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In this thesis we study two reaction-diffusion models that have been used to analyze

the existence of alternate stable states in ecosystems. The first model describes the steady

states of a logistic growth model with grazing in a spatially homogeneous ecosystem. It

also describes the dynamics of the fish population with natural predation. The second

model describes phosphorus cycling in stratified lakes. The same equation has also been

used to describe the colonization of barren soils in drylands by vegetation.

In this study we discuss the existence of multiple positive solutions, leading to the

occurrence of S-shaped bifurcation curves. We were able to show that both the mod-

els have alternate stable states for certain ranges of parameter values. We also introduce

a constant yield harvesting term to the first model and discuss the existence of positive

solutions including the occurrence of a Sigma-shaped bifurcation curve in the case of a

one-dimensional model. Again we were able to establish that for certain ranges of param-



eter values the model has alternate stable states. Thus we establish analytically that the

above models are capable of describing the phenomena of alternate stable states in ecolog-

ical systems. We prove our results by the method of sub-super solutions and quadrature

method.

Key words: Boundary value problems, Spatial ecology, S-shaped bifurcation, Method of
sub-super solutions, Quadrature method
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CHAPTER 1

INTRODUCTION

In this thesis we study two reaction-diffusion models that have been used to analyze

the existence of alternate stable states in ecosystems. The first of these models is given by
−∆u = λ[u− u2

K
− c up

1 + up
], x ∈ Ω

u = 0, x ∈ ∂Ω,

(1.1)

where ∆u = div
(
∇u
)

is the Laplacian of u, 1
λ

is the diffusion coefficient, K, c and p

are positive constants and Ω ⊂ RN is a smooth bounded region with ∂Ω in C2. We are

particularly interested in the case where p = 2. Here u is the population density and u− u
2

K

represents logistics growth.

This model describes grazing of a fixed number of grazers on a logistically growing

species (see [32]-[33]). The assumptions are that the ecosystem is spatially homogeneous

and the herbivore density is a constant which are valid assumptions for managed grazing

systems. The rate of grazing is given by
cu2

1 + u2
. This term saturates to c at high levels

of vegetation density as the grazing population is a constant. This model tries to capture

the phenomena of bistability and hysteresis and provide qualitative and quantitative in-

formation for ecosystem managements. This model has also been applied to describe the

dynamics of fish populations. In such cases the term
cu2

1 + u2
corresponds to natural pre-

dation. For more details see [22], [32], [43] and [45]. We also introduce a constant yield
1



harvesting term to this model and discuss the existence of positive solutions including the

occurrence of a Σ-shaped bifurcation curve in the case of a one-dimensional model.

The second model under consideration is given by
−∆u = λ[K − u+ c

u4

1 + u4
], x ∈ Ω

u = 0, x ∈ ∂Ω,

(1.2)

This model describes phosphorus cycling in stratified lakes (see [10]). It focuses on the

loss of phosphorus from the epilimnion (upper layer) and the sudden recycling if the hy-

polimnion (lower layer) becomes anoxic. Here u is the mass or concentration of phospho-

rous (P) in the water column and K is the rate of P input from the watershed. The rate of

recycling of P is given by
cu4

1 + u4
where c is the maximum recycling rate. The assumption

here is that the recycling is primarily from the sediments. The same equation has also been

used to describe the colonization of barren soils in drylands by vegetation (see [37]). In

this case, u is amount of barren soil and
cu4

1 + u4
represents erosion by wind and runoff.

These phenomena have been extensively studied through simple models ignoring the

spatial component and the existence of alternative stable states were reported. This study

is motivated by the results in [22] and [45] where these models for the case N = 1 have

been discussed. Here we extend this study for the higher dimension case.

1.1 Brief history and motivation

Population dynamics is the branch of life sciences that studies short and long term

changes in the size and age composition of populations, and the biological and environ-

mental processes influencing those changes. The first problem in population dynamics

2



might have been a problem about the rabbit population that appeared as a computational

exercise in Liber Abaci, a book written by the Italian mathematician Fibonacci in the year

1202. The population was modeled by the recurrence relation Pn+1 = Pn + Pn−1, which

we now recognize as the renowned Fibonacci sequence. The next significant develop-

ment in the field must be attributed to Leonhard Euler, the most prolific mathematician of

his times. In 1748 he published a treatise titled Introduction to Analysis of the Infinite,

where he introduces the geometric or exponential model of population dynamics given by

Pn+1 = (1 + r)Pn. Here Pn is the population in year n and r > 0 is the growth rate.

Euler’s idea was adapted by Malthus in his work An Essay on the Principle of Popu-

lation, published in 1798. This work is considered to be the first popular treatment of the

subject. In this book Malthus hypothesized that ”The power of population is indefinitely

greater than the power in the earth to produce subsistence for man” and drew grim conclu-

sions from it. The geometric growth of the human population and the arithmetic growth of

subsistence and the resulting check on population were at the core of his thesis. Malthus

did not try to translate his theses into mathematical models. Though he was not the one to

formulate the geometric growth model, he realized the importance of the study of popula-

tions before anyone else and gave publicity to it. This paved the way to the development

of field into an important area of research. It is due to these significant contributions that

Malthus is considered to be the father of Population Ecology.

In 1835 Belgian mathematician Adolphe Quetelet suggested that populations could not

grow geometrically forever because of the constraints noted by Malthus. He thought that

by analogy with mechanics this obstacle to growth would be proportional to square of the

3



speed of population growth. This inspired his compatriot Pierre-Francois Verhulst to refine

this idea through his logistic model (1838, see [47]):

dP

dt
= r
(

1− P

K

)
P. (1.3)

The general logistic function is characterized by a declining growth rate per capita function.

But there are some ecosystems where the growth rate per capita may achieve its peak at a

positive density. This is called the Allee effect (see Allee [1], Dennis [14], Lewis Kareiva

[30] and Shi-Shivaji [40]). This effect can be caused by shortage of mates (Hopf and Hopf

[21], Veit and Lewis [46]), lack of effective pollination (Groom [18]), predator saturation

(de Roos et. al. [13]), and cooperative behaviors (Wilson and Nisbet [48]). In this thesis

we restrict ourselves to logistic models.

1.1.1 Modeling catastrophic shifts

We expect that small changes in the environment would produce gradual and smooth

changes in an ecosystem. However studies have shown that ecosystems may abruptly

switch to contrasting alternate stable states ([4], [25], [32], [36] and [39]) i.e. the system

might have two or more stable states under the same external conditions. Once a system

undergoes a state shift, it remains in the new state until the control variable is changed back

to a much lower level. This pattern is known as hysteresis. Examples have been observed

in the desertification of Sahara region, shift in Caribbean coral reefs, and the shallow lake

eutrophication ([10], [38] and [39]). One of the first models describing such alternative

stable states

dV

dt
= G(V )− cH(V ), (1.4)

4



was discussed in [32] and [33]. This describes the effect of grazing pressure on a population

that grows logistically. Here V (t) is the vegetation biomass, G(V ) is the growth rate of

vegetation in absence of grazing, c is the herbivore population density, and H(V ) is the

per capita consumption rate of vegetation by the herbivore also known as the functional

response. There are three different types of functional response curves ([20]). A type I

functional response is a linear relationship where as a type II is of the form H(V ) = V
1+V

,

a hyperbolic function that saturates due to the time taken to handle the prey. A standard

type III functional response is H(V ) = V p

1+V p with p > 1, a sigmoidal curve with low rates

at low densities. This function is known as the Hill’s function. In [32]-[33] the authors use

a functional response term of type III with p = 2.

Similarly in [10] and [39] the authors proposed a minimal mathematical model

dP

dt
= l − sP + r

P 4

1 + P 4
(1.5)

to describe the catastrophic regime shifts between alternative stable states. The variable P

is the mass/concentration of Phosphorous in the water column, the rate of loss is s and r is

the maximum recycling rate.

These models predict the existence of multiple stable states and hysteresis. Though

such models are easy to analyze it might fail to capture the complexities of the ecosystem.

There is the danger that the alternate stable states predicted by these models might be an

artifact of the simplifications. Hence we use reaction-diffusion models to factor in the

spatial component and thus provide a more realistic picture.

5



1.1.2 Reaction-diffusion models

The simple models described in the equations (1.3), (1.4) and (1.5) assume that the

environmental effects are negligible. However in order to be realistic the spatial component

must be incorporated into these models. This can be done in several ways. Some models

treat it implicitly by incorporating it into parameters or by describing the fraction of an

environment with a property without specifying the exact arrangement. Examples of such

models include the MacArthur-Wilson models for island biogeography and the classical

metapopulation model of Levins (see [29] and [31]). The other major class of models treat

the space explicitly by describing what is happening at each location at each time. Some of

these treat space as a continuum and some as discrete. This thesis is concerned only with

reaction-diffusion (continuum) models of the form:

∂u

∂t
= d∆u+ f(x, t, u), (1.6)

where d is the rate of movement and f(x, t, u) is the reaction term. These models could

be easily extended into higher dimensions and to several interacting species. The reaction-

diffusion models can be derived by proper scaling of models based on random walks. The

pioneering work in this topic was done by J.G. Skellam who was the first to combine the

diffusive description of dispersal and population dynamics (see [8] and [42]). They can

also be derived from Fick’s law, from stochastic differential equations or from interacting

particle systems.

The reaction-diffusion models can be used to explain the effects of the size, shape

and heterogeneity of the spatial environment on the persistence and structure of popula-

6



tions. Kierstead and Slobodkin ([24]) and Skellam ([42]) discovered that reaction-diffusion

models can be used to predict the minimal domain size required to sustain a population.

Reaction-diffusion models have also been used as a prototype model for pattern formation

since the seminal result of Alan Turing ([44]). These models have also been used to study

the waves of invasion by exotic species.

In this thesis we study the existence of alternate steady states to reaction-diffusion

models 1.1 and 1.2 which are derived from equations (1.4) and (1.5) The 1-D versions

of these models have been studied in [22] and [45]. Here we extend it to the the higher

dimension case.

In the next few sections we introduce the major results presented in this thesis.

1.2 Existence and multiplicity for the grazing problem

We consider the existence and multiplicity of positive solutions to the steady state

reaction diffusion model given in (1.1). Instead of working with the particular reaction

term in (1.1) we will prove our results for a class of functions f which satisfy the following

hypothesis:

(H1) f ∈ C2([0,∞)), f(0) = 0, f ′(0) = 1, f(u) > 0 on (0, r0) and f(u) < 0 for u > r0.

Under this hypothesis it is well known that for λ > λ1(Ω) there always exists a positive so-

lution where λ1(Ω) is the principal eigenvalue of the operator−∆ with Dirichlet boundary

conditions. It is also trivial to prove that there is no solution for λ ≤ λ1(Ω). We will prove

the existence of at least three positive solutions for a certain range of λ and hence produce

a S-shaped bifurcation curve originating from the trivial branch at (λ1(Ω), 0).The study of
7



S-shaped bifurcation curves for positone problems (f(0) > 0) has a rich history (see [3],

[6], [23] and [35]). Even in the case of positone problems proving multiplicity results for

nonlinearities with falling zeros (like our reaction terms) is much harder and often remains

an open problem (see example (iv) in [6] and [28]). For such problems, the solution space

is restricted as ||u||∞ < r0. Here we deal with a situation when f(0) = 0 and when f

is a rather complicated nonlinearity with a falling zero. In fact, now the solution space is

further restricted to {(λ, ρ)|λ < λ1, 0 < ρ < r0} (see Figure 1.1).

Λ1
Λ

r0

Ρ

Figure 1.1

Bifurcation diagram for a falling zero problem

To precisely state our multiplicity result, for 0 < a < b, let

Q1(a, b,Ω) :=
max{λ1(BR), b

f(b)
(N+1

N
)N+1N2

R2 }
min{ a

||eΩ||∞f∗(a)
, 2NM
f(b)R2}

, (1.7)

where BR = B(0, R) is the largest inscribed ball on Ω (see Figure 1.2), eΩ is the unique

positive solution of −∆e = 1 in Ω, e = 0 on ∂Ω and f ∗(s) = max
t∈[0,s]

f(t). We establish:

8



Figure 1.2

BR - the largest inscribed ball in Ω

Theorem 1

Let m,M ∈ (0, r0) be such that f is non-decreasing in (m,M). Assume there exists

b ∈ [m,M ] and a ∈ (0, b) such that Q1(a, b,Ω) < 1. Then (1.1) has three positive

solutions for λ ∈
(
max{λ1(BR), b

f(b)
(N+1

N
)N+1N2

R2 },min{ a
||eΩ||∞f∗(a)

, 2NM
f(b)R2}

)
.

