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We performed atomistic modeling to study structural and mechanical properties of

materials. We used density functional theory (DFT) for all the studies presented and con-

structed a method for quickly optimizing semi-empirical modified embedded atom method

(MEAM) potentials.

In our first study, we show that the reconstruction model in the literature for

GaSb(001) is not predicted to have the lowest surface reconstruction energy. A mod-

ification was proposed that improves the energy. The second study tries to validate a

crystal structure for the Φ Phase of Al-Mg-Zn. The third study deals with plain carbon

steel, including some microalloying of Vanadium and vacancy assisted diffusion of Fe in

Cementite(Fe3C). In the fourth study, we show a method for optimizing a MEAM poten-

tial. The code written is specific to hexagonal closed packed structures and was applied to

a Magnesium potential.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

The performance of modern processors makes solving reasonable approximations

of practical systems possible. Even ab initio methods which derive directly from first

principles can be employed to produce useful results when experimental results are lack-

ing or unreliable. For some systems like surface reconstructions or simple point defect

calculations Density functional theory (DFT) is especially well suited, and can provide the

complete solution. The main limitation of these methods is the size of the systems that

can be investigated, and they are especially inept at doing anything requiring dynamics

since the computational time required for each step is so long. They can be used when

the motion is constrained as in finding minimum energy paths and calculating generalized

stacking faults. The latter might take a day and mere seconds using an embedded atom

method (EAM) potential. The benefit is that the ab initio results are reliable not requiring

fitting of any parameters. As such they are used to fit the EAM potentials.

The ultimate goal of electronic structure calculations would be to solve the

Schrödinger equation ĤΨ = EΨ, for a many body system of interest. Ĥ is the Hamil-

tonian operator for the wave-function Ψ and E is the total energy of the system. This is,

however, unfeasible for more than the simplest atoms. With the Hohenburg-Kohn (H-K)
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theorems and some reasonable approximations very good results can be achieved with

Density Functional Theory. The H-K theorems reduce solving a 3×N dimensional wave-

function where N is the number of electrons to a 3 /dimensional electron density problem.

They establish that minimizing the density functional obtains the ground-state density,

and that this density uniquely determines all properties of the system including the wave-

function. With more accurate functionals the theory has become a popular method in

computational physics and chemistry. For instance the generalized gradient approxima-

tion for the exchange-correlation (XC) energy functional is required to correctly predict

the crystal structure of iron. Despite the improvements in accuracy DFT still requires a lot

of computer time compared to semi-empirical methods.

Using the DFT code VASP the total number of atoms is limited to around 400

before it simply crashes on the raptor cluster. Other codes like Siesta claim to handle

thousands of atoms, but semi-empirical inter-atomic potential method codes can handle a

few million atoms. Two popular potential types are the embedded atom method (EAM)

and the modified embedded atom method (MEAM) extended from EAM to handle an-

gular dependencies. MEAM potentials when fitted well can produce realistic structural

properties.

1.2 Application

Valence electrons dominate atomic bonding in crystals, in addition to molecules,

which partially explains why Vanadium and Niobium would have similar effects in mi-

croalloying of steel. They both have 5 valence electrons and are in the same column on
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the periodic table. The Alkali metals all have a single valence electron and are highly

reactive while the noble gases have full shells containing either 2, 8, or 18 electrons as s,p,

and d orbitals come into existence are chemically inert. The alkali metals Sodium (Na),

Potassium (K), and Cesium (Cs) all with one valence electron form crystals with Chlorine,

which being only one electron short from having a full shell, in 1 to 1 ratios. What is more

interesting is that these all are different crystal structures, and can be correctly predicted

by ab initio methods.

1.2.1 Crystal Defects

Defects naturally occur in crystals, ranging from point defects to grain bound-

aries. The simplest being point defects including: vacancies, interstitials, impurities, and

substitutional defects. All of which can be easily calculated with DFT and then used in

developing semi-empirical potentials. More complicated planar defects when using pe-

riodic boundary conditions such as surfaces and stacking faults are also good points for

comparison. Defects including grain boundaries, dislocations, voids, and precipitates gen-

erally require too many atoms for DFT simulations, but are nonetheless necessary to study

by other means including with MEAM potentials to understand mechanical properties of

materials.

1.2.2 Potentials

VASP supplies the potentials for most elements in ultrasoft pseudopotentials

(USPP) or Projector-Augmented Wave (PAW) format describing the interaction between

3



ions and electrons. Both formats also have local density approximation (LDA) or gen-

eralized gradient approximation (GGA) versions for describing the exchange-correlation

energy functional. The great thing about DFT is that one is free to combine different

element potentials together for multi-element simulations.

With MEAM it requires more fitting to describe the interactions of the pair poten-

tials. It was possible to make a carbon interstitial prefer the tetrahedral position instead

of the correct octahedral position. This is not possible within DFT, barring user error or

some serious bug in the code.

For the study of the Φ phase of Al-Mg-Zn using DFT was a natural choice for

reliably calculating the energy of the system in different configurations. Now using these

results along with the τ phase calculated by my colleague one could develop a reasonable

MEAM potential for Al-Mg-Zn.

1.2.3 III-V Semiconductor Surfaces

We used DFT to study the structure of AlSb(001) and GaSb(001) surfaces. The

GaSb(001) reconstruction in the Sb rich case is unique among all other arsenide and an-

timonide III-V compounds. The other compounds form a c(4x4) reconstruction which is

shown correctly as energetically favored for AlSb. The same c(4x4) is also predicted for

GaSb(001) rather than the structural model resembling the experimental scanning tunnel-

ing microscope image.
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1.2.4 Al-Mg-Zn

The Φ phase is one of two established ternary phases of Al-Mg-Zn alloys [79].

Bourgeois et al.[10] proposed a crystal structure, and validated it by comparing calculated

electron diffraction patterns with experiment. They also established the space group as

Pbcm. They could not completely resolve whether some sites were Al or Zn. We aimed

to use DFT predictive capabilities to determine which sites should be occupied by Al and

which by Zn.

1.2.5 Steel

Plain carbon steel mainly consists of iron with small amounts of carbon. Other

elements may be alloyed for different mechanical responses, and environmental reasons.

Stainless steel for example contains sufficient amounts of chromium that a passive layer of

chromium oxide forms on the surface. This prevents the iron from oxidizing in a process

better known as rusting. Iron occurs in two crystal structures dependent of temperature.

The first is ferrite a body-centered cubic crystal below 910 ◦C and again above 1390 ◦C

until the melting point of 1536 ◦C. The lower temperature range is called alpha-iron and

the high temperature range delta-iron. Between 910 ◦C and 1390 ◦C iron transforms into

Austenite a face centered cubic crystal.

Carbon also commonly occurs in the two crystal structures, diamond and graphene.

They are both ground state structures existing over wide temperature ranges. Carbon also

can be manipulated with modern technology to form fullerenes and nanotubes. For the
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purpose of studying steel we are only concerned with how atoms of carbon harden rela-

tively soft pure iron.

Carbon atoms are smaller than iron, and occupy the interstices of ferrite and austen-

ite. Ferrite is more loosely packed than austenite. The larger holes that occur in austenite,

however, leads it to being able to solute an order of magnitude more carbon.

Carbon is of sufficient size that it distorts the surrounding lattice, and actually

prefers to occupy the octahedral positions displacing two neighboring Fe atoms than the

initially larger tetrahedral interstitial site where displacing the four nearest neighbors would

actually cost more energy. The maximum carbon solubility in austenite is just over 2 per-

cent by weight or 9.1 atomic percent Carbon at 1,150 ◦C. In ferrite the solubility is only

0.1 atomic percent at 723 ◦C.

The maximum amount of carbon with iron is 25 atomic percent in the form of

Cementite(Fe3C) the most stable carbide of iron. It is, however, only metastable with

respect to ferrite and graphite. Cementite is a hard, brittle material. Vacancy assisted

diffusion barriers of iron in Cementite using a climbing image nudged elastic band method

will be presented.

1.3 Contributions

We were the first to suggest that Ga subsurface atoms stabilize the GaSb(001)

(nx5)-like surface reconstructions. This theory has since been supported by experimental

reflectance anisotropy spectra [33]. We explored the ternary Φ phase of Al-Mg-Zn alloy

using total energy calculations to resolve atomic occupancies that were thus far unresolved.
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This will be useful in developing a ternary (M)EAM potential in the future. Vacancy as-

sisted diffusion barriers within Cementite were calculated. This revealed fifteen different

barriers ranging from 0.59 eV to 2.23 eV. A series of scripts were written that take param-

eters a MEAM potential any quickly calculate many properties for an hcp crystal. This

was combined with a simple optimizer to optimize a Mg MEAM potential.

7



CHAPTER 2

THEORY: DFT AND (M)EAM

2.1 Introduction

The theoretical foundation of Density Functional Theory (DFT) was born in the

mid 1960s. Walter Kohn established that knowledge of the density distribution of the

electrons has implicit in it all the specific properties of a system including the solution of

the Schrödinger equation. This chapter will cover the assumptions and methods used in

DFT calculations.

2.1.1 Born-Oppenheimer Approximation

The Born-Oppenheimer approximation is ubiquitous in all electronic structure cal-

culations. Owing to the fact the nuclei of atoms are orders of magnitude heavier than the

orbiting electrons, it’s possible to decouple the wavefuctions of the nuclei from the elec-

tronic wavefuctions. When solving the electronic wavefuction the nuclei are considered

fixed in place providing a static potential field due to Coulomb interactions.
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2.1.2 Hohenberg-Kohn Theorem

The first theorem states that the ground state properties are uniquely determined by

the electron density n(r). The second theorem defines an energy functional of the density

E[n(r)] that when minimized is the electron density for the ground state.

2.1.3 Density Functional Theory

In the Kohn-Sham approach to density functional theory the density to be solved

is defined in terms of Kohn-Sham orbitals. Variational methods applied to these orbitals

determine the effective potential. Inherent in determining the potential lies the exchange-

correlation energy which is not known exactly and must be approximated. Many approx-

imations to the exchange-correlation functional exist. Most notably the local density ap-

proximation (LDA) and the generalized gradient approximation (GGA).

2.1.3.1 Local Density Approximation

The local density approximation (LDA) assumes that the exchange-correlation en-

ergy is only determined by the local electron density as

Exc[n(r)] =

∫
n(r)εxc[n(r)] dr. (2.1)

The εxc[n(r)] is an energy per electron that only depends on the density n(r) close to

the point r. Since the exchange-correlation functional Exc[n(r)] is universal, it could be

the same as the one for a homogeneous electron gas. If this is true, the exchange part
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has an analytical form. The correlation part was calculated by Ceperley and Alder using

Monte-Carlo methods [15].

2.1.3.2 Generalized Gradient Approximation

In contrast to the LDA equation, the generalized gradient approximation (GGA)

includes the gradient of the electron density when evaluating the exchange-correlation

energy, and is given by

Exc[n(r),∇n(r)] =

∫
n(r)εxc[n(r),∇n(r)] dr. (2.2)

The parametrization of GGA include those of Perdew-Wang (PW91) and Perdew-

Burke-Ernzerhof (PBE). They are two different functionals to represent the gradient of

electron densities, we use PBE in our calculations.

