

acceptance algorithms as well as ǫ-LSEA.

Regarding the archive acceptance algorithm, we adopt the selection strategy proposed

by Deb et al. [11] to fnd ǫ-Pareto fronts with guaranteed convergence and diversity, which

is described by Procedure 1 in Fig. 2.3. This algorithm divides the two-dimensional ob-

jective space into boxes of size ǫ × ǫ and stores in an archive only one non-dominated

solution per box on the ǫ-Pareto fronts. Using a generalized dominance relation on these

boxes, the algorithm maintains a set of non-dominated boxes, and hence guaranteeing the

ǫ-approximation property. In particular, Procedure 1 in Fig. 2.3 accepts or rejects an off-

spring as follows. We frst identify the solutions in the archive that are dominated by the

current offspring. Here, dominance relation is determined using the vector b of each so-

lution obtained with Function in 2 Fig. 2.4. If the offspring dominates any solution, the

dominated solution is removed and the offspring is added to the archive. When there are

no box-dominated solutions in the archive, we further check two cases. First, if the off-

spring lies inside a box occupied by an archive solution, then the dominating solution in

the Pareto-sense is kept in the archive and the dominated solution is discarded. Second,

if the offspring lies inside a box where there is no archive solution, the offspring is added

to the archive. Moreover, since in each box there is only one non-dominated solution, the

convergence property can be guaranteed, too.

In addition, we have the following theorem [26].
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A(t) ∈ P∗ 
ǫ (Y

(t))

� logB �k−1
|A(t)| ≤ 

log ǫ 

2.4.4.4 Theorem 1

St (j) (j)
Let Y(t) = , 1 ≤ y ≤ B, be the set of all objective vectors created byj=1 y i 

a multi-objective evolutionary algorithm and given to the selection operator defned in

Procedure 1 in Fig. 2.3. ThenA(t) is an ǫ-Pareto set of Y(t) with bounded size, i.e.,

(2.17)

(2.18)

Our population acceptance mechanism, described by Procedure 2 in Fig. 2.6, uses

dominance relations and crowding distances to accept an offspring into the population

or reject it. In particular, the algorithm works as follows. First, a crowding distance is

assigned to each population individual p in Pg−1 using Function 1 in Fig. 2.1. Next, it is

determined if offspring q dominates any p. If it does, the algorithm replaces the dominated

p that has the lowest crowding distance CD with q. In case q is dominated by any p, it is

rejected. On the other hand, if q does not dominate any p and it is also non-dominated, the

p with the lowest CD among all individuals in Pg−1 is replaced by q. If several individuals

have the same lowest CD, then a randomly chosen one is replaced by q. Finally, the

procedure returns the updated population Pg. Notice that this procedure only compares the

offspring with all members of the population Pg−1, rather than compare it with all members

of the whole population as in Algorithm 1 in Fig. 2.2. This keeps the computational cost

low, and the use of crowding distances maintains a well spread population.

Finally, we describe in details the ǫ-approximate evolutionary algorithm (ǫ-LSEA) for

the load scheduling problem detailed by Algorithm 2 in Fig. 2.5. Initially, a random
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population P0 is created satisfying constraints (2.8)-(2.10) specifed in the CMOP. Then,

the non-dominated individuals in P0 are copied into archive A. In the gth iteration, an

individual p is randomly selected from the population Pg−1 using binary tournament and

another solution a is randomly chosen from the archive A to form the mating pool. The

parent individuals, p and a, are used for crossover, and the resulting offspring q is subject

to mutation. Unlike that in the previous algorithm, only one offspring q is generated per

iteration. Next, offspring q is accepted or rejected from the population using Procedure 2

in Fig. 2.6. Lastly, Procedure 1 in Fig. 2.3 is used to decide whether or not offspring q is

added into the archive A. The algorithm stops after a predefned number of offsprings G 

have been generated. Since fewer solutions are needed to converge to the Pareto-front, this

algorithm has a shorter computation time than Algorithm 1 in Fig. 2.2.

2.5 Simulation Results

In this section, we conduct simulations to evaluate the performance of the proposed two

algorithms, i.e., Load Scheduling with an EA (LSEA, Algorithm 1 in Fig. 2.2) and Load

Scheduling with an ǫ-approximate EA (ǫ-LSEA, Algorithm 2 in Fig. 2.5), respectively. The

proposed algorithms are implemented in Matalb2011b on a general purpose computer with

a 3.4GHz CPU and 4GB RAM memory. The parameters for the cost function in equation

(2.3) are presented in Table 2.1, and some parameters indicated in constraints (2.7), (2.8)

and (2.9) are given in Table 2.2 which are the same for all users. Besides, when two parents

are selected for reproduction, the crossover process (SBX) will be applied with probability
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−g/G pm = 0.9 and ηc = 0, and each offspring will mutate with probability pm = e , where

g is the number of the current iteration and G is the predefned iteration number.

2.5.1 LSEA

We frst evaluate the performance of LSEA with 5, 15, 25 and 50 users, respectively.

In particular, each user has a daily energy requirement eu, which is uniformly distributed

between 0 and 24 kWh, to be scheduled throughout 24 hours. Fig. 2.7(a) shows the

obtained Pareto-front for 5 users. Each cross in the graph represents a solution found by

LSEA and its position is determined by the values of the corresponding objective functions.

We can observe that the range of the cost objective goes from $2 to $48 and the utility

function spans from 10 to 70. These solutions in objective space provide us with a wide set

of trade-offs between the total energy consumption cost and the overall utility. Moreover,

we notice that the Pareto-front is densely populated, i.e., adjacent solutions are very close

to each other. Fig. 2.7(b)-2.7(d) show similar results for the cases of 15, 25 and 50 users,

respectively.

2.5.2 ǫ-LSEA

Next, we show the performance of ǫ-LSEA with 5, 15, 25 and 50 users, respectively.

The same as before, we assume that each user has a daily energy requirement eu, which

is uniformly distributed between 0 and 24 kWh, to be scheduled throughout 24 hours. As

shown in Fig. 2.8(a), we can easily see there is an ǫ-Pareto front with only a few solutions,

which can make the fnal decision easier. Fig. 2.8(b)-2.8(d) also show an ǫ-Pareto front

that can be easily identifed. Moreover, in these three cases the results are obtained using a
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large number of iterations. However, as we will show in the next section, in fact a lot fewer

generations are enough to obtain an ǫ-Pareto front. Here, we show the results with a large

number of iterations after an ǫ-Pareto front has been identifed to be sure that the algorithm

has converged.

Moreover, the time and the number of iterations needed for obtaining the results shown

in Fig. 2.7 and Fig. 2.8 are presented in Table 2.3. We can see that the effciency of ǫ-

LSEA is higher than that of LSEA, and the effciency improvement gets more signifcant

when the number of users becomes larger.

2.5.3 Convergence of LSEA and ǫ-LSEA

Finally, we compare the convergence speed of LSEA and ǫ-LSEA by looking into the

evolution of the population of LSEA and of the archive of ǫ-LSEA, when the number of

users is 25. Fig. 2.9(a)-2.9(d) show the progress of the population of LSEA when the

running time is equal to 15, 90, 240, and 600 minutes, respectively. We can fnd that a

good Pareto front can be found only after 600 minutes. Compared to that, we can see in

Fig. 2.10(a)-2.10(d) that a good ǫ-Pareto front can be achieved after 120 minutes, which

is much faster. Besides, considering the modest capability of the computer used to run

these simulations, the third party usually would have more computing resources and thus

even shorter computation time. It can also employ cloud computing to accomplish the load

scheduling tasks, which would further reduce the computation time.
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2.6 Conclusions

In this chapter, we consider a third-party managing the energy consumption of a group

of smart grid users, and formulate the load scheduling problem as a constrained multi-

objective optimization problem. The frst objective is to minimize the total energy con-

sumption cost, while the second is to maximize its utility measured by a certain utility

function. To solve the problem, we frst develop an evolutionary algorithm, called LSEA,

to retrieve a set of Pareto-optimal solutions and show the trade-offs between energy con-

sumption cost and the utility. Then, in order to further improve the algorithm effciency, we

present an ǫ-approximate evolutionary algorithm, called ǫ-LSEA, to obtain ǫ-Pareto fronts

of the objective space. Extensive simulations have also been conducted to evaluate the per-

formance of the two proposed algorithms. We can observe that ǫ-LSEA is more effcient

compared to LSEA.
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Input: Individuals pk’s in front Z, objective space dimension D 

1: Calculate for each individual pk the objective values fk,1, . . . , fk,D in the objective

space

2: Set Ik to 0 for each individual pk 

3: for d = 1 to D do

4: Sort individuals pk’s in Z in ascending order according to fk,d 

5: The crowding distance of the frst and of the last individual are set to infnity

6: for k = 2 to the size of Z minus 1 do

7: Ik = Ik + (fk−1,d − fk+1,d)/(maxk{fk,d} − mink{fk,d})

8: end for

9: end for

Output: Crowding distances Ik’s

Figure 2.1

Function 1: Crowding Distance Assignment

Table 2.1

Cost Function Parameters (U : the number of users, H = 24)

a1 b1 a2 b2 Gmax 
1 Gmax 

2 M1 

0.2 0.3 0.4 0.6 8U/H 16U/H 1
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Input: N 

1: Create an random initial population, P0 of size N , satisfying constraints (2.8)-

(2.10) in the CMOP

2: Apply non-dominating sorting to P0 

3: Apply binary tournament to P0 to fll mating pool

4: Crossover individuals in mating pool to fll offspring set Q0 

5: Apply mutation to Q0 

6: Set the maximum number of generations, G 

7: for g = 1 to G do

8: Rg = Pg−1 ∪ Qg−1 

9: Apply non-dominating sorting to Rg 

10: Apply binary tournament to Rg to fll mating pool

11: Apply crossover to individuals in mating pool to generate Qg 

12: Apply mutation to individuals in Qg 

13: Create Pg 

14: end for

Output: Non-dominated individuals in PG 

Figure 2.2

Algorithm 1: Load Scheduling with an EA (LSEA)
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Input: A, f 

1: D := {f ′ ∈ A|box(f) ≻ box(f ′ )} 

2: if D = ∅ then

A ′ 3: = A ∪ f \ D 

4: else if ∃f ′ : (box(f ′ ) = box(f) ∧ f ≻ f ′ ) then

A ′ 5: = A ∪ f \ f ′ 

6: else if ∄f ′ : box(f ′ ) = box(f) ∨ box(f ′ ) ≻ box(f) then

A ′ 7: = A ∪ f 

8: else

A ′ 9: = A 

10: end if

Output: A ′ 

Figure 2.3

Procedure 1: Selection Process for ǫ-Pareto Front

6

Table 2.2

Parameters in Constraints (2.7)-(2.9)

Su Tu ēu 

0 24 0.5kW
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Input: f 

1: for all i ∈ {1, . . . ,m} do

= ⌊ log fi2: bi ⌋
log 1+ǫ 

3: end for

4: b = (bi, . . . , bm)

Output: b 

Figure 2.4

Function 2: box 

Table 2.3

Completion Time

LSEA ǫ-LSEA

Users Time(mins) Generations Time(mins) Generations

5

15

25

50

25

548

1312

10033

92× 103 

1× 106 

1.5× 106 

1× 106 

15

495

632

4978

26× 103 

5× 106 

13× 106 

14× 106 
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1: Create a random initial population, P0 of sizeN , satisfying constraints (2.8)-(2.10)

in the CMOP

2: Copy non-dominated individuals in P0 to A 

3: for g = 1 to G do

4: Choose a solution p from Pg−1 using binary tournament, and a solution a 

from A at random

5: Use p and a as parents to create one offspring q.

6: Apply mutation to q resulting in q ′ 

7: Run Procedure 2 to decide if q ′ is included in population Pg 

8: Run Procedure 1 to decide if q ′ is included in the achieve A 

9: end for

Output: ǫ-Pareto fronts in A 

Figure 2.5

Algorithm 2: Load Scheduling with an ǫ-Approximate EA (ǫ-LSEA)
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Input: population Pg−1, offspring q 

1: Apply Function 1 to Pg−1 to assign crowding distances CD to each population

individual p 

2: if ∃ p : q ≻ p then

3: Replace the individual p that is dominated by the offspring q and has the

smallest CD with q (or break ties randomly).

4: else if ∃ p : p ≻ q then

5: Discard q 

6: else

7: Replace the p with the smallest CD with offspring q (or break ties randomly).

8: end if

Output: Pg 

Figure 2.6

Procedure 2: Population Acceptance Procedure for ǫ-LSEA
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Pareto front for 5, 15, 25, and 50 users respectively, using LSEA.
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ǫ-Pareto front for 5, 15, 25, 50 users, respectively, using ǫ-LSEA.
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Population evolution using LSEA at different generations for 25 users.
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Population evolution using ǫ-LSEA at different generations for 25 users.
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CHAPTER 3

DYNAMIC ENERGY MANAGEMENT FOR THE SMART GRID WITH

DISTRIBUTED ENERGY RESOURCES

3.1 Introduction

Largely underutilized generation capacity and high transmission losses are two major

sources of system ineffciency in traditional power grids. Recent studies show that the av-

erage utilization of the generation capacity is below 55% [49] and 7% of generated energy

is lost due to transmission ineffciencies [55]. In particular, since enough generation capac-

ity is required to be available to meet peak-hour load demand plus a security margin, some

power plants are largely unused or underutilized. Besides, energy users are usually several

hundreds of miles away from power plants, which inevitably results in a signifcant amount

of energy loss due to transmission ineffciencies. Moreover, overall electricity consump-

tion is projected to increase by about 14% in the next 20 years [54], which will require

a big investment to expand the generation and transmission capacity to accommodate the

new demand.

Recently, the Smart Grid (SG) has been proposed as a new electrical grid to modernize

current power grids and enhance its effciency, reliability, and sustainability. Particularly,

in the SG, a digital communication network is deployed to enable two-way communica-

tions between users and system operators. It thus makes it possible to shape the users’
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load demand curves by means of demand response (DR) strategies, i.e., to encourage cus-

tomers to change their usual electricity consumption patterns by incentives [4]. One such

strategy is real time pricing (RTP), in which system operators charge users a price that

varies according to real-time energy generation cost. Since usually generation cost in-

creases as the amount of generated energy increases, users may want to shift their load

demands from peak hours to other times. Therefore, RTP can reduce the peak-hour load

demand in the power system, which in turn lowers the requirement on system generation

capacity. It can also reduce users’ electricity bills by encouraging them to consume more

power during hours with lower electricity prices. Another feature of the Smart Grid is dis-

tributed generation (DG), where users install and take advantage of renewable generation

resources (such as solar panels and wind turbines), and energy storage devices (e.g., bat-

teries). In DG, users determine whether to immediately consume their own (generated or

stored) energy, store it, or sell it to the grid. Thus, DG can help reduce the energy loss due

to transmission ineffciencies, alleviate congestion during peak hours, reduce the system’s

carbon footprints, and lower users’ electricity bills.

Due to unpredictable realtime prices and distributed energy resources, the Smart Grid

poses great challenges for energy management (or load scheduling) with RTP and DG.

