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The goal of the present dissertation is to develop and apply novel and systematic 

data-driven optimization approaches that can efficiently optimize Additive Manufacturing 

(AM) systems with respect to targeted properties of final parts. The proposed approaches 

are capable of achieving sets of process parameters that result in the satisfactory level of 

part quality in an accelerated manner. First, an Accelerated Process Optimization (APO) 

methodology is developed to optimize an individual scalar property of parts. The APO 

leverages data from similar—but non-identical—prior studies to accelerate sequential 

experimentation for optimizing the AM system in the current study. Using Bayesian 

updating, the APO characterizes and updates the difference between prior and current 

experimental studies. The APO accounts for the differences in experimental conditions and 

utilizes prior data to facilitate the optimization procedure in the current study. The 

efficiency and robustness of the APO is tested against an extensive simulation studies and 

a real-world case study for optimizing relative density of stainless steel parts fabricated by 

a Selective Laser Melting (SLM) system. Then, we extend the idea behind the APO to 

handle multi-objective process optimization problems in which some of the characteristics 

of the AM-fabricated parts are uncorrelated. The proposed Multi-objective Process 



 

 

Optimization (m-APO) breaks down the master multi-objective optimization problem into 

a series of convex combinations of single-objective sub-problems. The m-APO maps and 

scales experimental data from previous sub-problems to guide remaining sub-problems that 

improve the solutions while reducing the number of experiments required. The robustness 

and efficiency of the m-APO is verified by conducting a series of simulation studies and a 

real-world case study to minimize geometric inaccuracy of parts fabricated by a Fused 

Filament Fabrication (FFF) system. At the end, we apply the proposed m-APO to optimize 

the mechanical properties of AM-fabricated parts that show conflicting behavior, namely 

relative density and elongation-to-failure. Numerical studies show that the m-APO can 

achieve the best trade-off among conflicting mechanical properties while significantly 

reducing the number of experimental runs compared with existing methods. 

 

Keywords: additive manufacturing, process optimization, design of experiments, 

Bayesian updating, multi-objective optimization, geometric accuracy, principal 

component analysis, tensile properties. 
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CHAPTER I 

INTRODUCTION 

Additive Manufacturing (AM) has been featured as a disruptive innovation and a 

new industrial revolution among research-industrial communities as well as public media. 

AM is capable of fabricating parts directly from a computer-aided design (CAD) model in 

a layer-by-layer manner. Hence, AM—as a set of emerging technologies—provides a 

unique opportunity to fabricate functional parts with very complex geometries, customized 

design and functionally graded materials [1]. It also brings a great opportunity to 

significantly shorten the logistical supply chain in many industries, namely deafens and 

biomedical implants [2,3]. Moreover, AM can reduce material waste and improve part 

consolidation because of its capability to fabricate final parts without any part-specific 

tooling [4]. Nowadays, the most recent AM systems, Laser-Based Additive Manufacturing 

(LBAM), are capable of fabricating metallic parts with the potential of being utilized as 

end-parts for direct use in a variety of industries and applications [1,4,5]. Manufacturing 

parts with target properties and quality in AM is crucial toward enhancing the 

“trustworthiness” of this emerging technology and pushing it into the mainstream. 

1.1 Research challenges 

Despite the unique industrial paradigm-shifting potentials of AM, its poor process 

reliability as well as non-satisfactory quality of AM-fabricated parts remains the Achilles 

Heel for AM and hinder its commercial viability and widespread application. Depending 
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on the material and type of AM, the quality issues for AM-fabricated parts include, but are 

not limited to, high surface roughness, low relative density, poor mechanical properties 

(such as tensile strength, fatigue life and elongation-to-failure) and geometric inaccuracy. 

In the present dissertation, we develop novel methodologies and systematic frameworks to 

identify sets of optimal process parameters, which result in satisfactory level of quality 

with respect to quantifiable properties of AM-fabricated parts, such as relative density, 

tensile properties and geometric characteristics. 

1.1.1 Challenges with LBAM process optimization 

In Chapter 2, we conduct a comprehensive literature review concerning the effect 

of process parameters involved in LBAM systems. We also review the existing and 

common methodologies in the realm of LBAM pertaining to characterization and 

optimization of the melt-pool formation, solidification and quality of final parts. These 

approaches are grouped into two major categories: (i) physics-based models and (ii) data-

driven optimization methods. We find that a large number of process parameters contribute 

to the fabrication process and eventually affect the quality of final parts, namely laser 

power, laser velocity, powder feed rate, layer thickness, hatching space, scanning pattern, 

etc. Hence, identifying the optimal process parameter setup—with respect to just a single 

quantifiable characteristic of parts such as relative density—is extremely challenging 

because of high dimensional parameter space. This challenge is further compounded 

considering the interactions among process parameters. In other words, the effect of one 

process parameter dependents on the effect of the other process parameters. Moreover, due 

to the very complex underlying thermo-mechanical process, the mathematical formula 

representing the relationship between process parameters and the properties of the final 
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parts is unknown. In other words, the functional form of objective function is not easily 

achievable. 

Most of existing researches seek the optimal process parameter setups via extensive 

experimental runs. However, in reality, it may not be possible to consider all process 

parameters and the corresponding interactions in either experimental or analytical studies. 

Moreover, considering the LBAM very time-and cost-intensive experiments it may not be 

practical to utilize conventional design of experiments (DoE) methodologies (e.g., 

fractional and full factorial designs). Another major limitation of the existing approaches 

is that the resulting optimal process parameters cannot be applied to a similar process 

because of the differences in the experimental conditions (e.g., powder morphology or 

machine brand). With this in mind, there is an urgent need to develop a generic 

optimization framework that can (i) systematically characterize the relationship between 

process parameters and the desired characteristics of the final parts and (ii) efficiently 

leverage the information from existing prior studies to accelerate the process optimization 

in the current study. 

1.1.2 Challenges with optimizing geometric accuracy of AM-fabricated parts 

Due to the layer-by-layer nature of the AM fabrication process, geometric accuracy 

of final parts is not usually as it is desired. Initial experimental data show that there are 

some deviations of 3D point cloud coordinate measurements from design specifications 

[6,7]. In other words, the shape of the final parts deviates from the original computer-aided 

design (CAD) file. To address this issue, some data-driven approaches targeted at 

compensating for AM-fabricated part geometry distortions have been recently proposed 
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[8–10]. However, these research approaches are restricted to elementary shapes (such as 

cubes and cylinders), and are limited to modeling of uniaxial geometry deviations. 

The geometric accuracy optimization of AM-fabricated parts is an extremely 

challenging research problem since experimental data represent conflicting behavior 

among geometric characteristics (e.g., flatness and concentricity) of AM-fabricated parts. 

That is, improving the accuracy of one geometric characteristic of parts, such as flatness, 

will result in worsening another geometric characteristic of them, such as concentricity. 

Hence, the observed negative correlation among the geometric characteristics of AM-

fabricated parts (e.g., flatness and concentricity) makes the abovementioned research 

problem even more complicated. Considering this, the problem of geometric accuracy 

optimization for AM-fabricated parts falls into the area of multi-objective optimization. 

The existing multi-objective optimization methodologies are not applicable in our case 

since the functional form of objective functions is not explicitly known. Additionally, 

constructing the meta-models representing the objective functions is not economically 

feasible because of high experimental cost in AM. Hence, there is an urgent need for an 

efficient experimental framework that can achieve the best compromises between 

conflicting geometric characteristics of AM-fabricated parts. 

1.1.3 Challenges with optimizing multiple mechanical properties of LBAM-

fabricated parts 

It is traditionally believed that optimizing the relative density for LBAM-fabricated 

parts results in satisfactory level of other mechanical properties of parts. However, our 

further experimental studies reveal that maximizing the relative density of the part—

although necessary—might not be sufficient to achieve a reliable level of other mechanical 
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properties, such as elongation-to-failure. Optimizing multiple mechanical properties of 

LBAM-fabricated parts is a very challenging research problem since—for the same level 

of relative density—size, shape and distribution of the voids can dominate the mechanical 

properties of the final parts. Moreover, experimental data reveals that some tensile 

properties of LBAM-fabricated parts—such as elongation-to-failure—have significant 

negative correlation with the part relative density. In other words, improving the relative 

density of parts does not necessarily guarantee improving other mechanical properties of 

parts in the optimal relative density window. Hence, they may not be optimized 

simultaneously. In other words, optimizing multiple mechanical properties of LBAM-

fabricated parts is a multi-objective optimization problem. Most of the existing 

experimental approaches are not well-suited for this research problem since they cannot 

incorporate several conflicting responses of interest. Moreover, conventional multi-

objective optimization methodologies are not applicable in this case because the functional 

form of objective functions is unknown and impossible to achieve due to the extremely 

high experimental cost in LBAM processes. 

1.2 Proposed solutions 

1.2.1 Accelerated Process Optimization (APO) of LBAM-fabricated parts by 

leveraging data from similar—but non-identical—studies 

Chapter 3 proposes a novel process optimization method that directly utilizes 

experimental data from previous studies—as the initial experimental data—to guide the 

sequential optimization experiments of the current study. Most of the existing LBAM 

studies do not use a systematic approach to optimize process parameters (e.g., laser power, 

laser velocity, layer thickness, etc.) for desired part properties. The proposed methodology 



 

19 

serves to reduce the total number of time- and cost-intensive experiments needed. We 

verify our method and test its performance via comprehensive simulation studies that test 

various types of prior data. The results show that our method significantly reduces the 

number of optimization experiments, compared with conventional optimization methods. 

We also conduct a real-world case study that aims to optimize the relative density of parts 

manufactured using a Selective Laser Melting (SLM) system. A combination of optimal 

process parameters is achieved within five experiments. Note that the proposed method—

Accelerated Process Optimization (APO)—is not limited to the SLM system or 

optimization of relative density. The APO can be readily applied to optimize any individual 

characteristic of AM parts fabricated using any AM system. 

1.2.2 Multi-objective Accelerated Process Optimization (m-APO) for optimizing 

geometric accuracy of AM-fabricated parts 

Chapter 4 is dedicated to minimizing geometric inaccuracies in AM-fabricated 

parts by optimizing the process parameters settings. This is a very challenging research 

problem, because it is often difficult to satisfy various specified geometric accuracy 

requirements by using the process parameters as the controlling factor. To overcome this 

challenge, the objective of this work is to develop and apply a multi-objective optimization 

approach to find the process parameters minimizing the overall geometric inaccuracies by 

balancing multiple requirements. The central hypothesis is that formulating such a multi-

objective optimization problem as a series of simpler single-objective problems leads to 

optimal process conditions minimizing the overall geometric inaccuracy of AM parts with 

fewer trials compared to traditional DoE approaches. The proposed Multi-objective 

Accelerated Process Optimization (m-APO) method accelerates the optimization process 
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by jointly solving the sub-problems in a systematic manner. The m-APO maps and scales 

experimental data from previous sub-problems to guide remaining sub-problems that 

improve the solutions while reducing the number of experiments required. The presented 

hypothesis is tested with experimental data from a Fused Filament Fabrication (FFF) AM 

process; the m-APO reduces the number of FFF trials by 20% for obtaining parts with the 

least geometric inaccuracies compared to full factorial DoE method. Furthermore, a series 

of studies conducted on synthetic responses affirmed the effectiveness of the proposed m-

APO approach in more challenging scenarios evocative of large and non-convex objective 

spaces. This outcome directly leads to minimization of expensive experimental trials in 

AM. 

1.2.3 Multi-objective Accelerated Process Optimization (m-APO) for optimizing 

multiple mechanical properties of LBAM-fabricated parts 

Chapter 5 is targeted at maximizing multiple mechanical properties of parts 

fabricated by LBAM systems. Process optimization of Laser-Based Additive 

Manufacturing (LBAM) systems is often complicated by the tradeoff between different 

mechanical properties as well as the relative density window. For instance, parts with 

similar relative densities can have noticeably different tensile mechanical properties (e.g., 

elongation-to-failure, yield strength, ultimate tensile strength, Young’s modulus). This 

phenomenon can be attributed to the variation of size and distribution of fabrication-

induced voids within the final parts.  To overcome the aforementioned challenge, we apply 

an efficient sequential multi-objective process optimization framework to optimize the 

quality of LBAM-fabricated parts with respect to multiple non-correlated mechanical 

properties within the optimal relative density regime. The applied Multi-objective 
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Accelerated Process Optimization (m-APO) method indirectly accounts for the effect of 

size and distribution of voids on the final parts’ mechanical properties. The m-APO 

decomposes the master multi-objective optimization problem into a sequence of single-

objective sub-problems constructed from mathematically convex combination of 

individual unknown objective functions. At each step, the m-APO smartly maps the 

experimental data from previous sub-problems to the remaining sub-problems. Therefore, 

the information captured from previous sub-problems is leveraged to accelerate the master 

multi-objective process optimization problem. The m-APO exhibited capability to achieve 

a set of process parameter setups, resulting in the best trade-off between conflicting 

mechanical properties in the optimal window.  The m-APO methodology is employed to 

maximize relative density and elongation-to-failure of Ti-6Al-4V parts fabricated by 

Selective Laser Melting (SLM) system. The results show that the m-APO achieves the 

optimal process parameter setups while reducing the time-and cost-intensive experiments 

by 51.8%, compared with an extended full factorial design of experiments plan. Note that 

the m-APO is not limited to the SLM system, Ti-6Al-4V material, maximizing relative 

density and elongation-to-failure of parts. In fact, it is a generic framework capable of 

optimizing any couple of scalar characteristics for AM-fabricated parts having negative 

correlation. 

1.3 Dissertation organization 

The remainder of this dissertation is organized as follows: in Chapter 2, a 

comprehensive literature review concerning the effects of LBAM process parameter and 

existing process modeling approaches in LBAM is conducted. Chapter 3 proposes a novel 

Accelerated Process Optimization (APO) methodology to efficiently optimize AM 
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processes with respect to a single characteristic of the final parts. In Chapter 4, a smart 

Multi-objective Accelerated Optimization (m-APO) framework is developed to optimize 

multiple geometric characteristics of parts in AM. In Chapter 5, the m-APO is modified 

and applied to optimize multiple mechanical properties of LBAM-fabricated parts. Finally, 

in Chapter 6 we outline the concluding remarks. 
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CHAPTER II 

A REVIEW ON LASER-BASED ADDITIVE MANUFACTURING PROCESS 

OPTIMIZATION 

2.1 Introduction: effects of parameters  

The optimization of Laser-Based Additive Manufacturing (LBAM) processes 

requires the understanding and characterization of the relation between a vector of process 

control parameters 𝒙 and a vector of response 𝒚, which can be mechanical properties such 

as porosity, fatigue, yield strength, etc., or in-process variables, such as melt-pool 

dimensions, deposit height, etc. Since the mechanical properties of LBAM parts depends 

on the process parameters, which affect the microstructural distribution via thermal history, 

it is important to optimize the LBAM process parameters to generate near-net-shaped parts 

with minimal defects. The significance of LBAM process optimization is two-fold: (i) the 

optimized process parameters can then be utilized for effectively “seeding” a thermally-

monitored, feedback-controlled LBAM process, which may result in LBAM parts with 

improved and/or customized properties; and (ii) it facilitates the research in material 

science to accumulate suitable AM processing data for  various metallic materials, since 

comprehensive knowledge is involved in AM processes, including laser technology, 

material science, and solidification.
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Despite the recent advances in LBAM technologies, the expense of running a large 

number of experiments remains non-trivial. Optimal process parameters are typically 

determined via extensive experiments, which usually require high experimental costs and 

a significant time investment. Due to the high machine, materials, operation costs, single 

experimental studies of LBAM part density could cost thousands of dollars, if not more, 

and take up to weeks. Moreover, this type of trial-and-error approach may never uncover 

the functional relationship between the process parameters 𝒙 and part features 𝒚, and 

therefore, may never estimate the optimal combinations for process control parameters. 

Two types of methods/models have been used to address the challenge of LBAM 

process optimization: (i) physics-based models that seek to characterize the underlying 

thermo-physics deposition process of LBAM; (ii) data-driven methods that target 

identifying the patterns in the existing experimental data through design of experiments 

and empirical modeling. For both approaches, the goal is to identify the functional 

relationship; 

 𝒚 = 𝑓(𝒙) + 𝝐 (2.1) 

 

where f  represents the unknown relation between process parameters 𝒙 and LBAM 

response y; and 𝝐 represents the random error and uncertainty associated with the process.  

Characterizing the functional form of f, i.e., the underlying phenomena that govern 

the LBAM process is non-trivial because several LBAM process parameters may affect the 

response vector of the part, which include, but are not limited to, laser power, laser velocity, 

laser scanning strategy, etc. For instance, laser power and laser velocity affect the melt-
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pool shape and incident energy, and consequently, the cooling rate and local thermal 

gradients, and eventually the mechanical properties of parts. 

In what follows, we summarize the effects of a number of key process parameters 

on the thermal history and mechanical properties of LBAM parts to delineate the complex 

relationship between process parameters and microstructural/mechanical properties. A 

more detailed discussion about the effects of various process parameters can be found in 

Ref. [5,11]. 

2.1.1 Laser power and laser velocity 

The combination of lower laser power and higher laser velocity results in lower 

incident energy at the top of the part, which in turn leads to higher cooling rate as well as 

finer microstructure [5]. Conversely, a lower cooling rate and coarser microstructure can 

be achieved by increasing laser power and decreasing laser traverse speed [5]. Lower 

incident energy, which can be due to laser attenuation and/or radiation effects, tends to 

result in finer equiaxed morphologies. By contrast, higher incident energy generally results 

in a coarser microstructure and columnar grains [5]. Since the cooling rate (and 

consequently the solidification rate) increases toward the surface of the deposit, a transition 

from columnar to mixed equiaxed-columnar microstructure has been observed at the 

surface of the deposit. Therefore, various combinations of laser power and laser velocity 

may result in differential microstructure, morphology and thus mechanical properties. 

2.1.2 Layer height 

Layer height influences the microstructure and mechanical properties, as well as 

the geometric accuracy, of LBAM fabricated parts. Layer height is affected by different 
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factors for different powder deposition mechanisms: For Laser-based Powder Bed Fusion 

(PBF-L) processes, also referred to as Selective Laser Melting (SLM), a uniform bed of 

powder is first spread on the previous layer or substrate by a roller or re-coater blade, and 

then specific regions of the bed are selectively melted by a laser beam in order to build a 

single layer of the part. Upon the completion a layer, the powder bed is lowered by the 

height of the deposited layer (layer height), and a new layer of powder is deposited with 

the roller. In this case, the layer height is mainly determined by the thickness of powder 

and may be accurately controlled. For Direct Energy Deposition (DED) processes, such as 

Laser-Engineered Net Shaping (LENS), the amount of powder forming a layer is mainly 

determined by the amount of powder injected into the melt-pool (deposited mass flow rate). 

The resulting powder density distribution in the melt-pool is then the most important factor 

for layer height control. Thus, characterizing the effect of process control parameters on 

the layer height is equivalent to modeling their effects on the amount of the powder injected 

into the melt-pool and its distribution. In general, the layer height increases as the powder 

feed rate increases. Powder feed rate interacts with other parameters, such as laser power 

and traverse velocity. A higher laser power coupled with lower powder feed rate may result 

in increased porosity; and vice versa. 

2.1.3 Deposition pattern 

There are four common deposition patterns used in LBAM: raster, bi-directional, 

offset, and fractal patterns. The offset patterns can be further divided into two types, offset-

out and offset-in, depending on the direction and starting point of deposition, as shown in 

Figure 2.1. The raster pattern is the most commonly used because of its ease of 

implementation [5]. The choice of laser scanning path of the raster pattern does not depend 
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on the geometry of the part. However different deposition patterns significantly affect the 

geometric and mechanical properties of the fabricated parts [5]. Choosing the appropriate 

scanning patterns reduce the incidence of residual stresses and thermal distortions. 

Moreover, the fractal and offset-out deposition patterns generate the smallest and second 

smallest substrate deformations, respectively, according to Ref. [12]. Despite the 

advantageous resultant mechanical properties and geometric accuracy, applying offset or 

fractal patterns requires additional customization of deposition path per part geometry, 

which is very challenging for a part with complex geometry. 

 

Figure 2.1 Different deposition patterns. 

Raster, (b)  Bi-directional, (c)  Offset-in, (d)  Offset-out, and (e) Fractal Post-

manufacturing processing [12]. 

Post-manufacturing processes, such as hot isostatic pressing (HIP), may be used to 

enhance physical and mechanical properties of LBAM parts. HIP is a manufacturing 
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process used for reducing the porosity, and increasing the density of materials, by exposing 

the part to elevated temperature under constant/isostatic gas pressure. As reported by Ref. 

[11] adequate densification of LENS Ti-6Al-4V can be accomplished through HIP—

leading to a higher ductility and elongation-to-rupture. Furthermore, the high temperatures 

experienced during the HIP process cause an increase in the alpha-platelet thickness of Ti-

6Al-4V, which consequently reduces the strength of the material. In addition, HIP’ed 

specimens exhibit less anisotropic behavior than heat treated ones. Such observations 

indicate that porosity may play a significant role in the anisotropic behavior of laser-

deposited parts. In general, the effects of different manufacturing and post manufacturing 

parameters on the anisotropic behavior of laser-deposited parts are not yet well understood; 

thus, further investigations are required. 

2.2 Physics-based Models 

Because of the layer-by-layer additive nature of LBAM, the complex thermal 

histories are experienced repeatedly in different regions of the deposited layers, which 

normally involve melting as well as numerous reheating cycles at a relatively lower 

temperature. Such complicated, cycling thermal behavior during LBAM results in the 

complex phase transformations and microstructural developments, and consequently exist 

significant difficulties in obtaining targeted optimal mechanical properties. On the other 

hand, the use of a finely focused laser to form a rapidly traversing melt-pool may result in 

considerably high solidification rate and melt instability. Complicated residual stresses 

tend to be locked into the parts during the building process, due to the thermal transients 

encountered during solidification. Understanding of the parameter-thermo-mechanical 

relationship facilitates the optimization of the LBAM process and thus final mechanical 
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properties. Actually, a series of complex thermo-mechanical phenomena including heat 

transfer, phase changes, mass addition and fluid flow are involved in the melt-pool during 

LBAM. Therefore, physics-based models developed based on the knowledge of 

temperature, velocity and composition distribution history is essential for an in depth 

understanding of the process, and subsequent mechanical properties. 

2.2.1 Buckingham's II theorem 

Determining the effects of process parameters on the LBAM process is challenging 

because the high dimensionality of the parameter space and their interaction amongst each 

other. In other words, each process parameter may not be singled out and studied 

individually because its impact on the microstructure and mechanical properties of LBAM 

parts depend on the values/levels of other process parameters. Buckingham’s II (Pi) 

theorem provides a key tool in dimensional analysis for reducing the dimensionality of the 

process parameter space and a guideline in identifying the maximal number of 

dimensionless parameters, needed to characterize the process. The main idea is that if there 

is a physically governing equation involving a certain number, say n, of physical variables, 

and k is the number of fundamental dimensions (such as time, location, density, etc.) 

required to describe these n variables, then the original expression is equivalent to an 

equation involving a set of 𝑝 = 𝑛 − 𝑘 dimensionless parameters constructed from the 

original variables. Buckingham’s II theory suggests the number of dimensionless 

parameters that can be constructed but the dimensionless parameters generated via 

Buckingham’s theory are not unique, and there exist multiple choices for the selection of 

these dimensionless parameters. In most cases, researchers select dimensionless 

parameters that are useful in understanding the underlying process physics. Possible 
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choices of dimensionless parameters include melting efficiency, deposition efficiency, 

process efficiency, laser absorptivity, specific energy, and others. The utilization of 

common thermo-fluidic dimensionless numbers, such as Re, Pr, Bo, is also sought as these 

classical numbers can provide physical insight into various aspects of the LBAM process.  

As an example, one can find the Reynolds number for the melt-pool to help in assessing if 

laminar or turbulent flow exists.   

• Example 1.: Buckingham’s II theorem [13] 

Determining the effects of LBAM process parameters on the quality of the final 

parts requires an extensive experimental study for various combinations of process 

parameters, as listed in Table 2.1. The parameters taken into account include materials, 

laser, product, process, and environment, resulting in a parameter space with high 

dimensionality (e.g., 19 parameters). Nevertheless, even such a high dimensional 

parameter space only includes a number of major parameters, and does not incorporate all 

the factors that could affect the LBAM process. For example, the effects of the powder 

delivery system (e.g. powder feeding location) and the shielding and carrier gases are not 

considered. The distribution of the laser irradiance at the focal spot and the position of the 

focal spot relative to the melt surface are not taken into account. Considering the high 

dimensionality, fully characterizing the effect of process parameters on the LBAM process 

would be very challenging. Any possible reduction of the parameter space will significantly 

improve the efficiency of the study. 

 

 

 



 

31 

Table 2.1 Parameters for metal deposition. 

 

 

Kahlen and Kar [13] reduced the number of parameters by combining some of the 

process parameters and by identifying similar parameters using Buckingham’s II-Theorem. 

With a basis of five dimensions (i.e., time, length, mass, temperature, and energy), 

Buckingham’s II-theorem groups the original 19 process parameters into 14 (= 19 − 5) 

dimensionless numbers to characterize the process, as shown in Table 2.2. These resulting 

dimensionless numbers—which included Reynold’s number (Re), Bond number (Bo), 

Prandtl’s number (Pr) and various process “efficiencies”—aid in constraining the process 

parameter dimension and help in reducing the number of experiment required to optimize 

the process. 

The advantage of using dimensionless parameters is that these parameters are 

usually defined based on LBAM processes, instead of materials to be processed or 

geometries of parts to be fabricated. Thus, dimensionless parameters are less dependent on 

material properties and part geometries. In practice, when a material is to be processed or 

when a part is to be built, dimensionless parameters can be used to suggest the range of 

parameters in which good metal parts are formed. Furthermore, the use of dimensionless 
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parameters can alleviate the confusion of dealing with various units for a single process 

parameter. For example, the units utilized for traverse speed can vary substantially (e.g. 

inches/minute, cm/s, etc.). Utilization of a dimensionless traverse speed allows for easier 

communication of process parameters amongst the international community. 

Table 2.2 Dimensionless parameters. 

Similarity parameter Expression 

Energy Loss Efficiency 𝜂𝐿 =
𝐸𝑙
𝑃

 

Melting Efficiency 𝜂𝑚 =
𝐸𝑚
𝑃

 

Superheating Efficiency 𝜂𝑥 =
𝐸𝑥
𝑃

 

Powder Delivery Efficiency 𝜂𝑃 =
𝑚𝑑𝑒𝑝

𝑚𝑑𝑒𝑙
 

Bond Number 𝐵𝑜 =
𝜌𝑑𝐹

2𝑔

𝜎
 

Froude Number 𝐹𝑟 =
𝑣𝑃
2

𝑔𝑑𝐹
 

Galileo Number 𝐺𝑎 =
𝑔𝑑𝐹

3𝜌2

𝜇2
 

Prandtl Number 𝑃𝑟 =
𝑐𝑝𝜇

𝑘
 

Reynolds Number 𝑅𝑒 =
𝑣𝑝𝜌𝑑𝐹
𝜇

 

Length Scale of the Melt-pool 𝐿𝑃 =
𝑣𝑠𝑡𝑠
𝑑𝐹

 

Powder Particle Number Density in 

the Melt-pool 𝑁 = (
𝑑𝑃
𝑑𝐹
)
2

 

Melt-pool Shape Factor 𝑆𝑃 =
𝑣𝑃
𝑣𝑠

 

Product Aspect Ratio 𝐴𝑆 =
ℎ𝐷
𝑤

 

Powder Dissolution Factor 𝐷𝑃 =
4𝑘(𝑇𝑎 − 𝑇𝑖)𝑑𝐹

𝐸𝑚
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2.2.2 Process characterization 

One well-established method for developing dimensionless parameters is process 

maps that can be used to understand the LBAM process parameters and their impact on the 

thermal history and microstructure of the part. Process maps possess dimensionless 

ordinates to help in determining the effects of laser velocity, part preheating, laser power, 

etc.; and are generalized for the moving heat source problem (e.g. Rosenthal’s solutions) 

inherent to LBAM processes.  Plots are generated based on analytical, numerical or 

experimental results, which can be used as tools to aid LBAM users in ascertaining the 

appropriate, initial process parameters for a given material for fabrication via LBAM. 

2.2.3 Steady state thermal maps 

Early research of process maps mainly focuses on predicting the steady-state melt-

pool size for various practical combinations of process parameters. During LBAM, the 

laser beam creates a moving melt-pool on the substrate in which powder is melt. The melt-

pool size has been identified as a critical parameter for maintaining optimal building 

conditions. The formation of steady melt-pool with a small heat affected zone and an 

uninterrupted solidification front tends to result in homogeneous part quality. A typical 

steady-state thermal process map can demonstrate how melt-pool length is affected by 

normalized height of substrate and melt temperature. These steady-state process maps have 

been used for determining process parameters that result in desired melt-pool lengths. An 

advantage of the steady-state process maps is its ease of implementation: the relations 

between dimensionless process parameters and the melt-pool lengths are contained in the 

form of a single three-dimensional or two-dimensional plot that process engineers can use 

directly. 
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2.2.4 Thermal maps for transient analysis 

Thermal process maps have also been developed to conduct transient analysis, 

accounting for dynamics LBAM processes and their effects on, for example, melt-

pool/track morphology.  One typical dynamic LBAM process is the so-called “boundary 

issue”, which results in an increase in the melt-pool size as the boundary of each layer is 

approached. The boundary problem is mainly caused by the fact that the laser velocity 

reduces, and thus the energy density increases, to accurately deposit materials near the 

boundary of layers. In addition, a velocity reversal is needed to continue with deposition 

of the next layer of material. Efficient and effective optimization of the melt-pool 

size/morphology and other process parameters requires comprehensive understanding of 

how the melt-pool size changes over a range of process size scales, as well as various laser 

power or velocity. In other words, a transient analysis allows one to determine how changes 

in process parameters affect the melt-pool geometries, as well as the cooling rates, thermal 

gradients, etc. 

2.2.5 Process maps for different scales of LBAM systems 

Whenever a new laser-based manufacturing system is developed at a different size 

scale, engineers must perform a large number of experiments to characterize their process. 

It is important to obtain fundamental understanding of how to apply deposition knowledge 

acquired from small-scale systems—e.g., Laser Engineering Net Shaping (LENS) 

equipped with a 500W Nd:YAG laser, or other similarly sized lasers—to analogous large-

scale systems—e.g., AeroMet, which manufactures components for the aerospace industry 

and uses an 18kW CO2 laser.  Multiple process maps with various scales have been 

developed for predicting part features for the large scale process via extrapolation by Ref. 
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[14]. The authors showed that the process maps can be applied over multiple process size 

scales by simply using dimensionless parameters, i.e., by changing the normalization 

temperature with changes in power range. Although the resulting prediction can be used to 

provide a possible range for the optimal process parameters in large-scale LBAM 

processes, the prediction may be inaccurate due to the error caused by model extrapolation. 

Therefore, there exists a great need to fill the gap between industrial applications that 

demand the use of large-scale deposition processes and the process development that 

occurs on small-scale processes in the laboratory conditions. 

2.2.6 Limitation of process maps 

Process maps are advantageous in that they provide a fundamental way to predict 

and thus control melt-pool size, stress and material properties by presenting results in a 

form that process engineers can readily use. Bontha et al. [15] further generalized the 

thermal process maps to establish the relation between dimensionless process parameters 

and solidification cooling rates in laser deposition processes, namely solidification maps. 

The simultaneous control of residual stress and melt-pool size has also been addressed by 

Ref. [16]. However, there also exist two major limitations in the existing process map 

methods.  First, the current process maps are for limited part geometries—developed for 

thin-wall and bulk shapes only. In other words, these process maps do not hold for other 

common shapes, let alone parts with complex geometries. One promising application of 

AM is to fabricate parts whose geometry is so complex that they cannot be produced using 

traditional manufacturing methods. Therefore, in order to make process maps useful in 

real-world manufacturing applications, future work is needed to develop process maps that 

characterize the thermal behaviors and mechanical properties of parts with various 
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geometries. Secondly, process maps do not consider temperature-dependent material 

properties. Current process maps are based on Rosenthal’s analytical solution for 

temperature with moving-heat-source boundary, and material properties are assumed 

independent of temperature. This may not be realistic assumption in real world 

applications. In fact, process maps are used to approximate the underlying fabrication 

process when the temperature remains in a certain range. 

2.3 Data-driven optimization methods 

Although physics-based models are essential for thoroughly understanding the 

underlying LBAM processes, their development is extremely challenging due to the 

complexity associated with LBAM. Some research efforts have circumvented this 

challenge by utilizing data-driven methods that directly model how the process parameters 

affect the quality of final parts. Data-driven approaches involve (i) choosing an 

experimental design for generating data, and (ii) choosing a model to fit the data. In 

particular, existing research for the optimization of LBAM parts primarily rely on a trial-

and-error procedure to determine optimal process parameters and achieve targeted 

properties of the fabricated product. Statistical design of experiments (DoE) provides a 

systematic framework to utilize the previous experimental data and plan future 

experimental trials with the minimal cost. An experimental design represents a batch or 

sequence of experiments to be performed, expressed in terms of factors (design variables) 

set at specified levels. Based on the experimentation data, simplified/approximated 

relations between part features and process parameters can be learned in an empirical way. 

