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This work aims to develop and implement a linear elastic grain-level micromechani-

cal model based on the discrete element method using bonded contacts and an improved

fracture criteria to capture both intergranular and transgranular microcrack initiation and

evolution in polycrystalline ceramics materials. Gaining a better understanding of the un-

derlying mechanics and micromechanics of the fracture process of brittle polycrystalline

materials will aid in high performance material design. Continuum mechanics approaches

cannot accurately simulate the crack propagation during fracture due to the discontinuous

nature of the problem. In this work we distinguish between predominately intergranular

failure (along the grain boundaries) versus predominately transgranular failure (across the

grains) based on grain orientation and microstructural parameters to describe the contact

interfaces and present the first approach at fracturing discrete elements. Specifically, the

influence of grain boundary strength and stiffness on the fracture behavior of an idealized

ceramic material is studied under three different loading conditions: uniaxial compression,



brazilian, and four-point bending. Digital representations of the sample microstructures for

the test cases are composed of hexagonal, prismatic, honeycomb-packed grains represented

by rigid, discrete elements. The principle of virtual work is used to develop a microscale

fracture criteria for brittle polycrystalline materials for tensile, shear, torsional and rolling

modes of intergranular motion. The interactions between discrete elements within each

grain are governed by traction displacement relationships.

Key words: Polycrystalline ceramics, discrete element method, digital microstructure repre-
sentation, fracture modeling, virtual work
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CHAPTER 1

INTRODUCTION

1.1 Background

In this introductory chapter, an overview of brittle polycrystalline materials is pre-

sented. The fundamental equations relating stress, strain, and displacements to describe

the mechanical response of solid body is briefly reviewed. Brittle fracture behavior and

relevant fracture criterion are reviewed in detail herein. An overview on the current state

of development of discrete element methods, specifically in the fracture of brittle materials

is discussed. Lastly, the motivation and objectives of the proposed research is presented,

followed by a description of the organization of the remaining chapters of the research

study.

1.1.1 Brittle Polycrystalline Materials

Polycrystalline materials, such as metals and ceramics, are the most widely used group

of structural materials in today’s manufacturing industry [99]. Polycrystalline brittle mate-

rials manufactured from oxides, from refractory compounds of the carbide class, and from

nitrates and silicides, are a large group of materials used extensively in modern techno-

logy, and their strength properties have been studied at length [19, 25, 72, 89, 105, 111]. A

polycrystalline microstructure is composed of many irregular-shaped crystallites of diffe-

1



rent sizes and orientations, called grains, separated by interfaces, called grain boundaries,

as shown in Figure 1.1. Grain boundaries are important elements associated with mi-

crostructural heterogeneity in polycrystalline materials. These boundaries strongly affect

bulk properties, particularly mechanical properties controlled by deformation and fracture

in polycrystalline materials. Both beneficial [34, 53] and detrimental [64, 85] effects of

grain boundaries on mechanical properties have been observed. In polycrystalline mate-

rials, grain boundaries can aid in the resistance of crack propagation. It is well known that

grain refinement, i.e. an increase in the density of grain boundaries with decreased grain

size, can improve in the strength of polycrystals, as predicted by the Hall-Petch relationship

[39]. However grain boundaries can also weaken the overall strength of the parent mate-

rial due to reduced material properties and differences in interfacial properties. Because

grain boundaries can be preferential sites for crack nucleation and propagation, intergra-

nular fracture is often the primary origin of severe brittleness of polycrystalline materials

[101]. Therefore the engineering properties of polycrystalline materials are determined as

much by the connectivity and interaction among crystalline grains as by the strength of the

grains[28].

A material is characterized as brittle if it experiences little to no plastic deformation

when subjected to stresses that lead to fracture. Brittle materials absorb minimal energy

prior to fracture and typically have a rather small fracture strain of less than 0.05. There-

fore brittle materials generally have higher strength but lower toughness than their ductile

counterparts. Having a better understanding of the mechanical behavior and failure mecha-

2



Figure 1.1

Illustration of the grain and grain boundaries in fibrous monolith architecture consisting
of ZrB2-30%SiC cells (light) and graphite-15%ZrB2 cell boundaries (dark) produced

using coextrusion processing. Reprinted from [111]

nisms in brittle polycrystalline materials and accurately predicting their fracture behavior

will aid in the development of advanced structural materials [92].

