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ABSTRACT 

Date of Degree: August 12, 2016 
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Major Professor: Daniel B. Reynolds 

Title of Study: Auxin herbicide effects on glyphosate efficacy and cotton (Gossypium 

hirsutum) yield. 

Pages in Study 74 

Candidate for Degree of: Doctor of Philosophy 

Field, greenhouse and laboratory experiments were implemented to investigate 

the effects of auxin herbicides on growth and yield of cotton in glyphosate based systems. 

Field experiments evaluated the effect of rate and timing of dicamba or 2,4-D exposure 

when applied in glyphosate-resistant cotton. Increasing rates of either dicamba or 2,4-D 

resulted in increased injury and yield reductions. Initial injury symptomology was similar 

for cotton exposed at vegetative and reproductive stages. When cotton was exposed to 

auxin herbicides during vegetative growth, injury increased with time, while foliar injury 

during reproductive growth was stagnant and often decreased with time. Subsequently, 

the strongest correlations to yield loss and injury were from later evaluations of 

vegetative timings. Recovery from injury due to auxin herbicide exposure was dependent 

upon favorable environmental conditions; however, recovery was often superficial and 

masked significant yield loss.  

Greenhouse studies evaluated the impact of the diglycolamine dicamba salt on the 

movement of 14C radio-labeled potassium salt glyphosate in barnyardgrass and 

johnsongrass. Increasing glyphosate rate increased total absorption of glyphosate in both 



 

 

species. Total absorption of glyphosate was not impacted by the presence of dicamba, for 

either johnsongrass or barnyardgrass. Dicamba did not consistently alter the translocation 

of glyphosate in johnsongrass; however, dicamba did reduce glyphosate translocation in 

barnyardgrass. Total amount of translocated glyphosate was 2.6 to 4.6% and 3.8 to 6.8% 

of applied in barnyardgrass and johnsongrass, respectively. Reduced translocation in 

barnyardgrass was a result of increased glyphosate accumulation in the distal portion of 

the treated leaf. Increasing the rate of glyphosate did overcome the dicamba induced 

antagonism; however, altered translocation of glyphosate has been documented to be a 

precursor to herbicide resistance.  

  

 



 

ii 

DEDICATION 

 

For my family…yes, all of you. 

  



 

iii 

ACKNOWLEDGEMENTS 

I would like to thank the entire faculty and staff in the department of Plant and 

Soil Sciences at Mississippi State University, most importantly my major professor Dr. 

Dan Reynolds, as well as my committee members Dr. Darrin Dodds, Dr. David Shaw, 

Dr. Michael Cox, and Dr. Mike Phillips. I have the utmost respect for all of you and no 

words can express my gratitude for the knowledge I have gained under your tutelage.   

I would also like to thank all the people that have fostered my knowledge of 

agriculture in my life, most importantly my father Donald, and my brother Cale, as well 

as, Dr. Andy Kendig, Dr. Reid Smeda, Dr. Harry James, Dr. Trent Irby, Mr. Dwight 

Abbey and Mr. Jayson Shriver. Every one of you has contributed to my knowledge of 

agriculture through your leadership, expertise and encouragement and all of you have 

contributed to this degree, whether you know it or not. 

Lastly but not least, I would also like to thank my mother Virginia, and my wife 

Whitney for their support and their belief that I could accomplish something as big as this 

in my life. I couldn’t have made it without either of you. As for you Ivy, I’m hoping that 

only your mother will remember all those late nights that went into this.   

. 



 

iv 

TABLE OF CONTENTS 

DEDICATION .................................................................................................................... ii 

ACKNOWLEDGEMENTS ............................................................................................... iii 

LIST OF TABLES ............................................................................................................. vi 

LIST OF FIGURES ......................................................................................................... viii 

CHAPTER 

I. INTRODUCTION ................................................................................................1 

Auxin-mimicking herbicides .................................................................................3 
Auxinic-resistant cotton .........................................................................................5 

Hazards with auxinic-resistant cotton ...................................................................7 
Literature Cited ......................................................................................................9 

II. COTTON RESPONSE TO SUBLETHAL CONCENTRATIONS OF 

2,4-D  AND DICAMBA .........................................................................15 

Abstract ................................................................................................................15 

Introduction .........................................................................................................16 
Materials and Methods ........................................................................................19 

Results and Discussion ........................................................................................22 
Response to Dicamba ....................................................................................23 

Response to 2,4-D .........................................................................................26 
Conclusions .........................................................................................................28 

Literature Cited ....................................................................................................39 

III. EFFECTS OF DICAMBA ON GLYPHOSATE UPTAKE AND 

MOVEMENT IN BARNYARDGRASS (ECHINOCHLOA 

CRUS-GALLI) AND JOHNSONGRASS (SORGHUM 

HALEPENSE) .........................................................................................44 



 

v 

Abstract ................................................................................................................44 
Materials and Methods ........................................................................................50 
Results and Discussion ........................................................................................53 

Barnyardgrass uptake and translocation of 14C glyphosate ...........................53 

Johnsongrass uptake and translocation of 14C glyphosate .............................57 
Literature Cited ....................................................................................................68 

 



 

vi 

LIST OF TABLES 

 2.1 Monthly and yearly accumulated precipitation in centimeters from 

Starkville, MS and from Brooksville, MS in 2009, 2010 and 

2011......................................................................................................31 

 2.2 Monthly and yearly mean high and low temperature from Starkville, 

MS and Brooksville, MS in 2009, 2010 and 2011. ..............................32 

 2.3 Planting, application and harvest dates for dicamba and 2,4-D trials 

conducted at Starkville, MS and Brooksville, MS in 2009, 2010 

and 2011. ..............................................................................................33 

 2.4 Cotton injury and percent yield reductiona following dicamba exposure 

at Brooksville, MS in 2009, 2010, and 2011 and at Starkville, 

MS in 2010, and 2011. .........................................................................34 

 2.5 Cotton injury and percent yield reductiona in yield following 2,4-D 

exposure at Brooksville, MS in 2009, 2010, and 2011 and at 

Starkville, MS in 2010, and 2011. .......................................................35 

 2.6 Pearson correlation coefficients of injury at 1 and 3 WAT to 

reductions in cotton yield. Data are pooled over years and 

locations. ..............................................................................................36 

 3.1 Percent of the applied 14C-glyphosate recovered from the water and 

chloroform wash of the treated leaf and the total plant 

absorption and recovery of 14C in barnyardgrass after 24 

hours.a ..................................................................................................62 

 3.2 Partitioned and total amounts of 14C-glyhosate found in the treated 

barnyardgrass leaf after 24 hours.a .......................................................63 

 3.3 Partitioned amounts and sum of 14C-glyphosate translocated away 

from the treated leaf of barnyardgrass after 24 hours.a ........................64 

 3.4 Amount of 14C-glyphosate recovered from the water and chloroform 

wash of the treated leaf and the total plant absorption and 

recovery of 14C in johnsongrass after 24 hours.a .................................65 



 

vii 

 3.5 Partitioned and total amounts of 14C-glyhosate found in the treated 

johnsongrass leaf after 24 hours.a ........................................................66 

 3.6 Partitioned amounts and sum of 14C-glyphosate translocated away 

from the treated leaf of johnsongrass after 24 hours.a .........................67 

 



 

viii 

LIST OF FIGURES 

 2.1 Percent cotton yield loss as a function of the rate of dicamba exposure 

at the vegetative growth stage from Brooksville, MS and 

Starkville, MS in 2010 and 2011. ........................................................36 

 2.2 Percent cotton yield loss as a function of the rate of dicamba exposure 

at the reproductive growth stage from Brooksville, MS and 

Starkville, MS in 2010 and 2011 .........................................................37 

 2.3 Percent cotton yield loss as a function of the rate of 2,4-D exposure at 

the vegetative growth stage from Brooksville, MS and 

Starkville, MS in 2010 and 2011 .........................................................37 

 2.4 Percent cotton yield loss as a function of the rate of 2,4-D exposure at 

the reproductive growth stage from Brooksville, MS and 

Starkville, MS in 2010 and 2011 .........................................................38 

 

 



 

1 

CHAPTER I 

INTRODUCTION 

Weed control is an important component of producing a high-yielding, quality, 

crop of cotton (Gossypium hirsutum). Cotton weed control, up until 1995, involved an 

integrated combination of biological, cultural, mechanical and chemical tactics. The cost 

of weed control prior to 1995 was estimated to be approximately 10% of the total budget 

for a cotton crop (Vargas et al. 1996). By 2016, weed control costs, including herbicides 

and trait technology fees, were estimated to be 20% of the budget for a cotton crop in 

Mississippi (MSU 2016). 

In 1995, bromoxynil-resistant cotton was released and became the first genetically 

modified variety of cotton, followed shortly by glyphosate-resistant (Roundup Ready®) 

cotton in 1997 (Carpenter and Gianessi 2001; Silvers et al. 2003). Glyphosate is a non-

selective, broad-spectrum herbicide that provides excellent control of numerous weed 

species (Duke and Powles 2008; Ferrell and Witt 2002; Franz et al. 1997). In 2000, only 

three years after introduction, glyphosate-resistant varieties accounted for 54% of cotton 

planted in Mississippi (Carpenter and Gianessi 2001). As of 2015, 100% of the planted 

cotton in Mississippi was glyphosate-resistant (USDA 2015). 

The first generation glyphosate-resistant gene inserted into cotton did not impart 

resistance at all growth stages and were only labeled for glyphosate postemergence 

(POST) applications up to the fourth-leaf vegetative stage (V-4). Applications of 
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glyphosate on cotton that was more mature than V-4 could cause both reduced pollination 

and boll retention, thus reducing final yields (Pline et al. 2002; Viator et al. 2003).  The 

second generation, and current, glyphosate-resistant gene in cotton was marketed under 

the trade name Roundup Ready Flex® and has a trait that allows for POST applications 

of glyphosate throughout the growing season to cotton in any growth stage (May et al. 

2004).  The option to make glyphosate applications at multiple timings throughout the 

season allow for flexibility of application periods while still providing satisfactory weed 

control (Main et al. 2007).  

Glyphosate applications in glyphosate-resistant cotton have been shown to be an 

economical and effective weed control program for cotton production systems (Askew 

and Wilcut 1999; Scott et al. 2002). Askew et al. (2002) found that late season weed 

control was excellent and net returns from sequential glyphosate treatments were as good 

if not better than weed control programs using herbicides other than glyphosate. 

However, as hectarage of glyphosate-resistant crops increased, the subsequent 

overreliance on glyphosate lead to concerns about shifting weed populations and future 

development of weed resistant to glyphosate (Culpepper 2006; Culpepper et al. 2006; 

Duke and Powles 2009; Kruger et al. 2009; Webster and Sosnoskie 2010)  

When glyphosate-resistant cotton was released, glyphosate controlled 74 of the 76 

world’s worst weed species, including all the Amaranthus spp. (Franz et al. 1997; Holm 

et al. 1977). Amaranthus spp. have been shown to impact cotton yield in the southern 

United States (Keeley et al. 1987; Rowland et al. 1999). Palmer amaranth (Amaranthus 

palmeri S. Wats.), is an extremely competitive Amaranthus because it is the fastest 

growing amaranth (Horak and Loughin 2000) and it has the capability to produce a large 
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number of seeds when in very low densities (Bensch et al. 2003).  Palmer amaranth 

densities between 1 to 10 plants per 9.1 m of row have been shown to reduce cotton 

canopy volume by 35 and 45% with 6 and 10 weeks of competition, respectively 

(Morgan et al. 2001). The same study noted that one Palmer amaranth plant per 9.1 m of 

row reduced yield by 13.4% and yield reductions increased linearly to 56.9% when the 

population was increased to 10 plants per 9.1 m of row.  A single Palmer amaranth plant 

in 3 m of row has been shown to reduce yields by up to 28%, in addition to creating 

difficulties for the cotton harvester and increasing the time taken to harvest by 3.5 fold 

(Smith et al. 2000).  