Most previous studies focus on obtaining load schedules for customers in day-ahead sce-

narios based on the their load requirement. In particular, Goudarzi et al. [19] propose a

mixed-integer optimization problem to fnd a load schedule that minimizes a customer’s

energy consumption cost plus an inconvenience function. Du et al. [15] present a two-step

optimization algorithm to minimize a user’s energy cost to run thermostatically controlled
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appliances. Gatsis and Giannakis [17] develop a day-ahead scheduling scheme consider-

ing imperfect information between the utility company and the customers due to packet

loss. Mohsenian-Rad et al. [33] employ game theory to fnd an optimal daily load schedule

for each user that minimizes the total energy generation cost. Shinwari et al. [47] design

a water-flling based algorithm, which results in almost fat total power consumption of

a neighborhood so as to minimize the changes in load demand per hour and reduce the

utility company’s operational costs. Salinas et al. [44] investigate a constrained multi-

objective optimization problem (CMOP) to manage the energy consumption of a group of

users. They develop two evolutionary algorithms to obtain the Pareto-front solutions and

the ǫ-Pareto front solutions to the CMOP, respectively. Joe-Wang et al. [23] formulate a

linear optimization problem to maximize the utility company’s revenue. Note that all these

studies require users to know exactly their load demands ahead of time, which may not be

always predicted and can be uncertain. Besides, none of the above studies considers DG,

energy storage management, or the possibility of users selling energy to the grid, which

are essential and appealing features of the SG. In contrast, Neely et al. [37] develop an

algorithm to minimize the long- term average expected cost of a utility company, which

supplies power by a traditional power plant and a renewable energy resource. Individual

user’s load demand and energy storage devices are not considered. In [52], Urgaonkar et al.

study a similar problem for a data center with an uninterruptible power supply that acts as

an energy storage device. Guo et al. [20] propose an algorithm to minimize one user’s long

term expected energy cost considering a renewable energy resource and a battery. Note

that essentially these works deal with one single load demand.
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In this chapter, we investigate the optimal energy management problem in the smart

grid, taking into account customers’ uncertain load demands, and distributed renewable

energy resources and energy storage devices. Specifcally, we consider an electric power

distribution network consisting of a set of energy users, who have two-way real-time com-

munications with a utility company. Each user has a renewable energy resource, an energy

storage device, and a connection to the power grid, which collaboratively satisfy its load

demand. The utility company provides energy to the users from both a traditional power

plant (e.g., coal, gas) and a renewable energy resource (e.g., solar bank, wind farm). We

model users’ load demands and all renewable energy resources’ as stochastic processes to

account for their uncertainty. Besides, we consider that the system works in a time-slotted

fashion. We aim to optimally schedule the usage of all the energy resources in the net-

work and minimize the utility company’s long-term time averaged expected total cost of

supporting all users’ load demands.

Moreover, we study two cases of users’ load demands: frst, users have delay intolerant

(DI) load demands which need to be satisfed in the same time slot when they are requested,

and second, users have both DI and delay tolerant (DT) load demands, the latter of which

can tolerate being served within user-defned deadlines. In each case, we frst formulate an

optimization problem, which turns out to be a time-coupling problem. Previous approaches

usually solve such problems based on Dynamic Programming [24, 41] and suffer from the

“curse of dimensionality” problem [6]. They also require full statistical information of the

random variables in the problem, which may be diffcult to obtain in practice. Instead, we

reformulate the problem using Lyapunov optimization theory for event-driven queueing
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systems [36]. We develop a dynamic energy management scheme that can dynamically

solve the problem in each time slot based on the current system state only, i.e., without

any information about the future or past system states, and hence is more effcient than

previous approaches. With the results of our dynamic energy management scheme, we are

then able to obtain both a lower and an upper bound on the optimal result of the original

optimization problem. Furthermore, in the case of both DI and DT load demands, we also

show that DT load demands are guaranteed to be served within user-defned deadlines.

Extensive simulations have been conducted to evaluate the performance of the proposed

dynamic energy management scheme. Results show that the proposed scheme can lead to

tight lower and upper bounds on the optimal result, and can signifcantly reduce the utility

company’s cost.

The rest of the chapter is organized as follows. Section 3.2 introduces system models

considered in this study. We study dynamic energy management with DI load demands in

Section 3.3 and with both DI and DT loads in Section 3.4. Simulations are conducted in

Section 3.5. We fnally conclude this chapter in Section 3.6.

3.2 System Model

In this section we describe the considered smart grid network and our mathematical

models for users’ delay intolerant load demand, distributed renewable energy generation,

distributed energy storage, load serving, and the utility company’s energy generation cost.

Note that we only introduce delay intolerant load demand model here. Delay tolerant load

demand model will be discussed in Section 3.4.
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3.2.1 Smart Grid Network

We consider an electric power distribution network consisting of a set of residential and

business energy users, denoted by I = {1, 2, . . . , n}, who have two-way real-time com-

munications with a utility company. Each user has a renewable energy resource, an energy

storage device, and a connection to the power grid, which collaboratively satisfy its load

demand. The utility company provides energy to the users from both a traditional power

plant (e.g., coal, gas) and a renewable energy resource (e.g., solar bank, wind farm). It aims

to optimally schedule the usage of all the energy resources in the network and minimize

its total cost of supporting all users’ load demands. Besides, we consider that the system

works in a time-slotted fashion. Energy management decisions are made dynamically by

the utility company in each time slot. In particular, in each time slot, users transmit their

load requests along with other state variables to a control center deployed by the utility

company. Based on the collected data, the control center computes a load servicing sched-

ule and transmits to each user his/her corresponding actions needed to be executed in the

current time slot. Each user then follows the instructions and updates some of his/her state

variables.

3.2.2 Delay Intolerant Load Demand Model

DI load demands are very common in our daily life, such as lighting and using elec-

tronic devices, and need to be satisfed in the same time slot. Denote user i’s delay intol-

erant (DI) load demand in time slot t by li(t). We assume {li(t)}
∞ 
t=0 is an independent and
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identically distributed (i.i.d.) non-negative stochastic process, which is deterministically

bounded, i.e., 0 ≤ li(t) ≤ limax .

3.2.3 Distributed Renewable Energy Generation

Each user is equipped with a renewable energy resource, which can be a set of solar

panels or a wind turbine. The output of a renewable energy resource is dynamic and diff-

cult to predict because it depends on meteorological conditions. In this work, we assume

that the output of user i’s renewable energy resource, denoted by ei(t), is an i.i.d. stochas-

max max tic process and satisfes 0 ≤ ei(t) ≤ ei , where ei is the maximum energy output of

user i’s renewable energy resource and a constant.

In addition to serving user i’s load, ei(t) can be used to charge the user’s energy storage

device, or sold to the power grid. In particular, we have

l g r ei(t) = ri(t) + ri (t) + ci (t) (3.1)

where ri
l(t) is the energy used to satisfy user i’s load demand li(t), ri

g(t) is the energy sold

to the grid, and ci
r(t) is the energy used to charge user i’s energy storage device.

3.2.4 Distributed Energy Storage

Each user i has an energy storage device which can store some energy that can be used

at a later time. Since the energy storage device acts as an energy buffer, we can model its

energy level as a queue, i.e.,

Bi(t + 1) = Bi(t) + Ci(t)− Di(t). (3.2)
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In particular, Ci(t) is the energy charging the energy storage device, i.e.,

Ci(t) = ci
g(t) + ci

r(t) (3.3)

rwhere ci
g(t) and ci (t) are the energy drawn from the grid and from the renewable energy

resource, respectively. Di(t) is the energy discharged from the energy storage device, i.e.,

Di(t) = dgi (t) + dli(t) (3.4)

where dgi (t) is the energy sold to the grid, and dli(t) is the energy serving user i’s DI load

demand.

Notice that it is more effcient to serve user i’s load demand li(t) by directly using

energy from the grid or from the renewable energy resource, than by frst charging the

energy storage device and then discharging it. Thus, we have the following two constraints

(t)>0 ≤ 1 (3.5)1d (t)>0 + 1cl
i

r
i

(t)>0 ≤ 1 (3.6)1d (t)>0 + 1cgi
l
i

where the indicator function 1A is equal to 1 when the event A is true, and zero otherwise.

On the other hand, it is more effcient to sell energy to the grid by directly selling the

output of the renewable energy resource, than by frst charging the energy storage device

and then discharging it. Thus, we have

1dgi (t)>0 + 1cri (t)>0 ≤ 1 (3.7)

Similarly, discharging the energy storage device to sell energy to the grid and charging it

by drawing energy from the grid cannot take place at the same time, i.e.,

1dgi (t)>0 + 1c 
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The above constraints (3.5)-(3.8) will always hold when the following one holds:

1Ci(t)>0 + 1Di(t)>0 ≤ 1 (3.9)

Besides, denote by Bi
max the maximum amount of energy that can be stored by user i’s

energy storage device. Then, we need

0 ≤ Bi(t) ≤ Bmax (3.10)i . 

Denote by Ci
max the maximum amount of energy that user i’s energy storage device can be

charged with during a single time slot, and Di
max the maximum amount of energy that can

be discharged from user i’s energy storage device during a single time slot. Thus, we have

Ci(t) ≤ min[Ci
max, Bi

max − Bi(t)] (3.11)

≤ min[Dmax, Bi(t)]. (3.12)Di(t) i 

Bmax From (3.11) and (3.12), we get Ci(t) + Di(t) ≤ Bi
max − Bi(t) + Bi(t) = i , which

should hold for any Ci(t) andDi(t) that satisfy (3.11) and (3.12). Since Ci(t) ≤ Ci
max and

Di(t) ≤ Dmax 
i , we also have the following constraint:

Cmax +Dmax ≤ Bmax 
i (3.13)i i . 

3.2.5 Load Serving

The utility company needs to supply enough energy to the grid to satisfy all users’ load

demands. The amount of energy supplied by the utility company in time slot t, denoted by

P (t), can be calculated as

X� � 
g l gP (t) = li(t) + c (t)− r (t)− r (t)− dg(t)− dl(t) . (3.14)i i i i i 

i∈I 
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User i’s load demand is satisfed by the energy from the power grid, its local renewable

energy resource, and its own energy storage device. Particularly, we have

li(t) = gi
l(t) + ri

l(t) + dli(t) (3.15)

where gi
l(t) is the amount of energy drawn from the power grid to satisfy user i’s load

demand in time slot t. Note that user i’s connection to the power grid can only be in one

of three states: drawing energy from the grid, providing energy to the grid, and idle, i.e.,

cannot draw and provide energy at the same time. Therefore, we get

1gli(t)+cgi (t)>0 + 1dgi (t)+rgi (t)>0 ≤ 1. (3.16)

In addition, the total amount of energy that user i draws from the power grid in time

slot t, denoted by Gi(t), satisfes

l g(t)c ≤ Gmax 0 ≤ Gi(t) = gi(t) + ci i (3.17)

where Gmax 
i is a constant determined by the physical characteristics of user i’s connection

to the grid. Similarly, the total amount of energy that user i provides to the power grid in

time slot t, denoted byMi(t), satisfes

(t) ≤ Mmax 0 ≤ Mi(t) = rg(t) + dg 
(3.18)i i i 

whereMi
max is also a constant.

3.2.6 Energy Generation Cost

As mentioned before, the utility company provides energy to the users from both a

traditional power plant and a renewable energy resource. Assume the output of the utility
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company’s renewable energy resource, denoted byR(t), is an i.i.d. non-negative stochastic

process. The cost of generating such renewable energy is considered to be negligible. Thus,

the utility company will frst use renewable energy and then traditional energy to satisfy

users’ load demands. The amount of traditional energy the utility company needs in time

slot t, denoted by N(t), is

N(t) = P (t)− R(t) (3.19)

If R(t) > P (t), then the utility company is able to sell the excess power to other utility

companies.

Consequently, a utility company’s energy generation cost can be calculated as

U(t) = f (N(t)) (3.20)

where f (N(t)) is a non-decreasing and convex function1.

3.3 Dynamic Energy Management with Delay Intolerant Load Demands

In this section, we study the dynamic energy management for the smart grid when users

have delay intolerant (DI) load demands.

3.3.1 Problem Formulation

Let H(t) = {H1(t), H2(t), . . . , Hn(t)} be the vector of decision variables in the sys-

tem, where Hi(t) = {gli(t), d gi (t), d li(t), c ri (t), c 
g
i (t), r gi (t), r li(t)}. We also denote the sys-

tem state by a vector of random variables, i.e., S(t) = {S1(t), S2(t), . . . , Sn(t), R(t)} 
1Note that our analysis herein still holds if we assume a concave cost function f . In that case, our

objective function can be set tomax{−f(N(t))} 
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where Si(t) = {li(t), ei(t)}. Thus, the utility company’s objective is to design a dy-

namic energy management algorithm, which can optimally control the decision vectors

H(t) (t ≥ 0) to minimize the following long-term time averaged expected total cost, i.e.,

T −1X1
U = lim E{U(t)}, (3.21)

T →∞ T 
t=0 

under uncertain system states S(t) (t ≥ 0)2. We call this problem P1 and formally formu-

late it as follows:

(3.22)P1 : Minimize U 

We denote the optimal result, i.e., the minimum of the objective function, of P1 by P1∗ .

We can see that P1 is a time-coupling optimization problem due to constraints (3.2),

(3.10)-(3.12). Previous approaches usually solve such problems based on Dynamic Pro-

gramming and suffer from the “curse of dimensionality” problem [6]. They also require

detailed statistical information of the random variables in the problem, which may be diff-

cult to obtain in practice. Next, we reformulate this problem using Lyapunov optimization

theory for queueing systems [36] so that it can be solved in each time slot based on the

current system state only.

3.3.2 Dynamic Energy Management Using Lyapunov Optimization

In order to better control users’ energy storage devices, we defne a shifted energy level

Xi(t) for user i’s energy storage device in time slot t as follows:

Xi(t) = Bi(t)− V βmax − Dmax 
i (3.23)

2Note that we use x̄ to denote the long-term time averaged expected value of a stochastic process x(t) in
this study.
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where βmax is the maximum frst-order derivative of U(t) with respect to N(t), and V is

a positive constant to be defned later. We also denote by βmin the minimum frst-order

derivative of U(t) with respect to N(t).

Thus, according to (3.2), Xi(t) is updated by the following queueing rule:

Xi(t + 1) = Xi(t) + Ci(t)− Di(t). (3.24)

Consequently, we can defne a Lyapunov function [36] as

X 
L(X(t)) =

1
(Xi(t))

2 . (3.25)
2

i∈I 

where X(t) = {X1(t), . . . , Xn(t)}. This function represents a scalar measure of stored

energy in the system. L(X(t)) being small implies that all stored energy levels are low,

while L(X(t)) being large implies that at least one stored energy level is high. Besides,

the one-slot conditional Lyapunov drift can be defned as

�(X(t)) = E{L(X(t + 1))− L(X(t))|X(t)} (3.26)

Since our objective is to minimize the long-term time averaged expected total cost of the

utility company, instead of taking a control action to minimize �(X(t)), we minimize the

following drift-plus-penalty function:

�(X(t)) + V E{U(t)|X(t)}. (3.27)

We can have the following lemma.
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 ! X )2 , (Dmax max[(Cmax )2]
A = i 

2
i . 

i∈I 

3.3.2.1 Lemma 1

Given �(X(t)) defned in (3.26), we have

�(t) + V E{U(t)|X(t)} 

X 
≤A + V E{U(t)|X(t)} + Xi(t)E{Ci(t)− Di(t)|X(t)} (3.28)

i∈I 

where A is a constant, i.e.,

(3.29)

Proof: Squaring both sides of (3.24), we get

Xi 
2(t + 1)− Xi 

2(t)

2

(Ci(t)− Di(t))
2 

= +Xi(t)(Ci(t)− Di(t))
2

)2 , (Dmax)2]max[(Ci
max 

i≤ +Xi(t)(Ci(t)− Di(t)). (3.30)
2

Thus, we can obtain that

�(t) + V E{U(t)|X(t)} 
�X� 

max[(Ci
max)2 , (Di

max)2]
≤ V E{U(t)|X(t)} + E 

2
�i∈I � 

+Xi(t)(Ci(t)− Di(t)) |X(t) , (3.31)

and (3.28) directly follows.

