
Mississippi State University Mississippi State University 

Scholars Junction Scholars Junction 

Theses and Dissertations Theses and Dissertations 

12-14-2018 

Development of a Nanofluid Simulation Platform Development of a Nanofluid Simulation Platform 

Jabrane Nachit 

Follow this and additional works at: https://scholarsjunction.msstate.edu/td 

Recommended Citation Recommended Citation 
Nachit, Jabrane, "Development of a Nanofluid Simulation Platform" (2018). Theses and Dissertations. 
1420. 
https://scholarsjunction.msstate.edu/td/1420 

This Graduate Thesis - Open Access is brought to you for free and open access by the Theses and Dissertations at 
Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of 
Scholars Junction. For more information, please contact scholcomm@msstate.libanswers.com. 

https://scholarsjunction.msstate.edu/
https://scholarsjunction.msstate.edu/td
https://scholarsjunction.msstate.edu/theses-dissertations
https://scholarsjunction.msstate.edu/td?utm_source=scholarsjunction.msstate.edu%2Ftd%2F1420&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsjunction.msstate.edu/td/1420?utm_source=scholarsjunction.msstate.edu%2Ftd%2F1420&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholcomm@msstate.libanswers.com


Template C v3.0 (beta): Created by J. Nail 06/2015  

Development of a nanofluid simulation platform 

By 

TITLE PAGE 

Jabrane Nachit 

A Thesis 

Submitted to the Faculty of 

Mississippi State University 

in Partial Fulfillment of the Requirements 

for the Degree of Master of Science 

in the Department of Aerospace Engineering 

Mississippi State, Mississippi 

December 2018 



 

 

Copyright by 

COPYRIGHT PAGE 

Jabrane Nachit 

2018 



 

 

Development of a nanofluid simulation platform 

By 

APPROVAL PAGE 

Jabrane Nachit 

Approved: 

 ____________________________________ 

J. Mark Janus 

(Major Professor) 

 ____________________________________ 

David S. Thompson 

(Graduate Coordinator/Committee Member) 

 ____________________________________ 

Yu Lv 

(Committee Member) 

 ____________________________________  

Jason M. Keith 

Dean 

Bagley College of Engineering 



 

 

Name: Jabrane Nachit 

ABSTRACT 

Date of Degree: December 14, 2018 

Institution: Mississippi State University 

Major Field: Aerospace engineering 

Director of Thesis: Dr. J. Mark Janus 

Title of Study: Development of a nanofluid simulation platform 

Pages in Study 85 

Candidate for Degree of Master of Science 

 

Nano-fluids are colloidal solutions made up of particles of the nanometric scale 

suspended in a fluid. This type of solution has widespread great interest since the 

discovery of their particular properties. The Poisson-Nernst Planck system of equations 

(PNP) is one of the known models for the description of ion transport. This thesis aims to 

develop a method to solve the PNP equations in space and time for these nano-fluids. 

Additionally, a simulation platform (C++) is developed using an iterative scheme to solve 

the nonlinear equations resulting from the discretization of the system. After an overview 

of the literature on the subject, a discussion on the validity of the results obtained through 

the simulation platform through its comparison with literature and a commercial software 

package, COMSOL. 



 

iii 

ACKNOWLEDGMENT 

 

This thesis would not have been possible without the precious support of some 

peoples and it is not easy to say the right words, the role they played. However, I would 

ask them to find here all my feelings of gratitude, coming from the heart, and accept my 

thanks.  

My first thanks go to my thesis supervisor, Professor J. Mark Janus, who 

accompanied me throughout my training. His availability and his generous advice during 

some of my difficult moments have been of a very high quality, and of an immense 

utility; thank you very much Dr. Mark Janus. I also take this opportunity to thank all the 

members of Bagley College of Engineering. 

I would like also to take this opportunity to thank all members of the Mississippi 

State University administration who made our stay enjoyable and I would especially like 

to mention Ms. Tamra Swann for her valuable assistance and availability. 

I would also like to thank all the staff of the aeronautics pole of the International 

University of Rabat, in particular Mr. ElHachmi Essadiqi for his support and valuable 

advice, as well as all the professors who provided us with knowledge and guidance. My 

thoughts also go to the late Mrs. Jhane Khater, assistant in the UIR aerospace school, who 

was for our promotion more than a friend. 

I would also like to thank Professor Mohammed Cherkaoui who, without him, this 

project could not have materialized. Special thanks also to Mr. Mfeddal Hilali, Director 

of Institute of Preparatory Schools of the International University of Rabat, who believed 

in me and who has always enlightened me with his counsel. 



 

iv 

 

TABLE OF CONTENTS 

 

ACKNOWLEDGEMENTS……………………………………………………………….iii 

LIST FIGURES…………………………………………………………………...………vii 

CHAPTER 

I. INTRODUCTION .................................................................................................1 

II. MODELING, DISCRETIZATION AND NUMERICAL SIMULATION ...........3 

1. Modeling ....................................................................................................3 

1.1. What is a model? .......................................................................................3 

1.2. The reasons for modeling ..........................................................................3 
1.3. The different models ..................................................................................3 
1.4. Modeling and numerical simulation ..........................................................4 

1.5. Concept of stability ....................................................................................4 
1.5.1. Stability of physical problem: chaotic system ...........................................4 

1.5.2. Stability of a mathematical problem: sensitivity .......................................5 

1.5.3. Stability of a numerical method ................................................................5 
2. Discretization of systems of partial differential equations ........................5 

2.1. The three main categories of methods .......................................................5 
2.2. The finite differences .................................................................................7 
2.2.1. Principle - Precision order .........................................................................7 

2.2.2. Indices based notation - case 1D ...............................................................8 

2.2.3. Some schemes in 1D .................................................................................9 

2.3. The finite volumes .....................................................................................9 
2.3.1. Principle .....................................................................................................9 
2.3.2. Finite volumes for a conservation law .......................................................9 
2.3.3. Mono-dimensional case ...........................................................................11 
2.4. The finite elements in 1D ........................................................................13 

2.4.1. Principle ...................................................................................................13 
2.5. Chosen method and motivation ...............................................................13 



 

v 

III. ELECTROOSMOTIC FLOW AND ELECTRIC DOUBLE LAYER 

THEORY .............................................................................................................15 

1. Microscopic modeling of electro-kinetic phenomena .............................15 
1.1. Presentation of electro-kinetic phenomena .............................................15 

1.2. Spiegler’s friction model .........................................................................18 
1.3. Ionic hydration model ..............................................................................18 
2. Theories based on the double layer .........................................................19 
2.1. Definition .................................................................................................19 
3. The double layer and electro-kinetic phenomena ....................................20 

4. The double-layer models .........................................................................21 
4.1. Double layer and distribution of electrostatic potential near a charged 

plate .........................................................................................................21 

4.2. Models .....................................................................................................23 
4.3. The Poisson-Boltzmann theory ...............................................................29 
4.3.1. Electric double layer. ...............................................................................29 

4.3.2. Distribution of Boltzmann .......................................................................30 
4.3.3. Poisson-Boltzmann equation ...................................................................31 

4.3.4. Poisson's equation:...................................................................................32 
4.3.5. Approximation of Debye-Hückel : Linearization of the Poisson  -

Boltzmann equation .................................................................................32 

IV. THEORY OF THE POISSON-NERNST-PLANK EQUATION SYSTEM ......34 

V. NUMERICAL SCHEME FOR THE NERNST-PLANCK EQUATION ...........38 

1. Simulation parameters and derived quantities .........................................40 
1.1. Problem definition: ..................................................................................40 

1.2. Governing equations ................................................................................41 
1.3. Simplified equations and implementation ...............................................42 

1.4. Initial and boundary conditions ...............................................................43 
1.5. Discretization ...........................................................................................44 

1.5.1. TR-BDF 2 method ...................................................................................44 
1.5.2. Discretization in time ..............................................................................47 
1.5.3. Discretization in space .............................................................................49 
1.6. Matrix form of the system .......................................................................49 
1.7. Discretization of boundary conditions .....................................................50 

2. Results and Validation .............................................................................53 

2.1. Example 1 : Sodium Chloride (NaCl) .....................................................53 

2.2. Example 2 : Sodium Sulfate (Na2So4) .....................................................55 
2.3. Example 3 : Trisodium Phosphate (Na3PO4) ...........................................57 

VI. GENERAL CONCLUSION AND PERSPECTIVES .........................................60 

APPENDIX A ................................................................................................................... 61 



 

vi 

Main C++ code ....................................................................................................62 

Numerical solver .................................................................................................74 
Memory allocation ...............................................................................................74 

REFERENCES ................................................................................................................. 76 

 

  



 

vii 

LIST OF FIGURES 

 

 

    1.1 mesh 1D ..........................................................................................................12 

     1.2 Electro-Osmosis - flow potential ....................................................................16 

1.3 Electrophoresis - sedimentation potential ......................................................17 

1.4 Electrical potential (Φ) and distribution of cations (n+) and anions (n-) as 

a function of the distance to the wall x ...........................................................18 

1.5 Linearized distribution of velocity in a capillary. ..........................................20 

1.6 Different models representing the distribution of ions near a charged 

surface with the variations of electrostatic potential as a function of 

distance: (a) Helmholtz model, (b) Gouy-Chapman model, (c) Stern 

model or double layer. ....................................................................................22 

1.7 The model of double layer of Helmholtz-Perrin ............................................25 

1.8 The model of double layer of Gouy-Chapman ...............................................26 

1.9 The model of double layer of Stern ................................................................28 



 

1 

CHAPTER 1 

INTRODUCTION 

In 1798, Alessandro Volta invented the first source of reliable and stable 

electricity. This was possible by successively stacking those elements following the order: 

copper, brine, zinc, brine, zinc… Stacking of zinc and copper plates separated by a tissue 

soaked with brine (saline solution) permitted the constitution of this source of electricity.  

The electrons provided by the electrochemical reaction between the zinc and the water 

supplied electrical systems. This source of electricity permitted many scientists to 

repeatedly study the electrical phenomena in a liquid or gaseous medium.  

In 1808 Ferdinand Friedrich Reuss, a German researcher, became interested in 

the behavior of fluids subjected to an electric field and for the first time observed two 

major-electro kinetic phenomena [
1
].   In fact, he succeeded in circulating water through a 

clay agglomerate as a result of the application of a potential difference across the channel 

and thus described, for the first time, electro-osmosis. Therefore, electro-osmotic and 

electrophoretic phenomena were observed in the 1810s, based on a major technological 

innovation, the battery. In the following years, many scientific works were devoted to the 

understanding and the theoretical study of these electro-kinetic effects.  

In the 1950s, Pohl studied the forces induced on dielectric particles by a non-

uniform electric field. He therefore introduced the term of 'di-electrophorese', derived 

from the Greek word “phorein” which reflects the fact that a particle is transported 

according to its dielectric properties. Early on, Pohl's research focused on industrial 

applications such as the separation of carbon black micro-particles from samples of 



 

2 

polyvinyl chloride [
2
]. In the 1960s and 1970s, he concentrated his theoretical and 

experimental efforts on biological applications [
3
] such as the separation of cells or 

bacteria. The main constraint related to the experiences of di-electrophorese was creating 

an electric field’s gradient strong enough to manipulate the micro-particles without 

reaching the surrounding dielectric breakdown voltage. Indeed, the voltages used during 

these experiments were on the order of several tens of kilovolts, which also required 

substantial material means. In 1978, Pohl published his work devoted to the study of di-

electrophoresis [
4
], which is still a reference.  

Since 1995, the rise of many works devoted to electro-osmosis and di-

electrophoresis is mainly due to the use and the democratization within laboratories of the 

techniques and integration means resulting from the microelectronic revolution. Indeed, 

the systems miniaturization enable locally intense non-uniform electric fields by applying 

a few volts of potential. Research on di-electrophoresis addresses the theoretical aspects 

and focuses on specific applications such as biosensors, cell research, medical diagnosis, 

microfluidics, nano-assembly or particle filtration. 

The current work falls within this framework of nanofluids studies and focuses on 

three major parts. First, a review of principle of modeling, discretization and numerical 

simulation, then a documentary study on nanofluids and electro kinetic phenomena, and 

finally, an implementation of a platform of simulations of nanofluids developed in C++ 

with comparison to a commercial code. 

 

 



 

3 

CHAPTER II  

MODELING, DISCRETIZATION AND NUMERICAL SIMULATION 

1. Modeling 

1.1. What is a model? 

The principle of a model is to replace a complex system by a simple object or 

operator reproducing the main aspects or behaviors of the original system (example: a 

reduced model, scale model, mathematical or numerical model, thought or reasoning 

model). 

1.2. The reasons for modeling 

In nature, the most interesting systems and physical phenomena are also the most 

complex to study. In fact, a large number of non-linear parameters interacting with each 

other (meteorology, fluid turbulence...) often governs these systems. 

1.3. The different models 

Some solution consists of using a series of experiments to analyze the parameters 

and magnitudes of the system. However, tests can be very expensive (e.g. flight-tests, 

tests with rare materials, very expensive instrumentation, etc.) and they can be dangerous 

(e.g. nuclear tests, space environment, etc.). Furthermore, it may be difficult to measure 

all the parameters: very small scale of the problem (e.g. life sciences, limit layer in 

fluid,etc.) or very large scale (e.g. astrophysics, meteorology, geophysics, etc.). 

Fortunately, we can also construct mathematical models that allow the 

representation of the physical phenomenon. These models often use systems of nonlinear 

partial differential equations with, in general, no analytical solutions. It is then a question 



 

4 

of numerically solving the problem by transforming the continuous equations of the 

physics into a discrete problem on a certain domain of computation (the mesh). In some 

cases, it is the only alternative (e.g. nuclear, astrophysical, etc.). In other cases, numerical 

simulations are carried out in parallel with experiments. 

1.4. Modeling and numerical simulation 

The different steps to model a complex system are: 

 Search for a mathematical model representing the physical phenomenon, 

 Equation layout, 

 Development of a mesh, i.e. discretization of the equations, 

 Resolution of discrete equations (linear systems to solve), 

 Computer transcription and programming of discrete relationships, 

 Numerical simulation and exploitation of results. 

The engineer may intervene on one or more of these steps. 

1.5. Concept of stability 

There are three types of stability: 

 The stability of a physical problem, 

 The stability of a mathematical problem, 

 The numerical stability of a calculation method. 

1.5.1. Stability of physical problem: chaotic system 

A problem is said to be chaotic if a small variation of the initial data leads to a 

very unpredictable variation of the results. This notion of chaos, linked to the physics of a 

problem, is independent of the mathematical model used and even more when it is 



 

5 

question of the numerical method used to solve this mathematical problem. Many 

problems are chaotic, for example fluid turbulence. 

