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CHAPTER I

LITERATURE REVIEW

History of bermudagrass

Bermudagrass (Cynodon L.C. Rich) has undertaken numerous characteristic and
application changes since its introduction to the United States from Africa in 1751
(Hanson, 1972). Bermudagrass was transported to the U.S. via contaminated hay that
was used as bedding on ships traveling to America (Kopec, 2003). Seed were deposited
onto soils of the eastern U.S., reproduced, and spread throughout other portions of
America. Farmers quickly noticed forage potential for bermudagrass, which led to
greater distribution across the southern U.S. By the early 20th century, bermudagrass
was sought for use in home lawns and golf courses and was eventually adopted as an
alternative to sand golf greens (Kopec, 2003).

The earliest bermudagrass putting greens of the 20th century were predominated
by common seeded bermudagrasses (Cynodon dactylon (L.) Pers.) (Beard and Sifers,
1996). Golf course superintendents noticed areas on their seeded greens that did not
grow as tall as the rest of the putting green. A major breakthrough in bermudagrass
putting green development occurred in the 1940s when Dr. Glenn W. Burton of the
Georgia Coastal Plain Experiment Station collected, increased, planted, and evaluated

phenotypic mutants from putting greens throughout the southern U.S. (Burton, 1991).



As a result of Dr. Burton’s work, ‘Tiflawn’ bermudagrass was released in 1952
(Burton, 1991; Hanna and Anderson, 2008). Tiflawn was a great option for home lawn
applications, but was too coarse to use for golf greens; therefore, it was crossed with a
fine-leafed bermudagrass to produce ‘Tiffine’, which was released in 1953 (Hein, 1953;
Burton, 1991). Tiffine had finer, softer leaves, was more suitable for golf green use, and
was sterile. Three years later, in 1956, ‘Tifgreen’ was released (Burton, 1991).

Tifgreen was the resultant product of the cross between a common bermudagrass
from a golf course country club in North Carolina and an Egyptian Cynodon
transvaalensis Burtt-Davy (Burton, 1991; Hanna and Anderson, 2008). Tifgreen had
finer, softer, dark green leaves, minimal seedheads, and could withstand daily mowing
heights of 4.7 mm (Burton, 1991; Kopec, 2003; Hanna and Anderson, 2008). In the early
1960s, off-types in Tifgreen putting greens arose and appeared to possess more desirable
qualities (Burton, 1991; Kopec, 2003). The off-types were first tested in 1962, leading to
the release of ‘Tifdwarf” in 1965. Shortly after the release of Tifdwarf, the new release
replaced Tifgreen (Burton, 1991; Hanna and Anderson, 2008).

Tifdwarf could endure daily mowing heights near 4 mm, which led to extensive
use on putting greens throughout parts of the southern U.S. (Hanna and Anderson, 2008).
As time progressed, off-types of this grass were observed in many putting greens
(Moncrief, 1975). A large number of today’s ultradwarf bermudagrasses are derivatives
from vegetative mutants within Tifdwarf golf greens (Kopec, 2003; Hanna and Anderson,
2008). Popular ultradwarfs utilized on golf courses today include ‘Champion’,

‘MiniVerde’ (Fig. 1.1), and ‘Tifeagle’. Each of these ultradwarfs can be routinely



mowed at 3.2 mm or less (Rowland, 2011). Historical events in bermudagrass

development, from introduction to current usage, are summarized in Fig. 1.2.

Figure 1.1  MiniVerde ultradwarf bermudagrass at number 1 green of The Player’s
Club at Sawgrass in Ponte Vedra Beach, Florida.
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Figure 1.2 Chronology of historical events in the development of ultradwarf
bermudagrasses currently used as golf greens.

Cultural management of ultradwarf bermudagrass putting greens

Ultradwarf bermudagrass putting greens display traits of fine leaf blades, short
internodes, high shoot densities, rapid recuperative potentials, and reduced growing
heights (Fig. 1.3) (Beard and Sifers, 1996; Guertal and White, 1998; Guertal et al., 2001;
White et al., 2004). Although each of these traits are desirable for putting greens, they
contribute to an increased accumulation of dead and decaying plant material, known as
thatch, located just above the soil line (Decker, 1974; Turgeon, 2005; McCarty et al.,
2007; Fontanier et al., 2011). Thatch, when maintained at appropriate levels, provides a
cushioning region that protects living plant material from detrimental stresses posed by
harsh impacts such as foot and vehicular traffic (Smith, 1979; Bevard, 2005). However,
negative aspects arise when excessive amounts of thatch accumulate (Turgeon, 2005;

McCarty et al., 2007).



Figure 1.3  Ultradwarf bermudagrass maintained at 3.2 mm height of cut at the Rodney
R. Foil Plant Science Research Center in Starkville, MS.

When thatch material becomes intermingled with soil particles, a mat layer is
formed (Decker, 1974; Turgeon, 2005; McCarty et al., 2007; Fontanier et al., 2011).
Thatch and mat adversely affect normal functions of bermudagrass putting greens
(Murray and Juska, 1977; Bevard, 2005; McCarty et al., 2007). These factors decrease
water and oxygen infiltration (Cornman, 1952; Musser, 1960; Murray and Juska, 1977;
Bevard, 2005), increase insect and disease pressure (Cornman, 1952; Musser, 1960;
Murray and Juska, 1977; Bevard, 2005; Turgeon, 2005), reduce efficacy of pesticide

applications (Musser, 1960), and generate a greater occurrence of ball roll inconsistences



on putting greens (Vermeulen and Hartwiger, 2005). Management of thatch and mat has

been emphasized in numerous research efforts to date.

Core cultivation

Core cultivation (Figs. 1.4 and 1.5), sometimes referred to as aerification, core
aeration, or coring, is a management practice in which cores, containing plant and soil
materials, are removed from the soil profile of putting greens. This practice is effective
in reducing soil organic matter to desired levels (Bevard, 2005; Turgeon, 2005; McCarty
et al., 2007). Voids that remain on putting green surfaces are commonly replaced with
sand, and turfgrass plants fill in these areas. Benefits of core cultivation include
increased water infiltration and gas exchange (Canaway et al., 1986; Murphy and Rieke,
1994; Bunnell et al., 2001; McCarty et al., 2007), reduced levels of thatch and mat
(Murray and Juska, 1977; Smith, 1979; Eggens, 1980; Murphy and Rieke, 1994), and
improved root health; however, there are major disadvantages to this procedure. A few
weeks are required for recuperation from core aeration, and both playability and
aesthetics of putting surface are immediately reduced (Fontanier et al., 2011). These
shortcomings have led to an increased demand for less destructive thatch management

alternatives.
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Figure 1.4  Schematic illustration of hollow-tine aerification.

Figure 1.5  Hollow-tine core aerification of research plots at the Rodney R. Foil Plant
Science Research Center in Starkville, MS.



Venting cultivation

A less disruptive alternative to core removal is venting cultivation, whereby slits
or small holes are created in the upper portion of the soil profile (Fig. 1.6). Methods of
venting include needle-tine aeration, spiking, slicing, and pressurized water injection
(Green et al., 2001; Turgeon, 2005; Fontanier et al., 2011). Each of these practices is
effective in creating channels that increase water and gaseous movement, but do not
directly remove thatch and organic material from the soil profile (Murphy and Rieke,
1994; Green et al., 2001; Fontanier et al., 2011). However, increased gas and water
movement enhances microbial populations, leading to improved degradation of thatch

material (Cornman, 1952; Turgeon, 2005).
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Figure 1.6  Schematic illustration of venting aeration conducted with needle tines.

Vertical mowing and sand topdressing

Additional management strategies for thatch control include vertical mowing and
sand topdressing (Bevard, 2005; Turgeon, 2005; McCarty et al., 2007). Vertical mowing,
also known as dethatching or power raking, is a practice that utilizes blades, which rotate
in a perpendicular plane to that of the putting green surface (Turgeon, 2005; McCarty et
al., 2007). As penetration depth of vertical mowing blades increases, more thatch is

disrupted, surfaced, and removed (Turgeon, 2005). Sand topdressing of ultradwarf
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bermudagrass putting greens is a technique similar to venting aeration in that it does not
directly result in a decrease of thatch material, but can increase microbial degradation of

thatch material (Turgeon, 2005).

Ectotrophic root-infecting fungi and associated diseases

The soil-borne, root-infecting group of fungi, commonly referred to as ectotrophic
root-infecting (ERI) fungi, encompasses several genera that affect various types of plants
including grain crops and grasses (Clarke and Gould, 1993). These fungi colonize plant
roots via darkly pigmented, ectotrophic, robust runner hyphae (Figs. 1.7 and 1.8) (Clarke
and Gould, 1993; Tredway, 2006). ERI fungi, when active on turfgrass plants, cause
circular or patch-like dieback within turfgrass stands and have been considered the cause
of some of the most destructive turfgrass diseases in the U.S. (Landschoot and Jackson,
1990; Wetzel et al., 1996). Symptoms of this group of fungi are generally observed in

recurring locations at annual or sporadic periods (Smiley et al., 2005).

Figure 1.7  Dark, runner hyphae on exterior of ultradwarf bermudagrass root.



Figure 1.8  Magnified image of dark, runner hyphae on ultradwarf bermudagrass root.

Turfgrass diseases of this nature have occurred for more than 60 years (Smiley et
al., 2005). Gaeumannomyces graminis (Sacc.) Arx and D. Olivier var. avenae (E. M.
Turner) Dennis, the causal agent of take-all patch, was the sole member of this group of
fungi prior to 1984 (Clarke and Gould, 1993). Since that time, it has become evident that
other well-defined patch-like diseases are caused by Gaeumannomyces-type fungi

(Smiley et al., 2005).
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Take-all patch

As stated, G. graminis var. avenae (= Ophiobolus graminis (Sacc.) Sacc. var.
avenae E. M. Turner), the causal agent of take-all patch, is a destructive pathogen of
bentgrass (Agrostis L.) turf (Dernoeden, 1987; Smiley, 2005). This organism also affects
fescues (Festuca L.) and bluegrasses (Poa L.); however, the threat is less severe than
with bentgrass (Smiley et al., 2005). Symptoms of take-all patch arise during late spring
or early summer as small, reddish brown or light brown patches, and linger into the latter
summer months if cool, moist environmental conditions are present (Smiley et al., 2005).
The fungus survives winter as dormant mycelium in previously infected host plant
material and infects stolons, roots, and rhizomes during spring and fall (Smiley et al.,

2005).

Bermudagrass decline

Gaeumannomyces graminis (Sacc.) Arx and D. Olivier var. graminis, the causal
agent of bermudagrass decline, survives adverse environmental conditions as mycelium,
colonizing roots, stolons, and rhizomes of bermudagrass plants (Smiley et al., 2005).
Symptoms of bermudagrass decline appear during warm to hot periods of the summer
when humidity levels are high (Elliott, 1991; Smiley et al., 2005). After colonization and
infection by the fungus, lower leaves of bermudagrass plants become chlorotic and roots
are shortened and discolored (Elliott and Landschoot, 1991). Field symptomatology
includes irregularly shaped chlorotic patches, which vary in diameter from 0.2 to 1 m
(Elliott and Landschoot, 1991; Smiley et al., 2005).

G. graminis var. graminis causes a similar disease, take-all root rot, in other

warm-season turfgrass species. Take-all root rot affects St. Augustinegrass
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(Stenotaphrum secundatum (Walt.) Kuntze), seashore paspalum (Paspalum vaginatum

Sw.), centipedegrass (Eremocholoa ophiuroides (Munro) Hack.), and zoysiagrass (Zoysia
Jjaponica Steud.). Symptomatology and disease development are similar to bermudagrass
decline (Smiley et al., 2005). Collectively, bermudagrass decline and take-all root rot are

recognized as root decline of warm-season turfgrasses (Smiley et al., 2005).

Summer patch

Summer patch, caused by Magnaporthiopsis poae (Landschoot and Jackson) J.
Luo and N. Zhang (= Magnaporthe poae Landschoot and Jackson), is a disease that
primarily affects Kentucky bluegrass (Poa pratensis L.) and fine-leaf fescues such as
strong creeping red fescue (Festuca rubra subsp. rubra), slender creeping red fescue (F.
rubra var. littoralis) hard fescue (F. brevipila), Chewings fescue (F. rubra subsp. fallax),
and sheep fescue (F. ovina) (Clarke and Gould, 1993; Landschoot et al., 1993; Smiley et
al, 2005). M. poae has been isolated from perennial ryegrass (Lolium perenne L.) and
bentgrass, but is not considered a primary threat to those species (Smiley et al., 2005).
However, creeping bentgrass managed at putting green height can be greatly affected
(Landschoot et al., 1993; Smiley et al., 2005).

M. poae overwinters as dormant mycelium in previously colonized plant material
(Smiley et al., 2005). Symptoms begin to appear on Kentucky bluegrass in early summer
months as small, circular patches of slow growing turf, which expand to approximately
30 cm, but may exceed 1 m in diameter (Smith et al., 1989; Smiley et al., 2005). Patches
of affected turf fade from grayish green to reddish brown, and ultimately become straw-
colored or tan (Smiley et al., 2005). Colonization of plant material occurs between

temperatures of 20 to 35 C under controlled conditions with optimum temperatures of 28
12



to 30 C. (Kackley et al., 1990; Smiley et al., 2005). Field symptoms are most prevalent
in the presence of heavy rainfall followed by high temperatures (Sreedhar et al., 1999;

Smiley et al., 2005).

Dead spot

Ophiosphaerella agrostis P. H. Dernoeden, M. Camara, N. O’Neill, van Berkum,
and M. Palm, the causal agent of dead spot, poses threats to bentgrasses and
bermudagrasses (Dernoeden et al., 1999; Krausz et al., 2001; Smiley et al., 2005).
Symptoms on golf greens begin as small (1 cm diameter), reddish brown discolorations
of turf and progress into larger (9 cm diameter) patches (Dernoeden et al., 1999;
Kaminski, 2004; Smiley et al., 2005). Matured disease symptoms include patches with
reddish, brown borders surrounding tan or straw-colored centers and discolored, necrotic
root systems (Dernoeden et al., 1999; Kaminski, 2004; Smiley et al., 2005). In bentgrass,
the disease occurs from May to December with most prevalent symptoms arising during
hot and dry summer months (Kaminski, 2004; Smiley et al., 2005; Kaminski and
Dernoeden, 2006). On bermudagrass, dead spot is observed during spring green-up from
March to April. In May, as temperatures increase, bermudagrass plants begin to thrive
and rapidly recuperate from disease symptoms (Kaminski and Dernoeden, 2005; Smiley
et al., 2005). The fungus overwinters as pseudothecia in crowns, roots, and stolons of
turfgrass plants (Kaminski, 2004; Smiley et al., 2005; Kaminski and Dernoeden, 2006).
As temperatures approach or surpass 20 C for a sustained period, the fungus becomes
active and begins to invade tissues of turfgrass plants (Kaminski, 2004; Smiley et al.,

2005).
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Necrotic ring spot

Necrotic ring spot, caused by O. korrae (J. Walker and A. M. Sm.) Shoemaker
and Babcock (= Leptosphaeria korrae J. Walker and A. M. Sm. and Ophiobolus
herpotricha (Fr.:Fr.) J. Walker), occurs during periods of cool, wet weather on numerous
cool-season turfgrasses (Clarke and Gould, 1993; Smiley et al., 2005). This disease can
affect annual bluegrass (Poa annua L.), red fescue (Festuca rubra L.), and roughstalk
bluegrass (Poa trivialis L.); however, it is considered most destructive to Kentucky
bluegrass (Clarke and Gould, 1993; Smiley et al., 2005). Disease symptoms first appear
as small (5 to 10 cm diameter) yellowish green areas of turf, which progress into larger
(30 cm), reddish brown patches (Smiley et al., 2005). Advanced symptoms include
straw-colored patches, which are normally less than 30 cm in diameter, but occasionally
exceed 60 to 90 cm in diameter (Smiley et al., 2005). Additionally, severe rot of root
systems is noted (Smiley et al., 2005) Necrotic ring spot is exacerbated during hot, dry

periods when turfgrass plants become stressed (Smiley et al., 2005).

Spring dead spot
O. herpotricha (Fr.:Fr.) J. Walker, O. korrae (J. Walker and A. M. Sm.)

Shoemaker and Babcock (= Leptosphaeria korrae J. Walker and A. M. Sm.), and O.
narmari (J. Walker and A. M. Sm.) Wetzel, Hulbuer, and Tisserat (= Leptosphaeria
narmari J. Walker and A. M. Sm.) are three fungal species known to incite spring dead
spot disease of bermudagrass and buffalograss (Buchloe dactyloides (Nutt.) Columbus)
(Smiley et al., 2005; Perry, 2008). Spring dead spot is considered the most destructive
disease of bermudagrass in North America (Smiley et al., 2005). Although each fungal

species incites spring dead spot, the three species occur in distinct regions of the U.S.
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(Walker and Smith, 1972; Tisserat et al., 1989; Dernoeden et al., 1995; Wetzel et al.,
1999; Iriarte et al., 2004). O. korrae is most commonly associated with spring dead spot
in the eastern U.S. and southern California (Endo and Krausman, 1985; Dernoeden et al.,
1995; Iriarte et al., 2004), while O. herpotricha is generally located in the Great Plains
region of the western U.S. (Tisserat et al., 1989; Wetzel et al., 1999). O. narmari is
observed throughout the U.S. and in Australia (Walker and Smith, 1972; Tisserat et al.,
1994; Smiley et al., 2005).

Growth of spring dead spot fungi is most rapid in winter months when soil
temperatures are relatively cool, 10 to 25 C, and soil is moist (Crahay et al., 1988;
Kackley et al., 1990; Smiley et al., 2005; Perry et al., 2010). This is not the case for roots
of bermudagrass plants, which thrive at soil temperatures of 35 C and regress in growth at
temperatures of 15 C (Smiley et al., 2005). This presents an advantageous setting for
spring dead spot fungi to attack roots of bermudagrass (Tisserat et al., 1994; Smiley et al.,
2005). Field symptoms appear as sunken, necrotic, bleached patches of turf that occur
during the transitional period from winter dormancy to spring green-up (Smiley et al.
2005; Perry, 2008). Symptoms regularly recur in the same areas for consecutive years;
however, size and shape of desiccated turf may be variable (Perry, 2008). The fungi
produce dark brown, septate mycelial mats on roots and stolons of infected plants, and

ascocarps are occasionally observed on dead tissues (Smiley et al. 2005).

Identification of ERI fungi

Accurate identification of ERI fungi via traditional diagnostic methods is
generally very difficult and time-consuming (Bryan et al., 1995; Wetzel et al., 1996;

Rachdawong et al., 2002). With the exception of G. graminis var. graminis, which is
15



readily identified by deeply lobed hyphopodia, ERI fungi do not commonly produce
distinguishable identification features, inhibiting precise, timely identification (Wetzel et
al., 1996). Fungi of this group must be isolated from infected plant material, and
ascocarp formation must be induced for precise morphological identification (Wetzel et
al., 1996). Production of ascocarps is often unsuccessful because isolates may be of
incompatible mating types or attenuated biotypes (Wetzel et al., 1996). If appropriate
biotypes and mating types are acquired, a period of four to ten weeks is required for
production of identification structures (Dernoeden and O’Neill, 1983; Crahay et al., 1988;
Landschoot and Jackson, 1989a; Landschoot and Jackson, 1989b). Because of rigorous
and rather demanding morphological identification measures, numerous molecular-based
identification strategies have been studied for identification of ERI fungi (Huff et al.,

1994; Wetzel et al., 1996).
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CHAPTER II
EFFECTS OF CULTURAL MANAGEMENT PRACTICE, CULTIVAR SELECTION,
AND SEASONAL FUNGICIDE PROGRAM ON PLANT HEALTH AND
PLAYABILITY OF ULTRADWARF BERMUDAGRASS

PUTTING GREENS

Abstract

Golf course putting greens in the southern United States are commonly grassed
with an ultradwarf bermudagrass cultivar. In this setting, ultradwarfs exhibit high shoot
densities, fine leaf textures, rapid recuperative abilities, and prostrate growing habits,
enabling them to endure decreased mowing heights. These desirable characteristics
frequently result in excessive accumulations of organic matter that can be unfavorable for
plant health and playability. To remediate inflated amounts of thatch and organic matter,
vertical mowing is commonly conducted in a frequently recurring manner. Vertical
mowing is effective at decreasing thatch and organic matter; however, plant health and
playability is often sacrificed. This research evaluated the influences of less-aggressive
and less frequently applied slicing, spiking, and scarifying treatments on ultradwarf
bermudagrass health and playability. The study was conducted as a randomized
complete block design with a split-plot constraint with three replications of ‘Champion’
and ‘MiniVerde’ ultradwarf bermudagrass. Cultural management practices were main-

plot factors and levels of fungicide were split-plot factors. Plant health was assessed as
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turf quality and normalized difference vegetation index, and playability evaluated as ball
roll distance and surface firmness. The best treatments were incorporations of less-
aggressive slice, spike, and scarify practices into vertical mow regimes once each month.
These treatments improved the turf characteristics associated with playability without

sacrificing plant health.

Introduction

Ultradwarf bermudagrass cultivars have short internodes, increased shoot
production, fine-textured leaves, and prostrate growing habits, permitting reduced heights
of cut (Beard and Sifers, 1996; Guertal and White, 1998; Guertal et al., 2001; White et
al., 2004). These traits are desirable for golf course putting greens, but contribute to an
increased accumulation of thatch, which is dead and decaying organic material located
directly above the soil line (Decker, 1974; Turgeon, 2005; McCarty et al., 2007,
Fontanier et al., 2011). Thatch is primarily composed of stolons, rhizomes, maturated
leaf sheaths and blades, and intermittently sloughed roots (Engel, 1954; Roberts and
Bredakis, 1960). Thatch depths between 0.6 and 1.3 cm deliver a cushion for living plant
material, defending against damages posed by harsh impacts such as foot and vehicular
traffic (Smith, 1979; White and Dickens, 1985; Bevard, 2005). As thatch levels exceed
1.3 cm, disadvantageous characteristics develop (White and Dickens, 1984; Turgeon,
2005; McCarty et al., 2007).

A mat layer is formed as thatch becomes intermixed with soil particles (Decker,
1974; Turgeon, 2005; McCarty et al., 2007; Fontanier et al., 2011). Thatch and mat are
known to decrease oxygen and water infiltration, increase disease and insect pressure,

generate a greater occurrence of ball roll inconsistences, and reduce efficacy of pesticide
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applications (Cornman, 1952; Musser, 1960; Murray and Juska, 1977; Bevard, 2005;
Turgeon, 2005; Vermeulen and Hartwiger, 2005; McCarty et al., 2007). Common
management practices for thatch control of ultradwarf bermudagrass cultivars include
frequent vertical mow (VM) and sand topdressing applications (Bevard, 2005; Turgeon,
2005; McCarty et al., 2007; Rowland, 2011; Lowe, 2013).

VM is a practice in which blades rotate in a perpendicular plane to that of the
putting green surface (Turgeon, 2005; McCarty et al., 2007). As penetration depth of
VM blades increases, more thatch is disrupted, surfaced, and removed (Turgeon, 2005).
Plant injury is associated with VM practices; however, little research has been conducted
to compare injurious effects of VM to less-aggressive, alternative cultural management
practices such as slicing, spiking, and scarifying (McCarty et al., 2007; Uddin et al.,
2008).

Slicing is a method of turf cultivation conducted by insertion of vertically
rotating, V-shaped blades through the turf canopy, into the soil (Turgeon, 1997; Beard
and Beard, 2005). Spiking is a process similar to slicing in which flat, pointed blades or
solid tines penetrate turf and soil surface. Penetration depth is limited to the length of
spikes, usually less than 25 mm (Turgeon, 1997; Beard and Beard, 2005). Unlike VM,
less-aggressive practices such as slicing and spiking do not remove organic matter;
however, slits are made, increasing water and gaseous exchange and enhancing root and
shoot growth (Turgeon, 1997).

In practical terms, scarification cultivation practices are synonymous with VM

practices in that vertical tines are employed to remove thatch and green vegetation from
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turf (Beard and Beard, 2005). However, scarification devices are available that provide
quality playability conditions immediately after application.

The purpose of this study was to examine the influences of less readily employed
cultural management practices, in combination with cultivar selection and chemical
fungicide applications, on health and playability characteristics of ultradwarf

bermudagrass putting greens.

Materials and methods
Background management of research area

A two-year study was conducted in Starkville, MS during 2012 and 2013 on four-
year-old ultradwarf bermudagrass managed at golf course standards (Fig. A.1). The
research green consisted of a 90:10 sand:peat root zone mix with a pH of 6.5. Mowing
events occurred daily at 3 to 4 mm height of cut with a Greensmaster ® Flex™ 2100
walk-behind greens mower (The Toro Company, Bloomington, MN, USA). Turf was
irrigated deep and infrequently to promote vertical root growth, maintain moisture, and
avoid drought stress.

Annual fertilizer applications supplied 293 kg N ha!, 98 kg P ha!, and 342 kg K
ha™!. Primo MAXX® (trinexapac-ethyl, Syngenta, Greensboro, NC, USA) was applied at
0.026 kg a.i. ha ! week ! during June, July, and August. Cores, 7.6 to 10.2 cm long, were
removed with 1 cm wide hollow tines spaced 3.8 cm apart on 18 Jun 2012 and 16 Jul
2013. Aerification events were conducted with a Procore® 648 (The Toro Company,

Bloomington, MN, USA) and followed by sand topdressing to fill surface voids.
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Experimental design and analysis

A randomized complete block design with a split-plot constraint with three
replications of each cultivar was used for the study (Fig. A.2). Ultradwarf cultivars used
were ‘Champion’ and ‘MiniVerde’. Main-plot (2.1 x 2.4 m) factors were cultural
practices and split-plot (2.1 x 1.2 m) factors were levels of fungicide. The MIXED
procedure in SAS v. 9.3 (SAS Institute Inc., Cary, NC, USA) was employed for statistical
analyses. Multiple comparisons were computed with least squares means for a given
effect when the F-value was > 4.0 and the F-ratio was significant at the 0.05 level. The
F-value of 4.0 was chosen to systematically screen statistically significant results for
practical significance, since the error degrees of freedom was large for many of the F-
tests. Numerous high-order interactions were statistically significant, but from a practical

standpoint, they were not meaningful.

Description and timing of treatment applications

There were two levels of fungicide in the study, either presence or absence of a
seasonal fungicide spray regime. In 2012 and 2013, initial fungicidal applications were
made in early June with Honor (pyraclostrobin + boscalid, BASF, Research Triangle
Park, NC, USA) at 0.512 kg a.i. ha™' and 0.342 kg a.i. ha™!, respectively. An application
of Interface (iprodione + trifloxystrobin, Bayer Crop Science, Research Triangle Park,
NC, USA) at 3.27 kg a.i. ha ! and 0.198 kg a.i. ha™!, respectively, was performed in July.
A single application of Heritage (azoxystrobin, Syngenta, Greensboro, NC, USA) at
0.454 kg a.i. ha™! was made in August. Chipco Signature (Aluminum tris, Bayer Crop
Science, Research Triangle Park, NC, USA) tank-mixed with Fore (mancozeb, Dow

AgroSciences, Indianapolis, IN, USA), each at 1.83 kg a.i. ha™!, was applied in
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September, prior to a concluding fungicide application of Rubigan (fenarimol, Gowan
Co., Yuma, AZ, USA) at 0.382 kg a.i. ha! in October.

Cultural practices were VM, vertical mow plus slice (VM + SL), vertical mow
plus spike (VM + SP), vertical mow plus scarify (VM + SC), slice (SL), spike (SP), and
scarify (SC) (Table A.1). Cultural practice treatments were initiated 8 Jun 2012 and 12
Jun 2013 and terminated 14 Sep 2012 and 18 Sep 2013 (Fig. A.3)

Cultural practice treatments were applied with True-Surface® Greens Care
Collection inserts (Turfline Incorporated, Moscow Mills, MO, USA). VM was included
in the study as a control treatment to represent a management practice readily employed
by golf course superintendents. VM + SL, VM + SP, and VM + SC were combination
treatments included to determine the effect of once-monthly incorporated less-aggressive,
alternative cultural practices on ultradwarf bermudagrass health and playability. SL, SP,
and SC treatments were applied once each month and were included to assess the effect
of less frequent cultural practice applications on ultradwarf bermudagrass health and
playability.

