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Mobile devices are increasingly becoming a greater crutch for all generations. All the

while, these users are garnering a greater desire for privacy and style. Apple presents

a device that is known for its security, but lacks major user customization. On the other

hand, Google has developed a device that is keen to customization with Android, but can be

susceptible to security faws. This thesis strives to discuss the security models, app store

protections, and best practices of both mobile operating systems. In addition, multiple

experiments were conducted to demonstrate how an Android device could be more easily

compromised after altering few settings, as well as to demonstrate the privileges, both good

and bad, that could be gained by jailbreaking an iOS device.
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CHAPTER 1

INTRODUCTION

The goal of this thesis is to explain current smartphone security measures, the vul-

nerabilities they exhibit, measures to circumvent these weaknesses, and a discussion of

whether the smartphones presented are in fact inherently vulnerable. Testing will be con-

ducted to present known exploits and how these software and hardware vulnerabilities can

be overcome using various methods.

According to Nielsen’s Digital Consumer Report issued in February of 2014, almost

two-thirds of average American households own at least one smartphone. Of this 65 per-

cent of smartphone owners, 30 percent of them stated that they were planning to upgrade

to a newer device within the next six months, while 49 percent of young adults age 18-21

stated the same [14]. This statistic will only continue to grow as smartphone companies

continue to offer new and innovative products that capture the consumer’s attention.

1.1 Limits of Research

When it comes to mobile phones, two platforms alone hold the majority of the market.

As of the second quarter of 2014, Nielsen reported that 52 percent of the smartphone mar-

ket share was controlled by Android OS, while 42.7 percent of the devices were operating
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on Apple’s iOS [15]. Because of this strong hold by Apple and Google on smartphone

customers, I am focusing on the iOS and Android mobile operating systems for this study.

Within all modern smartphones resides a mobile operating system, which dictates the

actions of the device. A mobile operating system, or a mobile OS, can be defned as an

operating system specifcally designed to run on mobile devices. It is the lowest software

level, on top of which other applications can run. Apple’s iOS is built from the Mac OS X

and XNU kernel while Android is based on Linux and heavily relies on traditional UNIX

security features [1]. Because of their different characteristics and implementations, each

has its own unique set of vulnerabilities.

With the majority of smartphone users using these devices to monitor their everyday

lives, it becomes essential to ensure that these devices stay as secure as possible. iOS and

Android devices may contain sensitive materials in the form of images, documents, and

correspondences that would be harmful if leaked to persons without proper need-to-know.

While this is an extreme case, technology companies are always looking to provide security

to their average user who would not have these concerns, but would still have concern for

their personal privacy.

1.2 Defnitions

Apple’s iOS is a mobile operating system that is designed and developed by the Cu-

pertino, California company and released with the frst iPhone in 2006. In September of

2014, the newest version of the software was released in the form of iOS 8. iOS 8 presents

many features that require impervious security such as Apple Pay, HealthKit, HomeKit, in
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addition to the normal features of the iPhone that were released prior to 2014. If an indi-

vidual were to gain complete control of a device, they would have access to credit cards,

health records, messages, and access to the owner’s home depending on which features of

the device that the owner employed.

Android is another popular mobile operating system, which was developed by Google,

Inc. The software made its debut in late 2008 and was last updated in late 2014 with the

release of Android 5.0 Lollipop. Android is no different from iOS with its need for essential

security measures. Android features a payment service through a near-feld communication

(NFC) chip on equipped devices, as well as, premium document editing, and messaging

features that must be kept secure from unauthorized persons.

Google and Apple have different business models when it comes to their operating sys-

tems. Apple prefers a closed model, which requires applications on its devices to receive

approval through a review process. Google on the other hand prefers to keep Android as

open source software and allow applications from any developer. Some argue that this

gives developers more freedom when designing their applications, however, this freedom

may contribute to the overall security of the device.

The attacker, for this research, is defned as any malicious entity that attempts to access

information or data contained within a mobile device. For mobile devices, this would be

anyone other than the owner or someone authorized by the owner to access the device.

1.3 Hypothesis and Research Questions

The hypothesis for this research is as follows:
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Running Developer Mode on an Android device and jailbreaking an iOS de-
vice make the respective devices more accessible to malware than the devices
were in their original states.

In order to test this hypothesis, experiments will be conducted with multiple devices,

both iOS and Android, which contain various past operating systems to answer the follow-

ing questions:

1. What vulnerabilities are made present on an iOS device when the phone is jailbroken
with Pangu8?

2. What privileges are gained by jailbreaking an iOS device that are not otherwise avail-
able?

3. What are the repercussions of a malware attack when in Developer Mode on an
Android Device?

Experiments will be conducted to answer these questions with details provided in chap-

ter IV.

1.4 Relevance

As stated above, iOS and Android mobile devices are used by a majority of the Ameri-

can people, and thus must be made secure to protect their owners. While the average user is

not of much importance to an attacker, with the exception of obtaining payment methods,

attackers are vigilant in looking for ways to access the devices of high profle individuals.

If these devices are not up to date, available exploits may be used to access the data that

resides on them.

The remainder of this paper contains a discussion of mobile security models, security

components of iOS and Android OS, and the methodology and results of the experiments

conducted.
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CHAPTER 2

LITERATURE REVIEW

2.1 Security Models

The literary review revealed many similarities and differences in the iOS and Android

operating systems. For the purpose of this research, we will divide mobile operating sys-

tems into three system models: the walled-garden model, the guardian model, and the user

control model.

2.1.1 Walled-Garden Model

The walled-garden model of security is the most restrictive method of the three. This

model gives the smartphone vendor complete control over the third-party applications in-

stalled on their device [5]. This control can be achieved in different ways, but ultimately

the apps must be approved and passed onto the user through an app store or marketplace

from the vendor [5]. The vendor will also have full control over the marketplace and the

removal of applications should they violate the terms and conditions set forth by the ven-

dor [5]. If the vendor deems an application harmful, they can exercise a kill switch and

remotely remove the software from all devices upon which it was installed [5]. This level

of power is made possible by code signing, signing an application with the vendor’s pri-

vate key before being released to customers [5]. Code signing ensures customers that the
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application has been reviewed by the vendor and has not been altered since it was accepted

into the marketplace. The walled-garden model is different from other models in its per-

missions. Using the walled-garden model, the vendor makes the security decisions and is

responsible for the security testing of the application [5]. This allows the customer to have

a relatively worry-free customer experience when it comes to the security of their devices.