1.5.2. Stability of a mathematical problem: sensitivity 

 A problem is very sensitive or poorly conditioned if a small variation of the data 

or parameters results in a large variation of the results. This notion of conditioning, linked 

to the mathematical problem, is independent of the numerical method used to solve it. To 

model a physical problem that is not chaotic, we build the best-conditioned mathematical 

model.  

1.5.3. Stability of a numerical method 

A method is unstable if it is subject to significant propagation of numerical 

discretization and rounding errors. A problem may be well conditioned while the 

numerical method chosen to solve it can be unstable. In this case, it is imperative to 

change the numerical method. On the other hand, if the original problem is ill-

conditioned, no numerical method can remedy it. It will then be necessary to try to find a 

different mathematical formulation of the same problem, if we know that the underlying 

physical problem is stable. 

2. Discretization of systems of partial differential equations 

2.1. The three main categories of methods 

To pass from the continuous exact problems governed by a system of partial 

differential equations to the discrete problem, there are three main categories of methods: 

 The finite differences 



 

6 

The method consists in replacing the partial derivatives by divided differences or 

combinations of point values of the function in a finite number of discrete points or nodes 

of the mesh. The advantages of the methods are a great simplicity of writing and a low 

cost of calculation. While its disadvantages are the limitation to simple geometries and 

difficulties in taking into account Neumann boundary conditions. 

 The finite volumes 

The method integrates, on elementary volumes of simple form, the equations 

written in the form of conservation law. It thus provides conservative, discrete 

approximations in a natural way and is particularly well adapted to the equations of fluid 

mechanics. Its implementation is simple with rectangular elementary volumes. 

Advantages: allows treating complex geometries with volumes of any shape and more 

natural determination of Neumann boundary conditions. Disadvantage: few theoretical 

results of convergence. 

 The finite elements. 

The method consists in approximating, in a finite-dimensional subspace, a 

problem written in variational form (as a minimization of the energy in general) in a space 

of infinite dimension. The approximate solution is, in this case, a function determined by 

a finite number of parameters such as, for example, its values at certain points or nodes of 

the mesh. Advantages: possible processing of complex geometries, numerous theoretical 

results on convergence. Disadvantage: complexity of implementation and high cost in 

computing time and memory. 



 

7 

2.2. The finite differences 

2.2.1. Principle - Precision order 

The finite difference method consists in approximating the derivatives of the 

equations of physics by means of the Taylor series expansion and is deduced directly 

from the definition of the derivative. It is due to the work of several mathematicians of the 

18th century (e.g. Euler, Taylor, Leibniz, etc.). 

Given a function of space and time, u(x, y, z, t), by definition of the derivative, we 

have: 

 (1) 

 

If Δx is small, a Taylor expansion of u (x + Δx, y, z, t) in the neighborhood of x gives: 

 

Truncating the series to the first order at Δx, we obtain: 

 

  (2) 

The approximation of the derivative is then of order 1 indicating that the truncation error    

tends to zero as the first power of Δx. By definition: the power of Δx with 

which the truncation error tends to zero is called the order of the method. 



 

8 

2.2.2. Indices based notation - case 1D 

Consider a mono-dimensional case where one wants to determine a quantity u(x) on the 

interval [0, 1]. The search for a discrete solution of the magnitude of the problem leads to 

the development of a mesh of the interval definition. We consider a mesh (or calculation 

grid) composed of N + 1 points xi for i = 0, ..., N regularly spaced with a step Δx. The 

points xi = i Δx are called the nodes of the mesh. The original continuous problem for the 

determination of a magnitude on an infinite set dimension is thus reduced to the search for 

N discrete values of this magnitude at the different nodes of the mesh.  

Notation: we denote ui the discrete value of u(x) at the point xi, i.e. ui = u(xi). Similarly 

we note the derivative of u(x) at the node xi : 

This notation is used in an equivalent way for all derivatives of successive order of u.  

The finite difference scheme of order 1 presented above is written in index notation as 

follow: 

(3) 

 

This scheme is called "forward" or upwind. It is possible to construct another first-order 

scheme, called "backward":  

 

 (4) 

 

 

 



 

9 

2.2.3. Some schemes in 1D 

finite difference forward order 1   finite difference backward order 1 

 

 

2.3. The finite volumes 

2.3.1. Principle  

The Finite Volumes method consists of integrating, on elementary volumes, the 

equations written in an integral form. This method is particularly well adapted to the 

spatial discretization of conservation laws and is thus widely used in fluid mechanics. Its 

implementation is simple if the elementary volumes or "control volumes" are rectangles 

in 2D or parallelepipeds in 3D. However, the Finite Volumes method allows using 

volumes of any shape and therefore to treat complex geometries, unlike Finite 

Differences. Numerous numerical simulation codes in fluid mechanics are based on this 

method: Fluent, StarCD, CFX, FineTurbo, elsA, etc. 

2.3.2. Finite volumes for a conservation law  

Consider a conservation law of a physical quantity w in a mesh of volume Ω, 

involving a flow F(w) and a source term S(w). Its expression in an integral form is: 

(5) 

 



 

10 

Let Σ be the surface of the mesh, of external normal n. The Ostrogradski theorem leads to: 

(6) 

 

The integral represents the sum of flows through each side of the 

mesh. The flow is assumed constant on each face, the integral is reduced to a discrete sum 

on each face of the mesh, therefore: 

(7) 

 

The quantity is an approximation of the flux F on one face of the 

volume, it is the numerical flow on the considered face. The spatial discretization is 

equivalent to calculating the flux balance on an elementary volume “cell”. This balance 

includes the sum of the contributions evaluated on each face of the mesh. The way in 

which one approaches numerical flow as a function of the discrete variable determines the 

numerical scheme. The numerical scheme can also use an auxiliary variable, for example 

the gradient of the variable per mesh.  

In regard to the temporal derivative, a fundamental element of the discretization in 

Finite Volumes is to assume that the quantity w is constant in each mesh and equal to an 

approximate value of its mean on the cell or its value at the center of the cell. On the other 

hand, the time derivative is evaluated by means of a numerical method of integration of 

the differential equation (e.g. Runge-Kutta, Euler explicit or implicit, etc.) and involves 

an integration time step Δt, the latter being either a constant or a variable. To formulate 

the ideas, we write the formulation with an explicit Euler method.  If Δw is the increment 

of the magnitude w between two successive time iterations. We can thus write: 



 

11 

(8) 

 

Finally, the conservation law discretized with the Finite Volume method can be written: 

(9) 

 

The Finite Volumes method therefore consists of: 

 Decompose the geometry into elementary cells (develop a mesh), 

 Initialize the quantity, w, on the computational domain, 

 Start the process of temporal integration until convergence with: 

o Calculation of the flux balance by mesh by a numerical scheme, 

o Calculation of the source term, 

o Calculation of the temporal increment by a numerical integration 

method, 

o Application of boundary conditions. 

2.3.3. Mono-dimensional case  

 Consider a 1D conservation law: 

(10) 

 

where u is a physical quantity dependent on the variables of space x and time t; and f(u) is 

a “flux” function of u. 

The computational domain is divided into N cells of center xi. Each cell has a size  



 

12 

hi =  xi+1/2 -  xi−1/2. The half-integer indices denote the interfaces of the cell with the 

neighboring cells (see figure below).  

 

Figure 1.1 mesh 1D  

Time is discretized in constant step intervals, Δt. The function u is assumed to be constant 

in each cell and equal to an approximate value of the mean. Let  denote this 

average value in the i-th cell with center at xi, and time t = nΔt, thus: 

and   

This mean value is often the value of the function u at the center, xi, of the cell, then we 

speak of Cell-Centered Finite Volumes, in this case . 

The spatial discretization by the Finite Volumes consists of integrating the conservation 

law cell by cell: 

(11) 

 

Thus, for the i-th cell at time t = nΔt: 

(12) 

 

This is integrated as follows: 

(13) 

 



 

13 

The quantity               designates an approximation of the flux f(u) at the interface x i+1/2  

and the time nΔt. This is the numerical flow at the point x i + 1/2. This numerical flux is 

evaluated as a function of the average values of u in the neighboring cells, which 

determines the numerical scheme. An explicit Euler method is used to evaluate the time 

derivative (other schemes can be used). The discretized formulation in Finite Volumes of 

the conservation law is thus: 

(14) 

 

2.4. The finite elements in 1D 

2.4.1. Principle  

The Finite Elements method consists in approximating, in a finite-dimensional 

subspace, a problem written in variational form in a space of infinite dimension. This 

variational form is, in general, equivalent to a form of minimization of energy (principle 

of virtual works). The approximate solution is, in this case, a function determined by a 

finite number of parameters, for example, its values at certain points (the nodes of the 

mesh). This method is particularly well adapted to problems of equilibrium. It allows one 

to treat complex geometries unlike Finite Differences, but it requires a great deal of 

computing time and memory. Many structural calculation codes are based on Finite 

Elements: ANSYS, CADDS, CATIA. 

2.5. Chosen method and motivation 

This thesis will present the basic ideas of the finite difference method, which is 

undoubtedly the most intuitive, simplest and most widely used method for numerically 



 

14 

solving partial differential equations. Indeed, this method involves utilizing many 

concepts or numerical problems common to the various methods. Admittedly, unlike the 

finite elements and finite volumes, this technique is not suitable for non-Cartesian meshes 

but it is very intuitive. In addition, it is being used in numerous numerical analyses 

because the discretization is trivial and that the numerical scheme typically converges 

well. More than that, in 1D, the three methods can be shown to be equivalent. 

It should be remembered that numerically solving partial differential equations means 

calculating a good approximation of the solution, if the problem has a unique solution, 

with a number of well-distributed points on the set where it is defined. The finite 

difference method approximates the operators by the Taylor formula. When evaluating 

the operators, we can choose to evaluate the spatial operators in two ways: (i) either at 

time t we then use an explicit scheme, (ii) or at time t + 1, an implicit scheme is then used. 

 

 



 

15 

CHAPTER III  

ELECTROOSMOTIC FLOW AND ELECTRIC DOUBLE LAYER THEORY 

 

Etymologically: electro-osmosis is derived from osmosis with the electro-prefix. It 

means “(Electricity) (Chemistry)” and “Movement of a fluid created by the force of 

Coulomb”.  An electric field generates the Coulomb force that sets in motion the free 

charges in the diffuse layer. The movement of these charges, via the viscous bonds, 

transports the fluid. Thus, the electro-osmosis is defined as a phenomenon resulting from 

the movement of a fluid when a tangential electric field is applied to the diffuse layer. 

This is the inverse phenomenon of the flow potential, where a transfer of liquid 

through a membrane causes a potential difference on both sides of the membrane. The 

electro-osmosis is a parasitic phenomenon in electro-dialysis, causing a water transfer that 

has the effect of diluting the solutions. 

 The electro-osmosis, which involves moving the constituents from the liquid 

phase of a porous medium by applying an electrical field as foresaid, is involved in many 

areas: geotechnical, soil remediation, biotechnology... 

1. Microscopic modeling of electro-kinetic phenomena 

1.1. Presentation of electro-kinetic phenomena 

When an ionic solution and a solid are in contact, some physical phenomena, called 

"electro-kinetic phenomena ", occur. They are characterized either by the movement of 

liquid or solid particles generated by an electric field, or by the appearance of an electric 

current or a potential difference under the effect of a liquid or particle movement.  

The main electro-kinetic phenomena are the electro-osmosis and the flow potential, 

the electrophoresis and the sedimentation potential (Figure 1.1.). They always manifest as 

follows: 



 

16 

 Electro-osmosis: consider a U-tube with a porous medium at the base and filled 

with an ionic liquid. With two electrodes placed on either side of the solid, the 

application of an electric field between the electrodes causes the movement of 

liquid through the porous medium: there is an increase of the water level in one of 

the branches of the tube and a decrease in the other, until reaching an equilibrium 

position.  

 Flow potential: reciprocal phenomenon of electro-osmosis, the flow potential is a 

potential difference between the electrodes caused by the movement of all of the 

solution through the porous medium. 

 Electrophoresis: applying an electric field between the two electrodes placed in 

the liquid causes the migration of the suspended solid particles in the liquid 

toward one or the other electrode. 

 Potential of sedimentation: reciprocal to electrophoresis, displacement of particles 

suspended in an ionic liquid causes an electrical potential difference called 

potential of sedimentation. 

 

The observation of electro-osmosis phenomenon dates from the early nineteenth century. 

 

Figure 1.2 Electro-Osmosis - flow potential 

 

 

 



 

17 

 

 

Figure 1.3 Electrophoresis - sedimentation potential 

 

Reuss F. [
5

] was the first to study in detail electro-osmosis, by a classic 

experiment, the electrolytic decomposition of water through quartz powder. He was also 

the first to observe electrophoresis.  Between 1852 and 1856, Wiedemann G. [
6
]  [

7
]  

carried out the first quantitative measurements of the phenomenon and brought two 

important results: the difference in hydraulic pressure due to the overflow of liquid 

between the two sides of the porous medium is proportional to the electrical potential 

applied and is independent of the medium size. If the liquid is kept at the same level on 

both sides, the hydraulic flow is proportional to the applied electric potential and 

independent of the medium dimensions.  

Quincke G [
8
 Quincke G. 1859] discovered the flowing potential and revealed 

experimentally that the direction of the electro-osmotic flow is not always the same as the 

electric current [
9
 Quincke, G.: 1861]. He was  the first who suggested the existence of 

opposite charge layers to the solid-liquid interface, namely, the electric double layer: the 

layer charge of the liquid may move freely while that of the solid is immobile. 

In 1878, Dorn [
10

] discovered and studied the potential of sedimentation, which 

today also carries the name of the “Dorn effect”. 

 Various theories have been developed to describe the electro-osmosis’ 

phenomenon and to quantify the induced hydraulic flow. The next section will present 

those that are most commonly known in the literature and those based on a microscopic 

scale description. They represent the phenomena at a pore scale. Among them, those 

based on the electrical double layer are of a particular interest here.  



 

18 

1.2. Spiegler’s friction model  

In this model [
11

Spiegler, K. S. : 1958], the transport process caused by hydraulic, 

electric and osmotic forces are described in terms of ion concentrations, but also in terms 

of some coefficients of friction between the components. The friction between the moving 

components and the stationary porous medium is also included in the formulation. 

However, it is difficult to obtain accurate measurements of these parameters, and there is 

no comprehensive data for all types of environments. Therefore, this model is not 

predictive but heuristic. Its role is to provide a relatively simple picture of the complex 

transport mechanisms involved.  

1.3. Ionic hydration model 

This model assumes that the potential difference applied to both sides of a porous 

medium causes a migration of ions [
12

Yeung, A. T.: 1994]. However, as these ions are 

hydrated they thus carry with them water molecules. Therefore, the amount of water that 

these ions transport by migrating is given by: 

H = t+N+ − t−N− 

 

  

Figure 1.4 Electrical potential (Φ) and distribution of cations (n+) and anions (n-) as a 

function of the distance to the wall x  

[
13

Mitchell, J. K. : 1993]. 