2.1.3.3 Pseudo-potential

The electrons close to an atomic core are much less affected by surrounding atoms

than are the valence electrons. Assuming the core electrons and core are fixed, a pseudo-

potential approach replaces the combined effects of the core electrons and Coulomb po-

tential from the atomic core by a single pseudo-potential that acts only on the valence

electrons. The resulting pseudo-wave functions of the valence electrons are then smoother

and the number of plane-waves required to represent them is lower, resulting in faster con-

vergence of the total energy with respect to the plane-wave energy cutoff. For r less than

the cutoff radius rc, the full wave function and pseudo-wave function match each other.
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The norm conservation condition ensures that pseudo-wave functions and all electron wave

functions generate the same charge densities. Ultrasoft pseudo-potentials introduced later

do not impose the norm conservation constrain, providing the benefit of softer wave func-

tions and smaller cutoff radii than the norm conserving pseudo-potentials. A certain draw-

back of pseudo-potentials is due to the nonlinearity of the exchange-correlation functional

in DFT, elaborate nonlinear core corrections are required for an accurate description of

valence-core interaction in all systems where the overlap between core and valence elec-

tron densities is not negligible. The Projector-Augmented Wave (PAW) approach devel-

oped by Blöchl reconstructs the full all-electron density and avoids the necessity of non

linear core-corrections.

2.1.3.4 Basis Set

In practice, the Kohn-Sham equations are solved iteratively, using an expansion of

the orbitals in an appropriately chosen set of basis functions. The plane-wave (PW) basis-

set adopted in VASP offers two main advantages: (a) control of basis set convergence; and

(b) the calculation of the forces acting on the atoms and of the stresses on the unit cell

using the Hellmann-Feynman theorem [25]. The last advantage opens the way to quantum

ab initio molecular dynamic simulations to understand the time evolution of a system.

2.2 Semi-empirical Potentials

The modified-embedded-atom method (MEAM) proposed by Baskes et al [4, 5, 6]

is one of the most widely used methods using semi-empirical atomic potentials to date.
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The MEAM is based on the embedded-atom method (EAM) [3, 17, 18, 19] and extended

to include angular forces. The MEAM and EAM use a single formalism to generate semi-

empirical potentials that have been successfully applied to a large variety of materials in-

cluding fcc, bcc, hcp, diamond-structured materials and even gaseous elements, to produce

simulations that are in good agreement with experiments or first-principles calculations.

2.2.1 EAM

Within the EAM approach, the total energy E of a system of atoms is written as

the sum of the atomic energies

E =
∑
i

Ei. (2.3)

The atomic energy is the sum of two contributions:

Ei = F ti(ni) +
1

2

∑
j �=i

V titj(rij) (2.4)

where the subscript i and j label distinct atoms, rij is the separation between atoms i and j,

and ti is the element type of atom i. V (r) is an interatomic pairwise potential and F ti(ni)

is the embedding-energy function of element type ti as a function of the local “atomic

density” at the site of atom i

ni =
∑
j �=i

ρtj(rij) (2.5)

where ρtj(r) is the “atomic density” around an isolated atom of element type tj . The

embedding energy F ti(ni) represents the energy cost to insert atom i of element type ti at

a site where the atomic density is ni. For a binary alloy with element types A and B, the
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EAM requires seven functions to be determined: FA(n), FB(n), ρA(r), ρB(r), V AA(r),

V BB(r), and V AB(r). Six of these functions can be determined using properties of the

pure components while the cross function V AB(r) should be fitted to alloy properties.

Typically, these functions are fitted to reproduce a few bulk properties (such as lattice

constant, cohesive energy, elastic constants) and surface and simple defect properties (such

as surface-formation energy and vacancy-formation energy).

2.2.2 Finnis-Sinclair Form

Finnis and Sinclair (FS) extended the EAM potential to be more flexible by allow-

ing the “atomic density” to be environment-dependent [26]:

ni =
∑
j �=i

ρtitj(rij). (2.6)

For a binary alloy with atom types A and B, the FS potential requires eight functions to

be determined: FA(n), FB(n), ρAA(r), ρBB(r), ρAB(r), V AA(r), V BB(r), and V AB(r).

Six of these functions can be determined using properties of the pure components while

the cross functions ρAB(r), and V AB(r) should be fitted to alloy properties. The V-Fe

potential by Mendelev and co-workers [66] is one of the best examples of semi-empirical

interatomic potentials in the FS form.
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2.2.3 MEAM

In MEAM, all functions of EAM potentials are represented in analytical forms.

The embedding energy is given in the form

F ti(ni) = AtiE
0
ti
ni ln(ni), (2.7)

where the parameters E0
ti

and Ati depend on the element type ti of atom i. The atomic

density ni is given by

ni =
ρ
(0)
i

ρ0i
G(Γi), (2.8)

where

Γi =
3∑

k=1

t̄
(k)
i

(
ρ
(k)
i

ρ
(0)
i

)2

(2.9)

and

G(Γi) =
√

1 + Γi. (2.10)

The zeroth and higher order densities, ρ
(0)
i , ρ

(1)
i , ρ

(2)
i , and ρ

(3)
i are given later in Eq. (2.13).

The composition-dependent electron density scaling ρ0i is given by

ρ0i = ρi0Zi0G(Γref
i ), (2.11)
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where ρi0 is an element-dependent density scaling, Zi0 is the first nearest-neighbor coor-

dination of the reference system, and Γref
i is given by

Γref
i =

1

Z2
i0

3∑
k=1

t̄
(k)
i s

(k)
i , (2.12)

where s
(k)
i is the shape factor that depends on the reference structure for atom i. Shape

factors for various structures are specified in the work of Baskes [4]. The partial electron

densities are given by

ρ
(0)
i =

∑
j �=i

ρ
a(0)
j Sij (2.13a)

(
ρ
(1)
i

)2
=

∑
α

[∑
j �=i

ρ
a(1)
j

rijα
rij

Sij

]2
(2.13b)

(
ρ
(2)
i

)2
=

∑
α,β

[∑
j �=i

ρ
a(2)
j

rijαrijβ
r2ij

Sij

]2

−1

3

[∑
j �=i

ρ
a(2)
j Sij

]2
(2.13c)

(
ρ
(3)
i

)2
=

∑
α,β,γ

[∑
j �=i

ρ
a(3)
j

rijαrijβrijγ
r3ij

Sij

]2

−3

5

∑
α

[∑
j �=i

ρ
a(3)
j

rijα
rij

Sij

]2
, (2.13d)
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where rijα is the α component of the displacement vector from atom i to atom j. Sij is the

screening function between atoms i and j and is defined later in Eqs. (2.20). The atomic

electron densities are computed as

ρ
a(k)
i (rij) = ρi0 exp

[
−β

(k)
i

(
rij
r0i

− 1

)]
, (2.14)

where r0i is the nearest-neighbor distance in the single-element reference structure and β
(k)
i

are element-dependent parameters. Finally, the average weighting factors are given by

t̄
(k)
i =

1

ρ
(0)
i

∑
j �=i

t
(k)
j ρ

a(0)
j Sij, (2.15)

where t
(k)
j is an element-dependent parameter.

The pair potential is given by

φij(rij) = φ̄ij(rij)Sij (2.16)

φ̄ij(rij) =
1

Zij

[
2Eu

ij(rij)− Fi

(
Zijρ

(0)
j (rij)

Ziρ0i

)

−Fj

(
Zijρ

(0)
i (rij)

Zjρ0j

)] (2.17)

Eu
ij(rij) = −E0

ij

(
1 + a∗ij(rij)

)
e−a∗ij(rij) (2.18)

a∗ij = αij

(
rij
r0ij

− 1

)
, (2.19)

where αij is an element-dependent parameter. The sublimation energy E0
ij , the equilibrium

nearest-neighbor distance r0ij , and the number of nearest-neighbors Zij are obtained from
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the reference structure. Eu is the universal equation of state (EOS) from Rose et al [80]

and choosing the pair potential this way reproduces the behavior of the reference state

under homogeneous compression and expansion.

The screening function Sij is designed so that Sij = 1 if atoms i and j are un-

screened and within the cutoff radius rc, Sij = 0 if they are completely screened or out-

side the cutoff radius, and varies smoothly between 0 and 1 for partial screening. The total

screening function is the product of a radial cutoff function and three-body terms involving

all other atoms in the system:

Sij = S̄ijfc

(
rc − rij
Δr

)
(2.20a)

S̄ij =
∏
k �=i,j

Sikj (2.20b)

Sikj = fc

(
Cikj − Cmin,ikj

Cmax,ikj − Cmin,ikj

)
(2.20c)

Cikj = 1 + 2
r2ijr

2
ik + r2ijr

2
jk − r4ij

r4ij −
(
r2ik − r2jk

)2 (2.20d)

fc (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 x ≥ 1

[1− (1− x)4)]
2

0 < x < 1

0 x ≤ 0

(2.20e)

Note that Cmin and Cmax can be defined separately for each i-j-k triplet, based on their ele-

ment types. The parameter Δr controls the distance over which the radial cutoff function

changes from 1 to 0 near r = rc. Further note that the radial cutoff is used for computa-

tional convenience and rc is chosen so that the results do not depend on it.
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CHAPTER 3

GASB(001) AND ALSB(001)

We use density-functional theory to study the structure of AlSb(001) and

GaSb(001) surfaces. Based on a variety of reconstruction models, we construct surface

stability diagrams for AlSb and GaSb under different growth conditions. For AlSb(001),

the predictions are in excellent agreement with experimentally observed reconstructions.

For GaSb(001), we show that the previously proposed model accounts for the experimen-

tally observed reconstructions under Ga-rich growth conditions, but fails to explain the

experimental observations under Sb-rich conditions. We propose a new model that has a

substantially lower surface energy than all (n×5)-like reconstructions proposed previously

and that, in addition, leads to a simulated STM image in better agreement with experiment

than existing models. However, this new model has higher surface energy than some of

the (4×3)-like reconstructions, models with periodicity that has not been observed. Hence

we conclude that the experimentally observed (1×5) and (2×5) structures on GaSb(001)

are kinetically limited rather than at the ground state.

3.1 Introduction

The surfaces and interfaces of III-V semiconductors constitute some of the most

important components of the semiconductor industry. For example, III-V heterostructure
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quantum wells are key components in a wide range of optical and high-frequency elec-

tronic devices, including field-effect transistors [41], resonant tunneling structures [44],

infrared lasers [63], and infrared detectors [23]. Many of these devices require extremely

sharp and clean interfaces. For this reason, an understanding of the atomic-scale morphol-

ogy of III-V semiconductor surfaces is critical to controlling the growth and formation of

their interfaces [16, 28].