In recent years, numerous weeds have developed resistance to glyphosate in 

Mississippi. By 2016, critical weeds such as Palmer amaranth, common waterhemp 

(Amaranthus rudis Sauer), spiny amaranth (Amaranthus spinosus L.), Italian ryegrass 

(Lolium perenne ssp. multiflorum), goosegrass (Eleusine indica (L.) Gaertn.), horseweed 

(Conyza canadensis (L.) Cronq.), common ragweed (Ambrosia artemisiifolia L.), 

johnsongrass (Sorghum halepense (L.) Pers.) and giant ragweed (Ambrosia trifida L.) had 

all developed resistance to the herbicide glyphosate (Heap 2016).  The impact of 

competitive weeds, such as Palmer amaranth, only becomes more significant and control 

becomes more difficult when the weed is glyphosate-resistant. 

Auxin-mimicking herbicides 

Auxin-mimicking herbicides, also termed synthetic auxins, or growth-regulator 

herbicides, are a family of herbicides that affect the auxin hormone indol-3-yl-acetic acid 

(IAA) in plants (Cobb and Reade 2010; Fedtke 1982). Other than substituted quinolone 

carboxylic acids, all other classes of auxinic herbicides have herbicidal activity only on 
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dicot plants (Grossmann 1998). Other classes include benzoic acids like dicamba (3, 6-

dichloro-2-methoxybenzoic acid) and phenoxy alkanoic acids like 2, 4-D (2, 4-dichloro 

phenonxyacetic acid). Widespread use of auxinic herbicides has been documented in 

cotton production; however, cotton is extremely susceptible to injury from this class of 

herbicides and thus applications are restricted to the early preplant (EPP) timing (Baker 

1993; Everitt and Keeling 2007; Eubank et al. 2008; MSU-MAFES 2016; Keeling et al. 

1989; York et al. 2004).  

The first herbicidal effects of 2,4-D were documented in 1944 (Hamner and 

Tukey 1944). After the discovery, 2,4-D was rapidly produced and utilized in the US. 

This was due to cost effective and efficient synthesis on the manufacturing side, while 

producers were provided with the ability to use a foliar applied herbicide at low doses to 

selectively control dicot weeds in monocot crops (Cobb and Reade 2010). When 2,4-D 

was re-registered in June 2005, the Environmental Protection Agency (EPA) calculated 

the annual usage of 2,4-D to be 13.6 million kg, while home and garden use was 

estimated to be an additional 7.3 million kg annually (EPA 2005). After the discovery of 

the benzoic acid auxin family in 1958, which included dicamba, it also became a 

significant class of herbicides across multiple crops (Rao 2000).  

Both 2,4-D and dicamba have chemical profiles that favor minimal soil and 

groundwater risk. Groundwater contamination risk is minimal due to little persistence in 

the environment.  Dicamba has an average soil organic carbon coefficient (Koc) value of 

2 ml/g indicating weak soil adsorption and suggesting a leaching risk but actual potential 

for soil leaching is generally considered minimal due to rapid soil degradation (Shaner 

2014). Movement of dicamba can occur if degradation is slowed in situations of lower 
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temperatures (Comfort et al. 1992) or when not enough time is allowed for degradation to 

occur prior to a hydrological event (Scifres et al. 1973), or if applied to extremely dry soil 

(Ochsner et al. 2006). Degradation of dicamba results in the non-herbicidal metabolite 3, 

6-dichlorosalicylic acid (DCSA), which can be readily bound to soils at very broad pH 

ranges (Murray and Hall 1989). While 2,4-D has a Koc range of 20 to 100 ml/g (Shaner 

2014) and has a greater potential to be sorbed to soil, the leaching potential can increase 

in environments with low pH or temperature (Johnson et al. 1995). Grover (1977) 

directly compared the leaching potential of dicamba and 2,4-D in sandy loam, loam, and 

heavy clay soils, and determined that dicamba had greater soil mobility than 2,4-D in 

every soil type. 

Both dicamba and 2,4-D also have minimal mammalian toxicity. The acute oral 

LD50 of dicamba is 1700 mg/kg in rats and acute dermal LD50 >2000 mg/kg in rabbits. 

While 2,4-D is 764 to 639 mg/kg in rats and a dermal LD50 of >2000 mg/kg in rabbits. 

These levels are considered to be representative of a relatively low toxicity compared to 

other pesticides (Ware 2005; Shaner 2014). For both 2,4-D and dicamba, the aggregate 

risk levels for acute, short, and long term exposure are well below thresholds set by the 

EPA (EPA 2005; EPA 2006).  

Auxinic-resistant cotton 

In 2005, Monsanto Company® announced that they were in the development 

stage of dicamba-resistant cotton genetics obtained from a license with the University of 

Nebraska (Behrens et al. 2007; Monsanto 2005). The soil bacterium Pseudomonas 

maltophilia (strain DI-6), which is responsible for the soil metabolism of dicamba into 

3,6-dichlorosalicylic acid (DCSA), was used to create the dicamba monooxygenase 
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(DMO) gene that imparts dicamba-resistance in plants. The enzyme in DMO responsible 

for conversion to DCSA is O-demethylase, which contains a ferrodoxin similar to 

ferrodoxin in plant chloroplasts. By using an agrobacterium gene transfer, plants can be 

inserted with the DMO gene that allows the breakdown of dicamba within the plant thus 

allowing the plant to convey herbicidal resistance to dicamba (Behrens et al. 2007). 

Monsanto is currently marketing dicamba-resistant cotton under the brand name Bollgard 

II XtendflexTM, which also includes glyphosate and glufosinate-resistant trait technology 

(Monsanto 2016).  

The use of dicamba in dicamba-resistant cotton provides efficacy on numerous 

annual and perennial dicotyledonous weeds. Dicamba has been shown to control difficult 

to control herbicide-resistant weeds such as pigweed spp. (Amaranthus spp.), horseweed,  

common ragweed, giant ragweed, field bindweed (Convolvulus arvensis L.) and Canada 

thistle (Cirsium arvense (L.) Scop.) (MSU-MAFES 2016; Eubank et al. 2008; Everitt and 

Keeling  2007; Swanton et al. 2007). In addition, dicamba has been shown to broaden the 

broadleaf weed control spectrum of other POST herbicides in corn (Arnold et al. 2005; 

Nurse et al. 2007; Swanton et al. 2007) and the use of dicamba in cotton could provide 

similar results (Reynolds 2014). The use of dicamba in cotton would provide an 

alternative method for broadleaf weed control and more importantly, an alternative 

method for controlling glyphosate-resistant weeds (Duke 2015; Green 2014: Reynolds 

2014). 

Wright et al. (2010) documented the ability to create “robust crop resistance” to 

2,4-D via  bacterial aryloxyalkanoate dioxygenase (ADD) enzymes. Specifically, when 

the plant is transformed inserting the ADD-12 gene, the plant then has the ability to 
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metabolize 2,4-D into dichlorophenol thus conveying plant resistance to 2,4-D (Skelton 

et al. 2014). Currently 2,4-D resistant cotton is being developed by Dow Agrosciences® 

(DAS) under the trademark EnlistTM. Traits that impart glyphosate, glufosinate and 2,4-D 

resistance are stacked together and will be a part of the EnlistTM cotton program that is 

currently planned for launch in the 2016 growing season (DAS 2016).  

Hazards with auxinic-resistant cotton 

Due to the additional weed control options needed to control glyphosate-resistant 

weeds, the speed of adoption and use of auxinic-resistant cropping systems is expected to 

be similar to that of glyphosate-resistant crops, providing the new herbicide resistant 

technology provides satisfactory weed control and is economically competitive (Dill et al. 

2008; Riar et al. 2013; Shaner and Beckie 2014). Cotton, like all broadleaves that do not 

possess genes for auxinic herbicide resistance, is extremely sensitive to injury from 

dicamba and 2,4-D (Egan et al. 2014; Marple et al. 2007; Smith and Weise 1972). 

Currently, producers are not only concerned about controlling glyphosate resistant weeds 

but off-target movement as well. When surveyed in 2013, 68% of professional cotton 

consultants in the Mid-South listed off-target movement of auxinic herbicides as a 

concern with new herbicide-resistant cropping systems (Riar et al. 2013). Additional 

problems could arise from auxin injury to surrounding non-target areas via herbicide 

volatilization (Egan and Mortensen 2012; Behrens and Lueschen 1979; Riar et al. 2013).  

Marple et al. (2007) simulated herbicide drift using fractional rates of auxin 

herbicides and found that six- to eight-node cotton was visibly injured from either 

dicamba or 2,4-D applications at 1/400X of the labeled rate, or 1.4 g ae ha-1. Although all 

rates of dicamba caused visible injury on cotton, the injury was not as severe as from 2,4-
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D applications. In addition, cotton yield reductions were not found at dicamba rates of 

1/200th or less, but all applications rates of 2,4-D, including the lowest rate of 1/400th X, 

resulted in yield reductions.  Prior research has also indicated that early season auxin 

injury can be a poor indicator of final effects on cotton yield (Everitt and Keeling 2009; 

Johnson et al. 2012). Minimal research exists evaluating the timing of the auxin exposure 

on cotton in conjunction with sublethal concentrations. Experiments simulating auxin 

exposure were conducted to evaluate cotton injury and yield reductions from multiple 

rates of dicamba and 2,4-D.  

As both 2,4-D and dicamba-resistant cotton traits will be stacked with glyphosate-

resistant traits, simultaneous applications of auxin herbicides with glyphosate will be 

commonplace. Dicamba and 2,4-D have both been shown to antagonize control of 

johnsongrass when tankmixed with glyphosate (Flint and Barrett 1989). Additionally, 

barnyardgrass (Echinochloa crus-galli (L.) Beauv.) control using glyphosate can be 

antagonized by non-auxinic herbicides (Norris et al. 2001; Starke and Oliver 1998.  

Potential for reduced grass control could exist in auxin-resistant herbicide 

systems. This research examined the reduction in uptake and translocation of glyphosate 

in johnsongrass and barnyardgrass due to the presence of the diglycolamine salt 

formulation of dicamba. 
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CHAPTER II 

COTTON RESPONSE TO SUBLETHAL CONCENTRATIONS OF 2,4-D  

AND DICAMBA 

Abstract 

Use of auxin-resistant cotton will increase exposure of non-auxin tolerant cotton 

to synthetic auxins, which can result in significant injury. Field experiments were 

conducted to determine the response of cotton to 2,4-D and dicamba. Cotton injury from 

herbicides and yield reductions were dependent upon the amount and timing of exposure. 

Increasing herbicide application rate resulted in greater injury. At one week after 

exposure, injury during early season, vegetative growth was similar to injury from 

exposure during late season, reproductive growth. By the third week after exposure, 

cotton injury was more pronounced from auxin herbicides applied at vegetative timings 

rather than reproductive timings. Yield loss was correlated to visual injury and strongest 

at later evaluations of vegetative timings. Exposure of reproductively growing cotton to 

17.5 g ae/ha-1 of dicamba or 8.8 g ae/ha-1 of 2,4-D resulted in 15 and 12% injury at three 

weeks after application, and a yield loss of 28 and 34%, respectively.  

Recovery from auxin injury was dependent upon environmental conditions during 

and following an exposure event. As a result, regression modeling of yield to herbicide 

rate indicated that dicamba and 2,4-D applied to cotton in the vegetative stage resulted in 

greater variation than applications to cotton in the reproductive growth stage.  
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Auxin injury on reproductively growing cotton was less affected by 

environmental conditions, but the reduced foliar symptomology often underestimated 

yield loss. The ability of cotton to visibly recover from auxin injury during vegetative 

growth and throughout the growing season could mask potential yield loss and this 

research suggests that patterning yield loss from early season injury events would be 

difficult at best, due to geographical variations in climate.  

Nomenclature: Dicamba; 2,4-D; cotton, Gossypium hirsutum L.. 

Key words: Auxin, vegetative, reproductive, injury, yield loss. 

