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This study examined the severity of wind damage created by Hurricane Katrina in 

southeast Mississippi to determine how the disturbance was influenced by fragmentation 

based on different forest ownership groups (Non-corporate private forest, corporate 

private forest and public forest). MODIS-NDVI percent change products were coupled 

with ownership, rainfall, and Landsat based thematic maps depicting forest age and forest 

types using GIS techniques to examine potential contributing factors to possible damage 

for the study area. Multiple linear and binary logistic regression methods were used to 

explain the relationship between severity of damage and forest age, forest type, 

ownership, and rainfall. Results indicate that the NDVI percent change had a negative 

relationship with forest age diversity and a positive relationship with forest type diversity 

and rainfall. There was no clear and direct consistent relationship between NDVI percent 

change and forest ownership. 
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CHAPTER I 

INTRODUCTION 

Forests are an important natural resource because of their role in influencing 

climate factors, regulating atmospheric composition, providing for carbon sequestration, 

supporting social and economic activities of many rural and urban communities around 

the world, and preserving biodiversity (McNulty, 2002; Butler and Leatherberry 2004). In 

Mississippi, forests account for 65 percent of the total land area (Smith et al. 2009). 

Developing future understanding of the geo-biophysical and ecological processes of these 

forests is important. There are different types of forestland ownership which vary in tract 

sizes, management practices, and uses. Smaller forest tracts tend to be associated with 

non-timber related activities while larger forest parcels are used for timber production 

(MIFI 2006). Increasing population density results in greater fragmentation of forests, 

which in turn, culminates in non-timber related activities and environmental services 

(Zhang et al. 2009). In the Eastern U.S., 75 percent of forestland is under private 

ownership (Smith et al. 2009). The three major forestland owner groups are: Corporate 

Private Forest (CPF), Non-Corporate Private Forest (NCPF) and publicly owned 

forestland. Corporate owners include forest industry, forest management companies, and 

timber investment managements organizations. NCPF consist of individuals, couples, 

estates, trusts, nongovernment organizations, clubs, associations and other unincorporated 

groups. Public forest consist of Federal, State, County and municipal governments (Smith 
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et al. 2009). The predominance of family ownership of forestland in Mississippi has led 

to the division of large ownerships into smaller tracts through subdivision practices (MIFI 

2006). In Mississippi, NCPF forest landowners typically own an average tract of 4 

hectares (MIFI 2006). 

Forestland fragmentation is a physical change associated with creating small 

tracts and can have deep effects on forest functionality (Twedt, et. al 1999). Benitez-

Malvido (1998) found in the Amazonian Biological Dynamics Project, the density of tree 

seedlings declined dramatically from continuous forest to forest fragments. Similarly, the 

number of tree species was significantly higher in contiguous habitat areas than in 

fragmented patches of the same aggregate size. Alteration in stand size, ownership type, 

and management has many effects on wildlife habitat, management costs, and how 

forests are impacted by natural disasters. 

The severity of wind damage may differ between the various forest owners 

because of different tract and stand size and management practices. In many forest types, 

initial clearcut harvesting of mature stands, is commonly followed up by windfall 

(Alexander 1964) and with no suitable forest management plan, the losses along the 

boundaries of adjacent forests can be huge (Alexander 1964). Fragmented forest zones 

tend to be highly vulnerable to wind damage because boundaries are more exposed to 

wind loading (Peltola et al. 1999). Therefore, wind can break into the core of forest 

canopy through increasing boundary density caused by parcelization and fragmentation. 

This has become a critical issue for forest owners, managers, policy makers and 

communities. A number of strategies have been suggested to solve this problem including 

the detection, analysis, modeling and prediction of hurricane disturbance (shear/blow 
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down). In this regard, geographic information system (GIS) techniques with remote 

sensing data products were utilized in this study to examine how different stand size, 

ownership type, and management practices may be related to forest damage from 

Hurricane Katrina.  

Hurricane Katrina made landfall on the 29th of August 2005 and it devastated the 

Louisiana and Mississippi Gulf Coasts (Oswalt and Oswalt 2008). A study by Wang and 

Xu (2009) indicated that Katrina created damage on an estimated 60% of the total 

forested land in the region. A number of local and regional characteristics such as 

climate, soil, and topographic factors have different impacts on forests exposure and 

vulnerability to hurricane disturbance (Mitchell 1995; Everham and Brokaw 1996; Tang 

et al. 1997; Lekes and Dandul 2000). Therefore, the distribution and intensity of the 

hurricane disturbance varies across the landscape. Over time, ownership changes, 

different management practices, and human activities of clearing of forested land for 

fields, roads, and power lines create a series of small, isolated pieces of forest; a process 

that led to high forest fragmentation. 

According to Graumann et al. (2005), the Mississippi Institute for Forest 

Inventory (MIFI) and United States Forest Service Forest Inventory and Analysis (USFS 

FIA), Hurricane Katrina was responsible for over one and half million hectares of forest 

land damage and approximately 39 million m3 of timber damage in SE forest land in 

Mississippi, an estimated monetary loss of $125 billion for the entire storm event. 

Coastal regions are an important source of livelihood for about half of the world’s 

population (Stanturf et al. 2007; Rodgers III et al. 2009). In the Southern United States, 

coastal areas are characterized by frequent hurricane incidence. Hurricane damage arises 



 

4 

in the coastal zone and spreads through vast inland regions where remotely sensed data 

offer exclusive valuable information (Stanturf et al. 2007). There is an increasing need 

for hurricane damage mapping due to huge amount of environmental, social, and 

economical loss in forest resources. The use of remote sensing and GIS has become one 

of the most cost effective approaches and works extremely well for modeling, analyzing, 

and reporting information on natural resources and their changes. Change detection and 

monitoring involve the evaluation of temporal differences in land cover due to 

environmental conditions and human activities between multi-date images (Mas 1999).  

The reception of images from environmental satellites began in the early 1970’s 

with the launch of Landsat 1 and these images have been utilized for more than four 

decades to detect land cover changes. Change detection is one of the most common uses 

for repetitive satellite imagery and involves the comparison of two or more images of the 

same location taken at different points in time (Cohen et al. 1996). There are different 

approaches used to conduct change detection. These techniques have been applied for 

some time in many areas of natural resource and environment studies. Reasons to monitor 

change are to investigate the causes of change, to predict its significance, and to model or 

generate a scenario of change in the future. A large number of the studies in change 

detection have occurred in forestry where efforts have focused on finding methods to 

accurately estimate the amount of forest cover change over large areas. These methods 

could be very useful in assessment and estimating forest damage caused by natural 

disasters such as drought, ice damage, and wind damage.  

Forest damage detection analysis must consider not only the biophysical 

properties of forests, but also the social and economic context in which the forests exist. 
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The fate of forests primarily lies in the hands of the people who own and manage forests. 

Landowners ultimately make the decisions that lead to parcelization, fragmentation, 

thinning, and harvesting. Understanding and predicting the implications of hurricane 

damage related to the socio-economic trends associated with parcelization and related 

management practices are important for the successful management of coastal forest 

ecosystems. By combining GIS and remote sensing data with land ownership, forest age, 

forest type, rainfall, spatial patterns of changes and potential effects of changes on 

susceptibility of forestland to hurricane damage were investigated in this study. Such 

information may provide useful knowledge to understand damage processes in order to 

model susceptibility of forests to damage in future hurricane events. 

1.1 Literature Review 

1.1.1 Forest Damage 

Hurricanes obviously represent a severe climatic incident. Wind damage can 

happen nearly instantaneously in a disastrous storm or more slowly through time as new 

forest edges are exposed due to stem breakage or blow down (Savill 1983; Miller et al. 

1987). Timber species in areas with frequent strong winds may be less vulnerable to 

catastrophic damage because they are adapted to greater environmental extremes. Also 

wind damage may be more severe when storm winds come from a direction other than 

prevailing winds (Ruel 1995; Kenworthy 1998; Zeng et al. 2004). 

1.1.1.1 Site Dependencies  

Trees on sites with soil conditions that limit root growth and depth are more 

susceptible to uprooting. Differences in wind damage along topographical slopes are 
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more complicated and are often confused with tree species (crown and root morphology) 

and soil characteristics. Trees are morphologically different in their crown architecture 

and leaf shapes, distributions, and density, and therefore, they might exhibit different 

damage characteristics. For instance, tree species such as swamp tupelo (Nyssa sylvatica 

var biflora (Walter) Sarg), bald cypress (Taxodium distichum (L.) Rich), longleaf pine 

(Pinus palustris Miller), and live oak (Quercus virginiana Miller) have been shown to be 

highly resistant to hurricane wind damage (Gresham et al. 1991). The main 

morphological characteristics which enhance the resistance to wind damage in swamp 

tupelo and cypress was linked to buttressed boles and the defoliated habit and extensive 

lateral root system of cypress. In addition, longleaf pine is characterized by a large 

taproot and wide lateral root systems which increase anchorage. On the other hand, pond 

pines (Pinus serotina L.), water oaks (Quercus negra L.), and laurel oaks (Quercus 

laurifolia Bartram ex Willdenow) are sensitive to wind throw due to their shallow root 

systems in soils characterized by high water tables (Gresham et al. 1991). In addition to 

the aforementioned factors, the spatial pattern and severity of damage to forests is 

influenced by other factors that include intensity of the wind, topography, soil 

characteristics, height-to-diameter ratios, crown area, total height, canopy structure, 

spacing, recent thinning, and impacts of previous disturbance on generating exposed 

boundaries that make surrounding trees more vulnerable to wind damage (Zeng et al. 