1.1.2 Theory of Elasticity

The theory of elasticity is a branch of continuum mechanics related to elastic solids and

is concerned with the determination of the stresses and displacements in a solid body as a

result of external loads for which the body reverts to its original state upon removal of the

load. When solving any problem in solid mechanics several factors are considered: [86]:

• The Newtonian equations of motion and the related concept of stress

• Geometry of the deformation and thus expression of strains in terms of gradients in
displacements fields

• Relations between stress and strain that are characteristic of the material in question,
the stress level, temperature and time scales of the problem considered

3



• Equations for conservation of mass of diffusing constituents

• The first law of thermodynamics, which relates changes in energy to work and heat
supply

From the above considerations, three fundamental relations arise for providing a mathe-

matical description of the deformation of a solid body:

• The equilibrium equations which relate stress to the applied tractions on loaded
boundaries and also govern the relations among stress gradient within the material

• The kinematic equations which relate strain to displacement gradients

• The constitutive equations which relates stress (or stress increment) to strain (or
strain increment)

In the current work, we consider only the case of linear elastic theory which models re-

versible behavior of a material that is subjected to small strains. In the majority of practical

applications, the displacement of the solid is small, in which case the governing equations

can be linearized. The fundamental relations are therefore presented in the context of the

Small Displacement Theory of Elasticity in which the displacement components u, v, w,

of the material particles are assumed to be much smaller (indeed, infinitesimally smaller)

than any relevant dimension of the body. By using this approach, it can be assumed that

the body’s geometry and the constitutive properties of the material (such as stiffness) at

each point of space are unchanged by the deformation. Rectangular Cartesian coordinates

(x, y, z) are employed for defining the three dimensional (3D) space containing the body.

The linearized governing equations that arise from the three fundamental relations,

Equilibrium, Kinematics, and Constitutive, are reviewed below. The effect of the me-

chanical properties of a material, such as its yield strength, Young’s modulus, ultimate

4



strength, and fracture toughness on its susceptibility to failure modes are also predicted.

These methodologies can be used to predict the response of these materials under loading.

1.1.2.1 Equilibrium: Stress Relations

Consider a body subjected to external forces on its surface. As a consequence of these

external forces, internal forces are generated. If the body is cut along a plane perpendicular

to the x axis, a continuous distribution of internal forces acts on the exposed surface to

maintain equilibrium. If we consider the internal force ~F acting on an infinitesimally

small area, the stresses at this point are given by

σij = lim
∆Ai

(
∆Fj

∆Ai

)
(1.1)

Here σij is a second rank tensor with nine different components, that results in three

normal stresses and six shear stresses.

σij =


σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 =


σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

 (1.2)

If a parallel plane were passed through the body an infinitesimal distance away, a thin

slice would result. If an additional two pairs of planes were passed normal to the first pair,

an infinitesimal cube representing a point would be isolated from the body. The stresses

acting at the point would be as shown in Figure 1.2. On a face whose normal is in the

positive direction of a coordinate axis, the stress component is positive when it points to

the positive direction of the axis. On a face whose normal is in the negative direction of a
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coordinate axis, the stress component is positive when it points to the negative direction of

the axis.

Figure 1.2

Stress element showing all nine component of a stress tensor

In general, the state of stress varies from point to point in a body. When a point is

represented as an infinitesimal cube, the stress components will vary from one face to the

other. This variation is given by the total differential,

dσij =
∂σij
∂x

dx+
∂σij
∂y

dy +
∂σij
∂z

dz (1.3)

The internal forces and moments acting on the cube faces should satisfy the equations

of equilibrium
(∑

F = 0
)

:
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∂σx
∂x

+
∂τyx
∂y

+
∂τzx
∂z

+ Fx = 0,

∂τxy
∂x

+
∂σy
∂y

+
∂τzy
∂z

+ Fy = 0,

∂τxz
∂x

+
∂τyz
∂y

+
∂σz
∂z

+ Fz = 0,

(1.4)

and

τyz = τzy, τzx = τxz, τxy = τyx,

where Fx, Fy and Fz are components of the body forces per unit volume. Summation of

the moments results in σxy = σyx, σxz = σzx, σzy = σyz. Therefore only six independent

stress components are needed to describe the state of stress of a material point because the

stress tensor is symmetric.

1.1.2.2 Kinematics: Strain-Displacement Relations

Previously we have reviewed the stresses within a body subjected to external forces.