VM treatments were conducted weekly with the Vacu-Cutter™ (Fig. A.4) insert
in a bidirectional, perpendicular fashion at a depth of 4 mm and blades spaced 10 mm
apart. The Vacu-Cutter™ insert is composed of 45 stainless steel blades, each having 11
tungsten carbide tips. VM + SL, VM + SP, and VM + SC treatments were applied the
same as VM treatments except SL, SP, and SC applications were incorporated once each
month, in a unidirectional fashion with the Deep Slicer (Fig. A.5) at a depth of 19 mm
with blade spacing 40 mm apart, the Greens Spiker (Fig. A.6) at a depth of 19 mm and
spikes spaced 60 mm apart, and the Vacu-Scarifier™ (Fig. A.7) at a depth of 9.5 mm
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with 40 mm blade spacing, respectively. SL, SP, and SC treatments were applied once

each month, in a unidirectional manner as previously described.

Data collection

Turf quality (TQ) and normalized difference vegetation index (NDVI) were
assessed to determine ultradwarf bermudagrass health. Playability evaluations included
ball roll distance (BRD) and surface firmness (SF) (Beard, 1982; Salaiz et al., 1995). A
grid was constructed from 6.4 mm thick polyvinyl chloride pipe, and consisted of 28
sections, each 0.09 m? (Fig. A.8). The grid was made to the same size dimensions of
each sub-plot, 2.1 m x 1.2 m, and was used to guide the placement of SF and NDVI
evaluation instruments. Random numbers, 1 to 28, were generated to guide in all

sampling and evaluation methods.

Turf quality

Quality of turfgrass within each subplot was recorded two times each month from
June through November using a visual rating scale. TQ ratings accounted for color,
density, uniformity, and texture within each sub-plot. The visual rating scale ranged from
1 to 9, where 1 equated to dead turf and 9 was ideal, lush, dark green turf (Morris and

Shearman, 1998).

Normalized Difference Vegetation Index

Differentiations between healthy and stressed turf have been adequately
measured by spectral reflectance in previous studies (Raikes and Burpee, 1998; Bell et
al., 2002; Jiang and Carrow, 2005; Kruse et al., 2006). The NDVI was developed from

reflectance at visible red (R) and near-infrared (NIR) wavelength ranges and is defined as

28



[(NIR —R) / (NIR + R)] (Rouse et al., 1973). NDVI has been used to assess quality of
turf and turf canopy characteristics in previous research on various turfgrass species
(Trenholm et al., 1999; Fitz-Rodriguez and Choi, 2002, Jiang et al., 2003; Keskin et. al.,
2003; Xiong et al., 2007; Sonmez et al., 2008; Jiang et al, 2009). In this study, NDVI
was evaluated two times each month from June to November using a FieldScout® Turf
Color Meter 500 NDVI (Spectrum Technologies, Inc., Aurora, IL, USA). The average of

two NDVI samples was recorded for each sub-plot.

Ball roll distance

In 1977, the United States Golf Association (USGA) introduced the Stimpmeter
to measure BRD as a means of assessing putting green speed (Beard, 1982; Oatis, 1990).
A standard USGA Stimpmeter is 0.9 m in length and has a notch located 76 cm from the
beveled end (Radko, 1980). The notch is designed to release a golf ball when the
instrument is raised to 20 degrees above ground level (Radko, 1980). BRD of turf
research plots is difficult to assess with a standard USGA Stimpmeter because of typical
plot lengths; therefore, a modified Stimpmeter has been developed for use on small-plot
research areas (Lodge, 1992; Gaussoin et al., 1995).

In this study, BRD was measured with a modified Stimpmeter, which measured
19 cm from ball notch to beveled end. BRD was determined for each sub-plot by rolling
three golf balls in one direction, rolling them in the opposite direction, and determining
the average distance traveled. BRD was assessed once monthly, June through October, in

2012 and 2013.
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Surface firmness

Firmness of putting green surface was evaluated once monthly, June through
November, in 2012 and 2013. SF levels were assessed via the TruFirm system (United
States Golf Association, Far Hills, NJ, USA) by placing the instrument on the putting
green surface, raising the plunger to its most extended level, and releasing the plunger,
allowing the attached stainless steel hammer to penetrate the putting green surface. This
system measures surface firmness as the depth of penetration that the hammer travels into
the green. Lower penetration depths correspond to firmer putting green surfaces. The

average of two SF samples was recorded for each sub-plot.

Results
Turf quality

There were 1,008 observations for TQ during the two-year study. Two interaction
effects [(time X year X cultivar) and (time x year x fungicide program)] and one main
effect (cultural practice) exhibited F-values > 4.0 and significantly affected mean TQ

(Table 2.1). These effects are discussed in following sections.
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Table 2.1  ANOVA for mean turf quality (TQ) on Champion and MiniVerde
ultradwarf bermudagrass in Starkville, MS from June to November in 2012

and 2013.

Source DF F-value Pr>F
Rep 2 — —
Cultivar (Cv) 1 70.02 0.014
Rep x Cv, Error 1 2  —
Year (Y) 1 138.9 0.0003
Y x Cv 1 0.75 0.4343
Rep(Cv x'Y), Error 2 4 DR BRI
Cultural Practice (P) 6 22.4 <0.0001
P xCv 6 1.44 0.2205
PxY 6 2.4 0.0415
PxY xCv 6 1.13 0.3578
Rep(Y x Cv x P), Error 3 48 —_—

Fungicide Program (F) 1 159.51 <0.0001
F xCv 1 4.16 0.0461
FxY 1 53.22 <0.0001
FxY xCyv 1 1.21 0.2768
FxP 6 4.04 0.002

FxCvxP 6 1.22 0.3081
FxYxP 6 1.62 0.1591
FxYxCvxP 6 0.67 0.6704
Rep(F XY x Cv x P), Error 4 56 PR

Time (T) 5 729.64 <0.0001
T xCv 5 17.58 <0.0001
TxY 5 67.95 <0.0001
TxY xCv 5 33.21 <0.0001
TxP 30 3.17 <0.0001
TxCvxP 30 1.99 0.0016
TxYXxP 30 2.25 0.0002
TxYxCvxP 30 1.52 0.0386
TxF 5 6.89 <0.0001
TxFxCv 5 0.16 0.9757
TxYXxF 5 12.4 <0.0001
TxYxCvxF 5 1.57 0.1653
TxPxF 30 0.61 0.9508
TxCvxPxF 30 0.66 0.9168
TxYXxPxF 30 1.15 0.2647
TxYxCvxPxF 30 0.6 0.9551
Error 5 560 — —
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Time by year by cultivar interaction effect

An interaction among time, year, and cultivar significantly (p < 0.0001, f=33.21)
affected mean TQ on nine of twelve dates in 2012 and 2013 (Table 2.1). During the
months of June, August, September, October, and November of 2012, mean TQ of
MiniVerde was 10, 10, 15, 24, and 11% greater, respectively, than Champion (Fig. 2.1).
In 2013, during the months of June, July, August, and September, mean TQ of

MiniVerde was 22, 14, 15, and 12% greater, respectively, than Champion (Fig. 2.1).
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Time by year by fungicide program interaction effect

A significant (p < 0.0001, f= 12.4) interaction occurred among time, year, and
fungicide program on eight of twelve dates in 2012 and 2013 (Table 2.1). During the
months of September, October, and November of 2012, applications of seasonal
fungicides increased mean TQ by 4, 4, and 6%, respectively (Fig. 2.2). In 2013, during
the months of June, July, September, October, and November, seasonal fungicide
applications resulted in mean TQ increases of 20, 12, 5, 16, and 5%, respectively (Fig.

2.2)
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Cultural practice main effect

Mean TQ was significantly (p <0.0001, /= 22.4) affected by cultural practice
treatments across all rating periods in 2012 and 2013 (Table 2.1). The VM control
treatment was inferior to other treatments in the study, with respect to mean TQ (Fig.
2.3). Less-aggressive VM + SL, VM + SP, and VM + SC treatments significantly
increased mean TQ values by 8, 8, and 9%, respectively, compared to VM (Fig. 2.3).
The least-aggressive, infrequently applied SL, SP, and SC treatments were superior and

resulted in significant mean TQ increases of 19, 17, and 19%, respectively, compared to

VM (Fig. 2.3).
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Figure 2.3  Mean turf quality (TQ) response to cultural management practices on
Champion and MiniVerde ultradwarf bermudagrass managed with and
without applications of seasonal fungicides in Starkville, MS in 2012 and

2013.

Bars with the same letter are not significantly different at p < 0.05, based on differences
of least squares means.

Normalized Difference Vegetation Index

There were 1,008 observations for NDVI during the two-year study. In
consideration of F-values, one interaction effect (time % year x cultivar) and two main

effects (cultural practice) and (fungicide program) are discussed (Table 2.2).
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Table 2.2 ANOVA for mean normalized difference vegetation index (NDVI) on
Champion and MiniVerde ultradwarf bermudagrass in Starkville, MS
from June to November in 2012 and 2013.

Source DF F-value Pr>F
Rep 2 — —
Cultivar (Cv) 1 2.16 0.2798
Rep x Cv, Error 1 2 — —
Year (Y) 1 1.66 0.2667
Y x Cv 1 1.2 0.3341
Rep(Cv x'Y), Error 2 4 — _
Cultural Practice (P) 6 8.51 <0.0001
P xCv 6 0.5 0.8083
PxY 6 0.62 0.712
PxY xCv 6 0.67 0.6744
Rep(Y x Cv x P), Error 3 48 —

Fungicide Program (F) 1 18.98 <0.0001
F xCv 1 10.89 0.0017
FxY 1 1.72 0.1949
FxY xCv 1 0.19 0.6663
FxP 6 2.38 0.0408
FxCvxP 6 1.51 0.1921
FxYxP 6 0.38 0.8902
FxYxCvxP 6 0.15 0.9887
Rep(F x'Y x Cv x P), Error 4 56 —

Time (T) 5 1438.25 <0.0001
TxCv 5 9.18 <0.0001
TxY 5 248.24 <0.0001
TxY xCv 5 5.41 <0.0001
TxP 30 1.81 0.0059
TxCvxP 30 1.07 0.3732
TxYxP 30 1.41 0.0762
TxYxCvxP 30 2.16 0.0004
TxF 5 2.14 0.0595
TxFxCv 5 0.91 0.4722
TxYxF 5 2.81 0.0161
TxYxCvxF 5 0.44 0.8181
TxPxF 30 0.33 0.9997
TxCvxPxF 30 0.64 0.9355
TxYxPxF 30 0.64 0.9355
TXxYxCvxPxF 30 0.83 0.7237
Error 5 560 — —
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Time by year by cultivar interaction effect

An interaction among time, year, and cultivar significantly (p < 0.0001, f=5.41)
affected mean NDVI on five of twelve dates in 2012 and 2013 (Table 2.2). During the
months of July 2012 and June and November 2013, mean NDVI of MiniVerde was 2, 3,
and 4% greater, respectively, than Champion (Fig. 2.4). Mean NDVI of Champion was 2

and 5% greater than MiniVerde in September and October 2012, respectively (Fig. 2.4)
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Cultural practice main effect

Cultural practice treatments significantly (» < 0.0001, f= 8.51) affected mean
NDVI across all rating periods in 2012 and 2013 (Table 2.2). The VM control treatment
performed most poorly in the study, with respect to mean NDVI (Fig. 2.5). Less-
aggressive VM + SL, VM + SP, and VM + SC treatments resulted in significant mean
NDVI increases of 2, 3, and 2%, respectively, compared to VM (Fig. 2.5). The least-
aggressive, infrequently applied SL, SP, and SC treatments were superior and increased

mean NDVI values by 6, 5, and 5%, respectively, compared to VM (Fig. 2.5).
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Figure 2.5  Mean normalized difference vegetation index (NDVI) response to cultural
management practices on Champion and MiniVerde ultradwarf
bermudagrass managed with and without applications of seasonal
fungicides in Starkville, MS in 2012 and 2013.

Bars with the same letter are not significantly different at p < 0.05, based on differences
of least squares means.
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Fungicide program main effect
Fungicide program significantly (p < 0.0001, = 18.98) affected mean NDVI
(Table 2.2). Applications of seasonal fungicides increased mean NDVI by 1% compared

to no fungicide treatments (Fig. 2.6).
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Figure 2.6 ~ Mean normalized difference vegetation index (NDVI) response to seasonal
fungicide program on Champion and MiniVerde ultradwarf bermudagrass
in Starkville, MS in 2012 and 2013.

Bars with different letters are significantly different at p < 0.05, based on differences of
least squares means.
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Ball roll distance

During the two-year study, 840 stimpmeter readings were taken. In consideration
of F-values, two interaction effects [(time X year) and (time X cultivar)] and one main

effect (fungicide program) are presented (Table 2.3).
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Table 2.3  ANOVA for mean ball roll distance (BRD) on Champion and
MiniVerde ultradwarf bermudagrass in Starkville, MS from June to
November 2012 and 2013.

Source DF F-value Pr>F
Rep 2 — —
Cultivar (Cv) 1 6.21 0.1304
Rep x Cv, Error 1 2 — —
Year (Y) 1 29.55 0.0056
Y x Cv 1 1.29 0.3193
Rep(Cv x'Y), Error 2 4 e —_—
Cultural Practice (P) 6 1.36 0.2489
P xCv 6 0.43 0.8562
PxY 6 1.62 0.1621
PxY xCv 6 0.86 0.5331
Rep(Y x Cv x P), Error 3 48 — —
Fungicide Program (F) 1 8.63 0.0048
F xCv 1 0.46 0.4998
FxY 1 0.67 0.4156
FxY xCv 1 0.27 0.6048
FxP 6 1.29 0.2787
FxCvxP 6 2 0.0818
FxYxP 6 1.3 0.2709
FxYxCvxP 6 3.2 0.0093
Rep(F xY x Cv x P), Error 4 56 — —
Time (T) 5 126.45 <0.0001
TxCv 5 9.26 <0.0001
TxY 5 100.12 <0.0001
TxY xCv 5 3.59 0.0068
TxP 30 0.95 0.5286
TxCvxP 30 1.12 0.3129
TxYxP 30 0.6 0.9322
TxYxCvxP 30 0.88 0.6349
TxF 5 1.05 0.3801
TxFxCv 5 1.62 0.1676
TxYxF 5 2.32 0.0566
TxYxCvxF 5 0.34 0.8504
TxPxF 30 1.49 0.0662
TxCvxPxF 30 0.83 0.6968
TxYxPxF 30 1.17 0.2625
TXYxCvxPxF 30 1.27 0.1789

Error 5 560 — _
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Time by year interaction effect

A significant (p < 0.0001, f= 100.12) interaction occurred between time and year
in the study (Table 2.3). Although this interaction effect is highly significant and has a
great F-value, it is not presented in detail because changes in BRD are expected to occur
across different weather and environmental conditions (Fig. D.1) (Rist and Gaussoin,

1997).

Time by cultivar interaction effect

Mean BRD was also affected by a significant (p < 0.0001, /= 9.26) interaction
between time and cultivar (Table 2.3). Champion outperformed MiniVerde at each time,
with respect to mean BRD (Fig. 2.7). Mean BRD on Champion was 0.9, 87.2, 10.2, 9.3,
and 14.8 cm greater than MiniVerde during the months of June, July, August, September,

and October, respectively (Fig. 2.7)
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Figure 2.7  Mean ball roll distance (BRD) response to cultivar selection on ultradwarf
bermudagrass managed with and without applications of seasonal
fungicides in Starkville, MS From June to October in 2012 and 2013.
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Fungicide program main effect
Fungicide program significantly (p = .0048, /= 8.63) affected mean BRD (Table

2.3). Applications of seasonal fungicides reduced mean BRD 3.0 cm compared to no

fungicide treatments (Fig. 2.8).
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Figure 2.8  Mean ball roll distance (BRD) response to seasonal fungicide program on
Champion and MiniVerde ultradwarf bermudagrass in Starkville, MS in
2012 and 2013.

Bars with different letters are significantly different at p < 0.05, based on differences of
least squares means.
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Surface Firmness

There were 1,008 observations for SF gathered during the two-year study. Two
interaction effects [(cultivar x time) and (year X time)] and two main effects (cultural
practice) and (fungicide program) significantly affected mean SF and exhibited F-values

> 4.0 (Table 2.4). These effects are discussed in following sections.
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Table 2.5 ANOVA for mean surface firmness (SF) on Champion and MiniVerde
ultradwarf bermudagrass in Starkville, MS from June to November

2012 and 2013.

Source DF F-value Pr>F
Rep 2 — —
Cultivar (Cv) 1 18.28 0.0506
Rep x Cv, Error 1 2 — —
Year (Y) 1 240.01 0.0001
Y x Cv 1 5.94 0.0714
Rep(Cv x'Y), Error 2 4 e —_—
Cultural Practice (P) 6 11.2 <0.0001
P xCv 6 2.23 0.0558
PxY 6 1.69 0.1433
PxY xCv 6 1.41 0.2285
Rep(Y x Cv x P), Error 3 48 — —
Fungicide Program (F) 1 17.13 0.0001
F xCv 1 0 0.9607
FxY 1 0.09 0.7706
FxY xCv 1 0.46 0.4986
FxP 6 1.5 0.1965
FxCvxP 6 3.35 0.0069
FxYxP 6 0.76 0.6047
FxYxCvxP 6 0.52 0.7886
Rep(F xY x Cv x P), Error 4 56 — —
Time (T) 5 52.69 <0.0001
TxCv 5 5.71 <0.0001
TxY 5 71.09 <0.0001
TxY xCv 5 2.02 0.0744
TxP 30 1.79 0.0068
TxCvxP 30 0.99 0.485
TxYxP 30 3.31 <0.0001
TxYxCvxP 30 1.07 0.3615
TxF 5 0.54 0.7437
TxFxCv 5 0.58 0.7179
TxYxF 5 0.65 0.6617
TxYxCvxF 5 1.06 0.3822
TxPxF 30 0.97 0.508
TxCvxPxF 30 1.04 0.4094
TxYxPxF 30 0.76 0.8213
TXYxCvxPxF 30 0.58 0.9672
Error 5 560 — —
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Time by cultivar interaction effect

An interaction between time and cultivar significantly (p < 0.0001, f=5.71)

affected mean SF (Table 2.4). MiniVerde was significantly firmer than Champion

throughout the study, with respect to mean SF (Fig. 2.9). MiniVerde was 2, 5, 5, 6, 5,

and 5% more firm than Champion during June, July, August, September, October, and

November, respectively (Fig. 2.9).
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Figure 2.9  Mean surface firmness (SF) response to cultivars selection on ultradwarf

bermudagrass managed with and without applications of seasonal
fungicides in Starkville, MS from June to November in 2012 and 2013.

Time by year interaction effect

Mean SF of Champion and MiniVerde ultradwarf bermudagrass turf was

significantly (p < 0.0001, /= 71.09) affected by an interaction between time and year

(Table 2.4). With the exception of October, mean SF was significantly greater in 2013
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than 2012. During the months of June, July, August, September, and November, mean
SF was 12, 11, 7, 4, and 5% more firm in 2013 than 2012 (Fig. 2.10). Firmness was
increased 9% from June to November in 2012 and 1% during the same period in 2013

(Fig. 2.10).
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Figure 2.10 Mean surface firmness (SF) of Champion and MiniVerde ultradwarf
bermudagrass managed with and without applications of seasonal
fungicides in Starkville, MS from June to November in 2012 and 2013.

Cultural practice main effect

Cultural practice treatments significantly (p < 0.0001, /= 11.2) affected mean SF
across all rating periods in 2012 and 2013 (Table 2.4). With respect to mean SF, VM
treatments were the firmest, followed by the less-aggressive VM + SL and VM + SC
treatments (Fig. 2.11). VM + SP treatments were significantly softer than VM, VM +

SL, and VM + SC treatments, but firmer than the least-aggressive, infrequent SL, SP, and
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SC cultural practice treatments (Fig. 2.11). In consideration of the SL, SP, and SC
treatments, SL resulted in softest putting green surfaces with respect to mean SF (Fig

2.11).
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Figure 2.11 Mean surface firmness (SF) response to cultural management practices on
Champion and MiniVerde ultradwarf bermudagrass managed with and
without applications of seasonal fungicides in Starkville, MS in 2012 and
2013.

Bars with the same letter are not significantly different at p < 0.05, based on differences
of least squares means.
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Fungicide program main effect
Mean SF was significantly (p < 0.0001, /= 17.13) affected by levels of seasonal
fungicide program (Table 2.4). Seasonal fungicide applications decreased firmness by

1% compared to no fungicide treatments (Fig. 2.12).
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Figure 2.12 Mean surface firmness (SF) response to seasonal fungicide program on
Champion and MiniVerde ultradwarf bermudagrass in Starkville, MS in
2012 and 2013.

Bars with different letters are significantly different at p < 0.05, based on differences of
least squares means.
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Discussion

Effects of cultural management practices, cultivar selection, and applications of
seasonal fungicide programs on health and playability of ultradwarf bermudagrass turf
were demonstrated in this study. Turf health was monitored as TQ and NDVI, and
playability was assessed as BRD and SF. Cultural management practices were different
with respect to TQ, NDVI, and SF whereas cultivar selection and applications of seasonal
fungicides differed across TQ, NDVI, SF, and BRD.

Less-aggressive, infrequently applied SL, SP, and SC treatments were the best
cultural management practices with respect to TQ and NDVI. Once monthly
incorporations of SL, SP, and SC into weekly VM regimes resulted in TQ and NDVI
values that were slightly decreased compared SL, SP, and SC treatments, but were better
than TQ and NDVI values within VM treatments. In consideration of SF evaluations,
SL, SP, and SC cultural management practices provided least desirable outcomes among
all treatments in the study. As frequency of application increased with VM + SL, VM +
SP, and VM + SC treatments, SF was significantly increased. Standard applications of
weekly VM were the best cultural management practices with respect to SF. Although
statistically significant, these SF values may not provide perceptible differences to
golfers, and are possibly similar with respect to putting green playability.

In consideration of ultradwarf bermudagrass cultivars, MiniVerde provided
superior TQ and SF results. Differences in SF are likely attributable to findings from a
previous study, which demonstrated that Champion produces thatch at a more rapid rate
than MiniVerde (Gray and White, 1999). Thatch is comprised of dead and decaying
plant material, which decreases SF upon accumulation (Linde et al., 2011). Furthermore,
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this provides a probable explanation for decreased TQ ratings because increased thatch
accumulations lead to increased scalping, disease occurrence, and insect damage (Gray
and White, 1999; Bevard, 2005; Vermeulen and Hartwiger, 2005; McCarty et al, 2007).
Champion provided a greater BRD compared to MiniVerde; however, on average,
differences were less than 15 cm. This does not present a practical effect on playability
because golfers cannot detect green speed differences of this amount (Karcher et al.,
2001). Results from NDVI evaluations were inconclusive, but suggest MiniVerde may
have enhanced early season (June and July) turf color and Champion may have better late
season (September and October) turf color. This concept has not been studied in detail,
but may be of importance in scenarios where golf events are held early or late in the year.
In such instances, a cultivar that has better green-up color or better color retention may be
desirable.

Applications of seasonal fungicides resulted in significantly greater TQ and NDVI
ratings compared to no seasonal fungicide applications. This difference was likely
related to occurrence of foliar diseases such as dollar spot and leaf spot, which were
readily observed August through November in 2012 and September through November in
2013 (Chapter III). Applications of seasonal fungicides resulted in decreased BRD
values compared to no applications of seasonal fungicides. Although significant
differences were observed, they were less than 15 cm, which is inconspicuous to golfers
(Karcher et al., 2001). Therefore, practical differences in playability between levels of
fungicide were not observed, with respect to BRD. A likely reasoning for the slight BRD
increase among sub-plots that did not receive applications of seasonal fungicides is a
disease related reduction in foliar plant material, resulting in reduced friction impact on
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ball roll; a concept previously studied (Busey and Boyer, 1997). Sub-plots that received
applications of seasonal fungicides were less firm than those that did not receive seasonal
fungicide applications. Similar to differences between cultural management practices,
the difference in depth of penetration between levels of fungicide was extremely narrow.
While this variance is statistically significant, practical significance is improbable; and
would unlikely warrant discontinued use of fungicides.

In consideration of plant health evaluations, TQ and NDVI, the best treatments
were less-aggressive, infrequently applied SL, SP, and SC cultural practices. VM + SL,
VM + SP, and VM + SC treatments had significantly reduced mean TQ and NDVI
ratings compared to SL, SP, and SC, but were significantly better than VM treatments.
Applications of seasonal fungicides significantly improved mean TQ and NDVI ratings,
compared to no fungicide applications. MiniVerde had a significantly greater mean TQ
than Champion; however, effects of cultivars on NDVI remain unclear.

With respect to BRD, none of the factors in this study had a practical influence.
The differences between cultivars and seasonal fungicide treatments were minimal, at
most; therefore, no conclusions were made for improved BRD. In consideration of SF,
weekly applications of cultural practice treatments should be conducted to achieve most
desirable SF levels. VM was the best treatment with respect to mean SF; however, less-
aggressive VM + SL, VM + SP, and VM + SC treatments delivered comparable results.
Additionally, with respect to mean SF, MiniVerde was a superior selection compared to
Champion. There are other ultradwarf cultivars available for selection and this study

provides evidence that SF differences may exist among them.
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In consideration of playability and health of ultradwarf bermudagrass putting
greens, management recommendations are made. Cultural practices should consist of
weekly applications of VM with incorporations of less-aggressive SL, SP, or SC practices
once each month. Fungicide applications should be conducted in consideration of host,
pathogen, and environment, to protect against turfgrass diseases. Ultradwarf
bermudagrass cultivar characteristics should be studied and considered prior to selection

for planting on golf greens.
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CHAPTER III
EFFECTS OF CULTURAL MANAGEMENT PRACTICE, CULTIVAR SELECTION,
AND SEASONAL FUNGICIDE PROGRAM ON FOLIAR DISEASES OF

ULTRADWARF BERMUDAGRASS PUTTING GREENS

Abstract

Ultradwarf bermudagrass is used as golf course putting green turf throughout the
southern U.S. Dollar spot, caused by Sclerotinia homoeocarpa F. T. Bennett, and leaf
spot, caused by Bipolaris cynodontis (Marig.) Shoemaker are foliar diseases that affect
health and aesthetics of ultradwarf bermudagrass putting greens. This two-year study
evaluated the impacts of cultural management practices, cultivar selection, fungicides,
and interactions of these factors on leaf spot and dollar spot of ultradwarf bermudagrass
managed at 3.2 mm height of cut. Less-aggressive, infrequent cultural practices,
including slice, spike, and scarify, applied once each month performed the best with
respect to mean leaf spot severity (LSS) and dollar spot counts (DSC). Treatments
consisting of incorporating these practices into weekly vertical mow regimes were not as
good as the aforementioned treatments, but were better than standard vertical mow
treatments. ‘MiniVerde’ displayed reduced LSS and DSC compared to ‘Champion’
throughout the study. Applications of fungicides significantly reduced mean LSS and

DSC.
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Introduction

Dollar spot, incited by Sclerotinia homoeocarpa F. T. Bennett, is a destructive,
widely distributed disease of numerous turfgrass species in the U.S. (Walsh et al., 1999;
Couch, 2000; Vargas, 1995; Smiley et al., 2005; Tomaso-Peterson and Perry, 2007). On
ultradwarf bermudagrass [Cynodon dactylon (L.) Pers. x C. transvaalensis Burtt-Davy]
golf greens and other closely mown turf (< 1.3 cm), dollar spot symptoms appear as
sunken patches of blighted grass, usually less than 5 cm in diameter (Goodman and
Burpee, 1991; Couch, 1995; Smiley et al., 2005). As dollar spot progresses, patches
coalesce to form larger areas of collapsed, affected turf (Couch, 1995; Smiley et al.,
2005; Tomaso-Peterson and Perry, 2007).

Leaf spot, caused by Bipolaris cynodontis (Marig.) Shoemaker, is another
damaging foliar disease of bermudagrass turf (Couch, 1995; Smiley et al., 2005; Tomaso-
Peterson and Young, 2010). Initial leaf symptoms appear as small, olive-green, pinpoint
lesions, which advance to greenish black colored blotches (Couch, 1995; Tani and Beard,
1997; Smiley et al., 2005). Numerous infections can lead to wilting and chlorosis of leaf
tissue (Couch, 1995; Tani and Beard, 1997; Smiley et al., 2005). Field symptoms appear
as irregularly shaped expanses of straw-colored turf, ranging from 5 cm to 1 m in
diameter, or greater (Couch, 1995; Tani and Beard, 1997; Smiley et al., 2005).