2004; Oswalt and Oswalt 2008). Species composition may also affect the degree of 

damage from hurricanes and represents a stand attribute that can be manipulated by forest 

managers. All these attributes are affected by the interest of the landowners and their 

management.  
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1.1.1.2 Remote Sensing Studies   

Oswalt and Oswalt (2008) addressed four objectives in the study “Relationships 

Between Common Forest Metrics and Realized Impacts of Hurricane Katrina on Forest 

Resources in Mississippi.” The first one was to see if inventory data gave evidence on 

damage zone assessment made using remotely sensed and climate data after Hurricane 

Katrina. The second objective was to see which one of the two tree groups (softwood or 

hardwood) was more susceptible to hurricane damage and does that susceptibility change 

with distance from landfall. The third objective considered measured stand characteristics 

and damage observations to determine the most important factors that influence 

vulnerability to damage on the stand level. Lastly, they wanted to see if the damage type 

(bole, branch, lean or wind throw) differs between tree species.  

Oswalt and Oswalt (2008) used the same model that was utilized by the U.S. 

Forest Service (USFS), Southern Research Station (SRS), Forest Inventory and Analysis 

(FIA) program for damage assessment immediately after the Katrina disaster to compare 

and contrast hurricane-related damage recorded across the Mississippi landscape. They 

utilized the same five damage zones that had been created by USFS and SRS. The 

affected area was divided into five damaged zones. Landfall was at zone one which 

received the highest damage in contrast to zone five that received the least damage. 

Stanturf et al. (2007) also mentioned similar damage zones in their study. The data used 

in the study were the most recently collected by FIA in the study area and widely used 

with maps of the hurricane storm track. The results showed that of 37,444 trees 

measured, 7% suffered wind damage; 53% of the damaged trees were hardwoods and 

47% were softwood. Except from the zone of greatest impact (zone one), the hardwoods 
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experienced more overall wind-related damage than softwoods. There were differences of 

damage between the species with the highest damage level at 31% for Magnolia virginia 

L. (sweetbay), and the lowest was 0.4% for Juniperus virginiana L. (eastern redcedar). 

The results from this study estimated that 87% of forested plots in zone one and 44% of 

forested plots statewide experienced some wind damage. They compared their results 

with the results obtained from USDA-FIA which indicated damage on 90% of the 

timberland area in zone one and 37% of timberland statewide. Exposure of forest stands 

to hurricanes results in loss of high value timber which often creates the need for salvage 

logging leading to costly forest management (Boutet and Weishampel 2003; Shedd 

2006). In addition, broken and uprooted trees in stands can harbor detrimental insects and 

increase risk of wildfires in the surrounding stands. This justifies the investment in 

methods that minimize future damage from wind.  

The objective of the study by Shedd et al. (2006) was to map downed woody 

debris from Hurricane Isabel. Hurricane Isabel hit Petersburg National Battlefield, 

Petersburg, Virginia in September 19, 2003. A map was requested in order to assist in the 

suppression of wildfire threats and to concentrate salvage logging plans in areas with a 

high number of downed trees. To address the goal, Shedd et al. (2006) utilized digital 

aerial photography acquired on March 13, 2004 to map the affected forest stands with 

Visual Learning System’s Feature Analyst. Both, an object-oriented classifier and per-

pixel classification were used for identification of downed woody debris. They compared 

and analyzed which method (per-pixel or object-oriented) was better suited to indicate 

forest debris across the area. The result from per-pixel classification was not satisfactory 

because of the inability to distinguish between areas with dead grass fields from areas of 
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downed woody debris. To increase the classification accuracy, training sets for 

hardwoods and conifers were created. The separate training site shapefiles representing 

the different species of the downed woody debris were used in a hierarchical approach to 

automate feature extraction and resulted in improved accuracy of Feature Analyst 

classification. These classifications were combined using the “combine features” tool. 

The Feature Analyst classification procedure identified areas of downed woody debris 

with 90% overall accuracy. 

McNab et al. (2006) utilized Ikonos satellite images to detect hardwood canopy 

damage by ice storm, and tested if the classification accuracy derived from these images 

depended on spectral band, size of training window, and season of imagery. The study 

was in the Morehead District of the Daniel Boone National Forest in KY. The major land 

cover types in the study area were, non-forest land cover consisting of urban related 

features, and forest land which constituted 80% of the land cover. Agriculture land is not 

common in this mountainous area. Aerial photographs were taken after the ice storm hit 

the area and were used to select an area of 1376 hectares to be representative of three 

different classes: none-to-light damaged forest, moderate-to-heavy damaged forest, and 

non-forested areas. Sixty plots were selected in each class of canopy damage and non-

forested land. Winter and summer Ikonos images were utilized to test four different sizes 

of classification training windows by expanding the central pixel in the sample plots to 

test the effects of the window sizes on classification accuracy. The results showed overall 

accuracy in classification of the three land cover types of land cover ranged from 75% to 

38%. Multiple spectral bands tended to create the highest classification accuracy for 

winter imagery. The highest level of overall accuracy was 74.6 percent, obtained with a 
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combination of three bands (1, 2, and 4) using winter imagery. Single pixels and 3x3 

pixel arrays were the most suitable size training areas. The classification accuracy was 

not significantly affected by the season of imagery; 69% was average accuracy for both 

winter and summer imagery. 

1.1.1.3 Schema Models 

Zeng et al. (2004) studied the influence of clear-cutting on the risk of wind 

damage at forest edges in Central Finland. They integrated a mechanical wind damage 

model and an airflow model with forest database containing information at the tree, stand 

and regional levels. Three different stand categories were examined for different wind 

speed and risk possibility: (Case1) current stand edges with no clear cutting at the edge of 

the forest, (Case 2) stands with new harvesting edges and have reached the acceptable 

minimum diameter and/or age, and (Case3) stand age more than 100 years. The 

mechanical wind damage model HWIND designed by Peltola et al. (1999) was applied to 

calculate critical wind speed. The regional airflow model Winds Atlas and Application 

Program (WAsP; Troen and Petersen 1989) was utilized to modify the uniform-terrain 

wind speed. Site and geographical databases on forest stand parameters were used in the 

models. Data derived from a meteorological station located about 30 km north of the 

study area were used to calculate wind speed and direction. The model also incorporated 

probabilities associated with long term duration in wind speed at the sites. The results 

from Zeng et al. (2004) showed that new clear cutting (Case2) increases high wind 

speeds and stands were more susceptible to wind damage at local level. The risk was 

lower with wind speeds less than 20 m/s as compared to Case1 and Case3, though it 

increased for critical wind speeds greater than 20 m/s. In general, the mean critical wind 
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speed was between 15 and 30 m/s, depending on the species and case study category. 

Stands with heights greater than 10 m located adjacent to canopy gaps are at higher risk 

of wind damage. 

1.1.2 Forest Ownership  

Land ownership is a key factor in many social-economic and environmental 

issues, and forest ownerships are particularly complicated and diversified. According to 

the Forest Resources of the United States, 2007, it is estimated that 304 million hectares 

of forestland are in the United States (Smith et al. 2009). A significant percentage of 

forestland in the United States has been privately owned by individuals since European 

settlement. In 2007, more than half of forestland was owned by private individuals, 

corporations, and other private groups; 171 million hectares or 56 percent of total forest 

land. Non-Corporate Private Forest (NCPF) owners own 115.3 million hectares or 38 

percent of total forestland. NCPF consists of individuals, couples, estates, trusts, 

nongovernmental organizations, clubs, associations, and other unincorporated groups. 

Corporate Private Forest (CPF) owners own 56 million hectares or 18 percent of total 

forestland. The remaining 44 percent, 133 million hectares, of total forestland is publicly 

owned (Smith et al. 2009). In the last 50 years, the proportion of public ownership 

remained relatively constant (Smith et al. 2009). The number of forest owners in the 

United States increased by about 11% between 1993 and 2003 to 10.3 million landowners 

(Butler and Leatherberry 2004). At the same time there have been no significant increases 

in forestland area. In the eastern U.S, more than 75 percent of forestland is owned by 

NCPF. The proportion of these forests near the Atlantic and Gulf coasts are at increasing 

risk from hurricanes. This ownership pattern has affected forest alteration more than 
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natural disturbances which mainly include wind or fire. Increases in population over time 

have resulted in minor losses of forestland to urbanization and associated developments. 

By contrast, parcelization of forests into smaller ownerships has led to social and 

economic limitations on forest management options. Good forest management requires a 

thorough knowledge of the resource base and the factors affecting it. Forest owners and 

their reasons of owning forestland, objectives, expected benefits, harvest experience, and 

management planning, are essential factors of management (Butler and Leatherberry 

2004). To better understand the factors that affect the use and management of forestland, 

forest ownership needs to be taken into consideration. 

According to the Forest Resources of the United States, 2007, it was estimated 

that total forestland area in Mississippi was 7.9 million hectares: - publicly owned forest 

was 931 thousand hectares and total privately owned forestland was 7 million hectares. 

NCPF owners owned 5.1 million hectares of the total forested land. CPF owners owned 

1.9 million hectares of the total forested land (Smith et al. 2009). In Mississippi, the 

majority of forestland is privately owned. The private sector controls about 88% of 

Mississippi forestland. The National Woodland Owner Survey estimated 163,000 forests 

are family owned in Mississippi. It is estimated 83% of these owners hold tracts of less 

than 40 hectares with 53% being less than 8 hectares (Oswalt et al. 2009). Thorne and 

Sundquist (2001) proved that timber harvesting costs per unit area increase as the size of 

landholdings decreases. This fact assumes only 29,000 (17%) of Mississippi’s 163,000 

private family forestland owners are likely to reasonably consider their forestlands to be 

available for timber harvesting and subsequent large-scale regeneration (Oswalt et al. 

2009). 
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Butler and Leatherberry (2004) concluded that owners of smaller parcels are less 

active forest managers than owners of larger tracts regardless of whether they are 

managing their land for timber production or natural protection. Forest owner objectives 

and attitude toward risk must be considered when strategies for disturbance regime are 

integrated in forest management (Stanturf et. al. 2007). In contrast to NCPF, public forest 

and large forestland should have the opportunity to pursue management that includes 

plans to mitigate large-scale natural disaster such as hurricanes. Legal restrictions limit 

the manipulation of public forest over large areas, and therefore limit efforts to surpass 

large infrequent disturbances (Stanturf et. al. 2007).  