Our objective is to minimize the right-hand side of (3.28) in each time slot t given the

current stored energy levels X(t) and system state S(t). Since A is a constant, we aim to
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P 
minimize V U(t) + i∈I Xi(t)(Ci(t) − Di(t)). Moreover, recall that in P1, constraints

(3.2), (3.10)-(3.12) couple the energy levels of users’ energy storage devices among all the

time slots. We can break this coupling by leaving (3.2), (3.10) out, and relaxing (3.11),

(3.12) into two constraints as follows:

≤ Cmax 0 ≤ (3.32)Ci(t) i 

≤ Dmax 0 ≤ Di(t) i . (3.33)

Therefore, we can formulate a relaxed optimization problem called P2 in the following:

X 
P2: Minimize V U(t) + Xi(t)(Ci(t)− Di(t)) (3.34)

i∈I 

s.t. (3.1), (3.3), (3.4), (3.9), (3.13)− (3.20), (3.32), (3.33)

Our dynamic energy management is carried out as follows. The utility company solves

the problem P2 in each time slot t given X(t) and S(t) collected from the users. It then

sends the obtained control decisions to the users, who follow the instructions and update

their stored energy levelsX(t) according to (3.24) and (3.2). We denote the corresponding

long-term time averaged expected total cost, i.e., U , by P2∗ .

3.3.2.2 Theorem 1

Defne the maximum value of V as

Bmax − Cmax − Dmax 
V max i i i = min . (3.35)

βmax − βmin i∈I 

≤ V max For 0 ≤ Bi(0) ≤ Bi
max for all i ∈ I and any 0 ≤ V , our dynamic energy

management scheme has the following properties:
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1. An arbitrary user i’s stored energy level Bi(t) satisfes the constraint (3.10), i.e.,

0 ≤ Bi(t) ≤ Bmax 
i , for all t ≥ 0, and is strongly stable.

2. The obtained control decisions are feasible solutions to P1.

3.

P2∗ − A/V ≤ P1∗ ≤ P2∗ . (3.36)

Proof:

a) We prove 1. by induction. Particularly, assume that for an arbitrary user i, (3.10)

holds in time slot t. Then, we consider the following cases to prove that (3.10) also holds

in time slot t + 1.

rFirst, 0 ≤ Bi(t) < Dmax . Recall that Ci(t) = cg(t) + c (t). In this case, the partiali i i 

derivative of the objective function of P2, denoted by P 2(t), with respect to cgi (t), is

∂P 2(t) ∂U(t)
= V +Xi(t)

∂cgi (t) ∂cgi (t)

V βmax + Bi(t)− V βmax − Dmax ≤ i 

< 0. (3.37)

Similarly, we can have

∂P 2(t)
= Xi(t) < −V βmax < 0. (3.38)

∂cri (t)

Thus, by solving P2, i.e., minimizing P 2(t), our energy management scheme leads to

r g Cmax control decisions that satisfy Ci(t) = c (t) + c (t) = . Due to constraint (3.9), wei i i 

haveDi(t) = 0. Therefore, according to (3.2), we getBi(t +1) = Bi(t)+Ci
max and hence

+ Cmax ≤ Bmax 0 ≤ Bi(t + 1) ≤ Di
max 

i i (3.39)

due to constraint (3.13).
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≤ Bi(t) ≤ V (βmax − βmin) +Dmax Second, Di
max 

i . Since

V ≤ V max ≤ 
Bmax − Cmax − Dmax 

i i i ,
βmax − βmin (3.40)

we have Bi(t) ≤ Bmax 
i − Cmax . Thus, according to (3.2), we can obtaini 

Bi(t + 1) ≤ Bmax 
i − Cmax 

i + Ci(t)− Di(t) ≤ Bmax 
i (3.41)

and

Bi(t + 1) ≥ Dmax 
i + Ci(t)− Di(t) ≥ 0. (3.42)

Bmax−Cmax−Dmax

< Bi(t) ≤ Bmax i i i
i βmax−βminThird, V (βmax − βmin) + Dmax . Note that V ≤ ,

≤ Bmax − Cmax < Bmax and hence V (βmax − βmin) + Dmax . The partial derivative ofi i i 

the objective function of P2 with respect to dgi (t) is

∂P 2(t) ∂U(t)
= −V − Xi(t)

∂dgi (t) ∂dgi (t)

+Dmax ≤ −V βmin − Bi(t) + V βmax 
i 

< 0. (3.43)

Similarly, we can also get that ∂P 2(t)/∂dli(t) < 0. Thus, our energy management scheme

(t) = Dmax minimizing P 2(t) results in control decisions that satisfy Di(t) = dgi (t) + dli i .

Due to constraint (3.9), we have Ci(t) = 0. Thus, according to (3.2), we get Bi(t + 1) =

Bi(t)− Dmax and hencei 

− Dmax ≤ Bmax 0 ≤ Bi(t + 1) ≤ Bmax . (3.44)i i i 

Therefore, we can see that (3.10) holds for all t ≥ 0.
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b) We have known from 1) that constraint (3.10) holds. Besides, according to (3.2), we

have Ci(t) = Bi(t + 1)− Bi(t) +Di(t) ≤ Bi
max − Bi(t) +Di(t). Due to constraint (3.9),

we have thatDi(t) = 0whenCi(t) > 0. Thus, we getCi(t) ≤ Bi
max −Bi(t). Furthermore,

we have Bi(t + 1) = Bi(t) + Ci(t) − Di(t) ≥ 0, which leads to Di(t) ≤ Bi(t) + Ci(t).

Similarly, since Ci(t) = 0 when Di(t) > 0, we get Di(t) ≤ Bi(t). Therefore, both (3.11)

and (3.12) hold as well. In addition, our dynamic energy management scheme updates the

stored energy levels X(t) according to (3.24), which means (3.24) holds too. As a result,

the control decisions obtained by our dynamic energy management scheme satisfy all the

constraints of P1, and hence are feasible solutions to P1.

cc) Denote by Cb i(t), Di(t), and Ub(t) the results obtained by our dynamic energy man-

agement scheme in time slot t, i.e., based on the optimal solution toP2. We also denote by

Ci 
∗(t),Di 

∗(t), and U∗(t) the results that we get for time slot t based on the optimal solution

to P1. Thus, from Lemma 1 in Section 3.3.2.1, we can have

�(t) + V E{Ub(t)|X(t)} 

X 
≤A + V E{Ub(t)|X(t)} + Xi(t)E{Cb i(t)− Dc i(t)|X(t)} 

i∈IX 
≤A + V E{U ∗ (t)|X(t)} + Xi(t)E{Ci 

∗ (t)− Di 
∗ (t)|X(t)} 

i∈IX 
=A + V E{U∗(t)} + Xi(t)E{Ci 

∗(t)− Di 
∗(t)} (3.45)

i∈I 

Note that the last step is due to the fact that the optimal solutions to P1 are obtained

independent of the current stored energy levels.

Besides, since the system state S(t) is i.i.d., it follows thatCi 
∗(t) andDi 

∗(t) are also i.i.d.

stochastic processes. Recall the strong law of large numbers: If {a(t)}∞ 
t=0 are i.i.d. random
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PT −1
variables, we have Pr( 1 limT →∞ a(t) = E{a(t)}) = 1 almost surely. Consequently,

T t=0 

we get

E{L(X(t + 1))− L(X(t))|X(t)} + V E{Ub(t)|X(t)} 
T −1X X 

≤A + V E{U∗(t)} + Xi(t) lim
1

(Ci 
∗(t)− Di 

∗(t)) (3.46)
T →∞ T 

i∈I t=0 

Taking expectation of the above inequality, we get

E{L(X(t + 1))} − E{L(X(t))} + V E{Ub(t)} 

≤A + V E{U∗(t)} 
T −1X X 

+ E{Xi(t)} lim
1

E{Ci 
∗ (t)− Di 

∗ (t)}
T →∞ T 

i∈I t=0 X 
=A + V E{U∗(t)} + E{Xi(t)}(Ci 

∗ − Di 
∗). (3.47)

i∈I 

In addition, summing (3.2) over all the time slots t ∈ {0, 1, 2, ..., T − 1} and taking

expectation on both sides, we have

T −1X 
E{Bi(T )} − E{Bi(0)} = E{Ci 

∗(t)− Di 
∗(t)} (3.48)

t=0 

Dividing the above equation by T and taking limits as T → ∞, we get Ci 
∗ − Di 

∗ = 0.

Therefore, we can obtain

E{L(X(t + 1))} − E{L(X(t))} + V E{Ub(t)} 

≤ A + V E{U∗(t)}. (3.49)

Summing the above inequality over all the time slots t ∈ {0, 1, 2, ..., T − 1}, we get

T −1 T −1X X 
V E{Ub(t)} ≤ AT + V E{U∗(t)} − E{L(X(T ))} 

t=0 t=0 

+E{L(X(0))} (3.50)
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Since 0 ≤ Bi(t) ≤ Bi
max for all t ≥ 0, Xi(t) is fnite in all time slots as well. Then,

dividing both sides of the above equality by V T and taking limits as T → ∞, we can

obtain

XT −1 T −1X1 1 A 
lim E{Ub(t)} ≤ lim E{U∗(t)} + , (3.51)
T →∞ T T →∞ T V 

t=0 t=0 

which means P1∗ ≥ P2∗ − A/V .

Besides, as shown in b), the optimal solutions to P2 are also a feasible solution to P1.

Thus, the value of the objective function of P1 calculated based on the optimal solution to

P2, i.e., P2∗ , is an upper bound on P1∗ , i.e, P1∗ ≤ P2∗ .

We have now fnished the proof.

3.4 Dynamic Energy Management with Mixed Load Demands

In this section, we extend the basic system model described in Section 3.2 to the case

that users have both delay intolerant (DI) and delay tolerant (DT) load demands. In partic-

ular, the same as before, DI load demands need to be satisfed in the same time slots when

they are requested without any delay. In contrast, DT load demands just need to be served

before some user-defned deadlines. Examples for DT load demands are washer/dryer ma-

chines, dishwashers, etc.

3.4.1 Mixed Load Demand Model

Consider that an arbitrary user i has both DI and DT load demands. DI load demands

are modeled in the same way as described in Section 3.2.2. We denote user i’s DT load

demand in time slot t by Ti(t). We also assume that {Ti(t)}
∞ 
t=0 is an i.i.d. non-negative

≤ Gmax stochastic process, and 0 ≤ Ti(t) ≤ Ti
max for all t ≥ 0. Besides, we assume Ti

max 
i .
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It means that the DT load demand that a user can have in one slot is no larger than the

maximum amount of energy it can draw from the power grid, which is reasonable.

User i’s DT demand is placed in a local queue Qi(t), which is updated as follows:

Qi(t + 1) = max[Qi(t)− yi(t), 0] + Ti(t) (3.52)

where yi(t) = dq(t) + gq(t) + rq(t) is the amount of service received by the queue. Par-i i i 

ticularly, dq(t), gq(t), and rq(t) are the energy drawn from user i’s energy storage device,i i i 

the power grid, and user i’s renewable energy resource in time slot t to support user i’s DT

demand, respectively.

Due to the introduction of DT load demands, constraint (3.1) changes into:

l q g r ei(t) = ri(t) + ri (t) + ri (t) + ci (t). (3.53)

Ci(t) remains the same, while Di(t) changes from (3.4) into:

Di(t) = di
g(t) + di

l(t) + di
q(t). (3.54)

Mi(t) remains the same, while Gi(t) changes from (3.17) into:

l q g(t) ≤ Gmax 0 ≤ Gi(t) = g (t) + g (t) + c , (3.55)i i i i 

and (3.16) changes into

1gli(t)+cgi (t)+gqi (t)>0 + 1dgi (t)+rgi (t)>0 ≤ 1. (3.56)

Besides, the amount of energy supplied by the utility company in time slot t changes from

(3.14) into

X� � 
q g l gP (t) = li(t) + g (t) + c (t)− r (t)− r (t)− dg(t)− dl(t) . (3.57)i i i i i i 

i∈I 
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3.4.2 Problem Formulation with Mixed Load Demand Model

Let H(t) = {H1(t), H2(t), . . . , Hn(t)} be the vector of decision variables in the sys-

q g g ql r ltem, where Hi(t) = {gi(t), g (t), dg(t), dil(t), d
q
i (t), ci (t), c (t), ri (t), ri(t), r (t)}. Wei i i i 

also denote the system state by a vector of random variables, i.e., S(t) = {S1(t), S2(t), . . . , 

Sn(t), R(t)} where Si(t) = {li(t), Ti(t), ei(t)}. Thus, the dynamic energy management

problem with mixed load demand model, which we call P3, can be formulated as follows:

P3: Minimize (3.58)U 

s.t. DT loads are served before user-defned deadlines

Constraints: (3.2), (3.3), (3.9)− (3.13), (3.15), (3.18)− (3.20), 

(3.53)− (3.57), ∀t ≥ 0

We denote the optimal result, i.e., the minimum of the objective function, of P3 by P3∗ .

We notice that P3 is also a time-coupling optimization problem, which is prohibitively

diffcult to solve as explained in Section 3.3.1. Similarly, in what follows we reformulate

this problem based on Lyapunov optimization theory such that it can be solved based on

current system state only.

3.4.3 Delay Aware Virtual Queue

In order to characterize the delay in serving users’ DT load demand, we defne a delay-

aware virtual queue Zi(t) for each user i, whose queueing function is as follows:

Zi(t + 1) = max[Zi(t)− yi(t), 0] + ǫi1Qi(t)>0. (3.59)
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In particular, Zi(t) has the same serving rate as Qi(t), but a different arrival rate. ǫi is a

constant related to user-defned service deadline, which will be specifed in Lemma 2 in

Section 3.4.3.1. We also assume that ǫi ≤ Gmax 
i , i.e., the arriving rate is no larger than the

maximum amount of energy user i can draw from the power grid. We have the following

lemma.

3.4.3.1 Lemma 2

Assume that the queuesQ(t) and Z(t) are controlled in such a way that Qi(t) < Qmax 
i 

and Zi(t) < Zi
max for all t ≥ 0 and i ∈ I, where Zi

max and Qmax 
i are deterministic

positive constants. Then, an arbitrary user i’s DT load demand Ti(t) can be served within

a maximum delay of

Qmax + Zmax 
max i i µi = ⌈ ⌉. (3.60)

ǫi 

Proof: In what follows, we prove (3.60) by contradiction.

max Assume that the delay in serving an arbitrary user i’s DT demand is larger than µi .