Historically, fungicide applications have supplied the most effective control for
dollar spot of turfgrass (Walsh et al., 1999). However, issues of fungicidal efficacy for
dollar spot control began in the 1960s with cadmium tolerance in S. homoeocarpa
isolates (Cole et al., 1968). Additionally, resistance of S. homoeocarpa to
benzimidazoles (Goldberg and Cole, 1973; Cole et al., 1974; Warren et al., 1974;
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Detweiler et al., 1983; Smiley et al., 2005), demethylation inhibitors (Golembiewski et
al., 1995), dicarboximides (Detweiler et al., 1983; Smiley et al., 2005), triazines
(Nicholson et al., 1971), and heavy metal-based fungicides (Cole et al., 1968; Massie et
al., 1968) have been documented.

Unlike dollar spot, limited information is available concerning chemical control
for leaf spot of bermudagrass (Couch; 1995; Smiley et al., 2005). Trials conducted in
Mississippi and Oklahoma disclosed inadequate success of numerous fungicides; only
two of nine fungicides evaluated consistently reduced leaf spot severity (LSS) (Payne and
Walker, 2014; Standish and Tomaso-Peterson, 2014; Tomaso-Peterson and Standish,
2014a; Tomaso-Peterson and Standish, 2014b).

Fungicide efficacy issues with dollar spot and leaf spot necessitate alternative
control measures. Such management approaches include manipulative fertility inputs
(Couch, 1995; Smiley et al., 2005; Tomaso-Peterson and Perry, 2007; Tomaso-Peterson
and Young, 2010), reduced duration and quantity of leaf wetness (Couch, 1995; Williams
et al., 1996; Turgeon, 2005; Giordano et al., 2012), and host resistant and tolerant cultivar
selection (Couch, 1995; Jo, 2005; Bonos and Weibel, 2008; Tomaso-Peterson and
Young, 2010). Restricted studies are available regarding tolerance and resistance among
ultradwarf bermudagrass cultivars.

Ultradwarf bermudagrasses produce excessive thatch (Hollingsworth et al., 2000;
Gregg and McCarty, 2004), which has been associated with increased disease pressure
(Cornman, 1952; Musser, 1960; Murray and Juska, 1977; Bevard, 2005; Turgeon, 2005;
Uddin et al., 2008). Popular management practices for thatch control include frequent
vertical mowings and sand topdressing applications (Rowland, 2011; Lowe, 2013). Plant
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injury is associated with vertical mowing (McCarty et al., 2007; Uddin et al., 2008);
however, little is known about the effect it has on occurrence of foliar diseases of
ultradwarf bermudagrass golf greens.

With consideration of current knowledge deficits, a study was conducted to assess
leaf spot and dollar spot response to cultivar selection, cultural management practice, and

fungicide applications on ultradwarf bermudagrass putting greens.

Materials and methods
Background management of research area

Research was conducted in Starkville, MS during 2012 and 2013 on four-year-old
ultradwarf bermudagrass grown on a 90:10 sand:peat root zone mix with a pH of 6.5
(Fig. A.1). Research plots were managed according to golf course standards. Mowing
events occurred daily at 3 to 4 mm height of cut with a Greensmaster® Flex™ 2100 walk-
behind greens mower (The Toro Company, Bloomington, Minnesota, USA). Irrigation
was supplied deep and infrequently to maintain moisture, promote vertical root growth,
and avoid drought stress.

Fertility supplied nitrogen at 293 kg ha™!, phosphorous at 98 kg ha™!, and
potassium at 342 kg ha™! yr'!. Primo MAXX® (trinexapac-ethyl, Syngenta, Greensboro,
NC, USA) was applied at 0.026 kg a.i. ha ! week ! during June, July, and August. Plots
were core aerified with a Procore® 648 (The Toro Company, Bloomington, MN, USA) on
18 Jun 2012 and 16 Jul 2013. Cores, 7.6 to 10.2 cm length, were removed with 1 cm
diameter hollow tines spaced 3.8 cm apart. Aerification events were followed by sand

topdressing and brushed with a drag mat made of cocoa fiber to fill surface voids.
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Experimental design and analysis

The study was arranged in a randomized complete block design with a split-plot
constraint with three replications of each cultivar (Fig. A.2). Ultradwarf cultivars used
were ‘Champion’ and ‘MiniVerde’. Cultural practices were main-plot (2.1 X 2.4 m)
factors and levels of fungicide were split plot (2.1 x 1.2 m) factors. Statistical analyses
were conducted with the MIXED procedure in SAS v. 9.3 (SAS Institute Incorporated,
Cary, NC, USA). Multiple comparisons were computed with least squares means for a
given effect when the F-value was > 4.0 and the F-ratio was significant at the 0.05 level.
The F-value of 4.0 was chosen to systematically screen statistically significant results for
practical significance, since the error degrees of freedom was large for many of the F-
tests. Numerous high-order interactions were statistically significant, but from a practical

standpoint, they were not meaningful.

Description and timing of treatment applications

There were two levels of fungicide in the study, either presence or absence of a
seasonal fungicide spray regime. In 2012 and 2013, initial fungicidal applications were
made early June with Honor (pyraclostrobin + boscalid, BASF, Research Triangle Park,
NC, USA) at 0.512 kg a.i. ha! and 0.342 kg a.i. ha™!, respectively. An application of
Interface (iprodione + trifloxystrobin, Bayer Crop Science, Research Triangle Park, NC,
USA) at 3.27 kg a.i. ha'and 0.198 kg a.i. ha™!, respectively, was performed in July. A
single application of Heritage (azoxystrobin, Syngenta, Greensboro, NC, USA) at 0.454
kg a.i. ha ! was made in August. Chipco Signature (Aluminum tris, Bayer Crop Science,
Research Triangle Park, NC, USA) tank-mixed with Fore (mancozeb, Dow

AgroSciences, Indianapolis, IN, USA), each at 1.83 kg a.i. ha™!,was applied in
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September, prior to a concluding fungicide application of Rubigan (fenarimol, Gowan
Co., Yuma, AZ, USA) at 0.382 kg a.i. ha™! in October.

Cultural practices were vertical mow (VM), vertical mow plus slice (VM + SL),
vertical mow plus spike (VM + SP), vertical mow plus scarify (VM + SC), slice (SL),
spike (SP), and scarify (SC). Cultural practice treatments were initiated 8 Jun 2012 and
12 Jun 2013 and terminated 14 Sep 2012 and 18 Sep 2013 (Table A.1, Fig. A.3)

Cultural practice treatments were applied with True-Surface® Greens Care
Collection inserts (Turfline Incorporated, Moscow Mills, MO, USA). VM was included
in the study as a control treatment to represent a management practice readily employed
by golf course superintendents. VM + SL, VM + SP, and VM + SC were combination
treatments included to determine the effect of once-monthly incorporated less-aggressive,
alternative cultural practices on foliar disease occurrence. SL, SP, and SC treatments
were applied once each month and were included to assess the effect of less frequent
cultural practice applications on foliar disease occurrence.

VM treatments were conducted weekly with the Vacu-Cutter™ (Fig. A.4) insert
in a bidirectional, perpendicular fashion at a depth of 4 mm and blades spaced 10 mm
apart. The Vacu-Cutter™ insert is composed of 45 stainless steel blades, each having 11
tungsten carbide tips. VM + SL, VM + SP, and VM + SC treatments were applied the
same as VM treatments except SL, SP, and SC applications were incorporated once each
month, in a unidirectional fashion with the Deep Slicer (Fig. A.5) at a depth of 19 mm
with blade spacing 40 mm apart, the Greens Spiker (Fig. A.6) at a depth of 19 mm and

spikes spaced 60 mm apart, and the Vacu-Scarifier™ (Fig. A.7) at a depth of 9.5 mm
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with 40 mm blade spacing, respectively. SL, SP, and SC treatments were applied once

each month, in a unidirectional manner as previously described.

Data collection

Turf plots were evaluated for symptoms of leaf spot and dollar spot every 7 to 14
days, from June to November, during natural epiphytotics. Uniformity in natural
infection of leaf spot and dollar spot across research plots eliminated the need for fungal
inoculum. LSS was assessed by a visual estimation of percent symptomatic area (0 —
100%) within each subplot. DSC was physically assessed as number of dollar spot foci

present in a given subplot.

Results
Leaf spot

Leaf spot was present during eight of the twelve rating months in the two-year
study. Mean LSS for all treatments in July 2012 was 2.1 + 0.6%, 3.4 + 1.3% in August,
5.3 + 1.4% in September, and 2.5 + 0.7% in October. In 2013, it was 1.0 = 0.5% in
August, 6.3 + 1.7% in September, 20.1 £ 2.5% in October, and 12.9 +2.2% in
November. Multiple significant effects were observed for mean LSS (Table 3.1).
However, in consideration of F-values, only two three-way interactions [(time X year X
fungicide program) and (time X fungicide program X cultivar)] and one main effect

(cultural practice) are deliberated (Table 3.1).
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Table 3.1

ANOVA for mean leaf spot severity (LSS) on Champion and

MiniVerde ultradwarf bermudagrass in Starkville, MS from June to

November in 2012 and 2013.

70

Source DF F-value Pr>F
Rep 2 — —
Cultivar (Cv) 1 47.37 0.0205
Rep x Cv, Error 1 2 — —
Year (Y) 1 25.76 0.0071
Y x Cv 1 1.31 0.3160
Rep(Cv x'Y), Error 2 4 e —_—
Cultural Practice (P) 6 8.85 <0.0001
P xCv 6 1.49 0.2001
PxY 6 2.72 0.0234
PxY xCv 6 0.34 0.9126
Rep(Y x Cv x P), Error 3 48 —

Fungicide Program (F) 1 56.59 <0.0001
F xCv 1 11.83 0.0011
FxY 1 7.89 0.0068
FxY xCv 1 1.63 0.2075
FxP 6 3.01 0.0128
FxCvxP 6 0.2 0.9762
FxYxP 6 1.14 0.3504
FxYxCvxP 6 1.35 0.2505
Rep(F xY x Cv x P), Error 4 56 —

Time (T) 5 47.5 <0.0001
TxCv 5 12.83 <0.0001
TxY 5 49.05 <0.0001
TxY xCv 5 1.31 0.2588
TxP 30 3.09 <0.0001
TxCvxP 30 1.54 0.0349
TxYxP 30 3.49 <0.0001
TxYxCvxP 30 0.5 0.9883
TxF 5 17.56 <0.0001
TxFxCv 5 7.55 <0.0001
TxYxF 5 15.54 <0.0001
TxYxCvxF 5 1.47 0.1992
TxPxF 30 2.03 0.0012
TxCvxPxF 30 1.96 0.0019
TxYxPxF 30 2.51 <0.0001
TXYxCvxPxF 30 1.34 0.1111
Error 5 560 — —




Time by year by fungicide program interaction effect

A significant interaction occurred among time, year, and fungicide program
throughout the two-year study (p < 0.0001, /= 15.54) (Table 3.1). During the months of
August, September, and October of 2012, seasonal fungicide applications resulted in 100,
87, and 96% mean LSS reductions, respectively (Table 3.2). In 2013, during the months
of September, October, and November, seasonal fungicide applications resulted in mean
LSS reductions of 85, 74, and 70%, respectively (Table 3.2)

Table 3.2  Mean leaf spot severity (LSS) as influenced by an interaction among time,

year, and fungicide program on Champion and MiniVerde ultradwarf
bermudagrass in Starkville, MS from June to November in 2012 and 2013.

2012 Jun Jul Aug Sep Oct Nov
Fungicide Program LSS
Absent 0.0 3.5 6.8 af 94a 4.7 a 0.0
Present 0.0 0.8 0.0b 1.2b 0.2b 0.0
2013
Fungicide Program
Absent 0.0 0.0 2.1 109 a 319a 199 a
Present 0.0 0.0 0.0 1.6b 8.4b 6.0 b

"Within each column and year, means followed by different letters are significantly
different at p < 0.05, based on differences of least squares means.

Time by fungicide program by cultivar interaction effect

Mean LSS was significantly affected by an interaction among time, fungicide
program, and cultivar (p < 0.0001, f=7.55) (Table 3.1). In the absence of a fungicide,
compared to Champion, mean LSS was significantly less on MiniVerde at all times
where significant differences occurred. During the months of August, September, and

October, when a fungicide was not applied, MiniVerde exhibited 100, 100, and 22% less
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mean LSS, respectively, than Champion (Table 3.3). Numerical differences occurred
when a fungicide was applied, but were not statistically significant.
Table 3.3  Mean leaf spot severity (LSS) as influenced by an interaction among time,

fungicide program, and cultivar selection on ultradwarf bermudagrass in
Starkville, MS from June to November in 2012 and 2013.

Fungicide Absent Jun Jul Aug Sep Oct Nov
Cultivar LSS
Champion 0.0 3.5 8.8af 204 a 20.7 a 9.9
MiniVerde 0.0 0.8 0.0b 0.0b 16.2b 10.0
Fungicide Present
Cultivar
Champion 0.0 0.8 0.0 2.8 5.0 2.7
MiniVerde 0.0 0.0 0.0 0.0 3.7 3.3

*Within each column and year, means followed by different letters are significantly
different at p < 0.05, based on differences of least squares means.

Cultural practice main effect

Cultural practice treatments significantly affected mean LSS across all rating
periods in 2012 and 2013 (p < 0.0001, f'=7.55) (Table 3.1). Mean LSS was greatest in
VM treatments at 9.25 = 1.7% (Fig. 3.1). Less-aggressive VM + SP, and VM + SC
treatments resulted in significant mean LSS reductions of 44 and 56%, respectively,
compared to the VM control treatment. Least-aggressive, infrequent SL, SP, and SC
cultural practice treatments exhibited mean LSS reductions of 83, 75, and 80%,

respectively, compared to the VM control treatment (Fig. 3.1).
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Figure 3.1  Mean leaf spot severity (LSS) response to cultural management practice on
Champion and MiniVerde ultradwarf bermudagrass managed with and
without applications of seasonal fungicides in Starkville, MS in 2012 and
2013.

Bars with the same letter are not significantly different at p < 0.05, based on differences
of least squares means.

Dollar spot

Dollar spot symptoms were observed during the months of September through
November 2012, and October and November 2013. In 2012, mean DSC for all
treatments was 1.14 & 0.45 in September, 7.79 &+ 1.36 in October, and 6.99 + 1.29 in

November. In 2013, mean DSC was 5.95 = 1.14 in October and 5.24 + 1.09 in
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November. In consideration of F-and P-values, one three-way interaction (time x year X
cultivar) and two main effects (cultural practice) and (fungicide program) are discussed

(Table 3.4).
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Table 3.5

ANOVA for mean dollar spot count (DSC) on Champion and

MiniVerde ultradwarf bermudagrass in Starkville, MS from June to

November in 2012 and 2013.

75

Source DF F-value Pr>F
Rep 2 — —
Cultivar (Cv) 1 129.14 0.0077
Rep x Cv, Error 1 2 — —
Year (Y) 1 291 0.1630
Y x Cv 1 9.43 0.0373
Rep(Cv x'Y), Error 2 4 e —_—
Cultural Practice (P) 6 6.39 <0.0001
P xCv 6 1.19 0.3260
PxY 6 0.59 0.7363
PxY xCv 6 1.19 0.3274
Rep(Y x Cv x P), Error 3 48 —

Fungicide Program (F) 1 45.54 <0.0001
F xCv 1 297 0.0903
FxY 1 0.01 0.9084
FxY xCv 1 2.00 0.1633
FxP 6 1.97 0.0862
FxCvxP 6 1.89 0.0992
FxYxP 6 1.14 0.3514
FxYxCvxP 6 0.45 0.8448
Rep(F xY x Cv x P), Error 4 56 —

Time (T) 5 77.62 <0.0001
TxCv 5 21.13 <0.0001
TxY 5 1.44 0.2065
TxY xCv 5 6.62 <0.0001
TxP 30 7.03 <0.0001
TxCvxP 30 1.34 0.0349
TxYxP 30 0.72 0.1119
TxYxCvxP 30 1.34 0.1117
TxF 5 20.07 <0.0001
TxFxCv 5 1.07 0.3759
TxYxF 5 0.77 0.5718
TxYxCvxF 5 1.00 0.4144
TxPxF 30 0.98 0.5018
TxCvxPxF 30 1.46 0.0545
TxYxPxF 30 0.87 0.6646
TXYxCvxPxF 30 0.57 0.9677
Error 5 560 — —




Time by year by cultivar interaction effect

A significant interaction occurred among time, year, and cultivar throughout the
two-year study (p < 0.0001, f= 6.62) (Table 3.4). Mean DSC was significantly less on
MiniVerde, compared to Champion, at all periods where differences occurred. During
the months of September, October, and November of 2012, MiniVerde exhibited 100, 82,
and 81% less mean DSC, respectively, than Champion (Fig. 3.2). In 2013, during the
month of October, mean DSC was 65% less on Miniverde, compared to Champion (Fig

3.2).
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Fungicide program and cultural practice main effects

Fungicide program (p < 0.0001, f=45.54) and cultural practice (p < 0.0001, =
6.39) treatments independently and significantly affected mean DSC (Table 3.4).
Seasonal fungicide applications resulted in 67% less mean DSC compared to no
fungicide treatments (Fig. 3.3). All cultural practice treatments were better than the VM
control treatment with respect to mean DSC (Fig. 3.4). Less-aggressive VM + SL, VM +
SP, and VM + SC treatments resulted in significant mean DSC reductions of 31, 49, and
71%, respectively, compared to VM treatment (Fig 3.4). Least-aggressive, infrequent
SL, SP, and SC cultural practice treatments exhibited mean DSC reductions of 93, 84,

and 84%, respectively, compared to the VM control treatment (Fig. 3.4).
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Figure 3.3  Mean dollar spot count (DSC) response to seasonal fungicide program on
Champion and MiniVerde ultradwarf bermudagrass in Starkville, MS in
2012 and 2013.

Bars with different letters are significantly different at p < 0.05, based on differences of
least squares means.
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Figure 3.4  Mean dollar spot count (DSC) response to cultural management practice on
ultradwarf bermudagrass turf managed at 3.2 mm in Starkville, MS.

Bars with the same letter are not significantly different at p < 0.05, based on differences
of least squares means.
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Discussion

Results from this study demonstrate effects of cultural management practices,
cultivar selection, and applications of seasonal fungicide programs on foliar diseases of
ultradwarf bermudagrass turf managed as a golf green. Limited information is available
regarding cultural management and cultivar selection treatment effects on foliar diseases
of ultradwarf bermudagrass; however, additional literature exists regarding their effects
on other turf species.

Differences were observed between ultradwarf bermudagrass cultivars with
respect to mean LSS and DSC. Compared to Champion, MiniVerde exhibited decreased
LSS and DSC throughout the study. These findings indicate that MiniVerde may have an
increased field tolerance to these two foliar diseases, compared to Champion. These
cultivars have not been subjects of previous evaluations for foliar diseases; however,
findings are similar to a study that demonstrated an increased susceptibility of
‘FloraDwarf’ to B. cynodontis when compared to ‘TifEagle’ and ‘TifDwarf’ cultivars
(Brecht et al., 2007).

Findings indicated that standard cultural management practices consisting of
weekly VM might not be ideal for foliar disease management of ultradwarf
bermudagrasses. Weekly VM treatments were inferior to less-aggressive and less
frequent alternative practices, with respect to mean LSS and mean DSC. Incorporating
SL, SP, or SC treatments only once each month to VM practices significantly reduced
mean LSS and mean DSC throughout the study. Once-monthly applications of SL, SP,

or SC were consistently among the best treatments with respect to mean LSS and DSC
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during the two-year study. These conclusions are consistent with previous research in
other turfgrass-pathogen pathosystems (McCarty et al., 2005; Uddin et al., 2008).
Applications of a seasonal fungicide program significantly reduced mean LSS and
DSC. However, alternative control measures must be considered in a valued disease
management program. Two options to consider are cultivar selection and cultural
management practice. MiniVerde was superior to Champion in this study and may be an
option for alternative dollar spot and leaf spot control in ultradwarf bermudagrass
management. In consideration of cultural management practices, currently used methods
may be altered to provide improved foliar disease control. Results from this study
suggest incorporating SL, SP, or SC practices once each month to reduce levels of foliar
diseases. Furthermore, the best management practices, based on these findings, include

SL, SP, or SC applications once each month.
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CHAPTER IV
IDENTIFICATION AND CHARACTERIZATION OF ECTOTROPHIC ROOT-
INFECTING FUNGI ASSOCIATED WITH SUMMER DECLINE OF

ULTRADWARF BERMUDAGRASS PUTTING GREENS

Abstract

Ultradwarf bermudagrass cultivars, in the Deep South region of the U.S., often
exhibit symptoms of decline during late summer and early fall months. Root systems
appear diminutive in size, brittle, and discolored and are frequently colonized with dark,
runner hyphae that are characteristic of ectotrophic root-infecting (ERI) fungi. Based
upon previous reports, spring dead spot (Ophiosphaerella spp.) and bermudagrass decline
(Gaeumannomyces graminis var. graminis) are the only recognized diseases of
ultradwarf bermudagrasses caused by ERI fungi. Observations from this study led to the
theory that additional ERI fungi are associated with the late summer and early fall decline
of ultradwarf bermudagrass. Due to laborious and inconclusive identification efforts
associated with traditional diagnostic techniques, molecular-based strategies were
employed to test the hypothesis. A multilocus sequence analysis was performed on the
concatenated six-gene dataset of the representative Mississippi State University (MSU)-
ERI isolates and related taxa. Phylograms were erected using combined consensuses
from maximum likelihood and Bayesian inference analyses. The 26 MSU-ERI isolates

included in the analyses were identified as G. graminis var. graminis (n=3), G.
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paulograminis sp. nov. (n=7), Magnaporthiopsis incrustans (n=3), M. hawaiiensis sp.
nov. (n=1), M. cynodontis sp. nov. (n=4), M. taurocanis sp. nov. (n=5), Candidacolonium
cynodontis gen. nov. sp. nov. (n=2), and Pseudophialophora cynodontis sp. nov. (n=1).
Studies were conducted to determine optimum temperatures for in vitro mycelium

growth, which ranged from 26 to 30 C for novel ERI fungi.

Introduction

Ultradwarf bermudagrasses (Cynodon dactylon (L.) Pers. x C. transvaalensis
Burtt-Davy) are used throughout the southern U.S. as golf course putting green turfs. In
this setting, these grasses exhibit fine leaf textures, short internodes, high shoot densities,
and prostrate growing habits, all of which enable them to be tolerant of low mowing
heights (Guertal et al., 2001). A major weakness of ultradwarf bermudagrasses is a
decline of aesthetics and vigor during the late summer and early fall months in the Deep
South. This occurrence has been labelled by the general term ‘summer decline’.

Summer decline presents itself as a progression of symptomatology in field
settings. During onset of decline, turfgrass plants lose color and slight loss of foliage is
observed. As decline progresses, discolored areas become more pronounced and a
greater degree of thinning in the turfgrass canopy can be observed. In extreme instances,
large areas of turf are absent and bare soil remains (Fig. B.1). Root systems of affected
plants are often brown to black in color, diminutive in size, brittle, and colonized with
dark, runner hyphae (Figs. B2. And B.3). Upon closer inspection, simple and lobed
hyphopodia and growth cessation structures have been noted (Figs. B.4 — B.6). Each of

these structures is characteristic of ERI fungi (Clarke and Gould, 1993; Tredway, 2006).

87



Members of the ERI fungi are a soil-borne, root-infecting group of fungi
encompassing several genera that affect gramineous hosts (Tredway, 2006). These fungi
colonize plant roots via darkly pigmented, ectotrophic, robust runner hyphae (Tredway,
2006). Historically, this group of fungi has been reported to cause circular or patch-like
dieback within turfgrass stands and is considered the cause of some of the most
destructive turfgrass diseases in the U.S. (Landschoot and Jackson, 1990; Wetzel et al.,
1996).

ERI fungi, as an assemblage, encompass several genera including
Gaeumannomyces Arx and D. L. Olivier, Ophiosphaerella Spegazzini, and
Magnaporthiopsis J. Luo and N. Zhang (= Magnaporthe R. A. Krause and R. K.
Webster), which are housed in two families, Magnaporthaceae P. F. Cannon and
Phaeosphaeriaceae M. E. Barr, of the Ascomycota. ERI fungi are responsible for a
number of diseases on turfgrasses (Tredway, 2006). However, spring dead spot, caused
by O. herpotricha J. C. Walker, O. korrae (J. C. Walker and A. M. Smith) R. Shoemaker
and C. Babcock (= Leptosphaeria korrae J. C. Walker and A. M. Smith), and O. narmari
(J. C. Walker and A. M. Smith) Wetzel, Hulbuert, and Tisserat (= Leptosphaeria narmari
J. C. Walker and A. M. Smith), and bermudagrass decline, caused by G. graminis (Sacc.)
Arx and D. Olivier var. graminis, are the only two diseases that affect bermudagrass.
Additionally, M. incrustans (Landschoot and Jackson) J. Luo and N. Zhang (= G.
incrustans Landschoot and Jackson) has been isolated from bermudagrass roots;
however, its role in disease incitation has not been confirmed (Elliott, 1991).

Spring dead spot is among the most important diseases of hybrid bermudagrasses
in North America and Australia (Smiley et al. 2005; Perry, 2008). Symptoms appear as
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sunken, necrotic, bleached patches of turf that occur during the transitional period from
winter dormancy to spring green-up (Smiley et al., 2005; Perry, 2008). Symptoms
regularly recur in the same areas for consecutive years; however, size and shape of
desiccated turf may be variable (Perry, 2008). The fungus produces dark brown, septate
mycelial mats on roots and stolons of infected plants, and ascocarps are occasionally
observed on dead tissues (Smiley et al., 2005).

Bermudagrass decline is particularly damaging to Cynodon spp. managed as golf
and bowling greens (Smiley et al., 2005). Symptoms are most prevalent during warm to
hot periods of summer and fall when humidity levels are high (Elliott, 1991; Smiley et
al., 2005). Symptoms begin as irregular, chlorotic patches with chlorosis and necrosis
first observed on lower leaves. Foliar lesions are not present. Root systems of affected
plants are short and discolored with dark-colored lesions on the roots (Elliott and
Landschoot, 1991). G. graminis var. graminis produces dark brown to black, runner
hyphae on rhizomes, roots, and stolons of infected plants and, historically, has been
identified by the presence of deeply lobed hyphopodia, which are used to penetrate host
plant tissue (Smiley et al., 2005; Wetzel et al., 1996).

Two observations led to the concept that novel ERI fungal species are associated
with the decline of ultradwarf bermudagrass in late summer and early fall months. Those
observations were differences in field symptomatology and time of occurrence between
summer decline and spring dead spot, as well as presence of chiroid and crenately lobed
hyphopodia and growth cessation structures, which are not characteristic signs of G.
graminis var. graminis. Accurate identifications of ERI fungi are generally difficult and

time consuming via traditional diagnostic methods (Wetzel et al., 1996). With the
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exception of the previously discussed deeply lobed hyphopodia of G. graminis var.
graminis, the ectotrophs do not produce distinguishable features that allow for precise,
timely identification (Wetzel et al., 1996).

ERI fungi must be isolated from infected plant material and formation of
ascocarps must be induced for precise morphological identification. However,
production of ascocarps is often unsuccessful due to incompatible mating types or
attenuated biotypes. If correct mating types and biotypes are acquired, a period of four to
ten weeks is required for the production of identification structures (Wetzel et al., 1996).
Because of rigorous and rather demanding morphological identification measures,
numerous molecular-based identification strategies have been studied for identification of
ERI fungi.

The objective of this research was to employ molecular identification techniques
to explore the hypothesis that novel ERI fungal species are associated with the decline of

ultradwarf bermudagrasses during late summer and early fall months in the Deep South.