 Smaller forest tracts tend to be more fragmented by non-forest development. 

Therefore, such tracts are not easily managed for forest habitat and watershed values. 

Since NCPF land tends to be highly fragmented compared to the CPF and publicly owned 

forests, management practices and harvesting behavior within NCPF land differs from the 

other ownership groups. Classification of different forestland ownership according to 

fragmentation could help understand the effect of different ownership and their different 

management behavior on forestland susceptibility to wind damage. There is a need to 

provide timely information about forest hurricane damage to managers and decision 

makers. Forest damage information derived from classified remotely sensed data may 

provide a more real-world representation of forest change of forested areas after 

disturbance event, which can help managers to develop future management plans. 

1.1.3 Forest Classification 

Forest land managers use classification to segregate land into subdivisions 

(landtypes) based on similar characteristics. In the past, forest land classifications have 
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been manually created. The classification accuracy often depends on the experience of 

the classifier. The overall objective of Wang et al. (2006) was to determine the possibility 

of classifying forest land using a GIS and remotely sensed data. Statistical modeling 

approaches were used to test the regularity of map classification produced by computer 

with the base map that was developed manually by an expert on forest land classification 

for an area of the Mid-Cumberland Plateau focused on Jackson County of northern 

Alabama. The Isoclustering method used to classify land types was compared with 

Smalley’s (1982) classification. The Isocluster algorithm is an iterative process for 

computing the minimum Euclidean distance when assigning each candidate cell to a 

cluster. Smalley (1982) classified and evaluated forest sites for the management of 

commercially valuable tree species. His evaluation was based on ecology, soils, site 

features, and yields and often extrapolated from adjacent regions. Five variables were 

utilized in the Wang et al. (2006) classification: elevation, slope, aspect, soil texture, and 

soil types using the Spatial Analyst feature in ArcGIS. The results from Wang et al. 

(2006) illustrated the landscape fragmented based on these classifications, and the 

boundaries of land type polygons were difficult to define compared to Smalley’s (1982) 

work. This fragmentation was caused by the Isoclustering procedure which divided the 

land into different classes without supervision. Some agreement between Isoclustering 

classes and Smalley’s land type were found in the study area, but the overall agreement 

was low based on the visual assessment. Wang et al., (2006) suggested Isoclustering can 

be applied to large areas to separate land subjectively and turn out classifications quickly.  

Whereas previous studies (Gresham et al. 1991, Savill 1983; Miller et al. 1987) 

have considered the effects of tree morphological characteristics including tree height, 
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crown, leaf shape, and density on resistance to wind damage, none have assessed the 

relationship between forest age diversity, forest type diversity and forest ownership types 

with forest damage. Stanturf et al. (2007) assessed the impacts of Hurricane Katrina on 

coastal forests in the Gulf of Mexico using forest inventory data. Many studies conducted 

in Mississippi generally used forest inventory data at stand level (for example Oswalt and 

Oswalt, 2008) to assess forest vulnerability to wind catastrophes. Nonetheless, in this 

research remotely sensed data at landscape level was used which is considered more 

economical and easy to analyze after hurricane events. Variations according to forest 

ownership types were not explored in previous studies. This study has undertaken 

possible approaches that have not been examined for hurricane impacts in the SE before. 

The variables forest age diversity, forest type diversity and forest ownership were 

considered in order to improve the overall understanding of impacts of hurricanes in the 

SE. 

1.2 Objectives  

The primary objective in this study was to examine how the disturbance by 

Hurricane Katrina was influenced by forest fragmentation based on different forest 

ownership groups (NCPF, CPF, public forest). In the context of Mississippi, there are 

various forest ownership types which are connected over large regions. However, forest 

fragmentation is ubiquitous resulting in increased amount of forest edges. Higher 

incidence of forest edges leads to greater risk of wind damage particularly in areas that 

have been clear cut or intensively thinned. Since the structure and functioning of forests 

are greatly affected by severe winds, hurricane damage entails significant economic 

losses for landowners. Forest management practices related to tree species, tree height, 
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tree diameter, crown area, tree age, stand density, and edge-to-area ratio are controlled by 

landowner’s goals (Bieling 2004). These have important effects on susceptibility of 

forests to wind damage. The secondary objective was to examine the influence of forest 

age diversity, forest type diversity and rainfall on forest change due to wind damage. 

Consequently, we must understand the responses of forest to wind damage by the 

different forest ownership groups to provide information for better management 

practices. This study used moderate resolution imaging spectroradiometer (MODIS) 

normalized difference vegetation index (NDVI) change products to indicate the intensity 

of damage by forest fragmentation as well as different forest ownership types. MODIS 

products were used as an integral component of a Research Opportunities for Space and 

Earth Science (ROSES) project funded by NASA that focused on the impact of post-

hurricane Katrina on forest management practices1. 

1.3 Hypotheses 

The hypothetical proposition was that the MODIS change products represented 

likely canopy alteration and therefore a potential surrogate to damage. MIFI data were 

used to characterize damage with respect to forest ownership types. This study also used 

both high resolution imagery and MODIS products to categorize susceptibility of 

forestland owned by NCPF, CPF, and public forest to Hurricane Katrina damage within 

the study area. Various processing techniques of both high resolution and MODIS 

imagery provided a means to investigate forest susceptibility to wind damage. This 

                                                 

1Radiance Technology. 2012. ROSES 2008 Project: Improving post-Hurricane Katrina forest management 
with MODIS time series products. Final report to NASA 67p.) 
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information was utilized to map forestland showing susceptibility to wind damage in 

contiguous patches and assumed management. The hypotheses examined were: 

 Forestland owned by NCPF is more susceptible to wind damage (assumed 

represented by NDVI percent change) than CPF and public forest because they 

are highly fragmented and have different management practices.  

 Forest age diversity is negatively associated with NDVI percent change.  

 There is a positive relationship between forest type diversity and NDVI percent 

change. 

 Higher rainfall amount is positively associated with NDVI percent change. 
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CHAPTER II 

METHODS 

2.1 Study Area 

The study covered 1.5 million hectares, focusing on the southeast part of 

Mississippi namely Forrest, George, Greene, Hancock, Harrison, Jackson, Lamar, Pearl 

River, Perry, and Stone Counties (Figure 2.1). These counties were selected because of 

severe damage caused by Hurricane Katrina. The area of forestland was approximately 

1.2 million hectares or 75.6 percent of the study area, comprised of 67.5 percent pine 

forest, 14.0 percent hardwood, 8.2 percent mixed pine-hardwood and 10.0 percent 

regeneration (MIFI 2006). Regeneration accounted for about 119 thousand hectares.  
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Figure 2.1 The ten-county study area in southeast Mississippi, USA. 

Hurricane Katrina track were acquired from the Mississippi Automated Resource 
Information System (MARIS); Boundary and river locations were derived from the 
United States Census Bureau (USCB) 

2.2 Data  

Data in this study were obtained from two main sources: “ROSES 2008 Project: 

Improving Post-Hurricane Katrina Forest Management with MODIS Time Series 
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Products,”2 and MIFI. Temporally processed MOD13 NDVI products were accessed 

from Radiance Technologies Incorporated (RTI) in collaboration with Forest and 

Wildlife Research Center (FWRC), Mississippi State University (MSU).  

2.2.1 MODIS-NDVI products 

The MODIS sensor generates satellite imagery characterized by 36 spectral bands 

ranging from 0.405 to 14.385 nm: - bands 1 and 2 have 250m spatial resolution while 

bands 3 to 7 have 500m spatial resolution. The main function of these seven spectral 

bands is to facilitate remote sensing of land surfaces and land cover mapping (Friedl et al. 

2002).  

MOD13 NDVI products were used by the ROSES project to produce maps 

illustrating NDVI percent change in forest greenness between pre-hurricane and post-

hurricane time phases. The pre-hurricane Katrina period represented the baseline that was 

defined from August of 2003 and 2004. A merging process was performed to select 

maximum NDVI values to create the baseline product. The post-hurricane period 

considered August of 2005 and therefore, characterized the extent of disturbance 

attributed to Hurricane Katrina on Mississippi forests. Whereas the ROSES project was 

conducted on the MIFI Southeast Inventory District (SID), the current study only covered 

10 counties in the MIFI-SID. 

The NDVI products were used to develop Cumulative Integral (CI) NDVI 

products. The “NDVI CI product is an integrated “accumulation” of the composite 16-

                                                 

2 Radiance Technology. 2012. ROSES 2008 Project: Improving post-Hurricane Katrina forest management 
with MODIS time series products. Final report to NASA 67p. 
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day MODIS NDVI measurements from the beginning through a user-specified end date 

of the calendar year” 3. Each year was characterized by 22 cumulative integral intervals 

based on 16-day composites. This study considered NDVI for the pre- and post-hurricane 

Katrina periods. NDVI is the normalized ratio between the near-infrared and red regions 

of the electromagnetic spectrum. NDVI is defined as:  

 NDVI = (NIR - Red) / (NIR + Red)  (2.1) 

where:  

NIR represents the near infrared wavelength reflectance value and Red 

represents the red wavelength reflectance value. 

To observe the Hurricane Katrina damage just after landfall, an NDVI Window 

was extracted from the CI dataset. The NDVI Window 15 period of interest was from 

August 29 to September 13 and coincided with the occurrence of Hurricane Katrina 

landfall. The formula for a 16 day NDVI Window extraction is:  

 NDVI Window (Year, Interval) = CI(Year, Interval) – CI(Year, Interval–1) (2.2) 

where:  

CI (Year, Interval) = the cumulative integral value for the indicated year 

through the indicated cumulative integral interval.  