Suppose Ti(t) > 0 in time slot t. Thus, we have Q(t + 1) > 0 according to (3.52), and

max Q(τ) > 0 for t + 1 ≤ τ ≤ t + µi . Referring to (3.59), we get

Zi(τ + 1) ≥ Zi(τ)− yi(τ) + ǫi (3.61)

max max for t + 1 ≤ τ ≤ t + µi . Summing over the time slots from t + 1 to t + µi yields

maxt+µiX 
max max + 1)− Zi(t + 1) ≥ µ ǫi − (3.62)Zi(t + µi i yi(τ )

τ =t+1 
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Qmax+Zmax
max i iince µ = ⌈ 

ǫi
⌉, wi 

Since Z(t + µmax 
i + 1) ≤ Zmax and Z(t + 1) ≥ 0, we can get

maxt+µiX 
max ǫi − Zmax yi(t) ≥ µi i (3.63)

t+1 

Consider that the DT loads are served in a frst in frst out (FIFO) manner. Since Qi(t +

Qmax max 1) < i and user i’s DT demand Ti(t) has not been served by t + µi , we have

maxPt+µ 
yi(t) < Qmax i . Thus, from (3.63) we can getτ =t+1 i 

Qmax + Zmax max > µ ǫi. (3.64)i i i 

+Zmax > Qmax +Zmax S e have Qmax , which is impossible.i i i i 

Thus, the assumption that the delay in serving an arbitrary user i’s DT demand is larger

max than µi is invalid, and Lemma 2 in Section 3.4.3.1 follows.

According to Lemma 2 in Section 3.4.3.1, each user i can set ǫi based on Qmax 
i and

Zmax 
i to make sure that its DT load demand can be satisfed by a certain deadline. We

will describe Qmax 
i and Zi

max in detail later. We are now ready to present our Lyapunov

optimization based energy management scheme.

3.4.4 Dynamic Energy Management based on Lyapunov Optimization

Notice that the queues that are maintained in the system can be denoted by a vector

�(t) = {X(t), Q(t), Z(t)}. Thus, we can defne a Lyapunov function as

1X� � 
L(�(t)) = (Xi(t))

2 + (Qi(t))
2 + (Zi(t))

2 , (3.65)
2

i∈I 

and the one-slot conditional Lyapunov drift is

�(�(t)) = E{L(�(t + 1))− L(�(t))|�(t)}. (3.66)
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q q (t) ≤ Dmax q(t) ≤ Gmax Recall that yi(t) = dq(t) + g (t) + r (t). Since 0 ≤ dq 
, 0 ≤ g i ,i i i i i i 

q max + Gmax max and 0 ≤ r (t) ≤ ei(t) ≤ e , we have 0 ≤ yi(t) ≤ Dmax + e . We denotei i i i i 

the upper bound on yi(t) as yi
max . Then, we can have the following lemma regarding the

drift-plus-penalty function.

3.4.4.1 Lemma 3

Given �(�(t)) defned in (3.66), we have

�(�(t))+V E{U(t)|�(t)} 

≤ K + V E{U(t)|�(t)} 

X 
+ Xi(t)E{Ci(t)− Di(t)|�(t)} 

i∈I 

X 
+ Qi(t)E{Ti(t)− yi(t)|�(t)} 

i∈I 

X 
+ Zi(t)E{ǫi − yi(t)|�(t)} 

i∈I 

(3.67)

whereK is a constant, i.e.,

X� )2 , (Dmax)2] (T max max)2max[(Cmax )2 + (yi i i iK = +
2 2

i∈I 

ǫ2 max)2 � 
i + (yi+ . 

2

(3.68)

Proof: We have obtained in Lemma 1 in Section 3.3.2.1 that

Xi 
2(t + 1)− Xi 

2(t)

2 (3.69)
)2 , (Dmax)2]max[(Ci

max 
i≤ +Xi(t)(Ci(t)− Di(t)). 

2
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Besides, note that ∀x, y, z with x ≥ 0, 0 ≤ y ≤ ymax, 0 ≤ z ≤ zmax, we have

(max{x − y, 0} + z)2 ≤ x 2 + y 2 + z 2 + 2x(z − y)
(3.70)

2 2 2≤ x + y + z + 2x(z − y).max max 

Thus, squaring both sides of (3.52), we get

Qi(t + 1)2 − Qi(t)
2 

2 (3.71)
(T max max 

i )2 + (yi )2 
≤ +Qi(t) (Ti(t)− yi(t))

2

Similarly, squaring both sides of (3.59), we have

+ (ymax Zi(t + 1)2 − Zi(t)
2 ǫ2 

i i )2 
(3.72)≤ + Zi(t)(ǫi − yi(t)). 

2 2

Therefore, summing (3.69), (3.71), and (3.72) over all i ∈ I, taking expectations con-

ditioned on �(t), and adding the cost function V E{U(t)|�(t)}, we arrive at Lemma 3 in

Section 3.4.4.1.

Similar to that in Section 3.3.2, we aim to minimize the right-hand side of (3.67) in

each time slots t based on current system state. Note that in (3.67) Ti(t) is a constant

given the current system state, and ǫi is a constant, too. Thus, removing the constants and

relaxing the constraints (3.2), (3.10)-(3.12), we formulate a new problem P4 as follows:

�X
V U(t) + Xi(t)(Ci(t)− Di(t))

P4: Minimize i∈I (3.73)
� 

− (Qi(t) + Zi(t))yi(t)

s.t. Constraints: (3.3), (3.9), (3.13), (3.15), (3.18)− (3.20), 

(3.32), (3.33), (3.53)− (3.57)
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Our dynamic energy management scheme works as follows. The utility company solves

the problem P4 in each time slot t given �(t) and S(t) collected from the users. It then

sends the obtained control decisions to the users, who follow the instructions and update

their queues X(t), Q(t), and Z(t) in the system according to (3.24) and (3.2), (3.52), and

(3.59), respectively. We denote the corresponding long-term time averaged expected total

cost, i.e., U , by P4∗ .

3.4.4.2 Theorem 2

Defne the maximum value of V as

Bmax − Cmax − Dmax 
V max i i i − Ni 

= min . (3.74)
βmax i∈I 

4Bmax−4Cmax−2Dmax+3T max
i i i i ≫ Cmax +Dmax + T max where Ni = 7 

+3ǫi . Assume Bi
max 

i i i + ǫi.

Suppose all DT load demand queues and virtual queues start with zero backlogs, i.e.,

Qi(0) = Zi(0) = 0 for all i ∈ I, and all energy storage devices start with feasible energy

levels, i.e., 0 ≤ Bi(0) ≤ Bi
max for all i ∈ I. Then, for any 0 ≤ V ≤ V max , our dynamic

energy management scheme has the following properties:

1. For an arbitrary user i, its queuesQi(t) andZi(t) are deterministically upper bounded
by constants Qmax 

i and Zi
max , respectively, for all t ≥ 0 where

2V βmax +Dmax 
Qmax i + T max 

i = i (3.75)
3

2V βmax +Dmax 
Zmax i = (3.76)i + ǫi

3

2. For an arbitrary user i, its stored energy levelBi(t) satisfes (3.10), i.e., 0 ≤ Bi(t) ≤ 
Bmax 

i for all t ≥ 0.

3. For an arbitrary user i, its DT load demand can be served with a maximum delay of

4V βmax + 2Dmax + 3T max 
max i i + 3ǫi 

µi = ⌈ 
3ǫi 

⌉. (3.77)
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4. The obtained control solutions are feasible solutions to P3.

5.

P4∗ − K/V ≤ P3∗ ≤ P4∗ . (3.78)

Proof:

a) We frst prove (3.75) by induction. Obviously, (3.75) holds for t = 0. Assume that

(3.75) holds in time slot t. In the following, we show that (3.75) also holds in time slot

t + 1.

2V βmax+Dmax

First, 0 ≤ Qi(t) ≤ 
3 

i . Since Ti(t) ≤ Ti
max , then according to (3.52), we

have

Qi(t + 1) ≤ max[Qi(t)− yi(t) + Ti
max, Ti

max]. (3.79)

2V βmax+Dmax
i + T max Thus, we get Qi(t + 1) ≤ Qi(t) + Ti

max ≤ 
3 i .

2V βmax 2V βmax+Dmax+Dmax

+ T max Second,
3 

i < Qi(t) ≤ 
3 

i
i . In this case, the partial deriva-

tive of the objective function of P4, denoted by P 4(t), with respect to gi
q(t), is

∂P 4(t) ∂U(t)
= V − (Qi(t) + Zi(t))

∂gi
q(t) ∂gi

q(t)

≤ V βmax − (Qi(t) + Zi(t)). (3.80)

Similarly, we can have

∂P 4(t)
= −(Qi(t) + Zi(t)), (3.81)

∂ri
q(t)

∂P 4(t)
= −(Xi(t) +Qi(t) + Zi(t)). (3.82)

∂dqi (t)

2V βmax+Dmax

Since Xi(t) ≥ −V βmax − Di
max and Qi(t) > 

3 
i , we get

∂P 4(t) ∂P 4(t) ∂P 4(t)
+ +

∂gi
q(t) ∂ri

q(t) ∂dqi (t)

≤ V βmax − Xi(t)− 3Qi(t)− 3Zi(t) < 0. (3.83)
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Thus, our dynamic energy scheme that minimizes P 4(t) will choose yi(t) to be its maxi-

q q (t) ≤ Dmax q(t) ≤ Gmax mum value. Since yi(t) = dq(t) + g (t) + r (t) where dq 
, g , andi i i i i i i 

q max max(t) = Dmax + Gmax r (t) ≤ ei(t), the maximum of yi(t), denoted by y (t), is y +i i i i i 

ei(t).

max max • If Qi(t) ≥ yi (t), we have Qi(t + 1) = Qi(t) − yi (t) + Ti(t). Since Ti(t) ≤ 
+Dmax2V βmax

T max ≤ Gmax max i, we get Ti(t) ≤ y (t) and henceQi(t+1) ≤ Qi(t) ≤ 
3 +i i i 

T max 
i .

+Dmax2V βmax
max i + T max • If Qi(t) < y (t), we have Qi(t + 1) = Ti(t) ≤ T max ≤ 

3 .i i i 

As a result, (3.75) holds for all t ≥ 0.

Next, we prove (3.76) by induction. Note that (3.76) holds for t = 0. Assume that

(3.76) holds in time slot t. In what follows, we show that (3.76) also holds in time slot

t + 1.

+Dmax2V βmax

First, 0 ≤ Zi(t) ≤ 
3 

i . According to (3.59), we haveZi(t+1) ≤ max[Zi(t)− 

+Dmax2V βmax

yi(t) + ǫi, ǫi]. Thus, we get Zi(t + 1) ≤ Zi(t) + ǫi ≤ 
3 

i + ǫi.

2V βmax+Dmax 2V βmax+Dmax

Second,
3 

i < Zi(t) ≤ 
3 

i + ǫi. From (3.80)-(3.82), we can have

∂P 4(t) ∂P 4(t) ∂P 4(t)
+ +

∂gq(t) ∂rq(t) ∂dq(t)i i i 

≤ V βmax − Xi(t)− 3Qi(t)− 3Zi(t)

+Dmax ≤ 2V βmax 
i − 3Zi(t)

< 0 (3.84)

− Dmax due to Xi(t) ≥ −V βmax 
i and Qi(t) ≥ 0. Thus, our dynamic energy scheme

max(t) = Dmax +Gmax minimizing P 4(t) will choose yi(t) = y + ei(t) as shown above.i i i 

max max • If Zi(t) ≥ y (t), we have Zi(t + 1) ≤ Zi(t)− y (t) + ǫi. Since ǫi ≤ Gmax , wei i i 
2V βmax+Dmax

get Ti(t + 1) ≤ Zi(t) ≤ 
3 

i + ǫi.
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2V βmax+Dmax
max i• If Qi(t) < yi (t), we have Zi(t + 1) = ǫi ≤ 

3 + ǫi.

Therefore, (3.76) holds for all t ≥ 0.

b) We prove 2. by induction. Assume that for an arbitrary user i, (3.10) holds in time

slot t. Then, we consider the following cases to prove that (3.10) also holds in time slot

t + 1.

First, 0 ≤ Bi(t) < Di
max . This case is identical to the frst case of Theorem 1a in

Section 3.3.2.2. Thus, our energy management scheme takes control decisions cr and cg 
i i ,

r g(t) = Cmax such that Ci(t) = ci (t) + ci i . Due to constraint (3.9), we also have Di(t) = 0.

Thus, according to (3.2), we get Bi(t + 1) = Bi(t) + Ci
max and

+ Cmax ≤ Bmax 0 ≤ Bi(t + 1) ≤ Dmax (3.85)i i i 

due to constraint (3.13).

≤ Bi(t) ≤ V βmax +Dmax +Qmax + Zmax Second, Dmax . Sincei i i i 

Bmax − Cmax − Dmax 
V ≤ V max i i i − Ni

≤ , (3.86)
βmax 

according to (3.75) and (3.76), we have

Bi(t)

4V βmax + 2Di
max + 3T max + 3ǫi

≤Bmax − Cmax i 
i i + − Ni

3

≤Bmax − Cmax +i i 

4Bmax − 4Cmax − 2Dmax 
i + 3T max + 3ǫi − 7Nii i i 

3

=Bmax − Cmax 
i i . (3.87)
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Thus, according to (3.2), we can obtain

− Cmax + Ci(t)− Di(t) ≤ Bmax Bi(t + 1) ≤ Bmax (3.88)i i i 

and

Bi(t + 1) ≥ Di
max + Ci(t)− Di(t) ≥ 0. (3.89)

+ Qmax + Zmax < Bi(t) ≤ Bmax Third, V βmax + Dmax . Note that we have showni i i i 

+Dmax +Qmax +Zmax ≤ Bmax −Cmax < Bmax above that V βmax 
i i i i i i . The partial derivative

of the objective function of P4 with respect to dgi (t) is

∂P 4(t) ∂U(t)
= −V − Xi(t)

∂dgi (t) ∂dgi (t)

+Dmax ≤ −V βmin − Bi(t) + V βmax 
i 

−V βmin − Qmax − Zmax ≤ i i 

< 0. (3.90)

Similarly, we can also get that ∂P 4(t)/∂dli(t) < 0. The partial derivative of the objective

function of P4 with respect to dqi (t) is

∂P 4(t)
= −(Xi(t) +Qi(t) + Zi(t))

∂dqi (t)

+Dmax = −Bi(t) + V βmax 
i − Qi(t)− Zi(t)

−V βmax − Dmax − Qmax − Zmax ≤ i i i 

+Dmax +V βmax 
i − Qi(t)− Zi(t)

< 0. (3.91)
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After minimizing P 4(t), our energy management scheme results in control decisions that

(t) = Dmax satisfy Di(t) = dg(t) + dl (t) + dq 
. Due to constraint (3.9), we have Ci(t) = 0.i i i i 

Thus, according to (3.2), we get Bi(t + 1) = Bi(t)− Di
max and hence

− Dmax ≤ Bmax 0 ≤ Bi(t + 1) ≤ Bmax . (3.92)i i i 

Therefore, we can see that (3.10) holds for all t ≥ 0.

c) The result (3.77) directly follows Lemma 2 in Section 3.4.3.1.

d) Part a) has shown that constraint (3.10) holds. The same as Theorem 1b in Section

3.3.2.2, we can show that (3.32) and (3.33) hold. Part b) of this theorem has shown that

DT load demands can be served before user-defned deadlines. Thus, the control decisions

obtained by our dynamic energy management scheme satisfy all the constraints ofP3, and

hence are feasible solutions to P3.

ce) Denote by Cb i(t), Di(t), ybi(t), and Ub(t) the results obtained by our dynamic energy

management scheme in time slot t, i.e., based on the optimal solution to P4. We also
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denote by Ci 
∗(t),Di 