We will use the method of sub-supersolutions to prove our results. We prove Theorem 1

and apply our results in the case when f(u) = u− u2

K
− c u2

1 + u2
. This study is motivated

by the results in [22] and [45] where such a multiplicity result for the case N = 1 was

discussed. Here we extend this study for the higher dimension case.

1.3 Existence of alternate stable states in a phosphorous cycling model

We will discuss the existence of alternate stable states to the nonlinear boundary value

problem given in (1.2). As with the harvesting model described in the previous section,

9



instead of working with the particular reaction term in (1.2), we will prove our results for

a class of functions f which satisfy the following hypothesis:

(H2) f ∈ C2([0,∞)), f(u) > 0 on [0, r0) and f(u) < 0 for u > r0.

It is known that positone problems (f(0) > 0) with a falling zero have a positive solu-

tion for all λ > 0. To state our multiplicity result, for 0 < a < b, let Q2(a, b,Ω) :=
b

f(b)
(N+1

N
)N+1N2

R2

min{ a
||eΩ||∞f∗(a)

, 2NM
f(b)R2}

, where BR = B(0, R) is the largest inscribed ball on Ω, eΩ is the

unique positive solution of −∆e = 1 in Ω, e = 0 on ∂Ω, and f ∗(s) = max
t∈[0,s]

f(t). We

establish:

Theorem 2

Let m,M ∈ (0, r0) be such that f is non-decreasing in (m,M). Assume there exists

b ∈ [m,M ] and a ∈ (0, b) such that Q2(a, b,Ω) < 1. Then (1.2) has three positive

solutions for λ ∈
(

b
f(b)

(N+1
N

)N+1N2

R2 ,min{ a
||eΩ||∞f∗(a)

, 2NM
f(b)R2}

)
.

We will use the method of sub-supersolutions to prove our results. Once we prove the

Theorem 1, we apply our results in the case when f(u) = K − u+ c
u4

1 + u4
.

This study, when the spatial component is not ignored, is motivated by the results in

[22] and [45] where such a multiplicity result for the case N = 1 was discussed. Here, we

extend this study for the higher dimension case. The arguments used to prove this theorem

are similar to those used in the proof of Theorem 1.

10



1.4 Grazing with constant yield harvesting - An existence result

We also study the existence of a positive solution u ∈ C2(Ω)
⋂
C(Ω̄) to a model with

grazing and constant yield harvesting given by
−∆u = au− bu2 − c up

1 + up
−K, x ∈ Ω

u = 0, x ∈ ∂Ω.

(1.8)

where ∆u = div
(
∇u
)

is is the Laplacian of u, a, b, c, p,K are positive constants with

p ≥ 2. Ω is a smooth bounded region with ∂Ω in C2. Here u is the population density

and au− bu2 represents logistics growth. It can be easily shown that (1.8) does not have a

positive solution if a ≤ λ1, where λ1 is the principal eigenvalue of the operator −∆ with

Dirichlet boundary condition.

We will establish our existence results by the method of sub-super solutions. In the

absence of the constant yield harvesting term K, the boundary value problem always has a

positive steady state for a > λ1.

Σ
u

Σ

f1HuL=au-bu2 f2HuL=
cup

1+up f
�

HuL=au-bu2
-

cup

1+up

Figure 1.3

Reaction terms with and without grazing.

That is, grazing alone does not eliminate the steady states for all positive ‘a’ values.
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The diffusive logistic equation with constant yield harvesting, in the absence of grazing

was studied in [34]. Here if the harvesting rate is too high then there will be no positive

steady states. The authors discuss the existence, uniqueness and stability of the maximal

steady state solutions to 
−∆u = au− bu2 −K, x ∈ Ω

u = 0, x ∈ ∂Ω,

(1.9)

where K ≥ 0 represents the harvesting effort. In particular, in [34] it is shown that if

a > λ1 and b > 0 then there exists a K1 = K1(a, b) > 0 such that for 0 < K < K1, (1.9)

has a positive solution.

Such problems, i.e., problems of the form
−∆u = λf(u), x ∈ Ω

u = 0, x ∈ ∂Ω,

(1.10)

where f(0) < 0, are referred as semipositone problems in the literature. Construction of a

subsolution (see Section 2.2.2) is more challenging in semipositone problems (see [5] and

[27]). Here our test functions for a positive subsolution must come from positive functions

ψ such that−∆ψ < 0 near ∂Ω and−∆ψ > 0 in a large enough interior of Ω so that ψ > 0

in Ω.

In our discussions we analyze (1.8), that is the model with grazing and constant yield

harvesting and prove the following result:

Theorem 3

Let a > λ1, b > 0 and c > 0 be fixed. Then there exists a K0(a, b, c, p) > 0 such that for

K < K0(a, b, c, p), (1.8) has a positive solution.

12



Figure 1.4

Subsolution for semipositone problems.

1.5 An ecological model with a Σ-shaped bifurcation curve

Finally we study the existence of multiple positive solutions in the presence of both

grazing and constant yield harvesting. However, our analysis is restricted to the one di-

mensional model namely
−u′′ = λ[u− u2

K
− c u2

1 + u2
− ε] =: f̃(u), x ∈ (0, 1)

u(0) = 0 = u(1).

(1.11)

We first prove:

Theorem 4

Given c < 2 there exists K(c) > 0 such that for K > K(c) and 2c
K2+1

+ 2
K3 < ε < 1

4K
the

boundary value problem (1.11) has a bifurcation curve that is at least Σ-shaped.

Further, given c < 2 our computational results indicate that for K � 1 there exists a

range of λ for which there exists at least four positive solutions. We will provide an ana-

lytical proof of this occurence of at least four solutions when c = 1
2
, namely we establish:

13



Λ

Ρ

Figure 1.5

Σ-shaped bifurcation curve.

Theorem 5

Let c = 1
2
. Then there exists K0 > 0 such that for K > K0 and 1

K2+1
+ 2

K3 < ε < 1
4K

the

boundary value problem (1.11) has at least four positive solutions for a certain range of λ.

We establish our proof of Theorem 4 and Theorem 5 using the quadrature method dis-

cussed in [6] and [27]. We also provide various bifurcation diagrams for positive solutions

via Mathematica computations. Here we observe that Σ-shaped bifurcation diagrams occur

for any 0 < c < 2 when ε is small and K is large.

We conclude this introduction by providing an outline of this thesis. We introduce some

of the required definitions and methods in Chapter 2. In Chapter 3 we prove Theorem 1

and establish that the grazing problem has an at least S-shaped bifurcation curve. Some

detailed result for the 1D case is presented as an appendix to this Chapter. In Chapter 4

we discuss existence of alternate stable states in a phosphorous cycling model (1.1) and

prove Theorem 2. Again an appendix with detailed one dimensional results is provided.

Theorem 3, the existence result for the model with grazing and constant yield harvesting is

proved in Chapter 5. In Chapter 6 we prove Theorems 4 and 5 and establish the existence

14



Λ

Ρ

Figure 1.6

At least four solutions for a certain range of λ.

of an at least Σ-shaped bifurcation curve for the one dimensional model with grazing and

constant yield harvesting given in (1.11). And finally in Chapter 7 the conclusions and

future directions are discussed.

15



CHAPTER 2

PRELIMINARIES

In this chapter we will discuss some preliminary results on elliptic boundary value

problems. In particular, we will discuss maximum principles, anti-maximum principles,

quadrature method and the method of sub-super solutions.

2.1 Maximum and anti-maximum principles

In the following discussion Ω is a bounded domain in Rn and u ∈ C2(Ω) ∩ C(Ω).

Lemma 1 (Maximum principle)

Let ∆u ≥ 0 in Ω. If u attains its maximum at any interior point in Ω, then u ≡M in Ω.

Lemma 2 (Hopf’s maximum principle)

Let ∆u ≥ 0 in Ω. Suppose that u ≤M in Ω and u = M at some p ∈ ∂Ω. Then
∂u

∂ν
> 0 at

p unless u ≡M where
∂

∂ν
denotes the outward normal derivative.

Lemma 3 (Anti-maximum principle, Clement and Peletier [12])

There exist a δ = δ(Ω) > 0 and a solution zλ (with zλ > 0 in Ω and
∂zλ
∂ν

< 0 on ∂Ω, where

ν is the outer unit normal to Ω) of
−∆z − λz = −1, x ∈ Ω

z = 0, x ∈ ∂Ω,

(2.1)

for λ ∈ (λ1, λ1 + δ).

16



2.2 Nonlinear boundary value problems

Consider the following Dirichlet boundary value problem:
−∆u = λf(u), x ∈ Ω

u = 0, x ∈ ∂Ω,

(2.2)

where Ω ⊂ RN is a smooth bounded region with ∂Ω in C2. In this Chapter we discuss

some of the methods and techniques used to study problems of this kind.

2.2.1 Quadrature method

Quadrature method is a simple method developed by Laetsch in [27] to study the two

point boundary value problems of the form
−u′′ = λf(u), x ∈ (0, 1)

u(0) = 0 = u(1).

(2.3)

Here λ > 0 and f satisfies the following hypotheses.

(G1) f ∈ C2([0,∞)) and f(u) > 0 for 0 < u < r0 for r0 > 0;

(G2) there exists k ≥ 0 such that f(u) − f(v) ≥ −k(u − v) for all u, v ∈ [0, r0) with

u > v;

(G3) r0 <∞ and f(r0) = 0.

Since (2.3) is autonomous, u is symmetric with respect to x = 1
2

and is increasing on

[0, 1
2
) and decreasing on (1

2
, 1]. Thus u′(1

2
) = 0 and sup{u(x) : x ∈ [0, 1]} = u(1

2
). Now

multiplying (2.3) by u′(x) we obtain

−
(u′(x)2

2

)′
= λ

(
F (u(x))

)′
, (2.4)

17



where F (s) :=
∫ s

0
f(t)dt. Integrating the above equation from x to 1

2
we get

u′(x) =
√

2λ(F (ρ)− F (u(x));x ∈ (0,
1

2
) (2.5)

where ρ = ||u||∞. Here we have used ρ = u(1
2
) and u′(1

2
) = 0. Integrating again we have,∫ u(x)

0

dz√
[F (ρ)− F (z)]

=
√

2λx, 0 < x <
1

2
. (2.6)

Substituting x = 1
2

gives,

√
λ =
√

2

∫ ρ

0

dz√
[F (ρ)− F (z)]

:= G(ρ). (2.7)

Thus if there exists a positive solution u to (2.3) with ||u||∞ = ρ, then ρ must be such that

G(ρ) exists and satisfy G(ρ) = λ.

Conversely, let ρ ∈ {u > 0 : f(u) > 0 and F (u) > F (s) for all s, 0 ≤ s < u} and

λ ∈ (0,∞) be such that G(ρ) =
√
λ. Also let u(x) be defined by (2.6). We will show

that u(x) is a positive solution of (2.3) with ||u||∞ = ρ. The left-hand side of (2.6) is a

differentiable function of u which is strictly increasing for x ∈ (0, 1) as u increases from

0 to ρ. Hence for each x ∈ [0, 1
2
), there exists a unique u(x) that satisfies (2.6). By the

implicit function theorem, u(x) is differentiable as a function of x. Differentiating (2.6),

we have

u′(x) =
√

2λ(F (ρ)− F (u(x)) (2.8)

Squaring and differentiating the above we get

−u′′(x) = λf(u(x)). (2.9)

Thus u(x) satisfies the differential equation in (2.3) and u(0) = 0. Finally, extending u(x)

as a symmetric function to (0, 1), gives a positive solution to (2.3) with ||u||∞ = ρ.
18



2.2.2 Sub-super solutions

By a subsolution of (2.2) we mean a function ψ ∈ C2(Ω)
⋂
C(Ω̄) that satisfies:

−∆ψ ≤ λf(ψ), x ∈ Ω

ψ ≤ 0, x ∈ ∂Ω

(2.10)

and by a supersolution of (2.2) we mean a function φ ∈ C2(Ω)
⋂
C(Ω̄) that satisfies:

−∆φ ≥ λf(φ), x ∈ Ω

φ ≥ 0, x ∈ ∂Ω.