Properly designed experiments and subsequent data modeling are essential for effective 

experimental analysis and process optimization. A common feature shared by data-driven 
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methods is that process parameters and part features (e.g., mechanical properties) are 

empirically related based on experimental data sets. In other words, the developed methods 

are not completely dependent on the domain knowledge of a specific process and thus may 

be applied to other processes. Below, we review DOE methods together with the 

corresponding data models that have been applied for LBAM studies, as well as those can 

be potentially applied. 

2.3.1 Full factorial designs 

The most basic experimental design is a full factorial design. The main idea is to 

replicate all possible combination of the levels of the factors in each run of experiments. 

The number of design points dictated by a full factorial design is the product of the number 

of levels for each factor. For instance, if there are 2 factors, each with ℓ levels, each 

experimental run would investigate ℓ2 design points. More generally, when there are k 

factors, each with ℓ levels, the total number of design points is ℓ𝑘. The most common are 

2𝑘 (for evaluating main effects and interactions) and 3𝑘 designs (for evaluating main and 

quadratic effects and interactions) for k factors at 2 and 3 levels, respectively. A 23 full 

factorial design is shown in Figure 2.2.  

 

Figure 2.2 23 designs. 
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The main effect of a factor refers to the resulted change in the response variable by 

changing the level in factor of interest. Figure 2.3 illustrates an example of a 22 design. 

Two levels are denoted by "+" and "−" representing "high" and "low" levels for the factors 

of interest, respectively. The main effect of a factor of a factorial design is defined  as  the  

difference  between  the  average  response  values  at  high  and  low  level  of  the  factor  

of interest.  In this example, the main effect of factor 𝑀 is calculated as follows: Main 

Effect of Factor 𝑀 =  (31 + 41)/2 − (15 + 25)/2 =  16. The effect of a factor may 

depend on the level of others. In the case, there exists an interaction between these factors. 

Following the previous example, the magnitude of the interaction between factors 𝑀 and 

𝑁 (i.e. 𝑀𝑁 effect) is calculated as 𝑀𝑁 =  ((39 − 21) − (11 − 27)) /2 =  17. 

There are various ways to mathematically formulate factorial designs. For instance, 

a regression-type model can be developed to capture the main effects and interactions of 

two-factor as shown in Eq. 2.2. 

 𝑦 =  𝛼0 + 𝛼1𝑥1 + 𝛼2𝑥2 + 𝛼12𝑥1𝑥2 + 𝜖 (2.2) 

where y  represents the response value, 𝛼𝑖’s are the coefficients which should be estimated,  

𝑥1 and 𝑥2 are variables representing scaled values (1 and +1 representing low and high 

levels) of factors  𝑀 and 𝑁, respectively. Also, 𝑥1𝑥2 represents the interaction term 

between factors; and 𝜖 is the random error. After forming the model, statistical methods 

(such as ANOVA) can be employed to analysis and determine the statistical significance 

of each factor and interactions as well as conventional statistical tests and interpretations. 
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Figure 2.3  22 designs. 

 

2.3.2 Fractional factorial design 

The  combinations of  design  points  in  full  factorial  design  increase 

exponentially  along  with  the  number  of  factors.  Hence,  full factorial designs  may  not  

work  well  for  cases  in  which  a moderate-to-large  number  of  factors  are  involved.  

Moreover, each design point should be replicated several times in order to make the 

experimental design capable of detecting the significant effects, leading to an 

unmanageable number of experiments. Fractional Factorial Design is a potential alternative 

when the experiments are expensive to run and a large number of factors and levels are 

involved. A fractional factorial design is a fraction of a full factorial design, which aims to 

select a portion of all possibilities to reduce the number of required experiments. The 

general form of ℓ-level fractional factorial design is ℓ𝑘−𝑝, where 𝑘 − 𝑝 is the fraction of 

original full factorial design which is to be run. For instance, a half fraction of 23 full 

factorial design includes 23−1 = 4 design points which are illustrated in Figure 2.4. 
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Figure 2.4 Fractional factorial designs. 

 

Reducing the design space by shifting from full to fractional factorial design is also 

accompanied by an inevitable cost in terms of detecting the significant effects. For instance, 

applying 23 full factorial design, not only considers all main effects (𝑥, 𝑦, 𝑧) and all two 

factor interactions (𝑥𝑦, 𝑥𝑧, 𝑦𝑧), but also it accounts for three factor interactions (𝑥𝑦𝑧). On 

the other hand, half fraction of 23 full factorial design does not allow for estimation of 

three factor interactions. The interaction effects cannot be ignored unless they are known 

(or assumed) to be insignificant. An example of the application of 2𝑙−𝑝 design can be found 

in the example below: 

Example 2: Two-level fractional factor design [17] 

Laser Engineered Net Shaping (LENS) is an Additive Manufacturing (AM) process 

that can build complex, functional parts in metal, by slicing 3D objects into 2D layers of 

user-defined thickness and superimposing successive layers. Users must choose the layer 

thickness and match it with the deposition to keep the laser in focus throughout the build. 

If a mismatch exists between the layer thickness and the deposited thickness, the laser is 
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no longer focused on the melt-pool surface, leading to geometric inaccuracy of parts, or 

even failures of build. The deposition thickness is typically governed by other process 

parameters, such as laser power, laser velocity, hatching spacing, powder mass flow rate, 

etc. To match the layer thickness with deposition, it is very important to understand and 

estimate the relationship between these process parameters and the deposition thickness so 

that the layer thickness can be optimized based on the chosen process parameters.  

Kummailil et al. [17] studied the effects of process parameters on deposition 

thickness and applied a two-level fractional factorial designs to develop empirical 

relationships between process parameters and deposition. Experiments were performed on 

a LENS 850 system using Ti-6Al-4V powder. The geometry of testing parts was a 

rectangular block with a width of 12.7mm, length of 19.1mm, and height dependent on the 

layer deposited (because the build may fail if the specified layer thickness mismatches the 

deposition). Two levels, high (+) and low (−), are chosen for each process parameter, as 

shown in Table 2.3. The minimum number of experiments needed is 24 = 16. Experiments 

were performed according to the design matrix, as shown in Table 2.4, and the deposition 

thickness was measured for each testing sample. 

Table 2.3 Levels of Process Parameters. 

Process parameter − + 

Laser power (W) 250 350 

Laser velocity (mm/s) 16.9 27.5 

Hatch spacing (um) 381 457 

Powder mass flow rate (mg/s) 38 73.4 
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Table 2.4 Design matrix of factorial design. 

Design 

point 
Laser power Laser velocity Hatch spacing Powder mass flow rate 

1 − − − − 
2 − − − + 
3 + − − − 
4 + − − + 
5 − + − − 
6 − + − + 
7 + + − − 
8 + + − + 
9 − − + − 
10 − − + + 
11 + − + − 
12 + − + + 
13 − + + − 
14 − + + + 

 

The main effects of process parameters on deposition thickness are presented on 

Table 2.5. Laser power and mass flow rate have positive effects on deposition, whereas, 

hatch spacing and laser velocity have negative effects on deposition. Mass flow rate and 

laser velocity have more significant impacts on deposition, whereas, hatch spacing shows 

a less significant effect; and laser power has the smallest impact on deposition thickness. 

Therefore, to achieve the targeted deposition thickness, powder mass flow rate and laser 

velocity may be the most effective parameters to adjust, based on experimental data. 

Table 2.5 Main effects of parameters. 

Parameter Laser power Laser velocity Hatch spacing Powder mass flow rate 

Main effect 6.97 29.01 -12.36 30.56 

 

An empirical model can also be developed based on the experimental data. Since 

two major factors affecting the build process are material and energy (specifically, process 
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parameters affect the deposition by changing either the energy or amount of material 

available in the melt-pool area), the four process parameters can be grouped into two 

categories: (i) the energy density at the melt-pool and (ii) the powder flow rate. An 

empirical model was developed between deposition (𝜇𝑚) and the product of energy density 

(𝐽/𝑚𝑚2) and mass flow rate (𝑔/𝑠):  

deposition = β × energy density × mass flow rate 

The 𝑅2 value of the fitted model is found to be 0.85, which indicates the goodness-

of-fit of this linear model.  

Fractional factorial designs are useful for screening factors to identify those with 

the greatest effects when a large number of factors are involved. In practice, it is usually 

assumed that the system is dominated by main effects and lower order interaction effects 

(e.g. quadratic effects). One specific family of fractional factorial designs vastly applied 

for screening are two level Plackett-Burman (PB) designs. These are used to study 𝑘 =

𝑛 − 1 factors where n is an integer multiple of 4. By ignoring the interactions between 

factors, PB designs allow for using only one more design point than the number of factors 

to obtain unbiased estimation of main effects. To estimate quadratic effects, 3𝑘 or 3(𝑘 −

𝑝) designs can be used but often require an unmanageable number of design points. The 

most common second-order designs, configured to reduce the number of design points, are 

central composite and Box-Behnken designs.  A central composite design (CCD) is a two 

level factorial design, augmented by 𝑛0 center points and two "star" points positioned at ± 

for each factor. Box-Behnken designs use the smallest number of factor levels in an 

experimental design. These are formed by combining 2𝑘 factorials with incomplete block 

designs. They do not contain points at the vertices of the hypercube defined by the upper 
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and lower limits for each factor. This is desirable if these extreme points are expensive or 

impossible to test. More information about central composite and Box-Behnken designs 

can be found in Ref. [18]. 

2.3.3 Taguchi design 

Taguchi design provides a balanced design of experiments that lays out the factors’ 

levels in an equally weighted way.  Taguchi design is an efficient method because it 

provides enough information by designing just a few design setups, and may be used a 

robust alternative to two or three level fractional factorial designs. The Taguchi design uses 

three sequential steps: (i) system design, which incorporate domain knowledge, (ii) 

parameter design, which optimizes the settings of process parameters, and (iii) tolerance 

design, which determines and analyzes tolerances around the optimal parameters. This 

subsection focuses on parameter design, which is a key step that incorporates statistical 

design of experimentation. Taguchi (parameter) design is developed based on the idea of 

orthogonal arrays. For a system with 𝑓 factors, each with 𝑙 levels, an orthogonal array is a 

𝑁 by 𝑘 matrix denoted by 𝐿𝑁 such that each possible combination of levels are repeated 

by the same number of times across the columns of this matrix. A more rigorous definition 

of orthogonality is that the inter product of any two columns the design matrix is zero. Each 

row of an orthogonal array represents an experimental design setup and the number 

included in the cells represents the level of each factor. The example of a 𝐿4design can be 

found in Table 2.6. 
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Table 2.6 L4 design. 

Experiment number 
Factors and levels 

𝑓1 𝑓2 𝑓3 

1 −1 −1 −1 

2 −1 1 1 

3 1 −1 1 

4 1 1 −1 

 

Two levels, high and low represented by 1 and −1 respectively, are considered. 

There exists four possible combinations of factor levels: (1, 1), (1, −1), (−1, 1), and 

(−1,−1). For any two columns of the 𝐿4 design matrix, each of four factor combinations 

appears exactly once. From another perspective, the inner product of any two columns is 

zero. Another example of 7-factor Taguchi design can be found in Table 2.7. Taguchi 

orthogonal arrays can be considered as a fraction of full factorial designs. Specifically, 

orthogonal array LN is a 
𝑁

ℓ𝑘
  fraction of ℓ-level full factorial design with k factors. For 

example, orthogonal array L4 can be considered a half fraction of a 23 full factorial design. 

By applying Taguchi designs, the number of design points decreases from 8 to 4. These 

arrays are constructed to reduce the number of design points necessary; two-level 𝐿4, 𝐿8, 

and 𝐿12 arrays, for example, allow 3, 7, and 11 factors/effects to be evaluated with 4, 8, 

and 12 design points, respectively. 
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Table 2.7 L8 design. 

Experiment number 
Factors and levels 

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7 

1 -1 -1 -1 -1 -1 -1 -1 

2 -1 -1 -1 1 1 1 1 

3 -1 1 1 -1 -1 1 1 

4 -1 1 1 1 1 -1 -1 

5 1 -1 1 -1 1 -1 1 

6 1 -1 1 1 -1 1 -1 

7 1 1 -1 -1 1 1 -1 

8 1 1 -1 1 -1 -1 1 

 

Example 3: SLS shrinkage compensation [19] 

Selective Laser Sintering (SLS) is a powder-based additive manufacturing (AM) 

process, in which parts are built by selective sintering of layers of powder using a CO2 

laser. SLS can be used to produce functional parts for various applications, such as 

aerospace, rapid tooling, etc. Shrinkage is a major issue that affects the accuracy of SLS 

parts. A common practice to resolve the issue of part shrinkage is to calculate or estimate 

the amount of shrinkage in each direction and apply the shrinkage compensation in the 

opposite direction in the digital model. Part shrinkage is found to be affected by various 

process parameters such as laser power, laser velocity, hatch spacing, powder bed 

temperature, scanning length, etc. To apply optimal shrinkage compensation to the digital 

file, it is important to identify the process parameters that govern part shrinkage in each 

direction, and understand the relation between process parameters and the amount of 

shrinkage. Raghunath and Pandey [19] designed experiments using the Taguchi method 

and used polymer powder to fabricate cuboids of 30mm × 30mm cross section with 

different lengths along the laser scanning direction (i.e., scanning length).  
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The ranges of process parameters were chosen based on the minimum and 

maximum energy density: E =  Laser Power ( Laser Velocity ×  Hatch Spacing)⁄ . The 

energy density should be high enough so that sintering can occur. However, too high 

energy density may cause the degradation of material properties. Raghunath and Pandey 

[19] ascertained that the energy density should be at least 1 J/cm2 for the sintering to occur; 

and that the polymer begins to degrade when the energy density is above 4.8 J/cm2. Hence, 

the range of energy density was set in the range of (1─4.8) J/cm2. The corresponding ranges 

of the laser power, laser velocity, and hatch spacing were selected to be 24─36 W, 

3000─4500 mm/s, 0.22─0.28 mm, respectively. In addition, the powder bed temperature 

and scan length were also considered. Four levels of parameter values were considered for 

each process parameter. To select an appropriate orthogonal array, the total degrees of 

freedom need to be calculated. Four-level design results in 3 degrees of freedom for each 

of the 5 parameters. Plus one degree of freedom for the overall mean, the total degrees of 

freedom is 3 × 5 + 1 = 16. Hence, L16B orthogonal array with 4 columns and 16 rows was 

used and is given in Table 2.8. 
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Table 2.8 L16B orthogonal array. 

Experiment 

number 

Laser 

power 

Laser 

velocity 

Hatch 

spacing 

Powder bed 

temperature 

Scan 

length 

1 1 1 1 1 1 

2 1 2 2 2 2 

3 1 3 3 3 3 

4 1 4 4 4 4 

5 2 1 2 3 4 

6 2 2 1 4 3 

7 2 3 4 1 2 

8 2 4 3 2 1 

9 3 1 3 4 2 

10 3 2 4 3 1 

11 3 3 1 2 4 

12 3 4 2 1 3 

13 4 1 4 2 3 

14 4 2 3 1 4 

15 4 3 2 4 1 

16 4 4 1 3 2 

  

Analysis of Variance (ANOVA) was used to analyze the shrinkage data in each 

direction to identify the parameters that has significant contributions to the total variance 

of shrinkage. If a factor is significantly influencing the process response (i.e., shrinkage in 

this example), the corresponding F-value would be large. For example, the ANOVA for 

the part shrinkage in the 𝑋-direction is presented in Table 2.9, which indicates the scan 

length and laser power have the most significant impact on part shrinkage. Similar analysis 

was performed to shrinkage in 𝑌 and 𝑍 directions. It was reported that laser power and 

laser velocity have significant effects on the shrinkage in 𝑌 direction, whereas, part bed 

temperature, laser velocity, hatch spacing are more significant for shrinkage in 𝑍 direction. 
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Table 2.9 ANOVA for shrinkage in 𝑋-direction. 

Factor DOF Sum of Square (SS) Mean Square (MS) F-Statistics 

Laser power 3 26.39 8.80 2.51 

Laser velocity 3 18.51 6.17 1.74 

Hatch spacing 3 2.29 0.76 0.21 

Part bed temperature 3 10.80 3.60 1.01 

Scan length 3 91.61 30.54 8.60 

Error 6 31.60 3.55  

Total 15 149.59   

 

 

Linear empirical models are developed to characterize the relation between process 

parameters and part shrinkage, and estimate the shrinkage compensation in each direction. 

Only significant process parameters identified using ANOVA are included to develop the 

empirical models. For instance, the developed models for shrinkage compensation in 𝑋-

direction is  

 

S𝑋  =  1.611691 −  0.01615 Laser power −  0.009647 Laser velocity. 

 

Similar empirical shrinkage models are also developed for the 𝑌 and 𝑍 directions. 

The developed models predict the shrinkage in percentage for any combination of process 

parameters to scale up the digital file for optimal accuracy.  

2.3.4 More advanced designs and modeling methods 

2.3.4.1 Space filling designs 

Besides these classical design-of-experiment methods, other designs exist, such as 

space filling designs that treat all regions of the design space equally. Space-filling designs 

are useful for modeling systems that are deterministic or near-deterministic, such as a 
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computer simulation, which involves many variables with complicated interrelationships. 

One criterion to fill the design space is to minimize the integrated mean squared error 

(IMSE) over the design space by using IMSE-optimal designs. Koehler and Owen [20] 

describe several Bayesian and frequentist space filling designs, including maximum 

entropy designs, mean squared-error designs, minimax and maximin designs, Latin 

hypercubes, randomized orthogonal arrays, and scrambled nets. A review of Bayesian 

experimental designs for meta modeling is given in Ref. [21]. 

2.3.4.2 D-Optimal designs 

D-optimal design is another type of design, which is useful when classical designs 

(such as factorial and fractional designs) do not apply. In practice, standard factorial or 

fractional factorial designs may require too many runs for the amount of resources or time 

allowed for the experiment, or the design space may be constrained (the process space 

contains factor settings that are not feasible or are impossible to run). The design matrices 

generated by D-optimal designs are usually not orthogonal and effect estimates are 

correlated. These types of designs are always an option regardless of the type of model the 

experimenter wishes to fit (for example, first-order, first-order plus some interactions, full 

quadratic, cubic, etc.) or the objective specified for the experiment (for example, screening, 

response surface, etc.). However, D-optimal designs are developed based on a chosen 

optimality criterion and the possible underlying model that will be used to fit the 

experimental data. Specifically, D-optimal designs maximize the determinant of the 

information matrix. This optimality criterion results in minimizing the generalized variance 

of the parameter estimates for a pre-specified model. As a result, the “optimality” of a given 
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D-optimal design is model dependent. In other words, an approximation model must be 

specified before the generation of design points.  

2.3.4.3 Response surface and Kriging 

The response surface model (RSM) "is a collection of statistical and mathematical 

techniques useful for developing, improving, and optimizing process" [22]. Since the true 

response surface function 𝑓(𝑥) is usually unknown, a response surface 𝑔(𝑥) is created to 

approximate 𝑓(𝑥). Low-order polynomial models are usually popular choices for the 

response surface 𝑔(𝑥). Depending on the needed curvature, various polynomial models 

can be developed. The more curvature needed to be incorporated, the higher-order 

polynomial models are required. 

After identifying the factors that have significant impacts on the response, the 

general RSM approach includes all or some of the following steps: 

(1) First-order experimentation: when the starting point is far from the optimum point or 

when knowledge about the space being investigated is sought, first-order models and an 

approach such as steepest ascent are used to "rapidly and economically move to the vicinity 

of the optimum" [18]. The general form of first-order model is expressed as below: 

𝑔(𝑥) =  𝛼0 +∑𝛼𝑖𝑥𝑖

𝑘

𝑖=1

 

The 3D response surface and 2D contour plot of a linear response surface model 

are demonstrated in Figure 2.5 and Figure 2.6, respectively. The resulting response surface 

is a plane over the 2D design space. The first-order model is also called main effect model 

because it focuses on the main effects of the process parameters. Other than the main 
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effects, interactions between the process parameters can be incorporated in the response 

surface model: 

𝑔(𝑥) =  𝛼0 +∑𝛼𝑖𝑥𝑖

𝑘

𝑖=1

+∑∑𝛼𝑖𝑗𝑥𝑖𝑥𝑗

𝑘

𝑗=2𝑖<𝑗

 

 

 

Figure 2.5  Response surface of 𝑔(𝑥)  = 20 +  5𝑥1  +  3𝑥2. 
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Figure 2.6 Contour plot of 𝑔(𝑥)  = 20 +  5𝑥1  +  3𝑥2. 

 

Following the previous example, the 3D response surface and 2D contour plot of 

the first-order response surface model, with the consideration of parameter interaction, are 

demonstrated in Figure 2.7 and Figure 2.8, respectively. As shown in figures, the 

incorporation of the interaction term has imposed curvature to the response surface.  
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Figure 2.7 Response surface of 𝑔(𝑥) = 20 +  5𝑥1  +  3𝑥2 − 𝑥1𝑥2. 

 

 

Figure 2.8 Contour plot of 𝑔(𝑥) = 20 +  5𝑥1  +  3𝑥2 − 𝑥1𝑥2. 
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(2) Second-order experimentation: after the best solution using first order methods is 

obtained, a second order model is fit in the region of the first order solution to evaluate 

curvature effects and to attempt to improve the solution. The general form of second-order 

model is as follows: 

𝑔(𝑥) =  𝛼0 +∑𝛼𝑖𝑥𝑖

𝑘

𝑖=1

+∑𝛼𝑖𝑖𝑥𝑖
2

𝑘

𝑖=1

+∑∑𝛼𝑖𝑗𝑥𝑖𝑥𝑗

𝑘

𝑗=2𝑖<𝑗

 

The parameters of the polynomials models are usually determined by least squares 

regression analysis by fitting the response surface approximations to existing data. These 

approximations are normally used for prediction within response surface methodology 

(RSM). A polynomial model may not seem a reliable and precise model for approximating 

the non-linear functions of arbitrary shape over the whole design space; however, it is 

accurate enough for approximating relatively small portion of the true function, and it is 

difficult to take enough sample points in order to estimate all of the coefficients in the 

polynomial equation, particularly in high dimensions.  A complete discussion of response 

surfaces and least squares fitting is presented in Ref. [22].  

Similar to the response surface model, the method of Kriging may also be used to 

characterize the responses as a combination of a polynomial model plus localized 

departures, characterized by a Gaussian process. Based on the observed experimental data 

and a covariance structure, the kriging method can predict the response value for any 

unobserved parameter setup. The kriging parameters can usually be estimated using the 

method of Maximum Likelihood Estimates. Detailed discussion of parameter estimation 

can be found in Ref. [23]. For small problems with relatively few sample points, fitting a 

kriging model is rather trivial. However, as the size of the problem increases and the 
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number of sample points increases, the added effort needed to obtain the “best” kriging 

model may begin to outweigh the benefit of building the approximation. Besides, 

prediction with a kriging model requires the inversion and multiplication of several 

matrices which grow with the number of sample points. Hence, for large problems 

prediction with a kriging model may become computationally expensive as well.  

2.3.4.4 Artificial intelligence 

Another category of data-driven methods that have been applied for AM process 

optimization is artificial intelligence (AI), which aims at “training” a black-box model 

based on a large training data set. More detail about the fundamentals of AI methods can 

be found in Ref. [24]. These algorithms include, but are not limited to, Support Vector 

Machine, Neural Network, Bayesian Network, and their extensions. With a large training 

data set, AI algorithms usually provide accurate estimations of parameter-feature relations. 

For instance, Lu et al. [25] applied the method of least square support vector machine (LS-

SVM) to investigate the relation between mechanical properties of parts and process 

parameters such as laser power, traverse speed, and the powder feed rate in LENS. 

Validated by using fabricated thin-walled parts, the method of LS-SVM is reported to 

accurately predict the deposition height when a large sample of parts is used to train the 

model. Similar successful applications of AI methods were performed by Casalino and 

Ludovico [26], which uses Feed Forward Neural Network (FFNN) to model a laser 

sintering process, and by Wang et al. [27] which adopts Bayesian Probability Network to 

characterize a laser bending process. DLD process optimization for controlled layer height 

can also be accomplished using advanced/intelligent computational methods such as the 

Mutable Smart Bee Algorithm (MSBA) and Fuzzy Interference System (FIS), and 
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unsupervised machine learning approaches such as Self-Organizing Maps (SOM) [28]. 

Despite these successful studies, the application of AI methods is rather rare in the literature 

of AM at large. This is because the key to a successful application of AI methods is 

enormous training data that can be used to estimate the process model, which usually 

results in extremely high experimental costs. Moreover, due to the proprietary nature of 

DLD experimental data, data sets are often hard to obtain. 

2.4 Summary 

The optimization of LBAM process is essential to building LBAM parts with 

enhanced mechanical properties and improved quality. This requires the combination of 

the optimization in powder material design/preparation and the corresponding optimal 

LBAM processing parameters. Thus, efficient process parameter optimization is essential 

for the establishment of a material process database, realizing a simplified, precise and 

stable control of AM treatment of versatile powder materials for industrial applications.  

In order to achieve enhanced or optimal quality for LBAM parts, it is essential to 

understand and characterize how LBAM process parameters affect thermal history, 

solidification, and eventually microstructural/mechanical properties. This remains an open 

research area due to the large number of process parameters (e.g., laser power, laser 

velocity, powder feed rate, layer thickness, hatching pitch, scanning pattern, etc.) involved 

during LBAM. Most of the existing studies seek only optimal process parameters via 

extensive experimental data or simulation. A major limitation of this approach is that the 

resulting optimal process parameters may not be useful when experimental conditions (e.g., 

process or material) change—resulting in new experiments to-be-conducted from scratch. 

Further research is needed to (i) leverage the information from existing studies and (ii) 
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systematically characterize the relation between process parameters and part features so 

that the LBAM process can be optimized in a more efficient manner. 

This challenge of process optimization is further compounded by the interactions 

among LBAM parameters. In reality, it may not be practical to incorporate all process 

parameters in either experimental or analytical studies. Ignorance of such higher-order 

interaction effects, taking place during the LBAM process, causes systematic uncertainty 

in the resulting models and experimental results. Process uncertainty is associated with the 

initial (latent heat exchange) and evolutionary (dendritic) solicitation, and conductive, 

convective, and radiative heat transfer. For instance, the spatial/temporal scale for LBAM 

is relatively small for conduction heat transfer and thus thermal responses can be difficult 

to measure and model—especially or the material (which is not detectable). Such 

uncertainties will not only affect the microstructure but also the mechanical features of the 

fabricated parts. In addition, there lies considerable uncertainty in melt-pool depth (and 

other dimensions) due to uncertain heat transfer and fluid/part wetting behavior (contact 

angles unknown). Further research is needed to systematically incorporate uncertainty 

when optimizing the LBAM process. 
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CHAPTER II 

ACCELERATED PROCESS OPTIMIZATION FOR LASER-BASED ADDITIVE 

MANUFACTURING BY LEVERAGING SIMILAR PRIOR STUDIES 

2.5 Introduction 

Additive Manufacturing (AM) processes can be utilized to generate physical 

objects directly from a digital model, layer by layer—providing an opportunity to generate 

complex-shaped, functionally graded, or custom-tailored parts that can be utilized in a 

variety of engineering applications. New AM technologies have been recently identified as 

potentially disruptive by manufacturing researchers, practitioners, and public media [29–

31]. AM processes are now capable of generating metallic parts such as stainless steel [32–

34], Ti-6-Al-4V [35,36], and nickel-based alloys (e.g., Inconel 625 and 718 [37]) and this 

has allowed AM to transition from solely producing visualization and functional prototypes 

to producing end-parts for direct use. Many real-world end-parts produced using Laser-

Based Additive Manufacturing (LBAM) have recently been reported. These include fuel 

nozzles produced using Selective Laser Melting (SLM) for GE Aviation’s LEAP engine 

[38,39] and Airbus’s brackets in its A300/A310 models, which promise to achieve 30–55% 

weight reduction and 90% raw material usage [40]. Direct end-part production has 

contributed to 34.7% of the total product and service revenue from AM, a significant 

increase from only 3.9% in 2003 [39]. Although LBAM has been used for generating parts 

for real-world industrial application, many challenges remain in achieving its full potential 

and unlocking the many opportunities that it offers [4]. 
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LBAM relies on the successful layer-to-layer adhesion of melted powder with solid 

material. A directed energy source, a laser beam being a common example, is utilized to 

ensure phase-change of the utilized powders. Powders can either be deposited co-axially 

with the directed energy source—that is, Directed Energy Deposition—or deposited to 

form a bed first and then selectively melted; that is, Laser Powder Bed Fusion (PBF-L). 

There are many controllable process parameters that can affect the layer-to-layer adhesion 

and solidification heat transfer during LBAM—and such parameters have a direct impact 

on the properties of the produced part [41]. For example, in SLM (a well-known PBF-L 

process), these parameters include laser power, laser velocity, layer (bed) thickness, hatch 

distance between successive passes of the laser within the same layer, etc. [42]. Most 

existing studies that are related to the optimization of LBAM processes can be categorized 

into two groups: physics-based methods and data-driven methods. Physics-based methods 

primarily rely on differential equations that govern the underlying thermo-mechanical 

process [16,43]. Data-driven methods, on the other hand, circumvent the challenge of 

characterizing underlying thermo-mechanical processes and are based on empirical 

experimental data and the statistical/intelligent learning methods [17,25,26,44]. 

Recent efforts in data-driven methods for LBAM center on using a traditional 

Design of Experiment (DoE) approach, such as two-level fractional factorial design 

[17,44], full-factorial design [33,45], and response surface methods [46,47]. Other papers 

have studied the effect of SLM process parameters on the resulting density of SLM parts; 

however, the process parameters were selected arbitrarily without the use of formal 

experimental design [32,48,49]. Despite these successful efforts, one important drawback 

of DOE methods is that most of them do not utilize results from existing studies or the 
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domain of public knowledge pertaining to the LBAM process. As a result, when the 

experimental conditions (such as, materials, process type/scale, etc.) change, new sets of 

experiments are required prior to process optimization, thus leading to higher experimental 

costs. 

The purpose of this study is to present a methodology that accelerates process 

parameter optimization in LBAM by leveraging prior information from similar, but non-

identical, studies, of which there are numerous examples in the literature, due to recent 

advances in AM technologies. Instead of seeking an unknown global optimal value, the 

objective of the proposed optimization method is to develop an efficient experimental 

procedure that seeks to identify the optimal process parameters that result in a targeted 

value of a mechanical/physical property, which is usually specified by the design or 

application of the part. A DOE method that utilizes data from prior studies may have first 

been presented by Vastola [50], who presented a two-step optimization process requiring, 

first, a large batch of initial experiments and, second, multiple smaller batches of sequential 

experiments. In this particular method, a large number of experiments may be required; for 

example, in its initial/first phase, 18 experiments are needed when only two process 

parameters are taken into account [50]. In contrast, the method presented herein, which is 

a generalization of the Sequential Minimum Energy Design (SMED) method first proposed 

by Dasgupta [51], directly utilizes prior data from previous studies as the initial 

experimental data and incorporates it into sequential optimization experiments. In other 

words, the process optimization begins with sequential experiments directly without 

generating initial experiments, resulting in a smaller number of time- and cost-intensive 

experiments. 
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One challenge in leveraging prior data is to account for the differences in 

experimental conditions from which they originated, such as the original equipment 

manufacturer of the LBAM system, scale of machines, raw material characteristics, etc. 

Due to these differences, the experimental results for a given material (e.g., density, 

mechanical strength, geometric accuracy, etc.) between prior and current studies may be 

different. Figure 2.9 illustrates the concept of our proposed method. In this figure, the 

horizontal axis represents a given process parameter (𝑥), and the vertical axis represents 

the objective function (relative density as an example). The 𝑓2(𝑥) curve is the true unknown 

density function in the current study and we aim to reach its optimum. The 𝑓1(𝑥) and 𝑓3(𝑥) 

curves represent unknown density functions in two different prior studies. The true 

objective functions from the current and prior studies do not exactly overlap due to 

different experimental conditions. Clearly, we cannot fully rely on the reported data in the 

prior studies (two diamonds on 𝑓1(𝑥) and one triangle on 𝑓3(𝑥)) because they do not 

exactly sit on the 𝑓2(𝑥) curve. 

 

 

Figure 2.9 Difference between prior and current studies. 
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The method presented herein characterizes such difference of responses (i.e., 

experiment results) between the prior and current studies (DRPCS for short) using 

probability distributions. With this characterization, results from prior studies are used to 

guide the optimization experiments of the current study and data from the current study 

are, in turn, used to update the DRPCS distribution. In this presented method, a closed-

form expression for updating this distribution to further reduce the computational load and 

streamline the optimization process is developed. The efficiency and performance of the 

presented method is examined using a series of simulation studies and a real-world case 

study using an experimental test based on the SLM process. 