It is generally accepted that the surfaces of III-V semiconductors should recon-

struct in such a way that the number of electrons is exactly enough to doubly occupy all

orbitals on electronegative (V) atoms, leaving all orbitals on electropositive (III) atoms

unoccupied. This guiding principle, known as the electron-counting model (ECM), has

been used to screen candidate structural models of many observed reconstructions on the

surfaces of III-V semiconductors [11, 14, 43, 62, 81]. In practice, however, not all experi-

mentally realized reconstructions follow this principle. For example, under Sb-rich growth

conditions, GaSb(001) forms surface reconstructions that are weakly metallic and hence

violate the ECM [55], even though the closely related AlSb(001) surface forms insulating

reconstructions that satisfy it [89]. The nature of reconstructions that violate the ECM,

and the underlying reasons for their stability, are thus important for understanding III-V

surfaces in general.

In this article we explore theoretically a large number of judiciously chosen candi-

date reconstructions on GaSb(001) and AlSb(001). We find that as the growth conditions

are varied between Sb-poor and Sb-rich, the predicted sequence of stable reconstructions

for GaSb(001) is exactly analogous to those of AlSb(001). Experimentally, however, the
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picture is more complicated. In the Sb-poor limit, the observed GaSb(001) reconstruction

is indeed analogous to that of AlSb(001). On the other hand, in the Sb-rich limit, the exper-

imentally observed reconstructions for GaSb(001) and AlSb(001) are different. Moreover,

in this limit the predicted and observed reconstructions are in good agreement only for

AlSb(001), while for GaSb(001) there remains an unresolved discrepancy between theory

and experiment.

Experimentally, the Sb-terminated AlSb(001) surface evolves through the sequence

α(4×3) → β(4×3) → γ(4×3) → c(4×4) as the growth condition is changed from low Sb

flux (or high substrate temperature) to high Sb flux (or low temperature) [89]. All of these

reconstructions are insulating, and are well accounted for by structural models proposed

in the literature that satisfy the ECM.

Of particular interest here is the Sb-rich AlSb(001)-c(4×4) reconstruction, anal-

ogous to the As-rich GaAs(001)-c(4×4) reconstruction, which is observed on AlSb but

not GaSb. In contrast to both AlSb and GaAs, the GaSb(001) surface does not exhibit a

stable, insulating c(4×4) reconstruction under similar—or any other—growth conditions.

Instead, it forms (n×5)-like reconstructions [27, 40, 55, 64, 69]. Structural models pro-

posed in the literature for these (n×5)-like reconstructions violate, by design, the ECM

and consequently are weakly metallic [55]. Simulated scanning tunneling microscopy

(STM) images based on (2×10) and c(2×10) models closely resemble the experimen-

tal images [55]. As a result, these models have been generally accepted as describing

the GaSb(001) surface under Sb-rich growth conditions. Nevertheless, we show below

on energetic grounds that these models are unlikely to be correct. Specifically, we find
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their calculated surface energy to be significantly higher than GaSb(001)-c(4×4) for any

plausible value of Sb chemical potential. However, since the experimentally observed re-

construction of GaSb(001) does not have c(4×4) periodicity, this model cannot be correct

either. Thus a definitive structural model remains to be found.

3.2 Methods

The basic structural models we considered are taken from the literature and are

shown in Figs. 3.1 and 3.2. Surfaces that satisfy the ECM are generally semiconducting,

while those that do not may be metallic. The degree to which a given surface satisfies

the ECM can be measured by the excess electron count, Δν, which we define here as the

difference between the number of available electrons and the number required to satisfy

the ECM, per (1×1) surface unit cell. Excess electron counts for the structural models in

Figs. 3.1 and 3.2 are tabulated in Table 3.1.

To compare the surface energies of reconstruction models with different periodici-

ties and stoichiometries, we consider the surface energy per unit area,

γ = Esurf/A = (Etot − nIIIμ
′
III − nVμ

′
V)/A, (3.1)

where Etot is the total energy of a reconstructed surface, of area A, containing nIII group-

III and nV group-V adatoms in excess with respect to the bulk-truncated, Sb-terminated

AlSb(001) or GaSb(001). The atomic chemical potentials μ′ are more conveniently ex-

pressed in terms of excess chemical potentials μ, relative to the energy per atom in the
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ground-state elemental phases: μ′ = μbulk + μ. Assuming the surface to be in thermody-

namic equilibrium with the bulk, the III and V chemical potentials are related by μIII +

μV = ΔHf , where ΔHf = μbulk
III-V − (μbulk

III + μbulk
V ) is the formation enthalpy of the bulk

III-V crystalline phase [29] (note that ΔHf is intrinsically negative). Eq. (3.1) can then

be rewritten to show more clearly the dependence of γ on the surface stoichiometry and

chemical potential:

γ = γ0 + μVΔΘ. (3.2)

Here γ0 = (Et − Esub) − μbulk
III-VΘIII + μbulk

V ΔΘ is independent of the chemical potentials,

and ΔΘ = ΘIII −ΘV = (nIII − nV)/A is the deviation of the surface stoichiometry from

its bulk value. The dependence of γ on chemical potential is given entirely by the second

term. Note that μV is intrinsically negative, and can take values in the range ΔHf ≤ μV ≤

0. Hence, Eq. (3.2) reflects in a simple way that III-rich reconstructions (ΘIII > ΘV)

are favored under III-rich conditions (μV → ΔHf ), V-rich reconstructions (ΘV > ΘIII)

are favored under V-rich conditions (μV → 0), and for stoichiometric reconstructions

(ΘV = ΘIII) γ does not depend on chemical potential.

To compute the total-energy contribution, γ0, to the surface energy we performed

first-principles calculations using density-functional theory (DFT). The calculations were

performed within the local-density approximation (LDA) [15, 39] using ultrasoft pseu-

dopotentials [49, 52, 87]. We used a standard supercell technique, modeling the (001)

surface with a slab consisting of four bilayers and 10 Å of vacuum. Atoms in the bottom

bilayer were fixed at their bulk positions, while all other atoms are allowed to relax until
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the rms force was less than 0.005 eV/Å. The bottom layer (either Ga or Al) was passivated

with pseudohydrogens. A plane-wave cutoff of 300 eV was used, and reciprocal space was

sampled with a density equivalent to at least 192 k-points in the (1×1) surface Brillouin

zone. To define the III-V formation enthalpy ΔHf from the bulk chemical potentials μbulk,

separate DFT calculations were performed for the elements in their ground-state phases:

Ga in the α-Ga structure, Al in the face-centered cubic structure, Sb in the rhombohedral

structure, and both AlSb and GaSb in the zinc blende structure.

3.3 Results and Discussions

The resulting relative surface energies for AlSb(001) and GaSb(001) are shown

in Figs. 3.5 and 3.6, respectively, for the eight models considered here. For each model,

the surface energy is linear in μV, with the slope given by ΔΘ.

For AlSb(001) the predicted stable reconstructions, and their energetic ordering,

are in excellent agreement with experiment. Proceeding from Sb-poor to Sb-rich condi-

tions, the predicted sequence is α(4×3) → β(4×3) → γ(4×3) → c(4×4), as reported pre-

viously [89]. This is the same sequence observed experimentally [89]. Moreover, γ(4×3)

is predicted to exist only over a very narrow range of μSb, in agreement with experiment

[89].

For GaSb(001) the predicted sequence is qualitatively the same as for AlSb(001),

although the c(4×4) is only predicted to be stable for values of μSb above the thermo-

dynamically allowed limit of zero. Experimentally, however, the situation is quite dif-

ferent. As reported previously, neither the γ(4×3) nor the c(4×4) phase is observed for
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Table 3.1 Electron count for different reconstructions of the GaSb(001) surface.

Structure A nIII nV ΘIII ΘV ΔΘ ñ m̃ Δν γ(Garich) γ(Sbrich)

α(4×3) 12 4 4 0.333 0.333 0.0 62 62 0 0.000 0.000

β(4×3) 12 1 7 0.083 0.583 -0.5 68 68 0 0.076 -0.074

γ(4×3) 12 0 8 0.0 0.667 -0.667 70 70 0 0.114 -0.087
h0(4×3) 12 0 8 0.0 0.667 -0.667 70 70 0 0.118 -0.083

c(4×4) 8 0 6 0.0 0.750 -0.750 50 50 0 0.142 -0.084

c(2×10) 10 0 8 0.0 0.800 -0.800 65 62 0.3 0.255 0.014

(2×10) 20 0 24 0.0 1.200 -1.200 170 164 0.3 0.528 0.166

s1a-c(2×10) 10 1 7 0.1 0.700 -0.600 63 62 0.1 0.143 -0.038
s1b-c(2×10) 10 1 7 0.1 0.700 -0.600 63 62 0.1 0.181 0.000

s1c-c(2×10) 10 1 7 0.1 0.700 -0.600 63 62 0.1 0.280 0.099

s2a-c(2×10) 10 2 6 0.2 0.600 -0.400 61 62 -0.1 0.137 0.016

s2b-c(2×10) 10 2 6 0.2 0.600 -0.400 61 62 -0.1 0.124 0.003

s2c-c(2×10) 10 2 6 0.2 0.600 -0.400 61 62 -0.1 0.143 0.023

s2d-c(2×10) 10 2 6 0.2 0.600 -0.400 61 62 -0.1 0.141 0.020

s2e-c(2×10) 10 2 6 0.2 0.600 -0.400 61 62 -0.1 0.167 0.046

s2f-c(2×10) 10 2 6 0.2 0.600 -0.400 61 62 -0.1 0.144 0.023

s2g-c(2×10) 10 2 6 0.2 0.600 -0.400 61 62 -0.1 0.182 0.062

s2h-c(2×10) 10 2 6 0.2 0.600 -0.400 61 62 -0.1 0.164 0.043

s2i-c(2×10) 10 2 6 0.2 0.600 -0.400 61 62 -0.1 0.166 0.045

Note: The excess electron count per (1×1) surface unit cell is defined as Δν = (ñ−m̃)/A
where ñ is the number of available electrons and m̃ is the number of required electrons to

satisfy the ECM in the excess of Sb-terminated GaSb(001). A is the area of the surface

unit cell in terms of the (1×1) surface unit cell. ni is number of adatoms of species i in

excess with respect to the Sb-terminated GaSb(001) and Θi = ni/A is the coverage of

adatoms of species i. The relative γ values, in eV per (1×1) surface unit cell, are given

with respect to that of α(4×3).
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(4x3)γ

(4x3)α (4x3)β h0(4x3)
[110]

[110]
[001]

c(4x4)

Figure 3.1 Proposed reconstruction models with (4×3) and (4×4) periodicities.

Reconstruction models proposed for the AlSb(001) or GaSb(001) surfaces

with (4×3) and (4×4) periodicities. The first two upper layers are shown in

a top view. Smaller white circles represent Sb atoms in the top layer of the

underlying Sb-terminated AlSb(001) or GaSb(001) surface. Larger circles

represent Al or Ga (black) and Sb (white) adatoms. The unit cells are shown

in light blue.
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c(2x10)

[110]

[110]
[001]

(2x10)

Figure 3.2 Proposed reconstruction models for the GaSb(001)-(1×5)-like surfaces.