(2.11)

The notion of sub and super solutions can be extended in a weak sense as follows. By a

subsolution (supersolution) of (2.2), we mean a function ψ ∈ W 1,2(Ω)
⋂
C(Ω̄) such that

ψ = 0 on ∂Ω and

∫
Ω

∇ψ.∇q ≤ (≥)

∫
Ω

λf(ψ)q, (2.12)

for every q ∈ {η ∈ C∞0 (Ω) : η ≥ 0 in Ω}. Then the following lemma holds (see [2]).

Lemma 4

Assume that f ∈ C1[0,∞). Let ψ be a subsolution of (1.1) and φ be a supersolution of

(1.1) such that ψ ≤ φ. Then (1.1) has a solution u ∈ C2(Ω) ∩ C(Ω) such that ψ ≤ u ≤ φ.

To establish our main multiplicity result we use the following very useful result discussed

in [2], [41]. Note here that by ψ1 < ψ2 we mean that ψ1 ≤ ψ2 and ψ1 6= ψ2.

Lemma 5

Let f ∈ C1([0,∞)). Suppose there exists a subsolution ψ1, a strict supersolution Z1, a

strict subsolution ψ2, and a supersolution Z2 for (1.1) such that ψ1 < Z1 < Z2, ψ1 < ψ2 <

19



Z2 and ψ2 � Z1. Then, (1.1) has at least three distinct solutions u1, u2, and u3 such that

ψ1 ≤ u1 < u2 < u3 ≤ Z2.
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CHAPTER 3

PROOF OF THEOREM 1

We prove Theorem 1 in Section 3.1. In Section 3.2 we apply our results in the case

when f(u) = u − u2

K
− c u2

1 + u2
. In Section 3.3 we provide more detailed results for the

case N = 1 using the quadrature method discussed in [6], [27].

3.1 Proof of Theorem 1

To establish the multiplicity result we have to construct a subsolution ψ1, a strict

supersolution Z1, a strict subsolution ψ2 and a supersolution Z2 for (1.1) such that ψ1 <

Z1 < Z2, ψ1 < ψ2 < Z2 and ψ2 � Z1.

Let BR be the largest inscribed ball in Ω. Define

ψ1(x) =


ε̃φ1(x) ; x ∈ BR

0 ; x ∈ Ω−BR.

(3.1)

where φ1 > 0 is an eigenfunction corresponding to λ1(BR) and ε̃ > 0. Then ψ1 ∈

W 1,2(Ω)
⋂
C(Ω̄) and ψ1 = 0 on ∂Ω. Now

−∆ψ1 = −ε̃∆φ1 = ε̃λ1(BR)φ1; x ∈ BR. (3.2)

Let H(s) = λf(s) − λ1(BR)s. Then H ′(s) = λf ′(s) − λ1(BR), H(0) = 0 and H ′(0) =

λ−λ1(BR). Since we are interested in the λ range λ > λ1(BR), clearly H ′(0) > 0. So for
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ε̃ ≈ 0 we have H(ε̃φ1) = λf(ε̃φ1) − λ1(BR)(ε̃φ1) ≥ 0. Hence from (3.2), for ε̃ ≈ 0 we

have

−∆ψ1 = ε̃λ1(BR)φ1 ≤ λf(ε̃φ1) = λf(ψ1); x ∈ BR, (3.3)

while outside BR we have −∆ψ1 = 0 = λf(0) = λf(ψ1). Thus ψ1 is a positive subsolu-

tion.

For the large supersolution choose Z2 = r0. Then −∆Z2 = 0 ≥ f(r0) = f(Z2)

making Z2 a positive super solution. For ε̃ ≈ 0 clearly ψ1 ≤ Z2.

Now for the smaller strict supersolution define Z1 =
aeΩ

||eΩ||∞
, where eΩ is the unique

positive solution of−∆e = 1 in Ω, e = 0 on ∂Ω. Since λ < a
||eΩ||∞f∗(a)

,−∆Z1 = a
||eΩ||∞

>

λf ∗(a) ≥ λf ∗( aeΩ
||eΩ||∞

) ≥ λf( aeΩ
||eΩ||∞

) = λf(Z1) in Ω. Here f ∗(s) = max
t∈[0,s]

f(t). Hence Z1

is a strict supersolution.

We will now construct the strict subsolution ψ2. Let

f̃(u) =


f̂(u); u < m

f(u) ; u ≥ m

(3.4)

where f̂(u) is defined so that the function f̃(u) is strictly increasing on (0,M) and f̃(u) ≤

f(u) (see Figure 3.1).

Let

ρ(r) =


1 ; r ∈ [0, ε]

1− [1− (R−r
R−ε )

β]α; r ∈ (ε, R], α, β > 1.

(3.5)

Note that

ρ′(r) =


0 ; r ∈ [0, ε]

−αβ[1− (R−r
R−ε )

β]α−1(R−r
R−ε )

β−1; r ∈ (ε, R], α, β > 1

(3.6)
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Figure 3.1

Graph of f̃(u)

and |ρ′(r)| < αβ
R−ε . Now define w(r) := bρ(r) and

ψ2(x) =


ψ̃2 ; x ∈ BR

0 ; x ∈ Ω−BR,

(3.7)

where ψ̃2 is the solution of
−ψ̃2

′′
(r)− N − 1

r
ψ̃2
′
(r) = λf̃(w(r)), r ∈ (0, R)

ψ̃2
′
(0) = 0 = ψ̃2(R).

(3.8)

Then ψ2 ∈ W 1,2(Ω)
⋂
C(Ω̄) and ψ2 = 0 on ∂Ω. We will now establish that ψ̃2(r) ∈

(w(r),M ] on [0, R). Then −∆ψ2 = λf̃(w(r)) < λf̃(ψ̃2(r)) ≤ λf(ψ2(r)) on [0, R)

while outside BR we have −∆ψ2 = 0 = λf(0) = λf(ψ2) and hence ψ2 will be a strict

subsolution.
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First we will show that ψ̃2(r) ≤M . Now

(rN−1ψ̃2
′
(r))′ = −λrN−1f̃(w(r)) (3.9)

ψ̃2
′
(r) =

−λ
rN−1

∫ r

0

sN−1f̃(w(s))ds (3.10)

ψ̃2(t)− ψ̃2(0) = −
∫ t

0

λ

rN−1

{∫ r

0

sN−1f̃(w(s))ds
}
dr (3.11)

But ψ̃2(R) = 0. Hence we get

ψ̃2(0) =

∫ R

0

λ

rN−1

{∫ r

0

sN−1f̃(w(s))ds
}
dr (3.12)

≤ λf̃(b)

N

∫ R

0

rds (3.13)

=
λf(b)

2N
R2 (since b ≥ m and f̃(s) = f(s) for s ≥ m. ) (3.14)

But λ < 2NM
f(b)R2 . Hence ||ψ̃2||∞ = ψ̃2(0) < M .

Next to establish ψ̃2 > w on [0, R] we will show that ψ̃2
′
< w′ ≤ 0 on [0, R]. This will

be sufficient since ψ̃2(R) = w(R) = 0. Now w′ = 0 and ψ̃2
′
< 0 in the interval [0, ε)and

hence ψ̃2
′
< w′ ≤ 0 in that interval. For r > ε we have

−ψ̃2
′
(r) =

λ

rN−1

∫ r

0

sN−1f̃(w(s))ds (3.15)

≥ λ

rN−1

∫ ε

0

sN−1f̃(w(s))ds (3.16)

=
λ

rN−1

∫ ε

0

sN−1f̃(b)ds (since ρ(s) = 1, s < ε) (3.17)

≥ λf̃(b)

RN−1

∫ ε

0

sN−1ds (3.18)

=
λf(b)

RN−1

εN

N
(since b ≥ m and f̃(s) = f(s) for s ≥ m). (3.19)

We also know that |w′(r)| ≤ bαβ
R−ε . Hence |ψ̃2

′
(r)| > |w′(r)| if λ > αβ b

f(b)
NRN−1

(R−ε)εN .

But min
0<ε<R

1
(R−ε)εN = (N+1)N+1

NNRN+1 and this minimum is achieved at ε0 = NR
N+1

. Since λ >
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b
f(b)

N2

R2 (N+1
N

)N+1 = b
f(b)

NRN−1

(R−ε0)εN0
we can choose ε = ε0 and α, β > 1 such that λ >

αβ b
f(b)

NRN−1

(R−ε0)εN0
. Hence |ψ̃2

′
(r)| > |w′(r)| on (0, R). This implies w < ψ̃2. Thus ψ2 is a

strict subsolution of (1) if b
f(b)

N2

R2 (N+1
N

)N+1 < λ < 2NM
f(b)R2 . Moreover ψ̃2(0) > w(0) = b >

a = ||Z1||∞, i.e. ψ2 � Z1. Hence by Lemma 5 Theorem 1 holds.

3.2 Results for the grazing problem

First we will analyze some properties of this nonlinearity. We will show that for large

K we can find values of c for which the function f(u) = u−u2

K
−c u2

1 + u2
satisfies (H1) and

we will also identify m,M such that f is increasing in (m,M). Clearly f ∈ C2([0,∞)),

f(0) = 0 and f ′(0) = 1. Now we will prove that the other assumptions in Theorem 1 holds

in the given example.

Proposition 6 If c > 8
3
√

3
then for K large there exists three points m1,m2 and m3 such

that 0 < m1 < m2 < m3 and f ′(mi) = 0 for i = 1, 2, 3.

We have f ′(u) = 1 − 2u
K
− 2cu

(1+u2)2 . So f ′(u) = 0 when 1 − 2u
K

= 2cu
(1+u2)2 . Let

g(u) := 2cu
(1+u2)2 . Here 1 − 2u

K
is a line passing through (0, 1) and with slope − 2

K
. We will

prove that for K >> 1, this line will cut g(u) at three different points. We have g(u) ≥ 0,

g(0) = 0 and lim
u→∞

g(u) = 0. Since g′(u) = 2c 1−3u2

(1+u2)3 , we can see that g(u) achieves a

maximum of 3
√

3c
8

at u = 1√
3
, if max

x∈(0,∞)
g(u) =

3
√

3c

8
> 1 then for K large the line 1− 2u

K

will cut g(u) at exactly three different points. Hence if c > 8
3
√

3
and K is large, then there

are exactly three positive points m1 < m2 < m3 such that f ′(mi) = 0 for i = 1, 2, 3.
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Graph of the line 1− 2u
K

and g(u)

Proposition 7 If c < 2 then for K >> 1 there exists a unique r0 > 0 such that f(r0) = 0.

If c < 8
3
√

3
, then from the geometry discussed above it is clear that for K large f(u)

has a unique positive zero. Now consider the case 8
3
√

3
< c < 2. Since c > 8

3
√

3
by

Proposition 10 we have for K large, there exist three positive numbers m1,m2 and m3

such that f ′(mi) = 0 for i = 1, 2, 3. Clearly the function f(u) has a relative minimum

at u = m2. We will prove that f(m2) > 0 for K >> 1. This implies that f(u) has a

unique positive zero. It is clear from Figure 3.2 that there exists a constant M2 such that

m2 < M2 for all K. In fact m2 = m2(K) is a continuous decreasing function of K such

that m2(K) ∈ ( 1√
3
,M2). Also lim

K→∞
f(m2) = z − c z2

1 + z2
for some z ∈ ( 1√

3
,M2). But

h(z) = z − c z2

1+z2 > 0 for z > 0 if c < 2. Hence lim
K→∞

f(m2) > 0. Thus for K large there

exists a unique r0 > m3 such that f(r0) = 0. Thus given c ∈ ( 8
3
√

3
, 2) we can find K large

so that f(u) is increasing on (m2(= m),m3(= M)) and there exists a unique r0 > 0 such

that f(r0) = 0, i.e. f(u) satisfies (H1).
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Next we will select candidates for b ∈ [m2,m3] and a ∈ (0, b) using which later we

will show that Q1(a, b,Ω) < 1. The point at which the function u
f(u)

has a minimum would

be an ideal value for b (see Figure 3.4).

m1 m2 m3 r0Α b= Β
u

u
f HuL

Figure 3.3

Graph of u
f(u)

We have ( u
f(u)

)′ = f(u)−uf ′(u)
(f(u))2 . Hence the critical points of u

f(u)
are given by f(u) −

uf ′(u) = 0 and in particular the non-zero critical points are given by 1
K
− c

1+u2 + 2c
(1+u2)2 =

0. Solving for u we get the positive critical points as α =

√
cK−2−

√
cK(cK−8)

2
and β =√

cK−2+
√
cK(cK−8)

2
. Hence u

f(u)
has a relative minimum at β. Since β → ∞ as K → ∞

and m2 is bounded we have β ∈ [m2,m3] for large K. Choose b = β. Next we choose

a ∈ (m2, b) such that f(a) = f ∗(a) = f(m1). This is possible since f(m1) is bounded

while f(b) → ∞ as K → ∞. (See Proposition 13 which follows next where it will be

established that lim
K→∞

b

f(b)
= 1. But lim

K→∞
b =∞. Hence f(b)→∞ as K →∞).