The remainder of this article is organized as follows: Sec. 2.6 describes a 

knowledge-guided optimization process via the efficient utilization of data from related 

prior studies. In Sec. 2.7, a series of simulation studies and a real-world case study are 

presented to evaluate the performance of the proposed method. Finally, in Sec. 2.8, 

concluding remarks and directions for future work related to LBAM process optimization 

are provided. 

2.6 Methodology: accelerated process optimization by leveraging related but 

non-identical prior studies 

We propose an accelerated process optimization methodology for LBAM by 

leveraging related, but non-identical, prior studies and designing experiments for the 

current study based on SMED [51,52]. In what follows, we first review the SMED method 

developed by Dasgupta and then generalize the SMED method to utilize knowledge from 

prior studies and account for the differences in experimental conditions. 



 

64 

2.6.1 Sequential Minimum Energy Design (SMED) 

SMED is a novel DOE method that balances the objectives of optimization and 

space-filling. For example, assume that we need to determine the parameter values for 𝑛 

potential design points 𝒔1, 𝒔2, … , 𝒔𝑛 that maximize a response function 𝑦(𝒔). Here, the 

response can be any experimental result of interest, such as, relative density, strength, etc.; 

and each design point 𝒔𝑖 is a vector that represents a combination of process parameters to 

be tested via experimentation. To account for the optimization objective (maximizing 𝑦(𝒔) 

for instance), more design points of 𝒔1, 𝒔2, … , 𝒔𝑛 should be placed in the range of 𝒔 that 

have higher potential of resulting in optimal values of 𝑦(𝒔). On the other hand, the range 

of 𝒔 with lower optimization potential should also be tested, i.e., space-filling, to avoid the 

case where the optimization algorithm is trapped in local optima.  

To do this, SMED assigns a positive electrical charge to each design point (i.e. 

combination of parameters). The charged design points repel each other and occupy 

positions within the design space so as to minimize the total potential energy. The resulting 

positions of these electrical charges correspond to the minimum energy design points. The 

mathematical formulation of the SMED is summarized below: Let 𝑞(𝒔𝑖) be the charge of 

the 𝑖th design point 𝒔𝑖. The potential energy between any two design points 𝒔𝑖 and 𝒔𝑗 is 

equal to 𝑞(𝒔𝑖)𝑞(𝒔𝑗)/𝑑(𝒔𝑖, 𝒔𝑗), where 𝑑(𝒔𝑖, 𝒔𝑗) represents the Euclidean distance between 

𝒔𝑖 and 𝒔𝑗. Therefore, the total potential energy for 𝑛 charged design points, 𝒔1, 𝒔2, … , 𝒔𝑛 is 

given by 

 𝐸𝑛 = ∑ ∑ 𝑞(𝒔𝑖)𝑞(𝒔𝑗)/𝑑(𝒔𝑖, 𝒔𝑗)
𝑛
𝑗=𝑖+1

𝑛−1
𝑖=1  (3.1)  

The optimal parameter values of 𝒔1, 𝒔2, … , 𝒔𝑛, based on SMED, can be obtained by 

choosing 𝒔1, 𝒔2, … , 𝒔𝑛 that minimize the total potential energy 𝐸𝑛.  
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The charge function 𝑞(𝒔) is selected based on the optimization objective. In the 

previous example, in which the objective is to choose 𝒔 to maximize 𝑦(𝒔), 𝑞(𝒔) should be 

selected to be a decreasing function of 𝑦(𝒔). Hence, any design point 𝒔 with a low 𝑦(𝒔) 

value results in a high value of the charge 𝑞(𝒔) and thus strongly pushes other design points 

away. In contrast, a design point with a high 𝑦(𝒔) value corresponds to a low charge, which 

allows for more design points to exist in the neighborhood of 𝒔. Therefore, the number of 

design points 𝒔1, 𝒔2, … , 𝒔𝑛 will be higher in the range of 𝒔 that tends to maximize the 

objective function 𝑦(𝒔).  

SMED allows the addition of 𝒔1, 𝒔2, … , 𝒔𝑛 in a sequential manner under the 

constraint of minimizing the total potential energy E, represented by Eq. 3.1. To add a new 

design point 𝒔𝑛+1, the response at 𝒔𝑛+1 (i.e. 𝑌𝑛+1) is predicted using inverse distance 

weighting (IDW) as follows: 

 �̂�𝑛+1 =
∑ |𝒔𝑛+1−𝒔𝑗|

−2𝑛
𝑗=1  𝑦𝑗

∑ |𝒔𝑛+1−𝒔𝑗|
−2𝑛

𝑗=1

 (3.2)  

where |𝒔𝑛+1 − 𝒔𝑗|
−2

 is the coefficient that captures the effect of 𝒔𝑗 on �̂�𝑛+1 for 𝑗 = 1, … , 𝑛. 

The predicted  �̂�𝑛+1 value is used to calculate the corresponding charge function 

𝑞(𝒔𝑛+1) for all possible choices of 𝒔𝑛+1. The new design 𝒔𝑛+1 that minimizes total 

potential energy E will be selected for the next experiment. 

Figure 2.10 demonstrates an illustrative example of applying SMED to LBAM 

process optimization based on some available real experimental data. The vertical axis 

represents laser power and the horizontal axis represents laser velocity. These are two 

major factors that significantly affect part density. In this contour plot, the black color 

corresponds to design points (i.e., combination of process parameters) resulting in part 
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build with low density, and the light gray color represents design points resulting in high 

part density. It can be observed that the SMED method tends to assign larger charges to 

design points that result in lower part density, so that these design points push other design 

points away to reduce the number of experiment runs in low density areas, and vice versa. 

One limitation of SMED is the fact that it was not developed to account for experimental 

data from prior studies, thus requiring the generation of all design points within the current 

study. When the experimental conditions (e.g., original equipment manufacturer of the 

LBAM system, scale of machine, raw material characteristics, etc.) or target properties 

(e.g., relative density, tensile strength, elastic modulus, fatigue life, roughness, etc.) 

change, SMED cannot be used to incorporate the results from prior non-identical studies. 

 

Figure 2.10 Applying SMED to LBAM process optimization. 

 

2.6.2 Accelerated Process Optimization (APO) based on SMED 

We extend and generalize the SMED method to accelerate LBAM process 

optimization by utilizing data from prior studies. Hence, the availability of a few prior 

studies including some experimental data is a major assumption of the presented method. 
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However, directly using data from prior studies may cause error in the optimal process 

parameters of the current study, due to variations in experimental conditions. Our method 

characterizes the DRPCS using probability distributions. The prior data, with DRPCS, are 

used to guide the optimization experiments of the current study before any experimental 

data of the current study are generated. Once data are obtained from the current study, prior 

data, current data, and DRPCS are used to generate the next design point for the 

optimization experiment. In particular, responses for the next batch of experiments are 

predicted using a generalized formula of IDW. Based on the predicted responses, design 

points that minimize the total potential energy are selected for the next batch of 

experiments, and the corresponding experimental data are collected. If the experimental 

results meet a pre-specified criterion, the optimization algorithm is stopped; otherwise, 

these data are added to the existing database to update the distribution of DRPCS and 

generate the next batch of experiment designs using the Bayesian method. The Bayesian 

method allows for updating the parameters of the posterior distribution of DRPCS using 

empirical data, which eventually converge to their true values even though the initial values 

of the parameters of prior distributions may not be accurate. In other words, as long as 

reasonable values of the prior parameters are used, the posterior parameters updated using 

experimental data will eventually be close to their true values. An overall framework of 

our proposed accelerated process optimization (APO) method is summarized in Figure 

2.11. 
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Figure 2.11 Framework of the proposed accelerated process optimization (APO) 

method. 

 

2.6.2.1 Characterizing DRPCS 

Denote data from prior studies by (𝒙𝑖, 𝑢𝑖) for 𝑖 = 1, 2, … , 𝑛𝑝, where 𝒙𝑖 is the 𝑖th 

design point from prior studies, 𝑢𝑖 the corresponding response, and 𝑛𝑝 the number of data 

points from prior studies. Pairs of (𝒙𝑖, 𝑢𝑖)’s have been reported in the literature. In the rest 

of this article, we use lower case letters to represent deterministic known variables; and use 

upper case letters for random variables. Let random variable 𝑌𝑖 represent the part property 

corresponding to design point 𝒙𝑖 under the experimental conditions of the current study. 

Due to the difference in experimental conditions between the current and prior studies, the 

true value of 𝑌𝑖 is unknown and is thus represented by a random variable. At design point 

𝒙𝑖, the difference between the reported response from prior studies 𝑢𝑖 and the actual 

unknown response from the current study 𝑌𝑖—that is, DRPCS—is characterized by another 

random variable 𝜆𝑖. That is, 𝜆𝑖 = 𝑌𝑖 − 𝑢𝑖 , for  𝑖 = 1, 2, … , 𝑛𝑝. The value of DRPCS 𝜆𝑖 is 
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unknown. In other words, we define 𝜆𝑖 as 𝜆𝑖 = 𝑌𝑖 − 𝑢𝑖  for the ith design point. 𝑢𝑖 is the 

deterministic experimental data collected in the prior experiments, and 𝑌𝑖 is the unknown 

response of the current experimental conditions. Without further knowledge, we assume 

that 𝑌𝑖 follows a normal distribution, which is a common assumption about uncertainty. 

Hence, 𝜆𝑖 = 𝑌𝑖 − 𝑢𝑖 also follows a normal distribution.  Therefore, we assume that 𝜆𝑖 

follows a prior normal distribution  𝑁(𝛽𝑖, 𝜔𝑖
2), as the normal distribution is the most 

natural choice in this case. 𝛽𝑖 represents the prior mean and 𝜔𝑖
2 is the prior variance of 𝜆𝑖, 

which may be obtained via expert opinions and domain knowledge. We specify the 

parameters values of (𝛽𝑖, 𝜔𝑖
2) based on two cases: 

• Case 1: If the domain or expert knowledge about the difference between the current 

and prior studies is available, the values of 𝛽𝑖 and 𝜔𝑖
2 can be specified using the 

domain/expert knowledge. 

• Case 2: If the domain/expert knowledge is not available, we set 𝛽𝑖 = 0 and 𝜔𝑖
2 = 𝜌𝜎2, 

where 𝜌 is a tuning parameter and 𝜎 is measurement error within the current system. 

In our simulation studies and case study, we let 𝜌 = 0.5. 

Regardless of the values for prior parameters of (𝛽𝑖, 𝜔𝑖
2), the posterior distribution of 𝜆𝑖 

updated with the experimental data from the current study will converge to the true 

distribution by virtue of Bayesian updating. The choice of the values of prior parameters 

only affects the rate of convergence.  

The prior distribution of 𝜆𝑖 is updated using the experimental data obtained from 

the current study so that the accuracy of the estimated DRPCS can be improved. We denote 

experimental data to be collected from the current study by (𝒔𝑗, 𝑌𝑗), for 𝑗 = 1,2, …, where 
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𝒔𝑗 represents the 𝑗th design point in the current study, and 𝑌𝑗 the resulting response. 𝑌𝑗 may 

be subject to measurement error or there may exist variability in 𝑌𝑗. Thus, we let 𝑣𝑎𝑟(𝑌𝑗) =

 𝜎𝑗
2 represent possible error/uncertainty in 𝑌𝑗. In fact, 𝜎𝑗 represents measurement error of 

the system or data variation of 𝑌𝑗’s. For each 𝒔𝑗, we obtain repeated measurements of 𝑌𝑗 

and use the empirical standard deviation of 𝑌𝑗 to estimate 𝜎𝑗. 

2.6.2.2 Predicting the response at new design points 

In some real world applications, it may be more efficient to design experiments in 

the form of batches, so that the total time spent on experiments may be reduced. Our 

proposed method allows for predicting the responses of design points in batches and 

generating batch experiments with any integer size 𝑏. In what follows, we develop the 

formula for predicting experiment responses at new design points of the current study 𝑌�̂� 

‘s. We present the formula for two phases: Phase 1 (Initialization), in which the data of the 

current study has not been generated; and Phase 2 (Iterative Experimentations), in which 

the data of the current study have been generated in an iterative manner.  

Phase 1 (Initialization): In the initialization phase—that is before experimental 

data are generated from the current study—we only use the prior results, with DRPCS, to 

optimize the current study. We directly apply Eq. 3.2, the IDW formula by Dasgupta [53] 

to predict  𝑌�̂�’s, as shown below.  

�̂�𝑗 =
∑ |𝒔𝑗 − 𝒙𝑖|

−2𝑛𝑝
𝑖=1

 (𝑢𝑖 + 𝜆𝑖)

∑ |𝒔𝑗 − 𝒙𝑖|
−2𝑛𝑝

𝑖=1

 

Phase 2 (Iterative Experimentations): When data are generated from the current 

study, the original IDW formula does not apply because DRPCS are included in the data 
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of prior studies, whereas, the data of the current study does not include DRPCS terms. We 

generalize the IDW formula so as to simultaneously account for batch experiments and 

prior data. 

Assume that the available experimental data from the current study are represented 

by (𝒔𝑗, 𝑦𝑗), for 𝑗 = 1,2, … , 𝑛𝑐, where 𝑛𝑐 represents the number of data points available in 

the current study. Note that 𝑛𝑐 is not a fixed constant, instead, the value of 𝑛𝑐 increases by 

batch size 𝑏 after each batch of experiments in the current study. In what follows, we 

predict the response values of the next batch of experiments; that is, 𝑌𝑗
′𝑠 for 𝑗 = 𝑛𝑐 +

1,… , 𝑛𝑐 + 𝑏. If the experimental data from the current study are generated in batches, we 

need to define the index of its experimental batch. For 𝑌𝑗, ⌊
𝑗−1

𝑏
⌋ is the index of the last batch 

of experiments before 𝑌𝑗, where ⌊⋅⌋ is the floor function. For example, for experiments with 

batch size of 𝑏 = 4, there are 2 batches of experiments before 𝑌9; and 𝑌9 is the 1st 

experiment in its experimental batch, because 𝑌9 = 𝑌2×4+1. With this notation, 𝑛𝑐 =

 ⌊
𝑗−1

𝑏
⌋ 𝑏. 

The predicted value of  𝑌𝑗 is dependent on response data in previous 

batches 𝑦1, 𝑦2 , … , 𝑦⌊𝑗−1
𝑏
⌋𝑏

 and data from prior studies 𝑢1, , … , 𝑢𝑛𝑝. We predict  𝑌𝑗 by 

generalizing the IDW formula represented by Eq. 3.2 to account for its dependency on prior 

data and batch experiments. The generalized IDW formula of our approach for a new 

design point 𝒔𝑗 is expressed as follows: 
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�̂�𝑗 =
∑ |𝒔𝑗−𝒙𝑖|

−2𝑛𝑝
𝑖=1  (𝑢𝑖+𝜆𝑖)+∑ |𝒔𝑗−𝒔𝑗′|

−2⌊
𝑗−1
𝑏
⌋𝑏

𝑗′=1
 𝑦
𝑗′

∑ |𝒔𝑗−𝒙𝑖|
−2
+ ∑ |𝒔𝑗−𝒔𝑗′|

−2⌊
𝑗−1
𝑏
⌋𝑏

𝑗′=1

𝑛𝑝
𝑖=1

 (3.3) 

=∑𝑤𝑗,𝑖

𝑛𝑝

𝑖=1

(𝑢𝑖 + 𝜆𝑖) +∑ 𝑣𝑗,𝑗′𝑦𝑗′
⌊
𝑗−1
𝑏
⌋𝑏

𝑗′=1
 

Where 

 𝑤𝑗,𝑖 =
|𝒔𝑗−𝒙𝑖|

−2

∑ |𝒔𝑗−𝒙𝑖|
−2
+ ∑ |𝒔𝑗−𝒔𝑗′|

−2⌊
𝑗−1
𝑏
⌋𝑏

𝑗′=1

𝑛𝑝
𝑖=1

 represents the weight coefficient of data from 

prior studies, and 𝑣𝑗,𝑗′ =
|𝒔𝑗−𝒔𝑗′|

−2

∑ |𝒔𝑗−𝒙𝑖|
−2
+ ∑ |𝒔𝑗−𝒔𝑗′|

−2⌊
𝑗−1
𝑏
⌋𝑏

𝑗′=1

𝑛𝑝
𝑖=1

 the weight coefficient of data 

from previous batches of experiments in the current study.  

The charge function 𝑞(𝒔) is a positive, decreasing function of the objective 

function 𝑦(𝒔). For instance, to maximize the relative density of parts built via LBAM, the 

objective function 𝑦(𝒔) is the relative density of parts. Since the relative density of a part 

ranges from 0 to 1, a natural choice of charge function is 𝑞(𝒔) = (1 − 𝑦(𝒔))𝛾, where 𝛾 is 

a positive tuning constant. A new SMED point 𝒔𝑗minimizes the total potential energy 𝐸, 

which consists of three components: the potential energy of the design points from prior 

studies, the potential energy of the design points from the current study, and potential 

energy between these two groups. The total potential energy function including 𝑌𝑗 is 

expressed as follows: 
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𝐸𝑗 = ∑ ∑
𝑞(𝒙𝑖)𝑞(𝒙𝑖′)

𝑑(𝒙𝑖,𝒙𝑖′)

𝑛𝑝

𝑖′=𝑖+1

𝑛𝑝−1

𝑖=1
+ ∑ ∑

𝑞(𝒔𝑗)𝑞(𝒔𝑗′)

𝑑(𝒔𝑗,𝒔𝑗′)

𝑗
𝑗′=𝑗+1

𝑗−1
𝑗=1 +

                      ∑ ∑
𝑞(𝒙𝑖)𝑞(𝒔𝑗)

𝑑(𝒙𝑖,𝒔𝑗)

𝑗
𝑗=1

𝑛𝑝
𝑖=1

  (3.4) 

The new design point in the current study can be obtained by solving 𝒔𝑗 =

argmin 𝐸𝑗 . Finding SMED for the next batch of experiments, namely 𝑌𝑗
′𝑠 for 𝑗 = 𝑛𝑐 +

1,… , 𝑛𝑐 + 𝑏, is a computationally difficult problem. We can adapt the optimal design 

algorithms used in the literature such as simulated annealing [54] and stochastic 

evolutionary algorithm [55] for our purpose. Different from these methods, we 

implemented the exchange algorithm to generate 𝑌𝑗
′𝑠 for 𝑗 = 𝑛𝑐 + 1,… , 𝑛𝑐 + 𝑏 based on 

Eq. 3.4.  The main idea of the exchange algorithm is that an initial proposed batch of 

potential design points is updated by exchanging one of its design points with a potential 

one, given that the new design point decreases the total energy. The exchange algorithm 

has been successfully implemented to generate the batches of SMED [50,56,57]. The 

details of the exchange algorithm can be found in the textbook by Fedorov and Hackl [58]. 

We do not include the detailed algorithm and the corresponding properties in this article 

due to page limitations. 

2.6.2.3 Updating DRPCS 

Theorem 1 presents the analytical form of the posterior distribution of DRPCS, 𝜆𝑖, 

updated using data from the current study (𝒔𝑗, 𝑌𝑗), for 𝑗 = 1,… , 𝑛𝑐, which are generated in 

batches of size 𝑏. Theorem 1 shows that the posterior distribution of DRPCS still follows 

a multivariate normal distribution with specific parameters. 
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Theorem 1: Assume that DRPCS terms, 𝜆𝑖  are independent and identically 

distributed random variables following the prior distribution 𝑁(𝛽𝑖, 𝜔𝑖
2) for 𝑖 = 1, 2, … , 𝑛𝑝. 

The posterior distribution of 𝝀, with 𝝀 = (𝜆1, … , 𝜆𝑛𝑝)′, updated using experimental data 

from the current study {(𝒔𝑗 , 𝑦𝑗):  𝑗 = 1, 2, … , 𝑛𝑐} still follows a multivariate normal 

distribution with mean vector 𝝁𝝀 = 𝜦
−1𝜼 and covariance matrix 𝚺𝝀 = 𝜦−1, where 𝜂𝑖 is the 

𝑖th element of vector 𝜼 and 𝛬𝑖,𝑘 the (𝑖, 𝑘)th element of matrix 𝜦.  𝛬𝑖,𝑘 and 𝜂𝑖 can be 

expressed as follows: 

𝜂𝑖 =∑
𝑤𝑗,𝑖𝛿𝑗

𝜎𝑗
2

𝑛𝑐

𝑗=1

+
𝛽𝑖
𝜔𝑖2

 

Λ𝑖,𝑘 =

{
 
 

 
 
∑

𝑤𝑗,𝑖
2

𝜎𝑗
2

𝑛𝑐

𝑗=1

+
1

𝜔𝑖2
  𝑎𝑛𝑑  𝑖 = 𝑘

∑
𝑤𝑗,𝑖𝑤𝑗,𝑘

𝜎𝑗
2

𝑛𝑐

𝑗=1

, 𝑎𝑛𝑑  𝑖 ≠ 𝑘

 

where 

𝑤𝑗,𝑖 =
|𝒔𝑗 − 𝒙𝑖|

−2

∑ |𝒔𝑗 − 𝒙𝑖|
−2
+ ∑ |𝒔𝑗 − 𝒔𝑗′|

−2⌊
𝑗−1
𝑏 ⌋𝑏

𝑗′=1

𝑛𝑝
𝑖=1

 

𝑣𝑗,𝑗′ =
|𝒔𝑗 − 𝒔𝑗′|

−2

∑ |𝒔𝑗 − 𝒙𝑖|
−2
+ ∑ |𝒔𝑗 − 𝒔𝑗′|

−2⌊
𝑗−1
𝑏 ⌋𝑏

𝑗′=1

𝑛𝑝
𝑖=1

 

𝛿𝑗 = 𝑦𝑗 −∑𝑤𝑗,𝑖

𝑛𝑝

𝑖=1

𝑢𝑖 −∑ 𝑣𝑗,𝑗′𝑦𝑗′
⌊
𝑗−1
𝑏
⌋𝑏

𝑗′=1
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Proof. Let 𝑔(𝝀|𝒚) represent the posterior function of 𝝀 given data from the current 

experiment 𝒚, where 𝒚 = (𝑦1, … , 𝑦𝑛𝑐)′. We estimate the expression of 𝑔(𝝀|𝒚) using the 

Bayesian formula. That is, 

𝑔(𝝀|𝒚) ∝ 𝜋(𝝀)𝐿(𝝀|𝒚) 

where 𝜋(𝝀) represents the prior distribution of 𝝀 and 𝐿(𝝀|𝒚) the likelihood function of 𝝀 

given 𝒚. Recall that 𝜆𝑖 follows a normal prior distribution 𝑁(𝛽𝑖, 𝜔𝑖
2). Since it is assumed 

all prior data are from different independent sources, the corresponding DRPCS terms are 

also assumed to be independent. Thus, the expression of 𝜋(𝝀) can be represented as the 

product of 𝑛𝑝 probability density functions as follows: 

𝜋(𝝀) =∏(2𝜋𝜔𝑖
2)
−1
2

𝑛𝑝

𝑖=1

𝑒𝑥𝑝 {
−1

2𝜔𝑖2
(𝜆𝑖 − 𝛽𝑖)

2} 

By expanding the prior distribution of 𝜆𝑖 we can re-write 𝜋(𝝀) according to the 

terms involving 𝜆𝑖
′𝑠 as follows (see Appendix A for a detailed calculation): 

 

𝜋(𝝀) ∝ 𝑒𝑥𝑝 {
−1

2
∑

𝜆𝑖
2

𝜔𝑖2
+∑

𝜆𝑖𝛽𝑖
𝜔𝑖2

𝑛𝑝

𝑖=1

𝑛𝑝

𝑖=1

} 

In what follows, we determine the closed-form expression of likelihood function 

𝐿(𝝀|𝒚) and the probability distribution determined by 𝑔(𝝀|𝒚). 
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Developing likelihood function 𝐿(𝝀|𝒚): 

The likelihood function 𝐿(𝝀|𝒚) has the same expression as the probability density 

function (pdf) of Y given parameter 𝝀 and data from prior studies; that is, 𝑓(𝒀|𝝀, 𝒖). As 

the design points of the current study are generated in a sequential manner, the resulting 

responses 𝑌1, 𝑌2 , … , 𝑌𝑛𝑐are dependent. In this regard, the functional form of 𝑓(𝒀|𝝀, 𝒖) 

cannot be expressed directly. Based on the conditional probability principles, the functional 

form of 𝑓(𝒀|𝝀, 𝒖) can be calculated by multiplying the conditional distribution of 

𝑌1, 𝑌2 , … , 𝑌𝑛𝑐. Hence, we can represent 𝑓(𝒀|𝝀, 𝒖) as follows: 

𝑓(𝒀|𝝀, 𝒖) =  ∏𝑓𝑗 (𝑌𝑗|𝑌1, 𝑌2 , … , 𝑌⌊𝑗−1
𝑏
⌋𝑏
, 𝒖, 𝝀)

𝑛𝑐

𝑗=1

 

 

The conditional distribution of 𝑌𝑗 , for 𝑗 = 1,… , 𝑛𝑐, follows a normal distribution 

𝑌𝑗 |(𝑌1, 𝑌2 , … , 𝑌⌊𝑗−1
𝑏
⌋𝑏
, 𝒖, 𝝀) ∼ 𝑁(𝜇𝑗, 𝜎𝑗

2) 

where  

𝜇𝑗 = ∑ 𝑤𝑗,𝑖(𝑢𝑖 + 𝜆𝑖)
𝑛𝑝
𝑖=1

+ ∑ 𝑣𝑗,𝑗′𝑦𝑗′
⌊
𝑗−1

𝑏
⌋𝑏

𝑗′=1
. 

After combining terms that involve 𝜆𝑖’s, we express the likelihood function 𝐿(𝝀|𝒚) 

as follows (see Appendix B for a detailed calculation): 

𝐿(𝝀|𝒚) ∝  𝑒𝑥𝑝 {
−1

2
(∑𝜆𝑖

2

𝑛𝑝

𝑖=1

∑
𝑤𝑗,𝑖

2

𝜎𝑗
2

𝑛𝑐

𝑗=1

+ 2∑𝜆𝑖𝜆𝑘
𝑖≠𝑘

∑
𝑤𝑗,𝑖𝑤𝑗,𝑘

𝜎𝑗
2

𝑛𝑐

𝑗=1

) +∑𝜆𝑖∑
𝑤𝑗,𝑖𝛿𝑗

𝜎𝑗
2

𝑛𝑐

𝑗=1

𝑛𝑝

𝑖=1

−
1

2
∑(

𝛿𝑗

𝜎𝑗
)

2𝑛𝑐

𝑗=1

} 
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where 

𝛿𝑗 = 𝑦𝑗 − ∑ 𝑤𝑗,𝑖
𝑛𝑝
𝑖=1

 ; and 𝑢𝑖 − ∑ 𝑣𝑗,𝑗′𝑦𝑗′
⌊
𝑗−1

𝑏
⌋𝑏

𝑗′=1
. 

Developing the posterior probability density function 𝑔(𝝀|𝒚): 

Now by multiplying the expanded form of 𝐿(𝝀|𝒚) and 𝜋(𝝀), the posterior 

distribution of 𝜆𝑖 using Bayesian formula 𝑔(𝝀|𝒚) ∝ 𝜋(𝝀)𝐿(𝝀|𝒚) is expressed as follows 

(see Appendix C for a detailed calculation): 

𝑔(𝝀|𝒚) ∝ 𝑒𝑥𝑝 {
−1

2
(∑𝜆𝑖

2

𝑛𝑝

𝑖=1

(∑
𝑤𝑗,𝑖

2

𝜎𝑗
2

𝑛𝑐

𝑗=1

+
1

𝜔𝑖2
) + 2∑𝜆𝑖𝜆𝑘

𝑖≠𝑘

∑
𝑤𝑗,𝑖𝑤𝑖,𝑘

𝜎𝑗
2

𝑛𝑐

𝑗=1

)

+∑𝜆𝑖 (∑
𝑤𝑗,𝑖𝛿𝑗

𝜎𝑗
2

𝑛𝑐

𝑗=1

+
𝛽𝑖
𝜔𝑖2

)

𝑛𝑝

𝑖=1

} 

The resulting posterior distribution 𝑔(𝝀|𝒚) involves the 1st and 2nd order terms of 

𝜆𝑖’s, and thus represents the pdf of a multivariate normal distribution. However, the 

posterior mean vector and covariance matrix of 𝝀 are not in explicit forms.  

We utilize the canonical representation of a multivariate normal distribution to 

determine the posterior mean vector and covariance matrix of 𝝀. For a multivariate normal 

random variable 𝒛 with mean vector 𝝁 and covariance matrix 𝚺, the following two 

representations of multivariate pdf’s are equivalent: 

 

ℎ1(𝒛|𝝁, 𝚺) =
1

(2𝜋)
𝑛
2|𝚺|

1
2

𝑒𝑥𝑝 {−
1

2
(𝒛 − 𝝁)𝑇𝚺−1(𝒛 − 𝝁)}  

and 

  ℎ2(𝒛|𝜼, 𝚲) ∝ 𝑒𝑥𝑝 {𝑎 + 𝜼
𝑇𝒛 −

1

2
𝒛𝑇𝚲𝒛}. 
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These two representations of pdf’s are equivalent via the re-parameterizations: 

𝚲 = 𝚺−1, 𝜼 = 𝚺−1𝝁;  and 𝑎 = −
1

2
(𝑛 log(2𝜋) − log|𝚲| + 𝜼𝑇𝚲𝜼). 

Applying the canonical representation to 𝑔(𝝀|𝒚), we obtain the posterior mean 

vector and covariance matrix of 𝝀 as follows: 𝚺𝛌 = 𝚲
−1and 𝝁 = 𝚲−1𝜼, where (see 

Appendix D for a detailed calculation) 

Λ𝑖,𝑘 =

{
 
 

 
 
∑

𝑤𝑗,𝑖
2

𝜎𝑗
2

𝑛𝑐

𝑗=1

+
1

𝜔𝑖2
  𝑎𝑛𝑑𝑖 = 𝑘

∑
𝑤𝑗,𝑖𝑤𝑗,𝑘

𝜎𝑗
2

𝑛𝑐

𝑗=1

, 𝑎𝑛𝑑𝑖 ≠ 𝑘

 

𝜂𝑖 =∑
𝑤𝑗,𝑖𝛿𝑗

𝜎𝑗
2

𝑛𝑐

𝑗=1

+
𝛽𝑖
𝜔𝑖2

 

 

It is worth noting that the posterior distributions of 𝜆𝑖’s are closed-form expressions, 

which requires minimal computational resources and can be embedded in LBAM systems 

for process optimization. Also, 𝜦 is a real symmetric matrix and can always be inverted. 

This guarantees the existence of the posterior covariance matrix 𝚺𝝀. 

Although we assume independence among the prior distribution of 𝜆, our model 

can capture the dependence among prior data via specifying the values of the prior mean 

of 𝜆𝑖, namely 𝛽𝑖. The prior data form the same or similar experimental conditions tend to 

have similar values for 𝛽𝑖. For example, if we have 3 prior data from the same experimental 

condition, and we know that this experimental condition tends to generate parts with higher 

density than the current experimental condition, we may specify appropriate positive 

values of prior means; for example, 𝛽1 = 0.002, 𝛽2 = 0.003, 𝛽3 = 0.0025. If we have 2 

additional prior data from another experimental condition, which results in lower density, 
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we can set negative values of the corresponding prior means; for example, 𝛽4 =

−0.002, 𝛽5 = −0.003. Moreover, if 𝜆𝑖’s are dependent, this dependency will be captured 

in their posterior distribution. We showed, in Theorem 1, that posterior distribution of 𝜆𝑖′𝑠 

follows a multivariate normal distribution, which allows for dependence between the 𝜆𝑖 

values. 

2.7 Numerical studies 

We examine the efficiency and robustness of the proposed process optimization 

method via a series of simulation studies, which simulate the relative density of parts based 

on an empirical relative density model developed by Spierings et al.[59]; and a real-world 

case study, which aimed at maximizing the part density of SLM 17-4 PH stainless steel 

(SS). We measure the efficiency of the optimization method using the number of 

experiment runs needed to reach a targeted part relative density. In the simulation studies, 

we tested how different characteristics of DRPCS affected the efficiency of our proposed 

method. The results were compared to two existing DOE methods: traditional full factorial 

DOE and SMED. 

2.7.1 Simulation studies 

We performed a series of simulation studies so that we could generate prior data 

with various types of DRPCS and examine how they affect the efficiency of our proposed 

optimization method. We focused on the effect of four process parameters (laser power, 

laser velocity, hatch distance, and powder layer thickness) on the relative density of parts 

built via SLM, simulated using the empirical relative density function developed in Ref. 

[59] as shown in Eq. 3.5 and Figure 2.12 below: 
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 𝑦 = 0.92 + 12.2𝑎−1 − 514𝑎−2 + 4318𝑎−3 (3.5) 

in which a is the energy density  with 𝑎 =  
Laser Power

Laser Velocity × Hatch Distance × Layer Thickness
 . 

 

 

 

Figure 2.12 Empirical relation between relative part density and energy density [59]. 

This empirical model is resulted from a full factorial DOE for SLM built stainless 

steel 17-4PH/AISI-630 material. The type of SLM machine used in the experiments was a 

Concept Laser M2. A chess-board scanning structure was applied to fabricate tensile 

samples. Two levels were assumed for five process parameters as provided in Table 2.10. 