∗(t), yi 
∗(t), and U∗(t) the results that we get for time slot t based on the

optimal solution to P3. Thus, from Lemma 3 in Section 3.4.4.1, we can have

�(t) + V E{Ub(t)|�(t)} 

≤ K + V E{Ub(t)|�(t)} 

X 
+ Xi(t)E{Cb i(t)− Dc i(t)|�(t)} 

i∈I 

X 
+ Qi(t)E{Ti(t)− ybi(t)|�(t)} 

i∈I 

X 
+ Zi(t)E{ǫi − ybi(t)|�(t)} 

i∈I 

≤ K + V E{U∗(t)} 

X 
+ Xi(t)E{Ci 

∗(t)− Di 
∗(t)} 

i∈I 

X 
+ Qi(t)E{Ti(t)− yi ∗ (t)} 

i∈I 

X 
+ Zi(t)E{ǫi − yi ∗(t)} (3.93)

i∈I 

Note that the second step is based on the fact that the optimal solutions to P3 are obtained

independent of the queue state�(t).
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Besides, since the system state S(t) is i.i.d., Ci 
∗(t), Di 

∗(t), and yi 
∗(t) are also i.i.d.

stochastic processes. Similar to the proof of Theorem 1c in Section 3.3.2.2, applying the

strong law of large numbers and taking expectation of both sides, we get

E{L(�(t + 1))} − E{L(�(t))} + V E{Ub(t)} 

≤K + V E{U∗(t)} 
� T −1 �X X 

+ E{Xi(t)} · lim
1

E{Ci 
∗(t)− Di 

∗(t)} (3.94)
T →∞ T 

i∈I t=0 

X� T −1 �X 
+ E{Qi(t)} · lim

1
E{Ti(t)− yi ∗(t)} (3.95)

T →∞ T 
i∈I t=0 
� T −1 �X X 

+ E{Zi(t)} · lim
1

E{ǫi − yi ∗(t)} (3.96)
T →∞ T 

i∈I t=0 

1 PT −1 1 PT −1
We have shown by (3.48) that limT →∞ E{C∗(t)} = limT →∞ E{D∗(t)}.

T t=0 i T t=0 i 

Thus, the component (3.94) is equal to 0. Since Qi(t) ≤ Qmax 
i < ∞ for all t ≥ 0 where

Qmax is a constant defned in (3.52), we have lim supT →∞ 
1 PT −1 E{Qi(t)} ≤ Qmax ,i T t=0 i 

i.e., queue Qi(t) is strongly stable [36]. Since yi(t)− Ti(t) ≤ yi(t) ≤ yimax , we know that

queue Qi(t) is also rate stable (Theorem 2.8, i.e., Strong Stability Theorem, in [36]), i.e.,

1 PT −1 1 PT −1 ∗E{Ti(t)} ≤ lim supT →∞ E{y (t)}, which means the com-lim supT →∞ T t=0 T t=0 i 

ponent (3.95) is no larger than 0. Similarly, since yi(t)− ǫi1Qi(t)>0 ≤ yimax , queue Zi(t) is

PT −1 PT −1
rate stable and lim supT →∞ frac1T E{ǫi1Qi(t)>0} ≤ lim supT →∞ 

1 E{y ∗ 
t=0 T t=0 i (t)}.

1 PT −1 ∗Thus, we have limT →∞ E{ǫi − yi (t)} ≤ 0, i.e., the component (3.96) is no larger
T t=0 

than 0. Therefore, we have

E{L(�(t + 1))} − E{L(�(t))} + V E{Ub(t)} 

≤ K + V E{U∗(t)} (3.97)
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Similar to the proof of Theorem 1c in Section 3.3.2.2, summing the above inequality

over all the time slots t ∈ {0, 1, 2, ..., T − 1}, dividing both sides by V T , and taking limits

as T → ∞, we can get P3∗ ≥ P4∗ − K/V .

Besides, as shown in d), the optimal solution to P4 is also a feasible solution to P3.

Thus, the value of the objective function of P3 calculated based on the optimal solution to

P4, i.e., P4∗ , is an upper bound on P3∗ , i.e, P3∗ ≤ P4∗ .

We have now completed the proof.

3.5 Simulation Results

In this section, we evaluate the performance of our dynamic energy management scheme

using practical renewable energy generation data. We study two cases: when users have DI

load demands only and when users have both DI and DT load demands. In each case, we

frst obtain the lower and upper bounds on the optimal result. Then, we calculate our total

energy generation cost and compare it with that of a simple energy management strategy.

We implement our proposed dynamic energy management schemes on a general purpose

PC with 64-bit Windows 7, 25GB RAM, and a 2.26GHz CPU. Using CPLEX, we solve

optimization problems P2 and P4 for the two cases, respectively.

Some simulation settings are as follows. We consider 10 users using energy for a period

of 10 days with 5-minute long time slots, i.e., 3000 time slots in total. Users’ renewable

energy generation capabilities are set based on the global horizontal irradiance data for

Las Vegas area available at the Measurement and Instrumentation Data Center [32]. In
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particular, we assume the energy conversion effciency is 15% and the maximum output

is 200W . Besides, the maximum charging and discharging limits on each user’s energy

storage device in a time slot, i.e., Ci
max and Di

max , are both set to 1.5kWh. The maximum

amount of energy that each user can draw from the power grid in a time slot, i.e., Gmax 
i ,

is set to the maximum load request plus the maximum charging limit in a time slot. The

maximum amount of energy that each user can sell to the grid, i.e., Mi
max , is set to be the

same as Gmax 
i . In addition, we ignore the utility company’s renewable energy resource

and focus on the management of users’ energy resources in this simulation. So the utility

company’s energy generation cost function is defned as U(t) = aP 2(t)+bP (t)+c, where

a = 0.75, b = 0.1 and c = 0.

In the case that users have DI load demands only, we consider that each user’s DI load

demands are i.i.d. uniform random variables over the interval [1,7]kWh. Fig. 3.1(a) shows

the upper and lower bounds on the optimal result. Note that the upper bound is the time

averaged expected total cost during the whole simulation period, obtained by our dynamic

energy management scheme. The lower bound is the upper bound minus A/V as shown in

= V max Theorem 1 in Section 3.3.2.2. In our simulations, we set V . Recall that according

to Theorem 1 in Section 3.3.2.2, A is independent of Bmax while V max increases as Bmax 

increases. Thus, the performance bounds get tighter as Bmax increases as we can see in

Fig. 3.1(a). In addition, we compare in Fig. 3.1(b) the total energy generation cost of our

dynamic energy management scheme since t = 0with that of a simple energy management

strategy. In particular, the simple strategy satisfes users’ DI load demands in the same time

slot when they are requested. It does not consider users selling energy to the grid or using
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energy storage devices. We can observe noticeable savings using our scheme, which keep

increasing as time goes by.

In the case that each user has both a DI and a DT load demands, we consider that each

user’s both load demands are i.i.d. uniform random variables over the interval [1,3.5]kWh.

We set all DT load demand deadlines to 168 hours (7 days), i.e., µmax 
i = 2016, and set

ǫi according to (3.77) for each energy storage device size. We show the upper and lower

bounds on the optimal result in Fig. 3.2(a), and fnd that the bounds get tighter as Bmax 

increases. We also compare the total energy generation cost of our dynamic energy man-

agement scheme since t = 0 with that of a simple energy management strategy in Fig.

3.2(b). In particular, the simple strategy satisfes users’ DI and DT load demands in the

same time slot when they are requested. It does not consider users selling energy to the

grid or using energy storage devices. We can observe noticeable savings using our scheme

as well. Fig. 3.2(c) shows the time that it takes DT load demands to be satisfed when each

user has an energy storage device with capability of Bmax = 240kWh. We observe that

all DT loads can be served within 15 hours, much earlier than the user-defned deadline.

In Fig. 3.2(d), we present the energy level of a user’s energy storage device which always

remains within its physical limits as described in Theorem 2 in Section 3.4.4.2.

Moreover, although in our dynamic energy management schemes, the optimization

problems P2 and P4 need to be solved once every time slot, we fnd that on average they

can be solved in about 0.3 seconds on the PC we use for our simulations. The computation

time is very low and can be even lower on more powerful computers.

72



3.6 Conclusions

In this chapter, we have explored dynamic energy management in the Smart Grid, con-

sidering unpredictable load demands, and distributed uncertain renewable energy resources

and energy storage devices. We have studied two kinds of user load demands: DI demands

only, and both DI and DT demands. In particular, with the objective of minimizing the

long-term time averaged expected total cost of supporting all users’ load demands, we

formulate an optimization problem, which is a time-coupling problem and prohibitively

expensive to solve. Then, employing Lyapunov optimization theory, we reformulate the

problem and develop a dynamic energy management scheme which can dynamically solve

the problem in each time slot. The developed scheme result in both a lower and an up-

per bound on the optimal result of the original optimization problem. Furthermore, in the

case of both DI and DT load demands, we show that DT load demands are guaranteed be

served within user-defned deadlines. Extensive simulation results are presented to validate

the effciency of the proposed scheme.
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The case of DI load demands.
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CHAPTER 4

PRIVACY-PRESERVING ENERGY THEFT DETECTION IN SMART GRIDS

4.1 Introduction

Energy theft has been a notorious problem in traditional power systems. The utility

companies (UCs) in the U.S. lose approximately six billion dollars every year due to this

problem [31]. Recently, the smart grid has been proposed as a new type of electrical grid

to modernize current power grids to effciently deliver reliable, economic, and sustainable

electricity services. One of the most salient features of smart grids is the replacement of

conventional analog mechanical meters by digital meters, usually called “smart meters”.

In addition to recording users’ energy usage, due to their communication capability, smart

meters can provide a two-way communication path between UCs and power users, which

can facilitate effcient power system control and monitoring. However, compared to me-

chanical meters which can only be physically tampered, smart meters are vulnerable to

more types of attacks (e.g., network attack), which may make energy theft easier to com-

mit and hence an even more serious problem in smart grids.

Some research has been conducted to detect energy theft in traditional power grids.

Nizar et al. [38] employ a data mining technique known as Extreme Learning Machine

(ELM) to classify users’ electricity consumption patterns or load-profles. By comparing

the results to a database of users’ load profles, the proposed algorithm yields a list of users
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who could be stealing energy, which we call “energy thieves”. Nagi et al. [34] propose a

similar approach but choose to use genetic algorithms and Support Vector Machine (SVM)

instead of ELM. Depuru et al. [14] develop another data mining based scheme utilizing

SVM as well. Unfortunately, these techniques cannot sort out the energy thieves with

absolute certainty. In contrast, Bandim et al. [5] propose a central observer to measure the

total energy consumption of a small number of users, and are able to identify all the energy

thieves by comparing the total energy consumption with the reported energy consumption

from the users.

Notice that in all the above works, the UC has to know some of users’ private infor-

mation, e.g., users’ load profles or meter readings at certain times, in order to fnd the

energy thieves. However, the disclosure of such information would violate users’ privacy

and raise concerns about privacy, safety, etc. In particular, users’ private information may

be sold to interested third-parties. Insurance companies may buy load-profles from the UC

to make premium adjustments on the users’ policies. For example, they could fnd electric-

ity consumption patterns that increase the risk of fre in a property and increase insurance

premiums accordingly. Marketing companies may also be interested in this data to identify

potential customers. Moreover, criminals may utilize such private information to commit

crimes. For instance, robbers may analyze the energy consumption pattern of potential

victims to deduce their daily behavior. They can even know if a robbery alarm has been set

at their target location [43]. Many researchers, such as Quinn [42], have realized how high

resolution electricity usage information can be used to reconstruct many intimate details
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of a consumer’s daily life and invade his/her privacy, and thus call for state legislators and

public utility commissions to address this new privacy threat [35].

Unfortunately, there is currently a lack of research on privacy-preserving energy theft

detection in smart grids. Li et al. [29] design a privacy-preserving aggregation protocol

to collect the total energy consumption of a group of users at a distribution station in

smart grids, which shares a similar idea to those works like [21] on privacy-preserving

data aggregation in wireless sensor networks. However, such algorithms cannot be used

to detect energy theft in smart grids. To the best of our knowledge, we are the frst to

investigate the energy theft detection problem considering users’ privacy issues.

In particular, intuitively and as in previous works, we need to know about a user’s

electric power consumption in order to tell whether he/she is committing fraud or not,

which, however, results in the reveal of the user’s privacy. Therefore, energy theft detection

and users’ privacy seem to be two conficting problems. How to detect energy theft while

preserving users’ privacy is a challenging problem. In this paper, utilizing peer-to-peer

(P2P) computing [46], we propose three distributed algorithms to solve a linear system of

equations (LSE) for the users’ “honesty coeffcients”. If a user’s honesty coeffcient is equal

to 1, this user is honest. Otherwise, if the honesty coeffcient is larger than 1, then this user

has reported less consumed energy and hence is committing fraud. The users’ privacy can

be preserved because they do not need to disclose any of their energy consumption data to

others.

More specifcally, we propose to take advantage of distributed LU and QR decompo-

sitions to solve our LSE. Although some distributed algorithms for LU or QR decomposi-
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tion [39] have been proposed in the literature, e.g., [1,18,30,57], they cannot preserve each

node’s private information. In this paper, we frst develop a distributed privacy-preserving

energy theft detection algorithm leveraging LU decomposition, called LUD. We fnd that

LUD can successfully identify all the energy thieves in a small size network but may be un-

stable in large networks1. Then, we design another algorithm based on LU decomposition

with partial pivoting, called LUDP, which can fnd all the energy thieves even in large-size

networks. We also propose a third algorithm by QR decomposition, called QRD, which

also works well in large-size networks. Moreover, the LUD, LUDP, and QRD algorithms

are proposed in the case that users commit energy theft at a constant rate, i.e., with constant

honesty coeffcients. We further propose adaptive LUD/LUDP/QRD algorithms to account

for the scenarios where the users have variable honesty coeffcients.

In addition, after presenting the proposed algorithms, we analyze the computational

and communication complexities of the two stable algorithms, i.e., LUDP and QRD. We

fnd that LUDP algorithm has a computational complexity of �(2n3/3) and a communi-

cation complexity of �(2n3/3), and the QRD algorithm has a computational complexity

of �(2n3) and a communication complexity of �(5n3/6). In other words, the QRD algo-

rithm has higher computational complexity and higher communication complexity com-

pared with the LUDP algorithm.

The rest of this paper is organized as follows. Section 4.2 introduces network model.

Section 4.3 presents the linear system of equations for energy theft detection. Section

4.4 details the proposed distributed algorithms for solving the LSE. Computational and

1This is due to the rounding errors in LU decomposition.
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communication complexity analysis is provided in Section 4.5. Simulation results are

shown in Section 4.6. Finally, we conclude this paper in Section 4.7.

4.2 Network Model

In this section, we frst present the network architecture considered in this paper, and

then briefy introduce the possible attacks on smart meters (SMs) by energy thieves, and

possible implementations of the proposed algorithms on the SMs.

4.2.1 Network Architecture

In the smart grid, communications and electricity networks overlay each other. Utility

companies (UCs) deploy control centers (CCs) to monitor their distribution stations (DSs)

and distribution networks, and deploy SMs at users’s premises to measure their individual

energy consumption. Since a CC is usually physically far away from users, a communi-

cation entity that can facilitate the communication between users and the CC is necessary.

To this end, an access point, called “the collector”, is placed at each of the serviced areas.

One SM is installed at each collector to measure the total energy consumed by the serviced

area.