Proposition 8
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m1 m2 a

Figure 3.4

Graph of f ∗(u) (in red)

(i) b ≤
√
cK and m3 >

K
4

for K >> 1.

(ii) lim
K→∞

b

f(b)
= 1 and lim

K→∞

m3

f(b)
=∞.

(i) We have b =

√
cK−2+

√
cK(cK−8)

2
=

√
cK−2+cK

√
(1− 8

cK
)

2
≤
√
cK. Now f ′(u) =

1 − 2u
K
− 2cu

(1+u2)2 . So f ′(K
4

) = 1
2
− cK

2(1+K2

16
)2
> 0 and f ′(K

2
) = − cK

(1+K2

4
)2
< 0 for

K >> 1. Hence m3 >
K
4

for K >> 1.

(ii) We have lim
K→∞

b = lim
K→∞

√
cK − 2 +

√
cK(cK − 8)

2
= ∞. From (i) we have b ≤

√
cK. Hence lim

K→∞

b

K
≤ lim

K→∞

√
cK

K
= 0. Thus lim

K→∞

b

f(b)
= lim

K→∞

b

b− b2

K
− c b2

1+b2

= lim
K→∞

1

1− b
K
− c b

1+b2

= 1. Finally lim
K→∞

m3

f(b)
≥ lim

K→∞

K

4(b− b2

K
− c b2

1+b2
)

=∞.

Now we will discuss the existence of at least three positive solutions for a certain range of

λ (see Theorem 1) by establishing that Q1(a, b,Ω) < 1. In particular we will analyze the

following two cases: (A) Ω is a ball in RN and (B) Ω is a general bounded domain in RN .
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3.2.1 Case A: When Ω is a ball

We will now prove that when Ω is a ball of radius R (i.e. Ω = BR) in RN with N < 8

there exists K >> 1 and c close to 2 such that Q1(a, b, BR) < 1..

First for u ∈ [0,M2] and c = 2 we consider the function h(u) := lim
K→∞

f(u) = u −

2
u2

1 + u2
. Note that h′(u) = 1 − 4u

(1+u2)2 . and solving h′(u) = 0 we get m1 ≈ 0.2956 and

m2 = 1. Solving f(u) = f(m1), u 6= m1, we get a ≈ 1.5437 (see Figure 5). Hence

a
f∗(a)

= a
f(m1)

≈ 11.4445.

Our aim is to prove that for c = 2−δ, where δ ≈ 0 andK >> 1,Q1(a, b, BR) < 1. We

have already seen that b
f(b)
→ 1 and m3(=M)

f(b)
→∞ as K →∞. Hence Q1(a, b, BR) < 1 if

max{λ1(BR), (N+1
N

)N+1N2

R2 } < a
||eBR

||∞f∗(a)
= 11.4445
||eBR

||∞ , i.e. if λ1(BR)||eBR
||∞ < 11.4445

and (N+1
N

)N+1N2

R2 ||eBR
||∞ < 11.4445.

Next we evaluate ||eBR
||∞. We have −∆e = 1 in BR, e = 0 on ∂BR. Then e is radial,

radially decreasing and satisfies:
−e′′(r)− N − 1

r
e′(r) = 1, r ∈ (0, R)

e′(0) = 0 = e(R).

(3.20)

Solving this boundary value problem we obtain e(r) = 1
2N

(R2 − r2). From this it follows

that ||eBR
||∞ = e(0) = R2

2N
. Now the principal eigenvalue λ1 when Ω is a ball of radius R

is given by,

λ1(BR) =



π2

4R2 ≈ 2.4674
R2 ; N = 1

j20,1
R2 ≈ 5.7832

R2 ; N = 2

jN
2 −1,1

R2 ; N ≥ 3,

(3.21)
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where jn,1 is the first zero of the Bessel function of order n (see [19]). From [11] we have

jn,1 < (n + 1)
1
2

(
(n + 2)

1
2 + 1

)
for n > −1. Hence for N ≥ 3, we get λ1(BR)||eBR

||∞ =

jN
2 −1,1

2N
≤ (N

2
)

1
2

(
(N

2
+1)

1
2 +1
)

2N
= 1

2
√

2

(√
N+2
2N

+ 1√
N

)
< 1 < a

f∗(a)
. But we also have

λ1(BR)||eBR
||∞ = 2.4674

2
and λ1(BR)||eBR

||∞ = 5.7832
4

when N = 1 and N = 2 re-

spectively. Thus λ1(BR)||eBR
||∞ < a

f∗(a)
for all N .

Next we have N2

R2 (N+1
N

)N+1||eBR
||∞ = N

2
(N+1

N
)N+1. The function y = N

2
(N+1

N
)N+1

is increasing for positive N and N
2

(N+1
N

)N+1 < a
f∗(a)

(= 11.4445) for N < 8. Thus for

N < 8, Q1(a, b, BR) < 1 when c ≈ 2 and K >> 1.

3.2.2 Case B: When Ω is a general bounded domain

When Ω is a general bounded region we will establish a sufficient condition on the

geometry of the region for our multiplicity result to hold. Let R1 > 0, R2 > 0 be such that

BR2 = B(0, R2) ⊆ Ω ⊆ BR1 = B(0, R1) (see Figure 3.6).

Let −∆eBR1
= 1 in BR1 , eBR1

= 0 on ∂BR1 . Then eBR1
is a supersolution of the

problem −∆eΩ = 1 in Ω, eΩ = 0 on ∂Ω. Hence ||eΩ||∞ ≤ ||eBR1
||∞.

As in the case when the domain is a ball, we will try to prove that for c = 2 − δ

(where δ > 0 is very small) and K >> 1, Q1(a, b,Ω) < 1. Now Q1(a, b,Ω) < 1 if

max{λ1(BR2), (N+1
N

)N+1N2

R2
2
} < a

||eΩ||∞f∗(a)
= 11.4445
||eΩ||∞

, i.e. if λ1(BR2)||eΩ||∞ < 11.4445

and (N+1
N

)N+1N2

R2
2
||eΩ||∞ < 11.4445.

By 3.21, for N ≥ 3, we get λ1(BR2)||eΩ||∞ ≤ λ1(BR2)||eBR1
||∞ =

jN
2 −1,1

2N

R2
1

R2
2
≤

(N
2

)
1
2

(
(N

2
+1)

1
2 +1
)

2N

R2
1

R2
2

= 1
2
√

2

(√
N+2
2N

+ 1√
N

)R2
1

R2
2
<

R2
1

R2
2
. If N = 1 we have λ1(BR2)||eΩ||∞ ≤

λ1(BR2)||eBR1
||∞ = 2.4674

2

R2
1

R2
2

= 1.2337
R2

1

R2
2

and if N = 2 we have λ1(BR2)||eΩ||∞ ≤
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R1

R2

W

Figure 3.5

General domain Ω

λ1(BR2)||eBR1
||∞ = 5.7832

4

R2
1

R2
2

= 1.4458
R2

1

R2
2
. Thus λ1(BR2)||eΩ||∞ < a

f∗(a)
= 11.4445 for

all N whenever R2
1

R2
2
< 11.4445

1.4458
= 7.91569.

Next we have (N+1
N

)N+1N2

R2
2
||eΩ||∞ ≤ (N+1

N
)N+1N2

R2
2
||eBR1

||∞ = N
2

(N+1
N

)N+1R
2
1

R2
2
. Hence

in the general domain case if R
2
1

R2
2
< min{7.91569, 2

N
( N
N+1

)N+111.4445} thenQ1(a, b,Ω) <

1 when c ≈ 2 and K >> 1. Note that 2
N

( N
N+1

)N+111.4445 > 1 when N < 8.

3.3 Analytical and computational results for the case N = 1

Consider the two point boundary value problem
−u′′ = λf(u), x ∈ (0, 1)

u(0) = 0 = u(1),

(3.22)

where f satisfies the following hypotheses:
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(G1) f ∈ C2([0,∞)) and f(u) > 0 for 0 < u < r0 for r0 > 0;

(G2) there exists k ≥ 0 such that f(u) − f(v) ≥ −k(u − v) for all u, v ∈ [0, r0) with

u > v;

(G3) r0 <∞ and f(r0) = 0.

Using the quadrature method the solution u = u(x) is defined by

∫ u(x)

0

dz√
[F (ρ)− F (z)]

=
√

2λx, 0 < x <
1

2
, (3.23)

where F (s) :=
∫ s

0
f(t)dt, provided

√
λ =
√

2

∫ ρ

0

dz√
[F (ρ)− F (z)]

:= G(ρ). (3.24)

Here ρ = u(1
2
) = ||u||∞. Since f(ρ) > 0 and F (ρ) > F (z) for all 0 ≤ z < ρ, it follows

that G(ρ) exists for all ρ > 0. Infact G(ρ) is a continuous function. We also have

G′(ρ) =
√

2

∫ 1

0

H(ρ)−H(ρs)

[F (ρ)− F (ρs)]
3
2

ds (3.25)

where H(u) = F (u)− u
2
f(u). Then we have the following lemma from [6].

Lemma 6

(a) If the bifurcation curve of (4.20) is S-shaped, then H ′(ρ) < 0 for some 0 < ρ < r0

(b) If there exists positive ρ0 < r0 such that H(ρ0) < 0, then (4.20) has at least three

solutions for a certain range of λ
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Consider the case f(u) = u− u
2

K
−c u2

1 + u2
. Clearly, given c < 2 fixed then forK >> 1 f

satisfies (G1)− (G3) (see Proposition 12). Hence G(ρ) is defined for all ρ ∈ S = (0, r0).

Now we will show that there exists ρ0 ∈ (0, r0) such that H(ρ0) < 0. We have H(u) =

F (u) − u
2
f(u) = u3

6K
+ c
(

u3

2(1+u2)
− u + tan−1(u)

)
and H ′(u) = 1

2
(f(u) − uf ′(u)). The

zeros ofH ′(u) are the same as the zeros of ( u
f(u)

)′ and in Section 3.2 we have already found

that the positive roots of ( u
f(u)

)′ are α =

√
cK−2−

√
cK(cK−8)

2
and β =

√
cK−2+

√
cK(cK−8)

2
.

Hence H(u) has a maximum at u = α and a minimum at u = β. From Proposition 12 we

have β < r0 for K >> 1. We will now show that H(β) < 0 for K >> 1, giving H(u) the

shape shown in Figure 3.6.

Α Β

u

HHuL

Figure 3.6

Graph of H(u)

We have

H(β) =
β3

6K
+ c
( β3

2(1 + β2)
− β + tan−1(β)

)
(3.26)

=
β2

6K
β + c

( β2

2(1 + β2)
β − β + tan−1(β)

)
(3.27)

≤ c

6
β + c(

β

2
− β +

π

2
) = c(−1

3
β +

π

2
) (3.28)
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Clearly β → ∞ as K → ∞ and hence limK→∞H(β) < 0. Hence by Lemma 6 we have

the following result.

Theorem 9

Given c < 2 fixed then for K >> 1 the boundary value problem (4.20) has at least three

solutions for a certain range of λ.

We used Mathematica to compute
√
λ = G(ρ) in the case when f(u) = u− u

2

K
− c u2

1 + u2

and plotted the bifurcation diagrams. In Figure 3.7 and Figure 3.8 bifurcation diagrams for

a certain value of c and K are given.

20 40 60 80 100
Λ

2

4

6

8

Ρ

Figure 3.7

Bifurcation Diagram with c = 1.5 and K = 10. Here r0 = 8.19687

In Figure 3.9 the region of (c,K)-plane that satisfies the hypothesis of Theorem 9 is

given. For all values of c and K, that lies in the region enclosed by these curves, the two

point boundary value problem given in (4.20) will have at least three different solutions for

a certain range of λ values.