In addition, hatch distance was fixed at 0.0975mm. 

Table 2.10 DOE factors and levels applied for empirical density empirical function, Eq. 

3.5. 

Factors Level 1 Level 2 

Build orientation Vertical Horizontal 

Layer thickness (µm) 30 50 

Laser velocity (mm/s) 800 1300 

Laser power (W) 105 190 

 

Equation 5 was used to generate the 𝑦𝑗 values, the part density given the process 

parameters of the current study. To simulate 𝑢1, … , 𝑢𝑛𝑝, we artificially added DRPCS to 
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 𝑦𝑗 values computed using Eq. 3.5 that represent the differences in density caused by 

different experimental conditions in prior and current studies. Five different groups of prior 

data representing different types of DRPCS were generated as shown in Table 2.11, and 

the corresponding performance of our approach was examined and is reported in this 

section. For example, the first row of the Table 2.11 represents one prior data with a 

reported relative density of 50%; that is, u1 = 0.5. We set the corresponding DRPCS 

= −0.33, meaning that the true value of λ1 = −0.33. The true value of λi was only used 

for the purpose of data simulation. We did not use this information in the process of 

optimization. In the first four scenarios, we investigateed how different characteristics (e.g. 

sign and magnitude) of the DRPCS affect the number of experiments conducted. Two prior 

data points were used for the purpose of demonstration. In the 5th scenario, we increased 

the number of prior data points from 2 to 5 and examined the effect of 𝑛𝑝. 

 

 

 

 

 

 

 

 

 

 



 

82 

Table 2.11 Different types of DRPCS for SLM SS 17-4 PH. 

Data 

number 

Laser 

power 

(W) 

Laser 

velocity 

(mm/s) 

Hatch 

distance 

(mm) 

Layer 

thickness 

(mm) 

Relative 

density from 

prior studies 𝒖𝒊 
DRPCS 

Scenario 1: negative DRPCS 

1 50 1850 0.05 0.04 0.5 - 0.33 

2 120 1756 0.1 0.032 0.6 - 0.25 

Scenario 2: negative DRPCS (small magnitude) 

1 50 1850 0.05 0.04 0.63 - 0.16 

2 120 1756 0.1 0.032 0.70 - 0.13 

Scenario 3: negative and positive DRPCS 

1 50 1850 0.05 0.04 0.50 - 0.33 

2 120 1756 0.1 0.032 0.90 0.11 

Scenario 4: positive DRPCS 

1 50 1850 0.05 0.04 0.92 0.22 

2 120 1756 0.1 0.032 0.98 0.22 

Scenario 5: more prior data points 

1 50 1850 0.05 0.04 0.57 -0.24 

2 120 1756 0.1 0.032 0.65 -0.19 

3 70 1500 0.07 0.034 0.6 -0.22 

4 100 1200 0.08 0.036 0.74 -0.18 

5 60 604 0.1 0.038 0.7 -0.19 

 

We set the values of 𝛽𝑖 to zero, as there was no prior knowledge available. We also 

let 𝜔𝑖
2 = 3.5 × 10−2, as 𝜆𝑖 ranged from zero to one. We estimated 𝜎𝑗

2 using generated 

repeated measurements of 𝑌𝑗 and obtained that  𝜎𝑗
2 = 4 × 10−3. For all scenarios, we 

conducted simulation experiments with a batch size 𝑏 = 2. We considered 𝛾 = 3 for all 

simulation and case studies as the tuned parameter in the charge function 𝑞(𝒔) =

(1 − 𝑦(𝒔))𝛾, as it is recommended by Dasgupta [51]. (Note that a set of simulated 

experiments are shown in Appendix F to illustrate the superiority the optimization 

performance of 𝑞(𝒔) = (1 − 𝑦(𝒔))𝛾 for 𝛾 = 3 in our method.) 
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2.7.1.2 Comparing our approach with full factorial DOE 

We measure the number of experiments needed to reach a targeted relative density 

of 99.65%, which represents a reasonable target. This target value can be replaced by any 

other criterion. We first compare our approach with the full factorial design, which has 

been used by other researchers to optimize the SLM process [17,33,45].  Note that 

experiments using the full factorial design approach were performed at the same time, as 

opposed to a sequential manner. We vary the number of levels for each factor so that the 

optimal relative density could be achieved. The possible combinations of process 

parameters and levels that result in the targeted density are summarized in Table 2.12: 10 

levels for laser power, 3 levels for laser velocity, 3 levels for hatch distance, and 2 levels 

for layer thickness. Without considering replicated measurements, which leads to higher 

number of experiments, the minimum number of experiments needed to achieve the target 

density using the full factorial design approach was 10 × 3 × 3 × 2 = 180 experiments. 

In contrast, the maximum number of experiments needed to achieve the targeted density 

using our approach was 21. 

Table 2.12 Process optimization using full factorial DOE. 

Process Parameter Min Max Levels 

Laser power (W) 40 50 10 

Laser velocity (mm/s) 400 2000 3 

Hatch distance (mm) 0.05 0.15 3 

Layer thickness (mm) 0.03 0.01 2 
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2.7.1.3 Comparing our approach with sequential minimum energy design 

(SMED) 

We compare our approach with SMED approach proposed by Dasgupta [51]. 

Figure 2.13 compares the number of experiments under various scenarios needed to 

achieve the targeted relative density by applying both SEMD and our method. Figure 2.14 

illustrates percentage improvement in terms of the number of experiments by applying our 

method rather than SMED. Detailed experimental results are summarized in Appendix E. 

 

 

Figure 2.13 Comparison between SMED and our method’s performance. 

 

Figure 2.14 Resulted improvement by applying our method instead of SMED. 
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Since the SMED method does not account for the error in the prior data, we applied 

SMED to prior data without characterizing and updating DRPCS. We also report the 

computational time needed for each method and each scenario in Table 2.13. All 

computations were coded in MATLAB 2013 on a desktop with Intel Core i7 3.60 GHz 

processor and 16.0 GB RAM. We made the following observations: 

• The simulation studies show consistent improvement in the number of experiment runs 

of our proposed method, compared with SMED, this is due to our method being able 

to characterize the DRPCS distribution and update DRPCS using data from the current 

study. The updated distribution of DRPCS facilitates the generation of new 

optimization experiments. 

• When the magnitude of DRPCS increases, the improvement of our method is greater; 

for example, 16 to 27% (see scenarios 1 and 2 in Figure 2.14). This is because the 

strength of our method is characterization of DRPCS. On the other hand, when the 

magnitude of DRPCS is relatively insignificant, our method and SMED have a 

relatively similar performance.  

• The largest improvement in experiment runs (43%) is observed when there are positive 

and negative DRPCS (See scenario 3 in Figure 2.14). The DRPCS with different signs 

may occur when the prior data come from different sources, which might contradict 

each other. The simulation results of scenario 3 indicate that our method can be 

implemented to handle contradicting prior studies, as even if contradicting prior results 

are included in our database, our method is capable of updating the DRPCS using data 
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from the current study and eventually generating an accurate DOE for the purpose of 

optimization. 

• For all five scenarios, our method requires less computational time compared with 

SMED, as our method can obtain the optimal parameters with fewer experiments. 

Table 2.13 Computational time needed to obtain optimal process parameters. 

Scenario 
Computational time (Second) 

SMED Our method 

Negative DRPCS 44 16 

Negative DRPCS with small magnitude 51 27 

Negative and positive DRPCS 38 6 

Positive DRPCS 11 7 

More prior data points 13 11 

 

2.7.1.4 Comparing various charge functions 

We performed a sequence of numerical studies to examine the performance of our 

methodology with other possible choices of charge functions. Dasgupta [51] recommended 

the use of a charge function with the form 𝑞(𝑥𝑖) = (1 − 𝛼𝑝(𝑥𝑖))
𝛾
, where 𝛼 and 𝛾 are 

positive tuning constants with 𝛼 ≤ [𝑚𝑎𝑥𝑥𝑝(𝑥)]
−1. We used the recommended functional 

form of the charge function and compared the performance of our method and SMED for 

different values of the tuning parameters. Note that, in our model, 𝑝(𝑥) represents the 

relative part density and thus 𝛼 ≤ [𝑚𝑎𝑥𝑥𝑝(𝑥)]
−1 = 1. We varied the values of the tuning 

parameter 𝛾. To systematically compare the performance of our method with different 𝑞(𝑠) 

functions, we tested the performance of our methodology with different values of 𝛾(=

1,3,5) and for multiple scenarios of DRPCS (negative, positive, and both). The results are 

summarized in Table 2.1 (detailed numerical results can be found in Appendix F). 
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Table 2.1 Number of experiment runs needed to achieve the target density with various 

choices of change functions and various scenarios of DRPCS. 

Scenario of DRPCS Method 
Choices of charge function 

𝜸 = 𝟏 𝜸 = 𝟑 𝜸 = 𝟓 

Negative DRPCS 

 

SMED 12 22 38 

Our method 12 16 14 

Negative and positive DRPCS 

 

SMED 11 23 26 

Our method 11 13 26 

Positive DRPCS 
SMED 12 16 17 

Our method 11 14 14 

 

We observe that, for most cases (𝛾 = 3 or 5), our methodology requires fewer 

experiments to obtain the process parameters of the targeted density value, compared with 

SMED. When 𝛾 = 1, the performance of our method and SMED is similar, although our 

method has slightly better performance for the scenario of positive DRPCS. This is 

partially due to the correlation between the results of prior studies and current study being 

weak at low 𝛾 values. In this case, the incorporation of DRPCS does not have a significant 

impact on the predicted value of the response in the current study. Thus, our method and 

SMED have a similar performance. An extreme example is that 𝑞(𝑥) = 1 if 𝛾 = 0. In this 

case, experiment results are not correlated with each other, and prior results cannot be used 

to guide future experiments. 

2.7.2 Case study 

We verify the performance of our method in a real-world case study that aims at 

maximizing the relative density of parts (test coupons in this case) built in a ProX 100 SLM 

System using PH 17-4 SS powder (see Figure 2.15). The fabrication of steel alloys has 

been frequently studied in the literature on metal-based AM, including austenitic 316 L SS 

[32,60–62], H13 tool steel [63–65], and maraging steel [34,66]. In this case study, we focus 
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on precipitation hardening martensitic steel (17-4 PH SS) which is widely used in industrial 

applications that require a combination of high strength and a moderate level of corrosion 

resistance [67]. This alloy is more common than any other type of precipitation hardening 

SS, and has been frequently used in parts such as oil field valve parts, aircraft fittings, 

nuclear reactor components, paper mill equipment, missile fittings and jet engine parts [68]. 

Some researchers have studied the additive manufacture of 17-4 PH SS using SLM; 

focusing on its manufacturability and analyzing the resulting microstructural/mechanical 

properties of the manufactured samples [69–72]. 

 

Figure 2.15 ProX 100 SLM System (left) and test coupons (right). 

 

We found three prior studies that reported on the density of 17-4 SS parts fabricated 

via SLM [49,59,72]. Despite using the same type of SLM process, the capacities of these 

machines are different. For instance, the EOS M270 system used in the study of Gue et al. 

[73] can output a maximum laser power of 200W. The maximum relative part density is 

achieved when laser power is set at the level of 195W, which exceeds the maximum laser 

power capacity of our SLM system and that of Kumar and Kruth [72]. Thus, the optimized 

process parameters obtained from the study of Gue et al. [73] cannot be applied directly to 
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manufacturing fully dense parts in our study. Other than the maximum laser power, there 

exist differences in other experimental conditions, such as laser profile and powder 

morphology. One of the key differences is the powder feed mechanism. The SLM system 

used in our study uses a roller that first feeds the powder in the feeding piston, and then 

spreads the layer using counter-rotation, whereas the other systems used in the prior studies 

use a blade for powder feeding. A detailed summary of the experimental conditions of prior 

studies and our study are presented in Table 2.14. 

Table 2.14 Experimental conditions in prior and current studies for SLM of 17-4 PH 

SS. 

 
Prior study 1 

[73] 

Prior study 2 

[59] 

Prior study 3 

[74] 
Our study 

System 
EOS M270 

(EOS GmbH) 

M2 Laser 

CUSING 

(Concept Laser) 

In-house 

developed 

SLM machine 

ProX 100™ 

Maximum 

laser power 
200W 200W 150W 50W 

Laser spot 

diameter 
100-500µm 50-500µm N/A 70µm 

Raw powder 
GP1 by EOS 

(Proprietary) 

AISI-630 

Stainless steel 

(Standard) 

GP1 by EOS 

(Proprietary) 

PS4542A by 

3D Systems 

(Proprietary) 

Powder 

particle size 

distribution 

37.13µm mean 

diameter 

D10 = 16.4µm 

D50 = 26.8µm 

D90 = 42.7µm 

37.13µm mean 

diameter 

10 < D50 

<13.5µm 

D80 < 22µm 

 

Due to these differences in experimental conditions and the sensitivity of part 

density to process parameters, the optimal process parameters in these prior studies cannot 

be directly applied in our study. We applied the proposed knowledge-guided process 

optimization method and used data from prior studies (see Table 2.15) as prior data in our 

study.  
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Table 2.15 Experimental data from prior studies [49,59,72] 

Laser 

power(W) 

Scan 

velocity(mm/s) 

Hatch 

spacing(mm) 

Layer 

thickness(mm) 

Relative 

density(%) 

Prior study 1 [73] 

195 1200 0.1 0.04 98.66 

195 1100 0.1 0.04 99.75 

195 1000 0.1 0.04 99.75 

195 900 0.1 0.04 99.58 

195 800 0.1 0.04 100.00 

195 700 0.1 0.04 100.00 

195 600 0.1 0.04 99.83 

195 800 0.1 0.04 100.00 

170 679 0.1 0.04 100.00 

145 594 0.1 0.04 100.00 

120 492 0.1 0.04 99.63 

95 389 0.1 0.04 95.85 

70 287 0.1 0.04 94.60 

Prior study 2 [59] 

105 800 0.0975 0.03 98.44 

190 800 0.0975 0.03 100.00 

105 1300 0.0975 0.03 89.28 

190 1300 0.0975 0.03 99.29 

105 800 0.0975 0.05 88.53 

190 800 0.0975 0.05 99.12 

105 1300 0.0975 0.05 73.33 

190 1300 0.0975 0.05 91.53 

Prior study 3 [72] 

95 350 0.14 0.03 98.00 

 

The experiments were designed by batch size two; that is, 𝑏 = 2. For each design 

point of our study, we printed 4 samples to account for variability in the data. The 

experimental data of our study are shown in Table 2.2. We stopped the optimization 

process at the 5th experiment at a laser power of 49W, laser velocity of 350mm/s, hatch 

spacing of 0.05mm, and layer thickness of 0.03mm, which resulted in an average part 

density of 99.20%. We believe that this level of relative density is sufficiently high for 

many engineering applications. Moreover, this combination of process parameters is 
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exactly the recommended process parameters by the manufacturer, which was not used in 

our optimization procedure. In other words, our proposed optimization method can achieve 

the manufactured recommended setup within 5 experiments. 

Table 2.2 Density optimization data of the case study. 

 
Laser 

power(W) 

Laser 

velocity(mm/s) 

Hatch 

spacing(mm) 

Layer 

thickness(mm) 

Average 

relative 

density (%) 

1 50 300 0.07 0.03 98.41 

2 40 200 0.07 0.03 96.53 

3 50 200 0.14 0.03 92.27 

4 50 440 0.07 0.03 97.14 

5 49 350 0.05 0.03 99.20 

 

2.8 Summary and conclusions 

This article presented a novel approach for systematically optimizing controllable 

process parameters in LBAM processes via a novel sequential DOE approach. The 

proposed method was developed on the premise that studies related to various metal-based 

LBAM processes share similar transformations from raw material to final part (that is, 

powder melting) and thus the microstructural and mechanical properties of LBAM parts 

may be correlated, despite differences in experimental conditions, material properties, 

system capacity, etc. We utilized data from prior, related studies to accelerate and 

characterize the DRPCS using statistical distributions. We developed a closed-form 

expression to update the distribution of DRPCS using data from the current study. As a 

result, prior data can be directly used as initial experiments, and this reduces the total 

number of experiments needed for optimization. To evaluate the performance of our 

approach, we conducted a series of validation experiments that used an empirical relative 
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density model with four process parameters (laser power, laser velocity, hatch spacing, and 

layer thickness). We focused on the number of experiments needed to achieve a target 

relative density level. To test the performance of our method, we studied the effects of two 

key factors related to prior data: the signs and magnitudes of DRPCS. 

The results demonstrate significant promise for accelerating the optimization of 

LBAM processes. Comparisons with two benchmark models; full-factorial design, which 

does not account for the optimization objective, and SMED, which does not utilize prior 

data, illustrate the importance of leveraging prior data. We further verified our method 

using a real-world case study that aimed at optimizing the relative part density of PH 17-4 

SS parts using a SLM system. Optimized process parameters from prior studies could not 

be applied directly due to difference scales of LBAM systems. We utilized these studies as 

prior data and applied our optimization method. The optimal process parameters were 

achieved within five experimental runs. 

The proposed method is not limited to solely optimizing part density in parts built via SLM 

systems. In fact, the proposed methodology provides a formal framework for better 

understanding the similarities among AM machines and the correlation of 

microstructural/mechanical properties, not through complex physics-based models that are 

often computationally cumbersome but through a more practical approach that relies on 

building a genome (database) of related experiment studies and modeling correlations 

among the experimental data. The proposed method is established based on two major 

assumptions: first, the availability of prior experimental data from similar systems and, 

second, the normally distributed DRPCS together with the prior data to guide the process 

optimization. Assuming a normal distribution for DRPCS terms may be seen as a limitation 
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of the proposed method; however, it could be an appropriate and natural choice with which 

to start the study. Future work is needed to characterize the distribution of DRPCS. Also, 

there is a need to optimize multiple mechanical properties, which may be conflicting. 

Multi-objective optimization remains an open area, and more research efforts are needed 

to develop an efficient and effective optimization scheme. 
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CHAPTER III 

MULTI-OBJECTIVE ACCELERATED PROCESS OPTIMIZATION OF PART 

GEOMETRIC ACCURACY IN ADDITIVE MANUFACTURING 

2.9 Introduction 

2.9.1 Objective and hypothesis 

The goal of this work is the optimization of Additive Manufacturing (AM) process 

parameters at which parts with the least geometric inaccuracy are obtained. This goal is a 

key milestone in ensuring the commercial viability of AM. Despite extensive automation, 

the poor geometric consistency of AM parts prevents their use in mission-critical 

components in aerospace and defense applications [75]. Currently, cumbersome factorial-

based design of experiments tests are used to find the optimal set of AM process parameters 

that will minimize the geometric inaccuracy of the part, often assessed in terms of the 

geometric dimensioning and tolerancing (GD&T) characteristics. To overcome this 

challenge, the objective of this work is to develop and apply a multi-objective optimization 

approach to balance between multiple requirements, and thereby produce parts with the 

least geometric inaccuracy with the fewest trials. The central hypothesis is that 

decomposing the multi-objective problem of minimizing the geometric inaccuracy into a 

series of simpler single-objective optimization problems leads to reduction of experimental 

trials compared to conventional full factorial designed of experiments (DoE) method. This 

hypothesis is tested against experimental data from the Fused Filament Fabrication (FFF) 
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process. This work leads to understanding how to balance different GD&T characteristics 

specified for a part using FFF process parameters, namely, (If) and extruder temperature 

(te) as the primary control. 

2.9.2 Motivation 

The motivation for this work, stemming from our previous studies, is demonstrated 

in Figure 2.16 [6,76–78]. At the outset, we note that the intent of this example is not to 

claim that there is an inadequacy with the standardized geometric dimensioning and 

tolerancing (GD&T) characteristics but to illustrate the difficulty in balancing between 

several tight geometric accuracy requirements for an AM part (in terms of GD&T 

characteristics).  

For instance, Figure 2.16 shows the flooded contour plot for four different parts 

fabricated by FFF process. A flooded contour plot translates the geometric deviations of 

the part to the corresponding spatial locations in terms of colors. Each flooded contour plot 

in Figure 2.16 is constituted from 2 million three-dimensional coordinate data points for a 

benchmark test artifact part called circle-square-diamond used in this research; see Sec. 3.1 

for details. It is visually evident in Figure 2.16 that printing under different infill 

percentages (If)—a FFF process parameter—results in different part geometric accuracies. 

It is apparent that the parts in Figure 2.16 (a), (b), and (c) with If = 70, 80 and 90%, 

respectively, are better overall than the last one shown in Figure 4.1 (d) with If = 100% in 

terms of geometric accuracy; however, it is often difficult to find a set of process 

parameters that will globally minimize all the specified geometric inaccuracies. 
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Figure 2.16 Flooded contour plots (deviation maps) of the benchmark part used in FFF 

experiments detailed in Sec. 2.11.1. 

 

The material is ABS polymer. The first row (1) shows the top-views and the second row 

(2) contains the bottom-views of the parts. Figures a-d represent different parts, printed 

under 70%, 80%, 90%, and 100% infill percentages at 230 °C, respectively. The 

reference scale is in mm [6,76–78]. 

The geometric accuracy for parts shown in Figure 2.17 were specified in terms of 

GD&T characteristics, such as circularity, flatness, cylindricity, etc. (see Sec. 2.11.1 for 

details). Experimental data, plotted in Figure 2.17 reveals the difficulty in balancing 

between the geometric accuracy requirements based on adjusting a few process parameters. 

Specifically, in Figure 2.17 it is evident that both concentricity and flatness deviations for 

parts made by varying infill (If) and extruder temperature (te) cannot be minimized 

simultaneously. The combination of high If and low te tends to result in low deviations in 

concentricity (blue area in the upper left corner of Figure 2 (a)). However, the same process 

parameter set results in high level of geometric deviations in terms of part flatness (green 

area in the upper left corner of Figure 2.17 (b)). Accordingly, this work addresses the 
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following open research question in AM: what experimental plan is required to optimize 

process parameters with respect to multiple geometric accuracy requirements? 

 

Figure 2.17 Contour plot of (a) part concentricity and (b) flatness vs. infill percentage 

(𝐼𝑓) and extruder temperature(𝑡𝑒). 

 

2.9.3 Research challenges and overview of the proposed approach 

AM offers the unique opportunity to create complex geometries and tailored surface 

morphologies with multiple materials; enable rapid repairs and replacement of parts in 

battlefield environments; simplify the overall prototyping cycle; and significantly shorten 

the logistical supply chain [2]. Despite these paradigm-shifting capabilities, poor process 

repeatability remains an imposing impediment to commercial-scale exploitation of AM 

capabilities. The uncertainty associated with the morphology of the sub-surface and 

microstructure, surface finish, and geometry of the finished part is a major concern for use 

of AM parts in strategic industries important to the national interest, such as aerospace and 

defense [75].  

Efforts are ongoing in industry and academia to understand the causal AM process 

interactions that govern part quality. Thermo-mechanical models have been proposed as 
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an avenue for predicting the part properties, e.g., geometric shrinkage of AM parts [15,79]. 

However, the current research is in its embryonic stage and largely restricted to simple 

geometries such as cubes and cylinders. These elementary models cannot, as yet, capture 

the complex process interactions that affect parts with intricate geometries.  Accordingly, 

data-driven approaches for compensating for AM part geometry distortions have been 

recently proposed [8–10]. However, these studies are also restricted to elementary shapes, 

and are limited to modeling of uniaxial geometry deviations. 

Hence, in the absence of practically applicable physical models, DoE methods are 

employed to identify, quantify, and optimize key process parameters with respect to 

mechanical properties, such as surface roughness, fatigue, tensile strength, among others, 

in AM processes. These methods traditionally involve identifying existing patterns in 

experimental data; sampling the process space at predefined levels; and subsequently 

developing surrogate statistical models to approximate targeted objective functions. 

For most practical cases, several geometric accuracy requirements must be satisfied 

together. This is a multi-objective process optimization problem with multitude of open 

research challenges: 

• Understanding how to balance different GD&T characteristics specified for the part 

using process parameters as the primary control. 

• The correlations amongst responses of interest are not typically known a priori. There 

is often a tradeoff between different responses. A process parameter set that produces 

favorable results for one geometric characteristic of part (e.g., concentricity) may be 

detrimental for another geometric characteristic (e.g., flatness). 



 

99 

• Developing a reliable empirical model for multiple responses requires a large number 

of experimental runs. Hence, building parts with various AM processing parameters 

and subsequent testing for each response mandates significant investment of both time 

and resources.  

This work addresses these challenges by forwarding a Multi-objective Accelerated 

Process Optimization (m-APO) approach to find the AM process parameters that 

minimizes part geometric inaccuracies with fewer experimental trials compared to existing 

DOE methodologies. This method, presented in Sec. 3, consists of the following sequential 

steps: 

(1) The concept of scalarization is used to convert the multi-objective problem into a 

sequence of single-objective sub-problems. 

(2) The Accelerated Process Optimization (APO) method—developed in a previous study 

[1]—is used to solve the single objective sub-problems. 

(3) A stopping criterion is defined for the current sub-problem. 

(4) Sub-problems are chosen to uncover intermediate sections of the Pareto front (Pareto 

front is the set of non-dominated or non-inferior solutions in the objective space.). 

By applying the proposed multi-objective optimization scheme, experimental 

results from previous sub-problems are leveraged as prior data for the remaining sub-

problems to accelerate the multi-objective process optimization. Information captured from 

previous sub-problems facilitates an experimental design for accelerated optimization of 

the remaining sub-problems. This eschews conducting experiments again for each sub-

problem and this subsequently reduces experimental burden. The practical utility of the 

proposed methodology is validated in Sec. 2.12.1 for the geometric accuracy optimization 
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of parts made using FFF polymer AM process. The applicability of the approach to a 

broader set of challenging non-convex optimization domains is demonstrated in a series of 

simulation studies in Sec. 2.12.2. 

The remainder of this article is organized as follows. In Sec. 2.10, we review the 

existing literature addressing the problem of geometric accuracy optimization in AM 

processes and the multi-objective optimization techniques. In Sec. 2.11, the proposed 

approach is described in-depth. In Sec. 2.12, the proposed approach is demonstrated in 

context of the FFF process, as well as simulated cases. Lastly in Sec. 2.13, conclusions are 

summarized and directions for future work are discussed. 

2.10 Literature review 

We divide the literature review into two subsections: (1) the existing literature in 

AM process optimization specific to geometric accuracy; and (2) relevant multi-objective 

optimization approaches. 

2.10.1 Existing literature in geometric accuracy optimization in AM processes 

We summarize some of the existing research efforts pertaining to geometric 

accuracy in AM processes. Bochmann et al. [80] studied the cause of imprecision in fused 

filament fabrication (FFF) systems with respect to surface quality, accuracy and precision. 

They found that the magnitude of errors significantly varies in 𝑥, 𝑦 and 𝑧 directions. 

Mahesh et al. [81] proposed a benchmark part incorporating critical geometric features for 

evaluating the performance of rapid prototyping systems with respect to geometric 

accuracy. The proposed benchmark includes geometric features such as freeform surfaces 

and pass-fail features.  
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El-Katatny et al. [82] measured and analyzed the error in major geometric 

characteristics of specific landmarks on anatomical parts fabricated by the FFF  process. 

Weheba and Sanchez-Marsa [83] determined the optimal process settings for 

stereolithography (SLA) process with respect to surface finish, flatness, and deviations of 

diameter measures from nominal values. Second-order empirical models were developed 

for the different characteristics, but only a single set of process parameters was given as 

the optimal design. Indeed, there should be tradeoffs for the different responses. Tootooni 

et al.  [76,77] and Rao et al. [7] used a spectral graph theory methodology to quantify and 

assess geometric accuracy of FFF parts using deviations of 3D point cloud coordinate 

measurements from design specifications. Although the proposed indicator facilitates 

comparing the geometric accuracy of parts it DoEs not propose a relationship between 

process parameters and geometric accuracy in terms of GD&T characteristics. Huang et al. 

[8–10] developed a framework to model part shrinkage in SLA, thereby optimizing 

shrinkage for better geometric accuracy. This work is limited to elementary geometric 

shapes and DoEs not determine an optimal range of process parameters for the best 

geometric accuracy of parts.   

Experimental data from our initial screening studies (see Sec. 2.11.1) show that the 

optimization of geometric accuracy for AM parts is a multi-objective optimization problem 

(i.e., the correlations among geometric characteristics are negative). As an example of 

multi-objective optimization in AM, Fathi and Mozaffari [28] optimized the direct energy 

deposition process in terms of three response characteristics—clad height (deposition layer 

thickness), melt-pool depth and dilution —in a two stage manner. First, empirical models 

that represent the relationship between the key process parameters, i.e., laser power, 
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powder mass flowrate, and scanning speed, and the two response characteristics were 

developed using a smart bee algorithm and a fuzzy inference system. Then, in the second 

stage, NSGA-II (Non-dominated Sorting Genetic Algorithm)—a well-known multi-

objective optimization evolutionary algorithm—is employed to achieve the best Pareto 

points in the objective space. Although this work was able to handle a multi-objective 

process optimization problem, it required several experimental runs (50 experiments) to 

establish a set of viable empirical models.  As mentioned previously, the prohibitive 

experimental effort remains an intrinsic challenge with the conventional DoE methods. 

2.10.2 Background in multi-objective optimization 

Multi-objective optimization methods can be grouped in two main categories: (i) 

scalarization or aggregation-based methods; and (ii) evolutionary algorithms [84]. 

Scalarization methods, which represent a classic approach, combine multiple objective 

functions into a single-objective problem, enabling the use of single objective optimization 

methods to solve the problem [85]. These methods are not adaptable for the current multi-

objective geometric accuracy optimization problem in AM because the individual objective 

functions are not explicitly known.  In contrast, evolutionary algorithms iteratively 

generate groups of potential solutions that represent acceptable compromises between 

objective functions [86]. The disadvantage of this approach is that the objective functions 

require a large number of candidate solutions to be evaluated, i.e. many AM experiments 

for the current multi-objective geometric accuracy optimization problem.  

Other multi-objective optimization approaches share similar disadvantages. For 

instance, Kunath et al. [87] applied a full factorial design of experiments for three process 

parameters to develop a set of regression models as the functional form of objective 
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functions representing the binding properties of a molecularly imprinted polymer. Then by 

assigning predefined desirability values, i.e., weight coefficients, for dependent response 

variables, a range of process parameters resulting in the highest desirability values is 

introduced as optimal. Again, this approach presents challenges for most AM processes 

since many process parameters are involved and a large number of experiments may be 

required to fit regression models within tight confidence bounds. Therefore, there are 

critical research gaps and numerous technical challenges pertaining to process optimization 

for geometric accuracy of multiple AM part geometric characteristics. 

2.11 Methodology 

2.11.1 Description of the experimentally obtained geometric accuracy data 

A systematic optimization approach for improving the geometric accuracy of AM 

parts is motivated by the experimental response data collected for a benchmark part. The 

presented experimental data in this work is generated in the authors’ previous research 

[6,76–78]. The so-called circle-diamond-square part is designed as the benchmark part of 

interest for geometrical optimization (Figure 2.18) [88,89]. This is based on the NAS 979 

standard part used in the industry for assessing the performance of CNC machining centers 

[90]. Circle-diamond-square is useful for assessing the performance of AM machines with 

respect to part geometric accuracy. For instance, the outside square (lowest layer) can be 

used to measure the straightness of an individual axis and the squareness across two axes 

in FFF. The diamond feature (middle layer) can be used to measure the rotation among two 

axes (i.e., from the bottom to middle layer). The large circle feature (top layer) can be used 

to measure the circular interpolation of two axes [88,91]. By axes we refer to the FFF 

machine gantry on which the nozzle is rastered. 
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Figure 2.18 Design of the circle-square-diamond part.  

A simplified embodiment of the NAS 979 standard test artifact for testing accuracy of 

machining centers [90]. The dimensions are in millimeters. (a) and (b) are front view and 

top view of the part, respectively; and (c) is an isometric projection of the part [6,76–78]. 

Five important GD&T characteristics are specified: flatness, circularity, 

cylindricity, concentricity and thickness (see Figure 2.19). These GD&T characteristics are 

chosen because they are independent of the feature size - also called regardless of feature 

size (RFS) characteristics. More detail about GD&T characteristics can be found in [92]. 

We did not specify positional tolerances on the part because matching a datum surface from 

laser scanned point cloud data was found to be exceedingly error prone. Additionally, we 

concede another weakness with this work; it is likely that the GD&T characteristics 

specified for the circle-square-diamond test artifact might entail that the part is over 

tolerated or constrained and probably beyond the capability of the desktop FFF machine 

used in this work. Our rationale is to use this test artifact, albeit as an extremely contrived 

case, to explore a larger theme — understanding how to balance different GD&T 

characteristics specified for the part using FFF process parameters, namely, (If)  and 

extruder temperature (te) as the primary control. This is the primary contribution of this 

work. 
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Figure 2.19 The areas used to measure GD&T form the design part. 

Sub-figure (a) shows the faces used to measure flatness ( ), circularity ( ), and 

cylindricity ( ); and (b) shows the planes used to measure the thickness – three thickness 

measurements are taken on each plane [6,76–78]. 