 

19 

Where H is the number of water molecules transported by electric charge passing 

through the medium; t + and t- are, respectively, the cation and anion transport 

coefficients; n+ and n- are, respectively, the number of water molecules bound by 

hydration transported with the cations and anions. The quantities of water transported 

predicted by this model, in ideal conditions, are far below those measured experimentally.  

2. Theories based on the double layer 

2.1. Definition 

The solid wall carries an electric charge that we assume negative in this work. It 

attracts, by electrostatic forces, the cations (positively charged) that are in the solution. 

They therefore have a higher concentration near the wall, and try to diffuse since the 

thermal motion tends to harmonize the concentrations. They are restricted in this diffusion 

by the electric field created in the solid surface. Both actions will eventually 

counterbalance, to create an ions distribution at steady state (Fig. 1.3) [Mitchell 1993]. 

The opposite occurs for anions whose concentration is reduced near the wall. The 

distribution of cations is similar to that of air molecules in the atmosphere, where the 

escape tendency of the gas is balanced by the gravitational pull of the earth. The charged 

surface and the adjacent portion in which the charge is distributed are referred to as the 

“diffuse double layer”. Several models attempt to describe it qualitatively and are 

themselves treated quantitatively by different theories. 

The modeling of the double layer is based on a static description without an external 

electric field applied. However, theories that quantify the various transport coefficients 

are processed by fluid dynamic methods. The force induced by an external electric field 

has the following form:  

                                           
F   = qe E                    where:   F  is the induced force,  
 

qe the electric charge of the medium,  
         
and E   the electric field.  

 



 

20 

This force acts on the diffused layer which is charged, causing a flow. There is no 

electrical effect on the neutral layer but it is driven by the diffuse layer by viscosity, 

resulting in a linear velocity profile in this area. The purpose of these theories is to know 

the velocity distribution inside the medium.  

 Thus, to enable the processing of the results, a linearization into two parts in a 

capillary is done (Figure 1.5.) using the following simplifications: 

 The neutral layer speed is taken to be constant; 

 The velocity at the wall is zero and increases linearly in the diffuse layer, up to the 

neutral layer. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5 Linearized distribution of velocity in a capillary.  

 

3. The double layer and electro-kinetic phenomena 

 Many studies are based on the double layer for interpreting the electro-kinetic 

phenomena. Consider the following electro-kinetic processes:  



 

21 

 By applying an electric field on a porous medium, the charges of the diffuse layer 

move in a direction, which depends on the sign, and orientation of the electric 

field; they drag the fluid because of the viscosity forces. This movement of the 

fluid defines electro-osmosis; 

 Reciprocally, the flow of liquid through a porous medium causes movement of 

charges of the diffuse layer, which generates a potential difference of both sides of 

the porous medium, called flow potential; 

 Under the effect of an electric field, the charge of moving particles suspended in 

an ionic liquid separates, setting in motion the particles, defining electrophoresis; 

 Under the influence of gravitational forces, a downward movement animates the 

suspended particles in the liquid; this movement in the diffuse layer between the 

charges of the particles, causes a difference of potential, known as sedimentation. 

4. The double-layer models 

In general, the (solid) surfaces are charged and are in contact with solutions 

containing ions (electrolytes) (solid-fluid), with a consequent non-uniform redistribution 

of the ions. This redistribution of ions near the interface will be determined by both the 

electrostatic interactions and the diffusion associated with the thermal agitation.  

The main causes of the appearance of this charge in the interface are: 

 Differences in the electronic affinities of the electrons of each phase, 

 Differences in the electronic affinities of the ions of each phase, 

 Retention or physical trapping of ions. 

Several models have been developed to describe this interface. 

4.1. Double layer and distribution of electrostatic potential near a charged plate 

Consider an electrolyte where we would place a charged plate whose charge per unit 

area is given by +σo  (c / m
2
). The simplest representation of the interface between this 

charged plate and the electrolyte is given by the Helmholtz model [
14

 Russel, W. B.; 

Saville, D. A.; Schowalter, W. R.]. This model, shown in Figure 1.6 (a), shows the 



 

22 

distribution of ions in the interface and, in particular, in the region close to the surface of 

the plate. Thus, it is found that the ions having an opposite charge (counter ions) to that of 

the plate, will undergo an attraction and will position themselves near the surface of the 

plate, thus forming a compact layer called the Helmholtz layer. The electrostatic potential 

ψ then decreases linearly from ψ at the surface of the plate to reach a certain value ψ at 

the outer plane of the Helmholtz layer. This model (capacitor type) remains rather 

simplistic and its biggest disadvantage comes from the fact that it does not take into 

account the thermal agitation of the ions.  

 

(a)                                                   (b)                                                            (c) 

Figure 1.6 Different models representing the distribution of ions near a charged 

surface with the variations of electrostatic potential as a function of 

distance: (a) Helmholtz model, (b) Gouy-Chapman model, (c) Stern model 

or double layer.  

The second model developed by Gouy and Chapman [
15

Hunter, R. J.,1987.] is 

shown in Figure 1.6 (b).  This model takes into account the disorder created by the 

thermal agitation but ignores the effect of the arrangement of the atomic structure of the 

plate on the ions located very close to the surface. The electrostatic potential then 



 

23 

decreases exponentially along this layer of ions to reach a value ψG-C at the outer plane of 

this diffuse layer.  

The third model presented in the Figure 1.6 (c), originally developed by Stern and 

completed later by Grahame [
16

], is a combination of the two previous models. It consists 

of a compact first layer called the Stern layer, followed by a second diffuse layer where 

we find co-ions (ions with the same sign as the charged plate) and counter-ions. The co-

ions are attracted by the presence of the Stern layer (made up of counter-ions) at the same 

time as they undergo a repulsion from the plate. The counter-ions are also subjected to 

attraction and repulsion from the plate and the Stern layer, respectively. To this must be 

added the effect of thermal agitation, causing this diffuse layer to have complex 

properties. This model is generally known as the double layer model and it is important to 

note that the concentration of counter-ions is considerably higher than that of the co - ions 

in this double layer. For the electrostatic potential there is a linear decrease in the Stern 

layer and then an exponential decrease in the diffuse layer until reaching a value ψG-C. 

However, the ψG-C value of the electrostatic potential is not the final value, the 

electrostatic field will continue to decrease until a zero value is reached in the solution. 

Note that in literature there are other more complex models such as the triple layer model 

[
17

Yates, D. E.; Healy, T. W. 1975, 
18

 Davis, J. A.; James, R. O.; Leckie, J. O. 1978], 

or even four-layer models [
19

Charmas, R.; Piasecki, W.; Rudzinski, W 1995]. This 

thesis will focus on the double layer model. In physical terms the role of the double layer 

is to restore an equilibrium situation after the disturbance caused by the introduction of 

additional charges (i.e. the charged plate). 

4.2. Models 

So far, the model of the double layer has been described qualitatively, yet it is 

important to establish the equations that will characterize this double layer and in 

particular to characterize the spatial distribution of the electrostatic potential. Since this 

potential depends on the ion concentration, it would therefore be useful to characterize it 

as a function of this concentration. 



 

24 

The Helmholtz-Perrin model 

Von Helmholtz [
20

Von Helmholtz, H. L. F. : 1879] introduced the concept of the 

double layer by repeating the idea of the existence Quincke charges layers opposed to the 

solid-liquid interface and established theoretically the equations of Wiedemann and 

Quincke.  

Perrin resumed this calculation considering these layers as a virtual capacitor 

with flat faces [
21

Perrin,J. : 1904] [
22

Perrin, J. : 1905]. One of the plates, immovable, is 

the wall of the solid (negatively charged in this case). The other (positively charged), 

mobile and infinitely thin, is located in the liquid and passes through the center of gravity 

of the charges that are affixed to the wall by electrostatic forces. The distribution of ions 

and the corresponding potential are shown in Figure 1.5. Thus the zeta potential of the 

double layer corresponds to the potential separating the plates of the virtual capacitor: 

ξ     = 
σcep          (15) 

                   ε 
 
where, ξ is the potential difference between the two layers; σc is the surface electric 

charge; ep is the thickness of the double layer; and ε is the dielectric constant of the liquid. 

This scheme qualitatively explains electro-kinetic phenomena, but makes the capacitance 

of the capacitor constant, which contradicts experience.  



 

25 

 

 

Figure 1.7 The model of double layer of Helmholtz-Perrin 

The model of Gouy-Chapman 

Almost at the same time, two different studies, the first on the constitution of the 

electrical charge at the surface of an electrolyte  [
23

Gouy, G. : 1909] and the second on 

the theory of electro-capillarity [
24

Chapman, D. L. : 1913], point out that the hypothesis 



 

26 

of a strictly fixed arrangement of ions in the double layer is illusory. Indeed, to the 

electrostatic forces between the solid and the liquid, are added the thermal agitation forces. 

This leads to an ionic balance and a distribution presented in Figure 1.3. Their model, 

proposed separately, corrects this issue by considering the ions as point charges (Fig. 1.8) 

[Gouy 1910 Chapman in 1913]. This is called the diffuse double layer. 

 

 

Figure 1.8 The model of double layer of Gouy-Chapman 

 

 



 

27 

The model of Stern: 

Stern [
25

Stern, O. : 1924] corrected the model of Gouy-Chapman taking into 

account the size of ions and defining a maximum approach plane of ions to the solid wall, 

the Stern plane, located 4 or 5  or the equivalent of a hydrated ion radius.  Furthermore, 

this model is based on a new concept, the specific adsorption of ions. Some ions are held 

in the vicinity of the solid-liquid interface to form a compact layer. This layer is very thin, 

cannot be affected by the flow, and remains stationary relatively to the solid. Beyond this 

compact layer, the ions are spread diffusely to form the diffuse layer (Fig. 1.9). Its 

thickness, which depends on the electrical resistivity of the liquid, is highly variable. 

Stern found that the maximum approach plane was the same for anions and cations.  

The adsorption process reflects an ionic or electronic exchange at the interface. There 

are two different kinds of processes:  

 Chemisorption or specific adsorption of ions: this is a chemical reaction that is at 

the origin of the ion exchange, hence the specificity of adsorption. This process 

could be at the origin of the creation of the double layer: ions adsorbed 

specifically by the solid are considered part of the solid. They create a surplus of 

opposite sign charges in the fluid that are distributed within the compact and 

diffuse layers. The compact layer (or double layer of Helmholtz or double inner 

layer) is between the solid wall and the Stern plane, which passes through the 

center of ions attached to the wall.  Its thickness is a few atomic radius (4 or 5 ). 

The ions composing it are specifically adsorbed and thus immobile. The solid 

surface potential, or Helmholtz potential is Φ0; that of Stern's plane Φd. The 

potential distribution in this layer is linear because there is no free charge.  



 

28 

 

 

Figure 1.9 The model of double layer of Stern 

 Physical adsorption or non-specific adsorption of ions: these are the van der Waals 

forces that attract fluid and ions and attach them to the solid to form the diffuse 

layer. Ions can change the adsorption site or move to the surface of the solid. Ion 

distribution in the diffuse layer is identical to that of the double layer of Gouy-

Chapman, the potential distribution is governed by the theory of Gouy-Chapman.  

 

The centers of the ions "attached" to the solid surface are on the Stern plane; ions 

whose centers are located after the Stern plane form the diffuse part of the double electric 



 

29 

layer and are likely to move. Thus, the boundary between these ions is between one and 

two rays from the surface. This limit is called the shear plane. The potential of this plane 

is called the electro-kinetic potential, better known as the zeta potential (ζ). This potential 

that has the property of being experimentally measurable, is the subject of many studies to 

find if it can, and to what extent, represent an intrinsic material parameter.  

The double layer can be seen as being composed of two capacitors in series. The 

differences between the experiment and the predictions of the theory of Gouy-Chapman 

are mainly due to the fact that it does not take into account the capacitor formed by the 

compact layer. However it is the capacitance of the capacitor that is causing problems 

because it is not accessible to measurement [
26

 Delahay, P. : 1965]. 

The model of Grahame 

Based on the model of Stern, Grahame [1947] suggests that the capacitance of the 

double layer does not depend on the concentration of the electrolyte and divides the 

compact layer into two parts: internal and external (Figure 1.8.) [
27

 Usui, S. : 1984]. The 

specifically adsorbed ions are dehydrated or a little hydrated, they can approach the 

surface nearest the Stern plane, until the interior plane. The other layer consists of 

hydrated ions, attracted to the wall by electrostatic forces, and defining the external plane. 

The Gouy-Chapman theory can then be applied to the area situated after the external 

plane, i.e. the diffuse layer. This model, although more comprehensive and more 

generally in accord with experiment, is also more cumbersome to use. 

4.3. The Poisson-Boltzmann theory 

4.3.1. Electric double layer. 

As mentioned previously, when a charged surface is in contact with a solution 

containing ions, the ions are distributed in a non-uniform manner, thus creating an 

electrostatic potential. This distribution of charges around the charged surface has been 

described in several models. The one proposed by Helmholtz in 1879 is the oldest and the 

simplest. As previously stated, it is based on a physical model that considers that ionic 

species form a single layer as in a plane capacitor. The counter-ions present in the 



 

30 

solution are preferably placed in front of the charged surface to restore the electro-

neutrality of the surface charges.  This layer of counter-ions is supposed to be immobile 

on the surface of the particles and is called the Helmholtz layer.  

Then the other model, introduced by Gouy (1910) and Chapman (1913) was 

constructed to calculate the electrostatic potential around the charged surface. In this 

theory, the charged surface is assumed a plane, of infinite extent and uniformly charged. 

This model, unlike the previous, takes into account the ions diffusion due to thermal 

agitation. As the thermal fluctuations tend to repulse counter-ions away from the charged 

surface, this leads to the formation of a double layer that combines the Stern layer and the 

more extended diffuse layer. The fictional boundary between these two layers is 

materialized by the Helmholtz plane. The quantitative studies relating to this double layer 

model are governed by two equations [
28

Masliyah, J. H. : 1994]: the Poisson’s equation 

and the Boltzmann equation. 

4.3.2. Distribution of Boltzmann 

In the case of a colloidal dispersion in contact with an ion reservoir, the main 

hypotheses in Boltzmann's theory assume that: 

 Ions are considered as point charges but also decorrelated from each other. 

 The dielectric properties of the solvent are uniform. 

 The potential of the average force is equal on average to the local potential. 