34



10 20 30 40 50
Λ

5

10

15

20

Ρ

Figure 3.8

Bifurcation Diagram with c = 1.5 and K = 25. Here r0 = 23.4004

f (Β) = 0

H (Β) = 0

1.0 1.5 2.0 2.5 3.0

5

6

7

8

9

10

c

K

Figure 3.9

Feasible Region
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CHAPTER 4

PROOF OF THEOREM 2

We prove Theorem 2 in Section 4.1. The proof is motivated by the arguments in the

previous chapter. In Section 4.2, we analyze in detail the phosphorus cycling model when

f(u) = K − u + c
u4

1 + u4
has a unique positive zero r0. This will be the case when

K > K0 := 3
4

4

√
3
5
− 1

4
4

√
3
5

5

and c � 1. We will prove that an S-shaped bifurcation curve

occurs when c� 1 and K0 < K < 9c
16

. This analysis turned out to be quite nontrivial and

challenging. We also obtained more detailed analytical and computational results for the

case N = 1, which are presented in Section 4.3.

4.1 Proof of Theorem 2

To establish the multiplicity result, we have to construct a subsolution ψ1, a strict

supersolution Z1, a strict subsolution ψ2, and a supersolution Z2 for (1.1) such that ψ1 <

Z1 < Z2, ψ1 < ψ2 < Z2 and ψ2 � Z1. Clearly, ψ1 = 0 is a strict subsolution since

f(0) > 0. For the large supersolution, choose Z2 = M(λ)eΩ where M(λ) > λ max
t∈[0,r0]

f(t) .

Then, −∆Z2 = M(λ) ≥ λf(Z2) making Z2 a positive super solution.

Now for the smaller strict supersolution, define Z1 =
aeΩ

||eΩ||∞
. Since λ < a

||eΩ||∞f∗(a)
,

−∆Z1 = a
||eΩ||∞

> λf ∗(a) ≥ λf ∗( aeΩ
||eΩ||∞

) ≥ λf( aeΩ
||eΩ||∞

) = λf(Z1) in Ω. Here f ∗(s) =

max
t∈[0,s]

f(t). Hence, Z1 is a strict supersolution.
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We will now construct the strict subsolution ψ2. Let

f̃(u) =


f̂(u); u < m

f(u) ; u ≥ m

(4.1)

where f̂(u) is defined so that the function f̃(u) is strictly increasing on (0,M) and f̃(u) ≤

f(u) (see Figure 4.1).

m1 m2
u

f
!!u"

Figure 4.1

Graph of f̃(u)

Let

ρ(r) =


1 ; r ∈ [0, ε]

1− [1− (R−r
R−ε )

β]α; r ∈ (ε, R], α, β > 1.

(4.2)

Note that

ρ′(r) =


0 ; r ∈ [0, ε]

−αβ[1− (R−r
R−ε )

β]α−1(R−r
R−ε )

β−1; r ∈ (ε, R], α, β > 1

(4.3)

and |ρ′(r)| < αβ
R−ε . Now define w(r) := bρ(r) and

ψ2(x) =


ψ̃2 ; x ∈ BR

0 ; x ∈ Ω−BR,

(4.4)
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where ψ̃2 is the solution of
−ψ̃2

′′
(r)− N − 1

r
ψ̃2
′
(r) = λf̃(w(r)), r ∈ (0, R)

ψ̃2
′
(0) = 0 = ψ̃2(R).

(4.5)

and BR is the largest inscribed ball in Ω. Then, ψ2 ∈ W 1,2(Ω)
⋂
C(Ω̄), and ψ2 = 0 on

∂Ω. We will now establish that ψ̃2(r) ∈ (w(r),M ] on [0, R). Then, −∆ψ2 = λf̃(w(r)) <

λf̃(ψ̃2(r)) ≤ λf(ψ2(r)) on [0, R) while outside BR we have −∆ψ2 = 0 = λf(0) =

λf(ψ2), and hence ψ2 will be a strict subsolution.

First, we will show that ψ̃2(r) ≤M . Now

(rN−1ψ̃2
′
(r))′ = −λrN−1f̃(w(r)) (4.6)

ψ̃2
′
(r) =

−λ
rN−1

∫ r

0

sN−1f̃(w(s))ds (4.7)

ψ̃2(t)− ψ̃2(0) = −
∫ t

0

λ

rN−1

{∫ r

0

sN−1f̃(w(s))ds
}
dr (4.8)

But, ψ̃2(R) = 0. Hence, we get

ψ̃2(0) =

∫ R

0

λ

rN−1

{∫ r

0

sN−1f̃(w(s))ds
}
dr (4.9)

≤ λf̃(b)

N

∫ R

0

rds (4.10)

=
λf(b)

2N
R2 (since b ≥ m and f̃(s) = f(s) for s ≥ m. ) (4.11)

But λ < 2NM
f(b)R2 . Hence ||ψ̃2||∞ = ψ̃2(0) < M .
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Next, to establish ψ̃2 > w on [0, R], we will show that ψ̃2
′
< w′ ≤ 0 on [0, R]. This

will be sufficient, since ψ̃2(R) = w(R) = 0. Now w′ = 0 and ψ̃2
′
< 0 in the interval [0, ε),

and hence ψ̃2
′
< w′ ≤ 0 in that interval. For r > ε, we have

−ψ̃2
′
(r) =

λ

rN−1

∫ r

0

sN−1f̃(w(s))ds (4.12)

≥ λ

rN−1

∫ ε

0

sN−1f̃(w(s))ds (4.13)

=
λ

rN−1

∫ ε

0

sN−1f̃(b)ds (since ρ(s) = 1, s < ε) (4.14)

≥ λf̃(b)

RN−1

∫ ε

0

sN−1ds (4.15)

=
λf(b)

RN−1

εN

N
(since b ≥ m and f̃(s) = f(s) for s ≥ m). (4.16)

We also know that |w′(r)| ≤ bαβ
R−ε . Hence, |ψ̃2

′
(r)| > |w′(r)| if λ > αβ b

f(b)
NRN−1

(R−ε)εN .

But min
0<ε<R

1
(R−ε)εN = (N+1)N+1

NNRN+1 , and this minimum is achieved at ε0 = NR
N+1

. Since λ >

b
f(b)

N2

R2 (N+1
N

)N+1 = b
f(b)

NRN−1

(R−ε0)εN0
, we can choose ε = ε0 and α, β > 1 such that λ >

αβ b
f(b)

NRN−1

(R−ε0)εN0
. Hence, |ψ̃2

′
(r)| > |w′(r)| on (0, R). This implies w < ψ̃2. Thus, ψ2 is a

strict subsolution of (1) if b
f(b)

N2

R2 (N+1
N

)N+1 < λ < 2NM
f(b)R2 . Furthermore, ψ̃2(0) > w(0) =

b > a = ||Z1||∞, i.e. ψ2 � Z1. Moreover, M(λ) can be chosen large enough so that

ψ2 < Z2 and Z1 < Z2. Hence, by Lemma 5, Theorem 2 holds.

4.2 Results for phosphorous cycling problem

First, we will analyze some properties of this nonlinearity. We will show that for

large c we can find values of K for which the function f(u) = K − u + c
u4

1 + u4
satisfies

(H2), and we will also identify m and M such that f is increasing in (m,M). Clearly,

f ∈ C2([0,∞)), f(0) = K and f ′(0) = −1.
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Proposition 10 If c > 16

5 4√135
, then there exists two points m1 and m2 such that 0 < m1 <

m2 and f ′(mi) = 0 for i = 1, 2.

u

c

g!u"

Figure 4.2

g(u) and h(u)

We have f ′(u) = −1 + 4cu3

(1+u4)2 . So f ′(u) = 0 when 1 = 4cu3

(1+u4)2 . Let g(u) :=

4cu3

(1+u4)2 , and let h(u) := 1. We have g(u) ≥ 0, g(0) = 0 and lim
u→∞

g(u) = 0. Since

g′(u) = 4cu2(3−5u4)
(1+u4)3 , we can see that g(u) achieves a maximum of 5c

16
4
√

135 at u = 4

√
3
5
.

If max
x∈(0,∞)

g(u) =
5c

16
4
√

135 > 1, then the line h(u) will cut g(u) at exactly two different

points. Hence, if c > 16

5 4√135
, then there are exactly two positive points m1 < m2 such that

f ′(mi) = 0 for i = 1, 2.

Proposition 11 If K > 3
4

4

√
3
5
− 1

4

(
4

√
3
5

)5

=: K0, then there exists a unique r0 > 0 such

that f(r0) = 0.

From Figure 4.3, we can see that if f(m1) > 0 then f(u) has a unique positive zero.

Since f ′(m1) = 0, we obtain cm3
1

1+m4
1

=
1+m4

1

4
. So, f(m1) = K − m1 +

cm4
1

1+m4
1

= K −

m1 +
m1(1+m4

1)

4
= K − 3

4
m1 +

m5
1

4
. Hence, f(m1) > 0 if K > 3

4
m1 +

m5
1

4
. On analyzing
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f ′′(u) = 4cu2(3−5u4)
(1+u4)3 , we see that the positive inflection of f(u) occurs at u = 4

√
3
5
. Thus,

m1 <
4

√
3
5
, and hence K > K0 ensures that there exists a unique r0 such that f(r0) = 0.

Choose m = m1 and M = m2. Thus, given K > K0, we can find c large so that f(u)

is increasing on (m,M), and there exists a unique r0 > 0 such that f(r0) = 0, i.e. f(u)

satisfies (H2). Now, we will prove that the other assumptions in Theorem 2 hold in the

given example.

m!m1 M!m2
u

f!u"

Figure 4.3

Graph of f(u) with m and M marked

We will select b ∈ [m,M ] and a ∈ (0, b) such that Q2(a, b,Ω) < 1. The point at which

the function u
f(u)

has a minimum would be an ideal choice for b.

Proposition 12 If K < 9c
16

, then u
f(u)

has the shape given in Figure 4.4.

We have ( u
f(u)

)′ = f(u)−uf ′(u)
(f(u))2 . Hence, the critical points of u

f(u)
are given by f(u) −

uf ′(u) = 0, and in particular, the non-zero critical points are given by K + c(u8−3u4)
(1+u4)2 = 0.

Solving for u, we get the positive critical points as α =
4

√
3c−2K−

√
c(9c−16K)

2(c+K)
and β =

4

√
3c−2K+

√
c(9c−16K)

2(c+K)
. Note that if K < 9c

16
then α and β are positive real roots of ( u

f(u)
)′
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u

u
f !u"

Figure 4.4

Graph of u
f(u)

with α < β. Hence, u
f(u)

has a relative maximum at α and a relative minimum at β. Since

β → 4
√

3 as c→∞ andm < 4

√
3
5
, we havem < β. Furthermore, it is clear from Figure 4.2

that M →∞ as c→∞, so β < M for c� 1. Thus, we have β ∈ [m,M ] for large c and

we choose b = β. We also choose a ∈ (0,M) such that f(a) = f ∗(a) = f(0).

The following estimates hold for a and M for c� 1.

Proposition 13 For c� 1:

(i) 5
√
c < M < 4

√
c.

(ii) 1
3√c < a < 1

4√c

(i) By the shape of the graph of f(u) established in Proposition 10 and 12 (see Fig-

ure 4.3), it is enough if we prove that f ′( 5
√
c) > 0 and f ′( 4

√
c) < 0. We have

f ′( 5
√
c) = −1 + 4c

8
5

(1+c
4
5 )2

= −1 + 4c
8
5

1+2c
4
5 +c

8
5

= −1 + 4
1

c
8
5

+ 2

c
4
5

+1
> 0, and f ′( 4

√
c) =

−1 + 4c
7
4

(1+c)2 = −1 + 4
1

c
7
4

+ 2

c
3
4

+c
1
4
< 0 for c� 1. Thus, 5

√
c < M < 4

√
c for large c.
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u

f !!u"

Figure 4.5

Graph of f ∗(u)

(ii) We have f(a) = K, simplifying which we get a4 − ca3 + 1 = 0. Define j(u) :=

u4 − cu3 + 1. If u < a, then j(u) > 0, and if u ∈ (a,M), then j(u) < 0. We

have j( 1
3√c) = ( 1

3√c)
4 − c( 1

3√c)
3 + 1 = 1

c
4
3
> 0, and j( 1

4√c) = ( 1
4√c)

4 − c( 1
4√c)

3 + 1 =

1
c
− 4
√
c + 1 < 0 for c � 1. Hence, 1

3√c < a < 1
4√c for large c. Note that since

b = β → 4
√

3 and a < 1
4√c → 0 as c→∞, a ∈ (0, b) for c� 1.