Many users prefer to stray away from the walled-garden model because they believe

that it offers the vendor totalitarian control of their device. While this may be more ac-

curate than with other models, it allows the vendor to more closely control security while

monitoring trends and controlling feature use [5].

2.1.2 Guardian Model

The guardian model enforces a stance with less control than the walled-garden model.

This model passes the security decisions that must be made to a knowledgeable third-

party [5]. This third-party could be the OS vendor (in this case, the guardian model more

closely resembles the walled-garden model), the mobile carrier (AT&T, Verizon, Sprint,

etc.), a security expect acting on behalf of a less technical group of users, or a policy man-

ager who already controls the policy of the devices (an enterprise mobile device manager)

[5]. The third-party would be referred to as the “guardian” and would be responsible for

making the fundamental security decisions for their users [5]. This would include decid-

ing which applications may be installed on their mobile devices and what features they

would have access to, giving the end user minimal involvement with the decisions [5]. The

guardian would also perform less testing and enforcement on installed applications than
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in the walled-garden model, relying more on crowd sourcing, while only banning those

applications that violate policy [5].

The guardian model allows for fne-tuning of controls to ft specifc security levels [5].

For instance, the control by a guardian for a secure government device would be vastly

more restrictive than the control exercised on the device of a low-level company manager

with no access to company secrets.

2.1.3 User Control Model

If the guardian of a device in the guardian model were the end user, the model would

shift to the user control model. Figure 2.1 shows how the user control model relates to the

other two models previously mentioned. This model gives all control of security decisions

to the user [5]. In the user control model, applications are released to users with minimal

involvement from the vendor or mobile carrier and little oversight in their distribution [5].

Users have the option to install apps from any source they desire with the understanding

that these applications may have had little to no oversight in their release and may be

malicious [5].

Figure 2.1

Mobile operating systems seperated by mobile security model [5].
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Upon installation of these applications, the user is responsible for supplying which

permissions the app should have [5]. This gives the user complete control of their user

experience and the security of their data. While this may be manageable for more tech-

nical users, the average user would not understand why Application A would need access

to Feature B, possibly providing more access to an application than it actually needs to

perform its objective.

2.2 iOS

2.2.1 Instance of Walled-Garden Model

iOS is a frm example of the walled-garden model. As previously stated, in a walled-

garden model, the vendor has complete control of the review and release of applications

into an application marketplace. No company is a better example of this than Apple. Before

an application is released into the iOS App Store, the developer must introduce the app into

a review process [7]. During this process, Apple’s professional developers analyze and test

the application [7]. The company has not released the process that it follows for application

review, but we can assume that it involves a code review and verifcation of the submitted

application for security vulnerabilities [13].

Apple enforces the application review process with code signing [13]. Only apps and

libraries that have been signed with Apple’s private encryption key can be loaded onto an

iOS device [13]. This is a critical feature of the walled-garden model. Because Apple

exercises code signing, it ensures that every app released into the app store has been prop-

erly reviewed and has been deemed safe for user use. It also prevents an application from
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running a sniffer or malware tools if the attacker bypasses the initial levels of protection.

If an application does contain malicious code and makes it through the review process,

Apple has the ability to remove that application from the iOS App Store, as well as from

all devices on which it is installed [5].

This review process ensures that Apple makes all security decisions. It allows Apple

to have what some would suggest as a dictatorial approach to third-party applications,

however, no one can argue that it provides the user with a more assured secure device

leading to a stress-free customer experience.

While the majority of iOS frmly fts into the walled-garden model, there is one facet

of Apple’s iOS that strays away. Apple allows the user to make minute policy decisions on

sensitive data such as: geolocation, calendar, contacts, photos, camera, microphone, and

other utilities [5]. While some think that this refects a relatively restrictive guardian model,

it is hard to argue that these few permissions are more than a drop in the bucket compared

to the thousands of permission decisions made from the kernel to the user interface.

2.2.2 App Store Enforcement

When developers submit their applications to the App Store review process, Apple

developers perform a code review to check the application code for any instance of the

app reaching out of its sandbox to access services reserved for the system [13]. More

information on how the iOS sandbox is protected will be discussed later. In order to use

these services, developers are allowed and encouraged to use a set of application program
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interfaces (APIs) set out by Apple for application usage [7]. This review ensures that

applications are kept restrained in the sandbox unless they are using the specifed APIs.

2.2.3 iOS APIs

The APIs that Apple offers are unique to the services they provide. One of the most

secure databases that the operating system must protect is the Keychain database. Keychain

holds all saved passwords, wireless keys, and certifcates [7]. If an application needs to

access a key, password, or token, the developer may use the Keychain access APIs [3].

This API allows Keychain items to be shared between apps from the same developer [3].

The sharing process is enforced through code signing, Provisioning Profles, and the iOS

Developer Program [3].

Accessing the network securely is another system function that requires API calls. iOS

supports Secure Socket Layer (SSL v3) and Transport Layer Security (TLS v1.0, TLS

v1.1, and TLS v1.2) [3]. Most native iOS applications such as Mail, Safari, Calendar, and

Contacts already use these services to provide an encrypted channel between the device

and the network. Apple makes these services available to developers for use in securing

their applications through high-level APIs such as CFNetwork [7]. CFNetwork will create

and maintain a secure data stream and allow authentication information to be added to a

message [3]. It calls underlying security services to set up the secure connection [3]. Low-

level APIs are also available, such as SecureTransport, to provide fne-grained controls

[3].
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2.2.4 Secure Enclave

iOS also features a Secure Enclave. The Secure Enclave is “a coprocessor fabricated

in the Apple A7 or later A-series processor” [3]. The coprocessor maintains the integrity

of Data Protection and provides all cryptographic operations for key management [3]. It

is secure even if the kernel has been compromised [3]. The Secure Enclave is equipped

with a hardware random number generator and utilizes encrypted memory [3]. During the

creation of the Secure Enclave, it is embedded with its own UID (Unique ID) that is not

known by Apple or accessible to any other part of the system [3]. When the device boots,

an ephemeral key is created and combined with the UID in order to encrypt the Secure

Enclave’s portion of allocated memory space [3]. The Secure Enclave is responsible for

performing matches against the Touch ID sensor and registered fngerprints, as well as,

enabling access or purchases on behalf of the user [3].