The distribution of ions in the electric double layer can be modeled using Boltzmann's 

theory. In the Gouy-Chapman model, the ions of the diffuse layer are in equilibrium, the 

Coulomb force is equal to the thermal force. The sum of the two forces is therefore zero, 

which implies that the electrochemical potential gradient is written in the following 

manner: 

      (16)  



 

31 

with kB the Boltzmann constant, T temperature, zk the valence of the species k, nk the 

density number of species k, ψ the local electrostatic potential, and e the charge of an 

electron. The integration of the previous equation gives the expression of the ion density: 

(17) 

 

with    being the density of the species k far from the charged surface, where the 

electrostatic potential is zero (ψ = 0). This shows that the ion density follows the 

Boltzmann distribution linking the local concentration of ions (density nk) to the local 

electrostatic potential: 

 (18) 

 

4.3.3. Poisson-Boltzmann equation 

The Poisson equation links the electrostatic potential to the charge density. Indeed, 

the electrostatic potential ψ follows one of Maxwell's laws in the charged particle and in 

the solvent. It is Gauss's law for electricity which, in differential form, is written as 

follows: 

   (19) 

with ϵ the relative electrical permittivity of the medium and ρ the volume density of 

mobile charges. This density is defined by:  

   (20) 

 

with N representing the number of ionic species present in the electrolyte of the charged 

system. 



 

32 

4.3.4. Poisson's equation: 

By combining equations (18) and (19), the Poisson-Boltzmann equation can be written in 

the following way: 

  (21) 

 

This equation allows the calculation of the electrostatic potential created by the 

presence of the charged particle surrounded by an ionized solvent. It takes into account 

the electrostatic interactions between the charged particles and the surrounding ions, 

while also considering the thermal agitation of the ions.  

4.3.5. Approximation of Debye-Hückel : Linearization of the Poisson  -

Boltzmann equation 

The analytical solution of the Poisson-Boltzmann equation (21) is far from simple 

except for trivial geometries. The Debye- Hückel approximation therefore consists of 

looking for an approximate solution of this equation, considering that the electrostatic 

potential is low throughout the double layer or in other words that the electrical energy is 

lower than the thermal energy. Knowing that eψ << kBT, a development limited to the first 

order of the exponential can be done and gives: 

(22) 

 

This hypothesis allows the linearization of  equation (22) which becomes: 

 

(23) 

 



 

33 

However, the systems are electrically neutral and the term containing the expression         

is annulled. The equation (23) is simplified to become:  

(24) 

 

The linearized Poisson-Boltzmann equation can be written as follows: 

(25) 

where:    (26) 

 

The parameter κ, and more precisely its inverse (κ
-1

), represents the thickness of the 

double layer and is known as the Debye length. It is a function of the ionic force, thus: 

(27) 

 

This approximation, valid in the case of a low surface potential, can enable the 

analytical solution of the Poisson-Boltzmann equation. This estimate, which leads to the 

linearization of the Poisson-Boltzmann is known as the Debye-Hückel approximation. 

The ions are seen as point charges in this model, they can approach without limit 

of the solid wall, and even stick. The electrical capacity of the double layer can then reach 

values much higher than those observed experimentally, showing the limits of this model, 

that Gouy had already highlighted [
29

Durand-Vidal, S. and Simonin, J. P. : 2000] 

 



 

34 

CHAPTER IV  

THEORY OF THE POISSON-NERNST-PLANK EQUATION SYSTEM 

 

Habitually, in the electrokinetic studying methods, the so-called Nernst-Planck 

equations are used for charged-species flow analysis. W. Nernst and P. Planck were the 

first to consider, at the end of the last century, that the ion transport was done under the 

influence of several driving forces. The Nernst-Planck equations reflect the fact that the 

total molar ion flux, Ji, of species i, represent the sum of several flows: 

   of migration     of convection     of diffusion   (28) 

The diffusion flow of a species is given by Fick's law:       

    (29) 

1. Fick and Ohm empirical law 

In what follows, will be examined how general law explicates the empirical laws 

observed for the distribution, migration and movement, under pressure. 

Diffusion 

The first empirical Fick's law states that the diffusion flux, for which the only 

driving force is a concentration gradient (grad  = grad p = 0), remains proportional to 

that gradient. In the case of linear systems, the diffusion flow is thus given by: 

(30) 

 

Di, as defined in this equation is a proportionality coefficient called the diffusion 

coefficient expressed by m
2
s

-1
, and particularly by cm

2
s

-1
. 



 

35 

It is important to note that the solution diffusion phenomena cannot be observed if 

the thermal agitation or even a mechanical one, homogenizes the solutes concentration. 

Diffusion phenomena in solution can, in fact, only be observed at the neighborhood of the 

solid walls. Indeed, at the solid/fluid interface, there is a "stagnant" solution layer called 

the diffusion layer with a thickness scale in the micrometer range. Thus, the diffusion 

phenomena are often measured in porous systems (e.g. sintered-glass membrane, 

polyacrylamide gel, dialysis membrane, etc.) where the convection is negligible. Fick’s 

empirical law is easily verified by measuring, for example, the flow of dyes between two 

containers containing different concentrations, separated by a porous membrane. It is 

observed then, that the initial flow is proportional to the concentration difference, and 

inversely proportional to the membrane thickness. The containers color is constant 

because of thermal or mechanical agitation. 

By comparison with what has been said previously, we have a general form 

(known as Einstein relation): 

D = μkBT           (31) 

where: D is the diffusion constant, μ is the mobility or the ratio of the particle’s drift 

velocity to an applied force, kB is the Boltzmann constant, and T is the absolute 

temperature. 

Two frequently used forms of the relation are:  

 The electrical mobility equation (for diffusion of charged particles) 

 (32) 

 The Stokes-Einstein equation (for diffusion of spherical particles through a 

liquid with low Reynolds number) 

(33) 

 



 

36 

where: q is the electrical charge of a particle, μq is the electrical mobility of the charged 

particle, η is the dynamic viscosity, r is the radius of the spherical particle. 

The relationship between the diffusion and the electrochemical mobility 

coefficient is called Einstein relation, and the one linking the diffusion coefficient and the 

viscosity is called the Stokes-Einstein equation. 

The migration 

Electrical current is defined as a flow of positive charges between two 

equipotential surfaces, for example, potential VA and VB. In the case of metallic 

conductors, this flow rate is equal to the electron flow between these two surfaces 

increased by the conductor cross-section area. 

A proportionality empirical law between the current A to B and a metallic 

conductor terminal voltage, called Ohm's law, can be written: 

R I A B = VA - VB         (34) 

Where R is the resistance defined as proportionality factor having the units of ohm ( = 

V∙A
-1

). In ionic conductors, this law is also observed for each ionic species and Ji current 

density which is the charge flow carried by species I, and is as follows: 

(35) 

 

Where σ is defined as a proportionality coefficient called the ionic conductivity whose 

units are 
-1

∙m
-1

 , and also Siemens per meter(S∙m
-1

). Siemens is defined by S=
-1

. The 

conductivity and conductance G(S) must not be confused, the latter is defined as the 

inverse of resistance. 

A comparison with the previous phenomenological equation, where the driving force is 

the electric field, defined as the gradient of the electric potential (grad c = grad p = 0), 

shows us that: 



 

37 

 (36) 

 

Where ui is called electric mobility or sometimes electrophoretic mobility (m
2
∙V

-1
∙s

-1
)  

(37) 

 

It is defined as the coefficient of proportionality between the speed and the electric field 

(38) 

 

By definition, the electric mobility is positive for cations and negative for anions. 

i is called the molar ionic conductivity. 

(39) 

 

2. Nernst – Planck Equation 

 In the presence of diffusion and migration, the general equation of flow in 

electrochemical potential gradient mentioned above, is reduced to: 

(40) 

 

This equation is known as the Nernst-Planck equation. 

 

  



 

38 

CHAPTER V  

NUMERICAL SCHEME FOR THE NERNST-PLANCK EQUATION 

 

As mentioned previously, at the nanometric scale the usual means for fluid 

manipulation and transport do not apply. Fluids confined within a nanostructure show a 

different behavior than when confined in larger structures. This can be attributed to 

electrostatic and Van Der Waals forces being as prevalent as inertial or viscous forces. 

Furthermore, characteristic properties intrinsic to the nanostructure’s geometry (such as 

the Debye length) are at the same order as the dimensions of the nanostructure. 

 To manipulate particles on the nano-scale (say we want to separate red from white 

blood cells, for example), one common technique is to apply an electrostatic force on 

charged particles within the fluids, which would in turn induce their motion. 

 The electrical double layer (EDL) 

 One important concept in the problem is that of the EDL, as mentioned previously. 

Most solid surfaces gain surface charges when in contact with an ionic aqueous solution. 

The electrostatic interaction between the charged surface and surrounding ions attract 

counter-ions. This causes a formation of a double layer predominantly occupied with 

counter-ions.  

Stern layer + diffuse layer = EDL 

 The Stern layer does not allow movement due to strong electrostatic forces. The diffuse 

layer allows movement. The Debye length is defined as the distance of which the potential 

reaches 1/3 of the surface potential. It is referred to as the zeta potential. The numerical simulation 

needs to account for this difference between the EDL region (where gradients are high) and the 

bulk region (where gradients are low). 

 Electro-osmotic  flow 

 When an external electric field is applied to a stationary charged surface, the 

excessive counter-ions within the EDL of the charged surface migrate toward the 



 

39 

oppositely charged electrode, dragging the fluid via viscous forces. This induced flow 

motion is referred to as electro-osmotic flow (EOF). 



 

40 

IMPLEMENTATION IN C++ IN 1D 

1. Simulation parameters and derived quantities 

1.1. Problem definition: 

 The elementary problem in electric double layer theory is that of a charged wall in 

contact with an ionic solution. 

 

                      Ionic solution 

                                               

         -            -       -     - 

     -              -       - 

        -                  -              -  

                           -              -   

              -             -            - 

 

  

             Charged wall 

 

The electric double layer also states that the domain can be roughly subdivided into two 

separate regions; the Stern layer in which little to no molecular movement is permitted 

due to the dominance of electrostatic force and the diffuse layer. As such, the situation 

can be schematized as follows: 

 

 

y 

             

             x 



 

41 

         Stern 

          Layer     bulk region 

               y 

 

               -      -           -                       -     -     

            x        

 

 

 

   Debye length 

 

 

 

  Charged wall 

1.2. Governing equations 

If   x ≤ Debye length 

   

   Boltzmann’s ion distribution 

 (41) 

 

   

 (42) 

 

If x > Debye length: 

 

(43) 

      (44) 

Nernst-Planck equation 

Poisson equation 

Poisson equation 



 

42 

    

 

where:  

 i = 1, 2, …, N           number of ionic species involved. 

 :  ion concentration of species i 

 : diffusion coefficient 

 : valence number 

 : unit charge 

 : Boltzmann’s constant 

 : absolute temperature 

 : permittivity 

 : potential 

 : charge density of the system 

 

1.3. Simplified equations and implementation 

Assuming the charged wall is orders of magnitude longer that the length of the 

computational domain: 

  

 A translational symmetry along the z-axis            =   0  

 

 A translational symmetry along the y-axis            =   0 

 

Therefore, the problem can be reduced to a single dimension along the x-axis. 

The system is rewritten: 

If   x  ≤  Debye length 

   (45) 



 

43 

 

 (46) 

 

If x  >  Debye length 

 

 (47) 

 

  (48) 

 

where ε  and Di   are constants             

1.4. Initial and boundary conditions    

 

Initial condition:  c(t=0) =         ;         ϕ (t=0)= 0   (49)

  

 

Boundary conditions:    ϕ (x=0) = ϕwall  ;   c(x=L) =  (50)

      

At    x =0           ;         (51) 

  

At   x = L  ;                      (52)

  

    



 

44 

We assign to the wall a potential ,   effectively yielding  a voltage 

across the length of the channel, due to the other end of the computational domain 

essentially acting as ground. We also express a no flux boundary at x = 0 and 

electroneutrality at x = L.    

1.5. Discretization 

To discretize the system, a composite trapezoidal and second-order backward 

differentiation method referred to as TR-BDF2 will be used. This algorithm is known to 

be stable and has sufficient damping to solve stiff problems, making it an interesting 

choice compared to methods such as Crank-Nicolson (which is also based on a 

trapezoidal method). 

1.5.1. TR-BDF 2 method 

This solution method is an algorithm known in the literature as TR-BDF2 [Bank 

et al. 1985]. It is an implicit method combining a trapezoidal (TR) method and a second 

order Backward Differential Formula (BDF2) method for the solution of the system at 

each integration step, hence its name, TR-BDF2. As illustrated in the following figure, 

this algorithm solves the system of ti to ti + γ with an implicit trapezoidal method, then 

from ti + γ to ti + 1 by a method of BDF2 implicit also, with γ =  2 − √2 

 



 

45 

 

 The trapezoidal method is A-stable. When u’ = au has Re a ≤ 0 the difference 

approximation has |𝑈𝑛+1| ≤ |𝑈𝑛| : 

 

         (53) 

 

The growth factor G has A-Stability :  

       (54) 

 The accuracy is second order: Un – u(nΔt) is bounded by C(Δt)
2
 for  nΔt ≤ T. 

When a is imaginary the stability can be very close to the edge, |𝐺| = 1 , the trapezoidal 

method can then fail because non-linearity’s can push it over the edge. To resolve this 

issue, alternating the trapezoidal method with backward differences BDF2 is used, since 

the BDF2 method is also second-order accurate. 

(55) 

 

This stabilized option was proposed in [
30

Bank et al., 1985] for circuit simulation: the 

trapezoidal method determines U1 from U0, and then U2 comes from BDF2.  



 

46 

The computing time in these implicit methods is often dominated by the solution 

of a nonlinear system for Un+1 and then Un+2. Some variant of Newton’s method is a 

normal choice. Thus, an exact approximate Jacobian of the implicit part of the previous 

equations is needed, when a nonlinear vector f(U) replaces the scalar test case f = au. 

When writing f’ for the matrix 
𝜕𝑓𝑖

𝜕𝑢𝑗
, the Jacobians in the two cases are :  

(56) 

 

It would have been ideal if those Jacobians were equal or proportional, but for the same 

Δt in the two methods, this is not the case. Therefore, the idea that Bank et al proposed 

was allowing different steps  αΔt  and (1 – α)Δt for the first and second method 

successively, with 0 < α < 1. So the trapezoidal method products Un+α  insted of Un+1 :  

(57) 

 

 The BDF2 method determines Un+1 from Un and the part-way value Un+α and to 

maintain second-order accuracy, this requires coefficients A, B, and C that depend on 

α :(BDF2α) : 

 

 (58) 

here:  A = 2 – α  ,  B = 1/α  and  C = (1 – α)
2
/α 

 The standard choice α = 1 / 2   gives  A = 3/2 , B = 2 and C = 1 / 2. In accordance 

with the BDF2 previous equation, the step Δt moved to the right side is, in this case, Δt/2. 