Introduction 

The successful production of a cotton crop requires the removal of most, if not all 

weeds in the field. Failure to control weeds often results in decreased lint yield and fiber 

quality, as well as increased production costs (Buchanan and Burns 1971; Morgan et al. 

2001; Rowland et al. 1999; Vargas et al. 1996). The development of herbicide resistant 

weeds, specifically glyphosate-resistant Palmer amaranth (Amaranthus palmeri S. Wats), 

have created additional difficulties for cotton production (Culpepper et al. 2006; MacRae 

et al. 2013; Morgan et al. 2001; Sosnoskie and Culpepper 2014). Advancements in cotton 

traits could provide additional options for control of weeds, including those resistant to 

glyphosate. Currently dicamba and 2,4-D resistant cotton are commercially available by 

Monsanto and Dow Agrosciences, respectively. Cotton possessing these traits would be 

tolerant to auxin herbicides such as dicamba or 2,4-D (Behrens et al. 2007; DAS 2016; 

Monsanto 2015; Wright et al. 2010). Both dicamba and 2,4-D herbicides have been 

shown to be effective in controlling numerous broadleaf weeds, including those that are 

glyphosate-resistant (Chandi et al. 2013; Eubank et al. 2008; Johnson et al. 2010; 
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Merchant et al. 2014). Injury from applications of auxinic herbicides to non-target 

species, either via drift, misapplication or volatilization has been historically well 

documented (Johnson et al. 2012; Sciumbato et al. 2004; Weidenhamer et. al. 1989). 

Unique symptomology, and the extreme sensitivity to low rates, allow auxin herbicide 

injury to non-target plants to be easily identified and documented. (Colquhoun et al. 

2014; Hatterman-Valenti and Mayland 2005; Hemphill and Montgomery 1981; Kruger et 

al. 2012; Lanini and Carrithers 2000; Marple et al. 2008) 

Exposure of cotton to auxin herbicides can affect growth and reduce lint yield and 

fiber quality (Marple et al. 2007; Marple et al. 2008; Smith and Wiese 1972). The 

magnitude of auxinic injury on cotton can be affected by many factors. Staten (1946) 

documented 2,4-D injury to cotton, specifically differences in severity of injury due to 

herbicide rate and formulation, citing increased injury from ester formulations. This was 

confirmed by Smith and Wiese (1972) who further determined that dicamba was not as 

injurious to cotton, when compared to 2,4-D ester or amine formulations. Similar results 

were also reported by Marple et al. (2007), who went on to note that visual injury from 

2,4-D amine applied to six- to eight-leaf cotton varied with weather conditions, and that 

increased uptake could occur in hot conditions. The same study also found that post-drift 

symptomology from dicamba did not accurately reflect yield effects, yet concluded 2,4-D 

symptomology was well correlated to yield reductions.  Johnson et al. (2012) determined 

that 2,4-D applied to 20 to 30 cm tall cotton at a rate of 20 g ha-1 could significantly 

reduce seed cotton yield. Early season injury evaluations, plant heights, node counts, and 

boll counts were poorly correlated to yield loss from sublethal concentrations of dicamba 

or 2,4-D.  
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Inconsistent conclusions of correlating injury effects and of yield loss could be a 

result of differences in application timing. Marple et al. (2008) evaluated applications of 

dicamba and 2,4-D at two rates (2.8 or 1.4 g ae ha-1) on three- to four-leaf, eight-node, 

14-node, or 18-node cotton  and found that yield reductions from dicamba and 2,4-D can 

be a function of crop growth stage. While cotton was susceptible to injury at early growth 

stages, yield reductions only occurred when 2,4-D was applied at 2.8 g ae ha-1 to three- to 

four-leaf cotton. The authors further noted that the observed injury could be a function of 

a short growing season at the trial location. A study conducted by Everitt and Keeling 

(2009) found that yield reduction was not significant when cotton received 2,4-D at 2.8 g 

ai ha-1 applied at pinhead square. When the rate was increased to 28 g ai ha-1, yields were 

reduced by 68%, but it was concluded that visual injury overestimated yield loss. Recent 

research from Byrd et al. (2016) found that 2,4-D had the greatest impact on yield when 

exposure occurred at first bloom.  

Patterning yield loss has historically been calculated from either differences in 

seed cotton yield (Everitt and Keeling 2009; Johnson et al. 2012) or as a percent of the 

untreated (Marple et al. 2007; Marple et al. 2008), resulting in widespread inconsistencies 

in data (Egan et al. 2014). Yield response to herbicide rate has often utilized linear, 

exponential, and log-logistic rate-yield response curves (Johnson et al. 2012; Marple et 

al. 2007; Seefeldt et al. 1995; Snipes et al. 1992; Snipes et al. 1991). However, crops with 

low levels of auxin exposure can recover from injury and can even result in increased 

yields, or hormesis (Schabenberger et al. 1999; Solomon and Bradley 2014), which are 

often omitted or poorly accounted for, when utilizing linear, exponential, or log-logistic 

curves (Bohnenblurst et al. 2016; Egan et al. 2014). Research has suggested auxin 
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herbicide injury response data would be better fit if they were normalized by calculating 

yield as a percent of the untreated (Egan et al. 2014; Oliver 1988) and fit utilizing a 

logarithmic based linear model (Askew et al. 2002; Egan and Mortensen 2012; Gilreath 

et al. 2000; Hedges et al. 1999; Sirons et al. 1982).  

Currently in the Mid-South, there is limited published data on the effects of 2,4-D 

(Byrd et al. 2016) on cotton growth and yield, and no published data exists for dicamba. 

In addition, data are varied for predicting yield loss from exposure and therefore draw 

different conclusions (Egan et al. 2014), which only highlights the need for evaluating the 

significance of auxin herbicides on cotton yield. A poll of cotton consultants in the mid-

south found that 68% listed off-target movement of auxinic herbicides as a future concern 

(Riar et al. 2013). The objectives of this research were to utilize dicamba and 2,4-D, at 

logarithmically reduced rates, to simulate sublethal exposure at both vegetative and 

reproductive growth stages to evaluate cotton growth effects while patterning yield loss. 

Materials and Methods 

Two experiments, one with dicamba (Clarity, BASF Corporation, 26 Davis Drive, 

Research Triangle Park, NC 27709)  and one with 2,4-D (2,4-D Amine 4, Agri-Star 

Albaugh Inc., 1525 NE 36th St., Ankeny, Iowa, 50021), were conducted to determine the 

impact of logarithmically decreasing herbicide rates and the timing of their exposure on 

injury and yield of cotton. Studies were conducted in 2009, 2010, and 2011 at the Black 

Belt Branch Experiment Station in Brooksville, MS and in 2010 and 2011 at the W.B. 

Andrews Agricultural Systems Research Center in Starkville, MS. At all site-years, both 

experiments were conducted in the same field with a 15.2 m buffer planted between 

experiments. To reduce off target movement and increase yield sample size, treatments 
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were applied to plots eight rows wide, measuring 7.7 m wide and 13.7 m long with an 

additional four untreated border rows established between plots.  

Cotton (in 2009, Stoneville “ST 4554B2RF”, Bayer CropScience, 2 T.W 

Alexander Drive, Research Triangle Park, NC 27709 and in 2010 and 2011, Deltapine 

“DP 0924 B2RF”,  Monsanto Company, 800 N. Lindbergh Blvd., St. Louis, MO 63167)  

was planted at 153140 seeds ha-1 in rows spaced 0.97 m apart. The soil series at the 

Starkville location was Marietta fine sandy loam (fine-loamy, siliceous, active, thermic 

Fluvaquentic Eutrudepts), while the Brooksville location was Brooksville silty clay (Fine, 

smectitic, thermic Aquic Hapluderts). Trials were fertilized with 101 kg ha-1 of nitrogen 

using 32% UAN sidedressed in the third week after planting. All applications for insects 

and harvest aids were made based on Mississippi State University Extension Service 

recommendations. Experiments were defoliated when 60% of the bolls were open in the 

untreated checks. 

Trials were conducted under dryland conditions and were maintained weed-free 

throughout the duration of the studies, with a PRE application of fluometuron (Cotoran, 

Makhteshim Agan of North America, 3120 Highwoods Blvd, Suite 100, Raleigh, NC 

27604 ) at 1.12 kg ai ha-1 and POST applications of glyphosate (Roundup Powermax®, 

Monsanto Company, 800 N. Lindbergh Blvd., St. Louis, MO 63167.) at 0.87 kg ae ha-1, 

pyrithiobac-sodium (Staple LX®, Dupont Crop Protection, Laurel Run Building, 

Chestnut Run Plaza, Wilmington, DE 19898) at 34.0 g ai ha-1, and hand weeding as 

needed. 
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Both the dicamba and 2,4-D trials were conducted using a factorial arrangement 

of treatments within a randomized complete block design with four replications. 

Application timing and herbicide rate served as the main factors. The two application 

timings for the studies were an early timing, applied during vegetative growth, or a late 

timing, applied during reproductive growth. Vegetative application timings were applied 

on five- to 10-node cotton and reproductive application timings were applied on 12- to 

16-node cotton. The 1X rate of 2,4-D was 560 g ae ha-1and the 1X rate of dicamba was 

1120 g ae ha-1. The treatment factor of rate was derived from fractioning the 1X rate of 

each herbicide using a logarithmically decreasing distribution. The fractional rates were 

1X, 1/4X, 1/16X, 1/64X, and 1/256X of the herbicide, thus applied rates were 560, 140, 

35, 8.8, and 2.2 g ae ha-1 for 2,4-D and 1120, 280, 70, 17.5, and 4.4 g ae ha-1 for dicamba. 

Untreated checks (UTC) were included with both application timings.  All treatments 

were applied in a sequentially increasing fashion, beginning with the lowest rate. 

Machinery and materials were cleaned with ammonium hydroxide and water between all 

timings and experiments.  

Treatments were applied with a tractor-mounted sprayer traveling 5 kph and 

utilized compressed air at 221 kpa to deliver 140 L ha-1 from nozzles with flat fan tip 

(Teejet XR8002, Spraying Systems Co., North Ave.& Schmale Rd, Wheaton, IL 60189-

7900). The boom was 3.85 m wide and was shielded to reduced spray drift. Cotton injury 

was visually evaluated using a scale where 0 = no injury and 100 = total plant death 

(Frans et al. 1986).  

Treatments were evaluated for injury at one and three weeks after treatment 

(WAT) and seed cotton yield was harvested from the second, third, sixth, and seventh 
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rows in each plot. Yield data were transformed to calculate percent change compared to 

the UTC utilizing the Abbott (1925) formula. For all site-years, reductions in plot yield 

were calculated using the UTC treatment mean from their corresponding application 

timing.   Data were analyzed using the PROC GLIMMIX function in SAS software (SAS 

Institute Inc., Cary, NC, 27513) and mean separation was at confidence level of α=05. 

Site-year was treated as a random effect and herbicide timing and rate were treated as 

main effects (Blouin et al. 2011). Pearson correlation coefficients and P > F values were 

determined for injury at one and three WAT vs. yield reduction. A regression model of 

herbicide rate vs. yield reduction was fit utilizing the natural log (ln) to linearize data and 

account for negative values of yield reduction (Hedges et al. 1999).   

Results and Discussion 

The residual plots were examined for both the dicamba and 2,4-D experiments, 

and outliers were found in the yield data (data not presented). Outliers were found 

consistently in the yield data from the Brooksville 2009 site-year, in both the dicamba 

and 2,4-D studies. At the Brooksville 2009 site-year, the UTC mean yields were 1066 

and 1844 kg ae ha-1 in the dicamba and 2,4-D experiments, respectively.  The UTC 

means from Brooksville in 2009 were comparatively lower for both experiments, than 

pooled means of other site-years. This was not unexpected for the site-year, as both 

studies were subject to environmental factors that resulted in poor yield potential (MSU-

MAFES 2009). The summer drought began with no rainfall and a mean high temperature 

of 33.7 C in June, and continued through July and August, which had only 19 cm of 

rainfall combined (Table 2.1 and 2.2). The drought was followed by extremely long 

periods of heavy rain in September (25 cm) and October (29 cm) which contributed to 
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significant yield loss when harvest for both studies occurred by hand on December 10th 

(Table 2.3). All other site-years were able to be mechanically harvested. Subsequently, 

the yield data from the Brooksville 2009 site-year was concluded to be an outlier and 

removed from analysis. 