2.2.5 Secure Boot Chain

Another integral piece of the system security architecture is the Secure Boot Chain

(SBC). The SBC helps to ensure that the lowest levels of the system have not been tampered

with and will only allow iOS to run on verifed Apple devices [3]. When booting up an iOS

device, the processor immediately calls code from the Boot ROM, a section of read-only

memory [3]. This hardware boot of trust is always trusted [3]. The Boot ROM contains

the Apple Root CA public key that is used to verify the Low-Level Bootloader (LLB) [3].

The LLB must be verifed to be signed by Apple’s private key, before the booting process

moves any further [3]. When LLB completes its tasks, it verifes and runs iBoot, the next

11



step of the boot process [3]. iBoot will verify and run the iOS kernel, completing the boot

sequence [3]. Apple, following the chain-of-trust verifcation, cryptographically signs the

components of SBC [3]. If any step of the SBC process is unable to verify authenticity or

is unable to load, the device will display an error screen directing the user to connect the

device to iTunes [3]. This screen indicated that the phone is now in Recovery Mode and

must be restored to factory settings to correct any errors with the Boot ROM or LLB [3].

This necessary frst step in ensuring code signing and runtime process security protects the

device from execution of unauthorized code and applications during the boot sequence [1].

2.2.6 Runtime Process Security

In order to protect the user after booting the device, Apple performs runtime process

security. Once an app has been verifed to be from a known good source through code

signing, it is then “sandboxed,” restricting it from accessing fles from other applications

or the system itself [3]. Each application has a unique home directory for its data, which

is randomly assigned in memory when the app is installed [3]. The application cannot

access system fles and services such as iCloud, without declared entitlements [3]. These

entitlements are digitally signed and cannot be changed once issued [3]. This allows spe-

cifc privileged operations that would normally have to be run as “root” while reducing the

potential for a compromised application to escalate privileges [3].

2.2.7 Data Execution Prevention and Address Space Layout Randomization

Apple employs strategies to prevent injected code from being executed. Data Execution

Prevention (DEP) distinguishes between data and code making exploitation diffcult [13].
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DEP prevents an attacker from injecting malicious data into a process and jumping to that

process to execute the data [13]. This security protection is typically bypassed by using

return-oriented programming (ROP), however, ROP is useless when Address Space Layout

Randomization (ASLR) is in use [13]. ASLR renders bypassing DEP useless because the

attacker would not be able to fnd the code in memory [13]. Address Space Layout Ran-

domization is used to randomly arrange the memory addresses assigned to system libraries

and executable code [3]. ASLR is a default setting when programming applications within

the iOS development environment, XCode [3].

If an attacker does manage to bypass both DEP and ASLR, Apple has another fea-

ture named ARM’s Execute Never (XN). XN marks memory pages as non-executable [1].

Tightly controlled conditions surround the execution of memory pages that are marked as

both executable and writable [3]. In order to execute these pages, the kernel checks to

verify that the Apple-only dynamic code signing entitlement is present and valid [3]. Even

in that case, only one mmap call is allowed to request an executable and writable memory

page, which has a random address [3].

2.2.8 Encryption

2.2.8.1 Hardware Encryption

Encryption can be a complex problem with mobile devices. Cryptographic processes

can be complex and high consumers of system resources. With mobile devices, all pro-

cesses must run as effciently as possible to preserve performance and battery life. Apple

combats this problem by installing a dedicated Advanced Encryption Standard (AES) 256
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crypto engine in the DMA path between the main system memory and the fash storage

[3]. The devices also feature a SHA-based (SHA-1) integrity algorithm [1]. Because Ap-

ple has full control over its products, all devices running iOS contain a UID and a group

ID (GID) that are fused together into the application processor using AES-256 during the

manufacturing process [1, 3]. The UID is unique to each device while the GID is unique

to each device group, such as all devices with an A7 processor [3]. This process allows the

software and frmware to receive confrmation of encryption or decryption results without

knowing the key used in the operation [3]. Also, with the UID, data is cryptographically

tied to a specifc device [3]. Because the UID is included in the fle hierarchy protecting

the fle system, physically moving the memory chip from one device to another renders

the data inaccessible [3]. Aside from the UID and GID, all other operations are performed

using the device’s random number generator (RNG) [3].

While protecting data and cryptography keys is important, erasing the data and keys se-

curely can be essential. iOS devices include Effaceable Storage, a feature dedicated to the

secure erasure of data [3]. Effaceable storage will access the underlying storage technology

to directly readdress and erase a small number of blocks on a very low-level to obliterate all

cryptographic keys in order to render the device cryptographically inaccessible [3]. This

option is available using the “Erase all Content and Settings” feature.

2.2.8.2 File System Encryption

In addition to hardware encryption, Apple’s iOS also offers fle data encryption to

native applications, as well as third-party applications, with a technology known as “Data
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Protection” [3]. Data Protection extends the hardware encryption technologies built into

iOS by constructing and managing a hierarchy of keys [3]. When a fle is created, it is

assigned a new 256-bit key created by Data Protection [3]. This “per-fle key” is passed

to the hardware AES engine, which uses the key to encrypt the fle as it is written to fash

memory using AES cipher block chaining (CBC) [3]. The per-fle key is then used to create

a hash using SHA-1, which will be used to create the initialized vector (IV), calculated with

the block offset of the fle [3].

The per-fle key is then wrapped inside one of many class keys, depending on under

what circumstances the fle should be accessible [3]. This wrapped key is then stored in

the fle’s metadata [3].

When a user opens a fle, the fle’s metadata is decrypted with the fle system key

that is stored in Effaceable Storage [3]. This reveals the wrapped per-fle key and which

of the classes protects it in order to unwrap the per-fle key with the class key [3]. The

result of this operation is supplied to the hardware AES engine, which decrypts the fle as

it is being read from fash memory [3]. In order to protect the data on a device, the fle

system key is designed to be quickly erased [3]. Erasure of the fle system key by a mobile

device management server, iCloud, or user immediately renders all fles cryptographically

inaccessible [3].

2.2.9 Network Security

iOS features network security for all clients from the home user to a corporate user.