See Fig. 3.1 for color schemes. Gold circles represent the second layer Sb

adatoms.
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s1b−c(2x10)

[110]

[110]
[001]

s1c−c(2x10)

s1a−c(2x10)

Figure 3.3 Reconstruction models with a single substitution of Sb atoms by Ga atoms.

See Fig. 3.1 for color schemes.
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s2g−c(2x10) s2h−c(2x10)

s2e−c(2x10) s2f−c(2x10)

s2c−c(2x10) s2d−c(2x10)

s2a−c(2x10) s2b−c(2x10)

[110]

[110]
[001]

s2i−c(2x10)

Figure 3.4 Reconstruction models with a double substitution of Sb atoms by Ga atoms.

See Fig. 3.1 for color schemes.
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μSb/|Hf(AlSb)|

-0.1
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0.1

γ 
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Al-rich Sb-rich

α(4x3)
β(4x3)

γ(4x3)

c(2x10)

h0(4x3)

c(4x4)

Figure 3.5 Surface stability phase diagram for AlSb(001) surfaces.

The relative surface energy [Eq. (3.2)] is plotted as a function of the Sb

chemical potential relative to its corresponding bulk value. Dotted vertical

lines mark the thermodynamically allowed range of μSb. ΔHf is the heat of

formation for AlSb.
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-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2
μSb/|Hf(GaSb)|
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γ 
(e
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Ga-rich Sb-rich
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β(4x3)

γ(4x3)

c(2x10)s1a-c(2x10)

c(4x4)
(2x10)

h0(4x3)

Figure 3.6 Surface stability phase diagram for GaSb(001) surfaces.

The relative surface energy [Eq. (3.2)] is plotted as a function of the Sb

chemical potential relative to its corresponding bulk value. Dotted vertical

lines mark the thermodynamically allowed range of μSb. ΔHf is the heat of

formation for GaSb.
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any growth condition [89]. Instead, under Sb-rich conditions, only the (1×5) and (2×5)

periodicities have been observed [55].

Righi et al. suggested h0(4×3), shown in Fig. 3.1, as the model for the GaSb(001)

surface under these conditions [61]. Our calculation indeed shows that it is energetically

as favorable as γ(4×3), as shown in Fig. 3.6 and in Table 3.1. However, h0(4×3) must be

rejected as it has a wrong periodicity.

In order to explain the experimentally observed (1×5) and (2×5) structures on the

GaSb(001) surface, we studied a large number of structures based on variations of c(2×10)

and (2×10). We note that c(2×10) violates the ECM substantially (Δν = 0.3) and substi-

tution of Sb atoms in the top layer of the underlying Sb-terminated GaSb(001) surface by

Ga atoms can lower the excess electron count. Fig. 3.3 shows the possible reconstructions

when a single Sb atom is replaced by a Ga atom. We use the naming convention of s1x to

denote a “single substitution”. As shown in Table 3.1, all s1x reconstructions indeed have

lower excess electron counts.

For completeness, we also considered reconstructions resulting from double sub-

stitution of Sb atoms by Ga atoms as shown in Fig. 3.4. More substitutions, however,

were not found to be energetically favorable: Table 3.1 shows that the surface energy of

these structures are higher than that of s1x reconstructions. We note that for these double

substitutions the excess electron counts Δν are negative, indicating a deficit of electrons

relative to the ECM.

One of the most energetically favorable structures having the correct periodicity

is s1a-c(2×10), shown in Fig. 3.3. s1a-c(2×10) has two clear advantages over c(2×10).
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Figure 3.7 Filled-state STM images of GaSb(001) with (1×5) periodicity.

(a) Experimental STM image; a c(2×10) unit cell is indicated. (b) Simulated

STM image of s1a-c(2×10). This image shows the asymmetries in the

intensities of the current density from two atoms of the horizontal dimers,

which was not captured in the simulated STM image of c(2×10). Compare

with Fig. 3(d) of Ref. [55].
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First, the surface energy for s1a-c(2×10) is lower than that of c(2×10) by more than 50

meV per (1×1) unit cell. Second, as shown in Fig. 3.7, the simulated STM image for s1a-

c(2×10) is in a better agreement with the experiment image, in that it reproduces the left-

right asymmetry within the surface Sb dimers [55]. Furthermore, as shown in Table 3.1,

this model violates the ECM and thus is predicted to be weakly metallic, as observed

in tunneling spectroscopy [24]. Therefore, the previously proposed model c(2×10) is

unlikely to be the experimentally realized structure.

However, the calculated surface energy of s1a-c(2×10) is higher than that of γ(4×3),

as shown in Table 3.1 and Fig. 3.6. Likewise, (2×10), the structural model generally ac-

cepted for the surface with (2×5) periodicity, is the least energetically favorable structure

among the eight structures of Table 3.1. On the other hand, γ(4×3), the most energetically

favorable structure among all the structures considered in this study, has a periodicity that

has not been observed experimentally to date. These facts leave us with two possible con-

clusions: either the correct structural model remains undiscovered, or the experimentally

obtained surface is not the ground-state structure.

The latter possibility, a kinetically limited surface, bears closer consideration. For

example, there may be an activation barrier to forming the mixed dimers on GaSb that

cannot be overcome within the growth temperatures and times used here. Indeed, to sta-

bilize these surfaces during the growth, one must go from active growth with both Ga and

Sb flux at ∼500 ◦C, to room temperature and no flux while trying to stabilize the surface.

This process typically involved simultaneously lowering the temperature while turning off

the Ga and then lowering the Sb flux. The surface cannot be annealed, because that would
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drive off Sb and create (n×3) reconstructions. These considerations lead us to propose that

the s1a-c(2×10) structure is the most likely model for the observed GaSb(001) surface as

created under Sb-rich growth conditions and subsequently stabilized under vacuum.

3.4 Summary and Conclusions

We have performed ab initio calculations on the surface energy and atomic struc-

ture of AlSb(001) and GaSb(001) surfaces with various reconstructions. Surface stabil-

ity diagrams for a large number of reconstruction models are constructed under different

growth conditions. For AlSb(001), we confirmed that the predictions of the currently ac-

cepted models are in good agreement with experimentally observed reconstructions. For

GaSb(001), we showed that previously proposed model accounts for the experimentally

observed reconstructions under Ga-rich growth conditions, but fails to explain the exper-

imental observations under Sb-rich conditions. Therefore, we propose s1a-c(2×10) as a

better alternative to existing models for GaSb(001) under extreme Sb-rich growth condi-

tions. Our calculations show that s1a-c(2×10) has a substantially lower surface energy

than all (n×5)-like reconstructions proposed previously and, in addition, it leads to a sim-

ulated STM image in better agreement with experiment than existing models. However,

s1a-c(2×10) has higher surface energy than γ(4×3), a model with periodicity that has not

been observed. Hence we conclude that the experimentally observed (1×5) and (2×5)

structures on GaSb(001) are not the ground-state structure, but kinetically limited ones.
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CHAPTER 4

AL-MG-ZN TERNARY Φ PHASE

The crystal structure that was proposed by Bourgeois et al. [10] for the Φ phase

of Al-Mg-Zn alloys has been validated and refined using DFT calculations. Their model

defined 10 sets of symmetry equivalent sites occupied by either Zn or Al atoms with other

sites definitely occupied by Mg atoms. DFT calculations were used to determine optimal

Zn and Al locations within the unit cell. The model consists of a total of 84 Mg atoms

and 68 Zn/Al atoms, that we resolved to be 84 Mg, 32 Al, and 36 Zn atoms for the most

energetically stable configuration. We also show other nearly as stable configurations at

other elemental concentrations over the experimentally observed range.

4.1 Introduction

The Φ phase is one of two established ternary phases of Al-Mg-Zn alloys [79].

Bourgeois et al. [10] proposed a crystal structure, and validated it by comparing calculated

electron diffraction patterns with experiment. They also established the space group as

Pbcm. They could not, however, completely resolve whether some sites were Al or Zn. In

this paper we confirm the proposed structure via total energy calculations using the tie line

concept.
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Mg sites are unambiguously defined in the crystal structure. The proposed struc-

ture, however, has 10 sets of symmetry equivalent sites occupied by either Zn or Al. Of

those ten sets, one is a 4a, two are 4d, and seven are 8e as described by Wyckoff posi-

tions for the space group Pbcm. The Mg atoms are distributed via five 4d and eight 8e

sites. The internal parameters and lattice constants of the most stable configuration of the

proposed model our listed in Table 4.2. This results in 210 = 1024 possible structures as-

suming symmetry related atoms are the same elements, for which DFT calculations were

performed.

Using the approximate internal parameters provided by L. Bourguies candidate

arrangements were created by exhaustively trying combinations of Zn or Al in the 10

(Al,Zn) sites in the proposed crystal structure. Atomic positions as well as lattice constants

were optimized for each configuration.

The Φ phase was first reported by Clark [13] in 1961, which he called γ. He

showed the presence of the Φ phase at 40 Mg, 40 Zn, and 20 Al [weight %] or 54.9 Mg,

20.4 Zn, 24.7 Al [atomic %], which falls withing the solubility ranges determined by later

studies [20, 58]. The narrow solubility range of Mg in the Φ phase is 53 to 55 at.%, and

the Al and Zn contents vary widely from 18 to 29 and from 28 to 17 at.%, respectively

[20].
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4.2 Computational Method

The first principles calculations were based on Density Functional Theory (DFT)

[34, 48]. We used Blöchl’s Projector-Augmented Wave (PAW) method [9] potentials as

generated by G. Kresse[54] using the Generalized Gradient Approximation (GGA).

We used a 300 eV kinetic energy cutoff. A k-point mesh with 4x2x2 subdivisions

using the Monkhorst-Pack scheme [70] was sufficient to converge the total energy. Atomic

and volume relaxations were performed. The calculations were restarted two times for

each candidate configuration to ensure large volume changes didn’t affect the final energies

reported, because of a constant number of plane-waves set at the start of calculation.

4.3 Results

The relative stability energy Erel is defined as:

Erel = EMg84(Alx,Zn1-x)68 − xEMg84Al68 − (1-x)EMg84Zn68 (4.1)

where x is [0,1]. When x = 0 all (Al,Zn) atoms are Zn, and x = 1 all (Al,Zn) atoms are Al.

The energy is zero when x = 0 or 1, and negative for energetically favorable structures.

The general parabolic shape of the lowest relative stability energy configurations

per each concentration shows that alloying Zn and Al into this crystal structure results

in a lowering of the relative stability energy. The red line along the bottom axis refers

to the range of Al as a percentage of the (Al,Zn) sites that correspond to what is found

experimentally in Φ phase crystals. The extreme cases of x = 0, Mg84Zn68 and x = 1,

37



Figure 4.1 Relative Stability of Mg84(Alx,Zn1-x)68 using the tie line concept.