The aim is to minimize the magnitude of deviations within these five GD&T 

characteristics of parts from the targeted design specifications. A NextEngine HD 3D laser 

scanner was used to capture part geometric data and the QA Scan 4.0 software1 was used 

to estimate the deviations from the targeted design specifications [6,76–78]. Figure 2.17 

(see Sec. 2.9.2) shows examples of contour plots of absolute value for deviations within 

flatness and concentricity versus two controllable FFF process parameters: infill 

percentage (If) and extruder temperature (te). 

In practice, the laser scanning is a heuristic process that requires adhering to a 

carefully attuned procedure, particularly, in the manner in which the part is aligned to the 

computer-aided design (CAD) model to obtain consistent results.  The alignment step 

requires matching of at least four landmark points from the raw point cloud data with CAD 

model. Several trials are conducted and herewith summarized is a method that showed the 

                                                 
1 http://www.nextengine.com/products/qa-scan/intro 
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least variability. Four points each on the square and diamond portions are used to align the 

part as depicted in Figure 2.20. Additionally, laser scanning was conducted on a sturdy, 

vibration-free table in a darkened closure, and by coating the part with a thin layer of anti-

reflective gray modeling paint. 

The data scatter plot matrix for the GD&T characteristics, called correlation matrix 

is shown in Figure 2.21. The slope of lines represents the Pearson correlation coefficient 

(ρ) for pairs of GD&T characteristics. It is evident from Figure 2.17, Figure 2.21, and Table 

2.17 (see Sec. 2.12.1) that flatness and concentricity are not positively correlated (ρ =

−0.21). Similarly, thickness and concentricity are negatively correlated (ρ = −0.63). In 

other words, it is not possible to simultaneously optimize GD&T characteristics. Hence, 

optimization for geometric accuracy is best considered as a multi-objective optimization 

problem, and the set of process parameters setups should considers the tradeoff between 

multiple geometric characteristics. 

 

Figure 2.20 The eight points used for alignment of the scan points with the CAD model. 
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Figure 2.21 The representation of the data scatter plot matrix to illustrate both positive 

and negative correlations among pairs of part geometric characteristics.  

The slope of lines illustrates the Pearson correlation coefficient (ρ) for pairs of GD&T 

characteristics. 

2.11.2 Multi-objective process optimization 

The aim of this section is to elucidate the mathematical foundation for multi-

objective process optimization in AM. We illustrate the case with two objective functions. 

The proposed methodology is extensible to multi-objective cases. 

2.11.2.1 Scalarization of multi-objective optimization and Pareto front 

The methodology developed herein is a generalization of an existing Accelerated 

Process optimization (APO) methodology, developed in the form of maximization [1]. A 

minimization problem can be expressed in the form of maximization by multiplying the 

objective function by negative sign (and vice versa). 

Suppose the problem is to maximize two objective functions (or response variables  

Y1 and Y2). The bi-objective maximization problem is expressed as follows: 
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 Max𝐘 (𝐬) = (Y1(𝐬), Y2(𝐬))
′
 (4.1) 

s. t.     𝐬 ∈ 𝐒 

𝐘(𝐬) denotes the vector of objective functions (Y1(𝐬), Y2(𝐬))
′
, and 𝐬 is the vector 

of process parameters (e.g., infill percentage (If) and extruder temperature (te)); and 𝐒 

denotes the design space, which includes all possible values of 𝐬. The objective space, i.e., 

the set of all possible response vectors 𝐘 corresponding to the design space, is denoted by 

𝐂 = {(Y1(𝐬), Y2(𝐬))
′
∈ ℝ2: 𝐬 ∈ 𝐒}.  

For most AM applications, the functional expressions of (Y1(𝐬), Y2(𝐬)) are 

unknown; the empirical relationship between geometric accuracy responses and AM 

process parameters is yet to be understood and quantified. Moreover, the correlation 

between Y1(𝐬) and Y2(𝐬) is also unknown. Higher value of Y1(𝐬) may result in lower value 

of Y2(𝐬) or converse. In other words, the optimized process parameters for Y1 may not 

necessarily result in favorable Y2 due to the possible low or even negative correlation 

between two response variables. For instance, concentricity and flatness shown in Figure 

2.17 are negatively correlated. Consequently, improving the response value of flatness will 

result in worsening concentricity. Therefore, the optimal solution to the multi-objective 

optimization problem is non-unique. Our objective is to develop a systematic and 

sequential DOE procedure that efficiently identifies sets of optimal solutions as a tradeoff 

between such contradictory response behaviors. 

For this purpose, the optimization problem is converted into a sequence of single-

objective problems by defining weight coefficients for each objective. In this way, the bi-

objective optimization problem can be presented as a sequence of single objective 
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optimization problems, each defined by the sub-problem index variable h, with h =

1,2,3, … ,m as shown below: 

 Max Zh(𝐬) = γ1
h. Y1(𝐬) + γ2

h. Y2(𝐬) (4.2) 

s. t.     𝐬 ∈ 𝐒    

 where     γ1
h + γ2

h = 1 

γk
h ≥ 0     ,     ∀ k = 1, 2 

 

For each sub-problem with index h, γk
h denotes weight coefficient corresponding 

to the kth objective function. k = 1 and k = 2 in the formulation above, satisfying the 

constant γ1
h + γ2

h = 1. Different weight coefficients correspond to different sub-problems 

and will accordingly lead to different optimal solutions. 

For example, consider a sub-problem with  γ1
1 = 0.8 and γ2

1 = 0.2. In this case, the 

single objective optimization problem is expressed in the form of Max (0.8Y1(𝐬) +

0.2Y2(𝐬)). The weight coefficients (γk
h) are graphically shown in Figure 2.22 by the tangent 

of a line, which represents the desired search direction for the current single objective 

maximization function (sub-problem h). Changing the corresponding weight coefficients 

changes the single objective function being optimized. For example, consider a second sub-

problem with  γ1
2 = 0.2 and γ2

2 = 0.8; the optimum solution for problem Max (0.2Y1(𝐬) +

0.8Y2(𝐬)) is not the same as that in the first sub-problem. In real-world applications 

simultaneously achieving the best individual solution for two negatively correlated (or 

uncorrelated) objectives is intractable.  Hence, in these cases, the optimum solution is a 

subset of objective space 𝐂 which can recognize and identify the best tradeoff among the 
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value of Y1 and Y2. In what follows, we discuss in details the approach to identify the sets 

of process parameter setups that results in an optimal objective value with different weight 

coefficients. 

 

Figure 2.22 Schematic illustration of design space, objective space, non-dominated 

design points, Pareto points and Pareto front. 

 

We focus on identifying the Pareto optimal solutions associated with the multi-

objective optimization problem. A Pareto optimal solution is not dominated by any other 

feasible solution and represents the best compromise between multiple objective functions. 

We define each member of Pareto optimum as a design point 𝐬∗ ∈ 𝐒 if and only if there is 

no other  𝐬 ∈ 𝐒  such that Yk(𝐬) ≥ Yk(𝐬
∗) for k = 1, 2. Here, 𝐬∗ is called a non-dominated 

design point and its corresponding response vector in the objective space is a Pareto point, 

Yk(𝐬
∗). Regarding geometric accuracy optimization, a Pareto point indicates an optimal 

design point where there is no other solution that results in better values in term of any 

geometric responses. The Pareto optimum set is denoted by 𝐄. In the bi-objective 
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optimization problem shown in Eq. (4.1), the Pareto front representing response vectors of 

the Pareto set in the objective space 𝐂 is defined by 𝐇, that is 𝐇 = {(Y1(𝐬), Y2(𝐬))
′
∈

ℝ2: 𝐬 ∈ 𝐄}. Given two controllable process parameters for the purpose of demonstration 

the terms design space, objective space, non-dominated design point, the Pareto point and 

Pareto front for a bi-objective optimization problem are illustrated in Figure 2.22. 

2.11.2.2 Multi-objective Accelerated Process Optimization (m-APO) 

Our approach is to solve the bi-objective optimization problem presented in Eq. 

(4.2) by obtaining a well-distributed set of Pareto points and thereby approximate the 

Pareto front with reduced number of experimental runs. Conventional scalarization divides 

the multi-objective optimization problem into individual single-objective problems and 

optimizes them individually. The proposed Multi-objective Accelerated Process 

Optimization (m-APO) method, in contrast, leverages a knowledge-guided optimization 

approach based on the similarity among different sub-problems. The proposed 

methodology is initially developed by preliminary studies [93,94] to deal with multi-

objective AM process optimization problems. 

Each single objective sub-problem is solved using the Accelerated Process 

Optimization (APO) method, which uses results from prior experiments to accelerate the 

process optimization [1]. APO balances two important properties simultaneously, i.e., 

optimization and space-filling. For optimization, more trial runs are needed in the regions 

of 𝐬 which potentially result in the maximum value of the response function Zh(𝐬). In 

contrast, to avoid being trapped in a local optimum, the space-filling aspect is also 

considered. In the APO approach, each design point is assigned a so-called positive charge 
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denoted by qh(𝐬j). Selection of the charge function qh(𝐬) relies on the optimization 

objective. Considering the maximization objective in our case, the charge function qh(𝐬) 

should be inversely proportional to the weighted single objective response values Zh(𝐬) 

from Eq. (4.2) [1,51]. Thus, higher magnitude charges are assigned to design points with 

lower Zh(𝐬) and vice versa. Analogous to the physical laws of static charged particles, the 

design points repel each other apart to minimize the total electrical potential energy 

amongst them. Hence, design points with lower Zh(𝐬), i.e., with higher charge, strongly 

repel other design points. On the other hand, design points with higher Zh(𝐬), i.e., with 

lower electrical charge, accommodate more design points in their neighborhood. The 

resulting positions correspond to the minimum potential energy amongst charged particles. 

Accordingly, more design points with lower charge potentials (i.e., higher Zh(𝐬) values) 

are selected to sequentially maximize the objective function of interest in the current sub-

problem, i.e., Zh(𝐬). 

The potential energy between any two design points 𝐬i and 𝐬j is equal to 

q(𝐬i)q(𝐬j)/d(𝐬i, 𝐬j), where d(𝐬i, 𝐬j) represents the Euclidean distance between 𝐬i and 𝐬j. 

Hence, total potential energy function within hthsub-problem including the nth new design 

is formulated as follows: 

 En
h = ∑ ∑

qh(𝐬i)q
h(𝐬j)

d(𝐬i,𝐬j)

n
j=i+1

n−1
i=1  (4.3) 

The new design point can be obtained by solving 𝐬n = argmin En
h. 
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Figure 2.23 Leveraging the information from prior data to accelerate solving subsequent 

sub- problems. 

 

At each step, Pareto points are identified based on the non-domination concept. 

Afterwards, the appropriate weight coefficients for the next sub-problem are chosen to lead 

the next sub-problem optimization in such a way that maximizes the distribution of the 

Pareto points. Instead of solving each optimization sub-problem individually and 

independently, experimental data obtained from previous sub-problems are used as prior 

data to accelerate optimization process for the subsequent sub-problems. For example, in 

Figure 2.23 experimental data from sub-problem 1 and 2 (represented by segments a-b-c-

d and e-f-g, respectively) accelerate the optimization process for sub-problem 3 (segments 

h-i). In other words, fewer numbers of experiments are needed to reach the Pareto point 

corresponding to the sub-problem 3. This is due to the fact that experimental data obtained 

from previous sub-problems contribute to designing experiments for the next sub-

problems. Hence, we do not need to design the experiments from scratch for each sub-

problem. This process is continued until the improvement in the resulting Pareto front is 



 

114 

insignificant. The area dominated by Pareto points on the objective space is used to 

measure the efficiency of the resulting Pareto points. The proposed method accelerates the 

bi-objective optimization process by jointly solving the sub-problems in a systematic 

manner. In fact, the method maps and scales experimental data from previous sub-problems 

to guide remaining sub-problems that improve the Pareto front while reducing the number 

of experiments required. The algorithm is described herewith in detail, and summarized in 

Figure 2.24. 

 

Figure 2.24 Multi-objective Accelerated Process Optimization (m-APO) flowchart. 
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• Step1: Decomposing master problem into sub-problems 

The master bi-objective optimization problem Max 𝐘(𝐬) = (Y1(𝐬), Y2(𝐬))
′
(see Eq. 

(4.1)) is decomposed into a sequence of single objective functions, each of which is 

expressed as a convex combination of the objective functions (see Eq. (4.2)). We initialize 

the algorithm with optimizing two boundary sub-problems with (γ1
1 = 0, γ2

1 = 1) and 

(γ1
2 = 1, γ2

2 = 0). The solution to the first two sub-problems resulted in two end points of 

the Pareto front (i.e., points d and g in Figure 2.23).  

• Step2: Solving sub-problems via accelerated process optimization (APO) 

Using APO [1], we sequentially design experiments to optimize the constructed 

single objective sub-problems. Experimental data generated from previous sub-problems 

are treated as prior data for subsequent sub-problems. Assuming that weight 

coefficients (γ1
h, γ2

h) are determined, all the design points represented in the response 

vector form, (𝐬𝐢, 𝐘𝐢), are converted to the form of weighted single-objective response data 

as (𝐬𝐢, Zi
h) in the framework of APO. 

The design points and corresponding weighted single objective response are 

incorporated and applied throughout the APO algorithm, i.e., 𝐬𝐢 and Zi
h(𝐬𝐢) = γ1

h. Y1(𝐬𝐢) +

γ2
h. Y2(𝐬𝐢). All the experimental data attained during the optimization process of prior sub-

problems (i.e., sub-problems 1,2, … , h − 1) are transformed and fed into the APO of the 

hth sub-problem as prior data to accelerate optimization process of the current sub-problem 

by predicting the weighted single objective responses in a more accurate manner. The new 

design point can be obtained by solving 𝐬𝐧 = argmin En
h, where En

h is the total energy 

function defined in Eq. (4.3). Detailed discussion about the computation of the energy 
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function and predicting the single-objective response values for the new untested design 

points can be found in Ref. [1]. 

• Step3: Defining stopping criteria for sub-problems 

To define the stopping criteria, we use the Hyper-Volume (HV) metric as measure 

of the Pareto points’ contribution [95]. By definition, HV is the volume in the objective 

space dominated by resulting Pareto points; a higher HV results in better coverage of the 

Pareto front and thus provides the better solution. In Figure 2.25 light gray area is the HV 

associated with gray Pareto points. ∆HV, which is the contribution of new Pareto point, is 

represented by the dark gray rectangle area. The algorithm is repeated designing 

experiments for the current sub-problem until ∆HV is less than a pre-specified threshold  

(i. e. , ∆HV < ε1). The proposed algorithm stops continuing introducing further sub-

problems and designing more experiments when we do not observe significant 

improvement in ∆HV (i. e. , ∆HV < ε2). 

 

Figure 2.25 Schematic illustration of HV (Hyper-Volume) as the measure of the 

contribution of Pareto points.  
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• Step4: Determining weight coefficients of subsequent sub-problems 

Based on the resulting Pareto points obtained at the end of each sub-problem, 

weight coefficients for the next sub-problem, 𝛄h, are calculated as follows. Noting that 

upper case letters represent the unknown variables in this paper, while lower case letters 

are used for known variables. Assuming that after solving the (h − 1)thsub-problem, the 

Pareto set 𝚽h−1 = {(𝐬1
∗, 𝐲1

∗), (𝐬2
∗ , 𝐲2

∗),… , (𝐬m
∗ , 𝐲m

∗ )} including m non-dominated design 

points and corresponding actual response vectors are obtained. Thereafter all the existing 

optimal parameter setups are sorted in increasing order of y1(𝐬) and labeled as 𝚿h−1 =

{𝐬(1)
∗ , 𝐬(2)

∗ , … , 𝐬(m)
∗ }. At this stage, the Euclidean distance between all of the neighboring 

Pareto points is calculated as follows: 

δj = |𝐲(𝐬(j+1)
∗ ) − 𝐲(𝐬(j)

∗ )|   for  j = 1,… , (m − 1) 

Then, the maximum gap on the existing Pareto front is determined by ∆=

maxj=1,…,(m−1)δj. If two neighboring Pareto points corresponding to ∆ are 𝐬a
∗ and 𝐬b

∗ , where 

 y1(𝐬a
∗) <  y1(𝐬b

∗), the weight coefficients for the next sub-problem is computed as 𝛄h =

ch(y2(𝐬a
∗) − y2(𝐬b

∗) ,  y1(𝐬b
∗) − y1(𝐬a

∗)), where ch is a constant leading to γ1
h + γ2

h = 1. 

Accordingly, we can achieve a uniform coverage of Pareto front in an efficient manner. 

2.12 Experimental and numerical studies 

We now apply and demonstrate the proposed approach to experimental and 

simulated data. We first apply our method to a real-world case study for minimizing the 

deviation in geometric characteristics of parts produced using FFF AM process. Since the 

experimental data includes measurement of five GD&T characteristics, we first use the 

PCA (Principal Component Analysis) procedure to reduce the dimension of objective space 
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to the first two PCs, which account for 88.15% of total data variation. Subsequently, the 

proposed optimization method is applied to minimize absolute values of the first two PCs. 

The results show that m-APO methodology achieves all true Pareto points in the objective 

space with 20% fewer experiments compared to a full factorial DOE plan. 

To further validate our methodology and test its robustness, we also conducted 

numerical studies with different number of input parameters and characteristics of 

objective space and Pareto fronts [95–98]. 

2.12.1 Experimental case study: multi-geometric characteristic optimization of 

parts fabricated by FFF system 

The aim of this section is to apply the proposed m-APO method for optimizing the 

geometric accuracy of AM parts. Samples are fabricated using a polymer extrusion AM 

process called Fused Filament Fabrication (FFF). They are made with acrylonitrile 

butadiene styrene (ABS) thermoplastic on a desktop machine (Makerbot Replicator 2X). 

A schematic of the FFF process is shown in Figure 2.26. Based on the initial screening 

designs we take two important controllable process parameters including percentage infill 

(If) and extruder temperature (tf) [6,76–78]. Extruder temperature is the temperature at 

which the filament is heated in the extruder. Infill relates to the density of the part, for 

instance 100% infill corresponds to a completely solid part. The target is to minimize 

absolute deviations concerning five major GD&T characteristics, namely flatness, 

circularity, cylindricity, concentricity and thickness, from the targeted design 

specifications. Since the m-APO methodology is expressed in the form of maximization 

problem, the response values in case study are multiplied by a negative sign. 
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Figure 2.26 A schematic diagram of the FFF process [76,77]. 

 

The twenty experimental data used in the present study are resulted from previous 

published works [6,76–78] which uses a full factorial DOE plan. Factors and levels 

corresponding to this design are illustrated by Table 2.16. 

Table 2.16 Levels of the process parameters applied to generate experimental data based 

on full factorial DOE plan. 

Te (°C) 220 225 230 235 240 

If (%) 70 80 90 100 

 

The correlation among deviations within GD&T characteristics is illustrated in 

Table 2.17 in terms of the Pearson correlation coefficient (ρ) for pairs of GD&T 

characteristics. The higher correlation coefficients are more noticeable compared with low 

coefficients. The correlation between cylindricity and circularity is extremely high (ρ =

0.93) in that both contribute to describing the circular feature of the test part in different 

ways. There is no any discernible pattern amongst the other GD&T correlations. In other 

words, the GD&T characteristics are positively correlated (e.g. ρ = 0.93 for cylindricity 
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and circularity); negatively correlated (e.g. ρ = −0.63 for concentricity and thickness); 

and nearly uncorrelated (e.g. ρ = 0.06 for cylindricity and thickness). 

Table 2.17 Signed correlation among GD&T characteristics of benchmark part samples. 

 

Principal component analysis is first applied to reduce the dimension of the 

objective space from five to two. Accordingly, the proposed bi-objective process 

optimization can be directly applied to the geometric accuracy optimization problem for 

FFF system. The principal component analysis results (see Table 2.18) show that 88.15% 

of variability within the parts’ geometric characteristics data is captured by the first two 

principal components (i.e., PC1 and PC2). Hence, the first two PCs can sufficiently describe 

the data variations with very negligible loss of information. All the five variables contribute 

to the PC1 by positive coefficients (Table 2.19). Flatness, circularity and cylindricity are 

about equally important to PC1 with largest weight. Although concentricity’s contribution 

is negligible in PC1, thickness plays a significant role in this component. Hence, PC1 can 

be considered as representative of average deviations within all GD&T characteristics. 
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However, we see an unique pattern within PC2’s coefficients. The variables that are related 

to the analogues features—i.e., circularity, cylindricity and concentricity—contribute to 

PC2 with negative coefficients. Hence, PC2 can be inferred as difference of deviations 

within two clusters of geometric characteristics: roundness characteristics (circularity, 

cylindricity and concentricity) and others (flatness and thickness). 

Table 2.18 The 88.15% of variability within the parts’ geometry characteristics data is 

captured by the first two principal components. 

 𝐏𝐂𝟏 𝐏𝐂𝟐 𝐏𝐂𝟑 𝐏𝐂𝟒 𝐏𝐂𝟓 

Standard deviation 1.576 1.3866 0.58981 0.46713 0.16190 

Proportion of variance 0.497 0.3845 0.06958 0.04364 0.00524 

Cumulative proportion 0.497 0.8815 0.95112 0.99476 1 

 

Table 2.19 Illustrating principal components' coefficients. 

 𝐏𝐂𝟏 𝐏𝐂𝟐 𝐏𝐂𝟑 𝐏𝐂𝟒 𝐏𝐂𝟓 

Flatness 0.5046 0.2895 -0.7181 -0.3824 0.0481 

Circularity 0.5854 -0.1598 0.4859 -0.1831 0.6016 

Cylindricity 0.5607 -0.3161 0.1710 0.0901 -0.7404 

Concentricity 0.0650 -0.6677 -0.4659 0.5000 0.2877 

Thickness 0.2895 0.5895 0.0425 0.7496 0.0687 

All the five variables contribute in the PC1 by positive coefficients. Flatness, circularity 

and cylindricity are about equally important to PC1 with largest weight. 

Using the first two PCs the geometric accuracy optimization problem is formulated 

as follows: 

Min𝐏𝐂 (𝐬) = (|PC1(𝐬)|, |PC2(𝐬)|)
′ 

s. t.     𝐬 ∈ 𝐒 

𝐏𝐂(𝐬) denotes the vector of first two principal components of deviations within 

GD&T characteristics of the part; 𝐬 the vector of process parameters; and 𝐒 the design 

space. 
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After conducting 20 experiments using full factorial DOE plan, we attain three 

Pareto points in the objective space (red dots in Figure 2.27). Note that the Pareto set in 

this case study naturally forms a convex Pareto front. After choosing a random initial 

experiment (blued dot in Figure 2.27) we iteratively apply m-APO. The m-APO 

methodology leads to the same Pareto points after 16 experimental runs, which translates 

to a 20% reduction of experiment runs compared with full factorial design. Optimal process 

parameters and GD&T characteristics corresponding to the Pareto points are presented by 

Table 2.20. 

Table 2.20 Optimal process parameters and corresponding GD&T values achieved in 

the case study 

𝐭𝐞 (°C) 𝐈𝐟 (%) Flatness Circularity Cylindricity Concentricity Thickness 

220 90 0.1869 0.3905 0.5011 0.2061 0.1861 
230 90 0.1823 0.3783 0.4407 0.1733 0.2604 
240 90 0.1887 0.3500 0.4624 0.2001 0.1910 

 

 

Figure 2.27 Demonstrating the Pareto points and conducted experiments for the case 

study. 
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2.12.2 Numerical simulation studies for non-convex Pareto front 

As presented in the FFF case study (Sec. 2.12.1), the m-APO methodology is 

effective for a convex bi-objective problem. In the numerical simulation studies, the aim is 

to evaluate the robustness of m-APO in case of more challenging non-convex Pareto fronts, 

which is usually challenging for multiple objective optimization. To simulate various 

experimental conditions, three different combinations of design space structures and Pareto 

front characteristics are considered: (a) non-convex Pareto front and well-distributed 

objective space, (b) non-convex Pareto front and congested objective space; and (c) high 

dimensional design space. The ultimate goal of the simulation study is achieving a set of 

high quality uniformly spread Pareto points representing the true ones. We note that in 

reality the functional form of objectives, i.e., Y1(𝐬) and Y2(𝐬), are unknown and here we 

just present them to simulate the real experimentation.  

We measure the efficiency of the m-APO methodology using GD (General 

Distance) and PHV (Proportional Hyper-Volume) defined as follows: 

• GD (General Distance) quantifies the difference between the true Pareto points and 

those obtained with m-APO. Assuming that at the end of simulation N Pareto points 

are obtained, GD is calculated as follows [99,100]: 

GD =  
√∑ τi2

N
i=1

N
 

where τi represents the minimum Euclidean distance between ith Pareto point from m-

APO and true Pareto points. Smaller values in GD indicate that the Pareto points 

obtained from m-APO are closer to true ones; and in an ideal case, GD = 0. 
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• PHV (Proportional Hyper-Volume) is the ratio of the Hyper-Volume of the Pareto 

points obtained using m-APO and the Hyper-Volume of the true Pareto points: 

PHV =
HV(Pareto Points obtained from m − APO)

HV(True Pareto Points)
 

By definition, PHV falls within [0, 1]. In an ideal case, PHV = 1. 

We benchmark the m-APO method against full factorial DOE by comparing GD, 

PHV whitin fix number of experiments. The results show that the m-APO method achieves 

significantly higher PHV and lower GD compared to full factorial DOE. 

2.12.2.1 Case A: non-convex Pareto front and well-distributed objective space 

The m-APO method is applied to an equally-spaced discrete design space from a 

commonly used bi-objective optimization test problem, OKA1. This test problem is 

applied to evaluate the performance of ParEGO algorithm proposed in Ref. [95,96] and 

benchmark it against NSGA-II (Non-dominated Sorting Genetic Algorithm). The 

relationship between process parameters and two objective functions are as follows: 

Max 𝐟 (𝐬) = −(Y1(𝐬), Y2(𝐬)) 

Y1(𝐬) = s1
′ 

Y2(𝐬) = √2π − √|s1′| + 2|s2
′ − 3 cos(s1

′) − 3|
1
3 

s1
′ = cos (

π

12
) s1 − sin (

π

12
) s2 

s2
′ = sin (

π

12
) s1 + cos (

π

12
) s2 

Where 

s1 ∈ [6 sin (
π

12
) , 6 sin (

π

12
) + 2Π cos (

π

12
)] 
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s2 ∈ [−2Π sin (
π

12
) , 6 cos (

π

12
)] 

A design space which includes 342 design points is chosen to construct a well-

distributed objective space. This objective space with normalized values consisting of 11 

true Pareto points is illustrated in Figure 2.28. Because many design points with different 

set of process parameters result in same points in objective space, hence, visually the 

number of design points in the objective space appears to be less than 342. 

 

Figure 2.28 Case A—Discretization of objective space for test problem with non-

convex Pareto front and well-distributed objective space. 

 

2.12.2.2 Case B: non-convex Pareto front and congested objective space 

An equally-spaced discrete design space is selected based on another bi-objective 

test problem. This is a more challenging case in that the objective space includes very 

congested points at the middle farther from the Pareto front. This test problem is 

constructed to test the performance of adaptive-weighted-sum method for solving bi-

objective optimization problems [97]. A discretized design space within 441 design points 
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is chosen. The objective space consists of 19 true Pareto points (Figure 2.29). The 

functional form of objective functions are as follows: 

Max 𝐟 (𝐬) = (Y1(𝐬), Y2(𝐬)) 

Y1(𝐬) = 3(1 − s1)
2e−s1

2−(s2+1)
2
− 10 (

s1
5
− s1

3 − s2
5) (e−s1

2−s2
2
) − 3e−(s1+2)

2−s2
2

+ 0.5(2s1 + s2) 

Y2(𝐬) = 3(1 + s2)
2e−s2

2−(1−s1)
2
− 10 (−

s2
5
+ s2

3 + s1
5) (e−s2

2−s1
2
) − 3e−(2−s2)

2−s1
2
 

where    s1, s2 ∈ [−3,3].  

 

Figure 2.29 Case B—Discretization of objective space for test problem with non-

convex Pareto front and congested objective space. 

 

2.12.2.3 Case C: high dimension design space 

To test the performance of our methodology in cases with more than two process 

parameters, we test a bi-objective problem with four process parameters, SK2 [98]. The 

design space includes 625 design points and the objective space consists of 5 true Pareto 
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points as illustrated in Figure 2.30. The functional form of objective functions are as 

follows: 

Max 𝐟 (𝐬) = (Y1(𝐬), Y2(𝐬)) 

Y1(𝐬) = −(s1 − 2)
2 − (s2 + 3)

2 − (s3 − 5)
2 − (s4 − 4)

2 + 5 

Y2(𝐬) =
sin s1 + sin s2 + sin s3 + sin s4
1 + (s12 + s22 + s32 + s12) 100⁄

 

where s1, s2, s3, s4 ∈ [−3,3].  

 

Figure 2.30 Case C—Discretization of objective space for test problem with increased 

number of process parameters. 

 

2.12.2.4 Simulation results: Pareto front estimation 

The performance of the m-APO methodology is compared with full factorial DOE. 

The estimated Pareto front achieved by each method with 25 experiments is depicted in 

Figure 2.31—Figure 2.33, overlaid with the true Pareto fronts. We report that, the m-APO 

method quickly converges towards the true Pareto points much faster than full factorial 

DOE. 
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Figure 2.31 Case A—Comparing estimated Pareto front resulted by m-APO and full 

factorial DOE with true Pareto front (test problem with non-convex Pareto 

front and well-distributed objective space). 

 

 

Figure 2.32 Case B—Comparing estimated Pareto front resulted by m-APO and full 

factorial DOE with true Pareto front (test problem with non-convex Pareto 

front and congested objective space). 
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Figure 2.33 Case C—Comparing estimated Pareto front resulted by m-APO and full 

factorial DOE with true Pareto front (test problem with increased number 

of process parameters). 

 

Table 2.21 illustrates the improvement in terms of the performance measures 

(GD,PHV) achieved by applying the m-APO methodology compared with full factorial 

DOE. Because a smaller GD is preferable to a larger GD, the GD improvement is reported 

by a negative sing; and since a larger PHV is preferred, an improvement in PHV is reported 

as a positive number. We observe significant PHV and GD improvement in all cases by 

applying the m-APO methodology compared with full factorial DOE. It is therefore 

concluded that the proposed methodology outperforms the full factorial DOE in multi-

objective process optimization cases. This is because conventional DOE methods are 

performed simultaneously—as opposed to the sequential approach developed in this work. 

Furthermore, this work forwards an approach to balance multiple, and potentially 

negatively correlated (or uncorrelated) geometric accuracy requirements, while 

conventional empirical approaches are not capable of this trade-off. 
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Table 2.21 Improvement achieved in simulation studies by m-APO in terms of 

decreasing General Distance (GD) and increasing Proportional Hyper-

Volume (PHV) for three test problems. 

Test Problem Specifications GD PHV 

Non-convex Pareto front and well-distributed objective space -55 % 42 % 

Non-convex Pareto front and congested objective space -57 % 24 % 

High dimension design space -93 % 29 % 

 

2.13 Conclusions 

This work presented an approach invoking the concept of Multi-objective 

Accelerated Process Optimization (m-APO) to optimize Additive Manufacturing (AM) 

process parameters such that parts with least geometric inaccuracy were obtained. The 

proposed m-APO technique decomposes a multi-objective optimization problem into a 

series of simpler single-objective optimization problems. The essence of the approach is 

that, prior knowledge is used to determine the parameter settings for the next trials. This 

sequential/evolving approach to experimentation has the effect of guiding trials which lead 

to the process parameter setups resulting in the least geometric inaccuracy more quickly, 

compared to a priori determined trial parts, as done in conventional design of experiments. 

In other words, instead of conducting experimental trials in the vicinity of process 

parameter setups where poor results are more probable, the m-APO methodology suggests 

experimentation at process parameter setups more inclined to favorable outcomes. 

This approach is tested against both experimental datasets obtained from Fused 

Filament Fabrication (FFF) AM process, and numerically generated data. The specific 

outcomes are as follows: 
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The proposed approach was able to effect a tradeoff among geometric accuracy 

requirements and reached the optimal process parameter settings with 20% fewer trials 

compared to full factorial experimental plans. 

We further tested the performance of the proposed approach to accommodate 

various simulated cases, such as non-convex Pareto front, well-distributed objective space, 

congested objective space, and increased number of process parameters. Results indicate 

that the proposed methodology outperforms full factorial designs for such complex cases. 

The performance metrics—General Distance (GD) and Proportional Hyper-Volume 

(PHV)—obtained from the proposed approach significantly superseded full factorial 

design; there was a 55%-93% and 24%-42% improvement in GD and PHV, respectively, 

in the simulated test cases. 

The results presented in this work are practically important. Given the time-and 

cost-intensive nature of AM experimental trials, a prudent approach to balance the tradeoff 

between multiple geometric accuracy requirements is needed in practice. In contrast, this 

work answers the following research question in the context of AM process optimization: 

What approach is required to balance between multiple geometric accuracy requirements 

with the minimal number of experimental trials? 