Now we will discuss the existence of at least three positive solutions for a certain range

of λ (see Theorem 2). Our aim is to prove that for c� 1 and K0 < K < 9c
16

, Q2(a, b,Ω) <

1. It is enough if we prove that

b

f(b)

(
N + 1

N

)N+1
N2

R2
< min

{
a

||eΩ||∞f ∗(a)
,

2NM

f(b)R2

}
. (4.17)

Note that for c� 1 b
f(b)

=
4√3

K− 4√3+ 3c
4

and M
f(b)

= M

K− 4√3+ 3c
4

>
5√c

K− 4√3+ 3c
4

. Also, a
f∗(a)

= a
K
>

1
K 3√c . Applying the estimates we obtained for a

f∗(a)
, b
f(b)

, and M
f(b)

to the above inequality,

we get the following:(
4
√

3

k − 4
√

3 + 3c
4

)(
N + 1

N

)N+1
N2

R2
< min

{
1

||eΩ||∞k 3
√
c
,
2N

R2

(
5
√
c

k − 4
√

3 + 3c
4

)}
(4.18)
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Simplifying the above, we can see that Q2(a, b,Ω) < 1 if(
4
√

3
k
c
−

4√3
c

+ 3
4

)(
N + 1

N

)N+1
N2

R2
< min

{
c

2
3

||eΩ||∞k
,
2N

R2

(
c

1
5

k
c
−

4√3
c

+ 3
4

)}
. (4.19)

Clearly, this inequality is true for c� 1; hence, Theorem 2 holds.

4.3 Analytical and computational results for N = 1

Consider the two point boundary value problem
−u′′ = λf(u), x ∈ (0, 1)

u(0) = 0 = u(1),

(4.20)

where f satisfies the following hypotheses:

(G1) f ∈ C2([0,∞)), f(u) > 0 for 0 < u < r0 and f(u) < 0 for u > r0 for some r0 > 0.

(G2) there exists k ≥ 0 such that f(u) − f(v) ≥ −k(u − v) for all u, v ∈ [0, r0) with

u > v;

Using the quadrature method (see [27]), it follows that (4.20) has a positive solution iff

√
λ =
√

2

∫ ρ

0

dz√
[F (ρ)− F (z)]

:= G(ρ). (4.21)

where F (s) :=
∫ s

0
f(t)dt and ρ = u(1

2
) = ||u||∞. Further, u(x) is symmetric about x = 1

2

and is given by ∫ u(x)

0

dz√
[F (ρ)− F (z)]

=
√

2λx, 0 < x <
1

2
. (4.22)

(4.21) describes the bifurcation curve of positive solutions of (4.20) and it follows by re-

sults in [27] that lim
ρ→0+

G(ρ) = 0 and lim
ρ→r−0

G(ρ) =∞. Furthermore, from [6] we have

G′(ρ) =
√

2

∫ 1

0

H(ρ)−H(ρs)

[F (ρ)− F (ρs)]
3
2

ds (4.23)
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where H(u) = F (u) − u
2
f(u). Note that H(0) = 0 and H ′(0) = 1

2
f(0) > 0. Hence, if

there exists a point ρ0 ∈ (0, r0) such that H(ρ0) < 0, then G′(ρ) < 0 for certain range of

ρ; thus the bifurcation diagram must be at least S-shaped. We will now prove that such a

ρ0 exists when K > K0 and c > 5.20626K.

u

H!u"

Figure 4.6

Graph of H(u)

Consider the case f(u) = K − u + c u4

1+u4 . Clearly, given K > K0, then for c � 1 f

satisfies (G1)− (G2) (see Proposition 12). Hence, G(ρ) is defined for all ρ ∈ S = (0, r0).

We have H(u) = F (u)− u
2
f(u) = Ku

2
+ cu− c u5

2(1+u4)
− c

4
√

2
{−2 tan−1(1−

√
2u) +

2 tan−1(1 +
√

2u) − ln 1+
√

2u+u2

1−
√

2u+u2}. Clearly, 4

√
3
5
< r0 (see Proposition 12); choose ρ0 =

4

√
3
5
. Thus, H(ρ0) = .440056K − .0845244c and hence H(ρ0) < 0 if c > 5.20626K.

We finally used Mathematica to compute
√
λ = G(ρ) in the case when f(u) = K−u+

c u4

1+u4 and plotted the bifurcation diagrams. We found that the bifurcation diagrams are,

in fact, exactly S-shaped when multiplicity occurred. Figures Figure 4.7 and Figure 4.8

describe the bifurcation diagrams for a certain value of c and K.
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Figure 4.7

Bifurcation Diagram with K = 1 and c = 6.
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Figure 4.8

Bifurcation Diagram with K = 1 and c = 15.
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CHAPTER 5

PROOF OF THEOREM 3

We provide the proof for Theorem 3 in this chapter.

5.1 Proof of Theorem 3

We start with the construction of a positive subsolution for (1.8). To get a positive

subsolution, we can apply an anti-maximum principle by Clement and Peletier [12], from

which we know that there exist a δ = δ(Ω) > 0 and a solution zλ (with zλ > 0 in Ω and

∂zλ
∂ν

< 0 on ∂Ω, where ν is the outer unit normal to Ω) of
−∆z − λz = −1, x ∈ Ω

z = 0, x ∈ ∂Ω,

(5.1)

for λ ∈ (λ1, λ1 + δ). Fix λ∗ ∈ (λ1,min{a, λ1 + δ}). Let z∗λ be the solution of (5.1) when

λ = λ∗ and α = ||z∗λ||∞.

Define ψ = µKz∗λ where µ ≥ 1 is to be determined later. We will choose µ and K > 0

properly so that ψ is a subsolution. We know −∆ψ = −∆(µKz∗λ) = λ∗ψ − µK. Hence

ψ is a subsolution if λ∗ψ − µK ≤ aψ − bψ2 − c ψp

1 + ψp
−K. That is if

(a− λ∗)ψ − bψ2 − c ψp

1 + ψp
+ (µ− 1)K ≥ 0. (5.2)

Consider

r(t) = (a− λ∗)t− bt2 − c tp

1 + tp
+ (µ− 1)K. (5.3)

47



It can be written as r(t) = r1(t) + r2(t) where

r1(t) = (a− λ∗)t− bt2 − ctp + (µ− 1)K and

r2(t) =
t2p

1 + tp
.

(5.4)

r2HtLr1HtL

t0
t

Figure 5.1

Graphs of r1(t) and r2(t)

Clearly r2(t) ≥ 0 for all t ≥ 0. So if we can find K and µ such that r1(t) ≥ 0

for 0 ≤ t ≤ µKα then ψ will be a subsolution. Now r1(0) = (µ − 1)K, r′′1(t) =

−2b− cp(p− 1)tp−2 < 0 and there exists a unique t0 such that r1(t0) = 0. This means that

ψ is a subsolution if r1(µKα) ≥ 0, i.e. if

(a− λ∗)µKα− b(µKα)2 − c(µKα)p + (µ− 1)K ≥ 0. (5.5)

Let

G(K) = (a− λ∗)µα− b(µα)2K − c(µα)pKp−1 + (µ− 1). (5.6)
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Then G(0) = (a − λ∗)µα + (µ − 1) > 0 since µ ≥ 1 and a > λ∗. Also, we have

G′(K) = −b(µα)2 − c(p− 1)(µα)pKp−2 < 0. Hence given µ and p there exists a unique

K∗ = K∗(a, b, c, µ, p) > 0 with G(K∗) = 0.

GHKL
G
� HKL

K*Ha,b,c,Μ,pL K1Ha,b,ΜL

Figure 5.2

Graph of G(K)

Since G(K) ≤ (a− λ∗)µα− b(µα)2K + (µ− 1) = G̃(K) we see that

K∗ ≤ (a− λ∗)µα + (µ− 1)

bµ2α2
:= K1(a, b, µ). (5.7)

Note that K1(a, b, µ) is bounded for µ ∈ [1,∞). Hence K∗ is bounded for µ ∈ [1,∞). Let

K0(a, b, c, p) = supµ≥1K
∗(a, b, c, µ, p). Now let K̃ < K0(a, b, c, p). By definition there

will exist a µ̃ ≥ 1 such that K̃ < K∗(a, b, c, µ̃, p) < K0(a, b, c, p). Choose ψ = µ̃K̃z.

With µ = µ̃ we have G(K̃) ≥ 0 and hence

(a− λ∗)µ̃K̃α− b(µ̃K̃α)2 − c(µ̃K̃α)p + (µ̃− 1)K̃ ≥ 0. (5.8)

Thus ψ is a subsolution to (1.8).
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Now for a supersolution choose φ = Me, where
−∆e = 1, x ∈ Ω

e = 0, x ∈ ∂Ω,

(5.9)

and M > 0 is such that f(u) = au − bu2 − c up

1 + up
− K ≤ M for all u ≥ 0. Clearly

−∆φ = M ≥ f(φ) and φ is a supersolution.

Since by the Hopf maximum principle
∂e

∂ν
< 0 on ∂Ω (where ν is the outer unit normal

to Ω), we can choose M >> 1 so that φ = Me ≥ ψ. Hence by Lemma 4 the problem has

a positive solution for all K < K0(a, b, c, p).

5.2 Corollary

Corollary 1

Let p = 2 then the boundary value problem (1.8) has a solution for all K < K̃0(a, b, c),

where K̃0(a, b, c) = supµ≥1

(a− λ∗)µα + µ− 1

(b+ c)(µα)2

In this case

G(K) = (a− λ∗)µα− b(µα)2K − c(µα)2K + (µ− 1). (5.10)

and K∗ = K∗(a, b, c, µ) =
(a− λ∗)µα + µ− 1

(b+ c)(µα)2
. Hence (1.8) has a solution for all K <

K̃0(a, b, c) = supµ≥1

(a− λ∗)µα + µ− 1

(b+ c)(µα)2
.
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CHAPTER 6

PROOF OF THEOREMS 4 AND 5

We establish our proof of Theorem 4 in Section 6.1 using the quadrature method dis-

cussed in [6] and [27]. In Section 6.2 we prove Theorem 5 and in Section 6.3 we provide

various bifurcation diagrams for positive solutions via mathematica computations.

6.1 Proof of Theorem 4

Let c < 2, 2c
K2+1

+ 2
K3 < ε < 1

4K
and K � 1. We will first show that f̃(u) and

F̃ (u) =
∫ s

0
f̃(t)dt have the shapes as given in the figure below.

t1t0
u

f
�

HuL

Θ t1
u

F
�

HuL

Figure 6.1

Graph of f̃(u) and F̃ (u)

Next multiplying (1.11) by u′(x) and integrating we obtain

− [u′(x)]2

2
= λF̃ (u(x)) + C (6.1)
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Since we are dealing with positive solutions, u(x) has to be symmetric with respect to

x = 1
2

and u′(x) > 0 for x ∈ (0, 1
2
). In fact, if ρ = ||u||∞ then u(1

2
) = ρ, θ ≤ ρ ≤ t1, and

substituting x = 1
2

in (6.1) we obtain

u′(x) =

√
2λ[F̃ (ρ)− F̃ (u)]; x ∈ [0,

1

2
]. (6.2)

Integrating (6.2) from 0 to x we get

∫ u(x)

0

dz√
[F̃ (ρ)− F̃ (z)]

=
√

2λx; x ∈ [0,
1

2
], (6.3)

and substituting x = 1
2

in the above equation we have

√
λ =
√

2

∫ ρ

0

dz√
[F̃ (ρ)− F̃ (z)]

:= G(ρ). (6.4)

Θ Σ2Σ1 Σ5Σ3 Σ4

u

H
�

HuL

Figure 6.2

Graph of H̃(u)
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For given λ such that G(ρ) =
√
λ for some ρ ∈ (θ, t1), it follows that (1.11) has a

positive solution u(x) given by (6.3) with ||u||∞ = u(1
2
) = ρ. Further it follows that G(ρ)

is a continuous function and differentiable for ρ ∈ (θ, t1) with

G′(ρ) =
√

2

∫ 1

0

H̃(ρ)− H̃(ρs)

[F̃ (ρ)− F̃ (ρs)]
3
2

ds (6.5)

where H̃(u) = F̃ (u)− u
2
f̃(u).