The red line is range of Al%
Al%+Zn%

compositions labeled as Φ phase in [58]

.
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Mg84Al68 are set to zero as reference energies. The rest of the data points are a result of the

two extreme cases and the candidate’s total energy using Eq. 4.1 to calculate the relative

stability energy, because comparing total energy for different concentrations would be

erroneous. The discreteness of x values arises from the number of atoms per symmetry

related coordinates being either 4 or 8. There is no way without breaking the symmetry of

the system to have an even 34 Zn and 34 Al atom for example.

Figure 4.2 Relative stability energy comparing Al or Zn in Site 2.

The lowest energy of the candidates is within the experimental range of Al to Zn

determined by [58]. This study was exhaustive under the restriction that symmetry equiv-
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Figure 4.3 Differences in relative stability of listed site being occupied by Al or Zn.

Table 4.1 Statistics of ΔErel for the 10 (Al,Zn) sites.

Site Mean Std. D. Min Max Zn Al

1 -0.44 0.98 -3.33 2.09 180 332

2 4.14 0.65 2.43 5.53 512 0

3 -0.72 0.70 -2.90 0.99 78 434

4 0.81 1.09 -2.94 3.17 406 106

5 1.13 1.09 -2.25 2.82 435 77

6 1.47 1.17 -1.31 3.86 448 64

7 -2.36 1.30 -5.71 0.54 8 504

8 -1.03 0.77 -2.66 0.83 61 451

9 -0.28 0.85 -2.00 1.57 191 321

10 0.38 0.54 -0.76 1.67 380 132

Note: ΔErel = Erel(Al at site#) − Erel(Zn at site#)
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alent positions within the crystal were occupied by the same element. The number of

configurations preserving symmetry with 28, 32, and 36 Al atoms are 126, 140, and 140

respectively. While mixed occupancies were not calculated due to the shear number of pos-

sible configurations, an analysis of each (Al,Zn) site preference for Al or Zn is presented.

Figure 4.2 shows the relative stability energy plot with data points indicating whether site

2 was occupied by Al or Zn. There is a clear trend of Zn occupation lowering the rela-

tive stability energy for this site. We calculated the difference of relative stability energies

for each (Al,Zn) site being Al and it being Zn with the other nine sites them same. This

results in 512 differences being calculated for each site that elucidates any preference for

occupation by Zn or Al. The results are plotted in Figure 4.3 and listed in Table 4.1. The

average of energies gained or lost when Al or Zn occupies those positions. Positive means

Zn and negative means Al occupation lowered the relative stability energy. The standard

deviation, minimum , and maximum of the 512 values for each site are given. Finally, the

number of configurations that benefited from either Zn or Al occupying the site are tallyed.

Site 2 was the only one whose energy was never lowered by having Al instead of Zn. Site

7 had the least number of arrangements when Zn lowered the relative stability energy, but

no site showed an absolute preference for Al.

The lattice constants and internal parameters to build the lowest relative stability

energy unit cell are given in Table 4.2 for the Al/Zn and Mg sites. Bourgeois et al. [10]

reported that the best match of computed diffraction patterns occurred when sites 1-5 and

sites 6-10 were occupied by Al and Zn atoms respectively. That data point is x = 0.412
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Table 4.2 Lattice constants and internal parameters of optimal structure

Atom(site) symmetry x y z

Al(1) 4a 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

Zn(2) 4d 0.40 (0.37) 0.69 (0.68) 1/4 (1/4)

Al(3) 4d 0.65 (0.62) 0.60 (0.59) 1/4 (1/4)

Al(4) 8e 0.66 (0.62) 0.46 (0.46) 0.18 (0.18)

Zn(5) 8e 0.41 (0.37) 0.41 (0.42) 0.12 (0.12)

Zn(6) 8e 0.16 (0.14) 0.37 (0.37) 0.18 (0.18)

Zn(7) 8e 0.16 (0.14) 0.51 (0.50) 0.12 (0.12)

Al(8) 8e 0.16 (0.14) 0.64 (0.63) 0.18 (0.18)

Zn(9) 8e 1.00 (0.98) 0.25 (0.25) 0.12 (0.13)

Al(10) 8e 0.91 (0.90) 0.41 (0.41) 0.11 (0.11)

Mg(1) 4d 0.67 (0.68) 0.00 (0.00) 1/4 (1/4)

Mg(2) 4d 0.03 (0.04) 0.00 (0.00) 1/4 (1/4)

Mg(3) 4d 0.46 (0.44) 0.33 (0.32) 1/4 (1/4)

Mg(4) 4d 0.84 (0.83) 0.32 (0.32) 1/4 (1/4)

Mg(5) 4d 0.11 (0.12) 0.21 (0.19) 1/4 (1/4)

Mg(6) 8e 0.45 (0.44) 0.59 (0.59) 0.13 (0.11)

Mg(7) 8e 0.67 (0.65) 0.01 (0.02) 0.52 (0.52)

Mg(8) 8e 0.14 (0.15) 0.09 (0.09) 0.12 (0.12)

Mg(9) 8e 0.84 (0.81) 0.16 (0.16) 0.03 (0.02)

Mg(10) 8e 0.33 (0.35) 0.24 (0.22) 0.13 (0.14)

Mg(11) 8e 0.67 (0.66) 0.28 (0.28) 0.12 (0.13)

Mg(12) 8e 0.16 (0.15) 0.34 (0.34) 0.02 (0.02)

Mg(13) 8e 0.49 (0.48) 0.34 (0.33) 1.00 (0.01)

Note: Lattice constants of optimal configuration a=8.82 (8.98)Å b=16.73 (16.99)Å

c=1.971 (19.34)Å. Values in parenthesis are starting values taken from Bourgeois et al.[10]

approximate coordinates.
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and Erel = −6.725 meV. The lowest energy configuration has sites 1, 3, 4, 8, and 10 as Al

and sites 2, 5, 6, 7, and 9 as Zn. This result is x = 0.471 and Erel = −10 meV.

Which element is occupying each of the 10 (Al,Zn) sites in the 10 most energet-

ically favorable crystals can be derived from Figure 4.4. They range from 20 to 40 Al

atoms, and up to -0.8 meV difference in related stability energy. Starting with the most

favorable configuration containing 32 Al atoms and Erel = -10 meV whose site occupan-

cies are listed the connections indicate which site is changed to arrive at that configuration.

Switching site 7, 8 atoms, from Zn to Al will be the lowest configuration with 40 Al and

Erel = -9.2 meV. From there switching site 1, 4 atoms, from Al to Zn gets to the most

favorable configuration with 36 Al atoms. Besides keeping track of what changed from

the lowest configuration any move to the right is Zn to Al and any move to left in figure

is Al to Zn. One connection exists in this figure that involves two sites changing elements

simultaneously. It involves switching site 2 to Al which was already shown to never prefer

Al, but simultaneously changing site 3 to Zn keeps the Al content at 28 atoms and costs

0.7 meV.

4.4 Conclusion

We explored the possible combination of Al-Mg-Zn in the proposed crystal struc-

ture. We Determined minimum energy configurations using DFT energy calculations. The

minimum energy structure occurs in the range of experimentally observed atomic concen-

trations, which confirms the model correctly describes the Φ phase crystal structure.
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Figure 4.4 Connections to lowest energy configuration.

The value in parenthesis is the site that differs between the connected

configurations.
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CHAPTER 5

STEEL

5.1 Introduction

Iron is known to be a ferromagnetic material with a body center cubic crystal

structure. DFT can predict this as the correct ground state as shown in 5.1. The generalized

gradient approximation must be used along with doing a spin-polarized calculation to

include the energy from magnetism. The PAW method gives a better agreement with the

more accurate all electron methods. For the rest of the chapter involving Fe calculations

the PAW-GGA potential is used.

Table 5.1 Bulk Fe energies for different potentials, phases, and magnetic setting.

PAW-LDA PAW-GGA USPP-LDA USPP-GGA

bcc Fe FM 151 -66 87 -238

bcc Fe NM 431 387 430 383

fcc Fe NM 87 79 86 76

hcp Fe NM 0 0 0 0

Note: For the four potential and exchange-correlation type combinations the non-magnetic

hcp is the reference value.

The Fe-C phase diagram, figure 5.1, illustrates the temperature ranges and solubil-

ity of carbon in the Ferrite and Austenite Phases. The right most part of the phase diagram
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Figure 5.1 Fe-C phase diagram
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is Cementite. The carbon concentration regions in the middle are mixtures of the com-

pound Cementite and pure Fe phases. The diagram only represents what can be formed

based on Fe and Carbon content. Heat treatment of the Fe-C system can effect the mi-

crostructure of the steel. Slow cooling of Austenite with carbon results in the formation

of Pearlite, planes of Cementite between regions of Ferrite. Rapid cooling prevents the

Carbon from diffusing and the formation of Cementite. The result is a supersaturated and

unstable structure called Martensite.

Cementite (Fe3C) is a metastable compound with an orthorhombic crystal struc-

ture. The unit cell contains four iron atoms in symmetry related Fe(I) positions, eight

more iron atoms at Fe(II) positions, and four symmetric carbon atoms. Table 5.2 give the

formulas for relating the atomic positions in the Cementite unit cell, and table 5.3 gives

the values commonly called internal parameters for the locations of the atoms.

Table 5.2 Cementite unit cell structure.

Atom Basis vectors (a0x, b0y, c0z)

C (x1,
1
4
, z1),(−x1,

3
4
,−z1),(1

2
− x1,

3
4
, 1
2
+ z1),(1

2
+ x1,

1
4
, 1
2
− z1)

Fe(I) (x2,
1
4
, z2),(−x2,

3
4
,−z2),(1

2
− x2,

3
4
, 1
2
+ z2),(1

2
+ x2,

1
4
, 1
2
− z2)

Fe(II) (x3, y3, z3),(−x3,−y3,−z3),(
1
2
+ x3,

1
2
− y3,

1
2
− z3),(1

2
− x3,

1
2
+ y3,

1
2
+ z3),

(−x3,
1
2
+ y3,−z3),(x3,

1
2
− y3, z3),(1

2
− x3,−y3,

1
2
+ z3),(

1
2
+ x3, y3,

1
2
− z3)
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Table 5.3 Internal parameters of Cementite.

a0 b0 c0 x1 z1 x2 z2 x3 y3 z3

Exp 5.09 6.74 4.53 0.890 0.450 0.036 0.850 0.186 0.063 0.328

DFT 5.03 6.72 4.47 0.876 0.438 0.035 0.837 0.176 0.068 0.332

5.2 Point Defect Energies In Cementite

The crystal structure of Cementite is illustrated in Figure 5.2 with a Vanadium

atom substituted at an Fe lattice site. Point defect energies for vacancies and substitutional

defects are listed in Table 5.4. Vacancy formation energy is given by

Evacancy = Etot[Vac]− Etot[Cementite] + ε (5.1)

where Etot[Vac] is the total energy of the system with an atom missing at the indicated site,

Etot[Cementite] is the total energy of Cementite without a defect, and ε is the energy per

atom in its most stable bulk structure. Substitutional defect energy is given by

Esub = Etot[Defect]− Etot[Cementite] + ε[replaced]− ε[added] (5.2)

where Etot[Defect] is the total energy of the system with the point defect, ε[added] and

ε[replaced] are energies per atom for the element that is occupying and what should by oc-

cupying the site respectively. Again these ε values are from the most stable bulk structure

calculated in independent runs. A vacancy or Carbon substitutional defect in an Fe(II) site
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is slightly less costly than an Fe(I) site. A Vanadium substitutional defect in Cementite for

Fe is energetically favorable, and slightly more so in Fe(II) sites than Fe(I) sites.