The gap in the current work is that it is demonstrated in the case of non-functional 

polymer AM parts. The authors are currently researching functional metal AM parts with 

m-APO as a means for in situ control. 
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CHAPTER IV 

MULTI-OBJECTIVE ACCELERATED PROCESS OPTIMIZATION OF 

MECHANICAL PROPERTIES IN LASER-BASED ADDITIVE MANUFACTURING: 

CASE STUDY ON SELECTIVE LASER MELTING (SLM) Ti-6Al-4V 

2.14 Introduction 

2.14.1 Objective and hypothesis 

The objective of the present work is to apply a novel framework for efficiently 

optimizing multiple mechanical properties of metal parts fabricated by Laser-Based 

Additive Manufacturing (LBAM) systems. Inferior mechanical properties of parts 

fabricated by LBAM hamper the widespread adoption of this technology and accordingly 

achieving its full potential for fabricating functional parts in different industries. It is 

traditionally believed that improving the relative density of LBAM-fabricated parts will 

result in superior mechanical properties. However, our initial experimental study reveals 

that obtaining a high relative density for the LBAM-fabricated parts (compared to the 

traditional counterpart) does not necessarily result in acceptable tensile mechanical 

properties, such as elongation-to-failure. This phenomenon can be attributed to the 

existence of different size and distribution of fabrication-induced voids in the final part. 

The goal of the present work is to employ an efficient multi-objective process optimization 

framework to optimize quality of LBAM parts with respect to multiple properties such as 

relative density and elongation-to-failure.
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The central hypothesis is that breaking down the master multi-objective problem into 

an intelligently-defined sequence of scalar combination of objective functions, as a set of 

sub-problems, can optimize conflicting mechanical properties with the fewest experimental 

runs. The hypothesis is tested against experimental data on Ti-6Al-4V parts fabricated by 

Selective Laser Melting (SLM) system. This work leads to a generic multi-objective 

process optimization framework that can be applied to any LBAM system, with any 

material, for optimizing any scalar mechanical property. 

2.14.2 Motivation 

Titanium alloys, among them Ti-6Al-4V, show superior mechanical properties 

such as high strength, high strength-to-weight ratio, high toughness, ductility, 

biocompatibility, and high resistance to severe environments. Due to these superior 

properties these alloys have been employed for several applications in various industries. 

For instance, titanium alloys, such as Ti-6Al-4V, have been used in biomedical applications 

since they fulfill the requirements, namely high specific strength, good corrosion and 

fatigue resistance [101–104]. Moreover, open-cell structures of highly porous metals are 

recognized very advantageous in orthopedic implants, due to the low modulus of elasticity 

(adjustable to that of bone) and high volumetric porosity (i.e. low relative density) 

[105,106]. In the dental prostheses applications, Ti-Ag and Ti-Cu alloys are used—owing 

to their relatively high strength—in fabricating partial dentures, clasps and bridges 

[107,108]. Furthermore, titanium alloys are vastly employed in the aerospace industry 

because of the desired weight-saving property resulted from their high strength-to-weight 

ratio [109–111]. In addition, in the automotive industry, where light-weight materials with 
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an acceptable relative density and strength are required, titanium alloys are favorable 

candidate materials [112,113]. 

Fabrication of Ti-6Al-4V coupons and parts using Laser-Based Additive 

Manufacturing (LBAM) techniques has rapidly grown in the past decade, due to their 

popularity for different applications. One of the main challenges of manufacturing AM 

metallic alloys is to obtain similar, or even higher, mechanical properties than the 

conventional alloy. To achieve this, a set of appropriate process parameters, such as laser 

power, scanning speed, hatch spacing, etc., should be employed during LBAM [1,114]. 

Therefore, the problem of optimizing process parameters to obtain acceptable mechanical 

properties, compared to the traditional counterparts, has been addressed by several 

researchers [1,114–116]. 

Due to nature of fabrication in LBAM, the manufactured parts are highly prone to 

formation of microstructural defects, such as voids and pores, which results in lower 

relative density of the material, as well as significantly reduced mechanical strength 

[115,117]. For LBAM applications, it is generally believed that maximizing the part 

density results in the optimal level of mechanical properties (such as elongation-to-failure), 

which is typically true. Hence, a data-driven methodology using Bayesian theorem was 

developed to optimize a single mechanical property—such as part’s relative density—

called Accelerated Process Optimization (APO) [1]. The APO technique resulted in an 

average relative density of 99.2% for stainless steel parts fabricated by Selective Laser 

Melting (SLM) after only five experiments [1]. Nevertheless, further experimental studies 

revealed that maximizing the relative density of the part, although necessary, might not be 

sufficient to achieve acceptable mechanical properties. We demonstrate the insufficiency 
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of considering high relative density of the LBAM product as the only optimization 

objective by a few examples. For instance, fatigue resistance of specimens fabricated using 

LBAM techniques, even with very high relative densities, have been reported to be much 

lower than that for specimens from conventional methods [118,119]. This lower fatigue 

behavior was attributed to the planar, low-volume voids in the parts that do not affect the 

density but significantly influence the fatigue resistance [118]. 

Several factors can potentially cause lower mechanical properties, while having 

improved relative density, and high cooling rate associated with LBAM is one of them 

[115,117]. For instance in SLM, high cooling rate can cause low ductility in the final part 

for metallic powders [36]. Although the high cooling rate during most LBAM processes 

results in high yield strength, it causes low elongation-to-failure [5]. 

The shape and distribution of the pores is another significant factor causing the 

aforementioned conflicting behavior amongst different mechanical properties [118]. For 

instance, different parts with almost the same relative density can have different pore 

distribution. This phenomenon is schematically illustrated by Figure 2.34. In Figure 2.34, 

each gray dot represents a void with the same shape and volume. Although all the five parts 

have hypothetically same relative density (because of similar number of voids), distribution 

of the voids changes from one to another. For instance, the part (a) has a very congested 

distribution of voids at the middle of the gauge section of the part; while the voids are 

distributed close to the grip ends in part (b). Moreover, in parts (c) and (b) voids are formed 

very close to the surface of the specimen at the gauge section with different patterns, while 

those are almost evenly distributed inside the specimens shown in part (e). Other than the 

pore distribution, pores’ shape can significantly contribute to the final parts’ mechanical 
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characteristics, such as tensile properties. In practice, the pores can have very different 

shapes and volumes. Figure 2.34 (e) represents some microscopic longitudinal pictures of 

pores within one part. The intent of the presented work is to apply an efficient data-driven 

experimental plan to achieve the best tradeoff amongst different properties of the final 

parts, which could indirectly consider the effects of void size and distribution. 

 

 

Figure 2.34 Schematic indicating the various possible distribution of voids for samples 

with similar densities, which may result in different tensile properties. 

 

Figure 2.35 illustrates the contour plots of relative density and elongation-to-failure 

versus hatch spacing and layer thickness for Ti-6Al-4V parts fabricated by SLM in our 

initial experimental studies (see Sec. 2.17 for details). From Figure 2.35, it is evident that 

both relative density and elongation-to-failure for parts made by varying hatch spacing and 

layer thickness cannot be maximized simultaneously. The combinations of process 

parameters around the area in the middle right of Figure 2.35 (a) result in maximum relative 
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density. However, the same process parameter setup results in low elongation-to-failure 

(area in the middle right of Figure 2.35 (b)). Considering such a coupled variation amongst 

various mechanical properties, it is extremely challenging to identify the optimal process 

parameter setup that results in parts with acceptable mechanical properties. Therefore, this 

work addresses the following challenging research question in LBAM: What experimental 

plan is required to optimize process parameter setup with respect to multiple mechanical 

properties of part? 

 

Figure 2.35 Contour plot of (a) part density and (b) part elongation-to-failure (εf) versus 

hatch spacing and layer thickness. 

Laser power is set to 400w and response values are normalized within [0,1] range. 

 

2.14.3 Research challenges and overview of the proposed approach 

As discussed before and shown on Figure 2.36, tensile mechanical response of the 

AM Ti-6Al-4V is highly sensitive to the selected process parameters, including laser 

power, scanning speed, hatch spacing and layer thickness. This sensitivity is mainly due to 

differences in size, shape, location and distribution of fabrication-induced vides, pores, and 

un-melted regions due to lack of fusion. Consequently, an undesirable amount and 

distribution of voids can result in very low elongation-to-failure as well as a low failure 
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stress. On the other hand, a low void volume fraction and un-melted regions that are 

distributed uniformly can enable a large elongation-to-failure and a high failure stress. 

 

Figure 2.36 Selected stress-strain curves of the different specimens fabricated with 

different process parameters, indicating the sensitivity of the tensile 

properties to the process parameters. 

 

Traditionally, maximizing the relative density of the LBAM material was 

considered as the objective to find the optimized process parameters in a LBAM system 

[1]. However, for the same relative density, size, shape and distribution of the voids can 

also dominate the mechanical properties of the LBAM material. Therefore, an extra 

criterion needs to be considered in optimizing the process parameters to obtain superior 

mechanical properties. The selected additional criterion in optimizing the process 

parameters, should be an appropriate representative of the material response. While several 

mechanical properties—such as modulus of elasticity, ultimate stress, etc.—can be 

selected, when dealing with one material (as the case of Ti-6Al-4V in this study), 

elongation-to-failure can be an appropriate candidate for the additional optimization 
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objective. Employing elongation-to-failure (εf) is also governed by the stress-strain 

response of the material, where beyond yield point, a wide range of εf can be associated 

with an almost constant stress (see the flat region on the longest stress-strain curve on 

Figure 2.36). Thus, use of ultimate stress may not be reasonable as knowing this parameter 

may not provide enough information about the elongation-to-failure. On the other hand, 

not only εf implicitly accounts for the value of the material’s ultimate stress, it can also 

demonstrate the toughness of the material. As a result, elongation-to-failure of the material 

was selected as the additional constraint for the optimization of process parameters in this 

study. 

Although the conventional belief regarding the existence of positive correlation 

between relative density and part’s mechanical properties is correct in general, it may not 

necessarily hold in the optimal window corresponding to part relative density. This 

contradictory phenomenon is depicted by Figure 2.37. The plot on the right illustrates the 

data scatter plot of the scaled relative density and the scaled elongation-to-failure for Ti-

6Al-4V parts fabricated by SLM (see Sec. 5.4 for details). The slope of line represents the 

Pearson correlation coefficient (𝜌) between relative density and elongation-to-failure. 

Although not very significantly, they are positively correlated (𝜌 = 0.218). However, if 

we look at the optimal window with respect to relative density (i.e., parts with scaled 

relative density greater than 0.82) we observe a converse phenomenon (The optimal 

relative density window can be any acceptable relative density depending on the 

application). The plot on the left illustrates the data scatter plot of the scaled relative density 

and the scaled elongation-to-failure for parts fabricated within optimal window. It is 

evident that relative density and elongation-to-failure are negatively correlated (𝜌 =
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−0.646). In other words, under the relative density optimal regime, there is no guarantee 

that improving the part density give rise to higher elongation-to-failure. With this in mind, 

our problem falls into the scope of multi-objective optimization. However, the existing 

multi-objective optimization methodologies are not well-suited for optimizing LBAM 

processes with respect to multiple mechanical properties. 

 

Figure 2.37 The representation of the data scatter plot to illustrate correlation between 

scaled part relative density and scaled elongation-to-failure. 

Data are normalized within [0,1] range. Relative density and elongation-to-failure are 

positively correlated in general (see the left plot). However, they are negatively correlated 

in the optimal window corresponding to the relative density (see the right plot). 

The existing multi-objective optimization methodologies fall into two major 

categories: (i) scalarization methods and (ii) evolutionary algorithms [84,120]. 

Scalarization methods, which are considered as the classical approach in the literature, 

aggregate multiple objective functions to reduce the multi-objective problem into a scalar 

or single-objective optimization problem, enabling the employment of single-objective 

optimization techniques [85,120]. This category of methodologies is not applicable for the 

current multi-objective mechanical properties optimization problem in LBAM because 

functional form of objective functions—representing the relationship between process 
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parameters (e.g., hatch spacing and layer thickness) and objectives of interest (e.g., part 

density and elongation-to-failure) are unknown. Moreover, constructing the surrogate 

models representing the mathematical form of objective functions requires a large number 

of very time-and-cost intensive experimental data, which is not economically feasible for 

LBAM processes. In contrast to the classical scalarization methods, evolutionary 

algorithms directly generate a set of Pareto optimal solutions—representing permissible 

tradeoff between contradictory objective responses—in an iterative manner and gradually 

improve the quality of the Pareto optimal solutions [86,120–123]. This family of 

algorithms requires extremely numerous objective function evaluations (i.e., many LBAM 

experimental runs in the current mechanical properties optimization problem). Hence, we 

do not apply them to address the current multi-objective process optimization problem 

since they result in extremely high experimental cost. Hereupon, there is a serious research 

gap for optimizing multiple mechanical properties of LBAM fabricated parts in an efficient 

manner. In the present study, we apply a novel multi-objective process optimization 

framework to intelligently accelerate the process optimization and achieve a set of process 

parameters resulting in the best compromises between mechanical properties in the 

optimum regime. 

The remainder of this work is organized as follows: In Sec. 2.15, we review the 

existing literature concerning mechanical properties of parts fabricated by LBAM. In Sec. 

2.162.16, we elaborate on the applied multi-objective process optimization approach. In 

Sec. 2.172.17, the proposed methodology is applied to a real-world case study to optimize 

mechanical properties of Ti-6Al-4V parts fabricated by SLM. Finally, in Sec. 2.182.18, 

concluding remarks are provided. 
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2.15 Background: mechanical properties of laser-based additive manufacturing 

Shamsaei et al. [5] conducted a literature review concerning recent advancements 

in Direct Laser Melting (DLD) systems and asserted that, due to the high cooling rate in 

DLD, (ultimate) tensile and yield strength of DLD parts are generally as good as those of 

wrought materials. Nevertheless, for most cases, elongation-to-failure of the DLD parts is 

lower than that for wrought materials. Non-optimized DLD process along with the 

associated micro-porosity and oxide inclusions in the parts are found to be the major cause 

of this phenomenon. Building orientation is another key factor affecting the part’s tensile 

properties. In most cases, building the parts parallel to the loading direction, in tensile 

specimens, results in lower tensile strength compared to perpendicularly built specimens 

[5,124]. Different cooling rates resulted from different building orientation may be the 

reason for the aforementioned anisotropic behavior [5,124]. 

Selcuk et. al. [125] reviewed and compared mechanical properties of parts 

fabricated by different LBAM systems. They divided LBAM systems into two major 

categories: (i) blown powder deposition and (ii) powder-bed deposition. Selcuk et. al. [125] 

mentioned that mechanical properties of blown powder deposition systems (e.g., Laser 

Engineered Net Shaping—LENS) are fairly comparable to conventional manufacturing 

techniques. For instance, yield strength for stainless steel fabricated by LENS system is 

reported to be almost two times higher than that of conventionally processed material, 

while the ductility was halved. This different mechanical property between the LENS and 

wrought stainless steel was attributed to the resulted grain refinement in LENS-fabricated 

specimens. Almost the same case is reported for titanium- and nickel-based superalloys 

[125]. As it is mentioned by other papers, build direction is a key parameter affecting 
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tensile properties of part [124–127]. For instance, yield strength of the stainless steel parts 

in the perpendicular direction to the build orientation is reported to be considerably lower 

than the parallel direction, while the opposite is reported for elongation-to-failure 

[125,126]. Even though anisotropic tensile behavior is a common characteristic of parts 

fabricated by both powder-bed deposition and blown powder deposition systems, its 

magnitude varies from material to material. For instance, this phenomenon is considerably 

greater for stainless steel compared to nickel-based superalloys [125]. Regarding 

anisotropy tensile behavior in powder-bed deposition systems, Selcuk et al. [125] reported 

the lowest strength and ductility for the specimens fabricated in vertical direction (applied 

load was perpendicular to the laser traverse direction). On the other hand, highest strength 

was observed for the horizontal direction, where the applied load was along the laser 

traverse direction. Similar to blown powder deposition system, elongation-to-failure for 

stainless steel parts fabricated by powder-bed deposition system in all directions is reported 

to be lower than those achieved by conventionally fabricated parts [125]. 

Carroll et al. [128] studied the effect of build orientation on tensile properties of Ti-

6Al-4V parts fabricated by a directed energy deposition (DED) system. Results from their 

work show that without any post-fabrication treatment and just by modifying the process 

parameters a larger elongation-to-failure can be achieved for DED Ti-6Al-4V alloys. The 

modified process parameters in Carroll et al. [128], were adjusted to reduce the amount of 

lack-of-fusion defects in the fabricated parts. Doing so, the achieved elongations-to-failure 

were reported to be 11% and 14% for the longitudinal and traverse directions, respectively, 

which showed significant improvement, compared to previous LBAM Ti-6Al-4V parts. 

Based on the literature, there has been a lot of research on build orientation effects on 
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tensile properties of the LBAM material [128,129]. However, to the best of our knowledge, 

there is no research work on optimizing process parameters to achieve acceptable tensile 

properties and a high relative density of the AM material. 

Wang et al. [130] studied the nucleation and propagation of fatigue cracks in TC18 

titanium alloy fabricated by laser melting deposition (LMD) system. They reported that 

size and location of the fabrication-induced micropores and voids to be the main defects 

dominating the high-cycle fatigue (HCF) lives of this alloy. As expected, they reported less 

effect on HCF lives for smaller pores compared with larger ones. Moreover, the effect 

pores located closer to the surface of the specimen were reported to be more detrimental 

on the HCF behavior of this alloy. Yadollahi et al. [131] also employed the crack-growth 

concept and investigated the effects defect properties on the fatigue behavior of Inconel 

718 alloy, fabricated by L-PBF method. Their study also indicated the defect (i.e. void) 

size to be the most influential defect feature on the fatigue life of AM Inconel 718. 

Therefore, employing a set of process parameters that result in no or very small voids in 

the fabricated parts is desired for durable LBAM materials. 

There are some works related to advance welding systems tried to predict and 

optimize the ultimate tensile strength of joints using conventional design of experiments 

(DOE) methods. Although welding processes may not fall into the category of LBAM 

processes; due to the layered nature of welding processes, results from such a study can 

potentially help to understand the appropriate criteria for optimizing the process parameter 

of AM process for favorable tensile behavior. Silva et al. [132] applied Taguchi orthogonal 

arrays to optimize ultimate tensile strength of aluminum alloy joints. Two different 

orthogonal arrays (i.e., 𝐿8(2
7) and 𝐿27(3

13)) were applied considering three different joint 
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configurations (i.e., butt, T and double-pass overlap joints). Bozkurt [133] used 𝐿27(3
13) 

Taguchi orthogonal arrays to maximize tensile strength of polyethylene sheets processed 

by friction stir welding process. Ampaiboon et al. [134] applied fractional factorial (26−2) 

design with two replication to optimize ultimate tensile strength of mild steel (ST37-2) 

joints welded by Metal Active Gas system. Same DOE procedures can be applied to 

optimize tensile strength of AM parts; however, they result in many expensive LBAM 

experimental trials. Furthermore, they cannot directly handle optimizing multiple 

uncorrelated properties. Therefore, a novel multi-objective DOE is employed in this study, 

which requires significantly less number of experiments and specimen fabrication using 

LBAM. 

2.16 Methodology 

2.16.1 Multi-objective process optimization 

This section is dedicated to presenting an overview of the Multi-Objective 

Accelerated Process Optimization (m-APO) methodology applied in the present work. The 

m-APO is a generalization of an existing Accelerated Process Optimization (APO) method, 

which is able to facilitate the optimization of AM systems with respect to one objective 

(e.g., one mechanical property of parts such as relative density) by characterizing and 

leveraging the similarities amongst the current and non-identical prior studies [1]. The APO 

is able to significantly reduce the number of experimental runs while achieving a targeted 

optimum value. In the authors’ previous research work, the APO is applied to maximize 

the relative density of stainless steel test coupons fabricated by SLM system [1].  

The m-APO applied in the present work is primarily developed to minimize the 

geometric inaccuracy of the AM parts [93,94,135]. In principal, the m-APO is developed 
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and illustrated in the form of bi-objective process optimization; however, it can readily be 

extended to multi-objective cases. In the present study, we apply m-APO to maximize 

relative density and elongation-to-failure of Ti-6Al-4V tensile samples fabricated by SLM 

system. 

2.16.1.1 Multi-objective process optimization and Pareto front  

Assume that the goal is to maximize two response variables Y1 and Y2which are not 

significantly positively correlated (e.g. part relative density and elongation-to-failure). The 

bi-objective maximization problem is demonstrated as follows: 

 

 Max𝐘 (𝐬) = (Y1(𝐬), Y2(𝐬))
′
 (5.1) 

s. t.     𝐬 ∈ 𝐒 

𝐘(𝐬) denotes the vector of objective functions (Y1(𝐬), Y2(𝐬))
′
, and 𝐬 is the vector 

of process parameters (e.g., layer thickness, laser power and hatch spacing). 𝐒 denotes the 

design space consisted of all possible combinations of process parameters’ values, i.e., 𝐬. 

Moreover, 𝐂 = {(Y1(𝐬), Y2(𝐬))
′
∈ ℝ2: 𝐬 ∈ 𝐒} denotes the objective space, i.e., the set of 

all possible combinations of response vectors 𝐘 corresponding to the design space. 

Due to the very complex underlying thermo-mechanical process associated with 

melt-pool formation and solidification in LBAM, for most cases, the mathematical 

expression of Y1(𝐬) and Y2(𝐬) representing the functional relationship between the process 

parameters (i.e., 𝐬) and the mechanical properties of parts (i.e., Y1 and Y2) is not well-

identified and formulated as yet. In other words, the analytical formula corresponding to 

the objective functions are unknown. Furthermore, statistical speaking, the correlation 
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between Y1(𝐬) and Y2(𝐬) is also unknown a priori. Improving the value of Y1(𝐬) may 

consequently lead to worsening the value of Y2(𝐬) or vice versa. In practice, due to the 

potential low or even negative correlation between Y1 and Y2, it may not be possible to 

optimize them using the same process parameter setup. For instance, in the presented 

optimal window—shown in Figure 2.37—there is a negative Pearson correlation between 

part relative density and elongation-to-failure, i.e., ρ = −0.646. Therefore, improving the 

part relative density will not guarantee improving the elongation-to-failure of parts. With 

this in mind, there is no unique set of process parameters as the optimal solution to the 

presented bi-objective process optimization problem. The ultimate goal of the presented 

research is to develop and apply a methodical and optimization-oriented DOE procedure 

capable of efficiently achieve a set of optimal process parameter setups resulting in the best 

tradeoff between such contradictory mechanical properties in the parts. 

Inspired by the scalarization idea, m-APO convert the master bi-objective process 

optimization problem into a series of single objective optimization sub-problems via 

multiplying each objective function by a weight coefficient. Therefore, the decomposed bi-

objective maximization problem can be formulated as follows: 

 Max Zh(𝐬) = γ1
h. Y1(𝐬) + γ2

h. Y2(𝐬) (5.2) 

s. t.     𝐬 ∈ 𝐒    

 where  γ1
h + γ2

h = 1 

γk
h ≥ 0  ,   ∀ k = 1, 2 

γk
h denotes weight coefficient corresponding to the kth objective function within 

the hth sub-problem. Different combinations of weight coefficients, satisfying the constant 
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γ1
h + γ2

h = 1, corresponds to different sub-problems and accordingly different search 

directions on the objective space. 

For instance, weight coefficients γ1
3 = 0.7 and γ2

3 = 0.3 correspond to a sub-

problem with the objective function in the form of Max Z3(𝐬) = (0.7Y1(𝐬) + 0.3Y2(𝐬)). 

The weight coefficients (γk
h) represented by the tangent of the maximization objective 

function line in Figure 2.38 denotes the desired search direction for the 3th sub-problem. 

Another combination of weight coefficients, such as γ1
4 = 0.3 and γ2

4 = 0.7, corresponds 

to a distinct sub-problem with different objective function and search direction, i.e., 

Max  Z3(𝐬) = (0.3Y1(𝐬) + 0.7Y2(𝐬)) in Figure 2.38. 

 

Figure 2.38 Schematic illustration of design space, objective space, optimal design point, 

Pareto optimal solution and Pareto front [135,136]. 

 

Likewise, different combinations of weight coefficients lead to entirely distinct 

shapes of contour plot for the weighted summation of part relative density and elongation-

to-failure generated by our initial experimental data. For instance, Figure 2.39 illustrates 

two contour plots corresponding to different combinations of weight coefficients for our 
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initial experimental data; i.e., (γ1
1 = 1, γ2

1 = 0)and (γ1
4 = 0.3, γ2

4 = 0.7). It is visually 

noticeable that there is not a unique combination of hatch spacing and layer thickness 

maximizing both contour plots’ response values. This statement is more supported by the 

research challenges regarding the negative or weak positive correlation amongst various 

mechanical properties of LBAM parts discussed in Sec.2.14.3. With this in mind, we also 

conclude that it is not possible to optimize infinite number of sub-problems by a unique set 

of process parameters. Therefore, in such problems, the optimum solution is a subset of 

objective space 𝐂 representing the best compromises amongst the values of conflicting 

objective responses, i.e., Y1 and Y2. 

 

Figure 2.39 Different combinations of weight coefficients lead to distinct shapes of 

contour plot for the weighted summation of part relative density and 

elongation-to-failure. 

 

The m-APO methodology is developed to systematically and efficiently identify 

the Pareto optimal solutions associated with the multi-objective optimization problem. A 

Pareto optimal solution (Y1(𝐬
∗), Y2(𝐬

∗)) is a non-dominated solution on the objective space 
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representing one of the best feasible compromises amongst the objective functions’ values. 

A design point 𝐬∗ ∈ 𝐒 corresponding to a Pareto optimal solution is called an optimal 

design point if and only if there is no other  𝐬 ∈ 𝐒  such that Yk(𝐬) ≥ Yk(𝐬
∗) for k = 1, 2. 

With respect to our mechanical properties optimization problem, a Pareto optimal solution 

corresponds to a design point where there is no other one resulting in higher value of both 

part relative density and elongation-to-failure. The set of Pareto optimal solutions is called 

Pareto front. The concept of design space, objective space, Pareto optimal solution and 

Pareto front are illustrated by Figure 2.38 given two process parameters for the bi-objective 

optimization problem presented by Eq. (5.2). 

2.16.1.2 An overview of Multi-objective Accelerated Process Optimization (m-

APO) 

The Multi-Objective Accelerated Process Optimization (m-APO) methodology is 

targeted at achieving a well-distributed set of Pareto optimal solutions in order to efficiently 

approximate the Pareto front with very limited number of experiments. As opposed to 

conventional scalarization-based optimization approaches which individually solve the 

single-objective sub-problems, m-APO identifies and leverages the similarities amongst 

different sub-problems to eventually accelerate the multi-objective optimization procedure. 

The Accelerated Process Optimization (APO), which is able to deal with single 

objective process optimization cases, is embedded in the proposed m-APO framework to 

jointly solve the constructed sub-problems. APO leverages the experimental data from 

prior similar—but non-identical—processes to accelerate the optimization procedure in the 

current process [1]. The same idea is incorporated within m-APO by treating the 
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experimental data from previous sub-problems as prior data for optimizing the current sub-

problem at each stage. 

 After identifying the existing Pareto optimal solutions on the objective space at 

each step, m-APO intelligently constructs the best next sub-problem which has the most 

potential to efficiently improve the approximation of the Pareto front. Consequently, a 

large number of experimental runs will be saved by smartly selecting only a few sub-

problems to solve amongst an infinite number of them. 

Moreover, in lieu of independently and separately designing experiments for 

optimizing each sub-problem, experimental data obtained from previews sub-problems are 

utilized as prior data in the APO framework to accelerate optimization process for the next 

sub-problems. Figure 2.40 demonstrates an illustrative example of applying the m-APO 

approach to maximize parts’ relative density and elongation-to-failure based on our initial 

experimental data. For example, in Figure 2.40 experimental data from sub-problem 1 

(represented by segments a-b-c) facilitates the optimization procedure for sub-problem 2. 

Hence, the algorithm can achieve the Pareto optimal solution corresponding to the sub-

problem 2 (i.e., segment e) with fewer experimental trials. Similarly, the information 

captured by experimental data obtained from sub-problems 1, 2 and 3 (represented by 

segments a-b-c, d-e and f-g respectively) contribute to achieving the Pareto optimal 

solution corresponding to sub-problem 4 (i.e., segment h) by conducting only one 

experiment. m-APO leverages the prior experimental data in order to avoid individually 

designing the experiments for each sub-problem from scratch. 
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The m-APO continues this procedure till the improvement in the resulting Pareto 

front approximation is not significant. The magnitude of dominated area on the objective 

space is used to evaluate the efficiency of the resulting Pareto optimal solutions. The m-

APO algorithm is described in detail in the Appendix G. 

 

Figure 2.40 The m-APO leverages experimental data obtained from prior sub-problems 

to accelerate solving the subsequent sub-problems. 

Response values are scaled within [0,1] range. 

2.17 Experimental case study and discussion: mechanical properties optimization 

of Ti-6Al-4V parts fabricated by Selective Laser Melting (SLM) 

Now we apply the m-APO to a real-world case study to maximize the relative 

density and elongation-to-failure of Ti-6Al-4V parts fabricated by SLM. Note that m-APO 

can be applied to optimize any conflicting couple of scalar mechanical properties for any 

LBAM-fabricated part with any material. The efficiency of m-APO is tested via a series of 

extensive simulation studies in the authors’ previous studies [93,94,135,136]. Its 

robustness is also validated against test problems with different number of input process 
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parameters and characteristics of objective space and Pareto fronts (including convex and 

non-convex Pareto fronts) [93,94,135,136]. Hence, in the present study we only present a 

real-world case study and benchmark the results against full factorial DOE. The results 

show that m-APO outperforms an extended full factorial DOE by 51.8% in terms of 

achieving the true Pareto front with fewer experimental runs. 

2.17.1 Experimental data generation: fabrication and test procedures 

Spherical gas atomized Grade 23 Ti-6Al-4V (ASTM B348 - 13 [137]) powder was 

used in an argon-purged AM machine (Renishaw AM250) to fabricate the specimens. 

Chemical composition of the powder is reported in Table 2.22. Various combinations of 

process parameters were used in this study — mainly by varying the laser power, hatch 

spacing, and layer thickness—to fabricate the rods (see Sec 2.17.2). Four rods were 

fabricated by using each set of process parameters at a time. All the rods were fabricated 

in the vertical direction and the scanning path was the same for all the fabricated rods. 

Table 2.22 Chemical composition of powder used to fabricate the Ti-6Al-4V specimens. 

Element Al C Fe H N O Ti V Others 

Weight percent (%) 6.4 0.01 0.021 0.0029 0.02 0.11 Balance 4.1 <0.4 

 

Ti-6Al-4V rods of 7 mm diameter were fabricated using SLM machine on a Ti-6Al-

4V build plate. After separation from the build plate, the fabricated bars were machined to 

a solid circular shape with straight gauge section of 3.6 mm diameter for tensile testing 

[138]. Before tensile testing, relative density of bars was measured and reported, 

considering Ti-6Al-4V wrought material density as the reference. 
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Geometry of the tensile specimens were designed according to the specifications of 

ASTM E-8 standard [138] and is indicated in Figure 2.41. Gauge section of the specimen 

was mechanically polished using SiC sand-paper to minimize the effects of surface 

condition on the mechanical response. Monotonic tensile tests were conducted in strain-

controlled condition using an MTS 810 servo-hydraulic testing machine at a strain rate of 

10-3 s-1. Elongation-to-failure and stress values such as ultimate and yield stress (if 

observable) were collected from tensile tests to be used for optimizing the process 

parameters. 

 

Figure 2.41 Schematic showing the dimensions of the specimen used in monotonic 

tensile tests (all dimensions are in mm). 

 

2.17.2 Initial design of experiments setups and data generation 

We applied full factorial DOE plans to generate experimental data forming our 

targeted design and objective spaces. Initially we designed a 2 × 32(= 18) full factorial 

DOE (see Table 2.23). The design space is originally centered on the process parameters 

setup recommended by SLM manufacturer for Ti-6Al-4V. The increment for process 

parameters’ levels are selected based on the LBAM system sensitivity to the process 

parameters and the availability of resources. After conducting and testing some 

experiments we observed that parts with the largest hatch spacing (i.e., 0.168 mm) are 
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extremely prone to low elongation-to-failure as well as low failure stress. Hence, after 

making conducting and testing 3 sets of experiments with 0.168 mm hatch spacing, we 

replaced the hatch spacing of 0.168 mm with 0.144 mm for the rest of the experiments (see 

Table 2.24). 

Table 2.23 Levels of the process parameters applied in the initial full factorial DOE 

plan. 

Laser power (W) 380 400 

Layer thickness (mm) 0.045 0.050 0.055 

Hatch spacing (mm) 0.152 0.160 
0.168 

(replaced with 0.144) 

After conducting and testing some experiments hatch spacing of 0.168 mm is replaced 

with 0.144 mm. 

Moreover, to focus on the effect of laser power, we designed a 1 × 3 × 2(= 6) full 

factorial DOE plan—as an auxiliary design—including the laser power at the level of 

390W (see Table 2.24). Eventually, we conducted 27 sets of experiments each with 3 

replications to generate a design and objective space. 