A typical network architecture is depicted in Figure 4.1. In a serviced area, the users’

SMs together with the collector form a Field Area Network (FAN). The communications

among SMs and between SMs and the collector are carried out wirelessly due to SMs’

communication capability, while the communications among the CC, the DS, and the col-

lector are conducted via wired medium.
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Figure 4.1

A typical architecture of Field Area Network (FAN).

4.2.2 Attacks on Smart Meters

Smart meters can provide the users with a plethora of unique features. For example,

users can be provided with real time electricity pricing and thus determine when to turn

on/off some of their electrical devices. Smart meters can also send incentive-based load

reduction signals to users so that they can be compensated for their efforts to save energy.

However, compared to mechanical meters which can only be physically tampered, smart

meters are vulnerable to more types of attacks, which may make energy theft easier to

commit and hence an even more serious problem in smart grids.

4.2.2.1 Physical Attack

Conventional mechanical meters and SMs are both vulnerable to this type of attack. It

refers to the scenarios where illegal users physically modify their meters to record wrong

values that will lower their electric bills. Physical attack to electricity meters includes

meter reversing, tampering with strong magnets, pressure coil damaging, supply voltage

regulation, and even disconnecting the meters. The readers are referred to [13] for a more

extensive description on physical attacks.
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One way to detect physical attacks is to visually check the meter for any broken seals or

other signs of damage. However, this detection method is both resource and time consum-

ing because employees from the UC have to visit the users’ premises to verify the meters’

integrity. Moreover, signs of damage may not be obvious and seals may be replaced.

4.2.2.2 Network Attack

An illegal user can operate a malicious node to perform network attack. For example,

an illegal user may impersonate his/her own SM and make it record lower power consump-

tion. Network attack may be easier to launch and more diffcult to detect.

In addition to attacking the smart meter, a user may also get some energy that is not

being measured, e.g., through a conductor that bypasses the meter. In this case, the smart

meter does not correctly measure the energy consumption of the user and hence can also

be considered as being attacked. The proposed algorithms can address all these problems.

4.2.3 Possible Implementation of the Proposed Algorithms

The proposed algorithms can be implemented in the frmware of the smart meters.

Many mechanisms have been proposed to protect the frmware of embedded systems, such

as passwords, centralized intrusion detection, local intrusion detection, and intrusion self-

reporting. For example, LeMay et al. [27] develop a remote attestation mechanism that

allows centralized intrusion detection of all SMs in a neighborhood. If any intrusion to the

frmware is detected by the UC, the suspect SMs cannot be trusted and must be inspected.
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Consequently, SMs can be trusted in correctly executing the proposed privacy preserving

energy theft detection algorithms2.

4.3 A Linear System of Equations for Energy Theft Detection

In this section, we present a mathematical model for energy theft detection. As men-

tioned before, we assume that an SM is installed at the collector such that the collector can

know the total power consumption of the users in the service area. We also assume that

the UC installs an SM at each of the users’ premises, which is capable of recording energy

consumption at any time instant.

Consider a FAN of n users. We defne a sampling period denoted by SP . Then, after

every sampling period, all the n + 1 SMs will record their energy consumption in the past

sampling period. We denote such energy consumption recorded by user j (1 ≤ j ≤ n)

and by the collector at time ti, by pti,j and P ti , respectively. We further defne an honesty

coeffcient, denoted by kj where kj > 0, for each user j. Thus, kj ·pti,j gives the real energy

consumption of user j from time instant ti − SP to time instant ti. Since the sum of all the

recorded energy consumption at time ti must be equal to the total energy consumption of

the neighborhood measured at the collector at time ti, we have

k1pti,1 + k2pti,2 + ... + knpti,n = P ti (4.1)

Our objective is to fnd all the kj ’s. Obviously, 1) if kj = 1, then user j is honest

and did not steal energy; 2) if kj > 1, then user j recorded less energy than what he/she

2Note that although we assume a secure frmware for SMs, the upper layer software for SMs can still be

compromised.

83



consumes and hence is an energy thief; and 3) if 0 < kj < 1, then user j recorded more

than what he/she consumes, which means that his/her smart meter may be malfunctioning.

In particular, with n linear equations, we can have a linear system of equations (LSE)

as follows:

k1pt1,1 + k2pt1,2 + ... + knpt1,n = P t1 

... (4.2)

k1ptn,1 + k2ptn,2 + ... + knptn,n = P tn

which can also be formulated in matrix form:

Pk = P . (4.3)

The jth column of P represents the data recorded and stored by user j or SMj , while the

ith row of P represents the data recorded by all the users at ti. The collector can choose

n time instances when P ti’s all have different values. In this case, it is highly likely that

the LSE is independent and the rows of P are independent as well, especially when n is

large3. Thus, the above LSE only has a single unique solution, i.e., the feasible solution

kj = pti,j /pti,j where pti,j is the real energy consumption of user j from time instant

ti − SP to time instant ti.

Note that our model does not take into account power dissipation, or technical losses

(TLs), in the power system, which are mainly caused by the intrinsic ineffciencies in trans-

formers and low voltage power lines. However, TLs can be calculated without using con-

3Besides, note that usually there are always some appliances running at users’ premises, such as refriger-

ators and air conditioners, whose working powers are in practice dynamic with some fuctuations instead of

constants.
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sumers’ power measurements. For example, Oliveira et al. [40] describe how to calculate

TLs using measurements at the distribution station and the knowledge of the distribution

network which does not need to compromise users’ privacy. Thus, once the technical losses

are calculated by the collector, the collector can adjust the model by subtracting the TLs

from vector P .

Besides, note that fnding the honesty coeffcient vector, k, is delay tolerant. In other

words, k, is not required to be found and transmitted to the collector in real time. This

gives priority to other real time traffc in the FAN, such as electricity pricing, incentive-

based load reduction signals, and emergency load reduction signals.

4.4 Finding Honesty Coeffcients by P2P Computing

In what follows, based on P2P computing (or distributed/collaborative computing),

we propose three algorithms that can solve the linear system of equations in (4.3) while

preserving the users’ privacy. The challenge is that each smart meter SMj needs to fnd

its own honesty coeffcient kj without knowing any of the other smart meters’ recorded

energy consumption data pti,l’s, where 1 ≤ i ≤ n and j 6= l.

Specifcally, we frst develop an LU decomposition based approach, called LUD, to

detect the energy thieves while preserving users’ privacy. We notice that in its original

form, LUD may not be numerically stable in large size networks. The reason is that the

inaccuracies involved when using fnite resolution numbers may lead to solutions with sig-

nifcant errors when n is large. Therefore, after proposing the LUD algorithm, we design

another algorithm to achieve numerical stability by exchanging rows of the matrix P dur-
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ing LU decomposition, i.e., LUD with partial pivoting (LUDP). After that, we also propose

a QR Decomposition based algorithm, called QRD, to perform stable P2P computing in

large-scale networks to fnd the energy thieves.

In the following, we detail these three algorithms, respectively, when the honesty coef-

fcient vector, k, is a constant, and then discuss the cases where k changes with time.

4.4.1 The LUD Algorithm

We frst describe the LUD algorithm as follows, which is based on distributed LU

decomposition. The LU decomposition is to factorize the power consumption data matrix

P into two triangular matrices: a lower triangular matrix L and an upper triangular matrix

U , i.e., P = LU .

The elements of upper triangular matrix U can be calculated as follows:

ui,j = 0, i > j (4.4)

u1,j = pt1,j , j = 1, 2, ..., n (4.5)

r−1X 
ur,j = ptr,j − lr,kuk,j , r = 2, ..., n, j = r, ..., n (4.6)

k=1 

where pti,j is the ith element of column j in matrix P . Besides, the elements of lower

triangular matrix L can be obtained by

li,j = 0, i < j (4.7)

pti,1li,1 = , i = 1, 2, ..., n (4.8)
pt1,1 

q−1P 
pti,q − li,kuk,q 

li,q =
k=1 , q = 2, ..., n, i = q, .., n (4.9)
uq,q 
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Note that the diagonal elements ofL are equal to 1. This guarantees that the decomposition

of P is unique.

After matrices L and U are collaboratively computed, the following system can be

solved:

Ly = P , (4.10)

Uk = y. (4.11)

In particular, to solve for y, each SMj−1 will calculate yj as follows, i.e., y1 = P t1 , and

j−1X 
yj = P tj − lj,qyq, j = 2, ..., n. (4.12)

q=1 

The required values for this computation are the elements of y with index less than j and

row j of L. Finally, Each SMj solves for kj using backward substitution, i.e., kn =
yn ,
un,n

and

nP 
yj − uj,pkp 

p=j+1 
kj = j = 1, ..., n − 1. (4.13)

uj,j 

Therefore, our LUD algorithm is composed of two parts: Distributed LU Decomposi-

tion and Backward Substitution, which are detailed by Procedure 1 in Fig. 4.2 and Proce-

dure 2 in Fig. 4.3, respectively. Besides, before the algorithm can begin, the collector must

number all the SMs from 1 to n, and the index number of any SM is only known to the SM

itself and the collector. The collector also transmits P tj+1 to each SMj to allow the SMs to

collaboratively compute L, U , and y. We denote the smart meter at the collector as SM0.

All SMs start running Procedure 1 in Fig. 4.2 when the collector requests them by sending

a control message.
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Specifcally, SM0 frst calculates y1 = P t1 , and then transmits it to SM1. SM0 does

not need to compute any element of L or U . After SM1 receives y1, it computes column

1 of U , column 1 of L, and y2. Then, SM1 transmits column 1 of L, y1, and y2 to SM2.

SMj (1 < j < n), receives y1 through yj and columns 1 through j − 1 of L from SMj−1,

based on which it calculates column j of U , column j of L, and yj+1. After that, SMj 

transmits columns 1 through j of L and y1 through yj+1 to SMj+1. Finally, SMn receives

yn and columns 1 through n − 1 from SMn−1, calculates column n of U and column n of

L, and notifes the collector that the Back Substitution procedure, i.e., Procedure 2 in Fig.

4.3, can start. Notice that each SMj (j > 0) is responsible for computing column j of U ,

column j of L, and yj+1 (1 ≤ j < n).

After Procedure 1 in Fig. 4.2 ends, SMj (1 ≤ j ≤ n) has obtained the jth column

of U and yj . The collector then instructs all the smart meters to run Procedure 2 in Fig.

4.3 to solve for their own honesty coeffcients according to (4.12), starting from SMn. In

particular, SMn transmits un−1,nkn, which is needed by SMn−1 to solve for kn−1, along

with un−2,nkn, ..., u1,nkn, needed by SMn−2, ..., SM1, respectively, to SMn−1. Simi-

P 
larly, SMj (1 < j < n) receives n 

from SMj+1 and solves for kj , and thenq=j+1 uj,qkq 

P n
transmits uj−1,q along with u1,j kj , ..., uj−2,j kj , u1,j+1kj+1, ..., uj−2,j+1kj+1, ...,q=j kq 

P n u1,nkn...uj−2,nkn to SMj−1. Finally, SM1 receives q=2 u1,qkq from SM2 and solves for

k1. Moreover, after obtaining its honesty coeffcient, each smart meter SMj encrypts kj 

using the collector’s public key, resulting in E(kj ), and then transmits E(kj ) to the collec-

tor. When all the E(kj )’s have been reported to the collector, the LSE can be successfully
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solved, and hence the collector can decrypt all the elements of k and identify all the fraud-

ulent users.

Notice that in LUD, the collector does not know L or U , and hence cannot recover P .

Moreover, from equation (4.13), we can observe that SMj will need all the elements of

U in row j and kn, kn−1, ..., kj+1 in order to compute kj . If such data are transmitted to

SMj separately, an eavesdropper would be able to fgure out all the elements of U , except

those on the diagonal, by eavesdropping on all the transmissions in the network. Since an

eavesdropper is able to obtain L by eavesdropping, too, it can fgure out some elements

of P (e.g., all the elements above the diagonal of P ). To prevent this from happening,

as mentioned above and shown by Procedure 2 in Fig. 4.3, we transmit the multiplication

of an element of U and the corresponding honesty coeffcient instead. Notice that in this

case an eavesdropper may be able to guess the power consumption of certain honest users

(i.e., those whose honesty coeffcients are equal to 1) at certain times by assuming k = 1.

However, even so since the eavesdropper does not know the mapping between smart meter

indexes and users (only the collector knows), it cannot really know any user’s power con-

sumption data. Besides, the eavesdropper does not know which users are honest anyway.

In addition, to defend against the case that the collector has the capability of eavesdropping

on all the transmissions in the network, we can just enable each neighboring two smart me-

ters, i.e., SMj and SMj+1 where 1 ≤ j ≤ n − 1, to establish a symmetric security key on

their own to encrypt the data transmitted in Procedure 2 in Fig. 4.3 (line 7 and line 8). In

so doing, no user’s private data will be revealed to or recovered by anyone else.
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4.4.2 The LUDP Algorithm

As mentioned before, LUD may not be numerically stable when n is large. Here, we

propose another algorithm, i.e., LUD with partial pivoting (LUDP), to address the stability

problem. Partial pivoting is to interchange rows of the matrix P in order to place the

element that has the greatest absolute value in each column in the diagonal position of the

matrix. Thus, LUDP decomposition has the following form, EP = LU , where E is the

permutation matrix.

The LUDP algorithm consists of three procedures: LU Decomposition with Partial

Pivoting, Forward Substitution, and Backward Substitution. Procedure 3 in Fig. 4.4 shows

how LU decomposition with partial pivoting works. Specifcally, we frst let U = P .

Then, SM1 fnds the maximum element in column 1 of U , lets the pivot index of column

1 be the row this element is in, interchanges this element with the element in row 1 if it

is not, and updates the frst column of U . SM1 also computes the frst column of L, and

transmits it together with the pivot index of column 1 to SM2. Note that in LUDP, we

compute U and L in a different way from that in LUD, as shown in Line 8 and Line 17

of Procedure 3, respectively, which now allows partial pivoting [39]. After receiving the

data from SM1, SM2 repeats SM1’s row interchange, i.e., interchanging the element in

column 2, SM1’s pivot index row of U with the element in column 2, row 1 of U . Then,

SM2 performs its own row interchange, which is to interchange the maximum element in

column 2 ofU with the second element in column 2 ofU , lets the pivot index of column 2

be the row this maximum element was in, and updates the second column ofU . After that,
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SM2 computes the second column of L, and transmits the frst two columns of L along

with the pivot index of SM1 and of SM2 to SM3. Finally, SMn receives columns 1 to

n − 1 of L and all the previous nodes’ pivot indexes from SMn−1, repeats all the previous

row interchanges, performs its own row interchange, and calculates column n of U . Note

that lj,j = 1 for 1 ≤ j ≤ n.

Moreover, due to (4.3), we need make the same row interchanges for P as those for

P . Thus, we let SMn send all the n pivot row indexes to the collector SM0, which then

performs the same row interchanges for P . Now we can solve for y and k according to

(4.10) and (4.11), respectively. In particular, since y is computed according to (4.12), y 

can only be computed after Procedure 3 in Fig. 4.4 is fnished, which is different from that

in LUD where y can be computed at the same time asL andU . Therefore, we propose the

Forward Substitution procedure as shown in Procedure 4 in Fig. 4.5, to enable the smart

meters to solve for y in a distributed way. Forward Substitution calculates yj according to

(4.12), and works similar to Backward Substitution except that it starts from SM1. At last,

after y is available, Back Substitution as described by Procedure 2 in Fig. 4.3 can be used

to solve for k.