Figure 5.2 Vanadium substitution in Cementite.

5.3 Diffusion Barrier Calculations

For simple point defect calculations in Cementite it doesn’t matter which of the

eight Fe(II), four Fe(I), or four C, is removed as in a vacancy calculation or substituted

because they are equivalent. Fe(I) atoms have two Fe(I), ten Fe(II), and two C neighbors.

Fe(II) atoms have five Fe(I), six Fe(II), and three C neighbors. The two Fe(I) neighbors

of an Fe(I) atom are identical for computing diffusion barriers. Additionally the ten Fe(II)

neighbors of an Fe(I) atom are composed of five pairs of identical paths. Finally we are
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Table 5.4 Defect formation energies in Cementite (eV)

EVacancy[Fe(I)] 1.56

EVacancy[Fe(II)] 1.40

EVacancy[C] 0.56

ESub[C → Fe(I)] 3.01

ESub[C → Fe(II)] 2.82

ESub[Fe → C] 2.21

ESub[V → Fe(I)] -0.61

ESub[V → Fe(II)] -0.72

ESub[V → C] 1.77

Note: ESub[A → B] means that an atom of element A is occupying site B.

interested in diffusion from an Fe(II) to Fe(II) site of which the six neighbors reduce to

four paths.

The diffusion barrier calculations were performed using the nudged elastic band

(NEB) method with a climbing image [31]. NEB is a method for finding minimum energy

paths between two known configurations. In our calculation that would be fully relaxed

monovacancies at neighboring sites. We used ten intermediate structures or images for

our calculations. The method finds lowest energy configurations while maintaining equal

spacing to neighboring images. This total spacing or displacements between images is

the reaction coordinate value plotted in figure 5.3. The climbing image modifies the NEB

method so that one image is located at the saddle point and the spacing to either side is

maintained, but most likely will be different to the left and right of the saddle point.

The diffusion barriers calculated in Figure 5.3 were calculated in a large unitcell

consisting of 8 primitive Cementite unitcells. For this case Fe atoms 1-32 are in Fe(I)

positions Fe atoms 33-96 are in Fe(II) positions.
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Figure 5.3 Fe diffusion in Cementite.

Diffusion of Fe from an Fe(I) site in Cementite, and diffusion of Fe from an

Fe(II) site.
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Looking at the the first plot in Figure 5.3 only the 7 to 19 path i.e. the single Fe(I) to

Fe(I) path returns back to the same energy. While these figures illustrates the ten diffusion

paths of Fe in Cementite, five of the paths are not symmetric involving diffusing from or

to an Fe(I) and an Fe(II) site. The barrier to overcome is lower going from the Fe(II) than

from Fe(I) sites. Values are presented in Tables 5.5 and 5.6 depending on the site to be

filled.

Table 5.5 Diffusion into Fe(I) site of Fe(7) in Cementite

Path 1 Path 2 Path 3 Path 4 Path 5 Path 6

2.07 1.66 1.29 1.23 1.23 0.90

Path 1: from Fe(39) or Fe(79). Path 2: from Fe(19) or Fe(23).

Path 3: from Fe(52) or Fe(92). Path 4: from Fe(63) or Fe(85).

Path 5: from Fe(41) or Fe(67). Path 6: from Fe(40) or Fe(80).

Table 5.6 Diffusion into Fe(II) site of Fe(40) in Cementite

Path 1 Path 2 Path 3 Path 4 Path 5 Path 6 Path 7 Path 8 Path 9

2.23 1.46 1.40 1.39 1.11 1.08 1.07 1.03 0.59

Path 1: from Fe(8). Path 2: from Fe(24). Path 3: from Fe(30). Path 4: from Fe(10).

Path 5: from Fe(42). Path 6: from Fe(92) or Fe(96). Path 7: from Fe(7).

Path 8: from Fe(85) or Fe(86). Path 9: from Fe(80)
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CHAPTER 6

MEAM OPTIMIZATION

Semi-empirical potential methods including the embedded-atom method (EAM)

and the modified embedded-atom method (MEAM) are reviewed. The procedures to con-

struct these potentials are also reviewed. A multi-objective optimization (MOO) procedure

has been developed to construct modified-embedded-atom-method (MEAM) potentials

with minimal manual fitting. This procedure has been applied successfully to develop a

new MEAM potential for magnesium. The MOO procedure is designed to optimally re-

produce multiple target values that consist of important material properties obtained from

experiments and first-principles calculations based on density-functional theory (DFT).

The optimized target quantities include elastic constants, cohesive energies, surface ener-

gies, vacancy formation energies, and the forces on atoms in a variety of structures. The

accuracy of the new potential is assessed by computing several material properties of Mg

and comparing them with those obtained from other potentials previously published. We

found that the present MEAM potential yields a significantly better overall agreement with

DFT calculations and experiments.
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6.1 Introduction

Molecular dynamics simulations are effective tools used to study many interesting

phenomena such as the melting and coalescence of nanoparticles at the atomic scale [46,

82]. These atomistic simulations require accurate interaction potentials to compute the

total energy of the system, and first-principles calculations can provide the most reliable

interatomic potentials. However, realistic molecular dynamics simulations often require an

impractical number of atoms that either demands too much computer memory or takes too

long to be completed in a reasonable amount of time. One alternative is to use empirical

or semi-empirical interaction potentials that can be evaluated efficiently.

Additionally, there are two essential features that are expected from a useful semi-

empirical approach besides its efficiency: reliability and flexibility. A reliable interatomic

potential would accurately reproduce various fundamental physical properties of the rele-

vant element or alloy, such as elastic, structural, and thermal properties. Reliability also

includes transferability. A transferable interatomic potential would perform reasonably

well even under circumstances that were not used during its construction phase. A flexi-

ble semi-empirical approach can represent interaction potentials among a wide variety of

elements and their alloys using a common mathematical formalism.

Despite its remarkable successes, one of the most notable difficulties in using

MEAM, as well as any of the alternative modern potentials, is that the construction of

the MEAM potentials involves a lot of manual and ad hoc fittings. Because of the com-

plex relationship between the sixteen MEAM parameters and the resultant behavior of

a MEAM potential, a traditional procedure for constructing a MEAM potential involves
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a two-step iterative process. First, a single crystal structure, designated as the reference

structure, is chosen and the MEAM parameters are fitted to construct a MEAM potential

that reproduces a handful of critical material properties of the element in the reference

structure. Second, the new potential is tested for its accuracy and transferability by ap-

plying it to atoms under circumstances not used during its construction phase. These

systems include different crystal structures, surfaces, stacking faults, and point defects.

If the validation is not satisfactory, one needs to go back to the first step and adjust the

parameters in a way that improves the overall quality of the potential. Although this iter-

ative method does work eventually in many cases, it is very tedious and time-consuming.

Ercolessi and Adams [22] overcame this shortcoming for EAM potentials by developing

a force-matching method that fits the EAM potential to ab initio atomic forces of many

atomic configurations including surfaces, clusters, liquids and crystals at finite temper-

ature. Later, the force-matching method was extended to include many other material

properties such as cohesive energy, lattice constants, stacking fault energies, and elastic

constants [57, 59]. Furthermore, several different MEAM potentials for the same element

often develop and an objective and quantitative method to measure the relative quality

of each potential would be helpful for the researchers who want to choose one of these

potentials.

In this work, we extend the force-matching method to develop a multi-objective

optimization (MOO) procedure to construct MEAM potentials. Most realistic optimiza-

tion problems, particularly in engineering, require the simultaneous optimization of more

than one objective function. For example, aircraft design, which requires simultaneous
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optimization of fuel efficiency, payload and weight, which calls for a MOO procedure.

In most cases, it is unlikely that the different objectives would be optimized by the same

parameter choices. Therefore, some trade-off between the objectives is needed to ensure

a satisfactory design. Stadler [88] introduced the concept of Pareto [75] optimality to the

fields of engineering and science. The most widely used method for multi-objective op-

timization is the weighted sum (utility function) method. A comprehensive overview and

comparison of different MOO methods can be found in Ref. [2].

The composite objective function also provides an unbiased measure to quantify

the relative quality of different MEAM potentials. We apply the procedure to develop a

new MEAM potential for magnesium. The new Mg MEAM potential will be compared

with previously published Mg potentials. We chose Mg because of its increased impor-

tance in many technological areas, including the aerospace and automotive industries. Due

to the lower mass densities of magnesium alloys compared with steel and aluminum and

higher temperature capabilities and improved crash-worthiness than plastics, the use of

magnesium die castings is increasing rapidly in the automotive industry [30, 77].

Empirical potentials for Mg have been previously proposed by several groups. In

1988, Oh and Johnson [74] developed analytical EAM potentials for hcp metals such as

Mg. Igarashi, Kanta and Vitek [38] (IKV) also developed interatomic potentials for eight

hcp metals including Mg using the Finnis–Sinclair type many-body potentials, which are

a specific form of an EAM potential [26]. Pasianot and Savino [76] proposed improved

EAM potentials for Mg based on IKV’s fitting scheme. Baskes and Johnson [5] have

extended the MEAM to hcp crystal structures. Later, Jelinek et al [42] improved this
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potential as a part of the MEAM potentials for Mg-Al alloy system. Liu et al [59] used the

force-matching method to develop an EAM potential for Mg.

6.1.1 Multi-objective Optimization

A generic multi-objective optimization (MOO) problem can be formulated as [45,

85]:

min J(x) s.t. x ∈ S

where J = [J1(x) · · · Jm(x)]T

x = [x1 · · · xn]
T

(6.1)

Here, J is a column vector of m objectives. The individual objectives are dependent

on a vector x of n design variables in the feasible domain S. The design variables are

assumed to be continuous and vary independently. Typically, the feasible design domain

is defined by the design constraints and the bounds on the design variables. Ideally, the

goal is to minimize all elements of the objective vector simultaneously. However, when

the objectives are in conflict, a compromise solution on the Pareto frontier is sought. The

most widely used method for MOO is scalarization using the weighted sum method. The

method transforms the multiple objectives into an aggregated scalar objective function J

that is the sum of each objective function Ji multiplied by a positive weighting factor wi:

J(x) =
m∑
i=1

wiJi(x). (6.2)
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The weighting factors in Eq. (6.2) can be adjusted to increase (or decrease) the influence

of a more (or less) important objective in the compromise solution.