Response to Dicamba 

Crop injury from dicamba was consistent with auxin herbicide symptomology 

including leaf cupping, epinasty and red stems (Sciumbato et al. 2004). Injury was similar 

to that found by Everitt and Keeling (2009) and Johnson et al. (2012).  At one WAT, the 

main factor of timing was not significant and there was no interaction between 

application timing and rate; therefore, data were pooled across timing (Table 2.4). The 

insignificance of application timing indicates that initial dicamba injury one WAT will 

appear similar when cotton is either in the vegetative or early reproductive stages. The 

sub factor of rate was significant as evident by the stepwise reduction in injury as rate 

decreased. Injury from dicamba was 46, 33, 26, 18, and 6% for the 1120, 280, 70, 17.5, 

and 4.4 g ae ha-1 rates, respectively. The 6% injury from 4.4 g ae ha-1 rate was greater 

than the UTC at one WAT.  

At three WAT, the factor of timing was significant with respect to visual injury. 

Dicamba applied at rates of 1120, 280, 70, 17.5, and 4.4 g ae ha-1 resulted in 66, 50, 34, 

30, and 20% injury and 50, 39, 30, 15, and 1% injury from vegetative and reproductive 

timings, respectively. With the exception of the 70 g ae ha-1 rate, comparable rates of 

dicamba resulted in significantly more injury from application at the vegetative timing 

compared to the reproductive timing. The change in factor significance from one WAT to 

thee WAT was due to increased injury between evaluation timings of the vegetative 
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applications. From one WAT to three WAT, injury increased between 8 to 20% for all 

dicamba treatments at the vegetative timing, while the change in injury from treatments at 

the reproductive timing was not greater than 7% (Table 2.4). Increased injury from 

applications in the vegetative stage was not unexpected as visual injury from dicamba 

manifests itself in new, actively expanding foliage. As potential vegetative growth was 

reduced by the reproductive timing, the early application timing would contribute to more 

visual injury as the plants would be producing greater vegetative growth. Everitt and 

Keeling (2009) found similar results as dicamba applied to four to five leaf cotton were 

more injurious than applications at bloom.  Injury effects were dependent upon rate with 

increasing rates resulting in greater injury. While the least injurious rate for both timings 

was the 4.4 g ae ha-1  rate, the vegetative timing was more injurious (20%) than the 

reproductive timing (1%), which was not different from the UTC. 

Mean seed cotton yield of the UTC was 2816 kg ae ha-1 from the pooled site-

years.  Application timing and rate were both found to be significant with respect to seed 

cotton yield. Applications of dicamba at 1120, 280, 70, 17.5, and 4.4 g ae ha-1 rate 

resulted in a yield reduction of 81, 57, 29, 23, and 18% from the vegetative and 90, 81, 

53, 28, and 7% from the reproductive timings (Table 2.4). Seed cotton yield following 

applications of dicamba at 4.4 g ae ha-1 was not different from the UTC when applied at 

the reproductive timing; however, applications made at the vegetative timing resulted in 

an 18% reduction in yield. Dicamba applied at 17.5 g ae ha-1 resulted in at least a 23% 

yield reduction at either application timing.  

Dicamba applied at the reproductive timing had a greater impact on yield than the 

vegetative timing when applied at 70 or 280 g ae ha-1, while any rate above 17.5 g ae ha-1 
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resulted in at least a 23% reduction in yield. Differences in yield due to application 

timing were found from dicamba applied at 1120 g ae ha-1, which resulted in an 81 to 

90% yield reduction. Neither application timing of dicamba at the 1120 g ae ha-1 rate 

resulted in complete loss of yield.  

Regression modeling of yield response to dicamba rate is presented by evaluation 

timing because timing was significant. Compared to reproductive timing, the vegetative 

timing of dicamba had more variation across site-years and resulted in the regression 

model accounting for less total variability as evidenced by the coefficient of 

determination of R² = 0.4124 (Figure 2.1). Yield response to rates of dicamba at the 

reproductive timing were more consistent and was also evidenced by increased model fit 

of R² = 0.9203 (Figure 2.2). Although yield response to dicamba was more consistent at 

the reproductive timing, the correlation of injury to reductions in yield was not as strong 

for reproductive timings compared to vegetative timings at three WAT (Table 2.4). 

Pearson correlation coefficients of injury to yield were 0.79 at one WAT and were 0.91 

and 0.69 at three WAT for the vegetative and reproductive timings, respectively. The 

weaker linear relationship at one WAT vs. yield and three WAT vs. yield was likely a 

result of reduced vegetative symptomology in conjunction with the reproductive timing 

having a greater impact on yield loss (Table 2.4). Despite differences amongst timings, 

all coefficients indicated a strong relationship between injury and predicted yield loss. 

Johnson et al. (2012) found significant correlations between dicamba injury and seed 

cotton yield but subsequently ruled them inconclusive because the absolute value of the 

coefficient was not greater than 0.6. 
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Response to 2,4-D 

Injury observed from 2,4-D was similar to previously documented literature, 

including leaf twisting, epinasty, and malformed growth (Sciumbato et al. 2004). The 

main factor of timing was not significant for injury one WAT and there was no 

interaction between timing and rate. Therefore, cotton injury at one WAT did not differ 

between vegetative or reproductive growth stages; therefore, data were pooled across 

application timing. Application rate was significant and increased injury was a function 

of increased rate. Injury from 2,4-D at one WAT was 47, 29, 14, 9, and 5% for the 560, 

140, 35, 8.8, and 2.2 g ae ha-1 rates respectively (Table 2.5). Cotton injury from different 

2,4-D application rates was chained, and the 2.2 g ae ha-1 application rate did not result in 

visual injury different from the untreated check.   

At three WAT, application timing and rate were significant, with respect to visual 

cotton injury. Vegetative applications of 2,4-D at 560, 140, 35, 8.8, and 2.2 g ae ha-1 rates 

resulted in 78, 49, 43, 37, and 26% injury while reproductive applications resulted in 53, 

26, 20, 12, and 7% injury, respectively (Table 2.5). Increased injury from vegetative 

applications was due to presence of symptomology on expanding foliage. Like other 

auxinic herbicides, symptomology of 2,4-D in cotton is more prevalent during active 

foliar growth and is subsequently reduced when cotton progresses to reproductive growth 

stages (Marple et al. 2008). The production of new foliage can also cause increased injury 

with time, as the vegetative application timings had a greater change in foliar growth 

between one to three WAT, resulting in significance of the timing factor at three WAT. 

There were greater changes in injury from one to three WAT from vegetative timings of 

2,4-D, than changes in injury from reproductive timings. Everitt and Keeling (2009) 



 

27 

documented a similar stagnation in injury response between one and two WAT when 

blooming cotton was treated with 2,4-D. All rates of 2,4-D  applied during vegetative 

growth had greater injury than the corresponding rate applied at the reproductive stage. 

Differences in application timing were also noted by Marple et al. (2008) who 

documented that cotton injury from 2,4-D was more severe from applications at three to 

four leaf than 8-, 14-, or 18-nodes.   

Mean seed cotton yield of the UTC was 2936 kg ha-1 (Table 2.5).  Analysis of 

yield reductions found that application timing was significant and that the magnitude of 

yield loss from 2,4-D was dependent upon the timing of exposure. Application rate was 

also significant and evident as greater rates resulted in greater yield loss. The 560, 140, 

35, 8.8, and 2.2 g ae ha-1 application rates of 2,4-D applied vegetatively reduced yield by 

85, 65, 45, 26, and 8%, whereas reproductive applications reduced yield by 98, 90, 70, 

34, and 11%, respectively (Table 2.5). Reduction in yield from 2,4-D applied at 2.2 g ae 

ha-1 was not different from the UTC at either application timing. Any rate of 2,4-D at 8.8 

g ae ha-1 or greater, resulted in a yield reduction of at least 25%, regardless of application 

timing. Applications at a reproductive growth stage had a greater impact on yield for the 

majority of the rates. The 560, 140 and 358 g ae ha-1 2,4-D rates applied at the 

reproductive timing resulted in an additional 13 to 25% reduction in yield than 

comparable rates at the vegetative timing. Yield loss from a vegetative application of 2,4-

D at 560 g ae ha-1 was equivalent to a reproductive application at the 140 g ae ha-1 rate. 

Regression modeling of yield response to rate of 2,4-D is presented by application 

due to the significance of application timing. Regression of yield response to 2,4-D 

concentration indicated variation across all vegetatively applied rates and was reflected in 
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the coefficient of determination of R²=0.6745 (Figure 2.3). Yield response from 

reproductive applications produced more consistent data across rates, as indicated in the 

coefficient of determination of  0.9154 (Figure 2.4). 

All correlation tests of injury percentage to yield reduction percentage were 

significant (Table 2.6). Coefficients of yield to injury 1 WAT were 0.74 while 

coefficients to yield to injury 3 WAT were stronger from applications made at the 

vegetative (0.91) vs. the reproductive (0.76) timing. These data build on work by Johnson 

et al. (2012) who found significant, but weak, correlations between visual 2,4-D injury 

and cotton yield. 

Conclusions 

Injury data responded accordingly to rate for both dicamba and 2,4-D; however 

application timing was not significant one WAT, but was at three WAT (Table 2.4 and 

2.5). Marple et al. (2008) found that vegetative applications resulted in increased 

exhibition of auxin symptomology that peaks at 4 WAT. Subsequently, both herbicides 

resulted in more symptomology and greater assessment of injury from later evaluations. 

In addition, yield responses were a function of application rate; however, yield loss was 

often greater from reproductive applications that were also often underestimated in visual 

injury evaluations (Table 2.4 and 2.5). Cotton yield loss from exposure at reproductive 

growth stages has been documented to be a result of increased hormone production 

resulting in abortion of reproductive structures (Guinn 1982; Fedtke and Duke 2005; 

Marple et al. 2007; Porter et al. 1959). In addition, the ability of cotton to continue 

vegetative growth following auxin exposure could also contribute to final yield potential 

(Marple et al. 2008: Smith and Wiese 1972; Snipes et al. 1991). Vegetative recovery 
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from a low dose of 2,4-D or dicamba on cotton would be dependent upon an extended 

period of favorable environmental conditions that contribute to growth (Snipes et al. 

1991). As a result, yield response to rates of vegetatively applied dicamba and 2,4-D had 

more variation (Figures 2.1 and 2.3) that was likely due to rainfall differences observed in 

June, July and August of 2010 and 2011 (Table 2.1). Egan et al. (2014) noted that 

environmental variability could affect results from auxin injury trials. These data support 

that conclusion as vegetative applications often had site-years with increased variation of 

yield response to rate which were likely a result of environmental conditions surrounding 

the application event, as well as the subsequent period of recovery, regrowth and yield. 

Marple et al. (2008) stated that weather conditions contributed to full recovery of cotton 

injury from 2,4-D; however, it should be noted that the variety used for the research was 

documented to have enhanced tolerance to 2,4-D (Reiger et al. 1986). This research 

suggests that patterning yield loss from early season injury events would be difficult at 

best, due to geographical variations in climate. The variation in change of visual injury 

from one to three WAT, for both dicamba and 2,4-D, could also create difficulties in the  

prediction of the severity of an event, while the ability of cotton to visibly recover from 

auxin injury throughout the growing season (Hamilton and Arle 1979; Marple et al. 2008) 

could also mask potential yield loss.   

Despite variation from environmental conditions, the results of both dicamba and 

2,4-D studies were more consistent than other studies (Egan et al. 2014; Johnson et al. 