Next we will show that H̃(u) has the shape given in Figure 6.2. In particular we will

show that θ < σ1. From the figure we see that H̃(θ)− H̃(θs) < 0 for s ∈ (0, 1) and hence

G′(θ) < 0. In fact we can see that H̃(ρ) − H̃(ρs) < 0 for s ∈ (0, 1) when ρ ∈ [θ, σ1),

H̃(ρ)− H̃(ρs) > 0 for s ∈ (0, 1) when ρ ∈ (σ2, σ3] and H̃(ρ)− H̃(ρs) < 0 for s ∈ (0, 1)

when ρ ∈ (σ4, σ5] . We can also see that H̃(ρ) − H̃(ρs) > 0 when ρ large for s ∈ (0, 1).

Consequently G′(ρ) < 0 for ρ ∈ [θ, σ1), G′(ρ) > 0 for ρ ∈ (σ2, σ3], G′(ρ) < 0 for

ρ ∈ (σ4, σ5] and G′(ρ) > 0 for ρ large which results in a Σ-shaped bifurcation diagram.

To obtain the required shape of f̃ we let f(u) = u − u2

K
− c

u2

1 + u2
. Then f ′(u) =

1 − 2u
K
− 2cu

(1+u2)2 = 0 when 1 − 2u
K

= 2cu
(1+u2)2 . Let g(u) := 2cu

(1+u2)2 . Here 1 − 2u
K

is

a line passing through (0, 1) and with slope − 2
K

. Note that g(u) ≥ 0, g(0) = 0 and

lim
u→∞

g(u) = 0.

Since g′(u) = 2c 1−3u2

(1+u2)3 , we can see that g(u) achieves a maximum of 3
√

3c
8

at u = 1√
3
.

Now if 8
3
√

3
≤ c < 2 and K is large, then there are exactly three positive points

m1 < m2 < m3 such that f ′(mi) = 0 for i = 1, 2, 3. Clearly the function f(u) has a

relative minimum at u = m2. We will prove that f(m2) > 0 for K >> 1. This implies

that f(u) has a unique positive zero. It is clear from Figure 6.3 that there exists a constant
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y = g (u)

y = 1 -
2 u
K

m1 M2m2H=mL m3 H=ML1

3

u

1

3 3
8

c

Figure 6.3

8
3
√

3
≤ c < 2

M2 such that m2 < M2 for all K. Moreover m2 = m2(K) is a continuous decreasing

function of K such that m2(K) ∈ ( 1√
3
,M2]. Also lim

K→∞
f(m2) = z − c z2

1 + z2
:= h(z, c)

for some z ∈ ( 1√
3
,M2).

But h(z, c) > 0 for z ≥ 1√
3

and c < 2. Hence lim
K→∞

f(m2) ≥ min
z≥ 1√

3

f(z) > 0. Thus for

K � 1 we have ε < 1
4K

< min
z≥ 1√

3

f(z) and hence the function f̃(u) = f(u) − ε will have

the shape given in Figure 6.4.

Next if c < 8
3
√

3
, then g( 1√

3
) < 1 and for K � 1 clearly there exists a unique M > 0

such that f ′(M) = 0 (see Figure 6.5). Consequently, forK large f(u) has a unique positive

zero. Also for K � 1 we have f̃(K
2

) = K
4
− c K2

4+K2 − ε > 0 and hence the function f̃(u)

will have the shape given in Figure 6.6.

To obtain the required shape for F̃ we only need to show that F̃ (u) = u2

2
− u3

3K
− c(u−

tan−1 u) − εu > 0 for some u > 0. But F̃ (K) = K2

6
− (c + ε)K + c tan−1K > 0 for

K � 1. Hence from the above discussion we see that there exists constants θ, t1 with

F̃ (s) > 0 in (θ, t1) and F̃ (θ) = 0.
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t0 t1 r0
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Figure 6.4

Graph of f̃(u) for 8
3
√

3
≤ c < 2 and K � 1

y = g (u)

y = 1 -
2 u
K

M1

3

u

1

3 3
8

c

Figure 6.5

The case when c < 8
3
√

3
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f(u)

t0 t1 r0
u

Figure 6.6

Graph of f̃(u) for c < 8
3
√

3
and K � 1

Now we will establish that H̃(u) has the shape given in Figure 6.2. In [28] (see also

[22] for related results) we prove that given ε = 0 and c < 2 fixed then for K � 1 the

boundary value problem (1.11) has at least three solutions for a certain range of λ. In

fact we prove that if c < 2 then there exists K1(c) such that whenever K > K1(c), the

function H(u) = F (u)− u
2
f(u) = u3

6K
+ c
(

u3

2(1+u2)
− u+ tan−1 u

)
has the shape given in

Figure 6.7, where F (s) =
∫ s

0
f(t)dt. But H̃(u) = H(u) − εu

2
and H̃ ′(u) = H ′(u) − ε

2
=

1
2
(f(u) − uf ′(u)) − ε

2
. In order to prove that H̃(u) has the shape given in Figure 6.2 we

first observe that H̃ ′(0) = 0 − ε
2
< 0. Now we show that H̃ ′(u) = 0 has three positive

roots.

The zeros of H ′(u) are given by f(u) − uf ′(u) = 0 and in particular the non-zero

critical points are given by 1
K
− c

1+u2 + 2c
(1+u2)2 = 0. Solving for u we get the positive

critical points as α1 =

√
cK−2−

√
cK(cK−8)

2
and α2 =

√
cK−2+

√
cK(cK−8)

2
(see Figure 6.7).

H̃ ′(u) = 0 will have three positive roots if max
x∈(0,α1)

H ′(u) >
ε

2
.
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The nonzero roots ofH ′′(u) = −1
2
uf ′′(u) = 0 are given by f ′′(u) = − 2

K
−2c 1−3u2

(1+u2)3 =

0. Clearly for large K the first positive root of H ′′(u) is approximately equal to 1√
3
. Hence

max
x∈(0,α1)

H ′(u) ≥ H ′(
1√
3

) =
1

6K
+

3c

8
>
ε

2
and

Α1 Α2

u

HHuL

Α1 Α2

u

H'HuL

Figure 6.7

Graphs of H(u) and H ′(u)

there exist three positive numbers σ1, σ3 and σ5 such that 0 < σ1 < σ3 < α1 < α2 < σ5

and H̃ ′(σi) = 0 for i = 1, 3, 5. Note that σ5 > α2 > 1. Now if we show that H̃(u) > 0

for some u < σ5 then H̃(u) will have the shape given in Figure 6.2. We have H̃(1) =

1
6K

+ c(π−3)
4
− ε

2
> 0 since ε < 1

4K
. Thus we have shown that H̃(u) has the shape given in

Figure 6.2.

In order to prove that θ < σ1, it is enough if we show that θ < σ3 and H̃ ′(θ) < 0. We

have seen that for large K the first positive root of H ′′(u) is approximately equal to 1√
3

and

thus it is clear that σ3 is bounded below (see Figure 6.8). Hence for K � 1,
1

K
< σ3. We

will prove that θ <
1

K
and H̃ ′( 1

K
) < 0.
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Figure 6.8

Graph of H ′(u)

F̃ (
1

K
) =

1

2K2
− 1

3K4
− c( 1

K
− tan−1 1

K
)− ε

K
(6.6)

>
1

4K2
− 1

3K4
− c( 1

K
− tan−1 1

K
) (since ε < 1

4K
). (6.7)

Consider the function
c(v − tan−1 v) + v4

3
v2

4

. We have

lim
v→0

c(v − tan−1 v) + v4

3
v2

4

= lim
v→0

c(1− 1
1+v2 ) + 4

3
v3

v
2

(6.8)

= lim
v→0

2(3cv2 + 4(1 + v2)v3)

3v(1 + v2)
(6.9)

= 0 (6.10)

Hence F̃ ( 1
K

) > 0 and θ <
1

K
for K � 1. Next we have

H̃ ′(
1

K
) =

1

K3
+ c

1
K2

1 + 1
K2

(
2

1 + 1
K2

− 1)− ε

2
(6.11)

<
1

K3
+ c

1

K2 + 1
− ε

2
(6.12)

< 0 since ε >
2c

K2 + 1
+

2

K3
. (6.13)
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Hence we have θ < 1
K
< σ1 and the graph of H̃(u) is as given in Figure 6.2. Thus it follows

that for c < 2 there exists a constant K(c) such that for K > K(c) and 2c
K2+1

+ 2
K3 < ε <

1
4K

the boundary value problem (1.11) has at least a Σ-shaped bifurcation curve.

6.2 Proof of Theorem 5

Let c = 1
2
. By Theorem 4 there exists a constant K(1

2
) such that for K > K(1

2
) and

1
K2+1

+ 2
K3 < ε < 1

4K
, H̃(u) is as in Figure 6.2 and the boundary value problem (1.11)

has a Σ-shaped bifurcation curve. If in addition G(θ) > G(σ5) we have the desired four

solution result in a certain range of λ (see Figure 6.9).

Figure 6.9

G(θ) > G(σ5)

Note that

G(σ5) =

√
2σ5√
F̃ (σ5)

∫ 1

0

dv√
1− F̃ (σ5v)

F̃ (σ5)

. (6.14)
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Let L(v) := F̃ (σ5v)

F̃ (σ5)
. Then L(0) = 0, L(1) = 1 and L′(v) = f̃(σ5v)σ5

F̃ (σ5)
. We have L′(0) < 0

and L′(v) has only one zero in [0, 1]. Hence we get L(v) ≤ v for v ∈ [0, 1]. Consequently

from (6.14)

G(σ5) ≤
√

2σ5√
F̃ (σ5)

∫ 1

0

dv√
1− v

= 2
√

2
σ5√
F̃ (σ5)

(6.15)

But
( u√

F̃ (u)

)′
=

√
F̃ (u)− u f̃(u)

2
√
F̃ (u)

F̃ (u)
=

H̃(u)

F̃ (u)
3
2

< 0 in [α2, σ5] since H̃(α2) < 0 and

σ3 < α2 < σ5. So from (6.15) we have G(σ5) < 2
√

2
α2√
F̃ (α2)

→ 4 as K → ∞. Hence

G(σ5) ≤ 4 for K large. Now consider G(θ). We have

G(θ) =
√

2

∫ θ

0

dv√
F̃ (θ)− F̃ (v)

(6.16)

=
√

2

∫ θ

0

dv√
−F̃ (v)dv

(6.17)

≥
√

2

∫ θ

0

dv√
−v2

2
+ 1

2
(v − tan−1(v)) + εv

(6.18)

Let h(v) = v2 − (v − tan−1 v). Then h(0) = 0 and h′(v) = 2v − v2

1+v2 > 0 for v > 0.

Hence v2 > v − tan−1 v for v > 0. So we have

G(θ) >
√

2

∫ θ

0

dv√
εv

(6.19)

= 2
√

2

√
θ

ε
. (6.20)

(6.21)

It is easy to see that F̃ (2ε) = 4ε2

2
− 8ε3

3K
− 1

2
(2ε − tan−1(2ε)) − 2ε2 < 0. Consequently

θ > 2ε and G(θ) > 4. Thus we have proved that G(σ5) < G(θ) and the boundary value

problem (1.11) has at least four positive solutions for a certain range of λ.
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6.3 Bifurcation diagrams via Mathematica computations

Here we provide some exact bifurcation diagrams in the case when f(u) = u− u2

K
−

c
u2

1 + u2
− ε using Mathematica computations of

√
λ = G(ρ). In Section 2 we had proved

that under certain conditions the bifurcation diagrams will be at least Σ-shaped. But these

calculations show that the bifurcation diagrams are exactly Σ-shaped. In Figure 6.10 we

provide the bifurcation diagram in the case when c =
1

2
, ε = 1

5K
and K = 30. Our

bifurcation diagrams indicate not only that there is a range of λ where the problem has

four solutions but also that it is exactly Σ-shaped.
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Λ

2

4

6

8

10

12

Ρ

Figure 6.10

Bifurcation Diagram with c = 1
2
, ε =

1

5K
and K = 30

In Figure 6.11 and Figure 6.12 we provide the bifurcation diagrams for c = 0.1 and

c = 1.9 respectively. Based on these we conjecture that the problem has at least four

solutions for any c ∈ (0, 2) for some ε and K and they are also exactly Σ-shaped.
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Figure 6.11

Bifurcation Diagram with c = .1, ε =
1

5K
and K = 350
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Figure 6.12

Bifurcation Diagram with c = 1.9, ε =
1

5K
and K = 50
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CHAPTER 7

CONCLUSIONS AND FUTURE DIRECTIONS

7.1 Conclusions

We studied two classes of reaction-diffusion models and our results on alternate stable

states are applicable to two models considered in the recent literature on ecosystems. It

was shown that for certain parameter values the systems can have at least three solutions.