NDVI percent change products were produced by RTI and described as follows: 

Baseline = Maximum of the NDVI Window 15 values from 2003-2004  

Post = NDVI Window 15 values from 2005  

                                                 

3 Radiance Technology. 2012. ROSES 2008 Project: Improving post-Hurricane Katrina forest management 
with MODIS time series products. Final report to NASA 67p. 
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Then NDVI percent change is defined as:  

 NDVI Percent Change = (Post 2005– Baseline 2003-2004) / Baseline 2003-2004) * 100  (2.3) 

The NDVI percent change produced by Equation 2.3 had values ranging from 

negative 100 to positive 100. Several masks were applied to exclude recently harvested 

forest areas before the Katrina event as well as non-forest areas. Non-forest areas were 

masked using the 2006 MIFI forest type map, forestland was assigned a value of one and 

non-forest area to zero thereby helping to improve precision of products because some 

areas which experienced changes in forest cover not attributed to Hurricane Katrina (such 

as harvested areas after the baseline) were not considered in the analysis. The continuous, 

masked NDVI percent change image was recoded in ERDAS Imagine into a six class 

thematic forest disturbance map. The six MODIS NDVI change classes which were 

highlighted in the ROSES Project were applied to assess forest disturbance relative to 

baseline NDVI values. Class 1 was defined as (<=0%), class 2 (>0 to 5%), class 3 (>5 to 

10%), class 4 (>10 to 15%), class 5 (>15 to 20%) and class 6 (>20 %). These classes 

indicate the range of percent decreases in the NDVI between the pre- and post-hurricane 

Katrina periods. Thus canopy relative vigor decreased from Class 1 to Class 6. 

2.2.2 Landsat Forest Age and Type Thematic Maps 

Two thematic maps were obtained from MIFI depicting forest age and forest 

types. These thematic maps were created using Landsat leaf-on and leaf-off images 

(Collins, et al. 2005). Leaf-on classification resulted in three classes: water, forest and 

non-forest. The resultant map was used to mask leaf-off image of the same period to 

discriminate pine, hardwood and mixed pine-hardwood forest types. Forest age was 
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generated from several leaf-on images taken at 5-year intervals and each year’s set was 

independently classified by a post-classification procedure to forest and non-forest. Post-

classification is sometimes called map-to-map comparison and it entails comparing 

separately classified images taken from different times (Serra, et al. 2003). A number of 

thematic maps reflecting forest and non-forest areas were used to label each forested cell 

with respect to the most current layer. By comparing consecutive layers, forest cells that 

were observed as a non-forest can labelled as forest regeneration (Collins, et al. 2005). In 

the event that area was continuously forested in all data sets, it was considered older than 

33 years.  

2.2.3 Data Sources 

The study database includes precipitation, forest ownership, distance from 

Hurricane Katrina’s track, and distance from gulf coast. The monthly cumulative 

precipitation of August 2005 was derived from the National Weather Service (NWS). 

The data used is for monthly rainfall precipitation is estimated at 24-hour Hydrologic 

Rainfall Analysis Project (HRAP) grid cell. The ownership map was downloaded from 

United States Department of Agriculture (USDA) Forest Service (USDA). This study 

employed Hurricane Katrina storm path obtained from Mississippi Automated Resource 

Information System (MARIS) and the gulf coastline was derived from the southeast 

border of county maps obtained from the United States Census Bureau (USCB). 

2.2.4 Data Preparation 

With any GIS information taken from various sources, it is always recommended 

to set all information to the same uniform standard. This includes changing projection 
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and datum specifications to match across all information being used. Standardizing the 

different map layers facilitates a precise and efficient analysis.  

2.2.4.1 Projection 

MODIS NDVI disturbance products were received in the Lambert Azimuthal 

Equal-area map projection. Using ERDAS and ArcGIS, the disturbance thematic maps 

were re-projected to Mississippi Transverse Mercator (MSTM) projection based on the, 

North American Datum 1983 (NAD_1983). Landsat forest type thematic maps of 2003-

2004 were used as the baseline and a 2nd degree polynomial was applied with a root mean 

square error of less than one cell for all maps with nearest neighbor as the re-sampling 

method.  

2.2.4.2 Delineation of Areas of Interest  

To delineate the study area boundary, a state level shapefile including the 

boundaries for the 10 counties of interest was downloaded from USCB. ArcGIS was 

employed to create the study area boundary and the thematic maps were extracted from 

this boundary. This process was applied to the forest type, forest age and NDVI percent 

change datasets.  

2.2.4.3 Data Resampling 

MODIS and Landsat products have different spatial resolution. MODIS had a 250 

meter (m) spatial resolution while Landsat had a 30 m spatial resolution. These 

dimensions were problematic since they produced misalignment of cells. It was therefore 

necessary to change cell dimensions of MODIS to 240 m spatial resolution. In ArcGIS, 

the resample function under Data Management Tool was employed to alter the cell size 
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of MODIS product, using a nearest neighbor resampling routine, the output image 

composed of 240 m x 240 m cell, with a root mean square error of less than half cell. To 

fit the Landsat 30 m cells within the 240m MODIS cell without any misalignment or 

overlapping, a shift function in ArcGIS was used to move the MODIS NDVI percent 

change image 15 m west and 15 m south. A total of 64 (8 x 8) Landsat 30 m cells fit in 

one 240 m x 240 m MODIS cell. Figures 2.2 (a) and (b) indicate how the 30 m cells were 

re-positioned within each 240 m cell. 

 

Figure 2.2 Adjusting the misalignment/overlapping between the 64 Landsat 30 m cells 
and the 240m MODIS cell. 

(a) Misalignment between 240 m cell and 30 m cells, (b) 64 30 m cells completely within 
the 240 m cell. Colors represent different forest types. 

2.2.4.4 Map Masking 

Since forest age and forest type data sets were based on Landsat 30 m x 30 m 

spatial resolution and NDVI present change data were based on MODIS 240 m x 240 m 
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spatial resolution, the discrepancy in cell resolution between MODIS and Landsat 

products necessitated the use of a mask to ensure that the different layers were matched. 

A mask was created from MODIS data to mask forest age and forest type Landsat based 

thematic maps, a value of zero was assigned for non-forest areas and a value of one was 

ascribed to forest areas. As a result, the final products only included forest age and forest 

types that were aligned with the appropriate NDVI change.  

2.2.4.5 Map Re-coding 

The thematic maps obtained from RTI and MIFI were re-coded. The NDVI 

percent change map originally had six classes, the forest age thematic map had thirty five 

classes, and forest type thematic map initially had six forest types. The NDVI percent 

change map was re-coded to three classes named positive change, moderate negative 

change and high negative change. The original classes 1 and 2 were re-coded to positive 

change class, classes 3 and 4 to moderate negative change while classes 5 and 6 were 

combined to high negative percent change class. The MIFI age dataset was re-coded as 

follows: forest existing before 1972 to class 10, forest existing from 1972 through 1983 

to class 20, forest existing from 1984 through 1994 to class 30, forest existing from 1995 

through 2005 to class 40, areas with forest regeneration were assigned to class 50 and 

non-forest, water and agriculture were combined to class 60. The MIFI forest type and 

regeneration map initially had six forest type classes: pine, hardwood, mixed pine-

hardwood, pine regeneration, hardwood regeneration and mixed hardwood-pine 

regeneration. The pine forests class was re-coded to class 100, hardwood to class 200, 

mixed pine-hardwoods to class 300 and non-forest area to class 500. Pine, hardwood and 

mixed regeneration classes were merged into class 400 because they account for a 
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relatively small percent of the whole study area (10%) and also they have similar 

conditions and structural characteristics. 

The recoded thematic maps forest age, forest type, and NDVI percent change 

were converted into text files using shell, awk and python programming languages to 

facilitate statistical analysis. Areas outside the study site were designated by a value of 

zero and ultimately discarded. The NDVI percent change text file was used together with 

forest age text file to produce a matrix showing the frequency of forest age classes 

associated with NDVI percent change in each 240 m cell. Similarly, NDVI percent 

change text file was used in conjunction with forest type text file resulting in another 

matrix indicating frequency of different forest type classes related to NDVI percent 

change.  

In the above step, the datasets were processed at the individual cell level to 

determine the frequencies of different forest age and forest type classes within each cell 

of MODIS-NDVI percent change (Figure 2.3).  
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Figure 2.3 Cell level dataset showing each MODIS-NDVI percent change cell 
including 64 values of 30 m. 

Landsat derived products with the individual dots representing the center of 30 m cells. 
Red = High negative NDVI % change, Yellow = Moderate negative NDVI % change, 
Green = positive NDVI % change. 

2.2.4.6 Distance Maps  

A priori, the impact of Hurricane Katrina on forest was expected to decline with 

the increase of distance from the hurricane track. Also, increasing distance from the gulf 

coast would result in a dampened effect of damage severity. Oswalt and Oswalt (2008) 

found that as distance from landfall increased wind damage decreased. In ArcGIS, the 

distance function found under Spatial Analyst Tools was used to create two maps 

indicating distance from Hurricane Katrina track and distance from Mississippi Gulf 

Coast.  

Distance variables were calculated using the Hurricane Katrina path obtained 

from MARIS and the Mississippi Gulf Coast shapefiles (USCB). The resulting maps with 

240m cell size were used to make a distance variable showing the combined effect of 

distance from hurricane track and coastline. The distance maps from the Hurricane 



 

29 

Katrina path and the Mississippi Gulf coast were employed in a simple additive 

weighting model producing a map demonstrating distance from Katrina track and Gulf 

coast. The model was calculated in the ArcGIS raster calculator as follows: 

 model_weight equation = 0.6 * (1 - ([dist_to_track] / 136043)) + 0.4 * (1 - ([dist_to_coast] / 143529)) (2.3) 

where: 136043 represent hurricane track length in meters within the study area.  

143529 represent coast line length in meters within the study area 

This equation assigned weighted values to variables based on a number of ideals 

taken from knowledge of environmental and geographical behaviors. It is known that 

distance from storm track has more effect on damage severity than distance from the 

coast, therefore a higher weight is given to distance from track. The primary objective of 

creating the distance map was to partition the study into homogeneous zones based on the 

distance from storm track and coastline. The distance grid was classified into five 

different distance zones for more robust estimation of the regression modeling within 

each zone (Figure 2.4). 