In this work, the overall goal is to develop a MEAM potential for Mg. The

individual objective functions are constructed from the normalized differences between

the MEAM-generated values and the target values similar to that in the global criterion

method:

Ji(x) =

[
Qi(x)−Q0

i

Q∗
i

]2
. (6.3)

Here, Qi is the physical quantity computed using the current MEAM potential parameters

and Q0
i is the target value to reproduce. The target values are usually experimental values,

but the computed values from the first-principles method are chosen when the experimental

data are not available. The normalization factor Q∗
i is a typical value for the given material

parameter and often Q∗
i = Q0

i . The overall objective function J(x) can be minimized

using usual multi-dimensional unconstrained optimization routines. We used the downhill

simplex method [78] that requires only function evaluations, not derivatives, which require

substantially more complicated mathematical expressions and coding.

6.2 Potential Construction Procedure

We used the MOO procedure to develop a new set of MEAM parameters (treated

as design variables in Eq. (6.1)) that improves the overall agreement of MEAM results

with experiments or ab initio calculations. Our previously published MEAM parameters

for Mg [42] served as the basis for the present work.
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All ab initio total-energy calculations and geometry optimizations are performed

within density functional theory (DFT) using ultrasoft pseudopotentials (USPP) [87] as

implemented by Kresse and his co-workers [50, 53]. For the treatment of electron ex-

change and correlation, we use the local-density approximation (LDA) [15, 39]. The

Kohn-Sham equations are solved using a preconditioned band-by-band conjugate-gradient

(CG) minimization [51]. The plane-wave cutoff energy is set to at least 300 eV in all cal-

culations. Geometry relaxations are performed until the energy difference between two

successive ionic optimizations is less than 0.001 eV. The Brillouin zone is sampled using

the Monkhorst-Pack scheme [71] and a Fermi-level smearing of 0.2 eV was applied using

the Methfessel-Paxton method [67].

The objectives used in this work include equilibrium hcp lattice constants a and c

at 0 K, the cohesive energy, elastic constants, vacancy formation energy, surface energies,

stacking fault energies, and adsorption energies. We also used the forces on Mg atoms in

structures equilibriated at six different temperatures. Tables 6.1–6.4 show the complete

list of objectives optimized to construct the MEAM potential parameters for Mg and their

weights. Weights are chosen to produce a potential that is suitable for general purpose MD

simulations. We note that the particular choice presented in this work is indeed somewhat

subjective and can be adjusted depending on particular purposes of the simulations. For

example, if a very accurate stacking fault energies are desired, the weights for objectives

14–17 in Table 6.3 should be increased. The optimal MEAM parameters (design variables)

obtained from the MOO procedure are listed in Table 6.5.
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6.2.1 Cohesive Energies

The cohesive energy of Mg atom is defined as the heat of formation per atom when

Mg atoms are assembled into a crystal structure:

Ecoh = −
(
Etot −NEatom

N

)
, (6.4)

where Etot is the total energy of the system, N is the number of Mg atoms in the system,

and Eatom is the total energy of an isolated Mg atom. The cohesive energies of Mg atoms in

hcp, fcc, and bcc crystal structures for several atomic volumes near the equilibrium atomic

volumes were calculated. Fig. 6.1 is an example of the cohesive energy plot of Mg atoms

as a function of the lattice constant. The minimum of this curve determines the equilibrium

lattice constant a0 and equilibrium cohesive energies Ecoh = Ehcp in Table 6.1.

Table 6.1 Bulk properties optimized to construct the MEAM potential.

Objective Unit Weight Expt DFT MEAM1 Jelinek2 Liu3

1 a0 Å 1.0 3.21 [21] 3.128 3.21 3.21 3.21

2 c/a – 1.0 1.623 [21] 1.623 1.622 1.623 1.623

3 Ecoh = Ehcp eV 2.0 1.51 [47] 1.78 1.51 1.55 1.52

4 B kbar 1.0 369 [83] – 376 353 367

5 Efcc − Ehcp meV 0.72 – 14 [1] 4 4 15

6 Ebcc − Ehcp meV 0.72 – 29 [1] 34 30 18

Note: The parameters for Mg along with the target values and their weights. Comparisons

to other Mg potentials are also made. Ecoh is the cohesive energy, and B is the bulk

modulus. The underlined quantities are the target values chosen for the MOO procedure.
1MEAM potential from the present work
2MEAM potential from Ref. [42]
3EAM potential from Ref. [59]
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6.2.2 Elastic Constants

Hexagonal crystals have five independent elastic constants: C11, C12, C13, C33,

and C44 [56]. The elastic constants are calculated numerically by applying small strains to

the lattice. For small deformations, the relationship between deformation strain and elastic

energy increase in an hcp crystal is quadratic [59]:

1. ΔU = δ2(C11 + C12), for deformation x′ = x+ δ · x, y′ = y + δ · y,

2. ΔU = δ2(C11 − C12), for deformation x′ = x+ δ · x, y′ = y − δ · y,

3. ΔU = δ2C33/2, for deformation z′ = z + δ · z,

4. ΔU = δ2(2C11+C33+2C12+4C13)/2, for deformation x′ = x+δ ·x, y′ = y+δ ·y,

z′ = z + δ · z,

5. ΔU = δ2C44/2, for deformation z′ = z + δ · x,

where unprimed (primed) are the coordinates of the lattice before (after) deformation. ΔU

is the elastic energy per volume due to the deformation, and δ is the small strain applied

to the lattice. We follow the procedure described by Mehl et al [65] and apply several

different strains ranging from −2.0% to +2.0%. The elastic constants are obtained by

fitting the resultant curves to quadratic functions. We found that this method gives much

more stable results than using one strain value [59]. Table 6.2 shows the result of the MOO

procedure for MEAM potential parameters for Mg.

6.2.3 Surface Formation Energies

Surface formation energy per unit surface area is defined as

γ = (Etot −Nε) /A, (6.5)
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Table 6.2 Elastic constants comparison of optimized MEAM potential.

Objective Unit Weight Expt MEAM1 Jelinek2 Liu3

7 C11 kbar 1.0 635 [83] 606 602 618

8 C12 kbar 1.0 260 [83] 274 237 259

9 C13 kbar 1.0 217 [83] 250 219 219

10 C33 kbar 1.0 665 [83] 631 623 675

11 C44 kbar 1.0 184 [83] 151 155 182

Note: The elastic constants optimized to construct the MEAM potential parameters for

Mg along with the target values and their weights. Comparisons to other Mg potentials are

also made. The underlined quantities are the target values chosen for the MOO procedure.
1MEAM potential from the present work
2MEAM potential from Ref. [42]
3EAM potential from Ref. [59]

where Etot is the total energy of the system with a surface, N is the number of atoms in the

system, ε is the total energy per atom in the bulk, and A is the surface area. Table 6.3 lists

the surface formation energies used in this study. The (101̄0) surface of hcp crystals can

be terminated in two ways, either with a short first interlayer distance d12 (“short termina-

tion”) or with a long d12 (“long termination”) (See, for example, Fig. 2 of Ref. [32]). In

this study, we only included the results for the short terminated surface, since it is known

to be energetically more favorable over the long terminated surface [84] in agreement with

experimental observations in Be(101̄0) and other hcp metals [32]. Table 6.3 shows surface

formation energies optimized to construct the MEAM potential parameters for Mg and

the result of the MOO procedure. We notice that the MOO procedure relaxed the level

of agreement on these quantities in order to achieve a better overall agreement between

reproduced values and target values.
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Table 6.3 2-D and 1-D defect formation energies.

Objective Unit Weight Expt DFT MEAM1 Jelinek2 Liu3 Hu4

12 γ[(0001)] mJ/m2 1.0 680 [86] 637 583 595 495 310

13 γ[(101̄0)] mJ/m2 1.0 – 721 625 645 – –

14 Esf[I1] mJ/m2 0.1 – 18 8 7 27 4

15 Esf[I2] mJ/m2 0.1 – 37 15 15 54 8

16 Esf[T2] mJ/m2 0.1 – 45 15 15 – –

17 Esf[E] mJ/m2 0.1 – 61 23 22 – 12

18 Evac eV 1.0 0.58–0.89 0.82 0.58 0.56 0.87 0.59

Note: The objectives related to surface formation energies, stacking fault energies and

vacancy formation energy optimized to construct the MEAM potential parameters for

Mg along with the target values and their weights. γ is the surface energy and Esf is the

stacking fault formation energy. Comparisons to other Mg potentials are also made. The

underlined quantities are the target values chosen for the MOO procedure.
1MEAM potential from the present work
2MEAM potential from Ref. [42]
3EAM potential from Ref. [59]
4Analytic MEAM potential from Ref. [37]

6.2.4 Stacking Fault Energies

Stacking fault formation energy per unit area is defined by

Esf = (Etot −Nε) /A, (6.6)

where Etot is the total energy of the structure with a stacking fault, N is the number of

atoms in the system, ε is the total energy per atom in the bulk, and A is the unit cell area that

is perpendicular to the stacking fault. For Mg, four stacking fault types from the calcula-

tion of Chetty et al [12] were examined. The sequences of the atomic layers within the unit

cell of our simulations are: I1 = ABABABCBCBCB, I2 = ABABABCACACB,

T2 = ABABABCBABAB, and E = ABABABCABABAB. We note that the unit
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cells for I1 and I2 contain two stacking faults and the quantities obtained from Eq. (6.6)

must be divided by two to obtain the correct formation energies.

6.2.5 Vacancy Formation Energies

The formation energy of a single vacancy Evac is defined as the energy cost to

create a vacancy:

Evac = Etot[N ]−Nε, (6.7)

where Etot[N ] is the total energy of a system with N atoms containing a vacancy, and ε is

the energy per atom in the bulk. Table 6.3 shows the vacancy formation energy optimized

to construct the MEAM potential parameters for Mg.

6.2.6 Atomic Forces

For forces, the objective functions are defined as:

Ji(x) =
(〈(F− F0)2〉)1/2
(〈(F0)2〉)1/2 , (6.8)

where F are the force vectors on atoms calculated using the MEAM while F0 are the force

vectors from DFT method. (〈(F0)2〉)1/2 represents the root-mean-square of the DFT force,

and (〈(F− F0)2〉)1/2 is the root-mean-square of the error in the force.

To obtain the force data, initial atomic structures that contain 180 Mg atoms were

created from the bulk hcp crystal structure. The positions of atoms are randomly disturbed

from their equilibrium positions and 10 000 steps of molecular-dynamics (MD) simula-
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tions with a timestep of Δt = 2.5 ps were performed to equilibrate each structure for

different temperatures. In each MD run, we the used Mg MEAM potential by Jelinek [42].

If no MEAM potential were available for MD simulations, one could use an intermedi-

ate MEAM potential that is generated with this MOO procedure without the force data.

The potential should be adequate enough to obtain a reasonable set of structures. There

is a significant issue that one must address in using DFT forces to improve forces of the

MEAM potentials. As seen in Table 6.1, DFT predicts a smaller atomic volume or lattice

constant than experimentally observed values. Since our MEAM potential is designed to

reproduce the experimental lattice constant (objective 1 in Table 6.1), there should be an

inherent difference between MEAM- and DFT-generated forces. This difference in inter-

atomic distances makes the direct comparison of ab initio and MEAM-predicted forces

inaccurate. Following the procedure introduced by Mishin et al [68], we scaled the atom

positions by the ratio of the DFT/MEAM lattice constants before we perform DFT calcu-

lations to obtain ab initio forces used in Table 6.4.