As addressed earlier, iOS offers SSL v3, as well as TLS v1.0, TLS v1.1, and TLS v1.2
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[2]. However, iOS’s network security does not stop there. For common users, iOS sup-

ports industry-standard Wi-Fi protocols, including WPA2 Enterprise and integration with

a broad range of RADIUS servers for authentication [3]. iOS 8 also employs a randomized

Media Access Control (MAC) address while scanning for networks to prevent logging of

the unique device [3]. For corporate users, VPN connections are supported through the

use of the following protocols: Cisco IP security (IPSec), Layer 2 Tunneling Protocol

(L2TP)/IPSec and Point-to-Point Tunneling Protocol (PPTP) with the latter two requiring

user authentication by a Microsoft Challenge Handshake Authentication Protocol version

2 (MS-CHAPV2) password [1].

2.3 Android Operating System

2.3.1 Instance of User Control Model

When dividing mobile operating systems by model, Android would squarely ft into

the User Control Model. In a User Control model, the user is responsible for all software

installations and security decisions [5]. Android is a prime example of this principle. An-

droid users have the ability to download and install applications from any marketplace,

including the Google Play Store. These apps are installed with minimal involvement from

Google and with no involvement when downloaded from a third-party marketplace [5].

This freedom of choice for the user places Android in the category of a User Control

model.

In some cases, the carrier may choose to ship a customized version of Android. If

this is the case, Android shifts towards the Guardian model with the carrier becoming the
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guardian [5]. There is also an argument that Android exhibits qualities of a Walled Garden

model because Google can exercise a kill switch to remotely remove applications that are

downloaded form the Google Play Store from devices running Android [5].

2.3.2 Architecture

At the heart of the Android operating system is a Linux kernel [9]. The kernel is

responsible for tasks such as: network management, memory access, process management,

access to physical devices through drivers, and security [7]. The operating system also

includes middleware, libraries, and APIs that are written in C and running on an application

framework with Java-compatible libraries based on Apache Harmony [9].

These libraries and APIs allow for a Dalvik virtual machine (VM) to be installed above

the Linux kernel [7]. Accompanying this VM are basic system libraries that allow for its

execution [9]. The Dalvik VM is used primarily to provide a sandbox isolation environ-

ment for the applications that run on the device [17].

2.3.3 Sandboxing

Sandboxing techniques are used in the Android operating system for the same reason

they are used in iOS, to keep applications from accessing system data and services. How-

ever, Android employs sandboxes in a different fashion. Android places every app inside

its own unique sandbox in order to keep it from interfering with other applications [13].

This isolation is enforced using standard Linux access control mechanisms on the

Linux kernel level [7]. During the installation of the application, each application pack-

age fle is assigned a unique Linux user ID (UID) [7]. This UID is associated with the
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owner’s UID and therefore cannot access fles belonging to other applications without be-

ing granted specifc permissions [7]. Read, write, and execute permissions can be issued

on a fle-specifc basis [7]. This also prevents malicious apps from infuencing system fles,

as they are owned by “root” [7].

2.3.4 Memory Management Unity & Type Safety

In order to force memory isolation, each application is running in its own process [7].

This means that a memory space is uniquely assigned to each app [7]. More protection is

added with the Memory Management Unit (MMU). The MMU is a part of the hardware

that translates between physical and virtual address spaces [7]. This prevents a malicious

user from compromising the system by running code in a privileged mode, such as root, by

ensuring that the user cannot modify the memory space assigned to the operating system

[7].

Android also offers type safety, a programming aspect that protects buffers and memory

from attacks [2]. In order to ensure this protection, Android is programmed using Java, a

type saved language, and an Android binder to communicate with other languages [2].

While these methods prevent applications from communicating with another, Android

provides a safe solution with shared user ID [7]. A shared UID allows two applications

signed by the same developer to communicate with each other [7]. To accomplish this,

the developer must digitally sign both applications with the same private key [7]. Because

these two apps share the same signature, they are allowed to run in the same process to-
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gether [7]. Developers should be careful to keep their private key secure when using this

approach however, as there is no central authority.

2.3.5 Permissions

At the heart of all Android security decisions are permissions. Permissions are used to

gain access to critical system functions that are necessary for the operation of the appli-

cation [7]. Each application has the ability to request and defne a set of permissions to

be accepted by the user during installation. This process relies on the user to make good

choices and evaluate the reputation of the application they are seeking to install. Setting

permissions allows applications to open up a feature of their app to other applications that

have been granted permission, or to access the system [7]. Once these permissions are set

they cannot be changed [7].

2.3.5.1 Normal-Level Permissions

There are four levels of Android permissions that control the access applications have

to others and to the system itself [10]. The frst of these permissions is “Normal”. Normal

permissions are lower-risk and grant apps access to application-level features [10]. This

action presents a minimal risk to other applications, the user, and the system [10]. Appli-

cations requesting normal permissions are deemed to have little impact on either the user’s

or the system’s security and are therefore installed without the user’s consent of their per-

missions request [7]. However, the user can review the permissions prior to install if he/she

so chooses [7]. An example of a normal-level permission request would be access to the

phone’s vibration feature [7]. Because the vibration function does not compromise the
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user’s privacy or security, it is seen as an isolated feature, and is not considered a security

risk [7].

2.3.5.2 Dangerous-Level Permissions

Dangerous-level permissions open the system and the user to many more attack vec-

tors than normal-level permissions. “Dangerous” permissions would supply a requesting

application access to sensitive user data or control of the device [10]. For example, an

application that has been granted dangerous-level privileges has access and can utilize

telephony services, network services, location data, and other sensitive and personal data

stored on the device [7]. Because of the security risk presented with an application with

this level of privilege, the operating system is not allowed to make a decision regarding

permissions during installation. The decision lies on the user to determine if the requesting

application is authentic and legitimately needs access to these features in order to properly

operate [10].

2.3.5.3 Signature-Level Permissions

Signature-level permissions are granted to applications that are signed with the same

private key as the application that declared the permission [10]. If the two applications are

signed with the same certifcate, the system will approve the permissions request without

the input of the user [10]. Signature-level permissions are an alternative to the shared UID

structure mentioned earlier [7]. Signature-level permissions allow more control over the

sharing of application data and components than using a shared UID [7].
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2.3.5.4 Signature-or-System Permissions

Signature-or-system level permissions are similar to signature-level permissions, how-

ever, signature-or-system permissions grant permissions to applications installed in the

Android system image [7]. Permission can also be granted to applications if there is an ap-

plication in the system image that is signed with the same certifcate [10]. This permissions

level is unique and is seen when vendors have applications built into the system image and

need to share modules with an applications as they are working together [10]. Signature-

or-system permissions are decided by the mobile operating system during installation and

are not presented to the user [10].