2012; Smith and Wiese 1972). Improved modeling and data consistency led to better 

differentiation due to normalizing yield data by calculating loss as a function of the 

untreated, as suggested by others (Abbott 1925; Egan et al. 2014; Griffin et al. 2013; 
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Oliver 1988). The utilization of a natural log (ln) model of regression improved 

regression fit (Clewer and Scarisbrick 2001; Hedges et al. 1999; Egan et al. 2014).  

Improved yield consistency was achieved by increasing the harvested sample size to four 

rows and utilizing larger plots, while yield differentiation between rates was maximized 

by utilizing a broader range of herbicide rates in both trials. By invoking logarithmically 

decaying rates of herbicide, as outlined by Seefeldt et al. (1995), a more consistent dose-

response of injury and yield were found compared to other existing data (Everitt and 

Keeling 2009; Johnson et al. 2012; Lanini and Carrithers 2000; Marple et al. 2007). 

These data also suggest that cotton exposure to dicamba in the vegetative stage can 

reduce yield. This contrasts Marple et al. (2008) and Johnson et al. (2012) who did not 

consistently document yield loss from early- or late- season applications of dicamba. The 

consistent impact of dicamba on yield at the reproductive stage also agrees with 

predictive modeling done by others (Egan et al. 2014; Everitt and Keeling 2009) who 

determined that cotton was most sensitive to dicamba at early flowering stage. Early 

season exposure may have more potential to recover but are also more susceptible to 

environmental factors. However, in instances where tank contamination of an auxinic 

herbicide occurs later in season, calculations based on an estimated rate of application 

could be useful in estimating yield loss.  

  Future research is needed to determine if irrigation could reduce variation and 

quantify the difference between treatment rates or timings. In addition, irrigation should 

be further investigated as a potential tool to improve recovery following auxin exposure.  
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Table 2.1 Monthly and yearly accumulated precipitation in centimeters from 

Starkville, MS and from Brooksville, MS in 2009, 2010 and 2011. 

 Precipitation 

 2009  2010  2011 

Month Brooksville  Brooksville Starkville  Brooksville Starkville 

 ––––––––––––––––––––––––– cm –––––––––––––––––––––––––– 

January 19  13 15  16 14 

February 9  9 7  7 7 

March 7  15 9  15 16 

April 8  15 11  23 31 

May 17  20 16  7 5 

June 0  13 6  5 13 

July 13  6 8  12 11 

August 6  10 4  2 5 

September 25  1 6  26 18 

October 18  9 3  3 3 

November 4  24 17  9 9 

December 10  4 3  12 16 

Total 136  139 106  137 148 
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Table 2.2 Monthly and yearly mean high and low temperature from Starkville, MS and Brooksville, MS in 2009, 2010 and 

2011. 

 Mean Temperature 

 2009  2010  2011 

 Brooksville  Brooksville Starkville  Brooksville Starkville 

 High Low  High Low High Low  High Low High Low 

January 13.7 0.3  8.9 -2.6 9.3 -2.2  10.7 -1.2 10.9 0 

February 16.6 0.9  14.6 -4.7 9.7 -1.7  16.2 2 15.7 2.8 

March 20.5 7.5  20 4.7 16.4 4.9  21.2 5.4 20.4 7.1 

April 24.6 9.2  27.6 7.6 25.8 11.1  25.4 10.8 25.8 12.7 

May 29.4 18  29.4 16.5 29.2 18.4  26.8 14.6 27.8 15.5 

June 33.7 20.8  33.5 22.6 33.8 22.9  33.8 20.6 34.5 21.4 

July 32.8 17.8  33.7 22.7 34.7 23.7  32.6 22.3 34.4 22.2 

August 31.4 20.1  34.9 22.8 35.9 23.5  34.4 21.1 34.9 21.2 

September 28.8 19.2  33 16 33.4 17.5  28.2 15.5 28.8 14.9 

October 22.2 10  27.2 8.5 27.5 9.2  23 6.9 23.5 6.8 

November 18.4 5.1  19.6 4.4 20 5.8  20.4 4.5 19.4 5.5 

December 10.8 0.3  11.3 -2.6 11.1 -1.3  13.6 1.6 13.7 1.7 

Year 23.6 10.8  24.5 9.7 23.9 11  23.9 10.3 24.2 11 
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Table 2.3 Planting, application and harvest dates for dicamba and 2,4-D trials conducted at Starkville, MS and Brooksville, MS 

in 2009, 2010 and 2011. 

 Date 

 2009  2010  2011 

Stage Brooksville  Brooksville Starkville  Brooksville Starkville 

 ––––––––––––––––––––––––––– Planted –––––––––––––––––––––––––––––––– 

Seed May 28  May 13 May 12  May 26 May 11 

 ––––––––––––––––––––––––––– Application –––––––––––––––––––––––––––––––– 

Vegetative July 14  June 22 June 15  July 7 June 20 

Reproductive August 10  July 11 July 6  July 19 July 18 

 ––––––––––––––––––––––––––––– Harvest –––––––––––––––––––––––––––––––––– 

Mature December 10  October 18 October 8  October 17 October 3 
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Table 2.4 Cotton injury and percent yield reductiona following dicamba exposure at 

Brooksville, MS in 2009, 2010, and 2011 and at Starkville, MS in 2010, 

and 2011. 

   Cotton responseb 

Dicamba Rate  Visual Injury  Yield 

Fractional Actual Timing 1 WATc 3 WAT Reduction 

 – g ae ha-1  –  –––––––––– % ––––––––––– 

1X 1120 
Vegetative 

46 a 
66 a 81 a 

Reproductive 50 b 90 a 

1/4X 280 
Vegetative 

33 b 
50 b 57 b 

Reproductive 39 c 81 a 

1/16X 70 
Vegetative 

26 c 
34 dc 29 c 

Reproductive 30 d 53 b 

1/64X 17.5 
Vegetative 

18 d 
30 d 23 c 

Reproductive 15 e 28 c 

1/256X 4.4 
Vegetative 

6 e 
20 de  18 cd 

Reproductive 1 f 7 de 

UTC d n/a 
Vegetative 

0 f 0 f  0 e 
Reproductive 

a Yield data from Brooksville in 2009 were omitted from analysis due to extreme rainfall 

prior to harvst. Mean yield for all site-site years was 2816 kg ha-1 and percent yield 

reduction was calculated as function of the mean plot yield of the untreated control.  
b Means within a column followed by the same letter are not significantly different. 

c There was no interaction between timing and rate at 1 WAT and the main effect of 

timing was not significant therefore data were pooled across timing.  

d The UTC represents the untreated control for both application timings.   
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Table 2.5 Cotton injury and percent yield reductiona in yield following 2,4-D 

exposure at Brooksville, MS in 2009, 2010, and 2011 and at Starkville, MS 

in 2010, and 2011.  

   Cotton responseb 

Dicamba Rate  Visual Injury  Yield 

Fractional Actual Timing 1 WATc 3 WAT Reduction 

 – g ae ha-1  –  –––––––––– % ––––––––––– 

1X 560 
Vegetative 

47 a 
78 a 85 b 

Reproductive 53 b 98 a 

1/4X 140 
Vegetative 

29 b 
49 bc 65 c 

Reproductive 26 e 90 ab 

1/16X 35 
Vegetative 

14 c 
43 cd 45 d 

Reproductive 20 e 70 c 

1/64X 8.8 
Vegetative 

9 d 
37 d 26 e 

Reproductive 12 f 34 e 

1/256X 2.2 
Vegetative 

5 de 
26 e 8 f 

Reproductive 7 fg 11 f 

UTC d n/a 
Vegetative 

0 e 0 g 0 f 
Reproductive 

a Yield data from Brooksville in 2009 were omitted from analysis to extreme rainfall 

prior to harvst. Mean yield for all site-site years was 2936 kg ha-1 and percent yield 

reduction was calculated as function of the mean plot yield of the untreated control. 
b Means within a column followed by the same letter are not significantly different. 

c There was no interaction between timing and rate at 1 WAT and the main effect of 

timing was not significant therefore data were pooled across timing.  

d The UTC represents the untreated control for both application timings. 
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Table 2.6 Pearson correlation coefficients of injury at 1 and 3 WAT to reductions in 

cotton yield. Data are pooled over years and locations.  

     

 Evaluation   Correlation 

Herbicide Timing Variable P > F coefficient 

     

Dicamba Pooled Injury 1 WAT vs. yield < 0.0001 0.79 

     

 Vegetative Injury 3 WAT vs. yield < 0.0001 0.91 

 Reproductive Injury 3 WAT vs. yield    0.0010 0.69 

     

     

2, 4-D Pooled Injury 1 WAT vs. yield < 0.0001 0.74 

     

 Vegetative Injury 3 WAT vs. yield < 0.0001 0.91 

 Reproductive Injury 3 WAT vs. yield < 0.0001 0.76 

     

     

 

 

Figure 2.1 Percent cotton yield loss as a function of the rate of dicamba exposure at 

the vegetative growth stage from Brooksville, MS and Starkville, MS in 

2010 and 2011. 
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Figure 2.2 Percent cotton yield loss as a function of the rate of dicamba exposure at 

the reproductive growth stage from Brooksville, MS and Starkville, MS in 

2010 and 2011 

 

Figure 2.3 Percent cotton yield loss as a function of the rate of 2,4-D exposure at the 

vegetative growth stage from Brooksville, MS and Starkville, MS in 2010 

and 2011 
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Figure 2.4 Percent cotton yield loss as a function of the rate of 2,4-D exposure at the 

reproductive growth stage from Brooksville, MS and Starkville, MS in 

2010 and 2011 
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CHAPTER III 

EFFECTS OF DICAMBA ON GLYPHOSATE UPTAKE AND MOVEMENT IN 

BARNYARDGRASS (ECHINOCHLOA CRUS-GALLI) AND JOHNSONGRASS 

(SORGHUM HALEPENSE) 

Abstract 

The adoption of auxin-resistant cotton will increase the use of dicamba, which has 

been shown to antagonize glyphosate when applied simultaneously. Greenhouse 

experiments were conducted to evaluate the effects of dicamba on absorption, uptake and 

translocation of glyphosate in barnyardgrass and johnsongrass. Radiolabeled 14C-

potassium salt glyphosate was applied with the diglycolamine salt formulation of 

dicamba. Plants were harvested 24 h after application and recovery of radiolabelled 

material was 82 to 89% for barnyardgrass and 77 to 85% for johnsongrass. The majority 

of applied 14C for both species was found in the water wash of the treated area at harvest. 

Increasing glyphosate rate did increase total absorption in both species. Total amount of 

translocated glyphosate was 2.6 to 4.6% and 3.8 to 6.8% of applied in barnyardgrass and 

johnsongrass, respectively.  No reductions in total absorbed glyphosate were observed in 

barnyardgrass when glyphosate was tankmixed with dicamba; however, glyphosate 

translocation was reduced when dicamba was applied with the 0.56 and 0.84 kg ae ha-1 

rates of glyphosate. Increasing glyphosate application rate to 1.12 kg ae ha-1 did improve 

translocation of glyphosate to levels observed from glyphosate applied at 0.84 kg ae ha-1 
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without dicamba. Reduced translocation was a result of increased glyphosate 

concentration in the distal portion of the treated leaf. Reduced translocation could not be 

confirmed in johnsongrass but increased glyphosate accumulation in the distal portion of 

the treated leaf did occur when dicamba was present. Although lethal concentrations of 

glyphosate were achieved after 24 h in the presence of dicamba, altered translocation of 

glyphosate has been characterized as a precursor to, and identifier of, glyphosate 

resistance. Subsequently, consideration should be taken to maximize the efficacy of 

glyphosate when applications are made to either barnyardgrass or johnsongrass.  

Nomenclature: glyphosate; dicamba; barnyardgrass, Echinochloa crus-gall (L.) Beauv. 