 

30 

 

Figure 2.4 Weighted distance zone map for the study area. 

The map created based on Hurricane Katrina track and distance from Mississippi Gulf 
Coast. Hurricane track was acquired from the Mississippi Automated Resource 
Information System (MARIS); boundary and river locations were acquired from the 
United States Census Bureau (USCB).  

2.2.4.7 NDVI Percent Change 

Areas with positive NDVI percent change values represent an increase in overall 

vegetation greenness. In forests with significant overstory impacts from the hurricane, it 

is likely evergreen vegetation in middle and understory may have been exposed, 
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therefore, greater NDVI values are obtained. Damaged forest was assumed to be 

represented by negative NDVI percent change values hence positive values were 

removed from dataset. Figure 2.5 illustrates the forest hurricane disturbance product, 

based on percent change of the NDVI values between 2005 and 2003-2004 baseline. The 

green color represents areas that had no NDVI percent change or had positive change in 

forest canopy greenness. The yellow color represents a moderate NDVI percent change 

of forest canopy greenness and the red color represents very high NDVI percent change 

in forest canopy greenness. The yellow and red color shows only areas that had negative 

change values that were employed and which appear to be more frequent in areas of 

coastal, river estuary and closer to storm path.  
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Figure 2.5 Normalized difference vegetation index (NDVI) percent change map. 

Hurricane track were acquired from the Mississippi Automated Resource Information 
System; Boundary and river locations was acquired from the United States Census 
Bureau; Change data derived from Radiance Technologies Institute.  

The NDVI change classes were recoded to a binary variable of 0/1 where 0 = low 

NDVI percent changes (assumed no damage) and 1 = high NDVI percent changes. Two 

classification techniques were used: Natural breaks (NB) versus thresholds percent 

change classes originally derived from RTI classes. The NB was derived from NDVI 

percent change histogram and the three different thresholds used in the binomial logistic 
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regression models. The three percent change thresholds of 10, 15 and 20 were examined 

and created from RTI. These thresholds were chosen in reference to the ROSES Project 

classification, which was defined at 5% intervals. In the histogram (Figure 2.6) the NDVI 

percent change data is left skewed and is concentrated in the lower 20%. This means 

threshold values equal to and less than 10 were given a value of zero (low NDVI percent 

change) and values greater than 10 were given value of one (high NDVI percent change). 

The same can be said for 15 and 20 thresholds. For the NB classification, values equal to 

and less than 8.23 were given a value of zero (low NDVI percent change) and values 

greater than 8.23 were given a value of one (high NDVI percent change). 

In order to assess the impact of Hurricane Katrina on existing forest cover, NDVI 

percent change was used. However the NDVI percent change variable was expressed as 

continuous and categorical variables. The mean NDVI percent change was 8.8 with a 

standard deviation of 5.5. Nevertheless, the distribution of this variable was skewed to the 

right with a few extreme values as depicted in Figure 2.6. For instance the minimum and 

maximum values were 1.1 and 77 respectively. The six MODIS NDVI change classes 

which were highlighted in the ROSES Project were applied to assess forest disturbance 

relative to baseline NDVI values. Class 1 was defined as (<=0%), class 2 (>0 to 5%), 

class 3 (>5 to 10%), class 4 (>10 to 15%), class 5 (>15 to 20%) and class 6 (>20 %). 

These classes indicate the range of percent decreases in the NDVI between the pre- and 

post-hurricane Katrina periods. Thus canopy relative vigor decreased from Class 1 to 

Class 6. 
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Figure 2.6 Normalized difference vegetation index (NDVI) percent change 
distribution within southeast Mississippi. 

Change data derived from Radiance Technologies Institute. 

About 62% of the forest land experienced moderate assumed damage as reflected 

by the NDVI percent change. However, about 11% of the area was categorized as high 

negative NDVI percent change with 15644 cells within this severity range. On the other 

hand, approximately 27% of the forest land was characterized by positive NDVI percent 

change (Figure 2.7). 
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Figure 2.7 Proportions of normalized difference vegetation index (NDVI) change 
classes in the study area. 

Change data derived from Radiance Technologies Institute4. 

2.2.4.8 Forest Age 

Initially, the forest age thematic map obtained from MIFI showed age on an 

annual basis from 1972 to 2006. An age variable was created indicating 10 year intervals. 

This was done from the viewpoint of different forest products that can be represented by 

age (tree size). For example pine stands less than 11 years old generally correspond to 

pre-commercial trees, stands between 11 and 21 years old correspond to pole timber, 

stands between 22 and 33 years old correspond to chip and saw timber, and stands greater 

than 33 years old correspond to very large diameter timber. The forest age thematic map 

is shown in Figure 2.8. 

                                                 

4 Radiance Technology. 2012. ROSES 2008 Project: Improving post-Hurricane Katrina forest management 
with MODIS time series products. Final report to NASA 67p. 
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Figure 2.8 Forest age map showing five age classes. 

Hurricane Katrina track was acquired from the Mississippi Automated Resource 
Information System; boundary and river locations were acquired from the United States 
Census Bureau; forest age was derived from Mississippi Institute of Forest Inventory. 

Figure 2.9 indicates the distribution of age of forest stands in the study area. It can 

be observed that the highest proportion of forest land area was in the form of mature 

stands greater than 33 years old (28.8%) whereas forests aged between 22 to 33 years old 

represented 10.0% of the total forest area. However, younger forests between 11 to 21 
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years old were also prevalent representing 17%. Forest stands less than 11 years old 

accounted for similar proportion (17%). The area covered by regenerating forests was 

13% and the remaining 14% was classified as non-forest.  

 

Figure 2.9 Forest age distribution. 

Forest age data was derived from Mississippi Institute of Forest Inventory. 

2.2.4.9 Forest Type 

Forest type thematic map (Figure 2.10) was received from MIFI initially with six 

forest type classes. For the purpose of this study these classes were recoded into four: - 

pine, hardwood, mixed pine-hardwood and regeneration. Figure 2.10 illustrates the 

distribution of forest types. 
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Figure 2.10 Forest type map. 

Hurricane track was acquired from the Mississippi Automated Resource Information 
System; Boundary and river locations were acquired from the United States Census 
Bureau; Forest type was derived from Mississippi Institute of Forest Inventory. 

Forest types were classified into five classes including pine, hardwood, mixed 

pine-hardwood, regeneration and non-forest areas. Forestland was dominated by pine, 

which occupied 55.8%, of the study area, the hardwood covers 10.5% and regeneration 
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12.7%. Mixed forests accounted for a lesser percentage (7.0%) whereas the non-forest 

class occupied the remaining 14.0% (Figure 2.11). 

 

Figure 2.11 Forest type distribution.  

Forest type data was derived from Mississippi Institute of Forest Inventory. 

2.2.4.10 Shannon-Weaver index 

The variable forest age was initially classified into six age classes indicating the 

relative proportions of each class within each 240 m x 240 m MODIS cell. Similarly, 

forest types were initially defined in such a way that they were five forest type classes 

showing the relative percentage for each category within each 240 m x 240 m MODIS 

cell. The six forest age and the five forest type classes are in categorical form. To use 

these variables in linear regression, they would need to be in a continuous form. In order 

to produce a continuous variable, it was therefore expedient to compute Shannon-Weaver 

indices for forest age, and forest type variables. Essentially, the Shannon-Weaver 
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diversity index has been used to document tree species diversity and thus species richness 

(Ricklefs et al. 1999): 

 − ∑ (
𝑛𝑖

𝑁
) ∗ 𝐿𝑁(

𝑛𝑖

𝑁
)𝑠

𝑖=1  (2.4) 

where: 

𝑛𝑖 is the number of individuals within the block, i.e. forest age, forest type, LN is 

the natural logarithm and N is the total number of observations within the block.  

2.2.4.11 Forest Ownership 

A forest ownership thematic map was obtained from Forest Service Research 

Data Archive (Hewes, 2014) as raster data, including three types of public ownership: 

federal, state, and local, as well as three types of private ownership: family, corporate 

private, and other private ownership which includes conservation and natural resource 

organizations, unincorporated partnerships and associations, and Native American tribal 

lands. For the objective of this study federal, state, and local forest ownership classes 

were re-coded into public forest, family and other private into non-corporate private 

forest (NCPF) and corporate private forest (CPF) (Figure 2.12). 
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Figure 2.12 Distribution of forest ownership in study area Southeast Mississippi, USA. 

Dark green = public forest, Green = non-corporate private forest (NCPF), Yellow = 
corporate private forest (CPF). Hurricane track was acquired from the Mississippi 
Automated Resource Information System; boundary and river locations were acquired 
from the United States Census Bureau; forest ownership was derived from Forest Service 
Research Data Archive. 

About 22% of the forest land is under the ownership of public entities, 46% of the 

forestland in the study area was owned by non-corporate private, and approximately 32% 

of the forestland was under private corporate organizations (Figure 2.13). 
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Figure 2.13 Proportion of forest ownership by type. 

NCPF = non-corporate private forest, CPF = corporate private forest, and public forest. 
Forest ownership was derived from Forest Service Research Data Archive. 