2.3.6 API Framework

Android offers an API to developers through the C/C++ libraries mentioned above

in order to reach lower-level system resources [7]. Android protects these APIs through

additional permission label checks [8]. This means that an application must disclose its

permission level in the manifest fle of the app [8]. This level of permissions checking

forces developers to declare their intention to interact with the system through its APIs [8].

In order to access top-level services, such as content providers, location manager, or

telephony manager, Android provides a development framework. This framework makes

it possible for applications to use the same system resources as the native Android appli-

cations, such as the web browser or mail client [7]. However, opening system resources to

a third-party presents at attack vector for stealing data or disrupting the operation system.

To combat this, Android implements the permissions structure described above [7].
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2.3.7 Samsung Knox

As evidenced above, Android is more prone to security threats than iOS, therefore, it

is up to the individual manufacturers to ensure the security of their consumers. Samsung’s

solution is their product Samsung Knox. Samsung Knox is an enterprise security product

originally released for the Samsung Galaxy S4 [1]. Knox bases its protection in three main

areas: application security, platform security, and mobile device management (MDM) [1].

2.3.7.1 Application Security

Samsung Knox’s application containers isolate outside data from the application/data

pair and the inside container applications [1]. This prevents “data leakage” in the “Bring

Your Own Device” environment [1]. Knox also offers on-device data encryption [1]. Due

to Samsung Knox being an enterprise product, Knox has the capability to encrypt all trans-

actions within the device using a Federal Information Processing Standards (FIPS) 140-2

certifed AES-256, which is certifed for both fnancial and healthcare applications [1].

FIPS 140-2 presents four levels of security where level 1 is the lowest, and level 4 is the

highest level of security, which can protect against compromises due to environmental and

operational conditions [1]. This encryption protocol uses a user-created passphrase [1].

This passphrase is fed into Password-Based Key Derivation Function 2 (PBKDF2), which

performs a Hash Message Authentication Code (HMAC) on the passphrase along with a

salt [1]. The process is repeated many times until a cryptographic key is the resultant [1].

Encryption also covers external storage of the device, such as an SD card [1].
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2.3.7.2 Platform Security

Samsung Knox’s platform security takes a three-pronged approach to security using

the customizable secure boot (using X.509 certifcates and public key systems), TrustZone

Integrity Management Architecture (TIMA), and Security Enhancements (SE) for Android

[1]. TIMA utilizes ARM TrustZone hardware [1]. ARM TrustZone hardware provides

constant monitoring of the Linux kernel [1]. This monitoring is achieved by physical

partitioning the CPU and memory resources into normal and secure modes [1]. If a kernel

violation is detected it used the MDM to notify the enterprise IT to take action [1]. The

National Security Agency (NSA) created the SE for Linux mechanism in 2000 [1]. The

mechanism has been adopted by Android and is used to enforce separation of information

based on integrity and confdentially requirements [1].

2.3.7.3 Mobile Device Management

MDM allows for enterprise IT managers to control and monitor all mobile devices in

an organization that may be spread across multiple service providers [1]. Through MDM,

managers can control all privacy and security settings of a device in order to assure that

if the device were to be compromised, company secrets and information could not be ob-

tained. Knox also employs ASLR since its release in Android 4.0 to help protect appli-

cations and the device itself [1]. Position Independent Executable (PIE) and DEP were

enabled in Android 4.1 and use ASLR to make the location of executable code impossible

to know to an attacker [1].
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2.4 App Store Protection

Apple and Google both host marketplaces flled with applications for their respective

operating systems, and must structure them to protect against the vulnerabilities that each

present. According to Steve Gold, in late 2011, approximately 95.8 percent of malware for

mobile devices was written with Android in mind, while only 0.62 percent was written for

iOS [9]. Most applications that are written for mobile devices are developed to be useful.

They are not developed with security in the forefront, allowing malware to take advantage

of these oversights.

As stated above, Apple opens its development center to registered developers in order

for them to submit their applications for review and admission into the app store. For

this service Apple charges a nominal fee of $99. Aside from a revenue stream for the

company, this may be in place in order to prevent malware authors from establishing many

accounts to submit many malicious applications in hopes that one will make it through the

process. The only exception to the development center is the iOS Developer Enterprise

Program, which allows companies to develop apps and distribute them to their employees

for business purposes [6].

Android offers a store similar to that offered by Apple, but with many differences be-

hind the scenes. Google charges a nominal fee for their developers just as their counterpart

does; however the fee charged is only $25 [9]. After this fee is paid, developers are free

to upload their applications with no review process [9]. Android does offer code signing,

a feature that Apple heavily utilizes to keep unsigned applications from executing, how-

ever, Android’s implementation is mostly for bookkeeping [13]. Code signing for Android
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is mostly utilized to compare old and new app signatures, as well as, for verifcation of

signature or signature-or-system permissions [9].

Instead of preventing malware by using a top-down approach, the Google Play Store

relies on crowd sourcing [13]. Customers will rate and review applications that they use

from the app store. They can also see how many other customers have downloaded a

particular application and report malicious ones to Google [13]. If enough users complain

about a specifc app, it will be presented to Google, who has the authority to remove it

from the app store and remotely wipe the app from all devices.

2.5 Best Practices

In order to reach the highest level of security, there are basic principles that should be

followed. Some of these principles are unique to the mobile operating system, but many

apply to any mobile device. The following are some of the most noted practices that should

be followed.

2.5.1 iOS Best Practices

One feature that is unique to iOS and should always be enabled is Find My iPhone.

This feature allows the owner of the device to locate, disable, or wipe the private key if the

device is ever stolen or lost, in order to protect their data [16] . The device owner can also

display a message or trigger a sound notifcation that will be audible even if the device is

on silent in hopes that if the device is lost someone may be able to hear the alert.

Another security feature available that should be enabled is data wipe. Data wipe pre-

vents someone from attempting to brute force a device password. Apple already offers
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some default protection to brute forcing. After six incorrect password attempts, the phone

will lock for one minute. After this minute, if another incorrect attempt is logged the device

will lock for fve minutes, then 15 minutes, and fnally one hour. After the tenth incorrect

attempt the device will prompt the user to connect the device to iTunes (if data wipe is

not enabled) or will erase the device (if the option is enabled) [16]. To make use of this

feature, iOS users should set a low autolock time. This prevents an unauthorized person

from having access to data if the phone is left unlocked or in the time immediately after

the device is locked [16].

iOS users should also routinely verify which applications are using their location ser-

vices [16]. Over time users may stop using apps that they once granted permission to

receive their location. This step prevents unused and unneeded applications from gather-

ing location data.