ECHCG; johnsongrass, Sorghum halepense (L.) Pers. SORHA 

Key words: Translocation, antagonism, tank mixture, interaction 

 

Introduction 

Glyphosate (N-(phosphonomethyl glycine) is a broad spectrum herbicide with 

activity on both broadleaf and grass weeds (Dill et al. 2010; Shaner 2014a). Originally 

discovered to have herbicidal activity in 1970 by J.E. Franz (Franz et al. 1997), early 

usage patterns were limited to fallow fields, rights-of-way, and industrial areas due to its 

non-selective nature (Dill et al. 2010). Glyphosate usage increased after 1996 when 

Monsanto released glyphosate-resistant soybeans, which included a genetically modified 

trait in the crop that imparted herbicide tolerance.  By 2014, maize (Zea mays L.), 

cotton(Gossypium hirsutum L.), canola (Brassica napus L.), sugarbeet(Beta vulgaris L.), 

alfalfa(Medicago sativa L.), as well as soybean(Glycine max (L.) Merr.), were all 

available with the glyphosate resistant trait (Duke 2015; Duke and Powles 2009). Today, 
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herbicide resistant crops often contain more than one herbicide-resistant trait and it is 

expected that in the future, the glyphosate-resistant trait will be combined with traits 

conferring resistance to acetolactate synthase (ALS), 4-hydroxyphenylpyruvate 

dioxygenase (HPPD) and acetyl CoA carboxylase (ACCase) inhibiting herbicides, as 

well as auxin mimicking herbicides such as dicamba and 2,4-D (Duke 2015; Green et al. 

2008; Stewart et al. 2010).  

Recently developed by Monsanto, Roundup Ready 2 Xtend™ is the trade name 

for soybeans that contain genes that confer herbicide tolerance to both dicamba and 

glyphosate, while Bollgard II® XtendFlex™ is the trade name given to cotton containing 

genes conferring tolerance to glyphosate, glufosinate and dicamba (Monsanto 2015a.) In 

addition, Monsanto has plans to market a diglycolamine (DGA) formulation of dicamba 

named XtendiMax™ to be utilized as a component of a tankmix for their dicamba 

resistant crops (Monsanto 2015b). The development of crops stacked with multiple 

herbicide resistant traits are seen as a tool to help manage naturally developing herbicide 

resistant weeds (Duke 2015; Duke and Powles 2009; Shaner 2014b; Stewart et al. 2010). 

However, the utilization of multiple herbicides in a single application will occur, as it is a 

common practice termed tankmixing. The herbicide mixture improves the spectrum 

and/or duration of weed control and reduces application costs, while also mitigating the 

development of herbicide resistant weeds (Bruff and Shaw 1992; Edwards et al. 2014; 

Knezevic et al. 2009; Shaw and Arnold 2002; Vangessel et al. 2000).  

Although the benefits of mixing multiple herbicides are well stated, tankmixing 

herbicides can often result in changes of herbicidal efficacy. Synergism is when two 

separate herbicides, when compared to each herbicide individually, result in greater 
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efficacy on a weed of a single species. Antagonism is when the combination of two 

separate herbicides, when compared to each individually, results in reduced efficacy on a 

single species (Colby 1967; Rummens 1975).  

The susceptibility of glyphosate to antagonism has been well documented. 

Although it is dependent upon the weed species, antagonism of glyphosate activity occurs 

predominantly in monocots (Baylis 2000; Merchant et al. 2013; Selleck  and Baird 1981). 

Appleby and Somabhi (1978) demonstrated that antagonism of glyphosate can occur 

when it is mixed with a triazine herbicide, such as atrazine or simazine. They speculated 

that when glyphosate was tankmixed in a spray solution, glyphosate was physically 

bound to inert materials in the other herbicide. Stahlman and Phillips (1979) confirmed 

Appleby and Somabhi’s binding theory and concluded that clay particles in triazine 

formulations were responsible for binding glyphosate in the spray solution. Antagonism 

of glyphosate activity from triazine or ALS-inhibiting herbicides has been noted to be 

minor and quantifiable by the Colby method (Colby 1967; Shaw and Arnold 2002). 

Further research has shown that triazine or ALS-inhibiting herbicides can remain 

effective tankmix partners with glyphosate when both compounds are used at full rates 

(Appleby and Somabhi 1978; Hydrick and Shaw 1994; Starke and Oliver 1998; Wilson 

and Worsham 1988).  

The identification and documentation of herbicides that can cause glyphosate 

antagonism has become more prevalent as glyphosate usage has increased over time. 

Antagonism of glyphosate has now been documented with tankmixes of many common 

cotton and soybean herbicides including dicamba and 2,4-D (Selleck and Baird 1981; 

Flint and Barrett 1989a), glufosinate (Bethke et al. 2013), metribuzin (Hydrick and Shaw 
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1994), chlorimuron, imazaquin, cloransulam-methyl, pyrithiobac (Shaw and Arnold 

2002), fomesefen (Starke and Oliver 1998), flumiclorac (Nandula et al. 2012), 

monosodium methanearsonate (MSMA) (Burke et al. 2007; Koger et al. 2007), and 

primisulfuron (Damalas and Eleftherohorinos 2001). In 2008, Monsanto recommended 

that to sustainably use glyphosate, growers should avoid tankmixing any herbicide that is 

known to antagonize glyphosate (Gustafson 2008). Currently the two most prevalent 

herbicide resistant traits, glyphosate and glufosinate-resistance, are often stacked in the 

same crop despite antagonism from a tankmixed application (Bethke et al. 2013).   

Similar to glyphosate, the adoption of auxin-resistant cropping systems will likely 

result in increased amounts of auxin herbicides applied. As the usage of auxin herbicides 

increase, documentation of herbicidal antagonism is needed as new combinations of 

herbicides are applied across a greater range of species. Auxin herbicides have already 

been documented to reduce herbicidal activity in glyphosate (Flint and Barrett 1989a; 

O’Sullivan and O’Donovan 1980), ALS-inhibiting (Damalas and Eleftherohorinos 2001) 

and certain ACCase-inhibiting herbicides (Blackshaw et al. 2006; Mueller et al. 1989). 

Damalas and Eleftherohorinos (2001) observed that the addition of dicamba to 

primisulfuron reduced johnsongrass control by 43% compared to primisulfuron alone. 

Low rates of dicamba were shown to reduce the phytotoxicity of reduced rates of 

glyphosate in wheat (Triticum aestivum L.), barley (Hordeum vulgare L.) and wild oats 

(Avena fatua L.), however similar to antagonism from ALS and triazine herbicides, the 

antagonism was overcome by glyphosate application rate (O’Sullivan and O’Donovan 

1980). 
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Herbicide efficacy is a function of uptake and translocation and can be dependent 

upon the formulation (Belles et al. 2006; Feng et al. 1998; Li et al. 2005). Antagonism 

can also be dependent upon the formulation of either herbicide involved (Flint and 

Barrett 1989a: Green 1989; Hart and Wax 1996). O’Donovan and O’Sullivan (1982) 

found that the amine and ester formulations of 2,4-D varied in the level to which they 

antagonized paraquat activity. Hart and Wax (1996) determined that different 

formulations of dicamba resulted in different levels of antagonism of johnsongrass 

control with imazethapyr. Koger et al. (2005) suggested that the use of a potassium (K) 

salt formulation of glyphosate instead of an isopropylamine (IPA) salt, varied uptake and 

translocation of glyphosate.  

More research about how the upcoming auxin-resistant traits and subsequent new 

combinations of herbicides will impact weed control is needed (Merchant et al. 2013). 

Flint and Barrett (1989a) documented reduced control of johnsongrass with the IPA salt 

formulation of glyphosate when mixed with the dimethylamine (DMA) salt formulation 

of dicamba. However, no research is available on interactions between the more recently 

developed K glyphosate salt and DGA salt of dicamba.  Recently, the translocation of 

DGA dicamba salt in barnyardgrass was reduced when applied with IPA salt glyphosate 

(Huff 2010). The objective of this research was to evaluate any potential antagonistic 

effects that the DGA salt formulation of dicamba may have on the uptake and 

translocation of the K salt formulation of glyphosate when applied to johnsongrass and 

barnyardgrass.  
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Materials and Methods 

Separate greenhouse studies were conducted on johnsongrass and barnyardgrass 

to assess the effect of the DGA salt of dicamba on uptake and translocation of the K salt 

of glyphosate. Both studies were identically designed as a randomized complete block 

with four replications and were repeated twice for each species.  Barnyardgrass and 

johnsongrass seeds were planted in cone shaped containers 1 measuring 3.8 cm in 

diameter and 21 cm tall. Seeds were planted 1 cm deep in a commercial growth media2 

and containers were sub-irrigated for the duration of the studies.  Seedlings were thinned 

to 1 plant per container following emergence. Studies were conducted in a greenhouse 

with a photoperiod of 14 h via supplemental lighting3 and a day/night temperature cycle 

of 32/25 C, respectively.  

Herbicide treatments were applied to plants at the four ± one leaf stage for all 

studies. Prior to application, plants of similar size and vigor were grouped by rep to 

improve homogeneity.  Both the radiolabeled and non-radiolabeled portions of the 

treatments utilized distilled water to prevent any cation interaction in the spray solution 

(Chahal et al. 2013; Roskamp et al. 2013). A potassium salt formulation of glyphosate 

(N-(phosphonomethyl glycine)4 and a DGA salt formulation of dicamba (3,6-dichloro-2-

methoxybenzoic acid)5 were utilized for the nonradiolabeled portion. Glyphosate  was 

applied at 0.28, 0.56, and 0.84 kg ae ha-1. Dicamba at 0.56 kg ai ha-1 was tankmixed with 

                                                 
1 Ray Leach SC10 Super Cone-Tainer, Stuewe and Sons, Inc., 31933 Rolland Drive, Tangent, Oregon 

97389 USA. 
2 Metro-Mix 350, Hummert Inc., 4500 Earth City Expressway,   Earth City, MO 63045 USA. 
3 General Electric Sodium Vapor Lamps, GE 85379 Lucalox LU400, GE Lighting , Nela Park, 1975 Noble 

Road, Cleveland, Ohio 44112 USA. 
4 Roundup Powermax, Monsanto Company, 800 N. Lindbergh Blvd., St. Louis, MO 63167. 
5 Clarity, BASF Corporation, 26 Davis Drive, Research Triangle Park, NC 27709. 
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glyphosate at 0.28, 0.56, 0.84, and 1.12 kg ae ha-1. An untreated check was also included 

for comparison.  

The rates of glyphosate in the tankmix treatments were chosen as other research 

has found that increasing the rate of glyphosate overcomes antagonism (Flint and Barrett 

1989a; Koger et al. 2007). Treatments were applied in a spray chamber calibrated to 

travel 4.8 kph and deliver 140 L ha-1 at 221 kpa through a XR110015E flat fan spray tip6. 

The nozzle tip was 48 cm above the top collar of the plants. 

Radiolabeled 14C-glyphosate [14C- phosphonomethyl with a specific activity of 

1.85 Gbq mmol-1, and 99.5% radio-chemical purity]7 was dissolved into an aliquot from 

each of the previously mixed non-radiolabeled solutions to create a final radiolabeled 

solution of 1.45 Kbq per 10 µl. Prior to application, a 2.5 cm long piece of adhesive 

backed paper8 was placed on the fourth leaf midway between the tip and the collar on the 

adaxial surface. After the application of the non-radiolabeled portion, the covered 

treatment area was pressed onto a horizontal section of vinyl board9 that was preadjusted 

to the height of the treated leaf. To maintain a horizontal position, a removable glue dot10 

was placed between the board and the abaxial leaf surface of the treated area. The adaxial 

paper was removed so that the radiolabeled portion of the treatments could be applied. 

Each plant was dosed using micropipette with a 10 µl aliquot of the radiolabeled 

treatment solution, evenly dispersed across the treatment area in 20-25 spots.  