 

47 

These values of A, B and C are chosen to give the exact solution U = t and U = t
2
 when 

the right side are f = 1 and f = 2t, respectively. 

 The Newton method Jacobians in the previous equations, for Un+α and the Un+1 

become: 

(59) 

 

When 𝛼 = 2 − √2 and f’ is a constant matrix, these Jacobians are proportional : 

 

(60) 

1.5.2. Discretization in time 

As mentioned previously, the TR-BDF2 method will be used. It is a composite 

one step, two stage method, consisting of one phase of the trapezoidal method followed 

by another of the BDF2 method. The phases are so adjusted that both the trapezoidal and 

the BDF-2 stages use the same Jacobian matrix.  

 

 To advance the solution from t = tn to t n+1 = tn+Δt, we first apply a trapezoidal rule 

(TR) to advance the solution to t n+γ = tn + γΔt 

 

          (61)     

 

We choose   , a value that minimizes the algorithm’s local truncation 

error (see previous paragraph). 



 

48 

 

We define                                                                                 (62)                             

 

    (63) 

 

Thus, we write the TR step:  

    (64) 

 

  (65) 

 

 A second-order backward difference (BDF2) is used to advance the solution from 

t = tn+γ  to  t n+1 = t n+γ + (1-γ)Δt 

 

    (66) 

 

Thus we write the BDF2 step: 

 

  (67) 

 

   (68) 

 

The right-hand side 

of (61) at tn 



 

49 

1.5.3. Discretization in space 

 The computational domain [0, L] is divided into Lx subintervals defined by xi = i 

Δx    for i = 0, …., Lx 

where    

 

Therefore, for   1  ≤ i ≤ Lx-1 

  (69)  

 

                  (70) 

   

 (71) 

1.6. Matrix form of the system 

 We define      c = (c1, c2, …., cLx)
T
   and  Φ = (Φ1, Φ2, …., ΦLx)

T
 

From the previous equations, we can write the system in matrix form 

TR-Step: 

  (72) 

 

     (73) 

 

 

 



 

50 

j = i – 1     lower diagonal       (74) 

j = i           diagonal                 (75) 

j = i + 1    upper diagonal        (76) 

where: 

  

F =  

 

 

 

 

 

G =  

 

 

BDF2 step: 

 

(80) 

 

                                         (81) 

 

1.7. Discretization of boundary conditions 

 

;      for      1  ≤  i  ≤  Lx – 1  (82) 

 

 (83) 

j = i – 1     lower diagonal    (77) 

j = i           diagonal              (78) 

j = i + 1    upper diagonal     (79) 



 

51 

 

                                                                (84) 

 

            ;                for n ≥ 0        (85) 

 

Numerical solver 

 The TR-BDF2 solver along the boundary and initial conditions, yields the 

following system: 

     (86) 

TR-Step      

      (87) 

 

 

The system is solved iteratively using a Newton-Raphson method where k denotes the 

Newton iteration: 

  With      

 

    (88) 

where RTR is the residual and                

   (89)  

 

The potential is then updated             (90) 

 



 

52 

Repeat until convergence. 

 

BDF2 – step                                       (91)  

                      

          (92)

  

Same as the TR – step: 

                        with        

 

 

(93) 

 

where RBDF2 is the residual and        (94) 

 

The potential is then updated            (95) 

 

 

 

 

 

 



 

53 

2. Results and Validation 

The code developed here has been tested for several cases and compared with the 

COMSOL software for the same cases. The results of the comparisons were in agreement. 

In what follows some results are given as examples.  

2.1. Example 1 : Sodium Chloride (NaCl) 

 parameters:  

 Physics parameters 

Length of computational domain:  0.5 in nm 

Temperature:     298 in K 

Positive ion diffusivity:   1.334e+009 in nm^2/s 

Negative ion diffusivity:   2.032e+009 in nm^2/s 

Positive ion valence:    1 

Negative ion valence:    -1 

 Simulation parameters 

dx:      0.000607952 in nm 

dt:      1.84803e-007 in s 

Number of grid points:   822 

 Boundary  & Initial conditions 

Potential at wall:    0.025 in V 

Average concentration at t=0:   1e-020 in mol/(nm^3) 

 Derived parameters 

Debye length:     0.00303976 in nm 

Ionic bulk strength:    1e+007  in mol/m3 



 

54 

Thermal voltage:    0.0256794  in V 



 

55 

 

2.2. Example 2 : Sodium Sulfate (Na2So4) 

 Parameters 

 Physics parameters 

Length of computational domain:  0.5 in nm 

Temperature:     298 in K 

Positive ion diffusivity:   1.334e+009 in nm^2/s 

Negative ion diffusivity:  1.065e+009 in nm^2/s 

Positive ion valence:   1 

Negative ion valence:   -2 

 Simulation parameters 

dx:     0.000303976 in nm 



 

56 

dt:     4.62007e-008 in s 

Number of grid points:  1644 

 Boundary  & Initial conditions 

Potential at wall:   0.025 in V 

Average concentration at t=0:  1e-020 in mol/(nm^3) 

 Derived parameters-- 

Debye length:    0.00151988 in nm 

Ionic bulk strength:   4e+007  in mol/m3 

Thermal voltage:   0.0256794  in V 

 

 



 

57 

 

2.3. Example 3 : Trisodium Phosphate (Na3PO4) 

 Parameters  

- Physics parameters-- 

Length of computational domain:  0.5 in nm 

Temperature:    298 in K 

Positive ion diffusivity:   1.334e+009 in nm^2/s 

Negative ion diffusivity:   6.1e+008 in nm^2/s 

Positive ion valence:   1 

Negative ion valence:   -3 

- Simulation parameters 

dx:     0.000271885 in nm 



 

58 

dt:     3.69606e-008 in s 

Number of grid points:  1839 

- Boundary & Initial condition 

Potential at wall:   0.025 in V 

Average concentration at t=0: 1e-020 in mol/(nm^3) 

- Derived parameters-- 

Debye length:   0.00135942 in nm 

Ionic bulk strength:  5e+007  in mol/m3 

Thermal voltage:  0.0256794  in V 

 



 

59 

 

 

 

 

 

 

 

 

 

 

 

 



 

60 

CHAPTER VI 

GENERAL CONCLUSION AND PERSPECTIVES 

 The main objective of this thesis was to develop a nanofluid simulation platform. 

Challenged with the scarcity of computer codes dealing with this issue, apart from 

commercial software, and after several phases, this research work has led to the 

development of an innovative code.  

 In a first step, the principles of modeling, discretization and numerical simulations 

were reviewed. Then a study of nanofluids and electro-kinetic phenomena was carried 

out. To develop the simulation platform, the C ++ language was chosen, which also led to 

the research and the study of several computer development techniques. Finally, a code 

was developed and tested  and compared with the COMSOL industrial code. 

 The prospects are great and can relate either to the ergonomic side of the code or 

the fund. Indeed, the code can be improved ergonomically and include a graphical and 

contextual interface. The code can also easily be modified to include different methods 

such as the finite volume method or others. 

 In conclusion, this thesis has allowed us to realize that the goal of a research work 

is not necessarily to give concrete answers, but to try to contribute, even if in a modest 

way, to the current issues. 

 

  



 

61 

APPENDIX A 

CODE 

  



 

62 

 

Main C++ code 

 
  1  #include <iomanip> 

  2  #include <iostream> 

  3  #include <cmath> 

  4  #include <fstream> 

  5  #include <stdio.h> 

  6  #include <stdlib.h> 

  7   

  8  #include "memory_alloc.h" 

  9  #include "numerical_solver.h" 

 10  /// NOTE FOR USER #0: Notes will be scattered throughout the code, to find them use 

CTRL+F and type in "NOTE FOR USER #X" with X being the one you are looking for. 

 11  #define EPSILON     0.01        // relative error 

 12  /// NOTE FOR USER #1: EPSILON can be changed to reflect desired accuracy, however due 

to working with small numbers, it is not recommended to go below too low. 

 13  #define GAMMA       (2.-sqrt(2.))       // for TRBDF2 

 14  //#define GAMMA      1                  // Crank-Nicolson 

 15  /// NOTE FOR USER #2: Using GAMMA=1 makes this algorithm perform Crank-Nicolson 

scheme, replace line 13 by line 14 to do so. 

 16   

 17  using namespace std; 

 18   

 19   

 20  // fixed constants 

 21   

 22  const double e=1.6022e-19; // in Coulomb 

 23  const double NA=6.0221e23; // in 1/mol 

 24  const double F=e*NA; 

 25  const double kb=1.3806e-23; // in J/K 

 26  const double Eps_r=78.5; 

 27  const double Eps_0=8.8454187817e-21; // in F/nm 

 28  const double Eps_0m=8.8454187817e-12; // in F/m 

 29  const double R=8.3144598; // J.K-1.mol-1 

 30   

 31  // dimensional parameters 

 32   

 33  /// x, t, C1 & C2, Phi 

 34  /// nm, s, mol/nm3, V 

 35   

 36  /// NOTE FOR USER #3: Below is the input data for the experiment to be simulated. 

Some combinations may lead to obviously untrue results (negative concentrations, unstable 

resolution). 

 37  ///                   I personally have yet to encounter such cases when reproducing 

real-life experiments but know that it may happen. 

 38  const double Phi_wall=0.025; // in V 

 39  const double C_bulk=1e-20; // in mol/nm3 

 40  const double D1=1.334e9, D2=2.032e9; // in nm2/s 

 41  const double T=298.0; // in K 

 42  const double Eps=Eps_r*Eps_0; // in F/m 

 43  const double rho0=0; 

 44   

 45  const double z1=1, z2=-1; 

 46   

 47  // derived parameters 

 48  const double V_therm=R*T/F; // thermal voltage 

 49  const double Istr_bulk=0.5*(sq(z1)+sq(z2))*C_bulk*1e27; // bulk ionic strength 

 50   

 51  const double debye_length=sqrt((Eps_r*Eps_0m*V_therm)/(2*F*Istr_bulk))*1e9; // in nm 

 52  /// NOTE FOR USER #4: This is calculated and shown in the Info.txt output file. This 

serves mostly to check if things don't go wildly wrong. 

 53  ///                   The drop in potential to 0 should occur in 10~30 debye lengths 

according to literature. 

 54  ///                   Though this is not set in stone, it just serves to give an idea 



 

63 

about the correct scale of the problem. 

 55   

 56  const double L=0.5; // in nm 

 57   

 58  const int Lx=300; 

 59  const double dx=L/Lx; 

 60  const double dt=0.5*dx*dx; 

 61   

 62  const int max_tsteps=1000; 

 63  const int MAX_NEWTONS=100; 

 64  /// NOTE FOR USER #5: Length of the domain and computational parameters. It is 

possible to change any of these (except dx, unless you make sure it fits with L and Lx). 

 65  ///                   It is possible to pick a larger or smaller dt. The given value 

is the one I would recommend as it fits stability requirements quite well. 

 66  ///                   If you are blessed with patience, you may change max_tsteps and 

MAX_NEWTONS to be as large as possible. Personally, I just prefer cases that converge 

slowly to be stopped early. 

 67   

 68   

 69   

 70  /// Functions 

 71  // Memory allocation 

 72   

 73  POINTER Alloc(unsigned N_bytes) 

 74  { 

 75      POINTER p; 

 76   

 77      p = malloc(N_bytes); 

 78   

 79      if (p == (POINTER) NULL) { 

 80          perror("ERROR in Alloc(): malloc() returned NULL pointer"); 

 81          exit(ERROR); 

 82      } 

 83      return p; 

 84  } 

 85   

 86  POINTER alloc_vector(int N, unsigned element_size) 

 87  { 

 88      return Alloc((unsigned) (N*element_size)); 

 89  } 

 90   

 91  POINTER alloc_matrix(int N_rows, int N_columns, unsigned element_size) 

 92  { 

 93      int i, space, N_pointers; 

 94      POINTER pA, array_origin; 

 95   

 96          // due to alignment requirement 

 97      N_pointers = (N_rows%2) ? N_rows+1 : N_rows; 

 98   

 99      space = N_pointers*sizeof(POINTER) + N_rows*N_columns*element_size; 

100      pA = Alloc((unsigned) space); 

101   

102      array_origin = ((char *) (pA)) + N_pointers*sizeof(POINTER); 

103   

104      for (i = 0; i < N_rows; i++) 

105          ((POINTER *) pA)[i] = ((char *) array_origin) + 

106              i*N_columns*element_size; 

107   

108      return pA; 

109  } 

110   

111  // simulation 

112   

113  void init_grid(GRID *grid, TIME *time) 

114  { 

115      grid->xmin=0; 

116      grid->xmax=L; 

117      grid->dx=dx; 

118      grid->Lx=Lx; 



 

64 

119      grid->first=1; 

120      grid->last=grid->Lx-1; 

121      grid->modes=1+grid->last-grid->first; 

122   

123      time->t=0; 

124      time->dt=dt; 

125      time->n=0; 

126  } 

127   

128  double compute_norm(GRID *grid, double x[]) 

129  { 

130      double norm=0.; 

131      for (int i=grid->first; i<=grid->last; i++) 

132      { 

133          norm=norm+fabs(x[i]); 

134      } 

135      norm=norm/grid->modes; 

136      return norm; 

137  } 

138   

139  void thomas_algorithm_solver(GRID *grid, double X[], double *A[], double b[]) 

140  { 

141      double cprime[grid->last], dprime[grid->last]; 

142   

143      cprime[grid->first]=A[grid->first][grid->first+1]/A[grid->first][grid->first]; 

144      for (int i=grid->first+1; i<=grid->last; i++) 

145      { 

146          cprime[i]=A[i][i+1]/(A[i][i]-A[i][i-1]-cprime[i-1]); 

147      } 

148      dprime[grid->first]=b[grid->first]/A[grid->first][grid->first]; 

149      for (int i=grid->first+1; i<=grid->last; i++) 

150      { 

151          dprime[i]=(b[i]-A[i][i-1]*dprime[i-1])/(A[i][i]-A[i][i-1]*cprime[i-1]); 

152      } 

153      X[grid->last]=dprime[grid->last]; 

154      for (int i=grid->last-1; i>=grid->first; i--) 

155      { 

156          X[i]=dprime[i]-cprime[i]*X[i+1]; 

157      } 

158  } 

159   

160  static double *C1_n; 

161  static double *C2_n; 

162  static double *Phi_n; 

163   

164  static double *C1_npG; 

165  static double *C2_npG; 

166  static double *Phi_npG; 

167   

168  static double *C1_np1; 

169  static double *C2_np1; 

170  static double *Phi_np1; 

171   

172  static double *f1_n; 

173  static double *f1_npG; 

174  static double *f1_np1; 

175  static double *f2_n; 

176  static double *f2_npG; 