We also introduced a constant yield harvesting into the first model and established the

existence of a positive solution. In the case N = 1 we obtained the interesting result that

the bifurcation diagram is at least Σ-shaped.

7.2 Future Directions

The general logistic function is characterized by a declining growth rate per capita

function. But there are some ecosystems where the growth rate per capita may achieve its

peak at a positive density. This is called the Allee effect (see Allee [1], Dennis [14], Lewis

Kareiva [30] and Shi-Shivaji[40]). This effect can be caused by shortage of mates (Hopf

and Hopf [21], Veit and Lewis [46]), lack of effective pollination (Groom [18]), predator

saturation (de Roos et. al. [13]), and cooperative behaviors (Wilson and Nisbet [48]).

We would like to investigate the existence of alternate stable states if the logistic term is

replaced with Allee effect in the grazing problem.
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We would like to look at the grazing problems from a control theory perspective to

discover optimal strategies for managed ecosystems. The control could be either on the

growth rate of the population (see [15]) or the harvesting term (see [26, 16]). This opens

up various management problems, which require different control sets and objective func-

tionals.

We would also like to look at the above models with nonlinear boundary conditions of

the form:

α(x, u)
∂u

∂η
+ [1− α(x, u)]u = 0 on ∂Ω, (7.1)

where ∂u
∂η

is the outward normal derivative, and α(x, u) : Ω×R→ [0, 1] is a nondecreasing

C1 function. The nonlinear boundary condition (7.1) has only been recently studied by

such authors as [7, 8, 9, 17], among others. Here

α(x, u) = α(u) =
u

u− 1
λ
∂u
∂η

represents the fraction of the population that remains on the boundary when reached. For

the case when α(x, u) ≡ 0, (7.1) becomes the well known Dirichlet boundary condition.

If α(x, u) ≡ 1 then (7.1) becomes the Neumann boundary condition. We are interested in

the study of positive steady state solutions when

α(x, u) =
u

u+ g(u)
λ

on ∂Ω.

Here g(u) is a smooth function with some growth conditions.

64



REFERENCES

[1] W. Allee, Animal Aggregations, a Study on General Sociology, University of Chicago
Press, Chicago, IL, 1931.

[2] H. Amann, “Fixed point equations and nonlinear eigenvalue problems in ordered
Banach spaces,” SIAM Rev., vol. 18, no. 4, 1976, pp. 620–709.

[3] R. Aris, “On stabilty criteria of chemical reaction engineering,” Chem. Eng. Sc., vol.
24, 1969, pp. 149–169.

[4] B. E. Beisner, D. T. Haydon, and K. Cuddington, “Alternative stable states in ecol-
ogy,” Frontiers in Ecology and the Environment, vol. 1, no. 7, 2003, pp. 376–382.

[5] H. Berestycki, L. A. Caffarelli, and L. Nirenberg, “Inequalities for second-order
elliptic equations with applications to unbounded domains. I,” Duke Math. J., vol.
81, no. 2, 1996, pp. 467–494, A celebration of John F. Nash, Jr.

[6] K. J. Brown, M. M. A. Ibrahim, and R. Shivaji, “S-shaped bifurcation curves,” Non-
linear Anal., vol. 5, no. 5, 1981, pp. 475–486.

[7] R. S. Cantrell and C. Cosner, “Conditional persistence in logistic models via nonlin-
ear diffusion,” Proc. Roy. Soc. Edinburgh Sect. A, vol. 132, no. 2, 2002, pp. 267–281.

[8] R. S. Cantrell and C. Cosner, Spatial ecology via reaction-diffusion equations, Wiley
Series in Mathematical and Computational Biology. John Wiley & Sons Ltd., Chich-
ester, 2003.

[9] R. S. Cantrell and C. Cosner, “Density dependent behavior at habitat boundaries and
the Allee effect,” Bull. Math. Biol., vol. 69, no. 7, 2007, pp. 2339–2360.

[10] S. Carpenter, D. Ludwig, and W. A. Brock, “Management of eutrophication for lakes
subject to potentially irreversible change,” Ecological Applications, vol. 9, 1999, pp.
751–771.

[11] L. G. Chambers, “An upper bound for the first zero of Bessel functions,” Math.
Comp., vol. 38, no. 158, 1982, pp. 589–591.

[12] P. Clément and L. A. Peletier, “An anti-maximum principle for second-order elliptic
operators,” J. Differential Equations, vol. 34, no. 2, 1979, pp. 218–229.

65



[13] A. M. de Roos, E. McCawley, and W. G. Wilson, “Pattern formation and the spatial
scale of interaction between predators and their prey,” Theo. Popu. Biol., vol. 53,
1998, pp. 108–113.

[14] B. Dennis, “Allee effects: population growth, critical density, and the chance of
extinction,” Natur. Resource Modeling, vol. 3, no. 4, 1989, pp. 481–538.

[15] W. Ding, H. Finotti, S. Lenhart, Y. Lou, and Q. Ye, “Optimal control of growth
coefficient on a steady-state population model,” Nonlinear Anal. Real World Appl.,
vol. 11, no. 2, 2010, pp. 688–704.

[16] W. Ding and S. Lenhart, “Optimal harvesting of a spatially explicit fishery model,”
Nat. Resour. Model., vol. 22, no. 2, 2009, pp. 173–211.

[17] J. Goddard II, R. Shivaji, and E. K. Lee, “Diffusive logistic equation with non-linear
boundary conditions,” Journal of Mathematical Analysis and Applications, vol. 375,
no. 1, 2011, pp. 365 – 370.

[18] M. J. Groom, “Allee effects limit population viability of an annual plant,” Amer.
Naturalist, vol. 151, 1998, pp. 487–496.

[19] M. Hazewinke (ed):, Encyclopaedia of Mathematics, vol. 3, Kluwer, 1990.

[20] C. S. Holling, “The components of predation as revealed by a study of small mammal
predation of the European Pine Sawy,” Canadian Entomologist, vol. 91, no. 1, 1959,
pp. 293–320.

[21] F. A. Hopf and F. W. Hopf, “The role of the Allee effect in species packing,” Theo.
Popu. Biol., vol. 27, no. 1, 1985, pp. 27–50.

[22] J. Jiang and J. Shi, “Bistability dynamics in some structured ecological models,”
Spatial Ecology, Chapman & Hall CRC Mathematical and Computational Biology,
2009, pp. 33–62.

[23] J.-P. Kernevez, G. Joly, M.-C. Duban, B. Bunow, and D. Thomas, “Hysteresis, os-
cillations, and pattern formation in realistic immobilized enzyme systems,” J. Math.
Biol., vol. 7, no. 1, 1979, pp. 41–56.

[24] H. Kierstadt and L. B. Slobodkin., “The size of water masses containing plankton
bloom,” J. Marine Research, vol. 12, 1953, pp. 141–147.

[25] C. A. Klausmeier, “Regular and irregular patterns in semiarid vegetation,” Science,
vol. 284, 1999, pp. 1826–1828.

[26] K. Kurata and J. Shi, “Optimal spatial harvesting strategy and symmetry-breaking,”
Appl. Math. Optim., vol. 58, no. 1, 2008, pp. 89–110.

66



[27] T. Laetsch, “The number of solutions of a nonlinear two point boundary value prob-
lem,” Indiana Univ. Math. J., vol. 20, 1970/1971, pp. 1–13.

[28] E. Lee, S. Sasi, and R. Shivaji, “S-shaped bifurcation curves in ecosystems,” Journal
of Mathematical Analysis and Applications, vol. 381, no. 2, 2011, pp. 732 – 741.

[29] R. Levins, “Some demographic and genetic consequences of environmental hetero-
geneity for biological control,” Bull. Entomol. Soc. Am., vol. 15, 1969, pp. 237–240.

[30] M. Lewis and P. Kareiva, “Allee dynamics and the spread of invading organisms,”
Theo. Popu. Biol., vol. 43, 1993, pp. 141–158.

[31] R. H. MacArthur and E. O. Wilson, The Theory of Island Biogeography, Princeton
University Press, Princeton, N.J., 1967.

[32] R. M. May, “Thresholds and breakpoints in ecosystems with a multiplicity of stable
states,” Nature, vol. 269, 1977, pp. 471–477.

[33] I. Noy-Meir, “Stability of grazing systems an application of predator-prey graphs,”
J. Ecol., vol. 63, 1975, pp. 459–482.

[34] S. Oruganti, J. Shi, and R. Shivaji, “Diffusive logistic equation with constant yield
harvesting. I. Steady states,” Trans. Amer. Math. Soc., vol. 354, no. 9, 2002, pp.
3601–3619 (electronic).

[35] M. Ramaswamy and R. Shivaji, “Multiple positive solutions for classes of p-
Laplacian equations,” Differential Integral Equations, vol. 17, no. 11-12, 2004, pp.
1255–1261.

[36] M. Rietkerk, S. C. Dekker, P. C. de Ruiter, and J. Van de Koppel, “Self-organized
patchiness and catastrophic shifts in ecosystems,” Science, vol. 305, 2004, pp. 1926–
1929.

[37] M. Scheffer, W. Brock, and F. Westley, “Socioeconomic mechanisms preventing op-
timum use of ecosystem services: an interdisciplinary theoretical analysis,” Ecosys-
tems, vol. 3, 2000, pp. 451–471.

[38] M. Scheffer and S. R. Carpenter, “Catastrophic regime shifts in ecosystems: Linking
theory to observation,” Trends Ecol. Evol., vol. 18, 2003, pp. 648–656.

[39] M. Scheffer, S. R. Carpenter, J. A. Foley, C. Folke, and B. Walker, “Catastrophic
shifts in ecosystems,” Nature, vol. 413, 2001, pp. 591–596.

[40] J. Shi and R. Shivaji, “Persistence in reaction diffusion models with weak Allee
effect,” J. Math. Biol., vol. 52, no. 6, 2006, pp. 807–829.

67



[41] R. Shivaji, “A remark on the existence of three solutions via sub-super solutions,”
Nonlinear analysis and applications (Arlington, Tex., 1986), vol. 109 of Lecture
Notes in Pure and Appl. Math., Dekker, New York, 1987, pp. 561–566.

[42] J. G. Skellam, “Random dispersal in theoretical populations,” Biometrika, vol. 38,
1951, pp. 196–218.

[43] J. Steele and E. Henderson, “Modelling long term fluctuations in fish stocks,” Sci-
ence, vol. 224, 1984, pp. 985–987.

[44] A. M. Turing, “The Chemical Basis of Morphogenesis,” Philos. Trans. R. Soc.
London [Biol], vol. 237, no. 641, 1952, pp. 37–32.

[45] E. Van Nes and M. Scheffer, “Implications of spatial heterogeneity for catastrophic
regime shifts in ecosystems,” Ecology, vol. 86, no. 7, 2005, pp. 1797–1807.

[46] R. R. Veit and M. A. Lewis, “Dispersal, population growth, and the Allee effect:
dynamics of the house finch invasion of eastern North America,” Amer. Naturalist,
vol. 148, 1996, pp. 255–274.

[47] P.-F. Verhulst, “Notice sur la loi que la population poursuit dans son accroissement,”
Correspondance mathzmatique et physique, vol. 10, 1838, pp. 113–121.

[48] W. G. Wilson and R. M. Nisbet, “Cooperation and competition along smooth envi-
ronment gradients,” Ecology, vol. 78, 1997, pp. 2004–2017.

68


	Alternate Stable States in Ecological Systems
	Recommended Citation

	tmp.1625165283.pdf.E6Sm5