                                                 
6 Teejet, Spraying Systems Co., 200 W. North Ave, Glendale Heights, IL 60139. 
7 American Radiolabeled Chemicals, 101 ARC Drive. Saint Louis, MO 63146. 
8 Post-It Office Note, 3M Corporate Headquarters, 3M Center, St. Paul, MN 55144. 
9 Barrette Vinyl Fence Rail, Barrette Outdoor Living, 7830 Freeway Circle, Middleburg Hts., OH 44130. 
10 Removable Glue Dots, Glue Dots Intl., N117,W18711 Fulton Drive, Germantown, WI 53022. 
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Plants were harvested and partitioned 24 hours after treatment (HAT) to 

maximize recovery of 14C-glyphosate and translocation differences (Feng et al. 1998; 

Feng et al. 2000). Removal of the treated leaf from the board was aided with warm air 

from a handheld hair dryer11. The treated area was excised and washed in 10 ml of 

distilled water for 10 s to remove any 14C-glyphosate remaining on the leaf surface 

followed by a 10 ml chloroform wash for 10 s to remove 14C-glyphosate contained in 

epicuticular wax. The treated area was then placed in a 20 ml glass scintillation vial12 

while all other plant tissue was placed in coin envelopes. The remaining foliage around 

the treated area was partitioned into distal and proximal leaf tissue. The distal leaf portion 

was from the treated area to the leaf tip and the proximal leaf portion was from the 

treated area to the collar, including the leaf sheath. The remainder of the plant was 

separated at the node where the treated leaf joined the stem. From the node of the treated 

leaf to the base of the plant was considered to be the lower plant portion while all tissue 

above the node was considered to be the upper plant portion. Water was used to remove 

growing medium from the roots.  

All plant parts were lyophilized13 and oxidized14 to convert all 14C to 14CO2. A 

liquid scintillation cocktail mixture was then used to capture15 evolved 14CO2 and 

fluoresce16 the captured 14C. A 1 ml aliquot was pulled from the water and chloroform 

leaf washes of the treated area and then added to a liquid scintillation cocktail17 to induce 

                                                 
11 Conair 1875 Dryer, Conair Corporation, 1 Cummings Point Road, Stamford, CT 06902. 
12 Foil-lined High Performance Glass Vial. Perkin-Elmer, 940 Winter St. Waltham, Massachusetts 02451. 
13 FreeZone 18L, LabConCo, 8811 Prospect Ave., Kansas City, MO 64132-2696. 
14 Model A307 Sample Oxidizer, Perkin Elmer, 940 Winter St. Waltham, Massachusetts 02451. 
15 Carbo-Sorb E, Perkin Elmer, 940 Winter St. Waltham, Massachusetts 02451. 
16 Permafluor E+, Perkin Elmer, 940 Winter St. Waltham, Massachusetts 02451. 
17 Ultima Gold, Perkin Elmer, 940 Winter St. Waltham, Massachusetts 02451. 
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fluorescence for quantification. Quantification of disintegrations per minute (DPM) for 

each sample was conducted on a liquid scintillation counter18. The scintillation counter 

utilized an internal quench curve and samples were counted for 5 minutes. Counts from 

the aliquots of the leaf washes were back calculated to compensate for the total volume. 

Total recovery of radioactivity was calculated as a sum of the leaf washes, the plant 

foliage and the roots. Total plant fraction was calculated as a sum of all portions of plant 

foliage and roots. Treated leaf totals were calculated as the sum of the radioactivity of the 

proximal, distal, and treated leaf tissue.  The total for the plant outside of the treated area 

was calculated as the sum of the tissue above and below the treated node, as well as the 

roots. Data were analyzed in SAS software19 utilizing PROC GLIMMIX. Repetitions of 

studies were combined for analysis and pairwise mean comparisons were calculated with 

an alpha=0.05.  

Results and Discussion  

Barnyardgrass uptake and translocation of 14C glyphosate 

Total recovery of 14C ranged from 82 to 89% and was similar to recoveries from 

other studies conducted with the IPA salt glyphosate (Feng et al. 1998. Kirkwood et al. 

2000). Recovery levels from treatments of glyphosate alone generally decreased with the 

rate of glyphosate, and a significant reduction was found between the 0.84 and 0.28 kg ae 

ha-1 rates (Table 3.1). As there is little in-vivo metabolism of glyphosate, translocation is 

primarily via the phloem where glyphosate is shifted to the roots where it is exuded and 

degraded by soil bacterium (Coupland and Caseley 1979; Cobb and Reade 2010; Fedtke 

                                                 
18 Tri-Carb 2810TR, Perkin Elmer, 940 Winter St. Waltham, Massachusetts 02451. 
19 SAS Institute Inc., 100 SAS Campus Drive., Cary, NC 27513-2414.  
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and Duke 2005; Rodrigues et al. 1982). Geiger and Bestman (1990) concluded that there 

can be a self-limiting response from higher rates of glyphosate, where rapid phytotoxic 

action can results in a decreased translocation. Feng et al. (1998) suggested that reduced 

glyphosate recovery could be a function of translocation speed, and as critical glyphosate 

concentrations were slowed or reduced within a plant, translocation of glyphosate to 

capillary roots could increase.  The difference between recovery of 14C-glyphosate at the 

0.84 to 0.28 kg ae ha-1 rates could be attributed to the speed at which glyphosate is moved 

to, and exuded from, the capillary roots, which may have been lost in harvest. 

Conversely, total recovery from tankmix treatments were unchanged across all 

glyphosate rates and could be a function of slower movement and loss through the 

capillary roots (Flint and Barrett 1989b). Soil media was tested, however no treatments 

were found to have 14C levels above background (data not presented). 

The majority of applied 14C was found in the water washes of the treated area and ranged 

from 64 to 74% (Table 3.1). Chloroform washes contained <0.3% of 14C from all 

treatments and indicated minimal adsorption of K salt glyphosate in the epicuticular wax 

and was similar to results documented on the IPA salt formulation (Norsworthy et al. 

2001; Sherrick et al. 1986). Recovery of 14C in the total plant fraction ranged from 10 to 

23% and agrees with others in that plant uptake is the largest hindrance to an application 

of glyphosate (Leaper and Holloway 2002). This was also evidenced by the significant 

reductions in recovered 14C that corresponded to a stepwise reduction in glyphosate rate. 

Previous research has found that lower rates of glyphosate will decrease the total uptake 

and concentration within the plant (Cranmer and Linscott 1991; Feng et al. 1999; Feng et 

al. 2000; Norsworthy et al. 2001; Singh et al. 2011). Total absorption of K salt glyphosate 
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was similar to levels reported by others (Koger et al. 2005) and despite the response to 

rate, there were no reductions in total absorbed glyphosate found when the 0.28, 0.56 or 

0.84 kg ae ha-1 rates of glyphosate were combined with dicamba when compared to 

glyphosate alone (Table 3.1) 

The greatest amount of 14C glyphosate within the plant was found in the treated 

leaf (Table 3.2). The addition of 0.56 kg ae ha-1 of dicamba to glyphosate at 0.56 or 0.84 

kg ae ha-1 significantly reduced 14C glyphosate found in the treated area compared to 

where glyphosate was applied alone at the same rates. Differences observed in the 

proximal or distal leaf tissue, as well as leaf totals, were generally a function of 

glyphosate rate. However, the distal leaf tissue generally had greater amounts of 14C 

glyphosate when dicamba was included, which can often be an indicator of acropetal 

translocation and/or glyphosate resistance (Bostamam et al. 2012: Feng et al. 2004; 

Lorraine-Collwill et al. 2002)  

Glyphosate content in the upper and lower plant tissue was also a function of 

glyphosate application rate as opposed to dicamba presence (Table 3.3). Total reductions 

in 14C root accumulation occurred only when 0.84 kg ae ha-1 of glyphosate was combined 

with dicamba. However, compared to glyphosate alone, the accumulated glyphosate total 

outside the treated leaf was reduced when the 0.56 and 0.84 kg ae ha-1 rates were applied 

with dicamba. Herbicide translocation is defined as the difference between the amount 

found in the treated leaf and the amount of herbicide found in locations outside of the 

treated leaf, and any decrease of that amount is considered to be a reduction in 

translocation (Dewey and Appleby 1983; Feng et al. 1998; Koger et al. 2005).  
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Burke et al. (2007) documented that the severe antagonism of glyphosate from 

MSMA often resulted in excellent control and altered translocation may not be of 

biological significance. Therefore, it could be contested that as the quantity of in vivo 

glyphosate likely reached a lethal level after 24 hours because levels are also likely to 

increase over time (Burke et al. 2007; Feng et al. 2000; Koger et al. 2005) and that 

differences in translocation would be negligible at the field level. However, good 

translocation is considered to be a strong indicator of plant death (Feng et al. 1998; 

Shaner 2009), but more importantly, altered glyphosate translocation has been 

characterized as a precursor to, and identifier of, glyphosate resistance (Burke et al. 2007; 

Nandula et al. 2015; Powles and Preston 2006; Shaner 2009; Vila-Aiub et al. 2012). 

Recently, glyphosate-resistant johnsongrass was characterized in Arkansas and 

translocation of glyphosate out of the treated leaf was found to be almost 20% less than 

susceptible biotypes (Riar et al. 2011b). Numerous other studies have identified 

glyphosate resistant weeds with altered translocation, especially acropetal movement, and 

translocation patterns were independent upon glyphosate formulation (Koger and Reddy 

2005; Nandula et al. 2015; Norsworthy et al. 2001; Riar et al. 2011b; Ribeiro et al. 2015; 

Starke and Oliver 1998). Tankmixing herbicides with glyphosate can also result in 

antagonism that can shift herbicide uptake and translocation resulting in reduced control 

(Hydrick and Shaw 1994; Steele et al. 2008). Changes in glyphosate translocation can 

also naturally occur, as documented in some weeds with a natural tolerance to glyphosate 

(Koger et al. 2004; Reddy 2000; Norsworthy et al. 2001), or in instances of extreme 

environmental conditions, including temperature and humidity (Ahmadi et al. 1980 ; 

Masiunas and Weller 1988; Wicks and Hanson 1995). 
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Recent weed resistance modeling by Bagavathiannan et al. (2013) concluded that 

multiple applications of glyphosate in continuously cropped glyphosate-resistant cotton 

systems would likely produce glyphosate-resistant barnyardgrass by the ninth year. Botha 

et al. (2014) suggested that all glyphosate tankmix combinations that could result in 

reduced doses should be fully evaluated, across multiple environments, for performance 

and robustness in order to prevent glyphosate resistance. Therefore, utilizing weed size to 

determine the proper application rate and dosage of glyphosate is important to minimize 

risk of herbicide resistant weeds. These data suggest that the size of barnyardgrass in this 

study (<22 cm) and the current corresponding labeled rate of K-salt glyphosate20 at 0.84 

kg ae ha-1 (Monsanto 2016), may not result in an effective dose of glyphosate when 

tankmixed with dicamba. However, an application of glyphosate at 1.12 kg ae ha-1 with 

dicamba had glyphosate translocated to plant tissue outside of the treated leaf to levels 

found at the 0.84 kg ae ha-1 rate of glyphosate alone (Table 3.3). This data is in agreement 

with others that increased glyphosate application rates could be utilized to offset any 

changes in translocation (Kirkwood et al. 2000; Norsworthy et al. 2001) and contrasting 

Sikkema et al. (2005), who suggested that lower production costs and adequate control of 

barnyardgrass could be achieved with an application of glyphosate at a rate of 0.45 kg ae 

ha-1. 

Johnsongrass uptake and translocation of 14C glyphosate 

Recovery of 14C-glyphosate ranged from 77 to 85% (Table 3.4). Chloroform 

washes of the treated section resulted in < 0.7% of 14C captured glyphosate with no 

                                                 
20 Roundup Powermax, Monsanto Company, 800 N. Lindbergh Blvd., St. Louis, MO 63167. 
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significant differences among treatments. Water washes from the treated area contained 

the majority of the 14C and ranged from 55 to 72% of the applied amount. Prior research 

has found that differences in the water wash were a function of rate as higher applied 

rates resulted in less 14C found in the wash, while lower rates resulted in less 14C 

absorbed (Feng et al. 2000). Norsworthy et al. (2001) noted the same response in 

barnyardgrass and hemp sesbania (Sesbania herbacea (Mill.) McVaugh) while attributing 

the relationship to lower rates of glyphosate having reduced concentration gradients when 

applied, which result in less absorption and greater residual on the leaf surface. Greater 

concentration gradients have been shown to be critical to increasing the speed and uptake 

of glyphosate (Cranmer and Linscott 1991; Kirkwood et al. 2000). Plants in this study 

were also harvested at 24 HAT and others have suggested that absorption would increase 

with additional time (Kirkwood et al. 2000; Feng et al. 2004; Norsworthy et al. 2001). 