177  static double *f2_np1; 

178   

179  static double **F1; 

180  static double **F2; 

181  static double **J; 

182  static double *b; 

183  static double *X; 

184   

185  int main() 

186  { 

187      GRID grid; 



 

65 

188      TIME time; 

189      init_grid(&grid, &time); 

190      int Lx=grid.Lx; 

191   

192      // Output of simulation data 

193      ofstream Info("./Info.txt", ofstream::out); 

194      Info << "---INFO SECTION---" <<  endl; 

195   

196      Info << "--Physics parameters--" << endl; 

197      Info << "Length of computational domain:\t\t" << L << "\tin nm" << endl; 

198      Info << "Temperature:\t\t" << T << "\tin K" << endl; 

199      Info << "Positive ion diffusivity:\t\t" << D1 << "\tin nm^2/s" << endl; 

200      Info << "Negative ion diffusivity:\t\t" << D2 << "\tin nm^2/s" << endl; 

201      Info << "Positive ion valence:\t\t" << z1 << endl; 

202      Info << "Negative ion valence:\t\t" << z2 << endl; 

203   

204      Info << "--Simulation parameters--" << endl; 

205      Info << "dx:\t\t\t" << dx << "\tin nm" << endl; 

206      Info << "dt:\t\t\t" << dt << "\tin s" << endl; 

207      Info << "Number of grid points:\t\t" << grid.Lx << endl; 

208   

209      Info << "--BC & IC--" << endl; 

210      Info << "Potential at wall:\t\t" << Phi_wall << "\tin V" << endl; 

211      Info << "Average concentration at t=0:\t\t" << C_bulk << "\tin mol/(nm^3)" << 

endl; 

212   

213      Info << "--Derived parameters--" << endl; 

214   

215      Info << "Debye length:\t\t" << debye_length << "\tin nm" << endl; 

216      Info << "Ionic bulk strength:\t\t" << Istr_bulk << "\t in mol/m3" << endl; 

217      Info << "Thermal voltage:\t\t" << V_therm << "\t in V" << endl; 

218   

219      Info << "---END---" << endl; 

220      Info.close(); 

221   

222   

223      C1_n=(double*)alloc_vector(grid.Lx,DOUBLE); 

224      C1_npG=(double*)alloc_vector(grid.Lx,DOUBLE); 

225      C1_np1=(double*)alloc_vector(grid.Lx,DOUBLE); 

226   

227      C2_n=(double*)alloc_vector(grid.Lx,DOUBLE); 

228      C2_npG=(double*)alloc_vector(grid.Lx,DOUBLE); 

229      C2_np1=(double*)alloc_vector(grid.Lx,DOUBLE); 

230   

231      Phi_n=(double*)alloc_vector(grid.Lx,DOUBLE); 

232      Phi_npG=(double*)alloc_vector(grid.Lx,DOUBLE); 

233      Phi_np1=(double*)alloc_vector(grid.Lx,DOUBLE); 

234   

235      f1_n=(double*)alloc_vector(grid.Lx,DOUBLE); 

236      f1_npG=(double*)alloc_vector(grid.Lx,DOUBLE); 

237      f1_np1=(double*)alloc_vector(grid.Lx,DOUBLE); 

238      f2_n=(double*)alloc_vector(grid.Lx,DOUBLE); 

239      f2_npG=(double*)alloc_vector(grid.Lx,DOUBLE); 

240      f2_np1=(double*)alloc_vector(grid.Lx,DOUBLE); 

241   

242      F1=(double**)alloc_matrix(grid.Lx,grid.Lx,DOUBLE); 

243      F2=(double**)alloc_matrix(grid.Lx,grid.Lx,DOUBLE); 

244      J=(double**)alloc_matrix(grid.Lx,grid.Lx,DOUBLE); 

245      b=(double*)alloc_vector(grid.Lx,DOUBLE); 

246      X=(double*)alloc_vector(grid.Lx,DOUBLE); 

247   

248      /// Initial conditions 

249      for (int i=grid.first-1; i<=grid.last+1; i++) 

250      { 

251          Phi_n[i]=0; 

252          C1_n[i]=C_bulk/fabs(z1); 

253          C2_n[i]=C_bulk/fabs(z2); 

254      } 

255   



 

66 

256      double phantom_phi_left_n, phantom_phi_right_n; 

257      double phantom_phi_left_npG, phantom_phi_right_npG; 

258      double phantom_phi_left_np1, phantom_phi_right_np1; 

259   

260      ofstream numerical_solver("./numerical_solver.txt", ofstream::out); 

261      numerical_solver << "Time: 0" << endl; 

262      numerical_solver << "Phi:" << endl; 

263      for (int i=grid.first-1; i<=grid.last+1; i++) 

264      { 

265          numerical_solver << Phi_n[i] << " "; 

266      } 

267      numerical_solver << endl << "C1:" << endl; 

268      for (int i=grid.first-1; i<=grid.last+1; i++) 

269      { 

270          numerical_solver << C1_n[i] << " "; 

271      } 

272      numerical_solver << endl << "C2:" << endl; 

273      for (int i=grid.first-1; i<=grid.last+1; i++) 

274      { 

275          numerical_solver << C2_n[i] << " "; 

276      } 

277      cout << "Time: 0" << endl << endl; 

278   

279      // time loop 

280      double norm_change_C1, norm_residual_C1; 

281      double norm_change_C2, norm_residual_C2; 

282      double norm_change_Phi, norm_residual_Phi; 

283      double difference_between_tsteps_C1=1., difference_between_tsteps_C2=1., 

difference_between_tsteps_Phi=1.; 

284   

285      for (int n=1; n<=max_tsteps; n++) 

286      { 

287          time.n=n; 

288          time.t=time.n*dt; 

289          /// TR-step 

290          norm_change_C1 = 1., norm_residual_C1 = 1.; 

291          norm_change_C2 = 1., norm_residual_C2 = 1.; 

292          norm_change_Phi = 1., norm_residual_Phi = 1.; 

293          /// Boundary conditions at n+GAMMA 

294          phantom_phi_left_n=2*Phi_n[0]-Phi_n[1]-

(sq(dx)/Eps)*(rho0+z1*e*C1_n[0]+z2*e*C2_n[0]); 

295          phantom_phi_right_n=0; 

296          //phantom_phi_right_n=2*Phi_n[Lx]-Phi_n[Lx-1]-

(sq(dx)/Eps)*(rho0+z1*e*C1_n[Lx]+z2*e*C2_n[Lx]); 

297          /// NOTE FOR USER #6: If you plan on making the problem a wall at the Lx end. 

Replace line 295 with line 296. 

298          for (int i=grid.first-1; i<=grid.last+1; i++) 

299          { 

300              C1_npG[i]=C1_n[i]; 

301              C2_npG[i]=C2_n[i]; 

302              Phi_npG[i]=Phi_n[i]; 

303          } 

304          phantom_phi_left_npG=phantom_phi_left_n; 

305          phantom_phi_right_npG=phantom_phi_right_n; 

306   

307          cout << "TR-step" << endl; 

308          F1[1][0]=(D1/sq(dx))*(1.-0.25*(z1*e/(kb*T))*(Phi_n[1]-phantom_phi_left_n)); 

309          F1[1][1]=-2*D1/sq(dx); 

310          F1[1][2]=(D1/sq(dx))*(1.+0.25*(z1*e/(kb*T))*(Phi_n[3]-Phi_n[1])); 

311          for (int i=grid.first+1; i<=grid.last-1; i++) 

312          { 

313              F1[i][i-1]=(D1/sq(dx))*(1.-0.25*(z1*e/(kb*T))*(Phi_n[i]-Phi_n[i-2])); 

314              F1[i][i]=-2*D1/sq(dx); 

315              F1[i][i+1]=(D1/sq(dx))*(1.+0.25*(z1*e/(kb*T))*(Phi_n[i+2]-Phi_n[i])); 

316          } 

317          F1[Lx-1][Lx-2]=(D1/sq(dx))*(1.-0.25*(z1*e/(kb*T))*(Phi_n[Lx-1]-Phi_n[Lx-3])); 

318          F1[Lx-1][Lx-1]=-2*D1/sq(dx); 

319          F1[Lx-1][Lx]=(D1/sq(dx))*(1.+0.25*(z1*e/(kb*T))*(phantom_phi_right_n-

Phi_n[Lx-1])); 



 

67 

320          for (int i=grid.first; i<=grid.last; i++) // f=F*c 

321          { 

322              f1_n[i]=F1[i][i-1]*C1_n[i-1]+F1[i][i]*C1_n[i]+F1[i][i+1]*C1_n[i+1]; 

323          } 

324          F2[1][0]=(D2/sq(dx))*(1.-0.25*(z2*e/(kb*T))*(Phi_n[1]-phantom_phi_left_n)); 

325          F2[1][1]=-2*D2/sq(dx); 

326          F2[1][2]=(D2/sq(dx))*(1.+0.25*(z2*e/(kb*T))*(Phi_n[3]-Phi_n[1])); 

327          for (int i=grid.first+1; i<=grid.last-1; i++) 

328          { 

329              F2[i][i-1]=(D2/sq(dx))*(1.-0.25*(z2*e/(kb*T))*(Phi_n[i]-Phi_n[i-2])); 

330              F2[i][i]=-2*D2/sq(dx); 

331              F2[i][i+1]=(D2/sq(dx))*(1.+0.25*(z2*e/(kb*T))*(Phi_n[i+2]-Phi_n[i])); 

332          } 

333          F2[Lx-1][Lx-2]=(D2/sq(dx))*(1.-0.25*(z2*e/(kb*T))*(Phi_n[Lx-1]-Phi_n[Lx-3])); 

334          F2[Lx-1][Lx-1]=-2*D2/sq(dx); 

335          F2[Lx-1][Lx]=(D2/sq(dx))*(1.+0.25*(z2*e/(kb*T))*(phantom_phi_right_n-

Phi_n[Lx-1])); 

336          for (int i=grid.first; i<=grid.last; i++) // f=F*c 

337          { 

338              f2_n[i]=F2[i][i-1]*C2_n[i-1]+F2[i][i]*C2_n[i]+F2[i][i+1]*C2_n[i+1]; 

339          } 

340          // Newton iteration loop 

341          int k; 

342          for (k=1; k<=MAX_NEWTONS; k++) 

343          { 

344              cout << "Newton iteration: " << k << endl; 

345              /// C1 at n+GAMMA 

346              // evaluate jacobian 

347              F1[1][0]=(D1/sq(dx))*(1.-0.25*(z1*e/(kb*T))*(Phi_npG[1]-

phantom_phi_left_npG)); 

348              F1[1][1]=-2*D1/sq(dx); 

349              F1[1][2]=(D1/sq(dx))*(1.+0.25*(z1*e/(kb*T))*(Phi_npG[3]-Phi_npG[1])); 

350              for (int i=grid.first+1; i<=grid.last-1; i++) 

351              { 

352                  F1[i][i-1]=(D1/sq(dx))*(1.-0.25*(z1*e/(kb*T))*(Phi_npG[i]-Phi_npG[i-

2])); 

353                  F1[i][i]=-2*D1/sq(dx); 

354                  F1[i][i+1]=(D1/sq(dx))*(1.+0.25*(z1*e/(kb*T))*(Phi_npG[i+2]-

Phi_npG[i])); 

355              } 

356              F1[Lx-1][Lx-2]=(D1/sq(dx))*(1.-0.25*(z1*e/(kb*T))*(Phi_npG[Lx-1]-

Phi_npG[Lx-3])); 

357              F1[Lx-1][Lx-1]=-2*D1/sq(dx); 

358              F1[Lx-1][Lx]=(D1/sq(dx))*(1.+0.25*(z1*e/(kb*T))*(phantom_phi_right_npG-

Phi_npG[Lx-1])); 

359              for (int i=grid.first; i<=grid.last; i++) 

360              { 

361                  f1_npG[i]=F1[i][i-1]*C1_npG[i-

1]+F1[i][i]*C1_npG[i]+F1[i][i+1]*C1_npG[i+1]; 

362              } 

363              for (int i=grid.first; i<=grid.last; i++) 

364              { 

365                  J[i][i-1]=-0.5*GAMMA*dt*F1[i][i-1]; 

366                  J[i][i]=1.-0.5*GAMMA*dt*F1[i][i]; 

367                  J[i][i+1]=-0.5*GAMMA*dt*F1[i][i+1]; 

368              } 

369              // evaluate residual 

370              for (int i=grid.first; i<=grid.last; i++) 

371              { 

372                  b[i]=-(C1_npG[i]-C1_n[i])+0.5*GAMMA*dt*(f1_npG[i]+f1_n[i]); 

373              } 

374              norm_residual_C1=compute_norm(&grid, b); 

375              cout << "norm_residual_C1 in newton=" << norm_residual_C1 << endl; 

376              thomas_algorithm_solver(&grid, X, J, b); 

377              for (int i=grid.first; i<=grid.last; i++) 

378              { 

379                  b[i]=X[i]; 

380              } 

381              // check for convergence 



 

68 

382              norm_change_C1=compute_norm(&grid, b); 

383              cout << "norm_change_C1 in newton=" << norm_change_C1 << endl; 

384              for (int i=grid.first; i<=grid.last; i++) 

385              { 

386                  C1_npG[i]=C1_npG[i]+b[i]; 

387              } 

388              /// C2 at n+GAMMA 

389              // evaluate jacobian 

390              F2[1][0]=(D2/sq(dx))*(1.-0.25*(z2*e/(kb*T))*(Phi_npG[1]-

phantom_phi_left_npG)); 

391              F2[1][1]=-2*D2/sq(dx); 

392              F2[1][2]=(D2/sq(dx))*(1.+0.25*(z2*e/(kb*T))*(Phi_npG[3]-Phi_npG[1])); 

393              for (int i=grid.first+1; i<=grid.last-1; i++) 

394              { 

395                  F2[i][i-1]=(D2/sq(dx))*(1.-0.25*(z2*e/(kb*T))*(Phi_npG[i]-Phi_npG[i-

2])); 

396                  F2[i][i]=-2*D2/sq(dx); 

397                  F2[i][i+1]=(D2/sq(dx))*(1.+0.25*(z2*e/(kb*T))*(Phi_npG[i+2]-

Phi_npG[i])); 

398              } 

399              F2[Lx-1][Lx-2]=(D2/sq(dx))*(1.-0.25*(z2*e/(kb*T))*(Phi_npG[Lx-1]-

Phi_npG[Lx-3])); 

400              F2[Lx-1][Lx-1]=-2*D2/sq(dx); 

401              F2[Lx-1][Lx]=(D2/sq(dx))*(1.+0.25*(z2*e/(kb*T))*(phantom_phi_right_npG-

Phi_npG[Lx-1])); 

402              for (int i=grid.first; i<=grid.last; i++) 