Two-factor authentication should be a must for any iCloud user. After the recent

celebrity photo leaks, iCloud security was brought into scrutiny for its security practices.

In response, Apple introduced two-factor authentication. Before a user can be logged into

iCloud, they must be verifed with either another iOS device or a predetermined SMS mes-

sage. The only exception to this rule is the Find My iPhone software, due to the fact that

the user may not have their device when trying to utilize this security feature.

2.5.2 Android Best Practices

The primary security weakness for Android is third-party applications. To protect

against this weakness, Android users should avoid downloading applications from third-
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party marketplaces [9]. While malware can be found in the Google Play Store, the chances

of downloading an application infected with malware from the Google Play Store are less

than the chances of malware infection from a less reputable source [9].

Android users should also utilize anti-virus protection [16]. These applications are

designed to prevent infected apps from being installed and executed. When searching

for an anti-virus application always utilize the rule above and download an app from the

Google Play Store that has a large download count and good reviews [16].

2.5.3 Common Best Practices

Many best practices are not unique to a mobile operating system but are general enough

to ft any device. The frst and most important rule to follow is to always set a device

password [16]. For iOS users, this password should be a complex passphrase instead of

a four-digit combination [16]. Android users have the possibility of a pattern, pin, or

password, but like iOS should always stick to the longer and more complex password, as a

pattern can become recognizable [16].

Another important practice that should never be skipped is device updates. Software

updates offer security patches to vulnerabilities that exist within the device [16]. If the

device is not updated, these vulnerabilities lie open to exploitation [16].

Mobile device users should never bypass their device’s built-in security mechanisms.

For iOS users, this means never jailbreaking a device and for Android users, never rooting

your device [16]. Jailbreaking and rooting essentially bypass the protections designed by
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the manufacturer such as code signing, and open the device to malicious content such as

rootkits and worms [16].
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CHAPTER 3

METHODOLOGY

In order to test the hypothesis and answer the research questions presented above, ex-

periments were conducted with both Android and iOS devices. The iOS device was jail-

broken with a popular jailbreak exploit to observe what privileges are gained and what

vulnerabilities are exposed while the Android device was exposed to mobile malware in

order to test the effects of the malware in both regular and developer operating modes.

3.1 Secure Environment

Before any experiments were conducted a secure network was created for the testing of

malware and to enable packet capture. The network was setup as shown in Figure 3.1 below

with a wireless router for the connection of mobile devices, a network hub for distribution

of packets and a cable modem to act as a DHCP server. There was no Internet connection

in this confguration.

After a secure network was established, a machine was formatted to capture network

packets, install software, and analyze malware. A mid-2010 15-inch MacBook Pro was

used for this process. A new version of Mac OS X 10.9.5 (Mavericks) was installed with

all available updates. The disk was then partitioned into fve partitions. The frst two were

composed of the Mac OS X version mentioned above with its accompanying recovery
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Figure 3.1

Network diagram of secure testing environment.

partition. The remaining partitions were Windows 7 Service Pack 1 64-bit with all avail-

able updates, Kali Linux 1.0.9a 64-bit with all available updates, and rEFInd, an EFI boot

manager utility, to select a partition when booting.

3.2 Android Malware

Software installed on the Mac OS X partition, excluding native applications, include the

following: Wireshark, Android Studio, Sublime Text 2, and X11. The OS X partition was

used to capture packets from the network, as well as, to decompile and analyze Android

malware applications. The Windows partition was used to install malicious packages onto

the Android device.

The device used in these experiments was an LG Optimus L7 P715 with Android OS

v4.1.2 (Jelly Bean). The device was restored to factory settings to delete any user data that

might be on the device. Once erased, Astro File Manager was downloaded and installed

from the Google Play Store to open packages once they were placed on the device.
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The malware selected for analysis was a copy of DroidDream (md5 hash: d4fa864eedcf-

47fb7119e6b5317a4ac8). The sample was obtained from Virus Share. DroidDream is a

dangerous version of Android malware that obtains information about the device to send to

a control and command server whom then instructs the local process to attempt to root the

device. This operation will successfully open a back door in the device that allows for ad-

ditional payloads to be downloaded and executed at any time without the users knowledge

or authorization. According to Kevin Mahaffey, more than 50 legitimate applications from

the Google Play Store were downloaded, infected with malware, and uploaded as a free

version of a popular application [12]. The malicious applications were uploaded with the

intention of tricking unsuspecting users into downloading the malicious application instead

of the application they were intending to download. To normal users, the mistake may be

one that they never realize, as the malicious application acts in the same manner as the

legitimate application, with the exception of a separate process being started upon launch

of the app. Users could have possibly avoided this breach by only downloading applica-

tions that have been downloaded numerous times and were recipients of overall generous

reviews. This practice would have led users away from these malicious apps, which only

existed for a short time before being discovered. In general, if there are two seemingly

identical versions of an application, a red fag should be raised, as one of them is possibly

malicious.

In order to test the network actions of DroidDream, Wireshark was used to capture the

network traffc. Before installation of the malware, the Android device was connected to

the closed network for a period of ffteen minutes in order to gather an array of packets
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that would be transmitted during legitimate uses of the device. These packets would serve

as our control for the experiment. At the conclusion of this process, the application Bowl-

ing Time, a DroidDream infected application, was uploaded to the Android device, and

installed through Astro File Manager. Once installed, the application was started with all

packets on the network being recorded in Wireshark for another period of approximately

ffteen minutes. During this period, all features of the application were utilized in order

to make sure all functions of the malware that may be controlled by game functions were

executed.

The device was then again wiped to factory settings with Astro File Manager being the

only third-party application installed. Another control sample was gathered with an active

network for a period of approximately ten minutes. After this sample was recorded, the

malware was once again installed and exercised for a period of ffteen minutes in order to

gather all packets being sent and received with an open network.

3.3 iOS Jailbreak

For the iOS experiment an iPhone 4S with iOS 8.1 was used. The device was wiped

clean using the functions preinstalled on the device that were described in Chapter Two.