Table 2.24 Levels of the process parameters applied in the auxiliary full factorial DOE 

plan to narrow down to the effect of laser power. 

Laser power (W) 390 

Layer thickness (mm) 0.045 0.050 0.055 

Hatch spacing (mm) 0.152 0.160 

 

2.17.3 Apply Multi-objective Accelerated Process Optimization (m-APO) 

This section applies the m-APO to efficiently maximize the relative density and 

elongation-to-failure of parts. The extended full factorial DOE plan presented in Sec. 

2.17.2 results in a design and objective space with size of 27 including 6 Pareto optimal 

solutions (cross circles in Figure 2.42). Starting from a random design point, we iteratively 
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apply m-APO. We stop the optimization process at the 13th experiment because we 

achieved the same 6 Pareto optimal solutions at this stage. Therefore, employing m-APO 

we attain the true Pareto front while saving 14 experimental runs, which means 51.8% 

experimental runs compared with our initial extended full factorial design.  

 

Figure 2.42 Demonstrating the objective space, Pareto optimal solutions and conducted 

experiments by m-APO. 

 

Process parameter setups associated with the Pareto optimal solutions—along with the 

corresponding relative density, elongation-to-failure and ultimate strength—are presented 

in Table 2.25. In fact, we efficiently identified a set of process parameters resulting in the 

best compromises in terms of the relative density and tensile properties of parts while 

significantly reducing the number of required experimental runs. As can be seen in Figure 

2.42, there are many specimens—fabricated with different process parameters—that yield 

in a high relative density. However, the corresponding elongation-to-failure for those 

specimens is very low (see the data with relative density > 0.97 and elongation-to-failure 
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< 2). The small elongation-to-failure for these specimens may be explained by the 

distribution of the void, as previously depicted in Figure 2.34. In other words, for those 

specimens with high relative density, although there exists lower amount of fabrication-

induced voids, these voids may have been huddled in some locations of the gauge section, 

resulting to a weak point on the gauge section and, subsequently, very small elongation-to-

failure. Another reason, for these observations, could be the presence of the small-volume 

flat voids (i.e. un-melted regions) due to the lack-of-fusion for some cases. Presence of un-

melted regions in the LBAM specimens does not influence the relative density of the part, 

while resulting in a weak section along the specimen’s length and, thus, premature failure 

of the corresponding specimens. That being said, the multi-objective accelerated process 

optimization (m-APO) employed in this study, can implicitly account for the effects of 

void type and distribution. As a result, it can efficiently achieve sets of process parameter 

setups— corresponding to the Pareto front of Figure 2.42— that not only fabricate parts 

with high relative density, but also with an acceptable elongation-to-failure. 

Table 2.25 Optimal process parameters and the corresponding, relative density, 

elongation-to-failure and ultimate stress. 

Laser 

power (W) 

Layer thickness 

(mm) 

Hatch spacing 

(mm) 

Relative 

density 
𝛆𝐟 (%) 𝛔𝐮(𝐌𝐏𝐚) 

380 0.05 0.144 0.9839 2.22 1198.43 

400 0.05 0.144 0.9819 2.38 1226.97 

400 0.045 0.144 0.9722 4.84 1243.97 

380 0.045 0.144 0.9796 3.47 1224.40 

400 0.045 0.16 0.9797 2.82 1199.15 

380 0.055 0.144 0.9748 3.97 1250.57 
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2.18 Conclusions 

The present work proposed a novel approach to efficiently optimize different 

mechanical properties of LBAM-fabricated parts. The experimental data show that parts 

within an acceptable range of relative density possess very different magnitude of tensile 

mechanical properties (such as elongation-to-failure). In other words, different mechanical 

properties demonstrate nearly conflicting behavior in the optimal density window. The 

variation in the tensile mechanical properties of the specimens with almost similar relative 

density, although fabricated with different process parameters, could be attributed to the 

size and distribution of the fabrication-induced voids along the volume of the specimen 

(see Figure 2.34). The proposed multi-objective accelerated process optimization (m-APO) 

methodology is able to achieve a set of process parameter setups resulting in the best trade-

off between conflicting mechanical properties of parts in the optimal regime (such as 

relative density and elongation-to-failure in Figure 2.37). 

The m-APO methodology separates the master multi-objective problem into a 

sequence of single-objective sub-problems and intelligently solves the sub-problems with 

the highest chance to achieve the Pareto optimal solution, representing the best compromise 

between conflicting mechanical properties. At each stage, m-APO method leverages the 

experimental data generated from previous sub-problems to accelerate the optimization 

procedure of the remaining sub-problems.  

The m-APO is applied to a real-world case study aimed at maximizing relative 

density and elongation-to-failure of Ti-6Al-4V parts fabricated by SLM system. m-APO 

method was able to achieve the optimal process parameter setups while reducing the 

experimental runs by 51.8% compared to an initial extended full factorial DOE. m-APO 
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method, which results in not only a high density, but also a satisfactory level of elongation-

to-failure—as employed in this study—indirectly accounts for the effect of size and 

distribution of the voids on different mechanical properties of the fabricated parts. 
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CHAPTER V 

CONCLUSIONS 

The optimization of Additive Manufacturing (AM) processes with respect to 

desired part quality is essential to enhance the trustworthiness of this emerging technology 

and facilitate its commercial viability. In the present dissertation we developed knowledge-

guided experimental frameworks that can efficiently optimize AM-fabricated parts with 

respect to various characteristics, namely geometric accuracy and mechanical properties. 

The proposed approaches are able to leverage the information from existing prior 

experiments and systematically characterize the relation between process parameters and 

part features so that the AM process can be optimized in a very efficient manner. 

First a novel sequential methodology, called Accelerated Process Optimization 

(APO), is presented for systematically optimizing controllable process parameters in AM 

processes. The APO is developed on the premise that—despite differences in experimental 

conditions, material properties, system capacity, etc.—studies pertaining to various AM 

processes share similarities and thus the mechanical properties of AM-fabricated parts may 

be correlated. The APO method characterizes and quantifies these similarities by a random 

variable; that is, DRPCS. Using the Bayesian theory, to efficiently utilize data from 

similar—but non-identical—prior studies for accelerating the process optimization in the 

current study, we developed a closed-form expression that updates the statistical 

distribution of DRPCS terms. Hence, prior data are directly used as initial experiments and 
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eventually facilitate achieving a targeted optimum while reducing the experimental runs 

required. The performance of APO is evaluated using a series of simulation studies that 

used an empirical relative density model including four Laser-Based Additive 

Manufacturing (LBAM) process parameters; i.e., laser power, laser velocity, hatch spacing, 

and layer thickness. The performance of APO is assessed by the number of experimental 

runs needed to achieve a targeted level of relative density. The robustness of APO is tested 

against different characteristics of DRPCS. The APO significantly outperformed two 

benchmark methodologies; full factorial design, which does not account for the 

optimization objective, and Sequential Minimum Energy Design (SMED), which does not 

utilize prior data. 

To further verify the superiority of the APO, we applied that to a real-world case 

study that aimed at optimizing the relative part density of PH 17-4 SS parts fabricated by 

a Selective Laser Melting (SLM) system. The optimized process parameters obtained from 

prior studies could not be directly applied due to difference scales of LBAM systems and 

various experimental conditions. The APO utilized these prior data and could achieve the 

optimal process parameters in the current study after only five experimental runs. Note that 

the APO methodology provides a generic framework for better understanding the 

similarities among AM systems and the correlation of parts’ properties. It is not limited to 

any specific type of AM system, material or part property. 

Also, there is a need to optimize multiple mechanical properties, which may be 

conflicting. Multi-objective optimization remains an open area, and more research efforts 

are needed to develop an efficient and effective optimization scheme. 
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This challenge of AM process optimization is further compounded when some of 

the parts’ characteristics show conflicting behaviors. In other words, some characteristics 

of parts are negatively correlated; that is, improving one of the parts’ properties results in 

worsening some of the others. 

With this in mind, in a subsequent work, we presented an approach invoking the 

concept of Multi-objective Accelerated Process Optimization (m-APO). The proposed m-

APO was initially targeted at minimizing the deviation in conflicting geometric 

characteristics of AM-fabricated parts. The m-APO methodology decomposes a master 

multi-objective optimization problem into a sequence of single-objective optimization sub-

problems. The m-APO leverages the information captured from the experimental runs in 

the previous sub-problems to accelerate the experimentation procedure in the remaining 

sub-problems. Hence, the m-APO can efficiently achieve a set of process parameters setups 

resulting in the best trade-off between conflicting geometric characteristics of AM-

fabricated parts. The m-APO method is tested against both experimental datasets obtained 

from Fused Filament Fabrication (FFF) AM process, and numerically generated data. The 

m-APO achieved the optimal process parameter settings with 20% fewer trials compared 

to full factorial experimental plans. The robustness of the m-APO is further assessed by 

conducting various simulation cases including non-convex Pareto front, well-distributed 

objective space, congested objective space, and increased number of process parameters. 

The performance metrics—General Distance (GD) and Proportional Hyper-Volume 

(PHV)—obtained from the m-APO methodology significantly superseded full factorial 

design as the benchmark method; there was a 55%-93% and 24%-42% improvement in 

GD and PHV, respectively, in the simulated test cases. 



 

163 

According to our initial experimental studies, parts within an acceptable range of 

relative density possess very different magnitude of tensile mechanical properties (such as 

elongation-to-failure). In other words, they are negatively correlated in the optimal relative 

density window. The variation in the tensile mechanical properties of the specimens with 

almost similar relative density, although fabricated with different process parameters, 

could be attributed to the size and distribution of the fabrication-induced voids along the 

volume of the specimen. Simultaneously optimizing such mechanical properties is 

impossible due to the negative correlation between them. In a subsequent research work, 

the m-APO methodology is applied to efficiently optimize different conflicting mechanical 

properties of LBAM-fabricated parts. The m-APO method is able to obtain a set of process 

parameter setups resulting in the best compromises between conflicting mechanical 

properties of parts in the optimal regime (such as relative density and elongation-to-

failure). We applied m-APO to a real-world case study aimed at maximizing relative 

density and elongation-to-failure of Ti-6Al-4V parts fabricated by SLM system. The m-

APO method was able to achieve the optimal process parameter setups while reducing the 

experimental runs by 51.8% compared to an initial extended full factorial DOE. The m-

APO method, indirectly accounts for the effect of size and distribution of the voids on 

different mechanical properties of the fabricated parts. 

To further understand and characterize the effect of process parameters on the 

mechanical properties of LBAM-fabricated parts, more research work is needed to model 

the formation of voids during the build and predict the void size and distribution within the 

final parts.



 

164 

REFERENCES 

[1] Aboutaleb, A. M., Bian, L., Elwany, A., Shamsaei, N., Thompson, S. M., and Tapia, 

G., 2016, “Accelerated Process Optimization for Laser-Based Additive 

Manufacturing by Leveraging Similar Prior Studies,” IIE Transactions, 49(1), pp. 

1–14. 

 

[2] Badiru, A. B., Valencia, V. V., and Liu, D., Additive Manufacturing Handbook : 

Product Development for the Defense Industry. 

 

[3] Emelogu, A., Marufuzzaman, M., Thompson, S. M., Shamsaei, N., and Bian, L., 

2016, “Additive Manufacturing of Biomedical Implants: A Feasibility Assessment 

via Supply-Chain Cost Analysis,” Additive Manufacturing, 11, pp. 97–113. 

 

[4] Tapia, G., and Elwany, A., 2014, “A Review on Process Monitoring and Control in 

Metal-Based Additive Manufacturing,” Journal of Manufacturing Science and 

Engineering, 136(6), p. 60801. 

 

[5] Shamsaei, N., Yadollahi, A., Bian, L., and Thompson, S. M., 2015, “An Overview 

of Direct Laser Deposition for Additive Manufacturing; Part II: Mechanical 

Behavior, Process Parameter Optimization and Control,” Additive Manufacturing, 

8, pp. 12–35. 

 

[6] M.S. Tootooni, 2016, “Sensor Based Monitoring of Multidimensional Complex 

Systems Using Spectral Graph Theory,” Binghamton University. 

 

[7] Rao, P. K., Kong, Z., Duty, C. E., Smith, R. J., Kunc, V., and Love, L. J., 2015, 

“Assessment of Dimensional Integrity and Spatial Defect Localization in Additive 

Manufacturing Using Spectral Graph Theory,” Journal of Manufacturing Science 

and Engineering, 138(5), p. 51007. 

 

[8] Huang, Q., Zhang, J., Sabbaghi, A., and Dasgupta, T., 2015, “Optimal Offline 

Compensation of Shape Shrinkage for Three-Dimensional Printing Processes,” IIE 

Transactions, 47(5), pp. 431–441. 

 

[9] Huang, Q., 2016, “An Analytical Foundation for Optimal Compensation of Three-

Dimensional Shape Deformation in Additive Manufacturing,” Journal of 

Manufacturing Science and Engineering, 138(6), p. 61010. 

 



 

165 

[10] Huang, Q., Nouri, H., Xu, K., Chen, Y., Sosina, S., and Dasgupta, T., 2014, 

“Statistical Predictive Modeling and Compensation of Geometric Deviations of 

Three-Dimensional Printed Products,” Journal of Manufacturing Science and 

Engineering, 136(6), p. 61008. 

 

[11] Thompson, S. M., Bian, L., Shamsaei, N., and Yadollahi, A., 2015, “An Overview 

of Direct Laser Deposition for Additive Manufacturing; Part I: Transport 

Phenomena, Modeling and Diagnostics,” Additive Manufacturing, 8, pp. 36–62. 

 

[12] Yu, J., Lin, X., Ma, L., Wang, J., Fu, X., Chen, J., and Huang, W., 2011, “Influence 

of Laser Deposition Patterns on Part Distortion, Interior Quality and Mechanical 

Properties by Laser Solid Forming (LSF),” Materials Science and Engineering: A, 

528(3), pp. 1094–1104. 

 

[13] Kahlen, F.-J., and Kar, A., 2001, “Tensile Strengths for Laser-Fabricated Parts and 

Similarity Parameters for Rapid Manufacturing,” Journal of Manufacturing Science 

and Engineering, 123(1), p. 38. 

 

[14] Birnbaum, A., Aggarangsi, P., and Beuth, J., 2003, “Process Scaling and Transient 

Melt Pool Size Control in Laser-Based Additive Manufacturing Processes,” 

Proceedings of the Annual International Solid Freeform Fabrication Symposium. 

 

[15] Bontha, S., Klingbeil, N. W., Kobryn, P. A., and Fraser, H. L., 2009, “Effects of 

Process Variables and Size-Scale on Solidification Microstructure in Beam-Based 

Fabrication of Bulky 3D Structures,” Materials Science and Engineering: A, 513, 

pp. 311–318. 

 

[16] Vasinonta, A., Beuth, J., and Griffith, M., 2000, “Process Maps for Controlling 

Residual Stress and Melt Pool Size in Laser-Based SFF Processes,” Proceedings of 

the Annual International Solid Freeform Fabrication Symposium, pp. 200–208. 

 

[17] Kummailil, J., Sammarco, C., Skinner, D., Brown, C. A., and Rong, K., 2005, 

“Effect of Select LENS Processing Parameters on the Deposition of Ti-6Al-4V,” 

Journal of Manufacturing Processes, 7(1), pp. 42–50. 

 

[18] Montgomery, D. C., 2009, Design and Analysis of Experiments, Wiley. 

 

[19] Raghunath, N., and Pandey, P. M., 2007, “Improving Accuracy through Shrinkage 

Modelling by Using Taguchi Method in Selective Laser Sintering,” International 

Journal of Machine Tools and Manufacture, 47(6), pp. 985–995. 

 

[20] Koehler, J. R., and Owen, A. B., 1996, “9 Computer Experiments,” Handbook of 

Statistics, pp. 261–308. 

 

 



 

166 

[21] Kleijnen, J. P. C., 2009, “Kriging Metamodeling in Simulation: A Review,” 

European Journal of Operational Research, 192(3), pp. 707–716. 

 

[22] Myers, R. H., Montgomery, D. C., and Anderson-Cook, C. M., 2009, “Response 

Surface Methodology: Process and Product Optimization Using Designed 

Experiments,” John Wiley & Sons, p. 825. 

 

[23] Simpson, and W., T., 1998, “Comparison of Response Surface and Kriging Models 

in the Multidisciplinary Design of an Aerospike Nozzle,” Institute for Computer 

Applications in Science and Engineering, NASA Langley Research Center. 

 

[24] Russell, S. J., and Norvig, P., 2010, Artificial Intelligence : A Modern Approach, 

Prentice Hall. 

 

[25] Lu, Z. L., Li, D. C., Lu, B. H., Zhang, A. F., Zhu, G. X., and Pi, G., 2010, “The 

Prediction of the Building Precision in the Laser Engineered Net Shaping Process 

Using Advanced Networks,” Optics and Lasers in Engineering, 48(5), pp. 519–525. 

 

[26] Casalino, G., and Ludovico, A. D., 2002, “Parameter Selection by an Artificial 

Neural Network for a Laser Bending Process,” Proceedings of the Institution of 

Mechanical Engineers, Part B: Journal of Engineering Manufacture, 216(11), pp. 

1517–1520. 

 

[27] Wang, L., Felicelli, S. D., and Craig, J. E., 2009, “Experimental and Numerical 

Study of the LENS Rapid Fabrication Process,” Journal of Manufacturing Science 

and Engineering, 131(4), p. 41019. 

 

[28] Fathi, A., and Mozaffari, A., 2014, “Vector Optimization of Laser Solid Freeform 

Fabrication System Using a Hierarchical Mutable Smart Bee-Fuzzy Inference 

System and Hybrid NSGA-II/Self-Organizing Map,” Journal of Intelligent 

Manufacturing, 25(4), pp. 775–795. 

 

[29] Campbell, T., Williams, C., Ivanova, O., and Garrett, B., 2011, “Could 3D Printing 

Change the World? Technologies, Potential, and Implications of Additive 

Manufacturing,” Atlantic Council, Washington, DC, pp. 1–15. 

 

[30] Berman, B., 2012, “3-D Printing: The New Industrial Revolution,” Business 

Horizons, 55(2), pp. 155–162. 

 

[31] Petrick, I. J., and Simpson, T. W., 2013, “3D Printing Disrupts Manufacturing: How 

Economies of One Create New Rules of Competition,” Research-Technology 

Management, 56(6), pp. 12–16. 

 

 

 



 

167 

[32] Spierings, A. B., and Levy, G., 2009, “Comparison of Density of Stainless Steel 

316L Parts Produced with Selective Laser Melting Using Different Powder Grades,” 

Proceedings of the Annual International Solid Freeform Fabrication Symposium, p. 

342–353. 

 

[33] Averyanova, M., Bertrand, P., and Verquin, B., 2011, “Studying the Influence of 

Initial Powder Characteristics on the Properties of Final Parts Manufactured by the 

Selective Laser Melting Technology,” Virtual and Physical Prototyping, 6(4), pp. 

215–223. 

 

[34] Kempen, K., Yasa, E., Thijs, L., Kruth, J.-P., and Van Humbeeck, J., 2011, 

“Microstructure and Mechanical Properties of Selective Laser Melted 18Ni-300 

Steel,” Physics Procedia, 12, pp. 255–263. 

 

[35] Van Hooreweder, B., Moens, D., Boonen, R., Kruth, J.-P., and Sas, P., 2012, 

“Analysis of Fracture Toughness and Crack Propagation of Ti6Al4V Produced by 

Selective Laser Melting,” Advanced Engineering Materials, 14(1–2), pp. 92–97. 

 

[36] Leuders, S., Thöne, M., Riemer, A., Niendorf, T., Tröster, T., Richard, H. A., and 

Maier, H. J., 2013, “On the Mechanical Behaviour of Titanium Alloy TiAl6V4 

Manufactured by Selective Laser Melting: Fatigue Resistance and Crack Growth 

Performance,” International Journal of Fatigue, 48, pp. 300–307. 

 

[37] Frazier, W. E., 2014, “Metal Additive Manufacturing: A Review,” Journal of 

Materials Engineering and Performance, 23(6), pp. 1917–1928. 

 

[38] Foust, M., Thomsen, D., Stickles, R., Cooper, C., and Dodds, W., 2012, 

“Development of the GE Aviation Low Emissions TAPS Combustor for Next 

Generation Aircraft Engines,” 50th AIAA Aerospace Sciences Meeting Including the 

New Horizons Forum and Aerospace Exposition, American Institute of Aeronautics 

and Astronautics, Reston, Virigina. 

 

[39] Wohlers, T., and Caffrey, T., 2013, “Additive Manufacturing and 3D Printing State 

of the Industry,” Annual Worldwide Progress Report 2014, Wohlers Associates. 

 

[40] Camisa, J. A., Marler, D., and Madlinger, A., 2014, “Additive Manufacturing and 

3D Printing for Oil and Gas-Transformative Potential and Technology Constraints,” 

Proceedings of the 24th International Ocean and Polar Engineering Conference, 

International Society of Offshore and Polar Engineers, Busan, Korea, pp. 299–306. 

 

[41] Bian, L., Thompson, S. M., and Shamsaei, N., 2015, “Mechanical Properties and 

Microstructural Features of Direct Laser-Deposited Ti-6Al-4V,” Journal of 

Manufacturing, 67(3), pp. 629–638. 

 

 



 

168 

[42] Van Elsen, M., 2007, “Complexity of Selective Laser Melting : A New Optimization 

Approach,” University of Leuven. 

 

[43] Bontha, S., Klingbeil, N. W., Kobryn, P. A., and Fraser, H. L., 2009, “Effects of 

Process Variables and Size-Scale on Solidification Microstructure in Beam-Based 

Fabrication of Bulky 3D Structures,” Materials Science and Engineering: A, 513–

514, pp. 311–318. 

 

[44] Kummailil, J., 2004, “Process Models for Laser Engineered Net Shaping,” 

Worcester Polytechnic Institute. 

 

[45] Averyanova, M., Cicala, E., Bertrand, P., and Grevey, D., 2012, “Experimental 

Design Approach to Optimize Selective Laser Melting of Martensitic 17-4 PH 

Powder: Part I – Single Laser Tracks and First Layer,” Rapid Prototyping Journal, 

18(1), pp. 28–37. 

 

[46] Lynn-Charney, C., and Rosen, D. W., 2000, “Usage of Accuracy Models in 

Stereolithography Process Planning,” Rapid Prototyping Journal, 6(2), pp. 77–87. 

 

[47] Zhou, J. G., Herscovici, D., and Chen, C. C., 2000, “Parametric Process 

Optimization to Improve the Accuracy of Rapid Prototyped Stereolithography 

Parts,” International Journal of Machine Tools and Manufacture, 40(3), pp. 363–

379. 

 

[48] Averyanova, M., and Bertrand, P., 2009, “Direct Manufacturing of Dense Parts 

From Martensitic Precipitation Hardening Steel Gas Atomized Powder by Selective 

Laser Melting (SLM) Technology,” Proceedings of the International Conference on 

Advanced Research in Virtual and Rapid Prototyping, Leiria, Portugal, pp. 343–348. 

 

[49] Gu, H., Gong, H., Pal, D., Rafi, K., Starr, T., and Stucker, B., 2013, “Influences of 

Energy Density on Porosity and Microstructure of Selective Laser Melted 17- 4PH 

Stainless Steel,” Proceedings of the Annual International Solid Freeform Fabrication 

Symposium, pp. 474–489. 

 

[50] Vastola, J. T., 2012, “Sequential Experimental Design Under Competing Prior 

Knowledge,” Georgia Institute of Technology. 

 

[51] Dasgupta, T., 2007, “Robust Parameter Design for Automatically Controlled 

Systems and Nanostructure Synthesis,” Georgia Institute of Technology. 

 

[52] Joseph, V. R., Dasgupta, T., Tuo, R., and Wu, C. F. J., 2015, “Sequential Exploration 

of Complex Surfaces Using Minimum Energy Designs,” Technometrics, 57(1), pp. 

64–74. 

 

 



 

169 

[53] Dasgupta, T., 2007, “Robust Parameter Design for Automatically Controlled 

Systems and Nanostructure Synthesis,” Georgia Institute of Technology. 

 

[54] Morris, M. D., and Mitchell, T. J., 1995, “Exploratory Designs for Computational 

Experiments,” Journal of Statistical Planning and Inference, 43(3), pp. 381–402. 

 

[55] Jin, R., Chen, W., and Sudjianto, A., 2005, “An Efficient Algorithm for Constructing 

Optimal Design of Computer Experiments,” Journal of Statistical Planning and 

Inference, 134(1), pp. 268–287. 

 

[56] Casciato, M. J., 2013, “The Design, Synthesis, and Optimization of Nanomaterials 

Fabricated in Supercritical Carbon Dioxide,” Ph.D. Thesis, Georgia Institute of 

Techology. 

 

[57] Casciato, M. J., Vastola, J. T., Lu, J. C., Hess, D. W., and Grover, M. A., 2013, 

“Initial Experimental Design Methodology Incorporating Expert Conjecture, Prior 

Data, and Engineering Models for Deposition of Iridium Nanoparticles in 

Supercritical Carbon Dioxide,” Industrial & Engineering Chemistry Research, 

52(28), pp. 9645–9653. 

 

[58] Fedorov, V. V., and Hackl, P., 2012, Model-Oriented Design of Experiments, 

Springer US, New York. 

 

[59] Spierings, A. B., Wegener, K., and Levy, G., 2012, “Designing Material Properties 

Locally with Additive Manufacturing Technology SLM,” Proceedings of the 

Annual International Solid Freeform Fabrication Symposium, pp. 447– 455. 

 

[60] Yasa, E., and Kruth, J.-P., 2011, “Microstructural Investigation of Selective Laser 

Melting 316L Stainless Steel Parts Exposed to Laser Re-Melting,” Procedia 

Engineering, 19, pp. 389–395. 

 

[61] Abe, F., Osakada, K., Shiomi, M., Uematsu, K., and Matsumoto, M., 2001, “The 

Manufacturing of Hard Tools from Metallic Powders by Selective Laser Melting,” 

Journal of Materials Processing Technology, 111(1–3), pp. 210–213. 

 

[62] Tolosa, I., Garciand?a, F., Zubiri, F., Zapirain, F., and Esnaola, A., 2010, “Study of 

Mechanical Properties of AISI 316 Stainless Steel Processed by Selective Laser 

Melting, Following Different Manufacturing Strategies,” The International Journal 

of Advanced Manufacturing Technology, 51(5–8), pp. 639–647. 

 

[63] Pinkerton, A. J., and Li, L., 2005, “Direct Additive Laser Manufacturing Using Gas- 

and Water-Atomised H13 Tool Steel Powders,” The International Journal of 

Advanced Manufacturing Technology, 25(5–6), pp. 471–479. 

 

 



 

170 

[64] Cottam, R., Wang, J., and Luzin, V., 2014, “Characterization of Microstructure and 

Residual Stress in a 3D H13 Tool Steel Component Produced by Additive 

Manufacturing,” Journal of Materials Research, 29(17), pp. 1978–1986. 

 

[65] Cormier, D., Harrysson, O., and West, H., 2004, “Characterization of H13 Steel 

Produced via Electron Beam Melting,” Rapid Prototyping Journal, 10(1), pp. 35–

41. 

 

[66] Casavola, C., Campanelli, S. L., and Pappalettere, C., 2008, “Experimental Analysis 

of Residual Stresses in the Selective Laser Melting Process,” Proccedings of the 6th 

International Congress and Exposition, Society for Experimental Mechancis, 

Orlando, FloridaProccedings of the XIth International Congress and Exposition, 

Society for Experimental Mechancis, Orlando, Florida. 

 

[67] Antony, K. C., 1963, “Aging Reactions in Precipitation Hardenable Stainless Steel,” 

Journal of Metals, 15, pp. 922–927. 

 

[68] Hsiao, C. N., Chiou, C. S., and Yang, J. R., 2002, “Aging Reactions in a 17–4 PH 

Stainless Steel,” Materials Chemistry and Physics, 74, pp. 134–142. 

 

[69] Facchini, L., Vicente, N., Lonardelli, I., Magalini, E., Robotti, P., and Molinari, A., 

2010, “Metastable Austenite in 17-4 Precipitation-Hardening Stainless Steel 

Produced by Selective Laser Melting,” Advanced Engineering Materials, 12(3), pp. 

184–188. 

 

[70] Murr, L. E., Martinez, E., Hernandez, J., Collins, S., Amato, K. N., Gaytan, S. M., 

and Shindo, P. W., 2012, “Microstructures and Properties of 17-4 PH Stainless Steel 

Fabricated by Selective Laser Melting,” Journal of Materials Research and 

Technology, 1(3), pp. 167–177. 

 

[71] Jerrard, P. G. E., Hao, L., and Evans, K. E., 2009, “Experimental Investigation into 

Selective Laser Melting of Austenitic and Martensitic Stainless Steel Powder 

Mixtures,” Proceedings of the Institution of Mechanical Engineers, Part B: Journal 

of Engineering Manufacture, 223(11), pp. 1409–1416. 

 

[72] Kumar, S., and Kruth, J. P., 2008, “Wear Performance of SLS/SLM Materials,” 

Advanced Engineering Materials, 10(8), pp. 750–753. 

 

[73] Gu, H., Gong, H., Pal, D., Rafi, K., Starr, T., and Stucker, B., 2013, “Influences of 

Energy Density on Porosity and Microstructure of Selective Laser Melted 17-4PH 

Stainless Steel,” 2013 Solid Freeform Fabrication Symposium, p. 474. 

 

[74] Kumar, S., and Kruth, J., 2008, “Wear Performance of SLS/SLM Materials,” 

Advanced Engineering Materials, 10(8), pp. 750–753. 

 



 

171 

[75] Huang, Y., Leu, M. C., Mazumder, J., and Donmez, A., 2015, “Additive 

Manufacturing: Current State, Future Potential, Gaps and Needs, and 

Recommendations,” Journal of Manufacturing Science and Engineering, 137(1), p. 

14001. 

 

[76] M.S. Tootooni, A. Dsouza, R. Donovan, P. Rao, Z. Kong, P. B., 2017, “Assessing 

the Geometric Integrity of Additive Manufactured (AM) Parts from Point Cloud 

Data Using Spectral Graph Theoretic Sparse Representation-Based Classification,” 

Proceedings of Manufacturing Science and Engineering Conference (MSEC) of the 

ASME (Accepted). 

 

[77] M.S. Tootooni, A. Dsouza, R. Donovan, P. Rao, Z. Kong, P. B., 2017, “Classifying 

the Dimensional Variation in Additive Manufactured Parts from Laser-Scanned 3D 

Point Cloud Data Using Machine Learning Approaches,” ASME Transactions, 

Journal of Manufacturing Science and Engineering (Accepted). 

 

[78] Dsouza, A., 2016, “Experimental Evolutionary Optimization of Geometric Integrity 

in Fused Filament Fabrication (FFF) Additive Manufacturing Process,” Binghamton 

University. 

 

[79] Vasinonta, A., and Beuth, J., 2000, “Process Maps for Controlling Residual Stress 

and Melt Pool Size in Laser-Based SFF Processes,” Proceedings of Solid Freeform 

Fabrication Symposium Solid Freeform Fabrication Symposium, pp. 200–208. 

 

[80] Bochmann, L., Bayley, C., Helu, M., Transchel, R., Wegener, K., and Dornfeld, D., 

2015, “Understanding Error Generation in Fused Deposition Modeling,” Surface 

Topography: Metrology and Properties, 3(1), p. 14002. 

 

[81] Mahesh, M., Wong, Y. S., Fuh, J. Y. H., and Loh, H. T., 2004, “Benchmarking for 

Comparative Evaluation of RP Systems and Processes,” Rapid Prototyping Journal, 

10(2), pp. 123–135. 

 

[82] El-Katatny, I., Masood, S. H., and Morsi, Y. S., 2010, “Error Analysis of FDM 

Fabricated Medical Replicas,” Rapid Prototyping Journal, 16(1), pp. 36–43. 

 

[83] Weheba, G., and Sanchez-Marsa, A., 2006, “Using Response Surface Methodology 

to Optimize the Stereolithography Process,” Rapid Prototyping Journal, 12(2), pp. 

72–77. 

 

[84] Deshpande, S., Watson, L. T., and Canfield, R. A., 2013, “Pareto Front 

Approximation Using a Hybrid Approach,” Procedia Computer Science, 18, pp. 

521–530. 

 

[85] Eichfelder, G., 2008, Adaptive Scalarization Methods in Multiobjective 

Optimization, Springer Berlin Heidelberg, Berlin, Heidelberg. 



 

172 

[86] Abraham, A., and Jain, L., 2005, “Evolutionary Multiobjective Optimization,” 

Evolutionary Multiobjective Optimization, Springer-Verlag, London, pp. 1–6. 

 

[87] Kunath, S., Marchyk, N., Haupt, K., and Feller, K.-H., 2013, “Multi-Objective 

Optimization and Design of Experiments as Tools to Tailor Molecularly Imprinted 

Polymers Specific for Glucuronic Acid,” Talanta, 105, pp. 211–218. 

 

[88] Moylan, S., Cooke, A., Jurrens, K., Slotwinski, J., Alkan Donmez, M., Bryson, J. 