Materials and methods
Sample collection, fungal isolation, and long-term storage

Root materials of ultradwarf bermudagrass putting green samples (10.8 cm
diameter) submitted to the Mississippi State University (MSU)-Plant Disease Diagnostic
Laboratory were rinsed with distilled water to remove soil and organic material and
microscopically screened for presence of dark, runner hyphae, a characteristic sign of
ERI fungi. Roots that were colonized by these characteristic hyphal structures were cut
into 5 mm sections and surface disinfested with a 0.6% sodium hypochlorite solution plus

1 ml 99% ethanol in a New Brunswick Scientific Excella E24 Incubator Shaker Series
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(Thermo Fisher Scientific, Inc., Waltham, MA, USA) for 5 minutes. Disinfested root
samples were rinsed three consecutive times with sterile-distilled water for 5 minutes
each rinse. Surface disinfested roots were placed on sterile filter paper and allowed to
dry for one hour under a laminar flow hood.

Dried root samples were plated, at random, onto modified strength potato
dextrose agar (PDA) containing 6 g PDA and 15 g agar liter ' amended with 100 mg
chloramphenicol (dissolved in 2.5 ml ethanol) and 100 mg streptomycin sulfate
(dissolved in 5.0 ml sterile dH20). Plated root tissues were incubated at 25 C until
hyphal growth was observed protruding from the surface of the roots. Reduced
contamination among fungi was ensured by transferring apical tips of hyphal strands to
PDA (39 g liter ') at time of emergence. Axenic cultures were incubated at 25 C to allow
for maturation of the colonies. Fungal cultures that exhibited similar morphological traits
were grouped together and an illustrative sample from each group was chosen for
characterization and identification.

Fungal cultures were prepared for long-term storage via previously described
methods (Young et al., 2010; Gilley, 2013). Each isolate was grown on sterilized glass
fiber filter paper (Thermo Fisher Scientific, Inc., Waltham, MA, USA) placed atop PDA
(39 g liter "). Sub-cultured fungi were incubated at 25 C under 24 hour fluorescent light
for 14 days. Fully colonized glass fiber filter paper was removed from PDA, dried in a
laminar flow hood, cut into 3 mm? pieces, placed in 60 mm petri dishes wrapped with
parafilm (Sigma-Aldrich, Inc., Saint Louis, MO, USA), and subsequently stored at —20 C

for long-term storage.
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Genomic DNA extraction, PCR amplification, and sequencing

Genomic deoxyribonucleic acid (gDNA) was extracted from vibrant mycelium of
the representative pure colony (n = 139) of each group of morphologically similar fungi
via manufacturer’s instruction for the Fungi/Yeast Genomic DNA Isolation Kit (Norgen
Biotek Corp, Thorold, ON, Canada). Purity and concentration of extracted gDNA was
determined via a NanoDrop 2000/2000¢ (Thermo Fisher Scientific, Inc., Waltham, MA,
USA) by monitoring light absorbance at wavelengths of 260 nm and 280 nm. Desirable
samples were stored at —20 C to —80 C.

Preliminary screenings were conducted on all representative isolates in the study
to ensure their relatedness to known members of Magnaporthaceae and
Phaeosphaeriaceae. The screening process included amplification and sequencing of the
internal transcribed spacer (ITS) region of the ribosomal ribonucleic acid (rRNA) genes
and conducting a BLAST (Altschul et al., 1990) analysis on the resultant sequence (Table
B.1). Desirable samples (n = 29) were subjected to additional amplification and
sequencing of genes described by Zhang et al. (2011) to provide a more robust analysis of
their genetic relationships to known fungal species. Additional genes included the 28S
large subunit (LSU) rRNA gene, the 18S small subunit (SSU) rRNA gene, a
deoxyribonucleic acid (DNA) replication licensing factor gene for minichromosome
maintenance complex component 7 (MCM?7), the largest subunit of RNA polymerase I1
gene (RPBI), and the translation elongation factor 1-alpha gene (TEF).

Polymerase chain reaction (PCR) was conducted with GoTaq® PCR Core
Systems (Promega Corp, Madison, WI, USA) in a MyCycler™ Thermal Cycler (Bio-Rad
Laboratories, Inc., Hercules, CA, USA) using cycling conditions adopted and modified
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from Zhang et al. (2011). ITS, LSU, SSU, and TEF'I PCR consisted of 1 ul of template
DNA at a concentration of 10 ng pl™! and 49 pl aliquots of a master mix containing 4 pl
of 25 mM magnesium chloride (MgCl2), 10 ul of 5X GoTaq® Reaction Buffer, 1 pl of 10
mM deoxynucleotide triphosphates (ANTPs), 0.25 ul of GoTaq® DNA Polymerase, 3 ul
of forward and reverse primers, each at 5 uM concentration, and 27.75 ul of nuclease and
protease free water (Sigma-Aldrich, Inc., Saint Louis, MO, USA).

Optimization of MCM7 and RPB1 PCR resulted in different master mixes than
those used for ITS, LSU, SSU, and TEFI. Individual MCM?7 and RPB1 PCR consisted of
1 pl of template DNA at a concentration of 10 ng ul™! and 49 ul aliquots of a master mix
containing 4 ul of 25 mM MgCla, 10 ul of 5X GoTaq® Reaction Buffer, 1 pl of 10 mM
dNTPs, 0.25 pl of GoTaq® DNA Polymerase, 8 ul of forward and reverse primers, each
at 5 uM concentration, and 17.75 pul of nuclease and protease free water.

Cycling conditions for ITS, LSU, SSU, TEFI, and MCM?7 included a primary
denaturation step at 95 C for 2 minutes followed by 35 cycles consisting of denaturation
for 1 minute at 95 C, annealing for 1 minute at 57 C, and extension for 1 minute at 72 C.
Cycles were concluded with a final extension period of 10 minutes at 72 C. Cycling
conditions for RPB1 were identical except for an increased annealing temperature, from
57 C to 58 C, and a ramp rate of 0.2 C sec”' between the 58 C annealing temperature and
the 72 C extension temperature. Amplified PCR products were visualized in 1.0%
agarose gels (Figs. B7 — B.14) prior to sequencing, which was conducted at MWG
Operon (Eurofins Genomics, Huntsville, AL, USA). PCR primers used for amplification

reactions were defined by previous research and are provided in Table 4.1.

93



o8 sowrid Jurpuodsariod sy ym payIdwe SI9OBIRYD SPNOJ[INU JO ISqUINN

"2UIS0340 10 SuIueNng ISYHId dIe Jey) 90udNbas dprod[ONUOSI[O UI Sastq SNOUIFOLIU JO AFIUII];

“eydye-1 10j0e,] uone3uo[q uone[suel], = 7,/71 ‘I SeIOWA[0d VN = /gJY L yuduodwo)) xo[dwo)) soueudjure|y
SWOSOWOIYITUIA = /DN ‘Nungng [[ewiS = NSS yungng d931e = ST “19oedg paqLIOsueI], [BUINU] = S]] TO0] dAUD),

6CEL paurquio))
$00¢ 008 LVADLALDIDVIODIOVIOIVIVOLY H8ICC—1dd
‘Kopyong pue Jouyay 6601 LA
6661 L19 LLAVDLODAVOHDDADDADD  A€86-144
‘uyoy pue duoqie)
£00T e 39 AInqapse) 08 8y VIALVIOOLILLIODLNLVAIONDD D-1ddd 190
200T e 30 Auayjejy €8¢ DODALLAVOUDOADIADLIVD vV-1ddd
600T “'Te 32 PIuydS ¢1s LVOOOMOLIDDIODIOVIDDALLAVD 8rel
¢a9 —LINDIN LIWOW
600T “Te 39 NIuyds LSy DOUVVHLOAVDADLILOIDNIDV  60L—LINOIN
0661 et VVLLLLIDODVOOVIOVVILLD LdS
‘I91S9H pue SA[eS[IA ASS
oe61 Ml oL LOVOODLIOLLYDLLODLIOVL ATS
‘I01SOH pue SATBS[IA
0661 6°CS DIOLIOVVVDHDOHOVDHIOIL 281
‘SonweS pue Iouyay b6 nsT
S661 9°¢C¢ DDVVLLOVVODLIDIIOVLD IS71
‘Sponwreg pue Ruydy
0661 “T& 10 AMYM - 0sy ODLVIVDLLVLILODIDLOOL PSLI S1I
0661 “T& 10 AMYM 6'0¥ DOHVVOVVIDILDVVVVIOVVDD GS1I
0UAIRJY ¢S1910BIEYD (%) (,€—,5) douanbag 10wy Juwreu (S0
Jo# JUOIU0D DO JowL

"SOIPNYS 0130UF0[AYd JRINOJ[OW UT PIsN 100] XIS Y} JO SUONdLIOSOp pue SIIeW JB[NOJ[ON  ['§ J[qel

94



Sequence data and phylogenetic analyses

Individual gene sequence alignments were conducted with MUSCLE (Edgar,
2004) with default parameter settings as applied in MEGAG6 (Tamura et al., 2013) and
adjusted manually where necessary. Analyses were performed on individual gene
alignments and datasets of concatenated gene alignments using Cryphonectria parasitica
(Murrill) M. E. Barr as an outgroup taxon. Phylogenetic trees were estimated by
Bayesian inference (BI) as implemented in MrBayes v3.1.2 (Huelsenbeck and Ronquist,
2001; Ronquist and Huelsenbeck, 2003), and maximum likelihood (ML) as implemented
in MEGAG. The p-distance, which presents the percentage of differences among
nucleotides of two sequences, was used to calculate pairwise distances.

BI analyses were projected with the Markov chain Monte Carlo method in
MrBayes v3.1.2 by running four simultaneous chains for 1 x 107 generations, sampling
every 100 generations, and using default priors. Once average standard deviation of split
frequencies remained < 0.01 and likelihood scores reached an asymptotic value, a given
run was considered to have reached convergence. All trees sampled prior to convergence
were discarded. Support for nodes and parameter estimates were evaluated from a
majority consensus of the last 75,000 trees post-convergence.

ML analyses were conducted with the appropriate evolutionary nucleotide
substitution model. One thousand pseudoreplicates were employed to assess branch

support.
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Optimum temperature for in vitro growth

Optimal growing temperatures were determined via temperature-regulated
incubation studies as described by Perry (2008). Representative isolates were sub-
cultured by transferring 2 mm diameter hyphal plugs from 10-day old cultures grown on
PDA (39 g liter ') amended with streptomycin sulfate and chloramphenicol. Hyphal
plugs were placed, mycelium-side down, onto fresh PDA (39 g liter ") and incubated at
temperatures of 18, 25, 32, and 38 C in darkness (Figs. B.15 and B.16). Each isolate was
replicated three times at each temperature. Following 7-day incubation, measurements of
radial growth (mm) were taken at four perpendicular points for each replicate (Figs. B.17
—B.20). Radial growth measurements of representative isolates were analyzed using the
GLM procedure of SAS (SAS version 9.3; SAS Institute, Cary, NC, USA), and optimal
growth temperatures were determined by the following quadratic equation: x = (-1 x Bi)

/(2 % B2), where Bi1 = linear term and B2 = quadratic term.

Cultural characteristics

Fungal isolates were grown on PDA for cultural characteristic studies. Colony
colors were named according to the Inter-Society Colour Council of America (I.S.C.C.)
and the National Bureau of Standards (N.B.S) (Rayner, 1970). Microscopic
measurements and examinations were taken from slides of fungi mounted in either sterile

distilled water or lactophenol.
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Results
Fungal isolates

Twenty-six ERI fungal isolates from ultradwarf bermudagrass were used in this
study (Figs. B.21 — B.72). Three isolates identified as M. poae, TAP35 (Figs. B.73 and
B.74) and TAP41 (Figs. B.75 and B.76) from creeping bentgrass (Agrostis stolonifera L.)
and SPKBG7 (Figs. B.77 and B.78) from Kentucky bluegrass (Poa pratensis L.), were
provided by L. P. Tredway to serve as recognized, positive controls (Tredway, 2006).
Forty isolates from previous studies performed by Thongkantha et al. (2009), Zhang et al.
(2011), Luo and Zhang (2013), and Luo et al. (2014) were utilized as reference taxa. Six
DNA sequences were included for each isolate, resulting in 414 sequences in the

combined dataset for this study (Table 4.2).
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Multilocus phylogenetic analyses and sequence data

There were 7,329 nucleotide characters included in the concatenated, six-gene
dataset, of which 1,960 (26.7%) were parsimony informative (Table 4.1). Ambiguously
aligned regions and gaps were eliminated prior to phylogenetic analyses. The general
time reversible nucleotide substitution model with a discrete Gamma distribution rate
variation across sites and a proportion of invariable sites (GTR + G + I) was selected and
used for ML and BI analyses (Table B.2) (Tavare, 1986). BI and ML results were similar
with respect to tree topology. ML bootstrap proportions > 50% and BI posterior

probabilities > 0.95 are provided along with the ML tree (Fig 4.1).
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Figure 4.1  Maximum Likelihood phylogram based on the concatenated, six-gene (ITS,
LSU, SSU, MCM7, TEF1, and RPBI) sequence dataset.

Boldfaced branches indicate BI posterior probabilities > 0.95 and ML bootstrap values > 50% are presented

above internodes. Sequences of isolates displayed in red were generated from this study. All other data
were obtained from public databases. Cryphonectria parasitica was chosen as the outgroup taxon.
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The two analyses, BI and ML, separated all ingroup taxa into two main clades, A
and B (Fig. 4.1). Clade A, which was supported by ML and BI analyses, included four
species of Ophioceras and Pseudohalonectria lignicola. Clade B was highly supported
and consisted of species belonging to Gaeumannomyces, Magnaporthiopsis,
Buergenerula, Nakataea, Omnidemptus, Candidacolonium, Pseudophialophora, and
Pyricularia.

Within clade B, three varieties of the type species of Gaeumannomyces, G.
graminis, and a new species were grouped as subclade C. Four species of
Magnaporthiopsis and three novel species constituted subclade D. Subclades E and F
were comprised of three strains of Nakataea oryzae and two strains of a new species,
respectively. Three species of Pseudophialophora and one novel species were grouped
as subclade G. Pyricularia grisea and P. oryzae constituted subclade H.

Pairwise distance comparisons of species of Gaeumannomyces excluded G.
cylindrosporus, as it was not situated within subclade C (Fig. 4.1). In consideration of
the combined, six-gene dataset, interspecific pairwise distance comparisons ranged from
1.6 to 4.5%. The range in distance between isolate DR1—4, the type specimen of the new
species, and other species of Gaeumannomyces was 1.9 to 4.1% with a mean of 2.5%.
The mean interspecific distance within Gaeumannomyces was 2.7% (Fig. B.79).

Interspecific pairwise distance comparisons within Magnaporthiopsis averaged
2.4% with a range of 0.4 to 3.5%. Distances between type specimens of novel species
and established species in the genus ranged from 0.9 to 3.5% in the case of isolate KR10—

6, from 0.4 to 3.3% for isolate RS7-2, and from 0.4 to 3.2% for isolate RRFCHMP1-3.
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Mean distances for isolates KR10-6, RS7-2, and RRFCHMP1-3 were 2.2, 2.1, and
2.2%, respectively (Fig. B.80).

Interspecific pairwise distance comparisons within Pseudophialophora ranged
from 1.1 to 4.2%. The range in distance between isolate RW3—4, the type specimen of
the novel species, and other species within Pseudophialophora was 4.1 to 4.2% with a

mean of 4.1%. Mean interspecific distance for the genus was 2.5% (Fig. B.81).

Single-gene sequence data and phylogenetic analyses

Single gene datasets were aligned and analyzed to further assess the genetic
affinities among fungal species in the study. These evaluations were conducted to
determine topological concordance among genes used in the concatenated dataset and to

determine which genes provide influence to genetic relations observed in the multilocus

phylogeny.

Internal transcribed spacer region

Seven hundred eleven nucleotide characters were included in the ITS dataset,
among which 251 (35.3%) were parsimony informative (Table 4.1). Ambiguously
aligned regions and gaps were eliminated in phylogenetic analyses. The general time
reversible nucleotide substitution model with a discrete Gamma distribution rate variation
across sites (GTR + G) was selected and used for ML analyses (Table B.3) (Tavare,
1986). ML tree topology and ML bootstrap probabilities > 75% are provided (Fig B.82).
With exceptions for Pseudohalonectria lignicola, G. cylindrosporus, and Omnidemptus

affinis, clades A and B were supported by the ML tree constructed with the ITS dataset.
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Subclades C, D, E, F, G, and H were well supported by ML bootstrap values of 95, 99,
99, 99, 84, and 99%, respectively.

G. cylindrosporus was not included in pairwise distance comparisons of
Gaeumannomyces spp. because of its distal location to the genus with respect to the
multilocus phylogeny (Fig. 4.1). In consideration of the ITS dataset, interspecific
pairwise distance comparisons ranged from 1.2 to 2.8% with a mean of 1.9%. The range
in distance between isolate DR1-4, the type specimen of the novel species, and other
species of Gaeumannomyces was 1.6 to 2.6% with a mean of 2.0% (Fig. B.83).

Interspecific pairwise distance comparisons within Magnaporthiopsis ranged
from 0.2 to 5.7%. Differences between type specimens of novel species and established
species in the genus ranged from 0.2 to 5.5% for isolate KR10-6, from 0.8 to 5.5% for
isolate RS7-2, and from 0.4 to 5.3% for isolate RRFCHMP1-3. Mean differences
between recognized species of Magnaporthiopsis and isolates KR10—6, RS7-2, and
RRFCHMP1-3 were 3.0, 3.3, and 3.3%, respectively. Mean interspecific difference for
the genus was 3.6% (Fig. B.84).

Interspecific pairwise distance comparisons within Pseudophialophora ranged
from 2.5 to 7.7%. The range in difference between the type specimen of the novel
species, isolate RW3—4, and other species within Pseudophialophora was 6.8 to 7.7%

with a mean of 7.2%. Mean interspecific difference for the genus was 4.8% (Fig. B.85).

Large subunit gene

One hundred forty-three (15.1%) of the 946 nucleotide characters included in the
LSU dataset were parsimony informative (Table 4.1). Gaps and ambiguously aligned

regions were excluded prior to phylogenetic analyses. The Kimura 2-parameter
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nucleotide substitution model with a discrete Gamma distribution rate variation across
sites and a proportion of invariable sites (K2 + G + I) was selected and used for ML
analyses (Table B.4) (Kimura, 1980). ML bootstrap proportions > 75% and ML tree
topology are provided (Fig. B.86). With an exception for Pseudohalonectria lignicola,
the ML tree constructed with the LSU dataset provided ML bootstrap support values of
100 and 99% for clades A and B, respectively. Subclades C, D, E, F, G, and H were also
well supported by ML bootstrap values of 94, 85, 100, 100, 99, and 100%, respectively.

G. cylindrosporus was not included in pairwise distance comparisons of
Gaeumannomyces spp. because of its distal location to the genus with respect to the
multilocus phylogeny (Fig. 4.1). Interspecific pairwise distance comparisons ranged
from 0.2 to 0.6%. The range in distance between isolate DR 14, the type specimen of the
novel species, and other species of Gaeumannomyces was 0.4 to 0.6% with a mean of
0.4%. The mean interspecific distance within Gaeumannomyces was 0.4% (Fig. B.87).

Interspecific pairwise distance comparisons within Magnaporthiopsis ranged
from 0.1 to 1.9%. Differences between type specimens of novel species and established
species in the genus ranged from 0.1 to 1.8% for isolate KR10-6, from 0.2 to 1.8% for
isolate RS7-2, and from 0.1 to 1.9% for isolate RRFCHMP1-3. Mean differences
between recognized species of Magnaporthiopsis and isolates KR10—6, RS7-2, and
RRFCHMP1-3 were 1.1, 1.2, and 1.4%, respectively. Mean interspecific difference for
the genus was 1.3% (Fig. B.88).

Interspecific pairwise distance comparisons within Pseudophialophora ranged

from 0.4 to 1.2%. The range in difference between the type specimen of the novel
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species, isolate RW3—4, and other species within Pseudophialophora was 0.8 to 1.2%

with a mean of 1.0%. Mean interspecific difference for the genus was 0.8% (Fig. B.89).

Small subunit gene

There were 1,112 nucleotide characters included in the SSU dataset, of which 415
(37.3%) were parsimony informative (Table 4.1). Ambiguously aligned regions and gaps
were eliminated prior to phylogenetic analyses. The Kimura 2-parameter nucleotide
substitution model with a discrete Gamma distribution rate variation across sites (K2 +
G) was selected and used for ML analyses (Table B.5) (Kimura, 1980). ML tree
topology and ML bootstrap probabilities > 75% are provided (Fig. B.90). The ML tree
constructed with the SSU dataset did not provide adequate resolutions for relationships
among ingroup taxa. However, the single-gene phylogeny did provide marginal support
for groupings of clades A and B.

Pairwise distance comparisons of species of Gaeumannomyces excluded G.
cylindrosporus, as it was not situated within subclade C in the multilocus ML phylogeny
(Fig. 4.1). In consideration of the SSU dataset, interspecific pairwise distance
comparisons ranged from 0.0 to 4.8% with a mean of 0.9%. The range in distance
between isolate DR1-4, the type specimen of the novel species, and other species of
Gaeumannomyces was 0.0 to 4.6% with a mean of 0.5% (Fig. B.91).

Interspecific pairwise distance comparisons within Magnaporthiopsis ranged
from 0.0 to 4.8%. Differences between type specimens of novel species and established
species in the genus ranged from 0.4 to 4.6% for isolate KR10—-6, from 0.2 to 4.8% for
1solate RS7-2, and from 0.2 to 4.6 for isolate RRFCHMP1-3. Mean differences between

recognized Magnaporthiopsis species and isolates KR10—6, RS7-2, and RRFCHMP1-3
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were 3.2, 1.9, and 2.0%, respectively. Mean interspecific difference for the genus was
2.4% (Fig. B.92).

Interspecific pairwise distance comparisons within Pseudophialophora ranged
from 0.0 to 0.4%. The range in difference between the type specimen of the novel
species, isolate RW3—4, and other species within Pseudophialophora was 0.2 to 0.4%

with a mean of 0.2%. Mean interspecific difference for the genus was 0.1% (Fig. B.93).

Minichromosome maintenance complex component 7 gene

Six hundred twenty-five nucleotide characters were included in the MCM7
dataset, among which 245 (39.2%) were parsimony informative (Table 4.1). Prior to
phylogenetic analyses, gaps and ambiguously aligned regions were eliminated. The
Tamura 3-parameter nucleotide substitution model with a discrete Gamma distribution
rate variation across sites (T92 + G) was selected and used for ML analyses (Table B.6)
(Tamura, 1992). ML bootstrap proportions > 75% are provided along with ML tree
topology (Fig. B.94). With an exception for Pseudohalonectria lignicola, the ML tree
constructed with the MCM?7 dataset supported the multilocus ML phylogeny. ML
bootstrap support values were 99, 83, 96, 100, 96, and 100% for clades A, D, E, F, G, and
H, respectively.

G. cylindrosporus was not included in pairwise distance comparisons of species
of Gaeumannomyces because of its distal location to the genus with respect to the
multilocus phylogeny (Fig. 4.1). Interspecific pairwise distance comparisons ranged
from 2.2 to 6.7%. The range in distance between isolate DR1-4, the type specimen of the
novel species, and other species of Gaeumannomyces was 4.1 to 6.5% with a mean of

5.0%. The mean interspecific distance within Gaeumannomyces was 5.0% (Fig. B.95).
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Interspecific pairwise distance comparisons within Magnaporthiopsis ranged
from 0.0 to 7.5%. Differences between type specimens of novel species and established
species in the genus ranged from 0.0 to 6.5% for isolate KR10-6, from 0.0 to 6.5% for
isolate RS7-2, and from 0.0 to 6.5% for isolate RRFCHMP1-3. Mean differences
between recognized species of Magnaporthiopsis and isolates KR10—6, RS7-2, and
RRFCHMP1-3 were 2.9, 3.1, and 3.4%, respectively. Mean interspecific difference for
the genus was 6.0% (Fig. B.96).

Interspecific pairwise distance comparisons within Pseudophialophora ranged
from 1.5 to 5.6%. The range in difference between the type specimen of the novel
species, isolate RW3—4, and other species within Pseudophialophora was 4.9 to 5.6%

with a mean of 5.3%. Mean interspecific difference for the genus was 3.1% (Fig. B.97).

Translation elongation factor 1-alpha gene

Two hundred sixty-five (27.0%) of the 983 nucleotide characters included in the
TEF] dataset were parsimony informative (Table 4.1). Ambiguously aligned regions and
gaps were eliminated in phylogenetic analyses. The Tamura-Nei nucleotide substitution
model with a discrete Gamma distribution rate variation across sites (TN93 + G) was
selected and used for ML analyses (Table B.7) (Tamura and Nei, 1993). ML bootstrap
proportions > 75% are provided (Fig. B.98). Clades A and B were supported by the ML
tree constructed with the TEF'[ dataset. Minor discrepancies existed among groupings of
subclades C and D, compared to the combined six-gene ML tree topology; however,
subclades E, F, G, and H were well supported by bootstrap proportions of 98, 100, 98,

and 100%, respectively.
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G. cylindrosporus was not included in pairwise distance comparisons of
Gaeumannomyces spp. because of its distal location to the genus with respect to the
multilocus phylogeny (Fig. 4.1). In consideration of the TEF'] dataset, interspecific
pairwise distance comparisons ranged from 1.1 to 4.9% with a mean of 3.4%. The range
in distance between isolate DR1-4, the type specimen of the novel species, and other
species of Gaeumannomyces was 2.4 to 4.4% with a mean of 3.2% (Fig. B.99).

Interspecific pairwise distance comparisons within Magnaporthiopsis averaged
1.4% with a range of 0.5 to 2.6%. Distances between type specimens of novel species
and established species in the genus ranged from 1.2 to 2.6% in the case of isolate KR10—
6, from 0.5 to 2.3% for isolate RS7-2, and from 0.5 to 2.4% for isolate RRFCHMP1-3.
Mean distances for isolates KR10-6, RS7-2, and RRFCHMP1-3 were 1.9, 1.6, and
1.6%, respectively (Fig. B.100).

Interspecific pairwise distance comparisons within Pseudophialophora ranged
from 0.9 to 4.8%. The range in difference between the type specimen of the novel
species, isolate RW3—4, and other species within Pseudophialophora was 4.5 to 4.8%

with a mean of 4.7%. Mean interspecific difference for the genus was 2.8% (Fig. B.101).

RNA polymerase Il gene

There were 836 nucleotide characters included in the RPB1 dataset, of which 431
(51.6%) were parsimony informative (Table 4.1). Gaps and ambiguously aligned regions
were excluded in phylogenetic analyses. The Tamura-Nei nucleotide substitution model
with a discrete Gamma distribution rate variation across sites and a proportion of
invariable sites (TN93 + G + I) was selected and used for ML analyses (Table B.8)

(Tamura and Nei, 1993). ML bootstrap proportions > 75% are provided (Fig. B.102).
111



The ML tree constructed with the RPB1 dataset provided ML bootstrap support values of
97 and 99% for clades A and B, respectively. Subclades C, D, E, F, G, and H were also
well supported, each having ML bootstrap proportions of 100%.

G. cylindrosporus was not included in pairwise distance comparisons of
Gaeumannomyces spp. because of its distal location to the genus with respect to the
multilocus phylogeny (Fig. 4.1). Interspecific pairwise distance comparisons ranged
from 0.0 to 8.9% with a mean of 5.2%. The range in distance between isolate DR1-4, the
type specimen of the novel species, and other species of Gaeumannomyces was 0.0 to
7.8% with a mean of 4.6% (Fig. B.103).

Interspecific pairwise distance comparisons within Magnaporthiopsis ranged
from 0.2 to 4.2%. Differences between type specimens of novel species and established
species in the genus ranged from 0.2 to 3.8% for isolate KR10—-6, from 0.3 to 4.2% for
isolate RS7-2, and from 0.2 to 4.0% for isolate RRFCHMP1-3. Mean differences
between recognized Magnaporthiopsis species and isolates KR10—6, RS7-2, and
RRFCHMP1-3 were 1.7, 2.1, and 2.1%, respectively. Mean interspecific difference for
the genus was 2.3% (Fig. B.104).