Furthermore, the same as that in LUD, we can enable each neighboring two smart

meters, i.e., SMj and SMj+1 where 1 ≤ j ≤ n − 1, to establish a symmetric security key

on their own and encrypt the data transmitted in Procedure 2 in Fig. 4.3 (line 7 and line 8)

to protect users’ privacy.
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Compared to the LUD algorithm, LUDP takes more time to complete. This is because

in LUDP the forward substitution to calculate y can only be carried out afterL andU have

been obtained, while in LUD, y, L, and U can be obtained at the same time. On the other

hand, LUDP is numerically stable while LUD is not.

4.4.3 The QRD Algorithm

Here, we present another privacy-preserving energy theft detection algorithm, called

QRD. In particular, by QR decomposition, matrixP can be decomposed into an orthogonal

matrix Q and an upper triangular matrix R, i.e., P = QR, where Q−1 = QT . Thus, we

have Pk = QRk = P , which yields a new system

Rk = QT 
P . (4.14)

The basic idea is to utilize distributed QR decomposition to enable each smart meter to

compute its own honesty coeffcient without using other smart meters’ energy consumption

data.

We frst present how to determine Q and R in the following. In particular, QT is

formed as the product of
n(n 

2 
−1) 

plane rotation matrices as follows:

QT = Gn,n−1(Gn−1,n−2Gn,n−2) · · · (G2,1 · · · Gn,1). (4.15)

Let P̂1,0 = P and

P̂i,j = (Gi,j · · · Gn,j ) · · · (G2,1 · · · Gn,1)P̂1,0. (4.16)

Then, P̂i,j = Gi,j P̂i+1,j when i < n and P̂i,j = Gi,j P̂j,j−1 when i = n. Besides, when

Gi,j multiplies P̂i+1,j when i < n (or P̂j,j−1 when i = n) from the left, it zeros element
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P̂i+1,j (i, j) when i < n (or P̂j,j−1(i, j) when i = n), modifes rows i and i − 1 of P̂i+1,j 

(or P̂j,j−1), and preserves previously introduced zeros4. Finally, QT P reduces P into an

upper triangular matrixR, i.e., P̂n,n−1 = R.

The two most common methods to fnd plane rotation matrices (Gi,j ’s) are House-

holder Rotations and Givens Rotations (GR). In this paper we adopt the GR approach. The

non-zero elements ofGi+1,j are

gqq = 1, q 6= i, j (4.17)

gi,i = ci,j , gi+1,i+1 = ci,j , gi,i+1 = si,j , gi+1,i = −si,j (4.18)

where ci,j and si,j are calculated as

′ 2 2 pi,j pi+1,j 
pi,j = (pi,j + pi+1,j )

1/2 , ci,j = ′ , si,j = . (4.19)
′ 

p pi,j i,j 

Note that for simplicity we use pi,j to denote the element in ith row and jth column in the

previously rotated matrix, i.e., P̂i+2,j when i < n − 1 and P̂j,j−1 when i = n − 1.

Besides, the elements of the matrix after rotation, i.e., P̂i+1,j , are

P̂i+1,j (i, r) = ci,j pi,r + si,j pi+1,r for r ≥ j (4.20)

P̂i+1,j (i + 1, j) = 0 (4.21)

P̂i+1,j (i + 1, r) = −si,j pi,r + ci,j pi+1,r for r > j (4.22)

We denote by Gi,j the set that contains ci,j and si,j , i.e., Gi,j = {ci,j , si,j }. From equa-

tion (4.19), we can observe that the values needed by SMj to computeGi,j reside in column

j. This allows SMj to fnd all its rotation matrices, i.e., Gj+1,j ,..., Gn,j , only using its

4P̂  
i+1,j (i, j) denotes the element of matrix P̂  

i+1,j in row i, column j.
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locally stored and calculated data. Moreover, (4.20) shows that SMr, when r > j, needs

the set Gi,j from SMj to update its own data, i.e., column r of the rotated matrix P̂i+1,j .

In addition, notice that each column j (1 ≤ j ≤ n) has n − j elements that need to be con-

verted to zero in order to fnally fndR in (4.14). The set that contains all the Gi,j ’s which

need to be calculated by SMj , denoted by Bj , is thus Bj = {Gn−1,j , Gn−2,j , ..., Gj,j }.

The QRD algorithm is composed of two procedures: Distributed QR Decomposition

and Backward Substitution. Distributed QR Decomposition works as follows. SM1 frst

generates Gn,1 · · · G2,1 to zero n − 1 elements in the frst column of P and hence obtain

the frst column ofR. After that, it transmits B1 to SM2. SM2 uses B1 to update its energy

consumption data, i.e,. the second column of P , and generates Gn,2 · · · G3,2 to fnd the

second column of R. After that, SM2 transmits B1 and B2 to SM3, and so on and so

forth. Finally, SMn receives B1, B2, ..., and Bn−1 from SMn−1, updates its own energy

consumption data, fnds the nth column ofR. SMn then transmits B1, B2, ..., and Bn to the

collector. Therefore, at the end of this procedure each smart meter SMj can obtain the jth

column ofR, and the collector can computeQT and henceQT P using (4.15) and (4.17).

The procedure is explained in details in Procedure 5 in Fig. 4.6.

After Procedure 5 in Fig. 4.6, the collector will instruct the smart meters to run Back-

ward Substitution to compute their honesty coeffcients in a distributed way. In particular,

according to (4.14), at SMj (1 ≤ j ≤ n) we have

rj,j kj + rj,j+1kj+1 + ... + rj,nkn = QT 
P(j) (4.23)
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where ri,j is the element in the ith row and the jth column of R, and QT P(j) is the

jth element of QT P . So, once the collector receives all the sets Bj ’s from SMn, it will

compute QT P and distribute the jth element to SMj . SMn can then obtain its hon-

esty coeffcient kn. After that, SMn transmits rn−1,nkn, which is needed by SMn−1 to

solve for kn−1, along with rn−2,nkn, ..., r1,nkn, needed by SMn−2, ..., SM1, respectively,

P 

then transmits kq along with r1,j kj , ..., rj−2,j kj , r1,j+1kj+1, ..., rj−2,j+1kj+1,

to SMn−1. Similarly, SMj receives
n 

from SMj+1 and solves for kj , andq=j+1 rj,qkq 

P n 
q=j rj−1,q 

P 
..., r1,nkn...rj−2,nkn to SMj−1. Finally, SM1 receives

n
q=2 r1,qkq from SM2 and solves

for k1. Moreover, after obtaining its honesty coeffcient, each smart meter SMj encrypts

kj using the collector’s public key, resulting in E(kj ), and then transmits E(kj ) to the

collector. When all the E(kj )’s have been reported to the the collector, the LSE can be

successfully solved, and hence the collector can decrypt all the elements of k and identify

all the fraudulent users. This procedure is detailed in Procedure 6 in Fig. 4.7.

Notice that in QRD, although the collector can recover Q by knowing the rotation

matrices Gi,j ’s, it does not know R and hence cannot recover P . Moreover, similar to

that in LUD and LUDP, we can enable each neighboring two smart meters, i.e., SMj and

SMj+1 where 1 ≤ j ≤ n − 1, to establish a symmetric security key on their own and

encrypt the data transmitted in Procedure 6 in Fig. 4.7 (line 7 and line 8) to protect users’

privacy, if the collector can eavesdrop on all the transmissions in the network.
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4.4.4 Variable Honesty Coeffcients

In the above LUD, LUDP, and QRD algorithms, we have only considered that the

honesty coeffcient vector k is a constant5. However, when an illegal user commits energy

theft, it is possible that the rate at which he/she steals energy is variable. In other words,

an illegal user can alter the smart meter in such a way that it steals energy at different rates

at different times. Unfortunately, if k changes in an LSE, the proposed algorithms may not

work well. Next, we design adaptive algorithms to address this problem.

We notice that when k changes in an LSE, the LUD, LUDP, and QRD algorithms will

result in an honesty coeffcient vector, many of whose elements are not equal to 1. Thus,

when the collector gets the honesty coeffcient vector k and counts the number of elements

that are not equal to 1, it can infer by statistics whether it is possible to have this many

energy thieves in the network. If it is unlikely for this event to happen, the collector can

reduce the sampling period SP and run the algorithms again, until the possibility of that

event is high and k does not change any more.

We give a mathematical model as follows. Assume there are n users in a serviced area

and each of them commits energy theft independently with the same probability p. Let X 

denote the total number of energy thieves in the neighborhood. Then, X is a random vari-

able, which has a Binomial distribution. Thus, when the collector runs LUD/LUDP/QRD

and obtains the honesty coeffcient vector k, it can fnd the number of elements that are not

5Note that we can enable the SMs to report to the collector if they are disconnected from the loads.
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equal to 1, which we denote by Y . Then, the collector can calculate the probability that

this event happens as follows:

� � 
n 

P (X = Y ) = p Y (1− p)n−Y . (4.24)
Y 

In addition, in the case that each user j commits energy theft independently with a

different probability pj , X is also a random variable, but its expectation becomes E[X] =

P n pj . Recall the Chernoff bounds [9]:j=1 

• For any δ > 0,

−E[X]f(δ)P (X > (1 + δ)E[X]) < e (4.25)

where f(δ) = (1 + δ) log(1 + δ)− δ.

• For any 0 < δ < 1,

− 1 δ2E[X]
2P (X < (1− δ)E[X]) < e . (4.26)

Then, the collector can infer whether the obtained k is true or not by calculating

−E[X]f(δ)P (X ≥ Y ) < e with δ = Y/E[X]− 1 (4.27)

when Y > E[X], and

2P (X ≤ Y ) < e − 1 δ2E[X] with δ = 1− Y/E[X] (4.28)

when Y < E[X]. Besides, when Y = E[X], we set P (X = Y ) = 16.

Thus, if the estimated probability P is lower than a threshold th, we reduce the sam-

pling period SP by g (g > 0), which is a step variable, and run the LUD/LUDP/QRD

6As shown in Procedure 7 in Fig. 4.8, by setting P (X = Y ) = 1 in this case, we will run the

LUD/LUDP/QRD algorithm again with a reduced sampling period. If the obtained k does not change any
more, we consider it is the true honesty coeffcient vector we are looking for.
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algorithm again to obtain another k. This process repeats until P is no less than the thresh-

old and the obtained k is the same as the previous one. By then we consider the k is true,

i.e., the real honesty coeffcient vector in the network.

We fnally present the adaptive LUD/LUDP/QRD algorithm in Procedure 7 in Fig. 4.8,

which can detect illegal users with variable honesty coeffcients.

4.5 Computational and Communication Complexity Analysis

In this section we analyze the computational and communication complexities of LUDP

and QRD, the two stable algorithms. We defne the computational complexity as the num-

ber of elementary arithmetic operations (additions, subtractions, multiplications, divisions,

and square roots), plus the number of comparisons and row exchanges needed to fnd vec-

tor k. We defne the communication complexity as the total traffc demand in the network,

i.e., the total number of quantities that need to be transmitted in the network.

4.5.1 The LUDP Algorithm

4.5.1.1 Computational Complexity

To determine LUDP’s computational cost, we need look into the operations in Proce-

dure 3 in Fig. 4.4, Procedure 4 in Fig. 4.5, and Procedure 2 in Fig. 4.3 as follows.

In Procedure 3 in Fig. 4.4, lines 6, 8, 14, 15 and 17 conduct computations. Specifcally,

line 6 performs one row exchange and repeats (j − 1) times at SMj , where 2 ≤ j ≤ n 

and n is the number of users in the network. Line 15 also performs one row exchange

and repeats (n − 1) times. Thus, the total number of row exchanges in Procedure 3 is

P n n2+n−2 
j=2(j − 1) + (n − 1) =

2 .
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Line 8 performs two elementary operations and lies inside a nested “for” loop. To

fnd the total number of times that line 8 is executed, we frst consider the nested “for”

loops only, then consider the number of times the procedure is executed. In particular,

the inner “for” loop iterates (n − f) times and the outer “for” loop iterates (j − 1) times.

Pj−1
Therefore, we have that line 8 executes (n − f) = n(j − 1) − j(j−1) 

times for eachf =1 2 

2 ≤ j ≤ n. Then, the total number of elementary operations contributed by this line is

� �P n n(j − 1)− j(j−1) 2n3−3n2+n2 = .j=2 2 3 

Line 14 contributes one search for the highest absolute value among (n−j+1) elements

in column j, where 1 ≤ j ≤ n − 1. In the worst case scenario, each search needs (n − j)

comparisons to determine the pivot row. Thus, the total number of elementary operations

P n−1 n2−nby line 14 is (n − j) = .j=1 2 

In addition, line 17 performs one elementary operation and repeats (n − j) times for

1 ≤ j ≤ n − 1. Therefore, the total number of elementary operations performed by line

P n−1 n2−n17 is (n − j) = .j=1 2 

In Procedure 4 in Fig. 4.5, line 6 computes (j−1)multiplications and as many additions

or subtractions, which are the computations in lines 8 and 9 carried out at the previous node.

Line 11 also conducts j(n − j − 1) multiplications for 1 ≤ j ≤ n − 1. Therefore, the total

number of elementary arithmetic operations in the Forward Substitution procedure is given

P n
by 2 j=1(j − 1) = n2 − n.
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The computational complexity of Procedure 2 in Fig. 4.3, i.e., Backward Substitution,

is similar to that of Procedure 4 in Fig. 4.5, i.e., Forward Substitution, with the exception

of n additional divisions. So Procedure 2’s computational complexity is

nX 
2 (j − 1) + n = n 2 . (4.29)

j=1 

As a result, adding the above computational complexity results together, we can fnd

that the total computational complexity of LUDP, denoted by PCLUDP , is

4n3 + 15n2 − 7n − 6
PCLUDP = . (4.30)

6

4.5.1.2 Communication Complexity

The total communication complexity of LUDP is also determined by the traffc demand

of Procedure 3 in Fig. 4.4, Procedure 4 in Fig. 4.5, and Procedure 2 in Fig. 4.3.

In Procedure 3 in Fig. 4.4, only lines 20 and 23 account for communications. Ac-

cording to line 20, SMj transmits to SMj+1 the frst j columns of L (n − f + 1 ele-

ments in column f ) and j pivot row indexes. Besides, in line 23, SMn transmits all the

n pivot row indices to SM0, i.e., n quantities. Thus, the traffc demand of Procedure 3 is

P �Pj � n−1 4n3+6n2−2n(n − f + 1) + j + n = .j=1 f =1 12 

In Procedure 4 in Fig. 4.5, lines 3, 7, 10, 11, and 14 carry out transmissions. Lines 3

and 14 are executed only once and transmit one quantity each, while lines 7 and 10 repeat

(n−1) times, each of which transmits one quantity. Line 11 transmits j(n−j−1) quantities

P n−1
for 1 ≤ j ≤ n − 1. Consequently, the traffc demand of Procedure 4 is j=1 j(n − j − 

n 2+14n1) + 2(n − 1) + 2 =
3−3n 

6 .
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Similarly, in Procedure 2 in Fig. 4.3, lines 3, 7, and 8 carry out transmissions. Particu-

larly, lines 3 and 7 transmit one quantity each and repeat n and n − 1 times, respectively.