403              { 

404                  f2_npG[i]=F2[i][i-1]*C2_npG[i-

1]+F2[i][i]*C2_npG[i]+F2[i][i+1]*C2_npG[i+1]; 

405              } 

406              for (int i=grid.first; i<=grid.last; i++) 

407              { 

408                  J[i][i-1]=-0.5*GAMMA*dt*F2[i][i-1]; 

409                  J[i][i]=1.-0.5*GAMMA*dt*F2[i][i]; 

410                  J[i][i+1]=-0.5*GAMMA*dt*F2[i][i+1]; 

411              } 

412              // evaluate residual 

413              for (int i=grid.first; i<=grid.last; i++) 

414              { 

415                  b[i]=-(C2_npG[i]-C2_n[i])+0.5*GAMMA*dt*(f2_npG[i]+f2_n[i]); 

416              } 

417              norm_residual_C2=compute_norm(&grid, b); 

418              cout << "norm_residual_C2 in newton=" << norm_residual_C2 << endl; 

419              thomas_algorithm_solver(&grid, X, J, b); 

420              for (int i=grid.first; i<=grid.last; i++) 

421              { 

422                  b[i]=X[i]; 

423              } 

424              // check for convergence 

425              norm_change_C2=compute_norm(&grid, b); 

426              cout << "norm_change_C2 in newton=" << norm_change_C2 << endl; 

427              for (int i=grid.first; i<=grid.last; i++) 

428              { 

429                  C2_npG[i]=C2_npG[i]+b[i]; 

430              } 

431              /// Phi at n+GAMMA 

432              // evaluate Jacobian 

433              for (int i=grid.first; i<=grid.last; i++) 

434              { 

435                  J[i][i-1]=Eps/sq(dx); 

436                  J[i][i]=-2*Eps/sq(dx); 

437                  J[i][i+1]=Eps/sq(dx); 

438              } 

439              for (int i=grid.first; i<=grid.last; i++) 

440              { 

441                  b[i]=-(J[i][i-1]*Phi_npG[i-

1]+J[i][i]*Phi_npG[i]+J[i][i+1]*Phi_npG[i+1])-(rho0+z1*e*C1_npG[i]+z2*e*C2_npG[i]); 

442              } 

443              norm_residual_Phi=compute_norm(&grid, b); 



 

69 

444              cout << "norm_residual_Phi in newton=" << norm_residual_Phi << endl; 

445              thomas_algorithm_solver(&grid, X, J, b); 

446              for (int i=grid.first; i<=grid.last; i++) 

447              { 

448                  b[i]=X[i]; 

449              } 

450              // check for convergence 

451              norm_change_Phi=compute_norm(&grid, b); 

452              cout << "norm_change_Phi in newton=" << norm_change_Phi << endl; 

453              for (int i=grid.first; i<=grid.last; i++) 

454              { 

455                  Phi_npG[i]=Phi_npG[i]+b[i]; 

456              } 

457              /// BC n+GAMMA 

458              Phi_npG[0]=Phi_wall; 

459              C1_npG[0]=C1_npG[1]/(1.-(z1*e/(kb*T))*(Phi_npG[1]-Phi_npG[0])); 

460              C2_npG[0]=C2_npG[1]/(1.-(z2*e/(kb*T))*(Phi_npG[1]-Phi_npG[0])); 

461   

462              Phi_npG[Lx]=0; 

463              C1_npG[Lx]=C_bulk/fabs(z1); 

464              C2_npG[Lx]=C_bulk/fabs(z2); 

465   

466              /*Phi_npG[Lx]=-Phi_wall; 

467              C1_npG[Lx]=C1_npG[Lx-1]/(1.+(z1*e/(kb*T))*(Phi_npG[Lx]-Phi_npG[Lx-1])); 

468              C2_npG[Lx]=C2_npG[Lx-1]/(1.+(z2*e/(kb*T))*(Phi_npG[Lx]-Phi_npG[Lx-1]));*/ 

469              /// NOTE FOR USER #7: Refer to #6. Replace lines 462 to 464 with lines 

466 to 468. 

470   

471              phantom_phi_left_npG=2*Phi_npG[0]-Phi_npG[1]-

(sq(dx)/Eps)*(rho0+z1*e*C1_npG[0]+z2*e*C2_npG[0]); 

472              phantom_phi_right_npG=0; 

473              //phantom_phi_right_npG=2*Phi_npG[Lx]-Phi_npG[Lx-1]-

(sq(dx)/Eps)*(rho0+z1*e*C1_npG[Lx]+z2*e*C2_npG[Lx]); 

474              /// NOTE FOR USER #8: Refer to #6. Replace line 472 with line 473. 

475              norm_change_Phi=norm_change_Phi/compute_norm(&grid,Phi_npG); 

476              norm_change_C1=norm_change_C1/compute_norm(&grid,C1_npG); 

477              norm_change_C2=norm_change_C2/compute_norm(&grid,C2_npG); 

478              if ((norm_change_Phi<EPSILON) && (norm_change_C1<EPSILON) && 

(norm_change_C2<EPSILON)) 

479              { 

480                  break; 

481              } 

482          } 

483          if (k>MAX_NEWTONS) 

484          { 

485              cout << "ERROR: Newton method failed to converge after " << MAX_NEWTONS 

<< " iterations" << endl; 

486              exit(ERROR); 

487          } 

488   

489          /// BDF2-step 

490          norm_change_C1 = 1., norm_residual_C1 = 1.; 

491          norm_change_C2 = 1., norm_residual_C2 = 1.; 

492          norm_change_Phi = 1., norm_residual_Phi = 1.; 

493          /// Boundary conditions at n+1 

494          phantom_phi_left_npG=2*Phi_npG[0]-Phi_npG[1]-

(sq(dx)/Eps)*(rho0+z1*e*C1_npG[0]+z2*e*C2_npG[0]); 

495          phantom_phi_right_npG=0; 

496          //phantom_phi_right_npG=2*Phi_npG[Lx]-Phi_npG[Lx-1]-

(sq(dx)/Eps)*(rho0+z1*e*C1_npG[Lx]+z2*e*C2_npG[Lx]); 

497          /// NOTE FOR USER #9: Refer to #6. Replace line 495 with line 496. 

498          for (int i=grid.first-1; i<=grid.last+1; i++) 

499          { 

500              C1_np1[i]=C1_npG[i]; 

501              C2_np1[i]=C2_npG[i]; 

502              Phi_np1[i]=Phi_npG[i]; 

503          } 

504          phantom_phi_left_np1=phantom_phi_left_npG; 

505          phantom_phi_right_np1=phantom_phi_right_npG; 



 

70 

506   

507          cout << "BDF2-step" << endl; 

508          // Newton iteration loop 

509          for (k=1; k<=MAX_NEWTONS; k++) 

510          { 

511              cout << "Newton iteration: " << k << endl; 

512              /// C1 at n+1 

513              // evaluate jacobian 

514              F1[1][0]=(D1/sq(dx))*(1.-0.25*(z1*e/(kb*T))*(Phi_np1[1]-

phantom_phi_left_np1)); 

515              F1[1][1]=-2*D1/sq(dx); 

516              F1[1][2]=(D1/sq(dx))*(1.+0.25*(z1*e/(kb*T))*(Phi_np1[3]-Phi_np1[1])); 

517              for (int i=grid.first+1; i<=grid.last-1; i++) 

518              { 

519                  F1[i][i-1]=(D1/sq(dx))*(1.-0.25*(z1*e/(kb*T))*(Phi_np1[i]-Phi_np1[i-

2])); 

520                  F1[i][i]=-2*D1/sq(dx); 

521                  F1[i][i+1]=(D1/sq(dx))*(1.+0.25*(z1*e/(kb*T))*(Phi_np1[i+2]-

Phi_np1[i])); 

522              } 

523              F1[Lx-1][Lx-2]=(D1/sq(dx))*(1.-0.25*(z1*e/(kb*T))*(Phi_np1[Lx-1]-

Phi_np1[Lx-3])); 

524              F1[Lx-1][Lx-1]=-2*D1/sq(dx); 

525              F1[Lx-1][Lx]=(D1/sq(dx))*(1.+0.25*(z1*e/(kb*T))*(phantom_phi_right_np1-

Phi_np1[Lx-1])); 

526              for (int i=grid.first; i<=grid.last; i++) 

527              { 

528                  f1_np1[i]=F1[i][i-1]*C1_np1[i-

1]+F1[i][i]*C1_np1[i]+F1[i][i+1]*C1_np1[i+1]; 

529              } 

530              for (int i=grid.first; i<=grid.last; i++) 

531              { 

532                  J[i][i-1]=-((1-GAMMA)/(2-GAMMA))*dt*F1[i][i-1]; 

533                  J[i][i]=1-((1-GAMMA)/(2-GAMMA))*dt*F1[i][i]; 

534                  J[i][i+1]=-((1-GAMMA)/(2-GAMMA))*dt*F1[i][i+1]; 

535              } 

536              // evaluate residual 

537              for (int i=grid.first; i<=grid.last; i++) 

538              { 

539                  b[i]=-(C1_np1[i]-(1/(GAMMA*(2-GAMMA)))*C1_npG[i]+((sq(1-

GAMMA))/(GAMMA*(2-GAMMA)))*C1_n[i])+((1-GAMMA)/(2-GAMMA))*dt*f1_np1[i]; 

540              } 

541              norm_residual_C1=compute_norm(&grid, b); 

542              cout << "norm_residual_C1 in newton=" << norm_residual_C1 << endl; 

543              thomas_algorithm_solver(&grid, X, J, b); 

544              for (int i=grid.first; i<=grid.last; i++) 

545              { 

546                  b[i]=X[i]; 

547              } 

548              // check for convergence 

549              norm_change_C1=compute_norm(&grid, b); 

550              cout << "norm_change_C1 in newton=" << norm_change_C1 << endl; 

551              for (int i=grid.first; i<=grid.last; i++) 

552              { 

553                  C1_np1[i]=C1_np1[i]+b[i]; 

554              } 

555              for (int i=grid.first; i<=grid.last; i++) 

556              { 

557                  C1_np1[i]=C1_np1[i]; 

558              } 

559              /// C2 at n+1 

560              // evaluate jacobian 

561              F2[1][0]=(D2/sq(dx))*(1.-0.25*(z2*e/(kb*T))*(Phi_np1[1]-

phantom_phi_left_np1)); 

562              F2[1][1]=-2*D2/sq(dx); 

563              F2[1][2]=(D2/sq(dx))*(1.+0.25*(z2*e/(kb*T))*(Phi_np1[3]-Phi_np1[1])); 

564              for (int i=grid.first+1; i<=grid.last-1; i++) 

565              { 

566                  F2[i][i-1]=(D2/sq(dx))*(1.-0.25*(z2*e/(kb*T))*(Phi_np1[i]-Phi_np1[i-



 

71 

2])); 

567                  F2[i][i]=-2*D2/sq(dx); 

568                  F2[i][i+1]=(D2/sq(dx))*(1.+0.25*(z2*e/(kb*T))*(Phi_np1[i+2]-

Phi_np1[i])); 

569              } 

570              F2[Lx-1][Lx-2]=(D2/sq(dx))*(1.-0.25*(z2*e/(kb*T))*(Phi_np1[Lx-1]-

Phi_np1[Lx-3])); 

571              F2[Lx-1][Lx-1]=-2*D2/sq(dx); 

572              F2[Lx-1][Lx]=(D2/sq(dx))*(1.+0.25*(z2*e/(kb*T))*(phantom_phi_right_np1-

Phi_np1[Lx-1])); 

573              for (int i=grid.first; i<=grid.last; i++) 

574              { 

575                  f2_np1[i]=F2[i][i-1]*C2_np1[i-

1]+F2[i][i]*C2_np1[i]+F2[i][i+1]*C2_np1[i+1]; 

576              } 

577              for (int i=grid.first; i<=grid.last; i++) 

578              { 

579                  J[i][i-1]=-((1-GAMMA)/(2-GAMMA))*dt*F2[i][i-1]; 

580                  J[i][i]=1-((1-GAMMA)/(2-GAMMA))*dt*F2[i][i]; 

581                  J[i][i+1]=-((1-GAMMA)/(2-GAMMA))*dt*F2[i][i+1]; 

582              } 

583              // evaluate residual 

584              for (int i=grid.first; i<=grid.last; i++) 

585              { 

586                  b[i]=-(C2_np1[i]-(1/(GAMMA*(2-GAMMA)))*C2_npG[i]+((sq(1-

GAMMA))/(GAMMA*(2-GAMMA)))*C2_n[i])+((1-GAMMA)/(2-GAMMA))*dt*f2_np1[i]; 

587              } 

588              norm_residual_C2=compute_norm(&grid, b); 

589              cout << "norm_residual_C2 in newton=" << norm_residual_C2 << endl; 

590              thomas_algorithm_solver(&grid, X, J, b); 

591              for (int i=grid.first; i<=grid.last; i++) 

592              { 

593                  b[i]=X[i]; 

594              } 

595              // check for convergence 

596              norm_change_C2=compute_norm(&grid, b); 

597              cout << "norm_change_C2 in newton=" << norm_change_C2 << endl; 

598              for (int i=grid.first; i<=grid.last; i++) 

599              { 

600                  C2_np1[i]=C2_np1[i]+b[i]; 

601              } 

602              for (int i=grid.first; i<=grid.last; i++) 

603              { 

604                  C2_np1[i]=C2_np1[i]; 

605              } 

606              /// Phi at n+1 

607              // evaluate Jacobian 

608              for (int i=grid.first; i<=grid.last; i++) 

609              { 

610                  J[i][i-1]=Eps/sq(dx); 

611                  J[i][i]=-2*Eps/sq(dx); 

612                  J[i][i+1]=Eps/sq(dx); 

613              } 

614              for (int i=grid.first; i<=grid.last; i++) 

615              { 

616                  b[i]=-(J[i][i-1]*Phi_np1[i-

1]+J[i][i]*Phi_np1[i]+J[i][i+1]*Phi_np1[i+1])-(rho0+z1*e*C1_np1[i]+z2*e*C2_np1[i]); 

617              } 

618              norm_residual_Phi=compute_norm(&grid, b); 

619              cout << "norm_residual_Phi in newton=" << norm_residual_Phi << endl; 

620              thomas_algorithm_solver(&grid, X, J, b); 

621              for (int i=grid.first; i<=grid.last; i++) 

622              { 

623                  b[i]=X[i]; 

624              } 

625              // check for convergence 

626              norm_change_Phi=compute_norm(&grid, b); 

627              cout << "norm_change_Phi in newton=" << norm_change_Phi << endl; 

628              for (int i=grid.first; i<=grid.last; i++) 



 

72 

629              { 

630                  Phi_np1[i]=Phi_np1[i]+b[i]; 

631              } 

632              /// BC n+1 

633              Phi_np1[0]=Phi_wall; 

634              C1_np1[0]=C1_np1[1]/(1.-(z1*e/(kb*T))*(Phi_np1[1]-Phi_np1[0])); 

635              C2_np1[0]=C2_np1[1]/(1.-(z2*e/(kb*T))*(Phi_np1[1]-Phi_np1[0])); 

636   

637              Phi_np1[Lx]=0; 

638              C1_np1[Lx]=C_bulk/fabs(z1); 

639              C2_np1[Lx]=C_bulk/fabs(z2); 

640   

641              /*Phi_np1[Lx]=-Phi_wall; 

642              C1_np1[Lx]=C1_np1[Lx-1]/(1.+(z1*e/(kb*T))*(Phi_np1[Lx]-Phi_np1[Lx-1])); 

643              C2_np1[Lx]=C2_np1[Lx-1]/(1.+(z2*e/(kb*T))*(Phi_np1[Lx]-Phi_np1[Lx-1]));*/ 

644              /// NOTE FOR USER #10: Refer to #6. Replace lines 637 to 639 with lines 

641 to 643. 