Interspecific pairwise distance comparisons within Pseudophialophora ranged
from 1.2 to 7.4%. The range in difference between the type specimen of the novel
species, isolate RW3—4, and other species within Pseudophialophora was 7.0 to 7.4%

with a mean of 7.3%. Mean interspecific difference for the genus was 3.8% (Fig. B.105).
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Optimum temperature for in vitro growth

In general, isolates grew most aggressively at temperatures of 25 and 32 C and
least aggressively at temperatures of 18 and 38 C (Figs. B.106 — B.134). Mean optimal
growing temperatures for C. cynodontis, G. graminis var. graminis, G. paulograminis, M.
cynodontis, M. hawaiiensis, M. incrustans, M. poae, M. taurocanis, and P. cynodontis

were 27.8, 24.5,27.1,27.1, 26.9, 26.4, 27.0, 27.5, and 30.6 C, respectively (Table 4.3).
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Table 4.3  Species name, Isolate ID, and optimal temperatures for mycelial
growth of ectotrophic root-infecting fungal specimens grown seven
days on potato dextrose agar.

Fungal species Isolate ID Optimal temperature (C)
C. cynodontis HP24-3 27.9
HP384 27.7
G. graminis var. graminis ADI1-2 24.8
GSGC15-3 23.9
GSGC15+4 24.7
G. paulograminis DR1-+4 26.9
DR64 26.9
DR10-3 27.2
DR12-1 271
DR13-1 27.3
Ow4-4 26.9
RS7-1 27.4
M. cynodontis HCC3-+4 273
RS3-1 27.0
RS5-5 26.9
RS7-2 27.0
M. hawaiiensis KR10-6 26.9
M. incrustans LC8-6 25.3
RRFMV14-5 26.6
WW3-5 27.2
M. poae SPKBG7 27.0
TAP35 26.4
TAP41 27.5
M. taurocanis GSGC10-2 27.3
RRFCHMP1-3 28.9
RRFMV10-2 271
TPC4-5 27.3
TPC5-3 271
P. cznodontis RwW34 30.6
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Taxonomy

In consideration of morphological and biological characteristics in conjunction
with molecular phylogenetic studies, a distinct monophyletic genus with one novel
species, one novel species of Gaeumannomyces, three novel species of
Magnaporthiopsis, and one novel species of Pseudophialophora are described. Cultures
of type specimens were dried for storage at the U.S. National Fungus Collections

Herbarium (Fig. B.135)

Candidacolonium P. L. Vines and M. Tomaso-Peterson, gen. nov.

MycoBank: 812290

Etymology: The generic name refers to the luminous white colony characteristics for the
axenic culture of the generic type specimen.

Type species: Candidacolonium cynodontis.
Habit: On roots of Poaceae plants.
Known distribution: Texas, USA.

Notes: The two collections included shared many characteristics and formed a
monophyletic clade. The novel genus, Candidacolonium, is typified by C.
cynodontis, which, in conjunction with G. graminis var. graminis and G.
paulograminis, are polyphyletic in their formation of hyphopodia. G. graminis
var. graminis and G. paulograminis produce deeply lobed and crenately lobed
hyphopodia, respectively. These hyphophodial shapes are distinguishable
from the chiroid or mitten-shaped hyphopodia of C. cynodontis.

115



Candidacolonium cynodontis P. L. Vines and M. Tomaso-Peterson, sp. nov.

MycoBank: 812291
BPI: 893105
Etymology: The specific epithet refers to the host’s generic name.

Specimens examined. United States, Texas: Houston, 29°45°37.5N, 95°22°11.3”W. Roots
of Cynodon dactylon x C. transvaalensis, P. L. Vines and M. Tomaso-Peterson
HP24-3.
United States, Texas: Houston, 29°45’37.5”N, 95°22°11.3”W. Roots of
Cynodon dactylon x C. transvaalensis, P. L. Vines and M. Tomaso-Peterson
HP38—4.

Notes: Colony diameter was approximately 19.0 mm on PDA in the dark after 7 days at
25 C. Colony color was bright white at 7-day maturity, and pale to dark grayish
buff at 14- to 21-day maturity. Colony was reverse pigmented pale to dark
grayish buff. Hyphae were septate, (2.5-) 2.4-3.2 (-3.8) um (mean = 2.8; S.D.
=0.4; n = 25) wide, and hyaline to brown in color. Hyaline to brown colored
stigmatopods measured (5.0-) 6.6-10.6 (-11.3) % (5.0-) 4.6-7.0 (-7.5) um (mean
=5.8%x8.6;S.D.=1.2,2.0; n=25) and gave rise to brown to olivaceous brown,
chiroid or mitten-shaped hyphopodia that measured (10.0-) 10.2-13.0 (-15.0)
% (7.5-) 7.2-10.4 (-12.5) um (mean = 11.6 x 8.8; S.D. = 1.4, 1.6; n = 25).
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Gaeumannomyces paulograminis P. L. Vines and M. Tomaso-Peterson, sp. nov.

MycoBank: 812292
BPI: 893101

Etymology: The specific epithet is a Latin portmanteau of the English words “little” and
“grass” to describe host characteristics.

Specimens examined: United States, Mississippi: Choctaw, 32°49°09”N, 89°07°52.3”W.
Roots of Cynodon dactylon x C. transvaalensis, P. L. Vines and M. Tomaso-
Peterson DRI1-4.
United States, Mississippi: Choctaw, 32°49°09”N, 89°07°52.3”W. Roots of
Cynodon dactylon x C. transvaalensis, P. L. Vines and M. Tomaso-Peterson
DR6-4.

United States, Mississippi: Choctaw, 32°49°09”N, 89°07°52.3”W. Roots of
Cynodon dactylon x C. transvaalensis, P. L. Vines and M. Tomaso-Peterson
DRI10-3.

United States, Mississippi: Choctaw, 32°49°09”N, 89°07°52.3”W. Roots of
Cynodon dactylon x C. transvaalensis, P. L. Vines and M. Tomaso-Peterson
DRI12-1.

United States, Mississippi: Choctaw, 32°49°09”N, 89°07°52.3”W. Roots of
Cynodon dactylon x C. transvaalensis, P. L. Vines and M. Tomaso-Peterson
DRI13-1.

United States, Mississippi: West Point, 33°36°26.4”N, 88°39°06.2”W. Roots
of Cynodon dactylon x C. transvaalensis, P. L. Vines and M. Tomaso-Peterson
OwW4—4.

United States, Texas: Humble, 29°59°54”°N, 95°15°43.8”W. Roots of Cynodon
dactylon x C. transvaalensis, P. L. Vines and M. Tomaso-Peterson RS7—1.

Notes: Colony diameter was approximately 35.7 mm on PDA in the dark after 7 days at 25
C. Colony color was dark olivaceous gray and reverse pigmented pale greenish
black. Hyphae were septate, (2.5-) 3.1-5.5 (-5.6) um (mean =4.3; S.D. = 1.2;
n = 25) wide, hyaline to brown in color, and produced brown to olivaceous
brown, crenately lobed hyphopodia that measured (20.0-) 21.5-28.7 (-32.5) x
(17.5-) 18.6-24.4 (-30.0) um (mean = 25.1 x 21.5; S.D. = 3.6, 2.9; n = 25).
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Magnaporthiopsis hawaiiensis P. L. Vines and M. Tomaso-Peterson, sp. nov.

MycoBank: 812293

BPI: 893104

Etymology: The specific epithet refers to the location of collection, Hawaii.

Specimens examined: United States, Hawaii: Maui, 20°47°54.1”N, 156°19°54.9”W. Roots

of Cynodon dactylon x C. transvaalensis, P. L. Vines and M. Tomaso-Peterson
KRI10-6.

Notes: Colony diameter was approximately 27.7 mm on PDA in the dark after 7 days at 25
C. Colonies were hyaline with dark, umber brown concentric zones, and
reverse pigmented the same colors. Hyphae were septate, (3.8-) 3.8-5.0 (-5.6)
um (mean = 4.4; S.D. = 0.6; n = 25) wide, hyaline to brown in color.
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Magnaporthiopsis cynodontis P. L. Vines and M. Tomaso-Peterson, sp. nov.

MycoBank: 812294
BPI: 893103
Etymology: The specific epithet refers to the host’s generic name.

Specimens examined: United States, Texas: Houston, 29°45°35”N, 95°29°21.1”W. Roots
of Cynodon dactylon x C. transvaalensis, P. L. Vines and M. Tomaso-
Peterson HCC3—4.

United States, Texas: Humble, 29°59°54”N, 95°15°43.8”W. Roots of
Cynodon dactylon % C. transvaalensis, P. L. Vines and M. Tomaso-Peterson
RS3-1.

United States, Texas: Humble, 29°59°54”N, 95°15°43.8”W. Roots of
Cynodon dactylon x C. transvaalensis, P. L. Vines and M. Tomaso-Peterson
RS5-5.

United States, Texas: Humble, 29°59°54”N, 95°15°43.8”W. Roots of
Cynodon dactylon % C. transvaalensis, P. L. Vines and M. Tomaso-Peterson
RS7-2.

Notes: Colony diameter was approximately 34.5 mm on PDA in the dark after 7 days at 25
C. Colony color was dark greenish gray and reverse pigmented pale greenish
black. Hyphae were septate, (2.5-) 3.1-4.9 (-5.0) um (mean = 4.0; S.D. = 0.9;
n = 25) wide, hyaline to brown in color.
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Magnaporthiopsis taurocanis P. L. Vines and M. Tomaso-Peterson, sp. nov.

MycoBank: 812295
BPI: 893100

Etymology: The type specimen was collected in Starkville, Mississippi, home to
Mississippi State University. The specific epithet is a Latin portmanteau of
the English words “bull” and “dog” in honor of Mississippi State University’s
English Bulldog mascot.

Specimens examined: United States, Alabama: Birmingham, 33°25°46.7"N,
86°39°05.4”W. Roots of Cynodon dactylon x C. transvaalensis, P. L. Vines
and M. Tomaso-Peterson GSGC10-2.

United States, Mississippi: Starkville, 33°27°01.4”N, 88°49°06.2”W. Roots
of Cynodon dactylon x C. transvaalensis, P. L. Vines and M. Tomaso-
Peterson RRFCHMP1-3.

United States, Mississippi: Starkville, 33°27°01.4”°N, 88°49°06.2”W. Roots
of Cynodon dactylon x C. transvaalensis, P. L. Vines and M. Tomaso-
Peterson RRFMV10-2.

United States, Tennessee: Memphis, 35°04°09.1”°N, 89°52°01.4”W. Roots of
Cynodon dactylon x C. transvaalensis, P. L. Vines and M. Tomaso-Peterson
TPC4-5.

United States, Tennessee: Memphis, 35°04°09.1”N, 89°52°01.4”W. Roots of
Cynodon dactylon % C. transvaalensis, P. L. Vines and M. Tomaso-Peterson
TPC5-3.

Notes: Colony diameter was approximately 30.5 mm on PDA in the dark after 7 days at 25
C. Colonies were hyaline with dark, umber brown zones, and reverse
pigmented the same colors. Hyphae were septate, (2.5-) 2.9-4.9 (-5.0) um
(mean = 3.9; S.D. = 1.0; n = 25) wide, hyaline to brown in color.
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Pseudophialophora cynodontis P. L. Vines and M. Tomaso-Peterson, sp. nov.

MycoBank: 812296

BPI: 893102

Etymology: The specific epithet refers to the host’s generic name.

Specimens examined: United States, Tennessee: Memphis, 35°08°58.3”N, 90°02°56.3”W.
Roots of Cynodon dactylon x C. transvaalensis, P. L. Vines and M. Tomaso-
Peterson RW3—4.

Notes: Colony diameter was approximately 7.75 mm on PDA in the dark after 7 days at 25
C. Colony color was grayish pale yellow green and reverse pigmented pale

yellowish gray. Hyphae were septate, (2.5-) 2.4-3.0 (-3.1) um (mean = 2.7,
S.D. =0.3; n =25) wide, hyaline to brown in color.

Discussion

In accordance with previous studies, these results disclose a distinct divergence
between saprophytic and parasitic taxa in Magnaporthaceae (Cannon, 1994; Zhang et al.,
2011; Luo and Zhang, 2013; Luo et al., 2014). Topologies of the concatenated dataset
and individual gene datasets were highly homologous, and single-gene analyses provided
great support for the six-gene, concatenated phylogeny. Clade A, constituted by
members of Ophioceras and Pseudohalonectria, includes saprophytic species that are
commonly observed on submerged woody substrates (Luo et al., 2014). A grouping of
plant parasitic species in the genera Gaeumannomyces, Magnaporthiopsis, Buergenerula,
Nakataea, Omnidemptus, Candidacolonium, Pseudophialophora, and Pyricularia formed
the monophyletic clade B, which comprises two distinct lineages. The earliest, clade H,
is established by the gray leaf spot fungus, Pyricularia grisea, and the rice blast fungus,
Pyricularia oryzae, both of which produce leaf-infecting sympodial conidia (Luo et al.,

2014). The second lineage is primarily composed of fungi associated with roots of
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Poaceae. Apart from Nakatae oryzae, which produces sympodial conidia, fungi in the
second lineage typically have Phialophora- or Harpophora-like asexual states (Cannon,
1994; Zhang et al., 2011; Luo and Zhang, 2013). The novel species proposed in this
study belong in the second lineage of clade B. This concept is supported by a six-gene
phylogenetic analysis, morphological and biological characteristics, and grass root
associated habit of the fungi.

Prior to this study, the only recognized turfgrass root pathogens in
Magnaporthaceae that exhibit ectotrophic growth habits were G. graminis var. graminis,
G. graminis var. avenae, and M. poae. Of the three, only G. graminis var. graminis is
associated with Cynodon spp.; G. graminis var. avenae and M. poae are most commonly
associated with cool-season grasses such as Agrostis, Festuca, and Poa spp. M.
incrustans has been isolated from bermudagrass roots, but its role in disease incitation
has not been confirmed (Elliott, 1991). As suspected, based on previous research efforts,
G. graminis var. graminis and M. incrustans were isolated and identified from roots of
ultradwarf bermudagrasses in this study. Other ERI fungal species associated with
Cynodon spp. include the causal agents of spring dead spot, namely, Ophiosphaerella
herpotricha, O. korrae, and O. narmari. Ophiosphaerella spp. are members of the
Phaeosphaeriaceae, which is a closely-related family to the Magnaporthaceae, from
which the fungi in this study are associated. Ophiosphaerella spp. were not isolated from
roots of ultradwarf bermudagrasses in this study.

In addition to identification of recognized ERI fungal species, phylogenetic
analyses of individual and combined gene datasets disclosed the presence and identity of

six novel ERI fungal species associated with roots of ultradwarf bermudagrasses affected
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by summer decline. Seven isolates formed a distinct, monophyletic clade within
Gaeumannomyces, and were identified as G. paulograminis sp. nov. G. graminis var.
graminis and G. paulograminis are morphologically distinguishable by hyphopodial
characteristics. G. paulograminis has crenately lobed hyphopodia, whereas hyphopodia
of G. graminis var. graminis are deeply lobed.

Three new species, M. hawaiiensis, M. cynodontis, and M. taurocanis,
represented by one, four, and five isolates, respectively, were grouped within
Magnaporthiopsis. M. hawaiiensis, M. cynodontis, and M. taurocanis consistently
diverged from other species of Magnaporthiopsis, forming three distinct lineages most
closely related to M. panicorum. Magnaporthiopsis spp. discussed here are distinguished
from other ERI fungal species in this study by having appressed mycelium, contrasted to
aerial or cottony mycelium as observed among the others.

Two ERI fungal isolates erected a well-supported, monophyletic clade and were
identified as C. cynodontis sp. nov. gen. nov. C. cynodontis, along with G. graminis var.
graminis and G. paulograminis are polyphyletic with respect to their formation of
hyphopodia. C. cynodontis produces chiroid or mitten-shaped hyphopodia, which are
contrasted to deeply lobed and crenately lobed hyphopodia of G. graminis var. graminis
and G. paulograminis, respectively.

Lastly, a single isolate was consistently grouped within Pseudophialophora and
identified as P. cynodontis. This genus was recently described by Luo et al. (2014) as a
collection of six specimens, representing three species. Namely, P. eragrostis, P.
panicorum, and P. schizachyrii, the three species were collected from healthy grass roots

and did not cause disease symptoms on the hosts (Luo et al., 2014). The close relation of
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P. cynodontis to the non-pathogenic species of Pseudophialophora may provide
reasoning for the decreased isolation frequency, compared to other ERI fungal species in
the study.

In conclusion, six novel ERI fungi and two recognized ERI fungi, all in the
Magnaporthaceae, were identified from roots of ultradwarf bermudagrasses that were
symptomatic for summer decline. Prior to this study, G. graminis var. graminis and M.
incrustans were the only known ERI fungi in the Magnaporthaceae associated with
Cynodon spp. These findings bring about inquiries regarding the role each of these
fungal species plays in the decline of ultradwarf bermudagrass putting greens in the late
summer and early fall months in the Deep South. Pathogenicity of the recognized ERI
fungal species to bermudagrass has been studied previously (Elliott, 1991). In that study,
G. graminis var. graminis was pathogenic to bermudagrass, whereas M. incrustans was
not (Elliott, 1991). Answers to questions regarding effects of ERI fungi on ultradwarf
bermudagrass will be of utmost importance to those who manage these grasses daily, the

golf course superintendents.
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CHAPTER V
PATHOGENICITY AND ORIGIN OF ECTOTROPHIC ROOT-INFECTING FUNGI

ISOLATED FROM ROOTS OF ULTRADWARF BERMUDAGRASS

Abstract

Roots of ultradwarf bermudagrasses affected by summer decline are typically
brown to black in color, diminutive in size, and frequently colonized with dark runner
hyphae, growth cessation structures, and simple and lobed hyphopodia, which are
characteristic signs of ectotrophic root-infecting (ERI) fungi. Research at Mississippi
State University (MSU) led to the identification of six novel fungal species
(Candidacolonium cynodontis, Gaeumannomyces paulograminis, M. cynodontis,
Magnaporthiopsis hawaiiensis, M. taurocanis, and Pseudophialophora cynodontis) and
two recognized species (G. graminis var. graminis and M. incrustans) from infected
roots. The objectives of this study were to screen ERI fungal species for pathogenicity on
‘Champion’ and ‘MiniVerde’ ultradwarf bermudagrasses, and summarize the origins of
each fungal species. In vivo inoculations of ERI fungi were successful in recreating
symptomatology associated with summer decline on ultradwarf bermudagrass; however,
various levels of pathogenicity among ERI fungal species were observed. C. cynodontis
and G. paulograminis were most aggressive and incited greatest root disease of all fungal
species evaluated. Assessments of colony morphology demonstrated a widespread origin

of ERI fungi across the southern U.S. In numerous instances, multiple fungal species
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were isolated from a single turfgrass sample, suggesting a cohabitant nature among ERI

fungi.

Introduction

Summer decline has been observed throughout the Deep South United States on
hybrid bermudagrass (Cynodon dactylon (L.) Pers. x C. transvaalensis Burtt-Davy)
managed as golf course putting greens. This disease occurs most readily during late
summer and early fall months, when turfgrass plants experience augmented
environmental and mechanical stresses such as extreme temperatures, increased foot
traffic, and reduced mowing heights. Symptoms of summer decline have been described
previously (Chapter 1V).

Two recognized fungal species, Gaeumannomyces graminis (Sacc.) Arx and D.
Olivier var. graminis and Magnaporthiopsis incrustans (Landschoot and Jackson) J. Luo
and N. Zhang (= G. incrustans Landschoot and Jackson), and six novel species,
Candidacolonium cynodontis P. L. Vines and M. Tomaso-Peterson, G. paulograminis P.
L. Vines and M. Tomaso-Peterson, M. cynodontis P. L. Vines and M. Tomaso-Peterson,
M. hawaiiensis P. L. Vines and M. Tomaso-Peterson, M. taurocanis P. L. Vines and M.
Tomaso-Peterson, and Pseudophialophora cynodontis P. L. Vines and M. Tomaso-
Peterson, were isolated and identified from ultradwarf bermudagrass roots displaying
symptoms of summer decline (Chapter IV).

Generally, G. graminis var. graminis is not considered a serious pathogen of
Poaceae; however, pathogenicity of G. graminis var. graminis to hybrid bermudagrass
has been demonstrated and it is considered the causal agent for bermudagrass decline

(Deacon, 1981; Elliott, 1991). In previous evaluations, M. incrustans was reported to
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express weak virulence to annual bluegrass (Poa annua L.) and Kentucky bluegrass (Poa
pratensis L.) and did not affect hybrid bermudagrass (Landschoot and Jackson, 1990;
Elliott, 1991).

The objective of this research was to evaluate novel and recognized ERI fungal

species as possible incitants for summer decline of ultradwarf bermudagrass.

Materials and methods

With the exception of growing fungal inoculum, which was conducted at the
MSU-Turfgrass Pathology Laboratory in Dorman Hall Room 219, Mississippi State, MS,
all inoculation procedures were conducted at Rodney R. Foil Research Center (RRFRC)
in Starkville, MS. Three studies, outlined in detail in following sections, were initiated

18, 19, and 20 Aug 2014 and terminated 13, 14, and 15 Oct 2014, respectively.

Isolation, identification, and selection of fungal strains

Fungal isolation and identification was conducted as defined in Chapter IV. Eight
species, two previously recognized and six newly described, were identified from roots of
ultradwarf bermudagrasses colonized with dark, runner hyphae. Representative
specimens (Fig. 5.1) were selected for use in pathogenicity evaluations. Fungi were
plated on PDA (39 g liter ') and incubated at 25 C for approximately 14 days prior to

inoculation.
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Origins of fungal species

Golf course superintendents observing summer decline symptoms on ultradwarf
bermudagrass putting greens submitted samples (10.8 cm diameter) to the MSU-Plant
Disease Diagnostic Laboratory. Roots of affected plants were examined with a
stereomicroscope for presence of runner hyphae, lobed and simple hyphopodia, and
growth cessation structures. Colonized roots were subjected to fungal isolation as
outlined in Chapter IV, and pure cultures were attained. Axenic fungal cultures were
identified at maturation levels of 7 and 10 days based on relatedness to colony
morphologies of representative isolates (Fig. 5.1). Additionally, documentation was

made on host cultivar from which ERI fungi were isolated.

Plant material

Samples (10.8 cm diameter) of ‘Champion’ and ‘MiniVerde’ ultradwarf
bermudagrass were collected from research plots at RRFRC and positioned in plastic pots
(Fig. C.1). Potted grasses were placed in a greenhouse, irrigated to maintain adequate
soil moisture, fertilized every 14 days with a 24N—-8P20s5—16K20 Miracle-Gro fertilizer
(Scotts Company, Marysville, OH, USA) and allowed to produce an abundance of aerial
stoloniferous material (Fig. C.2). Stolons were gathered and cut into pieces that consisted

of five nodes and four internodes (Fig. C.3).

Inoculation

Methods for inoculation used in this study were adopted and modified from
previous research (Wong et al., 2012). Premium Play Sand® (The QUIKRETE®

Companies, Atlanta, GA, USA) was sterilized (Fig. C.4) and placed into inoculation
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containers made of 7.6 cm diameter polyvinyl chloride (Fig. C.5). PDA, fully-colonized
with a given fungal isolate, was cut into 1 cm? sections and placed atop sand to serve as
fungal inoculum (Fig. C.6). Five grass plants, each containing five nodes and four
internodes, were placed in direct contact with fungal inoculum (Fig. C.7), pots were
capped with approximately 1 cm of sterilized sand for moisture retention (Fig. C.8), and
placed in temperature- and light-controlled growing chambers for 8 weeks (Fig C.9).
Growth chamber photoperiods were adjusted to 12 hours and soil temperatures were
maintained near 30 C, providing optimal growing conditions for fungal inoculum
(Chapter IV). Plants were watered to maintain adequate soil moisture and fertilized every
14 days as previously described to promote growth.

Environmental conditions were monitored throughout the study and summarized
in Table 5.1. Soil temperatures were measured by placing a WatchDog B-Series Button
Logger (Spectrum Technologies, Aurora, IL, USA) into the soil layer of a container in
each of the three growth chambers (Fig. C.10). Soil temperature measurements were
recorded hourly throughout the study. Photosynthetically active radiation (PAR) light
values were recorded with Lightscout Quantum Light Sensors (Spectrum Technologies,
Aurora, IL, USA) and WatchDog 1400 data loggers (Spectrum Technologies, Aurora, IL,
USA) (Fig. C.11). Measurements of air temperature, relative humidity, and dew point
were taken with an EL-USB-2-LCD temperature and humidity data logger (Lascar

Electronics, Inc., Erie, PA, USA) hourly for the duration of the study (Fig. C.12).
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Table 5.1  Environmental conditions of growth chambers used in pathogenicity studies.

Daytime GC'1 GC2 GC3 Mean*
Air Temperature (C) 33.96 33.55 33.38 33.63
Soil Temperature (C) 29.51 30.48 29.89 29.96
Relative Humidity (%) 70.72 71.29 63.67 68.56
Dew Point (C) 27.83 27.57 25.50 26.97
PAR’ (umol m2sec™!) 274.60 240.95 245.75 253.77

Nighttime
Air Temperature (C) 27.37 26.48 30.35 28.07
Soil Temperature (C) 26.94 27.22 30.64 28.27
Relative Humidity (%) 92.88 93.43 92.79 93.03
Dew Point (C) 26.10 25.32 29.03 26.82

" Growth Chamber.

 Mean, expressed as the average of GC1, GC2, and GC3.
¥ Photosynthetically Active Radiation, measured via LightScout Quantum Light Sensor.

Design and analysis of experiment

Studies were arranged in a randomized complete block design with a split-plot
constraint. Ultradwarf bermudagrass cultivars were whole-plot factors and fungal species
were split-plot factors. There were 20 treatment combinations resulting in 60
experimental units (containers) in each growth chamber. This study was conducted three
times in different growth chambers, resulting in 180 total experimental units. A
schematic illustration of experimental design and layout of treatments is provided in Fig.
C.13.

Two ultradwarf bermudagrass treatments and 10 fungal treatments were used in
the study. Two cultivars, Champion and MiniVerde, were included to ascertain cultivar
preference characteristics of ERI fungi. Fungal species treatments were as follows: 1 =
G. graminis var. graminis (Ggg); 2 = G. paulograminis (Gp); 3 = M. incrustans (Mi); 4 =
M. hawaiiensis (Mh); 5 = M. cynodontis (Mc); 6 = M. taurocanis (Mt); 7 = C. cynodontis
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(Cc); 8 = P. cynodontis (Pc); 9 = Composite, comprised of equal parts of treatments 1
through 8; and 10 = Untreated Control (UTC). G. graminis var. graminis and M.
incrustans were chosen to serve as positive and negative controls, respectively, based on
previous research demonstrating their virulence on bermudagrass (Elliott, 1991). UTC
treatments were composed of PDA with no fungus.

Statistical analyses were conducted with the GLM procedure in SAS v. 9.3 (SAS
Institute Incorporated, Cary, NC, USA). When the F-ratio was significant at the 0.05
level, means were separated using Fisher’s protected least significant difference 7 test
(SAS Institute Incorporated, Cary, NC, USA). Statistical models for single- and

multiple-experiment analyses are provided in Fig 5.2 and Fig. 5.3, respectively.

- =2
Yie = U+ o + O + gy + Py + (af)y; teppe j-1o
Where: &, ~N (0,63)ii.d.
ex~ N (0,02)iid. Independent
eijk"'-' N (O,GZ) 1.1.d.

Figure 5.2  Statistical model for individual ectotrophic root-infecting (ERI) fungi
pathogenicity experiment analyses.

2
10

3
3

i

_ L
Vi = 1+ 8 + Vigy + o4+ gy T By + (@B + s
1

Where: 8,~N (0, 62)
Yieo~ N (0, 67)
Eian~ N (O, Ug)
&~ N (0, 62)

Independent

Figure 5.3  Statistical model for multiple ectotrophic root-infecting (ERI) fungi
pathogenicity experiment analyses.
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Data collection

Evaluations were conducted to assess reproducibility of symptoms for summer
decline of ultradwarf bermudagrass. Thinning of turf canopy was assessed as total
number of nodes (TNN) and gravimetric stolon, rhizome, and foliage weight (GSRFW).
Root health and disease were monitored as total number of root-producing nodes
(TNRPN), frequency of fungal occurrence (FFO), total root length (TRL), percent disease
(PD), and gravimetric root weight (GRW). Upon termination of inoculation experiments
(13, 14, and 15 Oct 2014 for experiments 1, 2, and 3, respectively), roots were rinsed
with tap water and cleansed of sand particles and debris. Rating methods are described in

following sections. Noteworthy, ratings were conducted in the order they are presented.

Total number of nodes

Five plants, equivalent to 25 nodes, were placed in each inoculation container at
the beginning of the study. After eight weeks, TNN were assessed by a physical count.
These data were considered a summation of the number of nodes from each plant and

were recorded as TNN in each container.