Once erased, the device was set up with no network connectivity and no iCloud support.

Before any experiments were conducted a packet capture was completed on the closed

network to act as a control for any experiments with the iOS device.

To test the effectiveness and privileges of a jailbreak on an iPhone, I frst had to success-

fully gain root access to an iOS device. In my research I discovered two worthy candidates
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for such a task with Pangu8 and TaiG. I frst experimented with Pangu8. I experienced

immediate diffculties as the application presented a network error on both the Windows

and Mac OS X partitions. After unsuccessful troubleshooting, I attempted to use the re-

store function of the Windows application to install both iOS 8.1 and iOS 8.1.2, the latest

version of iOS susceptible to a jailbreak. This action only succeeded in placing the device

in recovery mode. I was able to escape recovery mode with the application Tinyumbrella

without having to restore the device to a signed version of iOS. After these failed attempts

I downloaded, and was immediately successful, with the application TaiG. Packet captures

were also captured of any network connections that may be attempted during the TaiG

exploit and installation of the jailbreak software.
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CHAPTER 4

RESULTS

After conducting the experiments detailed in Chapter Three, I examined the devices and

data gathered during the study. Using these resources, I observed the following outcomes

that are the result of my experiments. Interpretation of parts of the source code were aided

by Lookout Mobile Security who provides a detailed technical analysis of the DroidDream

malware [11].

4.1 Android Malware

The DroidDream malware deployed on the Android device is a rootkit type of mal-

ware. The sample is disguised as a legitimate Android application, and hides its exploit in

com.android.root. Once the user opens the seemingly legitimate application, DroidDream

will launch its own service within com.android.root.main before starting the intended ser-

vice of the host application.

After the services are started, the malicious application attempts to make contact with

the command and control server. As seen in Figure 4.1, the application will send a request

with the device’s IMEI and IMSI numbers and wait for a reply for the server. When the

reply is received, the malware checks to see if the device is already infected by checking

for the existence of ‘/system/bin/profle’.
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Figure 4.1

XML requests containing IMEI and IMSI numbers of the host device.

At this point, DroidDream attempts to root the device using two different exploits. The

frst attempt is ‘exploid’ that attempts to exploit a vulnerability in Androids handling of

‘init’. This reference is found in com.android.root.udevroot and is seen Figure 4.2.

Figure 4.2

Exploid exploit in the com.android.root.udevroot directory.

If ‘exploid’ does not successfully complete, the malware attempts to root the device us-

ing ‘rageagainstthecage’ that attempts to utilize the vulnerability of adbd’s attempt to drop

its privileges. This exploit is run from com.android.root.adbroot and is seen in Figure 4.3.

After the device has been successfully rooted by either of the previous two exploits,

DroidDream attempts to deploy a second payload. The malware copies the fle ‘sqlite.db’

from within the assets folder to ‘/system/app’ and renames it to a more discrete name of

‘DownloadProvidersManager.apk’ as seen in Figure 4.4.
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Figure 4.3

Exploid rageagainstthecage in the com.android.root.adbroot directory.

Figure 4.4

Conversion of sqlite.db into DownloadProvidersManager.apk.

As this operation is being conducted with ‘root’ privileges, the user will not be prompted

for permission or authorization. After ‘sqlite.db’ is deployed, the operations of the original

payload are completed.

The second payload is unlike the frst in the fact that it does not have to be acti-

vated by the user. This discrete application is triggered by the Android system actions

‘BOOT COMPLETED’ and ‘PHONE STATE’ as seen in the ‘AndroidManifest.xml’ fle

of the second payload. This is shown in Figure 4.5 below.

Because the application is stored in the system directory and is not in the application

menu, neither the user nor any other non-system applications can monitor it. This allows

the application to run silently and without detection in order to download any other pay-

loads that it desires.
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Figure 4.5

AndroidManifest.xml fle of DownloadProvidersManager.apk.

After successfully deploying the DroidDream malware onto a clean Android device, I

gathered all network packets sent and received from both a closed and open network confg-

uration. During the closed connection test, the only packets being sent outside the network,

with the exception of DNS requests, were to http://184.105.245.17:8080/GMServer/GMSe-

rvlet as seen in Figure 4.6. Every time the application is launched the malicious payload

attempts to contact this server up to fve times before it eventually fails and halts.

Upon establishing an open network, I again examined packets from both a clean control

and infected device. Once the device was infected with malware, data was once again being

sent to http://184.105.245.17:8080/GMServer/GMServlet and being retransmitted up to 4

times before failure. Upon further examination of the command and control server, the IP

address is registered to Hurricane Electric in Fremont, California. Hurricane Electric is an

Internet backbone provider that has servers around the world. Because the server does not

respond to the requests sent from the malware nor is it responding to pings, it appears that

the provider has since taken down the server registered at the above IP address. As the

server is not available to respond to the requests from the frst payload, the malware halts
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Figure 4.6

Network packets being sent to DroidDream IP Address.

and does not attempt to run either exploit to root the device or install ‘sqlite.db’ onto the

system partition.

4.2 iOS Jailbreak

While testing the iOS jailbreak, the TaiG jailbreak successfully exploited the iOS de-

vice and deployed Cydia, an app store for jailbroken devices. Once Cydia was on the

device, I was able to download applications straight to the device that had not achieved

Apple App Store approval. These applications available in Cydia can range from danger-

ous malware to simple lock screen or home screen personalization.

The TaiG jailbreak exploit utilizes several vulnerabilities in iOS versions prior to iOS

8.1.3. Apple released all four of the following vulnerabilities in their security content report

for iOS 8.1.3 [4]. The frst of these vulnerabilities was a problem with the symbolic linking

mechanism of the Apple File Conduit that allowed an attacker to craft AFC commands that
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may allow access to protected sections of the fle system (CVE-2014-4480). This vulner-

ability was addressed with additional path checks. The second vulnerability exploited by

TaiG was an issue in the handling of Mach-O executable fles with overlapping segments

that allowed the jailbreak team or an attacker to execute code that had not been signed by

Apple (CVE-2014-4455). This issue was overcome with additional segment size valida-

tion. Yet another vulnerability was a buffer overfow in the IOHID family that allowed a

malicious user to execute code with system privileges (CVE-2014-4487). Size validation

plugged this hole to future attacks. The fnal issue utilized by the TaiG jailbreak team was

an issue with the mach port kobject kernel interface that could leak kernel address and

heap permutation values that allowed an attacker to bypass Address Space Layout Ran-

domization (CVE-2014-4496). After this discovery, the mach port kobject interface was

disabled in production confgurations.