645   

646              phantom_phi_left_np1=2*Phi_np1[0]-Phi_np1[1]-

(sq(dx)/Eps)*(rho0+z1*e*C1_np1[0]+z2*e*C2_np1[0]); 

647              phantom_phi_right_np1=0; 

648              //phantom_phi_right_np1=2*Phi_np1[Lx]-Phi_np1[Lx-1]-

(sq(dx)/Eps)*(rho0+z1*e*C1_np1[Lx]+z2*e*C2_np1[Lx]); 

649              /// NOTE FOR USER #11: Refer to #6. Replace line 647 with line 648. 

650   

651              norm_change_Phi=norm_change_Phi/compute_norm(&grid,Phi_np1); 

652              norm_change_C1=norm_change_C1/compute_norm(&grid,C1_np1); 

653              norm_change_C2=norm_change_C2/compute_norm(&grid,C2_np1); 

654              if ((norm_change_Phi<EPSILON) && (norm_change_C1<EPSILON) && 

(norm_change_C2<EPSILON)) 

655              { 

656                  break; 

657              } 

658          } 

659          if (k>MAX_NEWTONS) 

660          { 

661              cout << "ERROR: Newton method failed to converge after " << MAX_NEWTONS 

<< " iterations" << endl; 

662              exit(ERROR); 

663          } 

664          // end of TRBDF2 

665   

666          /// check time convergence 

667          difference_between_tsteps_Phi=fabs(compute_norm(&grid, Phi_np1)-

compute_norm(&grid, Phi_n)); 

668          difference_between_tsteps_C1=fabs(compute_norm(&grid, C1_np1)-

compute_norm(&grid, C1_n)); 

669          difference_between_tsteps_C2=fabs(compute_norm(&grid, C2_np1)-

compute_norm(&grid, C2_n)); 

670   

671          /// Values of n+1 becomes values of n at next time step 

672          for (int i=grid.first; i<=grid.last; i++) 

673          { 

674              C1_n[i]=C1_np1[i]; 

675              C2_n[i]=C2_np1[i]; 

676              Phi_n[i]=Phi_np1[i]; 

677          } 

678          /// Boundary conditions at n of next time step 

679          Phi_n[0]=Phi_np1[0]; 

680          C1_n[0]=C1_np1[0]; 

681          C2_n[0]=C2_np1[0]; 

682   

683          Phi_n[Lx]=Phi_np1[Lx]; 

684          C1_n[Lx]=C1_np1[Lx]; 

685          C2_n[Lx]=C2_np1[Lx]; 

686   

687   

688          /// Data storage in files 

689          time.t=(time.n+1)*dt; 



 

73 

690          numerical_solver << endl; 

691          numerical_solver << "Time: " << std::setprecision(12) << time.t << endl; 

692          numerical_solver << "Phi:" << endl; 

693          for (int i=grid.first-1; i<=grid.last+1; i++) 

694          { 

695              numerical_solver << Phi_n[i] << " "; 

696          } 

697          numerical_solver << endl << "C1:" << endl; 

698          for (int i=grid.first-1; i<=grid.last+1; i++) 

699          { 

700              numerical_solver << C1_n[i] << " "; 

701          } 

702          numerical_solver << endl << "C2:" << endl; 

703          for (int i=grid.first-1; i<=grid.last+1; i++) 

704          { 

705              numerical_solver << C2_n[i] << " "; 

706          } 

707   

708          

difference_between_tsteps_Phi=difference_between_tsteps_Phi/compute_norm(&grid,Phi_n); 

709          

difference_between_tsteps_C1=difference_between_tsteps_C1/compute_norm(&grid,C1_n); 

710          

difference_between_tsteps_C2=difference_between_tsteps_C2/compute_norm(&grid,C2_n); 

711          if(difference_between_tsteps_Phi<EPSILON && 

difference_between_tsteps_C1<EPSILON && difference_between_tsteps_C2<EPSILON) 

712          { 

713              break; 

714          } 

715   

716      } 

717      ofstream convergence_time("./convergence_time.txt", ofstream::out); 

718      convergence_time << "Time: " << std::fixed << std::setprecision(12) << time.t << 

endl; 

719      convergence_time.close(); 

720      ofstream results("./results.dat", ofstream::out); 

721      results << "i\tx\tPhi\tC1\tC2" << endl; 

722      for (int i=grid.first-1; i<=grid.last+1; i++) 

723      { 

724          results << i << " " << i*dx << " " << Phi_n[i] << " " << C1_n[i] << " " << 

C2_n[i] << endl; 

725      } 

726      results.close(); 

727      // output in data for matlab 

728      ofstream x("./x.dat", ofstream::out); 

729      for (int i=grid.first-1; i<=grid.last+1; i++) 

730      { 

731          x << i*dx << endl; 

732      } 

733      x.close(); 

734      ofstream phi("./phi.dat", ofstream::out); 

735      for (int i=grid.first-1; i<=grid.last+1; i++) 

736      { 

737          phi << Phi_n[i] << endl; 

738      } 

739      phi.close(); 

740      ofstream C1("./C1.dat", ofstream::out); 

741      for (int i=grid.first-1; i<=grid.last+1; i++) 

742      { 

743          C1 << C1_n[i] << endl; 

744      } 

745      C1.close(); 

746      ofstream C2("./C2.dat", ofstream::out); 

747      for (int i=grid.first-1; i<=grid.last+1; i++) 

748      { 

749          C2 << C2_n[i] << endl; 

750      } 

751      C2.close(); 

752      numerical_solver.close(); 



 

74 

753      return 0; 

754  } 

755   

756   

 

 

 

 

Numerical solver 

 

 
1  #ifndef NUMERICAL_SOLVER_H_INCLUDED 

 2  #define NUMERICAL_SOLVER_H_INCLUDED 

 3   

 4  using namespace std; 

 5   

 6  #define max(a,b)    ( ((a) > (b)) ? (a) : (b) ) 

 7  #define min(a,b)    ( ((a) < (b)) ? (a) : (b) ) 

 8  #define sq(x)   ((x)*(x)) 

 9  #define max_iterations 1000 

10   

11  typedef struct { 

12      int Lx; // number of grid points 

13      int modes;  // number of unknowns 

14      double dx, xmin, xmax; 

15      int first, last; // first and last unknown cells (excluding BC) 

16  } GRID; 

17   

18  typedef struct { 

19      int n; 

20      double dt, t; 

21      bool REDO_STEP; 

22  } TIME; 

23   

24  void init_grid(GRID *grid, TIME *time); 

25  double compute_norm(GRID *grid, double x[]); 

26  void gauss_seidel_solver(GRID *grid, double X[], double *A[], double b[]); 

27  void thomas_algorithm_solver(GRID *grid, double X[], double *A[], double b[]); 

28   

29  #endif // NUMERICAL_SOLVER_H_INCLUDED 

 

 

 

Memory allocation 

 
1  #ifndef MEMORY_ALLOC_H_INCLUDED 

 2  #define MEMORY_ALLOC_H_INCLUDED 

 3   

 4  using namespace std; 

 5   

 6  #define INT     ((unsigned) sizeof(int)) 

 7  #define FLOAT       ((unsigned) sizeof(float)) 

 8  #define DOUBLE      ((unsigned) sizeof(double)) 

 9  #define CHAR        ((unsigned) sizeof(char)) 

10   

11  #define ERROR -1 

12   

13  typedef void *POINTER; // pointer to an unknown data type 



 

75 

14   

15  POINTER Alloc(unsigned N_bytes); 

16  POINTER alloc_vector(int N, unsigned element_size); 

17  POINTER alloc_matrix(int N_rows, int N_columns, unsigned element_size); 

18   

19  #endif // MEMORY_ALLOC_H_INCLUDED 

 

 

  



 

76 

 REFERENCES  

 

                                                 

1 T. Trindade, P. O’Brien, and N. L. Pickett, «Nanocrystalline Semiconductors: 

Synthesis, Properties, and Perspectives», Chemistry of Materials, vol. 13, no. 11, p. 

3843-3858, 2001 

 

2 Y. Xia and al., « One-dimensional nanostructures: synthesis, characterization, and 

applications », Advanced Materials, vol. 15, no. 5, p. 353 –389, 2003.  

 

3 B.  D.  Gates,  Q.  Xu,  M.  Stewart,  D.  Ryan,  C.  G.  Willson,  and  G.  M.  

Whitesides, « New  Approaches  to Nanofabrication:   Molding,  Printing,  and  Other  

Techniques», Chemical  Reviews ,  vol.  105,  no.4,  p.  1171-1196, 2005. 

 

4 B.   Nikoobakht,   « Toward   industrial-scale   fabrication   of   nanowire-based   

devices», Chemistry   of Materials, vol. 19, no. 22, p. 5279 – 5284, 2007. 

 

5 Reuss, F. : 1809, Sur un nouvel effet de l’électricité galvanique, Mémoires de la Société 

Impériale des Naturalistes de Moscou 2, 327–337. 

 

6 Wiedemann, G. : 1852, Ueber die bewegung von flüssigkeiten im kreise der 

geschlossenen galvanischen säule, Poggendorf’s Annalen der Physik und Chemie 87, 

321–352. 

 

7 Wiedemann, G. : 1856, Ueber die bewegung der flüssigkeiten im kreise der 

geschlossenen gal-vanischen säule und ihre beziehungen zur elektrolyse, Poggendorf’s 

Annalen der Physik und Chemie 99, 177–233 

 

8 Quincke, G. : 1859, Ueber eine neue art elektrischer ströme, Poggendorf’s Annalen der 

Physik und Chemie 107, 1–47. 

 

9 Quincke, G. : 1861, Ueber die fortführung materieller theilchen durch strömende 

elektricität, Poggendorf’s Annalen der Physik und Chemie 113, 513–598. 

 

10 Dorn, E. : 1878, Ueber die galvanischen ströme, welche beim strömen von 

flüssigkeiten durch•röhren erzeugt werden, Wiedemann’s Annalen der Physik und 

Chemie 5, 20–44. 



 

77 

                                                                                                                                                 

 

11 Spiegler, K. S. : 1958, Transport processes in ionic membranes, Trans. Faraday Soc. 

54(9), 1408–1428. 

 

12 Yeung, A. T. : 1994, Electrokinetic flow processes in porous media and their 

applications, in M. Corapcioglu (ed.), Advances in Porous Media, Vol. 2, Elsevier, 

Amsterdam, The Netherlands, chapter 5, pp. 309–395. 

 

13 Mitchell, J. K. : 1993, Fundamentals of Soil Behavior, 2nd edition, John Wiley and 

Sons, New York. 

 
14

 Russel, W. B.; Saville, D. A.; Schowalter, W. R. Colloidal dispersions, Cambridge 

University press. 1989. 
 
15

 Hunter, R. J. Foundations of Colloid Science Vol. 1. Oxford Science publications. 

1987 
 
16

 Hunter, R. J. Foundations of Colloid Science Vol. 1. Oxford Science publications. 

1987. 
 
17

 Yates, D. E.; Healy, T. W. Mechanism of Anion Adsorption at the Ferric and Chromic 
Oxide/Water Interfaces. Journal of Colloid and Interface Science. 1975, 52, 222 – 228. 

 
18

 Davis, J. A.; James, R. O.; Leckie, J. O. Surface Ionization and Complexation at the 

Oxide/Water Interface: I. Computation of Electrical Double Layer properties in Simple 
Electrolytes. Journal of Colloid and Interface Science. 1978, 63, 480 – 499. 

 
19

 Charmas, R.; Piasecki, W.; Rudzinski, W. Four layer complexation model for ion 

adsoption at electrolyte/oxide interface: theoretical foundations. Langmuir. 1995, 11, 

3199 – 3210. 
 

20 Von Helmholtz, H. L. F. : 1879, Studien über electrische grenzschichten, 

Wiedemann’s Annalen der Physik und Chemie 7, 337–382. 

 

21 Perrin,J. : 1904,  Mécanisme de l’électrisation de contact et solutions colloïdales I, 

Journal de Chimie Physique 2, 601–651 

 

22 Perrin, J. : 1905, Mécanisme de l’électrisation de contact et solutions colloïdales II, 

Journal de Chimie Physique 3, 50–110 

 

23 Gouy, G. : 1909, Sur la constitution de la charge électrique à la surface d’un 

électrolyte, Comptes Rendus de l’Académie des Sciences 149, 654–657 

 

24 Chapman, D. L. : 1913, A contribution to the theory of electrocapillarity, 

Philosophical Magazine and Journal of Science, Ser. 6 25 (148), 475–481. 

 



 

78 

                                                                                                                                                 

25 Stern, O. : 1924, Zur theorie der elektrolytischen doppelschicht, Z. Elektrochem. 30, 

508–516. 

 

26 Delahay, P. : 1965, Double Layer and Electrode Kinetics, Interscience Publishers, 

New York 

 

27 Usui, S. : 1984, Electrical double layer, in A. Kitahara et A. Watanabe (eds), Electrical 

Phenomena at Interfaces, Fundamentals, Measurements and Applications, Marcel 

Dekker, INC, New York and Basel, pp. 15–46 

 

28 Masliyah, J. H. : 1994, Electrokinetic Transport Phenomena, 12, Aostra Technical 

Publications 

 

29 Durand-Vidal, S. et Simonin, J. P. : 2000, Electrolytes at Interfaces, Kluwer, 

London. 

 
30

 BANK , R. E., COUGHRAN JR, W. C., FICHTNER, W., GROSSE, E., ROSE, 

D.& SMITH, R.  , 1985 Transient simulation of silicon devices and circuits.  

 

 


	Development of a Nanofluid Simulation Platform
	Recommended Citation

	tmp.1625165283.pdf.4pU8I