2.2.4.12 Rainfall 

A dataset of rainfall was obtained from the National Weather Service as a point 

dataset. A raster rainfall map of 240 m x 240 m cell size was created using Inverse 

Distance Weighted (IDW) interpolation to estimate the rainfall values throughout the 

study area at unknown locations using the sampled values and distance to nearby known 

points (Bolstad 2008) (Figure 2.14). The weight allocated to each sampled point is an 

inverse extent of the separation to the unknown location that is being interpolated. This 

implies, the more faraway the point, the less weight the point has in evaluating the value 

at an un-sampled location. 
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Figure 2.14 Inverse Distance Weighted interpolation map of rainfall within the study 
area in Southeast Mississippi 

Hurricane track was acquired from the Mississippi Automated Resource Information 
System; boundary and river locations were acquired from the United States Census 
Bureau; Rainfall was derived from National Weather Service 

2.3 Statistical Analysis  

Two different statistic techniques (multiple and binary logistic regression) were 

used to examine the relationship between forest age diversity, forest type diversity, forest 

ownership, and rainfall as independent variables and NDVI percent change as the 
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dependent variable. Initial multiple regression and binary logistic regression models were 

carried out on the entire study area. Additional multiple and binary logistic regressions 

(final models) were executed with the elimination of areas with high NDVI percent 

change within Pascagoula River basin because the high NDVI percent change was 

assumed mainly caused by defoliation. This area was believed to have high NDVI 

percent change not in the form of mechanical wind damage to the bole (shear and 

blowdown) but may be linked to defoliation. The Gulf Coast of Louisiana, Mississippi, 

and Alabama experienced wind, storm surge, and flooding damage during Hurricane 

Katrina and the surge penetrated at least 10 km inland in many portions of coastal 

Mississippi and up to 20 km inland along bays and rivers (Fritz et al. 2007, Stanturf et. al. 

2007). The lower Pascagoula River Basin is dominated by hardwood species. Compared 

to upland forests, forests adjacent to streams and rivers showed a higher level of damage 

from hurricane (Wang and Xu 2009).  

2.3.1 Multiple Regression  

Multiple linear regression analysis was utilized to measure the amount of 

variation in the data and assess the relative importance of the independent variables (Ott 

and Longnecker, 2001). Previous studies examining the effects of several predictor 

variables on NDVI change such as (Oswalt and Oswalt 2008, and Doyle et al. 1995) have 

also used multiple linear regression. R2 value was used to determine the strength of the 

relationship or the amount of variance described by the model and is confined to 0 < R2 > 

1. Higher values of R2 are desired and used to determine which linear model best fit the 

data (Xi et al. 2008). 
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Multiple linear regression was used to predict the potential severity of damage 

(NDVI percent change, Yk). A multiple linear regression model was used to test the effect 

of forest age, forest types, and rainfall on NDVI percent change. The model for multiple 

linear regression, given 𝑛 independent variables, is: 

 𝑌𝑘 = 𝛽0 + 𝛽1Xi1 + 𝛽2Xi2 + 𝛽3Xi3 + 𝛽4Xi4 + 𝑒𝑘 (2.5) 

for 𝑖 = 1,2, . . . , 𝑛. 

where:  

𝑌𝑘 is the NDVI percent change (a proxy for possible wind damage) for 

observation k, a dependent variable to predict, 

𝛽0 is the intercept, and 

𝛽𝑖 is coefficient of the ith variable Xi.  

ek is a random variable such that, eij~i. i. d. N(0, σ2),  iidn (0,σ2) 

The significance of parameters was tested at 5% significance level (α = 0.05). 

The independent variables (Xin) forest age diversity and forest type diversity 

indices were developed from 30 m Landsat-derived dataset. A rainfall value was 

interpolated by IDW technique. Table 2.1 provides a description of variables in the 

multiple linear regression model. 

Table 2.1 Description of independent variables in the multiple linear regression 

Variable name Description 
Forest age diversity index Shannon-Weaver values from 0.08 to 1.76 
Forest type diversity index Shannon-Weaver values from 0.08 to 1.60 
Rainfall Interpolated amount of rainfall 0.4 to 4.8  
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2.3.2 Binary logistic regression 

In this technique, the damage category/level was predicted based on the 

independent variables in the prediction model (Ott and Longnecker 2001). Oswalt and 

Oswalt (2008) and Wang and Xu (2009) reported the effects of several predictor 

variables on NDVI change and used binary logistic regression. The odds ratios 

(exponential values) were used to assess the influence of each predictor on the dependent 

variable. The logistic type model is preferred over the more conservative linear or non-

linear models because it is designed to predict a binary response like presence or absence 

of NDVI change (Gumpertz and Pye 2000). A more technical advantage of logistic 

regression over ordinary regression has to do with the methods of estimation. Logistic 

regression incorporates information about the variance of binary/proportion data into the 

estimating equations to provide more efficient estimates than ordinary regression would. 

Initially, NDVI percent change was expressed as a continuous variable. However, 

it was necessary to transform it into a binary variable for logistic regression. NDVI 

percent change was plotted as a frequency histogram which indicated some NBs in the 

distribution (Figure 2.6). The value of the natural break was 8.23 which was used to 

categorize the continuous distribution into a 0 and 1. In this case, zero represented values 

less than or equal to 8.23 whereas 1 denoted values greater than 8.23. Furthermore, three 

additional logistic models with threshold values namely 10, 15 and 20 were used to create 

binary NDVI percent change. The 10, 15 and 20 percent change thresholds were 

examined and created depending on the classes originally obtained from RTI. This means 

threshold values equal to and less than 10 were given a value of zero (assumed no 
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damage) and values greater than 10 were given value of one (high NDVI percent 

change).  

An initial logistic regression model was developed for the entire study area. 

Additional logistic regression (final model) was executed with the elimination of areas 

with high NDVI percent change in lower Pascagoula River area because high NDVI 

change was assumed mainly caused by defoliation. This area was believed to have high 

NDVI percent change not in the form of mechanical wind damage to the bole (shear and 

blowdown) but may be linked to defoliation. 

The binary logistic regression technique was applied to determine the probability 

of forest areas having low or no damage (category 0) or high damage (category 1). Binary 

logistic regression is used to predict the probabilities of the different possible outcomes 

of a categorically distributed dependent variable, given a set of independent variables, 

which may be real, binary, categorical, or integer. The model is of the form: 

 
 










 nn XX

p
pY ..

1
log 110

 (2.6) 

where: 

The dependent variable Y is the probability of low verses high damage, 

βn presents the log odds ratios, 

Xn are the independent variables forest age diversity, forest type diversity, 

rainfall, and forest ownership, and 

ε is the error term. 
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Table 2.2 provides a detailed description of variables in the binary logistic model. 

Table 2.2 Description of independent variables in the binary logistic regression 

Variable name Description 
Forest age diversity index Shannon-Weaver values from 0.08 to 1.76 
Forest type diversity index Shannon-Weaver values from 0.08 to 1.60 
Rainfall Interpolated amount of rainfall 0.4 to 4.8 
Forest ownership 1 if non-corporate private forest 0 otherwise 

1 if corporate private forest 0 otherwise  
(public ownership is reference category)  

 

The independent variables forest age diversity and forest type diversity were 

developed from 30 m Landsat-derived dataset. Rainfall was interpolated by IDW 

technique. Forest ownership was the aforementioned three ownership classes. 

The study hypotheses examined in this analysis were as follows: It is expected 

that as the forest age diversity increases, NDVI percent change decreases. As forest type 

diversity and rainfall increases, NDVI percent change increases. Non-corporate private 

forest ownership class is likely to be more vulnerable to wind damage than corporate and 

publicly owned forests. The significance of parameters was determined at 5% 

significance level (𝛼 = 0.05).  
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CHAPTER III 

RESULTS AND DISCUSSION  

This chapter is organized into several sub-sections. First, multiple regression 

model outcomes are examined which indicate the impact of forest age diversity and forest 

type diversity on NDVI percent change. Forest age and forest type were transformed into 

Shannon-Weaver diversity indexes which are essentially continuous in nature. Second, 

binary logistic indices were used to examine the association between NDVI percent 

change and forest age diversity as well as NDVI percent change and forest type diversity.  

3.1 Multiple regression results 

An initial multiple regression model was developed for the entire study area. 

Additional multiple regression (final model) was executed after elimination of areas with 

high NDVI percent change in Pascagoula River area because the area was a considerable 

distance from the hurricane track and high NDVI change was assumed mainly caused by 

defoliation (Table 3.1). This area was believed to have high NDVI percent change not in 

the form of mechanical wind damage to the bole (shear and blowdown) but maybe linked 

to defoliation. The lower Pascagoula River Basin is dominated by hardwood species. 

Kupfer et al. (2008) found hardwood vegetation located in bottomlands and along river 

channels most susceptible to damage. 
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Outputs from initial and final multiple regression models revealed that all 

predictors were statistically significant (p<0.05). For the study area in general, increases 

in the forest type Shannon-Weaver Index diversity and rainfall were associated with 

increases in percent NDVI change statistics for the full spatial extent (initial model) and 

the restricted spatial extent (lower Pascagoula River Basin removed; final model) (Table 

3.1). 

Table 3.1 Comparison of multiple regression results of initial and final models to 
predict NDVI change for Southeast Mississippi. 

Variable  Multiple Regression Initial Model Multiple Regression Final Model 
 Beta  S.E.*** Beta  S.E.*** 

Constant 7.837 0.047 7.015 0.043 
Age diversity -1.225* 0.049 -0.861* 0.045 
Type diversity 0.809* 0.047 1.165* 0.044 

Rainfall 0.809* 0.022 0.759* 0.020 
Change data derived from Radiance Technologies Institute; Forest age was derived from 
Mississippi Institute of Forest Inventory; Forest type was derived from Mississippi 
Institute of Forest Inventory. * = statistically significant. *** = standard error. 

As forest age diversity changed by one unit, NDVI percent change for initial and 

final models decreased by 1.225 and 0.861units respectively, holding other factors 

constant. In both models, a one unit change in forest type diversity was associated with 

an increment in NDVI percent change of 0.809 and 1.165 units respectively, holding 

other factors constant. Likewise, as rainfall increases in both models by one unit, NDVI 

percent change increased by 0.809 and 0.759 units respectively, holding other factors 

constant.  

Table 3.2 shows multiple regression results with NDVI percent change for each of 

the five zones for the full spatial extent and before removal of Pascagoula River area. 