Total number of root-producing nodes

The TNRPN was determined in a similar fashion as TNN. Physical assessments
were performed to count the number of nodes from which roots were produced. These
data were recorded as a composite of all five plants in each container. Samples that did
not produce root material were recorded as having zero TNRPN.

Following TNRPN assessments, all root material was severed from stoloniferous

and rhizomatous plant material in preparation for subsequent evaluations.
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Frequency of fungal occurrence

Roots from each sample were positioned beneath a dissecting microscope and
examined for presence of ERI fungal characteristic structures including dark runner
hyphae, growth cessation structures, and lobed and simple hyphopodia. If such structures
were present, the sample was charted as colonized and given a value of 1; if structures
were not present, the sample was recorded as non-colonized and given a value of 0. FFO
values for samples that did not produce root material were recorded as missing data due

to the inability to assess fungal presence on root material that was not present.

Total root length

Data for TRL were gathered via WinRhizo root scanning software (Regent
Instruments Incorporated, Sainte-Foy, Quebec City, Canada). Roots from each sample
were placed in waterproof trays (20 x 25 cm) and scanned at 315 dots cm™' (0.032 mm
pixel size), in color, using an STD4800 SCANNER. These data were recorded as TRL
(cm) for each container. If roots were not produced within a sample, a value of 0 was

recorded.

Percent disease

Images acquired for TRL were subjected to PD assessments using a pixel color
analysis in WinRhizo. Color classes were established for this study (Fig. C.14). Data
generated from WinRhizo that were utilized for PD determination included root surface
area occupied by pixels of diseased color classes, referred to as diseased root surface area
(DRSA), and root surface area occupied by pixels of healthy color classes, referred to as

healthy root surface area (HRSA). Total root surface area (TRSA) was calculated using
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the following formula: TRSA = DRSA + HRSA. PD was established via the formula:
PD = (DRSA/TRSA) x 100. These data were gathered and recorded for each sample.
PD for samples that did not produce root material was recorded as missing data due to the

inability to assess disease on root material that was not present.

Gravimetric root weight

Root material from each sample was dried in a Thermo Scientific Precision High-
Performance Mechanical Convection Incubator (Precision Scientific Company, Chicago,
IL, USA) at 65 C for approximately 72 hours. Dried roots were weighed for gravimetric
biomass determination. Data were reported as total GRW for each container. If roots

were not produced within a sample, a value of 0 was charted.

Gravimetric stolon, rhizome, and foliage weight

Stoloniferous, rhizomatous, and foliar plant materials were dried in a Thermo
Scientific Precision High-Performance Mechanical Convection Incubator at 65 C for
approximately 72 hours. Dried samples were weighed for gravimetric biomass

determination. Data were recorded as total GSRFW for each container.

Confirmation of Koch’s postulates

Koch’s postulates were confirmed through a series of isolation and identification
steps, similar to those described in Chapter IV. Root material, 5 cm in length, was
collected from the uppermost portion of a given root system for each sample, cut into 5
mm sections, surface disinfested in 0.6% sodium hypochlorite solution plus 1 ml 99%
ethanol, and rinsed three consecutive times with sterile, distilled water. Surface

disinfested roots were allowed to dry, and were plated, at random, onto modified PDA
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containing 6 g PDA and 15 g agar liter ' amended with 100 mg chloramphenicol
(dissolved in 2.5 ml ethanol) and 100 mg streptomycin sulfate (dissolved in 5.0 ml sterile
dH20). Plated root tissues were incubated at 25 C until hyphal growth was observed
protruding from the surface of the roots. Apical tips of hyphal strands were transferred to
PDA (39 g agarose liter ") at time of emergence. Axenic cultures were incubated at 25 C
to allow for maturation of fungal colonies.

Genomic DNA (gDNA) was extracted from vibrant mycelium via manufacturer’s
instruction for the Fungi/Yeast Genomic DNA Isolation Kit (Norgen Biotek Corporation,
Thorold, ON, Canada). Purity and concentration of extracted gDNA was determined by a
NanoDrop 2000/2000c (Thermo Fisher Scientific Incorporated, Waltham, MA, USA).
The internal transcribed spacer region of the ribosomal RNA genes were subjected to
amplification and sequencing. Identification was based on BLAST (Altschul et al., 1990)

analyses of resultant sequences.

Results

Analyses of variances for pathogenicity evaluation parameters are provided in
Table 5.2. Cultivar by fungal isolate interaction effects were not observed for any
parameter. Fungal isolates significantly affected all evaluation parameters in the study.
Three of eight evaluation parameters were significantly affected by cultivar selection.
Significant differences were observed among experiments for TNRPN, TRL, GRW, and

GSRFW; therefore, experiments were analyzed separately for those parameters.
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Origin of fungal species

Nineteen turfgrass samples (10.8 cm diameter) were collected from golf courses
in five states of the U.S. (Table 5.3). Fungal isolations from colonized roots within the
19 turfgrass samples resulted in 644 axenic cultures, which were assessed for origin.
Colony morphology analyses indicated a widespread origin of ERI fungal species. G.
graminis var. graminis, G. paulograminis, M. incrustans, M. hawaiiensis, M. cynodontis,
M. taurocanis, C. cynodontis, and P. cynodontis were distributed across 2, 4, 2, 5, 3, 3, 1,
and 3 states, respectively. Moreover, in numerous instances, multiple fungal species
were identified from single turfgrass samples; signifying different fungal populations

may be present in concentrated geographical locations.
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Total number of nodes

There were 180 observations for TNN gathered from the three experiments.
Experiments were similar (p = 0.1058) with respect to mean TNN, and data were
combined for analysis (Table 5.2). Fungal species had a significant (p = 0.0083) effect
on TNN (Tables 5.2 and C.1). All treatments were similar to the UTC except G.
graminis var. graminis, which resulted in a 19% increase in mean TNN compared to the
UTC (Fig. 5.4). In contrast to G. paulograminis, C. cynodontis, P. cynodontis, and the
composite treatment, G. graminis var. graminis significantly increased mean TNN by 35,
28, 22, and 23%, respectively (Fig. 5.4). Magnaporthiopsis spp. were similar with

respect to TNN (Fig. 5.4).
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Mean total number of nodes (TNN) of Champion and MiniVerde
ultradwarf bermudagrass in response to ectotrophic root-infecting fungal

species evaluated in pathogenicity experiments 1, 2, and 3 conducted in
Starkville, MS.

same letter are not significantly different at p < 0.05, using Fisher’s

protected LSD.

Total number of root-producing nodes

There

were 180 observations for TNRPN gathered from the three experiments.

Experiments were significantly (p = 0.0301) different with respect to mean TNRPN

(Tables 5.2 and C.2). Experiment 1, mean TNRPN = 8.6, had significantly more root-

producing nodes, on average, than experiments 2 and 3, which had mean TNRPN =4.5

and 5.8, respectively. Experiment 1 data was analyzed separately from experiments 2

and 3.
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Experiment 1

In experiment 1, mean TNRPN was significantly and independently affected by
cultivar (p = 0.0037) and fungal species (p = 0.0386) (Table 5.4). MiniVerde had 36%
more root-producing nodes than Champion (Fig. 5.5). In consideration of fungal species,
all treatments were similar to the UTC except G. paulograminis, which resulted in a
significant 75% reduction of TNRPN (Fig. 5.6). Compared to M. incrustans, M.
hawaiiensis, M. cynodontis, M. taurocanis, and P. cynodontis, G. paulograminis
significantly reduced mean TNRPN by 83, 78, 76, 82, and 75%, respectively (Fig. 5.6).
No differences in TNRPN were observed within the genera Gaeumannomyces and
Magnaporthiopsis (Fig. 5.6).
Table 5.4  ANOVA for total number of root-producing nodes (TNRPN)

of Champion and MiniVerde ultradwarf bermudagrass from

ectotrophic root-infecting fungi pathogenicity experiment 1
conducted in Starkville, MS.

Source DF TNRPN'
Cultivar (Cv) 1 *x
Error 1 2
Fungal Species (FS) 9 *
Cv xFS 9 NS
Error 3 36 —
T Total number of root-producing nodes, assessed by physical
count.

* ** Significant at p < 0.05 and 0.01 levels, respectively.
NS, not significant.
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Figure 5.5  Mean total number of root-producing nodes (TNRPN) of ultradwarf
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infecting fungi pathogenicity experiment 1 conducted in Starkville, MS.

Bars with different letters are significantly different at p < 0.05, using Fisher’s protected
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MiniVerde ultradwarf bermudagrass in response to ectotrophic root-
infecting fungal species evaluated in pathogenicity experiment 1 conducted
in Starkville, MS.

Bars with the same letter are not significantly different at p < 0.05, using Fisher’s
protected LSD.
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Experiments 2 and 3

Experiments 2 and 3 were similar (p = 0.3588) with respect to mean TNRPN.
Mean TNRPN was significantly and independently affected by cultivar (p = 0.0492) and
fungal species (p = 0.0230) (Table 5.5). MiniVerde had 39% more root-producing nodes
than Champion (Fig. 5.8). All treatments were similar to the UTC, with respect to mean
TNRPN; however, significant differences among treatments did occur (Fig. 5.8).
Compared to G. graminis var. graminis, M. cynodontis, M. taurocanis, and C.
cynodontis, G. paulograminis significantly reduced mean TNRPN by 69, 62, 63, and
65%, respectively (Fig. 5.8). P. cynodontis significantly reduced mean TNRPN by 54
and 48% compared to G. graminis var. graminis and C. cynodontis, respectively (Fig.
5.8). The composite treatment, compared to G. graminis var. graminis, M. taurocanis,
and C. cynodontis, resulted in mean root-producing node decreases of 57, 49, and 51%,
respectively (Fig. 5.8). Magnaporthiopsis spp. were similar with respect to mean

TNRPN.

Table 5.5 ANOVA for total number of root-producing nodes (TNRPN)
of Champion and MiniVerde ultradwarf bermudagrass from
ectotrophic root-infecting fungi pathogenicity experiments 2
and 3 conducted in Starkville, MS.

Source DF TNRPNT
Cultivar (Cv) 1 *
Error 1 2
Fungal Species (FS) 9 *
Cv xFS 9 NS
Error 3 36 —
T Total number of root-producing nodes, assessed by physical
count.

* Significant at p < 0.05 level.
NS, not significant.
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Figure 5.7  Mean total number of root-producing nodes (TNRPN) of ultradwarf
bermudagrass in response to cultivar selection from ectotrophic root-
infecting fungi pathogenicity experiments 2 and 3 conducted in Starkville,
MS.

Bars with different letters are significantly different at p < 0.05, using Fisher’s protected
LSD.
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Figure 5.8  Mean total number of root-producing nodes (TNRPN) of Champion and
MiniVerde ultradwarf bermudagrass in response to fungal species
evaluated in ectotrophic root-infecting fungi pathogenicity experiments 2
and 3 conducted in Starkville, MS.

Bars with the same letter are not significantly different at p < 0.05, using Fisher’s
protected LSD.

150



Frequency of fungal occurrence

Experiments were similar (p = 0.4444) with respect to mean FFO; therefore, data
were combined for analysis (Table 5.2). FFO ranged from 0 to 100% and was
significantly (p < 0.0001) affected by fungal species (Tables 5.2 and C.3). All fungal
treatments were significantly greater than the UTC (Fig. 5.9). With exception of P.
cynodontis, which occurred on 6% of samples, each fungal species and the composite

occurred on 100% of ultradwarf bermudagrass samples in the three experiments (Fig.

5.9).

151



100 - A A A A A A A A
4 80 -
N
S
c 60_
Q
| -
| -
>
Sl 40 |
O
20 -
B
0 . ¢
(9°0¢0 R QD @(\ Q¢ S ¢ e 0(}@ \S\(J
Q
Fungal Isolate (X

Figure 5.9  Mean frequency of fungal occurrence (FFO) of Champion and MiniVerde
ultradwarf bermudagrass in response to ectotrophic root-infecting fungal
species evaluated in pathogenicity experiments 1, 2, and 3 conducted in
Starkville, MS.

Bars with the same letter are not significantly different at p < 0.05, using Fisher’s
protected LSD.

Total root length

There were 180 observations for TRL gathered from the three experiments.
Experiments were significantly (p = 0.0412) different with respect to mean TRL (Tables
5.2 and C.4). Experiment 1, mean TRL = 1,754 cm, had significantly more TRL, on
average, than experiments 2 and 3, which had mean TRL =939 and 1,034 cm,

respectively. Experiment 1 data were analyzed separately from experiments 2 and 3.
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Experiment 1
In experiment 1, mean TRL was significantly (p = 0.0337) affected by fungal
species (Table 5.6). All fungal species were similar to the UTC except M. hawaiiensis,
which had significantly greater mean TRL (Fig. 5.10). G. paulograminis had the least
TRL, numerically, and resulted in significant mean TRL reductions of 86, 87, 80, 80, and
83% compared to M. incrustans, M. hawaiiensis, M. cynodontis, M. taurocanis, and P.
cynodontis, respectively (Fig. 5.10). Mean TRL of G. graminis var. graminis treatments
were significantly reduced by 46% compared to M. hawaiiensis (Fig. 5.10). In contrast to
M. hawaiiensis, C. cynodontis resulted in a significant mean TRL reduction of 52% (Fig.
5.10). No differences were observed within the genera Gaeumannomyces and
Magnaporthiopsis (Fig. 5.10).
Table 5.6 ~ ANOVA for total root length (TRL) of Champion and
MiniVerde ultradwarf bermudagrass from ectotrophic root-

infecting fungi pathogenicity experiment 1 conducted in
Starkville, MS.

Source DF TNRPN'
Cultivar (Cv) 1 NS
Error 1 2
Fungal Species (FS) 9 *
Cv x FS 9 NS
Error 3 36 —
T Total number of root-producing nodes, assessed by physical
count.

* Significant at p <0.05 level.
NS, not significant.
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Figure 5.10 Mean total root length (TRL) of Champion and MiniVerde ultradwarf
bermudagrass in response to ectotrophic root-infecting fungal species
evaluated in pathogenicity experiment 1 conducted in Starkville, MS.

Bars with the same letter are not significantly different at p < 0.05, using Fisher’s
protected LSD.
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Experiments 2 and 3

Experiments 2 and 3 were similar (p = 0.7709) with respect to mean TRL and data
were combined for analysis. There were no differences observed among treatments with

respect to mean TRL of combined data from experiments 2 and 3.

Percent disease

Experiments were similar (p = 0.6730) with respect to mean PD; therefore, data
were combined for analysis (Table 5.2). PD ranged from 0 to 27% and was significantly
(» <0.0001) affected by fungal species (Tables 5.2 and C.5). All fungal treatments
resulted in significantly greater mean PD than the UTC treatment. Excluding the
composite, which is made of equal portions of all eight fungal species, fungal treatments
resulted in two levels of virulence. G. graminis var. graminis, M. incrustans, M.
hawaiiensis, M. cynodontis, M. taurocanis, and P. cynodontis resulted in reduced disease
severity compared to G. paulograminis and C. cynodontis (Fig. 5.11). The composite
treatment was similar to each of the separate fungal species, with respect to mean PD

(Fig. 5.11).
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Figure 5.11 Mean percent disease (PD) of Champion and MiniVerde ultradwarf
bermudagrass in response to ectotrophic root-infecting fungal species
evaluated in pathogenicity experiments 1, 2, and 3 conducted in Starkville,

MS.

Bars with the same letter are not significantly different at p < 0.05, using Fisher’s
protected LSD.
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Gravimetric root weight

There were 180 observations for GRW gathered from the three experiments.
Experiments were significantly (p = 0.0074) different with respect to mean GRW (Tables
5.2 and C.6). Experiment 1, mean GRW = 52.5 mg, had significantly greater root mass,
on average, than experiments 2 and 3, which had mean GRW =26.3 and 21.8 mg,

respectively. Experiment 1 data were analyzed separately from experiments 2 and 3.

Experiment 1

In experiment 1, mean GRW was significantly (p = 0.0095) affected by fungal
species (Table 5.7). All treatments were similar to the UTC, with respect to mean GRW
(Fig. 5.12). G. paulograminis had the least GRW, numerically, and resulted in
significant mean GRW reductions of 92, 88, 91, and 89% compared to M. incrustans, M.
hawaiiensis, M. taurocanis, and P. cynodontis, respectively (Fig. 5.12). Mean GRW of
G. graminis var. graminis treatments were significantly reduced by 71 and 69%
compared to M. incrustans and M. taurocanis, respectively (Fig. 5.12). In contrast to M.
incrustans and M. taurocanis, C. cynodontis resulted in significant mean GRW

reductions of 56 and 53%, respectively (Fig. 5.12).
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Table 5.7

ANOVA for gravimetric root weight (GRW) of Champion and
MiniVerde ultradwarf bermudagrass from ectotrophic root-

infecting fungi pathogenicity experiment 1 conducted in
Starkville, MS.

Source DF TNRPN'
Cultivar (Cv) 1 NS
Error 1 2
Fungal Species (FS) 9 *x
Cv xFS 9 NS
Error 3 36 —

T Total number of root-producing nodes, assessed by physical
count.

** Significant at p < 0.01 level.

NS, not significant.
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Figure 5.12 Mean gravimetric root weight (GRW) of Champion and MiniVerde
ultradwarf bermudagrass in response to ectotrophic root-infecting fungal
species evaluated in pathogenicity experiment 1 conducted in Starkville,
MS.

Bars with the same letter are not significantly different at p < 0.05, using Fisher’s
protected LSD.

Experiments 2 and 3

Experiments 2 and 3 were similar (p = 0.5890) with respect to mean GRW;
therefore data were combined for analysis. Cultivars significantly (p = 0.0161) affected
mean GRW (Table 5.8). MiniVerde, mean GRW = 35.9 mg, had significantly more root

mass than Champion, which had mean GRW = 12.3 mg.
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Table 5.8  ANOVA for gravimetric root weight (GRW) of Champion and
MiniVerde ultradwarf bermudagrass from ectotrophic root-

infecting fungi pathogenicity experiments 2 and 3 conducted in
Starkville, MS.

Source DF TNRPN'
Cultivar (Cv) 1 *
Error 1 2
Fungal Species (FS) 9 NS
Cv x FS 9 NS
Error 3 36 —

T Total number of root-producing nodes, assessed by physical
count.

* Significant at p < 0.05 level.
NS, not significant.

Gravimetric stolon, rhizome, and foliage weight

There were 180 observations for GSRFW gathered from the three experiments.
Experiments were significantly (p = 0.0185) different with respect to mean GSRFW
(Tables 5.2 and C.7). Experiment 1, mean GSRFW = 248.1 mg, had significantly greater
stolon, rhizome, and foliage mass, on average, than experiments 2 and 3, which had mean
GSRFW = 156.3 and 174.1 mg, respectively. Experiment 1 data were analyzed

separately from experiments 2 and 3.

Experiment 1
There were no differences observed among treatments in experiment 1 with

respect to mean GSRFW.
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Experiments 2 and 3

Experiments 2 and 3 were similar (p = 0.4595) with respect to mean GSRFW and
data were combined for analysis. Mean GSRFW was significantly (p = 0.0055) affected
by fungal species (Table 5.9). All treatments were similar except for G. graminis var.
graminis, which had significantly greater GSRFW, on average, than other treatments
(Fig. 5.13). G. graminis var. graminis resulted in significant mean GSRFW increases of
52,42,26,28,27,42,43, 52 and 52% compared to G. paulograminis, M. incrustans, M.
hawaiiensis, M. cynodontis, M. taurocanis, C. cynodontis, P. cynodontis, composite, and

UTC treatments, respectively (Fig. 5.13).

Table 5.9  ANOVA for gravimetric stolon, rhizome, and foliage weight
(GSRFW) of Champion and MiniVerde ultradwarf
bermudagrass from ectotrophic root-infecting fungi
pathogenicity experiments 2 and 3 conducted in Starkville,

MS.
Source DF TNRPN'
Cultivar (Cv) 1 NS
Error 1 2
Fungal Species (FS) 9 *x
Cv xFS 9 NS
Error 3 36 —
T Total number of root-producing nodes, assessed by physical
count.

** Significant at p < 0.01 level.
NS, not significant.
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Figure 5.13 Mean gravimetric stolon, rhizome, and foliage weight (GSRFW) of
Champion and MiniVerde ultradwarf bermudagrass in response to
ectotrophic root-infecting fungal species evaluated in pathogenicity
experiments 2 and 3 conducted in Starkville, MS.

Bars with the same letter are not significantly different at p < 0.05, using Fisher’s
protected LSD.
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Discussion

This study provides insight to the theory that novel ERI fungi elicit the occurrence
of summer decline on ultradwarf bermudagrass putting greens. Summer decline is
characterized by a thinning and loss of foliar plant material, which can progress into
substantial turf loss, resulting in large areas of exposed soil. Roots of affected plants
appear diminutive in size, brown to black in color, and are commonly colonized with
dark, runner hyphae, which is characteristic of ERI fungi. Assessments pertaining to
foliar characteristics included TNN and GSRFW; effects on root health and disease were
monitored as TNRPN, FFO, TRL, PD, and GRW.

Regarding evaluation parameters, differences were observed between cultivars,
fungal species, and experiments. Three experiments were conducted and inadvertent
variations in lighting conditions existed among them. Light exposure in experiment 1
was 12 and 11% greater than experiments 2 and 3, respectively, and resulted in increased
biomass production. Previous studies demonstrated that root material and foliar density
of bermudagrass decrease when subjected to reduced light environments (Miller, et al.,
2005; Baldwin and McCarty, 2008). This provides plausible justification for differences
observed among experiments with respect to TNRPN, TRL, GRW, and GSRFW
evaluation parameters. Henceforth, experiment 1 is referenced as ‘higher light
environment’ and experiments 2 and 3 are referred to as ‘lower light environment’.

Cultivars differed with respect to TNRPN and GRW; however, fungal species
behaved similarly on both cultivars, across all evaluation parameters in this study. This
suggests ERI fungi do not exhibit host preference between Champion and MiniVerde
cultivars. In consideration of GRW, no difference was observed between cultivars
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exposed to a higher light environment, but MiniVerde was superior in lower light
environments. Furthermore, MiniVerde had greater mean TNRPN than Champion
regardless of lighting conditions. This information is trivial in regards to pathogenicity of
ERI fungi, but suggests MiniVerde may have enhanced morphological characteristics,
compared to Champion.

Although Koch’s postulates were completed for each of the six novel ERI fungal
species, as well as the two recognized ERI fungal species, varying levels of virulence
were observed. Likewise, a prior assessment revealed a diversity in virulence among
four ERI fungi, namely, G. cylindrosporus, M. incrustans, M. poae, and Phialophora
graminicola (anamorph of G. cylindrosporus), when inoculated into Kentucky bluegrass
and annual bluegrass turf (Landschoot and Jackson, 1990).

C. cynodontis and G. paulograminis were the most destructive and aggressive
ERI fungi evaluated in this study. G. paulograminis produced characteristic rounded,
moderately lobed hyphopodia, and was readily observed on roots as well as stoloniferous
material. Plants inoculated with G. paulograminis consistently had the least TNN,
TNRPN, TRL, GRW, and GSRFW. Additionally, G. paulograminis incited the greatest
percent disease of all ERI fungi in the study. Visually, C. cynodontis appeared slightly
less destructive than G. paulograminis; however, evaluation parameters suggest the two
fungal species behaved in a similar manner. Like G. paulograminis, C. cynodontis
readily produced characteristic hyphopodia, which were rounded to mitten-shaped, and
was frequently observed on roots as well as stolons.

Findings from this evaluation were somewhat dissimilar to an earlier study by

Elliott (1991). G. graminis var. graminis was moderately to weakly virulent to
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bermudagrass in this assessment, whereas Elliott (1991) reported G. graminis var.
graminis to be highly destructive to bermudagrass. Furthermore, G. graminis var.
graminis-treated plants displayed enhanced foliar properties in current studies, which
suggest this fungal species is not the primary causal agent of foliar symptomatology
associated with summer decline of ultradwarf bermudagrass putting greens. G. graminis
var. graminis was consistently isolated from root material, and characteristic deeply
lobed hyphopodia were produced on stolons and leaf sheaths of inoculated plants.

Also contrasting to prior evaluations, moderate to weak virulence was observed
among M. incrustans-treated plants in this study, while M. incrustans did not affect
bermudagrass in the earlier study by Elliott (1991). M. incrustans was similar to other
species of Magnaporthiopsis, and all were readily isolated from inoculated plants.
Unlike C. cynodontis, G. graminis var. graminis, and G. paulograminis, species of
Magnaporthiopsis did not produce hyphopodia and were not observed on ultradwarf
bermudagrass stolons. Prior to recent studies at MSU, summarized in Chapter IV, a
Magnaporthiopsis, excluding M. incrustans, had not been isolated from bermudagrass in
nature; however, pathogenicity of a creeping bentgrass (4Agrostis stolonifera L.) derived
isolate of M. poae to bermudagrass was demonstrated in a preceding evaluation (Elliott,
1991). Nonetheless, subsequent information from this study reveals a moderate to weak
level of virulence among species of Magnaporthiopsis, concerning ultradwarf
bermudagrass.

P. cynodontis, like species of Magnaporthiopsis, did not produce hyphopodia, and
was not observed on stoloniferous material. P. cynodontis was the least-aggressive ERI

fungal species in the evaluation with respect to occurrence on roots of inoculated
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ultradwarf bermudagrass plants. The genus Pseudophialophora is typified by P.
eragrostis, which was identified from healthy roots of Poaceae plants (Luo et al., 2014).
As suggested in Chapter IV, relatedness to non—pathogenic Pseudophialophora spp.
provides a reasonable theory for decreased activity and presence of P. cynodontis on
roots of ultradwarf bermudagrass.

Overall, ERI fungi were not entirely devastating to ultradwarf bermudagrass
plants, and a broad view of summer decline must be considered to understand this
reasoning. Summer decline is most prevalent in the Deep South throughout late summer
and early fall months. During this period, daytime temperatures often exceed 38 C,
which surpasses the upper limit for optimal growth of bermudagrass (McCarty and
Miller, 2002). Extreme temperatures, coupled with increased foot and vehicular traffic,
decreased mowing heights, and biological stress factors such as nematodes, insects, and
other fungi can often debilitate ultradwarf bermudagrasses at this time of year (Johnson,
1970; Giblin-Davis et al., 1992; Bunnell et al., 2005; Trappe et al., 2011). Growth
chamber environments in these pathogenicity evaluations were not stressful to
bermudagrass plants; instead, conditions were near optimal for turf growth. Mean
daytime air temperatures were less than 34 C, plants did not experience mechanical or
foot traffic stress, and additional biological stresses were absent.

This study supports the concept that summer decline is caused by a complex of
stress factors and not by ERI fungi alone. In vivo evaluations of ERI fungi were
successful in recreating symptoms associated with summer decline, especially within root
systems; however, not as severe as observed by golf course superintendents and plant

disease diagnosticians. This is likely because plants in this study were grown at near
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optimal conditions; whereas, in nature, ultradwarf bermudagrass plants exhibiting
symptoms of summer decline are weakened by many stress factors, and increasingly
vulnerable to ERI fungi.

Another important aspect to this study was general geographic origins for ERI
fungi. Many fungal species were isolated from a number of turfgrass samples, submitted
from various locations across the southern U.S. and Hawaii. This implies a possible
widespread distribution of these fungi across the southern U.S. Furthermore, multiple
ERI fungi were isolated from roots within a single turfgrass sample. This suggests a
cohabitant nature among ERI fungi, a theory that should be studied further.

In conclusion, findings from this research necessitate subsequent investigations
concerning effects of ERI fungi on ultradwarf bermudagrass turf managed to golf course
standards as well as distribution of ERI fungi across the southern U.S. To gain a more
precise knowledge of the role ERI fungi play in summer decline, real-world conditions
must be considered. A proposed evaluation scheme includes soil inoculations of ERI
fungi into established ultradwarf bermudagrass turf. Plots should be managed to golf
course standards, which would include daily mowings at 3 to 4 mm height of cut,
irrigation to prevent foliar wilt, and fertilization according to soil tests. Additionally, foot
traffic should be applied to supply surface stress and root zone compaction. Suggestions
for distribution analyses include a strategic sampling of ultradwarf bermudagrass root
systems for presence of ERI fungal structures, isolation of fungal organisms, and

molecular identification of subsequent axenic cultures.
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Future studies may include establishing methods for control, determining
turfgrass host range, identifying modes of dissemination, and developing rapid diagnostic

tools for ERI fungal species.
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APPENDIX A

SUPPLEMENTARY MATERIAL FOR CULTURAL MANAGEMENT STUDIES
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Figure A.1  Overview of ultradwarf bermudagrass research plots at the R. R. Foil Plant
Science Research Center.
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Figure A.3  Initiation of treatment applications for cultural management study, 8 June
2012.