Once an iOS device is jailbroken, it is important to download OpenSSL and change the

root password of the device. Because passwords can sometimes be diffcult to guess, most

malware for jailbroken iOS devices uses the default root password “alpine” due to the fact

that many users who jailbreak their devices fail to change this password and therefore leave

themselves vulnerable to malware with root access to their device. As seen in Figure 4.7,

after installing OpenSSL through the Cydia app store I was able to SSH into the device.

Once I was logged in, I could run any command I wished, however the command run

in Figure 4.8 below, only details the operating system on the device to demonstrate it is in

fact an iOS device running iOS 8.1.
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Figure 4.7

SSH access to a jailbroken iPhone 4S.

Figure 4.8

Root access to an iOS device running iOS 8.1.
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CHAPTER 5

CONCLUSIONS & FUTURE WORK

After conducting my experiments and gathering the results, I was able to arrive at a set

of conclusions that would prevent or mitigate the threats allowed in the previous exercises.

While the DroidDream exploit failed due to the failure of its command and control

server, the outcome could have been drastically different. If the server had been oper-

ational, the device could have been exploited with one of the encompassed rootkits and

utilized by a malicious user. Heeding the warning seen in Figure 5.1 below can thwart this

attempt.

By only downloading applications from known and signed sources, such as the Google

Play Store, users can protect themselves from most malicious apps. In the event a non-

verifed app is downloaded and an attempt to install it is made, the message in the above

Figure 5.1 will be displayed warning the user of the danger. This message will only be dis-

played if the default settings concerning applications from unknown sources are selected in

the security settings. While this setting may not be of any protection if a malicious appli-

cation is downloaded from the marketplace, as DroidDream originally was, it will protect

users from these applications once they are removed from the marketplace. However, it

is my recommendation that the setting never be changed except in extreme circumstances,
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Figure 5.1

Installation blocked by proper default settings.
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such as the installation of a custom application created for an individual or organization by

a trusted developer. After installation, it is recommended to return the setting to its default

action.

Another sign of a rogue application is a request for permissions outside the scope of

the application. Figure 5.2 below shows the permissions requested for the DroidDream

infected app Bowling Time.

Figure 5.2

Permissions requested by Bowling Time.

As seen in Figure 5.2 above, the malicious application requests access permissions to

storage, network communications, and phone calls. With the exception of network access,

all of these resources are seen as unusual for a bowling game. Another resource to protect
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against a malware threat is a virus scanner installed on the device. While a virus scanner

may not fag every threat, it is useful for the amount of threats that it does block and remove

from the device. I installed Lookout on the Android device I was testing and let it update

its threat data and scan the native applications for threats before deploying malware. As

soon as the malware sample was dropped onto the device, the virus scanner recognized

it and removed it. These applications also often offer additional features such as location

information in the event of theft and automated backups.

Once the iOS device was successfully jailbroken, a new realm of possibilities was

opened for the device. While these possibilities are enticing to iOS users, the danger to the

jailbroken devices user lurks readily under the surface as the device looks and functions in

the same manner as an iOS device that has not been jailbroken with the exception of the

Cydia application. Danger looms for many jailbreak users because the jailbreak software

effectively bypassed and is continuing to bypass Apples Secure Boot Chain described in

Chapter Two. Without this protection, the user is susceptible to threats that they were

once protected against. The best defense against malware on a jailbroken iOS device is

to only download applications from the Apple App Store and to change the root password

immediately. If the root password is not changed, malware can potentially login as the root

user and change the root password to any value. The only recourse to this action would be

to completely restore the device and change the root password once the device has been

jailbroken again.

While jailbreaking an iOS device can give a user much more freedom with their device

than they previously had, it is not recommended because the user will not be protected
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against new threats that are addressed in future iOS releases without restoring their devices

to a “locked” state. As of the writing of this paper, a jailbreak is not currently available

for iOS 8.1.3, leaving all users on older jailbroken versions susceptible to released security

faws with no means of updating their devices without losing their jailbreak features.

After examining the experiments conducted and their results, I returned to my questions

and hypothesis proposed in Chapter One of this paper. When jailbreaking an iOS device,

the device is made vulnerable to a slew of exploits that have been made publically available

until a jailbreak update has been created for the newest iOS version, as has been the case

between iOS 8.1.2 and iOS 8.1.3. However, installing an updated operating system does

not thwart all exploitation attempts due to the bypassing of the Secure Boot Chain and

device protections offered with a non-jailbroken device. It is widely known that the root

password of an iOS device is “alpine”, and it does not look as if Apple has any plans

to change it as they may see it as a jailbreaking deterrent. Therefore, since root access

is possible, root privileges are possible with a jailbroken device. With this access, any

modifcation can be made to the device once the secure boot chain is bypassed and root

access is granted.

Transitioning across platforms to Android where malware is much more prevalent, we

look at the experiment conducted. Judging by the actions of this malware, it is irrelevant in

which mode you are running an Android device. If a piece of malware is installed, it can

send out private information to a third party and potentially root the device depending on

the type of rootkit and Android version installed. Thankfully, the best protection against

this is very simple. As long as the default setting concerning downloading from unknown
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sources is not altered, an Android user is protected from most threats, as the Google Play

Store usually has the lowest amount of malware.

After answering these questions, I have come to the conclusion that my hypothesis

was partially correct. While jailbreaking an iOS device does make it more susceptible to

malware than a non-jailbroken device, developer mode has little to no impact on the state

of an Android device. Instead, changing the installation from unknown sources default

setting of the device and the absence of virus protection make an Android device more

accessible to malware.

Upon these conclusions, I would revise my hypothesis to the following in order to more

accurately refect my experiments:

Changing the “Installation from Unknown Sources” default setting and the
absence of virus protection on an Android device; and the jailbreaking of an
iOS device make the respective devices more accessible to malware than the
devices were in their original states.

5.1 Future Work

Future work on this topic would include the testing of more malware samples involving

different rootkits on different releases of the Android operating system. This would allow

for us to see a broader range of malware on a broader range of operating system versions.

It would also be helpful to fnd and demonstrate iOS malware samples on jailbroken and

non-jailbroken devices to demonstrate their differences.
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