Outputs from Zone 1 revealed that all predictor variables were statistically significant 
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(p<0.05). As forest age diversity changed by one unit, NDVI percent change decreased 

by 1.127 units, holding other factors constant. On the other hand, an increase in forest 

type diversity led to an increment in NDVI percent change by 1.235 units, holding other 

factors constant. Rainfall had a negative impact on NDVI percent change in Zone 1, 

which is contrary to expectation.  
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In Zone 2, forest type diversity was statistically insignificant on changes in NDVI 

(p>0.05), however, the remaining set of predictors had a significant effect on NDVI 

percent change. The marginal increments in forest age diversity coefficient led to a 

decrease in NDVI percent change by 0.347 units, holding other factors constant. On the 

other hand, as rainfall increased by one unit, NDVI percent change increased by 1.570 

units, holding other factors constant.  

In Zone 3, all predictor variables were statistically significant at (p<0.05). A 

marginal increase in forest age diversity coefficients led to a 0.730 unit decrease in the 

NDVI percent change. However, forest type diversity and rainfall were associated with 

an increase in NDVI percent change by 1.034 and 0.046 respectively, holding other 

factors constant.  

In Zone 4, all predictor variables were statistically significant at (p<0.05). The 

increase of forest age diversity coefficients led to a decrease in NDVI percent change by 

2.195 units, holding other factors constant. Similarly, the increase of forest type diversity 

coefficients led to a decrease in NDVI percent change by 0.461 units holding other 

factors constant. The outcome for forest type diversity is inconsistent with the 

hypothetical assumption. However, as rainfall increased, NDVI percent change also 

increased by 0.871, holding other factors constant.  

Multiple regression results for Zone 5 showed that all independent variables were 

statistically significant (p<0.05). Again, as forest type diversity and rainfall coefficients 

increased, NDVI percent change also increased by 1.690 and 0.459 respectively, holding 

other factors constant. In all zones, Shannon-Weaver Index scale of the forest age 

diversity indicated that the increase in forest age diversity led to decrease in NDVI 
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percent change. While all regression models were statistically significant as reflected by 

the F-test, the R-square values were low.  

Table 3.3 indicates multiple regression results of the data after eliminating the 

Pascagoula River area. It was assumed that there was little mechanical wind damage to 

the bole (shear and blowdown) and NDVI percent change was mainly linked to 

defoliation (explained earlier). 
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Outputs from the final model revealed that all predictors were statistically 

significant (p<0.05), except for forest type diversity in Zone 2. Since the same area were 

used in the initial and final models in all zones except in Zone 4, the results and trends of 

the final model were not much different from the initial model (before excluding 

Pascagoula River area). In general, models summarized in Table 3.2 show a similar trend 

with models given in Table 3.3 except in Zone 4 (where most of Pascagoula River is 

located) where the forest type diversity coefficient changed from negative to positive also 

there was big drop in hardwood cover. Figure 3.1 illustrates the change in percentage of 

forest type classes before and after elimination of the lower Pascagoula River area, which 

led to significant decrease in hardwoods type.    

 

Figure 3.1 Change in percentage of forest type classes before and after elimination of 
the lower Pascagoula River area. 

(a) Forest type classes percent area cover within each zone before elimination of lower 
Pascagoula River Basin (b) Forest type classes percent area cover within each zone after 
elimination of lower Pascagoula River Basin.  

The difference in the coefficient magnitude in Table 3.3 is attributed to the 

removal of area associated with the lower Pascagoula River which had a high NDVI 

percent change. Hence, the increase of forest type diversity coefficient in Zone 4 was 
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associated with an increase in NDVI percent change by 1.106 units holding other factors 

constant. 

3.2 Binary logistic regression results  

Binary Logistic Regression was considered in order to include the categorical 

variable forest ownership. Logistic regression was used because the object of this 

research was to test the relationship between the binary independent variable (forest 

ownership) as well as the continuous variables (forest age diversity, forest type diversity, 

and rainfall) and the dependent variable (NDVI percent change).  

The binary logistic regression in Tables 3.4, 3.5, 3.6, 3.7, 3.8 and 3.9 show Beta 

values, p-values, and the odds ratios for the full spatial extent (initial logistic model) and 

the restricted spatial extent (Pascagoula River removed) (final logistic model). This lower 

Pascagoula River Basin was believed to have high NDVI percent change not as 

mechanical wind damage to boles (shear and blowdown) but was assumed due to 

defoliation (explained in section 2.3). The results of the NB analysis versus the 10, 15 

and 20 percent cutoff levels of NDVI percent change are shown for the entire study area 

model and also the five zones.  

In Table 3.4 the initial binary logistic regression model development outputs are 

presented on the entire study area and the result gave a low R-square and inconsistencies 

with the predictor trends in the models. Therefore, another final logistic regression model 

was executed with the elimination of area with high NDVI percent change in Pascagoula 

River area (Final Model outputs in Table 3.4).  
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Table 3.4 Comparison of binary logistic regression results of the full spatial extent 
(initial model) and the restricted spatial extent (final model) after lower 
Pascagoula River Basin was removed. 

Variable  Logistic Regression Initial Model Logistic Regression Final Model 
 Beta  S.E.*** Exp**  Beta  S.E.*** Exp**  

Public Forest -0.007 0.015 0.993 0.129 0.014 1.137* 
CPF 0.053 0.013 1.054* 0.045 0.013 1.046* 

Age diversity -0.288 0.019 0.750* -0.336 0.018 0.714* 
Type diversity 0.423 0.018 1.526* 0.366 0.018 1.442* 

Rainfall 0.332 0.008 1.394* 0.342 0.008 1.407* 
Constant  -0.826 0.019 0.438 -0.713 0.019 0.490 

Change data derived from Radiance Technologies Institute; Forest age was derived from 
Mississippi Institute of Forest Inventory; Forest type was derived from Mississippi 
Institute of Forest Inventory. * = statistically significant. **Exp = odds ratio. *** = 
standard error. 

Outputs from the full spatial extent (initial logistic model) and the restricted 

spatial extent after the elimination of Pascagoula River removed (final logistic model) 

revealed that all predictor variables were significant except for public forest in the initial 

model (p<0.05). When compared with the reference category non-corporate private forest 

(NCPF), corporate private forest (CPF) for initial and final models had odds ratios (Exp, 

odds ratios in Table 3.4) of 1.054 and 1.046 respectively of experiencing a high NDVI 

percent change, holding other factors constant. As forest age diversity changed by one 

unit, the probability of a high NDVI percent change for initial and final models decreased 

by 0.750 and 0.714 units respectively, holding other factors constant. However, in the full 

spatial extent (initial model) and the restricted spatial extent (Pascagoula River removed) 

model the increase of forest type diversity was associated with 1.526 and 1.442 increment 

in odds ratio of high NDVI percent change respectively, holding other factors constant. 

Likewise as rainfall increases in both models by one unit the odds ratio of high NDVI 

percent change increases by 1.394 and 1.407 units respectively, holding other factors 
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constant. In general, there is no significant difference between both models except 

magnitude of values of the odds ratio, which is due to the removal of the Pascagoula 

River area in the final model. 

Table 3.5 shows the logistic regression results by zone (Figure 2.4) based on 

NDVI percent change using the NB classification (Figure 2.6). In Zone 1, CPF, forest age 

diversity, and forest type diversity were statistically significant whereas public forest and 

rainfall were statistically insignificant (p>0.05). Comparing the reference category NCPF 

with CPF, an odds ratio of 0.832 units on the NDVI percent change was obtained while 

holding other factors constant.  However, a marginal change in forest age diversity 

coefficient was associated with 0.767 unit decrease in the odds of experiencing a high 

NDVI percent change, holding other factors constant. Conversely, the forest type 

diversity coefficient was associated with a 1.209 unit increase in the odds of NDVI 

percent change, holding other factors constant. 
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In Zone 2, only public forest and rainfall were statistically significant (p<0.05). 

When compared with the reference category, publicly owned forest had an odds ratio of 

1.471 units of experiencing a high NDVI percent change, holding other factors constant. 

As rainfall increases by one unit, the odds ratio of high NDVI percent change increases 

by 1.781 units, holding other factors constant. CPF, forest age diversity and forest type 

diversity were not statistically significant in this model (p>0.05).  

In Zone 3, all variables were statistically significant (p<0.05) except for CPF. 

When compared with the reference category, publicly owned forest had an odds ratio of 

0.802 units of experiencing a high NDVI percent change, holding other factors constant. 

Forest age diversity had an odds ratio of 0.776 implying that as forest age diversity 

increases by one unit, the probability of high NDVI percent change decreases by 0.224. 

Forest type diversity and the rainfall increased the odds of high NDVI percent change by 

factors of 1.430 and 1.592 respectively.  

In Zone 4, when compared with the reference category NCPF, public forest had 

an odds ratio of 1.353 of experiencing a high NDVI percent change, holding other factors 

constant. In addition, forest type diversity and rainfall each increased the odds of a high 

NDVI percent change by factors of 1.348 and 1.427 respectively. Nevertheless, the forest 

age diversity had an odds ratio of 0.534 of experiencing a high NDVI percent change, 

holding other factors constant. There was no statistical association between CPF 

ownership and NDVI percent change (p>0.05).  

Regarding Zone 5, all predictor variables had a statistically significant influence 

on the probability of high NDVI percent change (p<0.05). Public forests had a probability 

of 0.550 of experiencing a high NDVI percent change compared to the baseline category 
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of NCPF. However, when compared with the reference category, CPF had an odds ratio 

of 1.348 of experiencing a high NDVI percent change, holding other factors constant. 

Again, as in zones 1 to 4, forest age diversity in Zone 5 had a negative sign with an odds 

ratio of 0.644 implying that more diverse forest was associated with a low NDVI percent 

change. With odds ratios of 2.033 and 1.273 respectively, forest type diversity and 

rainfall had the effect of increasing high NDVI percent change. 