Figure A4  Vacu-Cutter™ insert (True-Surface® Greens Care Collection).
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Figure A.5  Deep Slicer insert (True-Surface® Greens Care Collection).

Figure A.6  Greens Spiker insert (True-Surface® Greens Care Collection).
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Figure A.7  Vacu-Scarifier™ insert (True-Surface® Greens Care Collection).

Figure A.8  Grid placement for cultural management study data collection.
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APPENDIX B

SUPPLEMENTARY MATERIAL FOR IDENTIFICATION AND

CHARACTERIZATION STUDIES
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Figure B.1  Field symptomatology of summer decline on an ultradwarf bermudagrass
putting green.

Figure B.2  Symptomatology of an ultradwarf bermudagrass plant affected by summer
decline.
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Figure B.3  Ultradwarf bermudagrass root material colonized by dark, runner hyphae.

Figure B.4 Lobed hyphopodia of an ectotrophic root-infecting fungus.
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Figure B.5  Simple hyphopodia of an ectotrophic root-infecting fungus.

Figure B.6  Growth cessation structures of an ectotrophic root-infecting fungus.
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Figure B.7  Electrophoretic analysis of polymerase chain reaction amplification for
phylogenetic markers of isolate GSGC15—4 on a 1.0% agarose gel.

Lane descriptions: 1 — 1kb DNA Ladder; 2 — approximately 550bp ITS product;

3 — approximately 870bp LSU product; 4 — approximately 580bp SSU product;

5 — approximately 620bp MCM7 product; 6 — approximately 920bp TEFI product;
7 — approximately 700bp product.
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Figure B.8§  Electrophoretic analysis of polymerase chain reaction amplification for
phylogenetic markers of isolate DR1—4 on a 1.0% agarose gel.

Lane descriptions: 1 — 1kb DNA Ladder; 2 — approximately 550bp ITS product;

3 — approximately 870bp LSU product; 4 — approximately 580bp SSU product;

5 — approximately 620bp MCM7 product; 6 — approximately 920bp TEFI product;
7 — approximately 700bp product.
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Figure B.9  Electrophoretic analysis of polymerase chain reaction amplification for
phylogenetic markers of isolate WW3-5 on a 1.0% agarose gel.

Lane descriptions: 1 — 1kb DNA Ladder; 2 — approximately 550bp ITS product;

3 — approximately 870bp LSU product; 4 — approximately 580bp SSU product;

5 — approximately 620bp MCM7 product; 6 — approximately 920bp TEFI product;
7 — approximately 700bp product.
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Figure B.10 Electrophoretic analysis of polymerase chain reaction amplification for
phylogenetic markers of isolate KR10—-6 on a 1.0% agarose gel.

Lane descriptions: 1 — 1kb DNA Ladder; 2 — approximately 550bp ITS product;

3 — approximately 870bp LSU product; 4 — approximately 580bp SSU product;

5 — approximately 620bp MCM7 product; 6 — approximately 920bp TEFI product;
7 — approximately 700bp product.
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Figure B.11 Electrophoretic analysis of polymerase chain reaction amplification for
phylogenetic markers of isolate RS7-2 on a 1.0% agarose gel.

Lane descriptions: 1 — 1kb DNA Ladder; 2 — approximately 550bp ITS product;

3 — approximately 870bp LSU product; 4 — approximately 580bp SSU product;

5 — approximately 620bp MCM7 product; 6 — approximately 920bp TEFI product;
7 — approximately 700bp product.
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Figure B.12 Electrophoretic analysis of polymerase chain reaction amplification for
phylogenetic markers of isolate RRFCHMP1-3 on a 1.0% agarose gel.

Lane descriptions: 1 — 1kb DNA Ladder; 2 — approximately 550bp ITS product;

3 — approximately 870bp LSU product; 4 — approximately 580bp SSU product;

5 — approximately 620bp MCM7 product; 6 — approximately 920bp TEFI product;
7 — approximately 700bp product.
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Figure B.13  Electrophoretic analysis of polymerase chain reaction amplification for
phylogenetic markers of isolate HP24—3 on a 1.0% agarose gel.

Lane descriptions: 1 — 1kb DNA Ladder; 2 — approximately 550bp ITS product;

3 — approximately 870bp LSU product; 4 — approximately 580bp SSU product;

5 — approximately 620bp MCM7 product; 6 — approximately 920bp TEFI product;
7 — approximately 700bp product.
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Figure B.14 Electrophoretic analysis of polymerase chain reaction amplification for
phylogenetic markers of isolate RW3—4 on a 1.0% agarose gel.

Lane descriptions: 1 — 1kb DNA Ladder; 2 — approximately 550bp ITS product;

3 — approximately 870bp LSU product; 4 — approximately 580bp SSU product;

5 — approximately 620bp MCM7 product; 6 — approximately 920bp TEFI product;
7 — approximately 700bp product.
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Figure B.15 Incubation chambers set to 18, 25, 32, and 38 C for optimal growing
temperature studies of ectotrophic root-infecting fungi.
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Figure B.16 Placement of ERI fungal isolates in incubation chambers for optimal
growing temperature studies.
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Figure B.18 Moycelial growth of ERI fungal isolate after 7-day incubation at 25 C.
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Figure B.19 Mycelial growth of ERI fungal isolate after 7-day incubation at 32 C.

Figure B.20 Mycelial growth of ERI fungal isolate after 7-day incubation at 38 C.
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Figure B.21 Colony morphology of Gaeumannomyces graminis var. graminis isolate
AD1-2 at 7-day maturity on potato dextrose agar.

Figure B.22 Colony morphology of Gaeumannomyces graminis var. graminis isolate
ADI-2 at 10-day maturity on potato dextrose agar.
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Figure B.23 Colony morphology of Gaeumannomyces paulograminis isolate DR10-3 at
7-day maturity on potato dextrose agar.

Figure B.24 Colony morphology of Gaeumannomyces paulograminis isolate DR10-3 at
10-day maturity on potato dextrose agar.
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Figure B.25 Colony morphology of Gaeumannomyces paulograminis isolate DR12—1 at
7-day maturity on potato dextrose agar.

Figure B.26 Colony morphology of Gaeumannomyces paulograminis isolate DR12—1 at
10-day maturity on potato dextrose agar.
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Figure B.27 Colony morphology of Gaeumannomyces paulograminis isolate DR13—1 at
7-day maturity on potato dextrose agar.

Figure B.28 Colony morphology of Gaeumannomyces paulograminis isolate DR13-1 at
10-day maturity on potato dextrose agar.
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Figure B.29 Colony morphology of Gaeumannomyces paulograminis isolate DR1-4 at
7-day maturity on potato dextrose agar.

Figure B.30 Colony morphology of Gaeumannomyces paulograminis isolate DR1-4 at
10-day maturity on potato dextrose agar.
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Figure B.31 Colony morphology of Gaeumannomyces paulograminis isolate DR6—4 at
7-day maturity on potato dextrose agar.

Figure B.32 Colony morphology of Gaeumannomyces paulograminis isolate DR6—4 at
10-day maturity on potato dextrose agar.
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Figure B.33 Colony morphology of Magnaporthiopsis taurocanis isolate GSGC10-2 at
7-day maturity on potato dextrose agar.

Figure B.34 Colony morphology of Magnaporthiopsis taurocanis isolate GSGC10-2 at
10-day maturity on potato dextrose agar.
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Figure B.35 Colony morphology of Gaeumannomyces graminis var. graminis isolate
GSGC15-3 at 7-day maturity on potato dextrose agar.

Figure B.36 Colony morphology of Gaeumannomyces graminis var. graminis isolate
GSGC15-3 at 10-day maturity on potato dextrose agar.
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Figure B.37 Colony morphology of Gaeumannomyces graminis var. graminis isolate
GSGC15-4 at 7-day maturity on potato dextrose agar.

Figure B.38 Colony morphology of Gaeumannomyces graminis var. graminis isolate
GSGC15-4 at 10-day maturity on potato dextrose agar.
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Figure B.39 Colony morphology of Magnaporthiopsis cynodontis isolate HCC3—4 at 7-
day maturity on potato dextrose agar.

Figure B.40 Colony morphology of Magnaporthiopsis cynodontis isolate HCC3—4 at
10-day maturity on potato dextrose agar.
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Figure B.41 Colony morphology of Candidacolonium cynodontis isolate HP24-3 at 7-
day maturity on potato dextrose agar.

Figure B.42 Colony morphology of Candidacolonium cynodontis isolate HP24-3 at 10-
day maturity on potato dextrose agar.
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Figure B.43 Colony morphology of Candidacolonium cynodontis isolate HP38—4 at 7-
day maturity on potato dextrose agar.

Figure B.44 Colony morphology of Candidacolonium cynodontis isolate HP38—4 at 10-
day maturity on potato dextrose agar.
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Figure B.45 Colony morphology of Magnaporthiopsis hawaiiensis isolate KR10-6 at 7-
day maturity on potato dextrose agar.

Figure B.46 Colony morphology of Magnaporthiopsis hawaiiensis isolate KR10—6 at
10-day maturity on potato dextrose agar.
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Figure B.47 Colony morphology of Magnaporthiopsis incrustans isolate LC8—6 at 7-
day maturity on potato dextrose agar.

Figure B.48 Colony morphology of Magnaporthiopsis incrustans isolate LC8—6 at 10-
day maturity on potato dextrose agar.
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Figure B.49 Colony morphology of Gaeumannomyces paulograminis isolate OW4—4 at
7-day maturity on potato dextrose agar.

Figure B.50 Colony morphology of Gaeumannomyces paulograminis isolate OW4—4 at
10-day maturity on potato dextrose agar.
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Figure B.51 Colony morphology of Magnaporthiopsis taurocanis isolate RRFCHMP1—
3 at 7-day maturity on potato dextrose agar.

Figure B.52 Colony morphology of Magnaporthiopsis taurocanis isolate RRFCHMP1—
3 at 10-day maturity on potato dextrose agar.
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Figure B.53 Colony morphology of Magnaporthiopsis taurocanis isolate RRFMV10-2
at 7-day maturity on potato dextrose agar.

Figure B.54 Colony morphology of Magnaporthiopsis taurocanis isolate RRFMV10-2
at 10-day maturity on potato dextrose agar.
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Figure B.55 Colony morphology of Magnaporthiopsis incrustans isolate RRFMV14-5
at 7-day maturity on potato dextrose agar.

Figure B.56 Colony morphology of Magnaporthiopsis incrustans isolate RRFMV14-5
at 10-day maturity on potato dextrose agar.
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Figure B.57 Colony morphology of Magnaporthiopsis cynodontis isolate RS3—1 at 7-
day maturity on potato dextrose agar.

Figure B.58 Colony morphology of Magnaporthiopsis cynodontis isolate RS3—1 at 10-
day maturity on potato dextrose agar.
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Figure B.59 Colony morphology of Magnaporthiopsis cynodontis isolate RS5-5 at 7-
day maturity on potato dextrose agar.

Figure B.60 Colony morphology of Magnaporthiopsis cynodontis isolate RS5-5 at 10-
day maturity on potato dextrose agar.
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Figure B.61 Colony morphology of Gaeumannomyces paulograminis isolate RS7—1 at
7-day maturity on potato dextrose agar.

Figure B.62 Colony morphology of Gaeumannomyces paulograminis isolate RS7—1 at
10-day maturity on potato dextrose agar.
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Figure B.63 Colony morphology of Magnaporthiopsis cynodontis isolate RS7-2 at 7-
day maturity on potato dextrose agar.

Figure B.64 Colony morphology of Magnaporthiopsis cynodontis isolate RS7-2 at 10-
day maturity on potato dextrose agar.
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Figure B.65 Colony morphology of Pseudophialophora cynodontis isolate RW3—4 at 7-
day maturity on potato dextrose agar.

Figure B.66 Colony morphology of Pseudophialophora cynodontis isolate RW3—4 at
10-day maturity on potato dextrose agar.
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Figure B.67 Colony morphology of Magnaporthiopsis taurocanis isolate TPC4-5 at 7-

day maturity on potato dextrose agar.

. o
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Figure B.68 Colony morphology of Magnaporthiopsis taurocanis isolate TPC4-5 at 10-
day maturity on potato dextrose agar.
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Figure B.69 Colony morphology of Magnaporthiopsis taurocanis isolate TPC5-3 at 7-
day maturity on potato dextrose agar.

Figure B.70 Colony morphology of Magnaporthiopsis taurocanis isolate TPC5-3 at 10-
day maturity on potato dextrose agar.
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Figure B.71 Colony morphology of Magnaporthiopsis incrustans isolate WW3-5 at 7-
day maturity on potato dextrose agar.

Figure B.72 Colony morphology of Magnaporthiopsis incrustans isolate WW3-5 at 10-
day maturity on potato dextrose agar.
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Figure B.73 Colony morphology of Magnaporthiopsis poae isolate TAP35 at 7-day
maturity on potato dextrose agar.

Figure B.74 Colony morphology of Magnaporthiopsis poae isolate TAP35 at 10-day
maturity on potato dextrose agar.
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Figure B.75 Colony morphology of Magnaporthiopsis poae isolate TAP41 at 7-day
maturity on potato dextrose agar.

Figure B.76 Colony morphology of Magnaporthiopsis poae isolate TAP41 at 10-day
maturity on potato dextrose agar.
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Figure B.77 Colony morphology of Magnaporthiopsis poae isolate SPKBG7 at 7-day
maturity on potato dextrose agar.

Figure B.78 Colony morphology of Magnaporthiopsis poae isolate SPKBG7 at 10-day
maturity on potato dextrose agar.
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Table B.2 Maximum likelihood fits of nucleotide substitution models for the combined
ITS, LSU, SSU, MCM7, RPBI, and TEF'I dataset.

Model BIC'
General Time Reversible (GTR) + G® + 1" 95739.31
GTR+G 95859.57
Tamura 3-parameter (T92) + G + 1 95974.73
Kimura 2-parameter (K2) + G +1 96082.09
T92 + G 96093.19
K2+ G 96206.07
Hasegawa-Kishino-Yano (HKY) + G + 1 96333.59
GTR +1 96546.95
T92 +1 96694.93
K2 +1 96747.85
Tamura-Nei (TN93) + 1 96977.97
Jukes-Cantor (JC) + G +1 97023.29
HKY +1 97149.52
IC+G 97177.86
JC+1 97686.81
GTR 101555.55
K2 102018.93
T92 102058.84
TNO93 102112.41
HKY 102676.28
IC 102788.15
TN93 +G +1 141621.36
HKY + G 187524.18
TN93 + G 210027.56

" Bayesian Information Criterion scores, model with lowest score most adequately
describes the substitution pattern.

¥ Gamma distribution.

¥ Invariable rates among sites.
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Table B.3 Maximum likelihood fits of nucleotide substitution models for the internal
transcribed spacer (ITS) region dataset.

Model BIC'
General Time Reversible (GTR) +G* 12668.46
Kimura 2-parameter (K2)+G 12668.84
GTR+GH' 12675.44
K2+G+I 12677.27
Tamura 3-parameter (T92)+G 12692.44
T92+G+I 12700.77
Tamura-Nei (TN93)+G 12729.10
TN93+G+I 12737.01
Hasegawa-Kishino-Yano (HKY)+G 12764.77
HKY+G+I 12773.36
Jukes-Cantor (JC)+G 12791.69
JC+G+I 12800.61
K2+I 12897.92
TN93+I 12921.28
GTR+I 12921.67
T92+I 12924.96
HKY+I 12947.86
JC+H 13008.74
TN93 13508.93
GTR 13514.01
K2 13520.37
T92 13552.04
HKY 13576.57
JIC 13621.07

" Bayesian Information Criterion scores, model with lowest score most adequately
describes the substitution pattern.

¥ Gamma distribution.

¥ Invariable rates among sites.
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Figure B.§2 Maximum Likelihood phylogram based on the internal transcribed spacer
(ITS) region dataset.

ML bootstrap values > 75% are presented above internodes. Sequences of isolates
displayed in red were generated from this study. All other data were obtained from public
databases. Cryphonectria parasitica was chosen as the outgroup taxon.
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P. cynodontis RW3-4

P. eragrostis CM12m9
P. eragrostis CM20m5-2
P. panicorum CM3m7
P. panicorum CM9s6

P. schizachyrii AL3s4
P. schizachyrii ALZ2m1

P. cynodontis RW3-4

P. eragrostis CM12m9  0.072

P. eragrostis CM20m5-2 0.072 0.000

P. panicorum CM3m7  0.068 0.039 0.039

P. panicorum CM9s6 0.068 0.039 0.039 0.000

P. schizachyrii AL3s4  0.077 0.025 0.025 0.043 0.043

P. schizachyrii AL2m1  0.077 0.025 0.025 0.043 0.043 0.000

Figure B.85 Estimates of evolutionary divergence between sequences for the internal
transcribed spacer (ITS) region of species of Pseudophialophora.
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Table B.4 Maximum likelihood fits of nucleotide substitution models for the large
subunit (LSU) gene dataset.

Model BIC'
Kimura 2-parameter (K2)+G*+I' 8885.70
General Time Reversible (GTR)+G+I 8887.82
Tamura 3-parameter (T92)+G+1 8889.62
GTR+G 8892.28
K2+G 8898.85
T92+G 8902.71
Tamura-Nei (TN93)+I 8937.07
K2+I1 8942.73
T92+1 8945.99
GTR+I 8957.23
Hasegawa-Kishino-Yano (HKY)+I 8996.30
Jukes-Cantor (JC)+G+I 9034.24
IC+G 9045.33
JC+H 9087.01
TN93 9300.63
GTR 9319.03
K2 9357.40
T92 9365.14
HKY 9427.72
IC 9493.92
TN93+G+I 31602.74
TN93+G 31607.26
HKY+G+I 31667.51
HKY+G 31681.73

" Bayesian Information Criterion scores, model with lowest score most adequately
describes the substitution pattern.

¥ Gamma distribution.

¥ Invariable rates among sites.

233


https://31681.73
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Gaeumannomyces graminisvar. tritici M55
| Gaeumannomyces paulograminis DR10-3
38 Gaeumannomyces paulograminis DR12-1
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3 8 Magnaporthiopsis cynodontis RS3-1
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99| 99,Pyricularia grisea M82
Pyricularia grisea M83
100l Pyricularia grisea M25
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Pyricularia oryzae 7015 .
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0.0

Figure B.86 Maximum Likelihood phylogram based on the large subunit (LSU) gene
dataset.

ML bootstrap values > 75% are presented above internodes. Sequences of isolates

displayed in red were generated from this study. All other data were obtained from public
databases. Cryphonectria parasitica was chosen as the outgroup taxon.
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P. cynodontis RW3-4

P. eragrostis CM12m9  0.008

P. eragrostis CM20m5-2 0.008 0.000

P. panicorum CM3m7 0.011 0.007 0.007

P. panicorum CM9s6 0.011 0.007 0.007 0.000

P. schizachyrii AL3s4 0.012 0.004 0.004 0.011 0.011

P. schizachyrii AL2m1 0.012 0.004 0.004 0.011 0.011 0.000

Figure B.89 Estimates of evolutionary divergence between sequences for the large
subunit (LSU) gene of species of Pseudophialophora.

237



Table B.5 Maximum likelihood fits of nucleotide substitution models for the small
subunit (SSU) gene dataset.

Model BICT
Kimura 2-parameter (K2) + G 4096.06
Tamura 3-parameter (T92) + G 4103.97
K2+G+I 4105.26
T92 +1 4107.17
K2+I 4109.20
T92+G+I 4113.33
K2 4115.70
T92 4123.70
Hasegawa-Kishino-Yano (HKY)+G 4125.17
HKY+I 4126.47
Tamura-Nei (TN93) + G 4131.58
TN93+I 4132.90
Jukes-Cantor (JC)+G 4133.57
HKY+G+I 4134.43
TN93+G+I 4140.77
JC+G+I 4143.06
HKY 4145.08
TN93 4150.14
IC 4151.42
JC+ 4152.06
General Time Reversible (GTR)+G 4157.36
GTR+G+I 4166.66
GTR+I 4175.65
GTR 4180.16

" Bayesian Information Criterion scores, model with lowest score most adequately
describes the substitution pattern.

¥ Gamma distribution.

¥ Invariable rates among sites.
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Figure B.90 Maximum Likelihood phylogram based on the small subunit (SSU) gene
dataset.

ML bootstrap values > 75% are presented above internodes. Sequences of isolates
displayed in red were generated from this study. All other data were obtained from public
databases. Cryphonectria parasitica was chosen as the outgroup taxon.
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P. cynodontis RW3-4

P. eragrostis CM12m9  0.002

P. eragrostis CM20m5-2 0.002 0.000

P. panicorum CM3m7 0.004 0.002 0.002

P. panicorum CM9s6 0.002 0.000 0.000 0.002

P. schizachyrii AL3s4 0.002 0.000 0.000 0.002 0.000

P. schizachyrii AL2m1  0.002 0.000 0.000 0.002 0.000 0.000

Figure B.93 Estimates of evolutionary divergence between sequences for the small
subunit (SSU) gene of species of Pseudophialophora.

242



Table B.6 Maximum likelihood fits of nucleotide substitution models for the
minichromosome maintenance complex component 7 (MCM?7) gene dataset.

Model BICT
Tamura 3-parameter (T92) + G 9105.55
T92+G+I 9113.03
Hasegawa-Kishino-Yano (HKY)+G 9119.46
Tamura-Nei (TN93)+G 9127.27
HKY+G+I 9127.45
TN93+G+I 9134.21
Kimura 2-parameter (K2) + G 9146.06
K2+G+l 9154.32
General Time Reversible (GTR) + G 9154.50
GTR+G+I 9161.75
T92+I 9274.89
TNO93+] 9288.57
HKY+I 9291.18
K2+I 9295.61
GTR+I 9310.33
Jukes-Cantor (JC)+G 9310.91
JCH+G+I 9320.07
JCHI 9450.35
K2 9764.55
T92 9798.91
GTR 9802.81
TNO93 9813.32
HKY 9820.29
JC 9913.63

" Bayesian Information Criterion scores, model with lowest score most adequately
describes the substitution pattern.

¥ Gamma distribution.

¥ Invariable rates among sites.
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Figure B.94 Maximum Likelihood phylogram based on the minichromosome
maintenance complex component 7 (MCM7) gene dataset.

ML bootstrap values > 75% are presented above internodes. Sequences of isolates

displayed in red were generated from this study. All other data were obtained from public
databases. Cryphonectria parasitica was chosen as the outgroup taxon.
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P. cynodontis RW3-4

P. eragrostis CM12m9
P. eragrostis CM20m5-2
P. panicorum CM3m7
P. panicorum CM9s6

P. schizachyrii AL3s4

P. schizachyrii AL2m1

P. cynodontis RW3-4

P. eragrostis CM12m9  0.052

P. eragrostis CM20m5-2 0.049 0.003

P. panicorum CM3m7 0.051 0.019 0.015

P. panicorum CM9s6 0.051 0.019 0.015 0.000

P. schizachyrii AL3s4 0.056 0.022 0.020 0.022 0.022

P. schizachyrii AL2m1  0.056 0.022 0.020 0.022 0.022 0.000

Figure B.97 Estimates of evolutionary divergence between sequences for the
minichromosome maintenance complex component 7 (MCM?7) gene of
species of Pseudophialophora.

247



Table B.7 Maximum likelihood fits of nucleotide substitution models for the
translation elongation factor 1-alpha gene (TEF1) gene dataset.

Model BIC'
Tamura-Nei (TN93)+G 7736.09
TN93+G+I 7741.69
General Time Reversible (GTR) + G 7759.31
GTR+G+I 7765.04
Tamura 3-parameter (T92) + G 7787.37
TNO93+] 7789.57
T92+G+I 7794.57
Hasegawa-Kishino-Yano (HKY)+G 779591
HKY+G+I 7804.05
GTR+I 7811.67
Kimura 2-parameter (K2) + G 7820.52
K2+G+l 7826.11
T92+1 7831.11
HKY+I 7841.02
Jukes-Cantor (JC)+G 7923.87
JC+G+I 7928.91
JC+ 7957.37
TNO93 8209.88
GTR 8228.20
T92 8290.93
K2 8295.29
K2+1 8305.81
HKY 8311.05
JC 8386.98

" Bayesian Information Criterion scores, model with lowest score most adequately
describes the substitution pattern.

¥ Gamma distribution.

¥ Invariable rates among sites.
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83r Gaeumannomyces graminisvar. tritici r3111a
38 Gaeumannomyces graminisvar. tritici M55
Gaeumannomyces graminis var. avenae CBS87.65
Gaeumannomyces paulograminis OW4-4
Gaeumannomyces paulograminis DR6-4
Gaeumannomyces paulograminis DR13-1
Gaeumannomyces paulograminis DR12-1
R Gaeumannomyces paulograminis DR10-3
Gaeumannomyces paulograminis DR1-4
Goeumannomyces paulograminis RS7-1
Magnaporthiopsis incrustans WW3-5 .
Gueumannomyces graminisvar. graminis M53
Goeumannomyces graminis var. graminis CBS235.32
(Gaeumannomyces graminisvar. graminis M54
Gaeumannomyces graminis var. graminis M33
Gageumannomyces graminjsvar. graminis GSGC15-4
A4 Goeumannomyces graminisvar. graminis GSGC15-3
qQ Goeumannomyces graminis var. graminis AD1-2
Magnaporthiopsis cynodontis RS7-2
gadMagnaporthiopsis cynodontis RS5-5
Magnaporthiopsis cynodontis RS3-1
Magnaporthiopsis cynodontis HCC3-4
81 WMagnaporthiopsis taurocanis RRECHMP1-3
Magnaporthiopsis taurocanis GSGC10-2
Muagnaporthiopsis taurocanis RREMY10-2
Magnaporthiopsis taurocanis TPC5-3
IMagnaporthiopsis taurocanis TPC4-5
Magnaporthiopsis hawaiiensis KR10-6
Magnaporthiopsis poae TAP35
Magnaporthiopsis poae SPKBG7
g5Magnaporthiopsis poae ATCC64411
[~ Magnaporthiopsis poae M47
Magnaporthiopsis poae TAP41
Magnaporthiopsis rhizophila M23
agnagorthfogsfg rhfgoghf{a M22
Magnaporthiopsis panicorum CM10s2
agnaporthiopsis panicorum CM9m11
agnaporthiopsis panicorum CM7m9
Magnaporthiopsis panicorum CM2s8
Magnaporthiopsis incrustans M35
Magnaporthiopsis incrustans M51
Muagnaporthiopsis incrustans RREMV14-5
Magnaporthiopsis incrustans LC8-6
Buergenerula spartinae ATCC22848

Omnidemptus affinis ATCC200212
Nokataea oryzae M21
98 Nakataea oryzae M9

47 Nakataea oryzae M71 . .
Pseudophialophara cynodontis RW3-4

93 99, Pseudophialophora panicorum CM3m7
Pseudo| hiaioﬁh ora panicorum CM9s6
Pseudophialophora eragrostis CM12m9
92 Pseudophiglophora eragrostis CM20m5-2
qg|_yPseudophialophora schizachyrii AS3s4
Pseudophialophora schizachyrii AL2Zm1
Gaeumannomyces cylindrosporus CBS610.75
Pyricularia grisea M82
Pyricularia grisea M83
100! ricularia grisea M25
93 yricularia'oryzae M60
Pyricularia oryzae 7015
y Candidacolonium cynodontis HP24-3
100" Candidacolonium cynodontis HP38-4
Pseudohalonectria lignicola M95
1 Qp==—0phi0Ceras leptosporum CBS894.70
Ophioceras dolichostomum CBS114926
Ophioceras commune M91
I8 100 'Ophioceras commune M92
Cryphonectria parasitica ATCC38755

8

0.03

Figure B.98 Maximum Likelihood phylogram based on the translation elongation factor
1-alpha gene (TEF1) gene dataset.