Increases in total 14C glyphosate absorbed in each treatment were also a function 

of glyphosate rate and ranged from 13 to 24% of the applied. The addition of dicamba to 

any rate of glyphosate did not significantly affect the amount recovered from the treated 

area or the proximal portion of the treated leaf. However, when dicamba was added to the 

0.84 kg ae ha-1 rate of glyphosate, the amount of 14C glyphosate found in the distal leaf 

portion doubled compared to the treatment without dicamba (Table 3.5). The tankmix of 

glyphosate at 1.12 kg ae ha-1 and dicamba were found to be at a level similar to the 0.84 

kg ae ha-1 rate of glyphosate alone, possibly indicating outward flow of glyphosate as 

described by others (Dewey and Appleby 1983; Lorraine-Colwill 2002). In addition, total 

concentrations of glyphosate in the treated leaf increased when dicamba was applied with 

glyphosate at the 0.84 kg ae ha-1 rate. 
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The amount of glyphosate translocated outside of the treated leaf ranged from 3.8 

to 6.8% of applied (Table 3.6) and was similar to levels previously documented in 

johnsongrass using an IPA salt glyphosate (Camacho and Moshier 1991). Accumulation 

of glyphosate in the upper plant tissue and roots were generally greater when applied 

without dicamba. However, comparison of treatments by glyphosate rate and dicamba 

presence indicated that dicamba only reduced glyphosate accumulation in the upper plant 

tissue and in the roots at the 0.56 kg ae ha-1 and 0.84 kg ae ha-1 rates of glyphosate, 

respectively. In addition, the total amount of glyphosate translocated was reduced when 

dicamba was added to the 0.56 kg ae ha-1 rate of glyphosate.  

Flint and Barrett (1989a) documented reduced glyphosate translocation in 

johnsongrass when an IPA salt formulation was applied at the 0.28 and 0.84 kg ae ha-1 

and mixed with the DMA salt form of dicamba at 0.56 kg ae ha-1. The total translocated 

14C glyphosate from this research cannot confirm the same antagonism when using K salt 

glyphosate and DGA dicamba applied at those rates. This is likely due to differences in 

the timing of plant harvest. Flint and Barrett (1989a) harvested plants at 72 HAT and as a 

result, the majority of the dosed glyphosate was found in the roots and no consistent 

differences were found in the quantity of glyphosate in the shoots. Koger and Reddy 

(2005) documented pitted morningglory (Ipomoea lacunosa L.) to have a large increase 

translocated glyphosate root accumulations between 24 and 96 HAT. Feng et al. (1998) 

described damage to meristems at 72 HAT and was likely due to the self-limiting factor 

of glyphosate as described by Geiger and Bestman (1990) where translocation of 

glyphosate can initially progress rapidly but is then limited by the plant damage. 

Extending the duration of our studies would likely result in greater total accumulations of 



 

60 

glyphosate, especially in the roots, but would result in poorer estimations of translocation 

and would have reductions in 14C recovery as described in other research (Feng et al. 

1998; Feng et al. 2000). This research did find significant differences in total and 

partitioned glyphosate amounts in the treated leaf and whole plant. It confirms recent 

research (Feng et al. 1998; Feng et al. 2000) suggesting that harvesting 24 HAT 

maximizes translocation differences. This research did confirm a reduction of total 

translocated glyphosate as a result of a tankmix of the K salt formulation of glyphosate at 

0.56 kg ae ha-1 with the DGA salt formulation of dicamba at 0.56 kg ae ha-1. In addition, 

the data from the distal portion of the treated leaf suggest that applications of glyphosate 

with dicamba can increase acropetal translocation on the treated leaf, while 

simultaneously reducing the level found in the upper portion of the plant (Dewey and 

Appleby 1983). 

Although the addition of dicamba did not affect the total amount of glyphosate 

absorbed in the plant for any of the applied rates, altered translocation patterns were 

present and consideration should be taken when utilizing tankmixes of dicamba and 

glyphosate applied to control johnsongrass, as decreased translocation of glyphosate can 

lead to glyphosate-resistant weed populations (Nandula et al. 2015; Powles and Preston 

2006; Vila-Aiub et al. 2012). Due to glyphosate-resistant weeds, utilization of dicamba-

resistant cropping systems are expected to be rapidly adopted by producers upon release. 

With proper management, they will likely provide results similar to glyphosate- or 

glufosinate-resistant systems in providing equitable and efficacious control of weeds 

(Cahoon et al. 2015; Riar et al. 2011a). Their use, in conjunction with rotation of crops 

and herbicidal mode of action, should slow the development of herbicide resistant weeds 
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(Inman et al. 2016; Neve et al. 2011). However, the use of stacked trait technologies 

should not result in use of a single mode of action and weed management strategies 

should focus on preservation of all herbicide-resistant traits as well as any interactions 

that might occur between them. 
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Table 3.1 Percent of the applied 14C-glyphosate recovered from the water and chloroform wash of the 

treated leaf and the total plant absorption and recovery of 14C in barnyardgrass after 24 hours.a 

  14C Recovered    

Herbicide Rate  Leaf Wash  Plant Fraction  Combined 

Glyphosate Dicamba  H2O  Chloroform  Total  Total 

–kg ae ha-1 – – kg ai ha-1 –  ––––––––––––––––––––––––––– %–––––––––––––––––––––––––––––––– 

0.28 0  64 BC  0.3 A  11 E  82 C 

              

0.56 0  70 ABC  0.2 AB  16 DC  87 AB 

              

0.84 0  67 ABC  0.3 A  22 AB  90 A 

              

0.28 0.56  72 AB  0.2 AB  12 E  84 BC 

              

0.56 0.56  74 A  0.2 AB  15 DE  89 A 

              

0.84 0.56  67 ABC  0.2 B  18 BC  86 ABC 

              

1.12 0.56  64 C  0.3 A  24 A  88 AB 
a Means within a column followed by the same letter are not significantly different. 
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Table 3.2 Partitioned and total amounts of 14C-glyhosate found in the treated barnyardgrass leaf after 24 hours.a 

   14C in Treated Leaf  

Herbicide Rate   Partitioned   Combined  

Glyphosate Dicamba  Treated area  Distal   Proximal   Total  

–kg ae ha-1 – – kg ai ha-1 –  –––––––––––––––––––––––––––––––– %––––––––––––––––––––––––––––––––––––  

0.28 0  4.0 CD  1.0 DE  3.2 BC  8 E  

               

0.56 0  5.8 AB  2.5 CD  3.7 BC  12 CD  

               

0.84 0  6.9 A  4.5 BC  5.3 A  17 AB  

               

0.28 0.56  3.6 D  3.0 CD  2.5 C  9 DE  

               

0.56 0.56  4.3 CD  4.1 BC  3.7 BC  12 CD  

               

0.84 0.56  4.1 CD  6.3 B  4.8 AB  15 BC  

               

1.12 0.56  5.1 BC  9.7 A  4.2 AB  19 A  
a Means within a column followed by the same letter are not significantly different. 
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Table 3.3 Partitioned amounts and sum of 14C-glyphosate translocated away from the treated leaf of barnyardgrass after 24 

hours.a 

  14C Translocated to Plant   

Herbicide Rate   Partitioned  Combined  

Glyphosate Dicamba  Upper  Lower  Roots  Total  

–kg ae ha-1 – – kg ai ha-1 –  –––––––––––––––––––––––––––––––– %––––––––––––––––––––––––––––––––––––  

               

0.28 0  1.1 AB  1.1 B  0.4 C  2.6 C  

               

0.56 0  1.4 AB  2.1 AB  0.9 AB  4.5 AB  

               

0.84 0  1.8 A  2.7 A  1.0 A  5.5 A  

               

0.28 0.56  1.1 AB  1.4 AB  0.4 C  2.9 C  

               

0.56 0.56  0.8 B  1.2 B  0.8 ABC  2.7 C  

               

0.84 0.56  1.1 AB  1.8 AB  0.5 BC  3.3 BC  

               

1.12 0.56  1.5 AB  2.4 AB  0.7 ABC  4.6 AB  
a Means within a column followed by the same letter are not significantly different.  
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Table 3.4 Amount of 14C-glyphosate recovered from the water and chloroform wash of the treated leaf and the total plant 

absorption and recovery of 14C in johnsongrass after 24 hours.a 

  14C Recovered    

Herbicide Rate  Leaf Wash  Plant Fraction  Combined 

Glyphosate Dicamba  H2O  Chloroform  Total  Total 

–kg ae ha-1 – – kg ai ha-1 –  ––––––––––––––––––––––––––– %–––––––––––––––––––––––––––––––– 

0.28 0  68 AB  0.6 A  13 C  79 AB 

              

0.56 0  63 BCD  0.4 AB  14 C  77 B 

              

0.84 0  58 D  0.6 A  17 BC  76 B 

              

0.28 0.56  65 ABC  0.4 A  15 C  81 AB 

              

0.56 0.56  72 A  0.4 AB  13 C  85 A 

              

0.84 0.56  60 DC  0.4 A  22 AB  83 AB 

              

1.12 0.56  55 D  0.5 A  24 A  79 AB 
a Means within a column followed by the same letter are not significantly different. 
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Table 3.5 Partitioned and total amounts of 14C-glyhosate found in the treated johnsongrass leaf after 24 hours.a 

   14C in Treated Leaf  

   Partitioned  Combined  

Glyphosate Dicamba  Treated area  Distal   Proximal   Total  

–kg ae ha-1 – – kg ai ha-1 –  –––––––––––––––––––––––––––––––– %––––––––––––––––––––––––––––––––––––  

0.28 0  3.9 B  1.9 BC  1.0 C  6.7 C  

               

0.56 0  3.6 B  2.7 BC  1.3 BC  7.5 BC  

               

0.84 0  4.7 AB  3.9 B  2.0 AB  10.6 B  

               

0.28 0.56  4.4 AB  3.7 B  1.6 ABC  9.7 BC  

               

0.56 0.56  3.6 B  3.5 B  1.3 ABC  8.8 BC  

               

0.84 0.56  5.8 A  8.4 A  1.9 AB  16.1 A  

               

1.12 0.56  5.7 A  9.4 A  2.2 A  17.4 A  

               
a Means within a column followed by the same letter are not significantly different. 
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Table 3.6 Partitioned amounts and sum of 14C-glyphosate translocated away from the treated leaf of johnsongrass after 24 

hours.a 

   14C Translocated to Plant  

   Partitioned  Combined 

Glyphosate Dicamba  Upper  Lower  Roots  Total 

–kg ae ha-1 – – kg ai ha-1 –  –––––––––––––––––––––––––––––––– %–––––––––––––––––––––––––––––––––––– 

              

0.28 0  1.9 AB  2.8 AB  1.2 ABC  5.6 AB 

              

0.56 0  2.2 A  2.8 AB  1.7 ABC  6.4 A 

              

0.84 0  1.3 ABC  3.8 AB  1.8 A  6.8 A 

              

0.28 0.56  1.2 ABC  3.6 AB  0.9 BC  5.2 AB 

              

0.56 0.56  0.4 DC  2.6 B  0.9 C  3.8 B 

              

0.84 0.56  0.8 BCD  4.6 A  1.0 BC  6.2 AB 

              

1.12 0.56  0.7 BCD  3.8 AB  1.8 AB  6.2 AB 

              
a Means within a column followed by the same letter are not significantly different.  
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