6.3 Results and Discussion

The hcp structure was chosen as the reference structure for Mg. The final MEAM

parameters obtained from the MOO procedure are listed in Table 6.5.

6.3.1 Material Properties

Tables 6.1–6.4 list various material properties of Mg selected as the objectives

to be optimized in constructing the Mg MEAM potential, along with experimental data
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Table 6.4 Force based optimizations

Objective Unit Weight Expt DFT MEAM1 Jelinek2 Liu3 Hu4

19 ΔF (100 K) % 1.0 – 0.0 41.98 167.71 – –

20 ΔF (300 K) % 1.0 – 0.0 35.89 77.82 – –

21 ΔF (500 K) % 1.0 – 0.0 31.45 126.98 – –

22 ΔF (800 K) % 1.0 – 0.0 29.77 83.89 – –

23 ΔF (1000 K) % 1.0 – 0.0 27.76 71.96 – –

24 ΔF (1200 K) % 1.0 – 0.0 28.12 69.15 – –

Note: The relative errors in force vectors that were optimized to construct the MEAM

potential parameters for Mg. Comparisons to other Mg potentials are also made. The

underlined quantities are the target values chosen for the MOO procedure.
1MEAM potential from the present work
2MEAM potential from Ref. [42]
3EAM potential from Ref. [59]
4Analytic MEAM potential from Ref. [37]

Table 6.5 Optimized set of MEAM potential parameters for Mg.

E0[eV] a0[Å] A α β(0) β(1) β(2) β(3)

t(0) t(1) t(2) t(3) Cmax Cmin rc Δr
1.51 3.20 1.14 5.69 2.66 -0.003 0.348 3.32

1.00 8.07 4.16 -2.02 3.22 1.10 5.0 0.353

Note: See the text for the definition of these parameters and their usage. The hcp structure

was chosen as the reference structure for Mg.
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and ab initio data. It also shows how well each objective has been optimized. Results

from other previously published Mg potentials are also listed in the table for comparison.

Tables 6.1–6.4 also show the weight of individual objectives wi chosen to optimize the

present potential. The underlined quantities are the target values chosen for the MOO

procedure. Whenever possible, the experimental values are chosen as the target values. If

the experimental values are not available or known to be unreliable, the computed values

from the first-principles method are used.

The present MEAM potential reproduces the experimental lattice constant, the c/a

ratio, and the cohesive energy near perfectly. Fig. 6.1 shows the cohesive energies of

Mg atoms in hcp crystal structure compared with those obtained from the Rose universal

equation of state [80] based on the experimental lattice constant, cohesive energy and bulk

modulus. It shows a good agreement between the two sets of data. We also note that the

sequence of the structures is predicted correctly in the order of stability by the present Mg

MEAM potential as shown in Table 6.1.

The surface formation energies of the two common low-index surfaces of hcp Mg

crystals are in good agreement with the experimental values, representing a significant

improvement over the MEAM potentials by Liu et al [59] or Hu and others [36].

As pointed out by Liu et al [59], the stacking fault energies are difficult quantities

for an emprirical potential to reproduce because they only depend on long range inter-

actions beyond second nearest-neighbor distances in hcp crystals. The present MEAM

potential shows a substantial improvement over the previously published MEAM poten-

tial by Hu et al [37]. The stacking fault energies are consistently underestimated by the
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Figure 6.1 Cohesive energies computed from potential compared to Rose eq.

The cohesive energies as a function of the lattice constant a for Mg atoms in

hcp crystal structure compared with the ones obtained from the Rose

equation. The data points are computed with the present MEAM potential

while the curve is obtained from the Rose equation.
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present MEAM potential compared to the results of the DFT calculations, while the results

by the EAM potential from Ref. [59] are consistently overestimated. Table 6.3 also shows

that the formation energy of single vacancies from DFT calculation is reproduced quite

reasonably by the present MEAM potential.

Table 6.4 shows the force-matching against the ab initio-generated forces. It shows

that the MEAM potential from the present work reproduces significantly more accurate

forces on atoms compared to the previous MEAM potential [42].

6.3.2 Additional Material Properties

Table 6.6 Unoptimized material properties of the Mg potential.

Property DFT MEAM1 Jelinek2

Eads[(0001)] -0.81 -1.46 -1.50

Eads[(101̄0)] -1.21 -1.52 -1.56

E int
f (octahedral) 2.36 1.20 1.29

E int
f (tetrahedral) 2.35 1.41 1.53

Note: The additional material properties of Mg that are not used as objectives for

the construction of the potential. Comparisons are made to other Mg potentials and

experiments. Eads is the adsorption energy; E int
f is the formation energies of interstitial

point defects. All energy values are given in eV.
1MEAM potential from the present work
2MEAM potential from Ref. [42]

To validate the present MEAM potential further, we calculated a few additional

material properties of Mg that were not used as objectives during the construction of the
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potential. We obtained the adsorption energies of a single Mg atom on different surfaces

and the formation energies of interstitial defects as listed in Table 6.6.

The adsorption energy of a single adatom Eads is given by

Eads = Etot − Esurf − Eatom (6.9)

where Etot is the total energy of the structure with the adatom adsorbed on the surface,

Esurf is the total energy of the surface without the adatom, and Eatom is the total energy of

an isolated atom. On both (0001) and (101̄0) surfaces, we placed a single Mg atom at the

site where the atoms of the next layer would normally sit. The structures were then relaxed

to determine the adsorption energies. Table 6.6 shows that the adsorption energies on two

Mg surfaces are quite well reproduced by the present MEAM potential. The present Mg

potential gives slightly better adsorption energies than the previously published MEAM

potential [42].

The formation energy of an interstitial point defect E int
f is given by

E int
f = Etot[N + 1]− (Etot[N ] + ε) (6.10)

where Etot[N ] is the total energy of a system with N Mg atoms, Etot[N + 1] is the total

energy of a system with N atoms plus one Mg atom inserted at one of the interstitial sites,

and ε is the total energy per Mg atom in its most stable bulk structure. Interstitial atom

formation energies were calculated for Mg at octahedral and tetrahedral sites. Atomic

position and volume relaxation were performed. The results of these calculations are listed
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in Table 6.6, to be compared with the results from the DFT calculations. The present

MEAM potential predicts correct signs for these energies although the magnitudes are

about half of those predicted by DFT. MEAM potentials predict that the octahedral site

will be more stable than the tetrahedral site, while the DFT calculations indicate that both

sites will have nearly the same formation energies.

6.3.3 Thermal Properties

To validate the new potential for molecular dynamics simulations, we calculated

the melting temperatures of pure Mg crystals. We followed a single-phase method as de-

scribed by Kim and Tománek [46], in which the temperature is increased at a constant

rate and the internal energy of the system is monitored. Fig. 6.2 shows the internal en-

ergies of the Mg crystal in the hcp structure as a function of temperature. The plot was

obtained from the ensemble average of five hcp structures containing 448 Mg atoms. The

initial velocity vectors were set randomly according to the Maxwell-Boltzmann velocity

distribution at T = 100 K. The temperature of the system was controlled by using a Nosé-

Hoover thermostat [35, 73]. It is clearly seen from Fig. 6.2 that the internal energy curve

makes an abrupt transition from one linear region to another, marking the melting point.

Using this method, we obtained 920 K as the melting temperature of Mg crystals. This

result is in good agreement with the experimental value of 923 K. Our result represents

a substantial improvement in accuracy from 745 K obtained from a previously published

EAM potential [59] or 780 K from a MEAM potential [42]. This so-called single-phase

method for melting temperature calculation has a tendancy to cause superheating and over-
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estimation of the melting temperature [60]. Although one can use much more elaborate

procedures such as a two-phase method [7, 8, 72] to improve our estimation, obtaining

an accurate melting point is not the main focus of this paper. We can still conclude that

the present MEAM potential is better than the Jelinek potential [42] since the single-phase

method should give an upper limit of the melting point.

6.4 Conclusions

In this section we reviewed semi-empirical potential methods for metals includ-

ing EAM and MEAM. We also reviewed the procedures to construct these potentials. We

developed a multi-objective optimization procedure to construct MEAM potentials with

minimal manual fitting. We successfully applied this procedure to develop a set of MEAM

parameters for the Mg interatomic potential based on first-principles calculations within

DFT. The validity and transferability of the new MEAM potentials were tested rigorously

by calculating the physical properties of the Mg systems in many different atomic arrange-

ments such as bulk, surface, point defect structures, and molecular dynamics simulations.

The new MEAM potential shows a significant improvement over previously published

potentials, especially for the atomic forces and melting temperature calculations.
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Figure 6.2 Energy vs temperature for the Mg potential.

The internal energies of Mg crystal in hcp structure as a function of

temperature. The energies are obtained from the ensemble average of the

MD simulations of five structures containing 448 Mg atoms.
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CHAPTER 7

CONCLUSION

7.1 Summary

We showed that previously published models for GaSb under extreme Sb-rich

growth conditions needed refining due to not being energetically favored compared to the

c(4×4) common among other III-V(001) surfaces. We proposed that Ga atoms should

be present in the first sublayer of the (001) surface. We supported this based on lower

surface energy and in recreating a slight asymmetry present in the experimental STM im-

age with a simulated image from the proposed structural model. The sublayer Ga theory

has been supported recently by comparison to experimental reflectance anisotropy spectra.

The previously proposed crystal structure of Al-Mg-Zn Φ has been supported by our DFT

calculations. The very large and complicated crystal structure makes it nearly impossi-

ble to determine exactly which locations should be occupied by Al or Zn even without

considering point substitutions. We give the information necessary to reconstruct ten ar-

rangements that were lowest in energy. The many possible vacancy assisted diffusion

paths of Fe within Cementite were calculated. A method for optimizing MEAM potentials

was developed and applied to improve an existing Mg MEAM potential. It is immedi-

ately applicable to other elements with HCP crystal ground states. A moderate amount of

recoding would be required to optimize other crystal structures.

74



7.2 Future Direction

The GaSb surface reconstruction question appears to be solved, but no one has

tested the sublayer Ga hypothesis against the double layer (2×10) reconstruction. Our

results of Al-Mg-Zn assumed symmetrically equivalent sites were occupied by the same

element. This was necessary to make to number of configurations tractable to just brute

force calculating them all. Some advanced statistical method could further resolve possi-

ble configurations. The results thus far provide a sufficient amount of configurations to be

used in developing a ternary Al-Mg-Zn (M)EAM potential. The results from diffusion in

Cementite should also be used in development of an Fe-C (M)EAM potential. The method

used in optimizing the Mg MEAM potential would benefit from more sophisticated opti-

mizer, especially in limiting the range on MEAM parameters. It also needs to be adapted

to other crystal structures.
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