ML bootstrap values > 75% are presented above internodes. Sequences of isolates
displayed in red were generated from this study. All other data were obtained from public
databases. Cryphonectria parasitica was chosen as the outgroup taxon.
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P. cynodontis RW3-4

P. eragrostis CM12m9
P. eragrostis CM20m5-2
P. panicorum CM3m7
P. panicorum CM9s6

P. schizachyrii AL3s4

P. schizachyrii AL2m1

P. cynodontis RW3-4

P. eragrostis CM12m9  0.048

P. eragrostis CM20m5-2 0.048 0.000

P. panicorum CM3m7 0.045 0.023 0.023

P. panicorum CM9s6 0.045 0.023 0.023 0.000

P. schizachyrii AL3s4 0.048 0.010 0.010 0.024 0.024

P. schizachyrii AL2m1 0.047 0.009 0.009 0.023 0.023 0.001

Figure B.101 Estimates of evolutionary divergence between sequences for the translation
elongation factor 1-alpha gene (TEFI) gene of species of
Pseudophialophora.
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Table B.8§  Maximum likelihood fits of nucleotide substitution models for the largest
subunit of the largest subunit of RNA polymerase II (RPBI) gene dataset.

Model BICT
Tamura-Nei (TN93)+G+I1 12764.57
TN93+G 12767.23
General Time Reversible (GTR) + G + 1 12788.25
GTR+G 12790.57
Tamura 3-parameter (T92) + G 12796.75
T92+G+I 12801.42
Kimura 2-parameter (K2) + G 12835.04
K2+G+l 12838.42
Hasegawa-Kishino-Yano (HKY)+G 12839.86
HKY+G+I 12844.02
TN93+I 12908.04
GTR+I 12936.08
T92+1 12980.10
K2+I 12994.49
HKY+I 13023.42
Jukes-Cantor (JC)+G 13102.47
JC+GHI 13103.46
JCHI 13237.35
TN93 13530.98
GTR 13555.55
K2 13573.65
T92 13604.76
HKY 13661.41
JC 13794.64

" Bayesian Information Criterion scores, model with lowest score most adequately
describes the substitution pattern.

¥ Gamma distribution.

¥ Invariable rates among sites.
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https://13794.64
https://13661.41
https://13604.76
https://13573.65
https://13555.55
https://13530.98
https://13237.35
https://13103.46
https://13102.47
https://13023.42
https://12994.49
https://12980.10
https://12936.08
https://12908.04
https://12844.02
https://12839.86
https://12838.42
https://12835.04
https://12801.42
https://12796.75
https://12790.57
https://12788.25
https://12767.23
https://12764.57

100,Gaeumnannomyces graminis var. graminis M33
aeumannomyces graminis var. graminis M54
798¢ aeumannomyces graminis var. graminis M53
e e aeumannomyces graminis var. graminis CBS235.32
Gaeumannomyces graminjsvar. graminis AD1-2
geumannomyces graminis var. graminis GSGC15-3

Gaeumannomyces graminis var. graminis GSGC15-4
Gaeumannomyces paulograminis DR10-3
Gaeumannomyces paulograminis DR6-4
Gaeumannomyces paulograminis DR12-1
Gaeumannomyces paulograminis DR13-1
Gaeumannomyces paulograminis DR1-4
Gaeumannomyces graminis var. tritici M55
Gaeumannomyces paulograminis OW4-4
Gaeumannomyces paulograminisRS7-1
ﬂgaeumannomyces graminisvar. triticir3111a

100'Gaeumannomyces graminis var. avenae CBS87.65
Magnaporthiopsis poae TAP41
Magnaporthiopsis poae TAP35
d  87WMagnaporthiopsis poae SPKBG7
g IMagnaporthjopsis poae ATCC64411
Magnaporthiopsis poae M47
Magnaporthiopsis rhizophila M23
Magnaporthiopsis rhizophila M22
Wagnaporthiopsis incrustans WW3-5
Mht,rfgn aporthiopsis incrustans M51

agnaporthiopsis incrustans M35
IMagnaporthiopsis incrustans RRFMV14-5
Magnaporthiopsis incrustans LC8-6

Magnaporthiopsis panicorum CM10s2
Magnaporthiopsis panicorum CM7m9
Magnaporthiopsis panicorum CM2s8
Magnaporthiopsis panicorum CM9m11
Magnaporthiopsis cynodontis RS7-2
95| Magnaporthiopsis cynadontis RS5-5
Magnaporthiopsis cynodontis RS3-1
Magnaporthiopsis cynodontis HCC3-4
95 90) Magnaporthiopsis hawaiiensis KR10-6
IMagnaporthiopsis taurocanis TPC5-3
IMagnaporthiopsis taurocanis GSGC10-2
IMagnaporthiopsis taurocanis RRECHMP1-3
IMagnaporthiopsis taurocanis TPC4-
'Magnaporthiopsis taurocanis RRFMV10-2
Buergenerula spartinae ATCC22848
Nakataea oryzae M21
%'Nakamea oryzae M69
Nokataea oryzae M71
O mnidlemptus affinis ATCC200212
P Gaeumannomyces cylindrosporus CB5610.75
Candidacolonium cynodontis HP24-3
105'(? andidacolonium cynodontis HP38-4
Pseudophialophora schizachyrii AL2m1
99 - 90y Fseudaphialophora schizachyrii AS3s4
77 ao|yPseudophialophora eragrostis CM20m5-2
Pseudophialophora eragrostis CM12m9
100] | yPseudophialophora panicorum CM9s6
Pseudophialophora panicorum CM3m7
s P51 clOphialophora cynodontis RW3-4 . L
100, Pyricularia grisea M82
100[~ 'Pyricularia grisea M83
Pyricularia oryzae 7015
99‘

93

100

10

Pyricularia grisea M25
. Pyricularia oryzae M60
Ophioceras commune M92

99 phioceras commune M91

Ophioceras dolichostomum CBS114926
== Pseudohalonectria lignicola M95
Ophioceras leptosporum CBS894.70

Cryphonectria parasitica ATCC38755

0.08

Figure B.102 Maximum Likelihood phylogram based on the largest subunit of RNA
polymerase II (RPBI) gene dataset.

ML bootstrap values > 75% are presented above internodes. Sequences of isolates
displayed in red were generated from this study. All other data were obtained from public
databases. Cryphonectria parasitica was chosen as the outgroup taxon.

254



(1ad¥) 11 oserowk[od YN JO 3unqgns 3s931e] oY J0J S90UANDs UdIMIq 9OUIFIIAIP ATBUONN[OAD JO SAIBWNSH €01 g 9In31

“saodwouuvunonLy Jo sa103ds Jo dud3

1-LSY stunuv.i3opnpd "5

000°0 S00°0 000°0 000°0 000°0 C00°0 ¥L0°0 000°0 9%0°0 €70°0 €700 9%0°0 000 €700 9%0°0 8L0°0
S00°0 000°0 0000 000°0 2000 ¥L0°0 0000 9400 £+0°0 €400 9¥0°0 0¥0°0 £40°0 9¥0°0 8LO0

S00°0 S00°0 S00°0 LOO0 6L0°0 SO0'0 1SO0 8700 800 1S0°0 SH0'0 8700 1500 €800

000°0 000°0 2000 ¥#L0°0 000°0 9%0°0 €00 €400 9¥0°0 0¥0'0 £+0°0 9¥0°0 8L00

000°0 200°0 #L0°0 000°0 9%0°0 €#0°0 €700 9%0°0 0¥0°0 €700 9%0°0 8L0°0

200°0 $L0°0 000°0 9%0°0 €¥0°0 €70°0 9%0°0 0¥0°0 €700 9%0°0 8L0°0

9L0°0 T00°0 8%0°0 S¥0°0 S¥0°0 870°0 1+0°0 SO0 8700 6,070

¥L0°0 ¥#L0°0 9L0°0 9L0°0 980°0 6,0°0 9L0°0 980°0 €00°0

90°0 €70°0 €700 9%0°0 0¥0°0 €700 9%0°0 8L0°0

1-LSY stnuv.i3oinod 5
MO Stunuvi3opnnd ‘5
y-ouq stunuvisoinnd ‘5
y-14a siunuva3opnnd H
1-€19d stunuva3opnnd ‘5
[-71da stuuv.adonnd “H
€-01¥d stunun.i3opnod "5

RTTTET 1OULY "TBA SIUIIDAS D)
GSIN 101L4] “JeA SIUIUDAS L)

1€0°0 1€0°0 €£0°0 8TO'0 1€0°0 €€0°0 8L0°0 TE'SETSHD SIUUDATZ "TeA SUUDA3 "D

000°0 0£0°0 ST0°0 000°0 0£0°0 6L0°0
0€0°0 $20°0 0000 0€0°0 6L0°0
810°0 0€0°0 000°0 680°0

§20°0 810°0 €800

0€0°0 6L0°0

680°0

P-vMO stunuv.i3omnod "o
y-9¥d stutuvi3opnnd H
y-14d sturupva3opnnd ‘5
[-€19d Stunuvi3onvd "5
1-214d stunun.i3opnpd "o
€-014Q stuuva3oinnd H

B[ [€I 1011 "TeA SIUIUD.LS L)
GSIN 191114] "TeA SIUIUDAS D)
€GIN SHUIUD.AS "TeA SIUIUDAS L)

YSIN S1unun.A3 "TeA SIUIUDAS L)
7-1AV Stuup.i3 JeA SIUIUDAS ")
CEIN SIUIUDAS "TeA STUIUDAS "L)

TESETSAD S1UIUD.A3 "TeA SIUIUDAS D)
-G 1DDSD S1UIUDAS "TeA SIUIUDAS ")
€-S1DDSD SIUIUD.LS "TeA SIUIUDAS L)

G9°'/8SHD 2puU2AD "IBA SIUIUDAS L)

$-S1DDSD S1unup.3 “IeA S1unun.i3 L)
€-C1DDSD S1unun.L3 "JeA SIUIUDAS "L)
PSIN SIUnUDAS “JeA SIUIUDAS D)

€GN SIUIUDAS “TeA SIUNUDAS L)
7-1AV Stunun.a3 “JeA SIumn.i3 "
CEIN STUIUDAS "JeA SIUNUDAS "0)
G9°/8SgD 2pUaAD "IeA SIUIUDAS L)

255



(1ad¥) 11 oserowk[od YN JO 3unqgns 3s931e] oY) J0J S90UaNDbas udam1dq 9OUIFIIAIP ATBUONN[OAD JO SAIBWINSH (] g 9IN31]

“s1sdoryiodpudvpy Jo sa103ds Jo dua3

C-bOL Stupaompy

000°0 00070 000°0 000°0 LTO'0 LTOO 0E0°0 0£0°0
000°0 000°0 0000 LTO'0 LTO'0 0€0°0 0€0°0
000°0 000°0 LTO'0 LTOO 0E0°0 0E0°0

£-COd.l. Stupaoamey B

0T AWM stupoounmy gy

£ IdIWHDAMY srupsompy g

000°0 LTO'0 LTO'0 0£0°0 0£0°0
LT0'0 LTOO 0£0°0 0£0°0
000°0 €00°0 €00°0

£00°0 £00°0
00070
¥ ®¥ & & &
T3 P O} O3
& §F & 2 )
= 2 G %
i ¥ F £ Z
Q = = a brd
z 2 5 X
[}
2

0€0°0
0€0°0
0€0°0
0£0°0
0€0°0
£€00°0
€000
00070
00070

Ibd V.1 arod

0€0°0
0€0°0
0€0°0
0€0°0
0€0°0
€00°0
€000
00070
00070
00070

11Pp900LY avod 3y

0€0°0
0€0°0
0€0°0 T10°0
0€0°0 TI0°0
0€0°0 TI0°0
€00°0 TTO0
€00°0 TTO0
000°0 ST0°0
000°0 £T0°0
000°0 700
000°0 ST0°0

§T70°0

faty]
o

LW avod

801D wnaoound Jy

€100
£10°0
€100
€100
€100
€700
€700
LT00
LT00
LT00
LT00
LT00
000

| MWW wrioand

TIo
10’0
1o
100
1o
oo
oo
§T0°0
§T0°0
§T0°0
§T0°0
§T0°0
00070
T00°0

GUILIND wnsoomnd

1o
z1oo
1o
100
1o
oo
0o
§T00
§T0°0
§T0°0
ST0°0
§T0°0
00070
T00°0
00070

SSZND wnoopund gy

0€0°0
0€0°0
0€0°0
0€0°0
0€0°0
§T0°0
§20°0
§T00
sT0°0
§T00
§T0°0
§T0°0 §T0°0
8T0°0 8700
0€0°0 0£0°0
8T0°0 8700
8T0°0 8700

£00°0

0€0°0
0€0°0
0€0°0
0€00
0€0°0
ST00
§T20°0
§T0°0
sT0°0
§T0°0
ST0°0

[SW SumsRaous

S PIAWAYY sumsndout v

0¥0°0
0¥0°0
0¥0°0
0r0'0
0r0°0
SE00
$€0°0
TEDO
e0'0
TE0'0
TE0'0
€00
8€0°0
0¥0°0
8€0°0
8€0°0
0100

0€0°0
0€0°0
0€0°0
0€0°0
0€0°0
§T0°0
§T0°0
§T0°0
§T0°0
§T0°0
§T0°0
§T0°0
8700
0€0°0
8700
8700
000°0

0€0°0
0€0°0
0€0°0
0€0°0
0€0°0
§T0°0
§T0°0
§T00
§T0°0
§T0°0
ST0°0
§T0°0
87070
0€0°0
87070
8700
£€00°0

€10°0 €00°0 00070

CEW SumsRIou W

0100

Q-8 SUDISRIINT

€100
€00°0

SCMM SUDISRIOUT Py

S00°0
$00°0
S00°0
s00°0
S00°0
8700
8700
€00
Te00
€00
TE00
€00
£10°0
To
£10°0
€10°0
€00
TED'0 TEOO
0’0 THO'0
TED'0 TEOO
TE0'0 TEOO

0000

S00°0
$00°0
S00°0
s00°0
S00°0
8700
8700
TE00
Te00
€00
TE00
€00
£10°0
o
€100
€100
€00

Z-LSY snuopouds
S-s8y spuopouds

§00°0
$00°0
§00°0
§00°0
§00°0
8700
8700
TEDO
e0'0
TE0'0
TE0'0
€00
€100
1o
€100
€100
TE0°0
TED'0
o0
TED'0 8TO0
Te0°0 8700
0000 €000
0000 €000

€000

000
T00°0
000
000
000
§T0°0
§T0°0
8700
8700
8700
8700
8700
0100
100
0100
0100
8700
8700
8€0°0

1-£83 spuopouds
90 1UN SISudOADY Y

S-+DdL StupIomp] Fy|
£-$2d1 supso.mo Fyl
T-OTAINITY SIUp204n0] Y|
- 1dNHD Y siuwsoano) Jy
7-01098D Siv20.np] Jy|
£TIN ppydozigs Jy

TTN pydoznigs Fy
(DS 2ved Fy|

Sedvl avod Jyj

I+dvL 2vod Jy
1IH920LY 2pod Jy|

LYIN 2pod |

TSOTIND wnioanmd Jyl
11wgND wnosmwd fy
SW N wnioand Y|
SSTIND wmosnumd “py|
CPTANINY supIsnaoul Jy|
1SN supisnou |

SEN SuBIsnLout Jy|

9-8D7T sumisnLoul Jy|
S-EMM SUDISTLOW JY]
T-L5Y suuopouds Jy|
§-55Y suuopout> Jy
1-£5Y suuopoul> Jy
0-01Y StsuaypaDy |

256



N
(o)} (g} ~—
N

Y E E & 9o % E
M N O N @
= = 9« e 2@ a9 4
T = = 2 2 < <
° o o © © = O
=T 2 2 § § =2 2
S 8 8 5 &5 & ®
8 5 &5 & & N N
S &§ & § & © O
(& (0) () Q. Q %] (%]
[« R « I o R « Y « N N o

P. cynodontis RW3-4

P. eragrostis CM12m9  0.074

P. eragrostis CM20m5-2 0.074 0.000

P. panicorum CM3m7 0.074 0.029 0.029

P. panicorum CM9s6 0.074 0.029 0.029 0.000

P. schizachyrii AL3s4 0.070 0.012 0.012 0.023 0.023

P. schizachyrii AL2Zm1  0.070 0.012 0.012 0.023 0.023 0.000

Figure B.105 Estimates of evolutionary divergence between sequences for the largest
subunit of RNA polymerase II (RPBI) gene of species of
Pseudophialophora.
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Figure B.106 Total growth of Gaeumannomyces graminis var. graminis isolate AD1-2
after 7-day incubation at a temperature range of 18 to 38 C.
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Figure B.107 Total growth of Gaeumannomyces paulograminis isolate DR1—4 after 7-
day incubation at a temperature range of 18 to 38 C.
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Figure B.108 Total growth of Gaeumannomyces paulograminis isolate DR6—4 after 7-
day incubation at a temperature range of 18 to 38 C.
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Figure B.109 Total growth of Gaeumannomyces paulograminis isolate DR10-3 after 7-
day incubation at a temperature range of 18 to 38 C.
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Figure B.110 Total growth of Gaeumannomyces paulograminis isolate DR12—1 after 7-
day incubation at a temperature range of 18 to 38 C.
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Figure B.111 Total growth of Gaeumannomyces paulograminis isolate DR13—1 after 7-
day incubation at a temperature range of 18 to 38 C.
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Figure B.112 Total growth of Magnaporthiopsis taurocanis isolate GSGC10-2 after 7-
day incubation at a temperature range of 18 to 38 C.
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Figure B.113 Total growth of Gaeumannomyces graminis var. graminis isolate
GSGC15-3 after 7-day incubation at a temperature range of 18 to 38 C.
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Figure B.114 Total growth of Gaeumannomyces graminis var. graminis isolate
GSGC15-4 after 7-day incubation at a temperature range of 18 to 38 C.
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Figure B.115 Total growth of Magnaporthiopsis cynodontis isolate HCC3—4 after 7-day
incubation at a temperature range of 18 to 38 C.
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Figure B.116 Total growth of Candidacolonium cynodontis isolate HP24-3 after 7-day
incubation at a temperature range of 18 to 38 C.
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Figure B.117 Total growth of Candidacolonium cynodontis isolate HP38—4 after 7-day
incubation at a temperature range of 18 to 38 C.
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Figure B.118 Total growth of Magnaporthiopsis hawaiiensis isolate KR10-6 after 7-day
incubation at a temperature range of 18 to 38 C.
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Figure B.119 Total growth of Magnaporthiopsis incrustans isolate LC8—6 after 7-day
incubation at a temperature range of 18 to 38 C.
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Figure B.120 Total growth of Gaeumannomyces paulograminis isolate OW4—4 after 7-
day incubation at a temperature range of 18 to 38 C.
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Figure B.121 Total growth of Magnaporthiopsis taurocanis isolate RRFCHMP1-3 after
7-day incubation at a temperature range of 18 to 38 C.
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Figure B.122 Total growth of Magnaporthiopsis taurocanis isolate RRFMV10-2 after 7-
day incubation at a temperature range of 18 to 38 C.
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Figure B.123 Total growth of Magnaporthiopsis incrustans isolate RRFMV14-5 after 7-
day incubation at a temperature range of 18 to 38 C.
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Figure B.124 Total growth of Magnaporthiopsis cynodontis isolate RS3—1 after 7-day
incubation at a temperature range of 18 to 38 C.
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Figure B.125 Total growth of Magnaporthiopsis cynodontis isolate RS5-5 after 7-day
incubation at a temperature range of 18 to 38 C.
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Figure B.126 Total growth of Gaeumannomyces paulograminis isolate RS7—1 after 7-
day incubation at a temperature range of 18 to 38 C.
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Figure B.127 Total growth of Magnaporthiopsis cynodontis isolate RS7-2 after 7-day
incubation at a temperature range of 18 to 38 C.
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Figure B.128 Total growth of Pseudophialophora cynodontis isolate RW3—4 after 7-day
incubation at a temperature range of 18 to 38 C.
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Figure B.129 Total growth of Magnaporthiopsis poae isolate SPKBG7 after 7-day
incubation at a temperature range of 18 to 38 C.
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Figure B.130 Total growth of Magnaporthiopsis poae isolate TAP35 after 7-day
incubation at a temperature range of 18 to 38 C.
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Figure B.131 Total growth of Magnaporthiopsis poae isolate TAP41 after 7-day
incubation at a temperature range of 18 to 38 C.
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Figure B.132 Total growth of Magnaporthiopsis taurocanis isolate TPC4-5 after 7-day
incubation at a temperature range of 18 to 38 C.
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Figure B.133 Total growth of Magnaporthiopsis taurocanis isolate TPC5-3 after 7-day
incubation at a temperature range of 18 to 38 C.
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Figure B.134 Total growth of Magnaporthiopsis incrustans isolate WW3-5 after 7-day
incubation at a temperature range of 18 to 38 C.
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Figure B.136 Light micrograph showing hyphopodia of Gaeumannomyces graminis var.
graminis at X400.
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Figure B.137 Light micrograph showing hyphopodia of Gaeumannomyces
paulograminis at X400.
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Figure B.138 Light micrograph showing hyphopodia of Candidacolonium cynodontis at
X600.
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5 um X3,300

Figure B.139 Scanning electron micrograph showing hyphopodia of Gaeumannomyces
graminis var. graminis at X3,300.
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Figure B.140 Scanning electron micrograph showing hyphopodia of Gaeumannomyces
paulograminis at X3,300.
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Figure B.141 Scanning electron micrograph showing hyphopodia of Candidacolonium
cynodontis at X3,300.
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APPENDIX C

SUPPLEMENTARY MATERIAL FOR PATHOGENICTY EVALUATIONS
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Figure C.1  10.8 cm diameter samples of ultradwarf bermudagrass collected from
research plots at the Rodney R. Foil research center

Figure C.2  Stoloniferous plant material extending from perimeter of turf sample.
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Figure C.3  Collection of plant material consisting of five nodes and four internodes for
pathogenicity evaluations.

Figure C.4  Soil autoclave at Rodney R. Foil Research Center
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Figure C.5  Sterilized sand filled to within 2 cm of the top of inoculation containers
(7.6 cm diameter) for pathogenicity evaluations.

Figure C.6  One square centimeter sections of PDA, fully colonized with fungal
material, placed directly on top of sterilized sand for pathogenicity
evaluations.
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Figure C.7  Plant material, 25 nodes total, placed directly in contact with inoculum
source for pathogenicity evaluations.

Figure C.§  Sterilized sand placed on top of plant material to retain moisture for
pathogenicity evaluations.
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Figure C.9  Placement of inoculation containers in growth chamber for pathogenicity
evaluations.

Figure C.10 WatchDog B-Series Button Logger used to record soil temperature of
inoculation containers used for pathogenicity evaluations.
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Figure C.11 Lightscout Quantum Sensor used to record photosynthetically active
radiation in growth chambers used for pathogenicity evaluations.

SN1d-G31-Z-85N-13-WO

vaiiio =\ J°

Figure C.12 EL-USB-2-LCD data logger used to measure air temperature, relative
humidity, and dew point in growth chambers used for pathogenicity
evaluations.
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Figure C.14 Color classes and groups used for percent disease assessment via pixel
color analysis in WinRhizo.

Corresponding red, green, and blue (R, G, and B, respectively) values are presented
alongside respective colors.
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Table C.1

Table C.2

ANOVA for total number of nodes (TNN) of ultradwarf
bermudagrass samples from ectotrophic root-infecting fungi
pathogenicity experiments conducted in Starkville, MS from
August to October, 2014.

Source DF F-value Pr>F
Experiment 2 4.15 0.1058
Error 1 —
Cultivar (Cv) 1 1.09 0.3261
Error 2 —
Fungal Species (FS) 9 2.60 0.0083
Cv xFS 9 0.63 0.7722
Error 3 ——

ANOVA for total number of root-producing nodes (TNRPN) of
ultradwarf bermudagrass samples from ectotrophic root-infecting
fungi pathogenicity experiments conducted in Starkville, MS from
August to October, 2014.

Source DF F-value Pr>F
Experiment 2 9.52 0.0301
Error 1 —_—
Cultivar (Cv) 1 19.55 0.0022
Error 2 —_—
Fungal Species (FS) 9 2.81 0.0046
Cv xFS 9 0.67 0.7316
Error 3 s
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Table C.3

Table C.4

ANOVA for frequency of fungal occurrence (FFO) of ultradwarf
bermudagrass samples from ectotrophic root-infecting fungi
pathogenicity experiments conducted in Starkville, MS from
August to October, 2014.

Source DF F-value Pr>F
Experiment 2 1.00 0.4444
Error 1 —
Cultivar (Cv) 1 1.00 0.3466
Error 2 —
Fungal Species (FS) 9 545.00 <0.0001
Cv xFS 9 1.00 0.4429
Error 3 ——

ANOVA for total root length (TRL) of ultradwarf bermudagrass
samples from ectotrophic root-infecting fungi pathogenicity
experiments conducted in Starkville, MS from August to October,
2014.

Source DF F-value Pr>F
Experiment 2 7.86 0.0412
Error 1 —_—
Cultivar (Cv) 1 9.74 0.0142
Error 2 —_—
Fungal Species (FS) 9 2.01 0.0418
Cv x FS 9 0.44 0.9141
Error 3 —
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Table C.5

Table C.6

ANOVA for percent disease (PD) of ultradwarf bermudagrass
samples from ectotrophic root-infecting fungi pathogenicity

experiments conducted in Starkville, MS from August to October,
2014.

Source DF F-value Pr>F
Experiment 2 0.44 0.6730
Error 1 —
Cultivar (Cv) 1 0.12 0.7350
Error 2 —
Fungal Species (FS) 9 13.19 <0.0001
Cv xFS 9 0.84 0.5823
Error 3 ——

ANOVA for gravimetric root weight (GRW) of ultradwarf
bermudagrass samples from ectotrophic root-infecting fungi
pathogenicity experiments conducted in Starkville, MS from
August to October, 2014.

Source DF F-value Pr>F
Experiment 2 21.24 0.0074
Error 1  —
Cultivar (Cv) 1 23.61 0.0013
Error 2  —
Fungal Species (FS) 9 2.32 0.0181
Cv x FS 9 1.02 0.4307
Error 3 —
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Table C.7  ANOVA for gravimetric stolon, rhizome, and foliage weight
(GSRFW) of ultradwarf bermudagrass samples from ectotrophic
root-infecting fungi pathogenicity experiments conducted in
Starkville, MS from August to October, 2014.

Source DF F-value Pr>F
Experiment 2 12.71 0.0185
Error 1 —
Cultivar (Cv) 1 2.92 0.1260
Error 2 —
Fungal Species (FS) 9 2.77 0.0051
Cv xFS 9 1.33 0.2240
Error 3 ——
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Figure C.15 Healthy ultradwarf bermudagrass sample after 8-week inoculation with
untreated control treatment

293



m 1 2 3 4 5 L ] ¥ ] L B0 " 7 12

Fespryseen | e

Figure C.16 Ultradwarf bermudagrass sample after 8-week inoculation with
Gaeumannomyces graminis var. graminis.
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Figure C.17 Ultradwarf bermudagrass sample after 8-week inoculation with
Gaeumannomyces paulograminis.
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Figure C.18 Ultradwarf bermudagrass sample after 8-week inoculation with
Magnaporthiopsis incrustans.
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Figure C.19 Ultradwarf bermudagrass sample after 8-week inoculation with
Magnaporthiopsis hawaiiensis.
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Figure C.20 Ultradwarf bermudagrass sample after 8-week inoculation with
Magnaporthiopsis cynodontis.
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Figure C.21 Ultradwarf bermudagrass sample after 8-week inoculation with
Magnaporthiopsis taurocanis.
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Figure C.22 Ultradwarf bermudagrass sample after 8-week inoculation with
Candidacolonium cynodontis.
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Figure C.23 Ultradwarf bermudagrass sample after 8-week inoculation with
Pseudophialophora cynodontis.
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Figure C.24 Ultradwarf bermudagrass sample after 8-week inoculation with composite
treatment.
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Figure C.25 Stolons of ultradwarf bermudagrass samples after 8-week inoculation with
Gaeumannomyces graminis var. graminis.
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Figure C.26 Stolons of ultradwarf bermudagrass samples after 8-week inoculation with
Gaeumannomyces paulograminis.

Figure C.27 Stolons of ultradwarf bermudagrass samples after 8-week inoculation with
Candidacolonium cynodontis.
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APPENDIX D

ENVIRONMENTAL DATA
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