Table 3.6 indicates binary logistic regression results of the data subsequent to the 

elimination of Pascagoula River area (which is mainly located in Zone 4). The results and 

trends of the final model were similar to the initial model before excluding Pascagoula 

River area. In general, results in Table 3.6 showed a similar trend with results in Table 

3.5 except in Zone 4 where the public forest coefficient changed from positive to 

negative. Because of the elimination of Pascagoula River area which is dominated by 

public ownership, the overall ratio of public forest to NCPF in this zone dropped 

dramatically hence the change of sign. In general, there was a slight difference between 

both models in terms of the magnitude which is due to the different excluding of 

Pascagoula River area.  
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Tables 3.7, 3.8, and 3.9 represent the results obtained from different NDVI 

threshold levels (10, 15 and 20). From threshold 10 table (3.7), the regression coefficients 

are only slightly different from the NB results. This is because the NB threshold (8.23) is 

very close to the NDVI threshold 10. However, for the threshold 15 and 20 tables (3.8 

and 3.9), the difference in the regression coefficients are noticeable compared to the NB 

results due to the difference between both thresholds and the NB. For example, the odds 

ratios for CPF in Zone 1, NB, 15 and 20 were 0.832, 0.584, and 0.442 respectively. The 

odds ratio for public forest in Zone 3 for NB, 15 and 20 were 0.827, 0.442, and 0.359 

respectively. On the other hand, odds ratios for forest age diversity in Zone 4 for NB, 15 

and 20 were 0.586, 0.549, and 0.621 respectively. 
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3.3 Discussion 

Multiple linear regression and binary logistic regression models were used to 

examine the relationship of forest age diversity, forest type diversity, rainfall and forest 

ownership variables to NDVI percent change that represented assumed wind-related 

damage in the study area. The analysis in the multiple regression and binary logistic 

regression techniques showed the variables were statistically significant although there 

were variations from zone to zone.  The mapped damage zones numbered in ascending 

order from 1 through 5 (Figure 2.4), with Zone 1 encompassing landfall (containing the 

greatest amount of forecast damage) and Zone 5 furthest from landfall (containing the 

least amount of forecast damage). Except in Zone 4 in the initial and final models, the 

regression coefficients of the variables were almost the same. Therefore, elimination of 

Pascagoula river area (predominantly broadleaf deciduous trees) did not result in 

substantial changes in parameter estimates except in Zone 4.  

The findings of this study indicate that as forest age diversity decreases, wind 

related damage increases, which follows the original expectations. This was observed for 

the entire study area (initial and final models) as well as zonal levels. The high difference 

in forest vertical structure has an influence on areas being shaded by large tree crowns in 

the upper canopy. The nature of the vegetation that occur pre-hurricane in coastal forest 

communities, particularly forests that have large trees with lots of shadow, have low 

NDVI cell values in pre-storm products. “Shaded areas return a near zero reflectance 

value which result in a lower overall average reflectance for the pixel” (Wilkinson 2011). 

On the other hand, high NDVI values in post-storm products were observed, this might 

be due to the reduction of shadow effect as well as the exposure of small dense evergreen 
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vegetation in the midstory and understory. Furthermore, as forest age becomes more 

diverse, the vertical structure of the forest canopy becomes uneven, the high difference in 

forest vertical structure may result in areas of midstory and understory being protected by 

tree crowns from direct damage (Imbert et al. 1996). Hence, protected vegetation in 

midstory and understory was exposed to less damage which resulted in low NDVI 

percent change. Potential for damage increases as forest age becomes more homogenous. 

This result contradicts the findings of Garrigues (2011) who observed that the probability 

of damage decreased with tree height variation, which is a proxy for forest age diversity. 

In order to reduce vulnerability to damage from future hurricanes, forest management 

objectives must be examined such as incorporating more complex stand structures 

(diverse age groups) into ongoing forest management. The hypothetical proposition 

between forest age diversity and wind damage was therefore accepted (P<0.05).  

Forest type diversity indicated a direct relationship with NDVI percent change; as 

forest type diversity increases the NDVI percent change increases. The increase in forest 

type diversity showed a positive relationship with NDVI percent change in all models 

except in Zone 4. The high concentration of NDVI percent change in lower Pascagoula 

River Basin located in Zone 4 resulted in a negative relationship to forest type diversity. 

The positive relationship between forest type diversity and NDVI percent change might 

be explained by the influence of the varying types of land covers that compose the forest 

type diversity. Forest type diversity is defined by the mixture of open land (non-forest), 

pine forest, hardwoods, mixed and regeneration land-cover classes. The high divergent 

structure between non-forest and regeneration and other forest type classes caused an 

increase in the edge density, therefore, open land surrounding forest fragments provide 



 

70 

less resistance to winds allowing wind to move across the cleared landscape which makes 

forestland more susceptible to damage (Peltola et al. 1999, Laurance, and Curran 2008). 

Areas encompassing different forest types (diverse forest) are associated with high 

concentration of edges. This assertion is supported by Harper et al. (2005) who suggested 

that windy conditions are associated with increased tree damage particularly on forest 

edges. He also stated that greater patch contrast (higher forest type diversity) is associated 

with greater edge influence. 

Multiple and binary logistic regression analysis examining NDVI percent change 

for the study area identified a significant relationship between NDVI percent change and 

rainfall. These results indicate that more rainfall accounted for more NDVI percent 

change and the result shows that the rainfall variable had a positive correlation with the 

NDVI change in all models except in Zone 1. The negative results in Zone 1 negates the 

expectation that more rainfall might have resulted in more damage due to the nature of 

heavy rainfall associated with soil saturation which affects the root-soil holding (Kupfer 

et al. 2008). This exception might be due to the nature of data in this zone (greater 

variability) affected by the variation of distance and position from the storm eye, wind 

speed, direction, duration of gusts, and the cyclic nature of the hurricane that could have 

resulted in heavy rainfall in a given patch and low rainfall in other patches. This can be 

partly explained by the nature of the combination of inner and feeder bands in the 

hurricane (Guinn and Schubert 1993). Graumann (2005) stated that as the heavy rain and 

thunderstorms transfer momentum from the level of highest winds (above the surface) 

down closer to the surface, the heaviest bands of rainfall shown on radar coincide with 

the strongest wind gusts at the surface. The relationship between NDVI percent change 
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and rainfall for Zones 2 through 5 (Figure 2.4) showed a positive trend implying that 

more rainfall led to a higher NDVI percent change. This result is corroborated by Foster 

(1988) in central New England and Kupfer et al. (2008) who argued that catastrophic 

hurricane wind damage on vegetation may be explained by the very high levels of 

precipitation that accompanied the storm, saturating the soil and loosening the roots 

resulting in high uprooting damage.  

According to the binary logistic regression model, the results from the entire 

study area showed public forest and CPF were at greater risk of forest damage compared 

to baseline category of NCPF on a landscape level. This result contradicts the expected 

hypothesis. This might be due to the coarse nature of ownership data used. The NCPF 

category comprises small to very big tracts. Large NCPF tracts have same character as 

more contiguous public and CPF forests which confuses NCPF with the other forest 

ownership types. The coarse spatial resolution of ownership data hindered the 

differentiation between fragmented and non-fragmented forest. Moreover, these observed 

results might be due to silviculture practices related to reducing risk of wind damage on 

public forests. Stanturf et al. (2007) argued that forest management practices on public 

land must reflect the existing regulations. As such, this partially limits the possibility of 

implementing appropriate silvicultural practices on large areas like heavy thinning and 

convert stands type to the more resilient species to reduce risk of hurricane damage. After 

the elimination of lower Pascagoula River area, results from the zone model showed that 

public forests in zones 3, 4, and 5 and CPF in Zone 1 had a lesser risk of forest damage 

compared to NCPF. This change is due to the improved consistency of data within each 

zone when compared to the entire study area data with reducing variability by removing 
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the lower Pascagoula River area. In general, public forest, CPF and larger NCPF are 

more active forest managers than owners of smaller parcels. Larger forest tracts also tend 

to be less fragmented by non-forest development and can therefore be better managed for 

forest habitat. Therefore, maintaining forest ownerships in larger tracts can improve 

efficiency and effectiveness of conservation and reducing the susceptibility to wind 

damage. 

3.4 Conclusion  

The use of remote sensing and GIS techniques provided an approach to examine 

the severity of wind damage created by Hurricane Katrina in southeast Mississippi to 

determine how the disturbance was influenced by fragmentation based on forest age 

diversity, forest type diversity and forest ownership.  

NDVI percent change (assumed wind related damage) following Hurricane 

Katrina over a large, diverse landscape was most strongly related to forest age diversity 

and forest type diversity as well as rainfall. Forest age diversity showed a negative 

association with the NDVI percent changes while forest type diversity and rainfall 

indicated a positive relationship. Forest managers and owners can reduce natural 

disturbance induced damage by managing their forests in more heterogeneous age groups 

across landscapes which will decrease the possibility of wind damage.  

There was no consistent relationship between NDVI percent change and forest 

ownership variable. However, that does not mean that this variable is not important. 

Management practices are seemingly masked by forest age and forest type variables 

which are associated with forest ownership. Forest management practices related to tree 

species, tree age, stand density, and edge area ratio are controlled by landowner’s goals. 
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It must be mentioned that previous studies mostly used forest age as a parameter 

to assess impact on aspects such as tree mortality, succession or forest productivity. For 

example, Rich et al. 2007 used stand age to determine the wind-throw mortality in 

forests.  Also, previous studies compared different sorts of wind damage and difference 

effects of damage on the physical structures of coniferous and hardwoods (Boucher et 

al.1990, Foster 1988). Nonetheless, in this research forest age diversity and forest type 

diversity were used, because these variables were created differently (for example age 

versus age diversity in this study) and, therefore, it was difficult to compare this research 

outputs with previous work (such as Rich et al. 2007). In order to more fully understand 

the effects on vulnerability of fragmentation, management systems, and forest structure 

additional research is needed. In future research, coupling high resolution remote sensing 

products such as Landsat with LiDAR data would better explain the relationship between 

severity of damage and forest age, forest type, ownership since the amount of information 

relative to the structure of a forest will increase greatly with use of LiDAR data. 
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