Line 8 transmits (j − 2)(n − j +1) quantities for 2 ≤ j ≤ n. Therefore, the traffc demand

of Procedure 2 is

X 3 − 3n n 
n 2 + 14n − 6

(j − 2)(n − j + 1) + 2n − 1 = . (4.31)
6

j=2 

Thus, from the above results, we can fnd that the total communication complexity of

LUDP, denoted byMCLUDP , is

8n3 − 6n2 + 54n − 12
MCLUDP = . (4.32)

12

4.5.2 The QRD Algorithm

4.5.2.1 Computational Complexity

We need examine Procedure 5 in Fig. 4.6 and Procedure 6 in Fig. 4.7 to analyze QRD’s

computational complexity.

In Procedure 5 in Fig. 4.6, line 4 performs six elementary operations (n − f) times for

1 ≤ f ≤ j − 1, where 2 ≤ j ≤ n. Thus, the total number of elementary operations by line

P n Pj
4 is 6 (n − f) = 2n3 − 8n + 6.j=2 f=1 

Besides, line 14 carries out six elementary operations and repeats (n − j) times for

1 ≤ j ≤ n − 1. Therefore, the total number of elementary operations by line 14 is

P n−16 j=1 (n − j) = 3n2 − 3n.
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Moreover, the computational complexity of Procedure 6 in Fig. 4.7 is the same as that

of Procedure 2 in Fig. 4.7 shown in (4.29). As a result, from the above results and (4.29),

we can have that the computational complexity of QRD, denoted by PCQRD, is

PCQRD = 2n 3 + 4n 2 − 11n + 6. (4.33)

4.5.2.2 QRD Communication Complexity

The total communication complexity of QRD is also determined by the traffc demand

of Procedure 5 in Fig. 4.6 and Procedure 6 in Fig. 4.7.

In Procedure 5 in Fig. 4.6 , lines 19 and 21 carry out transmissions of B1...Bj for

1 ≤ j ≤ n. Since Bk (1 ≤ k ≤ j) contains n − k Gp,q sets, each of which contains two

P n Pj 2n3−2nquantities, the traffc demand of Procedure 5 is 2 (n − k) = .j=1 k=1 3 

Moreover, the traffc demand of Procedure 6 in Fig. 4.7 is the same as that of Procedure

2 in Fig. 4.7 shown in (4.31). Consequently, the communication complexity of QRD,

denoted byMCQRD, is

5n3 − 3n2 + 10n − 6
MCQRD = . (4.34)

6

4.6 Simulation Results

Here, we perform two series of simulations to evaluate the performance of our privacy-

preserving energy theft detection algorithms LUD, LUDP, and QRD. In the frst part, we

assume that illegal users steal energy at a constant rate and thus have constant honesty

coeffcients. In the second part, we consider that illegal users have variable honesty coeff-
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cients. We conduct simulations in Matlab R2010a. The simulation results in the above two

cases are presented in Section 4.6.1 and Section 4.6.2, respectively.

Besides, we generate users’ power consumption data,P , based on a set of data from [7]

and [51]. These two studies conduct experiments in which both commercial and residential

users are metered every hour and every half-hour, respectively. With these measurements,

both studies provide typical daily user load profles for different days of the week and

different seasons of the year.

4.6.1 Constant Honesty Coeffcients

We frst perform simulations when illegal users steal energy at a constant rate. In other

words, each illegal SM chooses a rate to steal energy and never changes this rate or stops

stealing, thus having a constant honesty coeffcient.

We evaluate the performance of LUD, LUDP, and QRD, when every user commits

energy theft with a probability of 0.3 and there are totally 15, 30, and 50 users, respectively.

Each energy thief chooses a honesty coeffcient uniformly and randomly in [1.1, 10]. As

shown in Fig. 4.9, the LUD algorithm can work well when there are 15 and 30 users in

total. In particular, in Fig. 4.9(a) we can see that 6 users have an honesty coeffcient larger

than 1. It means that these 6 SMs only record a fraction of their consumed energy. Using

these results, the collector can easily identify the energy thieves and how much less they

have paid in their monthly bills. We can also observe that the legal users have an honesty

coeffcient equal to 1 and can be easily identifed as well. Similar results are shown in Fig.

4.9(b) when there are 30 users. Besides, we can also fnd that LUDP and QRD can obtain
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the same results as LUD in these two cases. Moreover, the results of LUD, LUDP, and

QRD when the number of users is 50 are presented in Fig. 4.10. In this case, the LUD

algorithm is not stable. It fnds 49 illegal users while in practice there are only 17 energy

thefts. In contrast, the LUDP and QRD algorithms can successfully identify all the 17

illegal users.

4.6.2 Variable Honesty Coeffcients

We then conduct simulations when illegal users steal energy at variable rates. We

consider that each energy thief chooses a new honesty coeffcient uniformly and randomly

in [1.1, 10] each time after a certain period. we frst consider that all the users commit

energy theft with the same probability p = 0.3, and then consider that each user commits

energy theft with a probability independently and randomly chosen between 0.3 and 0.7.

In particular, when all the users have the same cheating probability p = 0.3, we fnd that

the adaptive LUD algorithm is not stable when there are more than 25 users in the network.

The results are omitted due to space limitation. Besides, we show the results of the adaptive

LUDP/QRD algorithm in Fig. 4.11, when the number of users is equal to 100, 200, and

300, respectively. We can see that all the energy thieves can be found. Moreover, when

each user commits energy theft with a probability independently and randomly chosen

between 0.3 and 0.7, we show the results of the adaptive LUDP/QRD algorithm in Fig.

4.12, in the cases that the number of users is equal to 100, 200, and 300, respectively. We

can fnd that in these cases, the adaptive LUDP/QRD algorithm can also successfully and

effciently identify those fraudulent users.
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4.7 Conclusion

In this paper, we have presented three P2P computing algorithms, i.e., LUD, LUDP,

and QRD, which can identify the users who are committing energy theft in smart grids

while preserve all users’ privacy. The three algorithms are distributed algorithms and are

based on LU or QR decomposition. We can observe that no private data from any user

needs to be transmitted to other users or to the collector, which cannot be recovered either,

thus preserving users’ privacy. We have also analyzed the computational and communica-

tion complexities of the proposed algorithms, and fnd that QRD has higher computational

complexity and higher communication complexity compared to LUDP. Moreover, exten-

sive simulations have been conducted. The simulation results show that fraudulent users

can be detected both when they commit energy theft at a constant rate, i.e., with constant

honesty coeffcients, and when they steal energy at variable rates, i.e., with variable honesty

coeffcients.
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Input: j → SMj , P tj+1 → SMj 
1: if j = 0 or SMj receives packets from SMj−1 then

2: if j = 0 then
3: Compute y1 using (4.12)

4: Transmit y1 only to SM1 
5: end if

6: if 1 ≤ j ≤ n − 1 then
7: for q = 1 to j do
8: Compute uq,j using (4.4)

9: end for

10: for q = j + 1 to n do
11: Compute lq,j using equation (4.7)

12: end for

13: Compute yj+1 using (4.12)

14: Transmit columns 1, 2, ..., j of L and all known elements of y1, ..., yj+1 
only to SMj+1 

15: end if

16: if j = n then
17: Notify the collector that L, U , and y are available
18: end if

19: end if

Figure 4.2

Procedure 1: Distributed LU Decomposition
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1: if j = n or SMj receives packet from SMj+1 then

2: Compute kj as described in (4.13) using sj+1 if necessary

3: Compute E(kj ) and transmit E(kj ) to the collector
4: Compute uq,j kj for q = j − 1, j − 2, ..., 1
5:

6:

if j = 1 then P n
Compute sj = kqq=j uj−1,q

7: Transmit sj to SMj−1 
8: Transmit u1,j kj , ..., uj−2,j kj , u1,j+1kj+1, ..., uj−2,j+1kj+1, ..., u1,nkn, ...,

uj−2,nkn to SMj−1 
9: end if

10: end if

Figure 4.3

Procedure 2: Backward Substitution

6
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25

Input: j → SMj 
1: U = P 
2: if received packet from SMj−1 or j = 1 then
3: if j = 1 then
4: Receive columns 1, 2, ..., j − 1 of L and pivot indexes
: for f = 1 to j − 1 do
6: Update column j of U by interchanging the jth element of row f 

with the jthe element of the pivot row of SMf 
7: for r = f + 1 to n do
8: ur,j = ur,j − lr,f uf,j 
9: end for

: end for

11: end if

12: Compute lj,j = 1
13: if j = n then
14: Determine pivot rows in column j of U 
: Interchange the jth element of row j with the jth element of the pivot

row in U and L 
16: for r = j + 1 to n do
17: Compute lr,j =

ur,j

uj,j

18: Compute ur,j = 0
19: end for

: Transmit columns 1, 2..., j of L and pivot row indexes to SMj+1.

21: else

22: Notify the collector that L and U are available
23: Transmit all the n pivot row indexes to SM0 
24: end if

: end if

Figure 4.4

Procedure 3: LU Decomposition with Partial Pivoting

6

6
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Input: j → SMj 
1: if j = 0 or SMj receives packets from SMj−1 then

2: if j = 0 then
3: Compute y1 = P t1 and transmit y1 to SM1 
4: end if

5: if 1 ≤ j ≤ n − 1 then
6: Compute yj+1 as described in (4.12) using sj−1 if necessary

7: Transmit yj+1 to SMj+1 
8: Compute lq,j yj for q = j + 1, j + 2, ..., n Pj
9: Compute sj = q=1 lj+1,qyq 
10: Transmit sj to SMj+1 
11: Transmit lj+2,1y1, ..., ln,1y1, ..., lj+2,j yj , ..., ln,j yj to SMj+1 
12: end if

13: if j = n then
14: Notify the collector that y is available
15: end if

16: end if

Figure 4.5

Procedure 4: Forward Substitution
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Input: j → SMj 
1: if j > 1 and SMj receives B1, B2...Bj−1 from SMj−1 then

2: for f = 1 to j − 1 do
3: for r = n − 1 to f do
4: Update elements in column j of P using Gr,f and Gr+1,f as de-

scribed in (4.20).

5: end for

6: end for

7: for q = n to j + 1 do
8: Compute cq,j and sq,j using (4.19) and store them

9: Zero element pq,j using (4.20)
10: end for

11: end if

12: if j = 1 then
13: for q = n to j + 1 do
14: Compute cq,j and sq,j using (4.19) and store them

15: Zero element pq,j using (4.20)
16: end for

17: end if

18: if j = n then
19: Transmit B1...Bj to SMj+1 
20: else

21: Transmit B1...Bj to the collector

22: end if

Figure 4.6

Procedure 5: Distributed QR Decomposition

6
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1: if j = n or SMj receives packet from SMj+1 then

2: Compute kj as described in (4.23) using sj+1 if necessary

3: Compute E(kj ) and transmit E(kj ) to the collector

4: Compute rq,j kj for q = j − 1, j − 2, ..., 1

5: if j = 1 then

6:
P n

Compute sj = kqq=j rj−1,q

7: Transmit sj to SMj−1 

8: Transmit r1,j kj , ..., rj−2,j kj , r1,j+1kj+1, ..., rj−2,j+1kj+1, ..., r1,nkn, ...,

rj−2,nkn to SMj−1 

9: end if

10: end if

Figure 4.7

Procedure 6: Backward Substitution

6
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1: repeat

2: The collector instructs all SMs to take n samples with a initial sampling pe-

riod SP 
3: Run the LUD/LUDP/QRD algorithm

4: if The collector receives all elements in k then
5: Y = the number of elements in k unequal to 1, i.e., the number of illegal

SMs

6: end if

7: The collector calculates the probability that there are Y illegal users according
to (4.24) or (4.27) or (4.28), denoted by P .

8: if P < th (a threshold) or P = 1 then
9: SP = SP − g (g > 0 is a step variable)
10: end if

11: until P ≥ th and k does not change any more

Figure 4.8

Procedure 7: Adaptive LUD/LUDP/QRD Algorithm
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Figure 4.9

Elements of k obtained by the LUD algorithm.
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Figure 4.10

Elements of k obtained by the LUD, LUDP, and QRD algorithms in a network of 50 users.
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Figure 4.11

Elements of k obtained by the LUDP and QRD algorithms – constant cheating probability.
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Figure 4.12

Elements of k obtained by the LUDP and QRD algorithms – variable cheating probability.
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CHAPTER 5

CONCLUSIONS

This dissertation studies optimal energy management, and privacy-preserving energy

theft detection in smart grids. In Chapter 2, we consider a third-party managing the energy

consumption of a group of smart grid users, and formulate the load scheduling problem

as a constrained multi-objective optimization problem. The frst objective is to minimize

the total energy consumption cost, while the second is to maximize its utility measured

by a certain utility function. To solve the problem, we develop an evolutionary algorithm

(EA), called LSEA, to retrieve a set of Pareto-optimal solutions and show the trade-offs

between the energy consumption cost and the utility. To improve the algorithm effciency,

we design ǫ-LSEA, an ǫ-Pareto evolutionary algorithm that fnds ǫ-Pareto fronts of the

objective space. Extensive simulations were conducted to evaluate the performance of the

proposed algorithms. We can observe that ǫ-LSEA is more effcient compared to LSEA.

In Chapter 3, we study the optimal energy management problem taking into consider-

ation unpredictable load demands and distributed energy resources. Both delay intolerant

(DI) and delay tolerant (DT) load demands were studied. We frst formulated an optimiza-

tion problem, which turned out to be a time-coupling problem and prohibitively expensive

to solve. Then, we reformulated the problem using Lyapunov optimization theory and de-
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veloped a dynamic energy management scheme that can dynamically solve the problem

in each time slot based only on the current system state. Through mathematical analysis,

we were able to obtain both a lower and an upper bound on the optimal result of the orig-

inal optimization problem. Furthermore, in the case of both DI and DT load demands, we

showed that DT load demands are guaranteed to be served within user-defned deadlines.

Extensive simulations were conducted to validate the effciency of the developed schemes.

In Chapter 4, we have presented three P2P computing algorithms, i.e., LUD, LUDP, and

QRD, which can identify the users who are stealing energy in smart grids while preserving

all users’ privacy. The three algorithms are distributed algorithms and are based on LU or

QR decomposition. We can observe that no private data from any user needs to be trans-

mitted to other users or to the collector, which cannot be recovered either, thus preserving

users’ privacy. We have also analyzed the computational and communication complexities

of the proposed algorithms, and fnd that QRD has higher computational complexity and

higher communication complexity compared to LUDP. Moreover, extensive simulations

have been conducted. The simulation results show that fraudulent users can be detected

both when they commit energy theft at a constant rate, i.e., with constant honesty coeff-

cients, and when they steal energy at variable rates, i.e., with variable honesty coeffcients.

To conclude, we describe our plans for future work. In Chapters 2 and 3 , we observe

that the energy consumption schedules found by our proposed algorithms may not be com-

patible with the underlying physical characteristics of the power system, e.g., a generator

may be too slow to adjust its output to satisfy the schedule, or a power line may be over-

loaded during certain time slots. Hence, to have a holistic modeling of the energy manage-
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ment problem, we can consider the physical characteristics of the power system. Moreover,

analyzing the energy theft detection algorithms presented in Chapter 4, we observe that the

utility company needs an approximation of the network’s thermal losses to adjust the linear

system of equations, which may sometimes be infeasible in practice. Future work for en-

ergy theft detection includes taking into account the physical characteristics of the power

system, i.e., voltages, currents, and impedances, to enable real-time calculation of thermal

losses. Moreover, by considering stronger energy thieves, i.e., thieves that can completely

compromise their smart meters, we can design more robust energy theft detection algo-

rithms.
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