E., and Gallagher, P. D., 2012, “A Review of Test Artifacts for Additive 

Manufacturing.” 

 

[89] ASME B5.54, 2005, “Methods for Performance Evaluation of Computer 

Numerically Controlled Machining Centers,” 1998, p. 177. 

 

[90] NAS, 1969, NAS 979 Uniform Cutting Tests--NAS Series Metal Cutting Equipment 

Specifications. 

 

[91] Moylan, S., Slotwinski, J., Cooke, A., Jurrens, K., and Alkan Donmez, M., 2014, 

“An Additive Manufacturing Test Artifact,” Journal of Research of the National 

Institute of Standards and Technology, 119. 

 

[92] ASME, 2009, Y14.5 - Dimensioning and Tolerancing - Engineering Drawing and 

Related Documentation Practices, American Society of Mechanical Engineers. 

 

[93] Aboutaleb, A. M., Bian, L., Shamsaei, N., Thompson, S. M., and Rao, P. K., 2016, 

“Multi-Objective Process Optimization of Additive Manufacturing: A Case Study 

on Geometry Accuracy Optimization,” Proceedings of the Annual International 

Solid Freeform Fabrication Symposium, pp. 656–669. 

 

[94] Aboutaleb, A. M., Bian, L., Shamsaei, N., and Thompson, S. M., 2016, “Systematic 

Optimization of Laser-Based Additive Manufacturing for Multiple Mechanical 

Properties,” 2016 IEEE International Conference on Automation Science and 

Engineering (CASE), IEEE, pp. 780–785. 

 

[95] Knowles, J., 2006, “ParEGO: A Hybrid Algorithm with On-Line Landscape 

Approximation for Expensive Multiobjective Optimization Problems,” IEEE 

Transactions on Evolutionary Computation, 10(1), pp. 50–66. 

 

[96] Okabe, T., Jin, Y., Olhofer, M., and Sendhoff, B., 2004, “On Test Functions for 

Evolutionary Multi-Objective Optimization,” Springer, Berlin, Heidelberg, pp. 792–

802. 

 

[97] Kim, I. Y., and de Weck, O. L., 2005, “Adaptive Weighted-Sum Method for Bi-

Objective Optimization: Pareto Front Generation,” Structural and Multidisciplinary 

Optimization, 29(2), pp. 149–158. 



 

173 

[98] Huband, S., Hingston, P., Barone, L., and While, L., 2006, “A Review of 

Multiobjective Test Problems and a Scalable Test Problem Toolkit,” IEEE 

Transactions on Evolutionary Computation, 10(5), pp. 477–506. 

 

[99] Van Veldhuizen, D. A., and Lamont, G. B., 1998, “Multiobjective Evolutionary 

Algorithm Research: A History and Analysis,” Technical Report TR-98-03, 

Department of Electrical and Computer Engineering, Graduate School of 

Engineering, Air Force Institute of Technology, Wright-Patterson AFB, Ohio. 

 

[100] Ryu, J.-H., Kim, S., and Wan, H., “Pareto Front Approximation with Adaptive 

Weighted Sum Method in Multiobjective Simulation Optimization.” 

 

[101] Murr, L. E., Gaytan, S. M., Medina, F., Lopez, H., Martinez, E., Machado, B. I., 

Hernandez, D. H., Martinez, L., Lopez, M. I., Wicker, R. B., and Bracke, J., 2010, 

“Next-Generation Biomedical Implants Using Additive Manufacturing of Complex, 

Cellular and Functional Mesh Arrays,” Philosophical Transactions of the Royal 

Society of London A: Mathematical, Physical and Engineering Sciences, 368(1917), 

pp. 1999–2039. 

 

[102] Niinomi, M., 2008, “Mechanical Biocompatibilities of Titanium Alloys for 

Biomedical Applications,” Journal of the Mechanical Behavior of Biomedical 

Materials, 1(1), pp. 30–42. 

 

[103] Elias, C. N., Lima, J. H. C., Valiev, R., and Meyers, M. A., 2008, “Biomedical 

Applications of Titanium and Its Alloys,” JOM, 60(3), pp. 46–49. 

 

[104] Rack, H. J., and Qazi, J. I., 2006, “Titanium Alloys for Biomedical Applications,” 

Materials Science and Engineering: C, 26(8), pp. 1269–1277. 

 

[105] Matassi, F., Botti, A., Sirleo, L., Carulli, C., and Innocenti, M., 2013, “Porous Metal 

for Orthopedics Implants,” Clinical cases in mineral and bone metabolism : the 

official journal of the Italian Society of Osteoporosis, Mineral Metabolism, and 

Skeletal Diseases, 10(2), pp. 111–5. 

 

[106] Vasconcellos, L., Leite, D., Nascimento, F., Vasconcellos, L. G., Graca, M., 

Carvalho, Y., and Cairo, C., 2010, “Porous Titanium for Biomedical Applications: 

An Experimental Study on Rabbits,” Medicina Oral Patología Oral y Cirugia Bucal, 

pp. e407–e412. 

 

[107] TAKAHASHI, M., KIKUCHI, M., and TAKADA, Y., 2002, “Mechanical 

Properties and Microstructures of Dental Cast Ti-Ag and Ti-Cu Alloys,” Dental 

materials. 

 

 

 



 

174 

[108] Al-Mayouf, A. ., Al-Swayih, A. ., Al-Mobarak, N. ., and Al-Jabab, A. ., 2004, 

“Corrosion Behavior of a New Titanium Alloy for Dental Implant Applications in 

Fluoride Media,” Materials Chemistry and Physics, 86(2–3), pp. 320–329. 

 

[109] Boyer, R., 1996, “An Overview on the Use of Titanium in the Aerospace Industry,” 

Materials Science and Engineering: A, 213(1), pp. 103–114. 

 

[110] Peters, M., Kumpfert, J., Ward, C. H., and Leyens, C., 2003, “Titanium Alloys for 

Aerospace Applications,” Advanced Engineering Materials, 5(6), pp. 419–427. 

 

[111] Leyens, C. (Christoph), Peters, M. (Manfred), John Wiley & Sons., and Wiley 

InterScience (Online service), 2003, Titanium and Titanium Alloys : Fundamentals 

and Applications, Wiley-VCH. 

 

[112] Tung, S. C., and McMillan, M. L., 2004, “Automotive Tribology Overview of 

Current Advances and Challenges for the Future,” Tribology International, 37(7), 

pp. 517–536. 

 

[113] Sachdev, A. K., Kulkarni, K., Fang, Z. Z., Yang, R., and Girshov, V., 2012, 

“Titanium for Automotive Applications: Challenges and Opportunities in Materials 

and Processing,” JOM, 64(5), pp. 553–565. 

 

[114] Aboutaleb, A. M., and Bian, L., 2017, “Optimization of Laser-Based Additive 

Manufacturing,” Laser-Based Additive Manufacturing of Metal Parts: Modeling, 

Optimization, and Control of Mechanical Properties, CRC Press, Taylor & Francis 

Group, pp. 137–160. 

 

[115] Gong, H., Rafi, K., Gu, H., Starr, T., and Stucker, B., 2014, “Analysis of Defect 

Generation in Ti–6Al–4V Parts Made Using Powder Bed Fusion Additive 

Manufacturing Processes,” Additive Manufacturing, 1–4, pp. 87–98. 

 

[116] Rafi, H. K., Karthik, N. V., Gong, H., Starr, T. L., and Stucker, B. E., 2013, 

“Microstructures and Mechanical Properties of Ti6Al4V Parts Fabricated by 

Selective Laser Melting and Electron Beam Melting,” Journal of Materials 

Engineering and Performance, 22(12), pp. 3872–3883. 

 

[117] 2014, “Effects of Defects in Laser Additive Manufactured Ti-6Al-4V on Fatigue 

Properties,” Physics Procedia, 56, pp. 371–378. 

 

[118] Yadollahi, A., and Shamsaei, N., 2017, “Additive Manufacturing of Fatigue 

Resistant Materials: Challenges and Opportunities,” International Journal of 

Fatigue, 98, pp. 14–31. 

 

 

 



 

175 

[119] Bagheri, A., Mahtabi, M. J., and Shamsaei, N., 2017, “Fatigue Behavior and Cyclic 

Deformation of Additive Manufactured NiTi,” Journal of Materials Processing 

Technology. 

 

[120] Utyuzhnikov,  s. v., Fantini, P., and Guenov, M. D., 2009, “A Method for Generating 

a Well-Distributed Pareto Set in Nonlinear Multiobjective Optimization,” Journal of 

Computational and Applied Mathematics, 223(2), pp. 820–841. 

 

[121] Collette, Y., and Siarry, P., 2003, Multiobjective Optimization: Principles and Case 

Studies, Springer, Berlin, Heidelberg, New York. 

 

[122] Deb, D., 2001, Multi-Objective Optimization Using Evolutionary Algorithms, J. 

Wiley & Sons, Chichester. 

 

[123] Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T., 2002, “A Fast and Elitist 

Multiobjective Genetic Algorithm: NSGA-II,” IEEE Transactions on Evolutionary 

Computation, 6(2), pp. 182–197. 

 

[124] Hrabe, N., and Quinn, T., 2013, “Effects of Processing on Microstructure and 

Mechanical Properties of a Titanium Alloy (Ti–6Al–4V) Fabricated Using Electron 

Beam Melting (EBM), Part 2: Energy Input, Orientation, and Location,” Materials 

Science and Engineering: A, 573, pp. 271–277. 

 

[125] Selcuk, C., 2011, “Laser Metal Deposition for Powder Metallurgy Parts,” Powder 

Metallurgy, 54(2), pp. 94–99. 

 

[126] Simonelli, M., Tse, Y. Y., and Tuck, C., 2014, “Effect of the Build Orientation on 

the Mechanical Properties and Fracture Modes of SLM Ti-6Al-4V,” Materials 

Science and Engineering A, 616, pp. 1–11. 

 

[127] Wauthle, R., Vrancken, B., Beynaerts, B., Jorissen, K., Schrooten, J., Kruth, J. P., 

and Van Humbeeck, J., 2015, “Effects of Build Orientation and Heat Treatment on 

the Microstructure and Mechanical Properties of Selective Laser Melted Ti6Al4V 

Lattice Structures,” Additive Manufacturing, 5, pp. 77–84. 

 

[128] Carroll, B. E., Palmer, T. A., and Beese, A. M., 2015, “Anisotropic Tensile Behavior 

of Ti-6Al-4V Components Fabricated with Directed Energy Deposition Additive 

Manufacturing,” Acta Materialia, 87, pp. 309–320. 

 

[129] Baufeld, B., Biest, O. Van der, and Gault, R., 2010, “Additive Manufacturing of Ti-

6Al-4V Components by Shaped Metal Deposition: Microstructure and Mechanical 

Properties,” Materials and Design, 31(SUPPL. 1), pp. S106–S111. 

 

 

 



 

176 

[130] Wang, Y., Zhang, S., Tian, X., and Wang, H., 2013, “High-Cycle Fatigue Crack 

Initiation and Propagation in Laser Melting Deposited TC18 Titanium Alloy,” 

International Journal of Minerals, Metallurgy, and Materials, 20(7), pp. 665–670. 

 

[131] Yadollahi, A., Mahtabi, M. J., Khalili, A., Newman, J. C., and Doude, H., 2017, 

“Fatigue-Life Prediction of Additively-Manufactured Material: Effects of Surface 

Roughness, Defect Size and Shape,” International Journal of Fatigue (Under 

Review). 

 

[132] Silva, A. C. F., Braga, D. F. O., de Figueiredo, M. A. V, and Moreira, P. M. G. P., 

2015, “Ultimate Tensile Strength Optimization of Different FSW Aluminium Alloy 

Joints,” International Journal of Advanced Manufacturing Technology, 79(5–8), pp. 

805–814. 

 

[133] Bozkurt, Y., 2012, “The Optimization of Friction Stir Welding Process Parameters 

to Achieve Maximum Tensile Strength in Polyethylene Sheets,” Materials and 

Design, 35, pp. 440–445. 

 

[134] Ampaiboon, A., Lasunon, O. U., and Bubphachot, B., 2015, “Optimization and 

Prediction of Ultimate Tensile Strength in Metal Active Gas Welding,” Scientific 

World Journal, 2015. 

 

[135] Aboutaleb, A. M., Tschopp, M. A., Rao, P. K., and Bian, L., 2017, “Multi-Objective 

Accelerated Process Optimization of Part Geometric Accuracy in Additive 

Manufacturing,” Journal of Manufacturing Science and Engineering. 

 

[136] Aboutaleb, A. M., Bian, L., Rao, P. K., and Tschopp, M. A., 2017, “Accelerated 

Geometry Accuracy Optimization of Additive Manufacturing Parts,” ASME 12th 

International Manufacturing Science and Engineering Conference. 

 

[137] “ASTM B348-13, Standard Specification for Titanium and Titanium Alloy Bars and 

Billets, ASTM International, West Conshohocken, PA, 2013, Www.astm.org.” 

 

[138] “ASTM E8 / E8M-13, Standard Test Methods for Tension Testing of Metallic 

Materials, ASTM International, West Conshohocken, PA, 2013, Www.astm.org.” 

 

[139] Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C. M., and da Fonseca, V. G., 2003, 

“Performance Assessment of Multiobjective Optimizers: An Analysis and Review,” 

IEEE Transactions on Evolutionary Computation, 7(2), pp. 117–132. 

 



 

177 

APPENDIX A 

PRIOR DISTRIBUTION OF 𝜆𝑖
′𝑠  



 

178 

Since 𝜆𝑖
′𝑠 are assumed independent, their joint distribution would be resulted by 

multiplying their distribution by each other as follows: 
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Expanded prior distribution of 𝜆𝑖
′𝑠 can be re-arranged according to the terms involving 𝜆𝑖

′𝑠 

as follows: 
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APPENDIX B 

PROPORTIONAL FORMULA OF 𝑓(𝒀 | 𝝀, 𝒖)  
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Since the design points are generated sequentially, distribution of 𝑌𝑗 depends on 

prior data 𝒖, updated DRPCS’s 𝝀 and the responses from prior batches of experiments in 

the current study 𝑌1, 𝑌2 , … , 𝑌⌊𝑗−1
𝑏
⌋𝑏

. Hence, assuming that distribution of 𝑌𝑗 follows a 

normal distribution, it can be represented as follows: 
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Based on the definition of conditional distribution, joint distribution of 𝑌𝑗’s can be 

resulted by multiplying their conditional distributions as follows: 

𝑓(𝒀|𝝀, 𝒖) =  ∏𝑓𝑗 (𝑌𝑗|𝑌1, 𝑌2 , … , 𝑌⌊𝑗−1
𝑏
⌋𝑏
, 𝒖, 𝝀)

𝑛𝑐

𝑗=1

 

= ∏(2𝜋𝜎𝑗
2)
−1
2

𝑛𝑐

𝑗=1

𝑒𝑥𝑝 {
−1

2𝜎𝑗
2 (𝑌𝑗 − 𝜇𝑗)

2
} 

 =  ∏(2𝜋𝜎𝑗
2)
−1
2

𝑛𝑐

𝑗=1

𝑒𝑥𝑝 {
−1

2𝜎𝑗
2 (𝑌𝑗 −∑𝑤𝑗,𝑖𝑢𝑖

𝑛𝑝

𝑖=1

−∑𝑤𝑗,𝑖𝜆𝑖

𝑛𝑝

𝑖=1

−∑ 𝑣𝑗,𝑗′𝑦𝑗′
⌊
𝑗−1
𝑏
⌋𝑏

𝑗′=1
)

2

} 

If we denote 𝛿𝑗 = 𝑌𝑗 − ∑ 𝑤𝑗,𝑖𝑢𝑖
𝑛𝑝
𝑖=1

− ∑ 𝑣𝑗,𝑗′𝑦𝑗′
⌊
𝑗−1

𝑏
⌋𝑏

𝑗′=1
, 𝑓(𝒀|𝝀, 𝒖) can be re-arranged as 

follows: 
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𝑓(𝒀|𝝀, 𝒖) =∏(2𝜋𝜎𝑗
2)
−1
2

𝑛𝑐

𝑗=1

𝑒𝑥𝑝 {
−1

2𝜎𝑗
2 [(∑𝑤𝑗,𝑖𝜆𝑖

𝑛𝑝

𝑖=1

)

2

+ 𝛿𝑗
2 − 2𝛿𝑗∑𝑤𝑗,𝑖𝜆𝑖

𝑛𝑝

𝑖=1

]} 

Expanded proportional form of this formula is as follows: 

𝑓(𝒀|𝝀, 𝒖) ∝  𝑒𝑥𝑝{
−1

2
∑

1

𝜎𝑗
2 (∑𝑤𝑗,𝑖𝜆𝑖

𝑛𝑝

𝑖=1

)

2

+

𝑛𝑐

𝑗=1

∑
𝛿𝑗

𝜎𝑗
2∑𝑤𝑗,𝑖𝜆𝑖

𝑛𝑝

𝑖=1

𝑛𝑐

𝑗=1

−
1

2
∑(

𝛿𝑗

𝜎𝑗
)

2𝑛𝑐

𝑗=1

} 

By factoring 𝜆𝑖’s out we can reorganize proportional formula of 𝑓(𝒀|𝝀, 𝒖) as follows: 

 

𝑓(𝒀|𝝀, 𝒖) ∝  𝑒𝑥𝑝 {
−1

2
(∑𝜆𝑖

2

𝑛𝑝

𝑖=1

∑
𝑤𝑗,𝑖

2

𝜎𝑗
2

𝑛𝑐

𝑗=1

+ 2∑𝜆𝑖𝜆𝑘
𝑖≠𝑘

∑
𝑤𝑗,𝑖𝑤𝑗,𝑘

𝜎𝑗
2

𝑛𝑐

𝑗=1

) +∑𝜆𝑖∑
𝑤𝑗,𝑖𝛿𝑗

𝜎𝑗
2

𝑛𝑐

𝑗=1

𝑛𝑝

𝑖=1

−
1

2
∑(

𝛿𝑗

𝜎𝑗
)

2𝑛𝑐

𝑗=1

} 

 

Proportional formula of 𝑓(𝒀|𝝀, 𝒖) can be rearranged according to the terms involving 𝜆𝑖
′𝑠 

as follows: 

𝑓(𝒀|𝝀) ∝  𝑒𝑥𝑝 {
−1

2
(∑𝜆𝑖

2

𝑛𝑝

𝑖=1

∑
𝑤𝑗,𝑖

2

𝜎𝑗
2

𝑛𝑐

𝑗=1

+ 2∑𝜆𝑖𝜆𝑘
𝑖≠𝑘

∑
𝑤𝑗,𝑖𝑤𝑗,𝑘

𝜎𝑗
2

𝑛𝑐

𝑗=1

) +∑𝜆𝑖∑
𝑤𝑗,𝑖𝛿𝑗

𝜎𝑗
2

𝑛𝑐

𝑗=1

𝑛𝑝

𝑖=1

} 
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APPENDIX C 

POSTERIOR DISTRIBUTION OF 𝜆𝑖’s 
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By multiplying the expanded form of 𝑓(𝒀|𝝀) and 𝜋(𝝀), the posterior distribution 

of 𝜆𝑖 using the Bayesian formula would be resulted as follows: 

 

𝑔(𝝀|𝒚) ∝ 𝑒𝑥𝑝 {
−1

2
∑

𝜆𝑖
2

𝜔𝑖2
+∑

𝜆𝑖𝛽𝑖
𝜔𝑖2

𝑛𝑝

𝑖=1

𝑛𝑝

𝑖=1

−
1

2
(∑𝜆𝑖

2

𝑛𝑝

𝑖=1

∑
𝑤𝑗,𝑖

2

𝜎𝑗
2

𝑛𝑐

𝑗=1

+ 2∑𝜆𝑖𝜆𝑘
𝑖≠𝑘

∑
𝑤𝑗,𝑖𝑤𝑗,𝑘

𝜎𝑗
2

𝑛𝑐

𝑗=1

)

+∑𝜆𝑖∑
𝑤𝑗,𝑖𝛿𝑗

𝜎𝑗
2

𝑛𝑐

𝑗=1

𝑛𝑝

𝑖=1

} 

 

Trying to factoring out the 𝜆’s terms, the formula above can be  re-arranged as follows: 

 

𝑔(𝝀|𝒚) ∝ 𝑒𝑥𝑝{
−1

2
(∑𝜆𝑖

2

𝑛𝑝

𝑖=1

(∑
𝑤𝑗,𝑖

2

𝜎𝑗
2

𝑛𝑐

𝑗=1

+
1

𝜔𝑖2
) + 2∑𝜆𝑖𝜆𝑘

𝑖≠𝑘

∑
𝑤𝑗,𝑖𝑤𝑗,𝑘

𝜎𝑗
2

𝑛𝑐

𝑗=1

)

+∑𝜆𝑖 (∑
𝑤𝑗,𝑖𝛿𝑗

𝜎𝑗
2

𝑛𝑐

𝑗=1

+
𝛽𝑖
𝜔𝑖2

)

𝑛𝑝

𝑖=1

} 
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APPENDIX D 

CALCULATION OF 𝚲 AND 𝜼 
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Here we show the steps of matrix multiplications as follows: 

 

𝝀𝑇𝚲𝝀 = (𝜆1 𝜆2 ⋯ 𝜆𝑛𝑝)1×𝑛𝑝
×

(

 
 

Λ1,1 Λ1,2 ⋯ Λ1,𝑛𝑝
Λ2,1
⋮

⋱
Λ2,𝑛𝑝
⋮

Λ𝑛𝑝,1
Λ𝑛𝑝,2 ⋯ Λ𝑛𝑝,𝑛𝑝)

 
 

𝑛𝑝×𝑛𝑝

× (

𝜆1
𝜆2
⋮
𝜆𝑛𝑝

)

𝑛𝑝×1

 

= (𝜆1Λ1,1 + 𝜆2Λ2,1 +⋯+ 𝜆𝑛𝑝Λ𝑛𝑝,1     𝜆1Λ1,2 + 𝜆2Λ2,2 +⋯+ 𝜆𝑛𝑝Λ𝑛𝑝,2 

     …      𝜆1Λ1,𝑛𝑝 +  𝜆2Λ2,𝑛𝑝 +⋯+ 𝜆𝑛𝑝Λ𝑛𝑝,𝑛𝑝)1×𝑛𝑝 ×(

𝜆1
𝜆2
⋮
𝜆𝑛𝑝

)

𝑛𝑝×1

 

= (𝜆1
2Λ1,1 + 𝜆2𝜆1Λ2,1 +⋯+ 𝜆𝑛𝑝𝜆1Λ𝑛𝑝,1) + (𝜆1𝜆2Λ1,2 + 𝜆2

2Λ2,2 +⋯+ 𝜆𝑛𝑝𝜆2Λ𝑛𝑝,2)

+⋯+ (𝜆1𝜆𝑛𝑝Λ1,𝑛𝑝 + 𝜆2𝜆𝑛𝑝Λ2,𝑛𝑝 +⋯+ 𝜆𝑛𝑝
2Λ𝑛𝑝,𝑛𝑝) 

Now 𝝀𝑇𝚲𝝀 can be summarized and represented by its elements as follows: 

𝝀𝑇𝚲𝝀 =∑𝜆𝑖
2Λ𝑖,𝑖

𝑛𝑝

𝒊=𝟏

+∑𝜆𝑖𝜆𝑘Λ𝑖,𝑘
𝒊≠𝒌

 

By comparing the formula above with the final form of 𝑔(𝝀|𝒚) in Appendix B, we can 

see the similarity between resulted terms in 𝝀𝑇𝚲𝝀 and the coefficients of 𝜆’s terms in 

𝑔(𝝀|𝒚). Hence, elements of 𝚲 can be presented as follows: 

Λ𝑖,𝑘 =

{
 
 

 
 
∑

𝑤𝑗,𝑖
2

𝜎𝑗
2

𝑛𝑐

𝑗=1

+
1

𝜔𝑖2
  𝑖 = 𝑘

∑
𝑤𝑗,𝑖𝑤𝑗,𝑘

𝜎𝑗
2

𝑛𝑐

𝑗=1

, 𝑖 ≠ 𝑘
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Moreover, by comparing canonical form of multivariate normal 

distribution, ℎ2(𝒛|𝜼, 𝚲) ∝ 𝑒𝑥𝑝 {𝑎 + 𝜼
𝑇𝒛 −

1

2
𝒛𝑇𝚲𝒛}, and 𝑔(𝝀|𝒚) in Appendix B we can 

see that elements of 𝜼 can be represented as follows: 

 

𝜂𝑖 =∑
𝑤𝑗,𝑖𝛿𝑗

𝜎𝑗
2

𝑛𝑐

𝑗=1

+
𝛽𝑖
𝜔𝑖2

 



 

187 

APPENDIX E 

EXPERIMENTAL RESULTS FOR APO SIMULATIONS  
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The algorithm of m-APO is described in detail as follows: 

• Step 1: Decomposing master problem into sub-problems 

First, the master bi-objective optimization problem is broken down into a sequence 

of single objective sub-problems formulated (solvable by APO) as a convex combination 

of individual objective functions represented by Eq. (5.2). To identify the scope of 

objective space, the m-APO first requires achieving a targeted optimum value for 

individual objectives. (In our LBAM mechanical properties optimization case, the targeted 

value for part relative density and elongation-to-failure should be set considering the 

powder properties and the machine technical capabilities. Those should be reasonable 

desired values.) Hence, the algorithm is initialized by choosing two boundary sub-problems 

with (γ1
1 = 0, γ2

1 = 1) and (γ1
2 = 1, γ2

2 = 0). These two initial sub-problems represent the 

single objective optimization problems with respect to only one mechanical property. The 

solution to the first two sub-problems identifies the ends of Pareto front on the objective 

space (i.e., segments e and c in Figure 2.40) 

• Step 2: Applying Accelerated Process Optimization (APO) to sub-problems 

The APO [1] is incorporated into m-APO framework to consecutively design 

experiments and optimize the selected single objective sub-problems at each step. Suppose 

the weight coefficients associated with the current sub-problem is already identified, i.e., 

γ1
h and γ2

h. All the design points and the corresponding response vectors, i.e., (𝐬i, 𝐘i), are 

mapped and scaled to the current sub-problem in the form of weighted summation of single 

responses, i.e., (𝐬i, Zi
h) via the transformation equation Zi

h(𝐬i) = γ1
h. Y1(𝐬i) + γ2

h. Y2(𝐬i) 

represented by Eq. (5.2). The experimental data obtained from optimization procedure of 

previous sub-problems (i.e., sub-problems 1,2, … , h − 1) are treated as prior data and fed 
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into APO to guide and accelerate optimization of the current sub-problem (i.e., hth sub-

problem). The APO leverages the transformed information to improve prediction of the 

weighted single objective responses corresponding to the untested design points for the 

subsequent sub-problems. Consequently, improving the prediction accuracy of the single 

objective responses result in guiding the algorithm towards achieving the Pareto optimal 

solution corresponding to the current sub-problem in an accelerated manner.  

The APO makes a direct analogy with a fundamental electrostatic law to balance 

optimization and space-filling properties. In any sub-problem the APO assigns a simulative 

positive charged particle qh(𝐬j) to each design point. The charge function qh(𝐬) should be 

appropriately selected in relation to the objective of optimization. Since our case is a 

maximization problem, qh(𝐬) should be defined as an inversely proportional function of 

the weighted single objective response values Zh(𝐬) corresponding to each sub-problem in 

Eq. (5.2) [1,51]. Considering this, particles with lower charge are assigned to design points 

with higher Zh(𝐬) and converse. Figure G.1 demonstrates an illustrative example of 

applying APO and the associated dynamics in the design space corresponding to the 

objective space illustrated in Figure 2.40. For instance, design points (a) and (b) on the 

right side of Figure G.1 (a) are illustrated with larger positive particles compared with 

design point (c) on the middle left of the contour plot. This is because of the fact that design 

points (a) and (b) result in lower Z1 in comparison with design point (c). Note that, since 

the combination of weight coefficients and the corresponding single objective response 

values Zh(𝐬) changes from one sub-problem to another, the corresponding charge function 

should change as well. Hence, we observe that positive particle charges with different sizes 

are assigned to the same design points in different contour plots (i.e., different sub-
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problems). The m-APO leverages the dynamics associated with the differences amongst 

the sub-problems’ objective spaces by intelligently mapping the charged particles from one 

sub-problem to another. Similar to a fundamental electrostatic law, the design points (so-

called positive charged particles) push each other apart so as to minimize the total 

electrostatic potential energy in the contour plot domain (i.e., design space). Since the 

design points associated with the lower charged particles (i.e., with higher Zh(𝐬)) weakly 

repel others, more new design points have the chance to be accommodated in their 

neighborhood. The resulting allocation of the design points corresponds to the minimum 

total potential energy. Considering this analogy, the sequential selection of the design 

points will lead to maximize the objective function of interest in the current sub-problem 

(i.e., Zh(𝐬)) with reduced number of experimental runs. 

The so-called electrostatic potential energy between any two design points 𝐬i and 

𝐬j is defined as q(𝐬i)q(𝐬j)/d(𝐬i, 𝐬j), where d(𝐬i, 𝐬j) represents the Euclidean distance 

between 𝐬i and 𝐬j. Therefore, the total electrostatic potential energy function corresponding 

to the hthsub-problem including the nth new design is formulated as follows: 

   En
h = ∑ ∑

qh(𝐬i)q
h(𝐬j)

d(𝐬i,𝐬j)

n
j=i+1

n−1
i=1                              (G.3) 

The new design point can be obtained by solving 𝐬n = argmin En
h. Details of the 

single objective response value prediction for new untested design points and the charge 

function computation is beyond the scope of the present paper and can be found in Ref. 

[1]. 
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Figure G.1 Schematic illustration of applying APO to different sub-problems, and 

representing the design space dynamics associated with conducting m-

APO. 

• Step 3: Defining Hyper-Volume (HV) and stopping criteria for sub-problems 

Hyper-Volume (HV) metric—a well-known performance indicator in the realm of 

multi-objective optimization—is employed to construct the stopping criteria for m-APO 

[95,139]. HV assesses the size of the region on the objective space dominated by the 

resulting Pareto optimal solutions. Therefore, higher HV indicates better coverage of the 

true Pareto front and thus bring about the better Pareto front approximation. Throughout 

the algorithm, ∆HV (i.e., HV increment) represents the contribution of a new Pareto optimal 

solution in terms of solution improvement. In other words, ∆HV quantifies the achievement 

of a new Pareto optimal solution. For instance, in Figure G.2 black rectangle represents 

∆HV associated with a new Pareto optimal solution. Moreover, the size of the whole shaded 

area (including the black rectangle) indicates the HV associated with the current 

approximated Pareto front. The m-APO continues designing experiments for the current 
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sub-problem via APO until the current ∆HV is less than a pre-specified boundary 

(i. e. , ∆HV < ε1). In that case, the m-APO stops proceeding with the current sub-problem 

and move on to the next sub-problem. Moreover, the m-APO stops keep constructing new 

sub-problems and consequently designing more experiments when a significant 

improvement in ∆HV is not observed (i. e. , ∆HV < ε2).  

 

Figure G.2 Schematic illustration of HV as the yardstick of improving the Pareto front 

approximation. 

The black rectangle represents ∆HV, i.e., the contribution of a new Pareto optimal 

solution with regard to HV improvement. 

• Step 4: Constructing sub-problems by determining appropriate weight 

coefficients 

At the end of each sub-problem, contingent upon the distribution of the current 

Pareto optimal solutions, m-APO calculates the appropriate weight coefficients (i.e., 𝛄h) 

to construct the next sub-problem. The weighting coefficients are identified in a way to 

cover the existing gaps on the Pareto front. Note that in the preset work unknown variables 

are represented by upper case letters, while known variables are illustrated by lower case 

letters. Suppose m-APO stopped designing experiments for the (h − 1)thsub-problem. 
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Hence, currently 𝑚 optimal design points and corresponding Pareto optimal solutions are 

achieved represented by the set𝚽h−1 = {(𝐬1
∗, 𝐲1

∗), (𝐬2
∗ , 𝐲2

∗),… , (𝐬m
∗ , 𝐲m

∗ )}. Afterwards, the 

Euclidean distance between all of the neighboring Pareto points and accordingly the largest 

gap on the existing Pareto front is determined as follows: 

δj = |𝐲(𝐬(j+1)
∗ ) − 𝐲(𝐬(j)

∗ )|   for  j = 1,… , (m − 1) 

∆= maxj=1,…,(m−1)δj 

Suppose 𝐬a
∗ and 𝐬b

∗  are the neighboring Pareto points corresponding to ∆, where 

 y1(𝐬a
∗) <  y1(𝐬b

∗). To cover the largest gap on the existing Pareto front, the weight 

coefficients for the next sub-problem is identified as 𝛄h = ch(y2(𝐬a
∗) − y2(𝐬b

∗) ,  y1(𝐬b
∗) −

y1(𝐬a
∗)), where ch is a constant leading to γ1

h + γ2
h = 1. In that way, the consecutive sub-

problems can efficiently achieve well-distributed Pareto optimal points to approximate the 

true Pareto front using minimum amount of resource. 
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