Now we will examine the deformations caused by these forces and their intensity called

strain. Deformations and strains are related to the changes in the size and shape of a body.

When the relative position of any two points in a continuous body is changed the body is

said to be deformed or strained. The analysis of strain is essentially a geometric problem

and is unrelated to material properties.

The magnitude and direction of the displacement of a point in a body are denoted by

u, v, and w in the x, y, and z directions in a rectangular coordinate system. The displace-

ment of every point within the body constitutes the displacement field, u = u(x, y, z),

v = v(x, y, z), and w = w(x, y, z). Assuming small displacement theory, the strains pro-
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duced due to these deformations are small compared to unity and their products (higher or-

der terms) are neglected. The kinematic or strain-displacement equations describe how the

strains - the stretching and distortion - within a loaded body relate to the body’s displace-

ments. If all points within the material experience the same displacement (u = constant),

the structure moves as a rigid body but does not stretch or deform internally. For stretching

to occur, points within the body must experience different displacements.

For a body in the 3D space, the strain state of a material particle is described by a total

of six components (3 normal and 3 shear): (εx, εy, εz, γyz, γzx, γxy). The normal strains

represent the unit elongation of a vector originally aligned with the x-axis, y-axis, or z-axis.

The shear strain, ε, is the average of two rotational strains and is related to the engineering

shear strain, γ, as εxy = 1
2
γxy. Thus, in small displacement theory, the strain-displacement

relations may be written as,

εx =
∂u

∂x
, εy =

∂v

∂y
, εz =

∂w

∂z

γyz =
∂w

∂y
+
∂v

∂z
, γzx =

∂u

∂z
+
∂w

∂x
, γxy =

∂v

∂x
+
∂u

∂y

(1.5)

1.1.2.3 Constitutive: Stress-Strain Relations

The previously reviewed concepts of stress and strain at a point involved no considera-

tion of material type on behavior. To establish relationships between stress at a point and

the corresponding strain at that point, material behavior considerations must be introduced.

A linear elastic material exhibits stress components which are linear functions of the strain

components. The material is elastic in that the removal of stress results in a return to the

original shape, with no strain. Thus a state of zero stress always corresponds to a state of
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zero strains. In the most general case, if we assume that the stresses are linearly related

to the strains based on Hooke’s Law, the stress-strain relationship (constitutive law) for an

anisotropic, elastic homogeneous material can be written as,

σx

σy

σz

τyz

τzx

τxy



=



a11 a12 a13 a14 a15 a16

a21 a22 a23 a24 a25 a26

a31 a32 a33 a34 a35 a36

a41 a42 a43 a44 a45 a46

a51 a52 a53 a54 a55 a56

a61 a62 a63 a64 a65 a66





εx

εy

εz

γyz

γzx

γxy



(1.6)

The coefficients of this equations are called elastic constants. Due to symmetry, there are

only 21 independent elastic constants where,

ars = asr, r, s = 1, ..., 6

The fundamental relations presented above are the mathematical descriptions of stress

and strain. With the concepts of stress and strain established, the general types of mecha-

nical behavior of solids can be described and thus quantitative treatments (possible by the

use of the principle of virtual work) for particular problems of interest can be made. When

a solid is subjected to an applied stress, it responds by deforming and if the stress exceeds

the strength it responds by failing [96]. The types of mechanical behavior are defined by

the modes of deformation and modes of failure and they are explained in the subsequent

sections.
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1.1.2.4 Principle of Virtual Work

In 3D, the mechanics of a body in equilibrium under prescribed body forces and boun-

dary conditions is described by fifteen variables (three displacements, six strains, and six

stresses) and a total of fifteen equations (six kinematic, three equilibrium, and six consti-

tutive relations). The work of a force on a particle along a virtual displacement is known

as the virtual work. The principle of virtual work for solving the above mentioned fifteen

equations states that: The virtual work done by the external forces of a mechanical sys-

tem balances the virtual work done by the internal forces for any virtual displacements

satisfying the essential (kinematic) boundary conditions [74].

Consider a body composed of an infinite number of differential cubes subjected to

internal stresses σij and body forces ~F and continuous arbitrary displacements δui and

consistent strains, εij . Mathematically, the principle of virtual work is translated into:∫
S

σijnjδuidS +

∫
V

FiδuidV =

∫
V

σijδεijdV (1.7)

The principle of virtual work is one mathematical form in which a mechanical pro-

blem can be described. This form has the advantage that it directly gives the formulation

needed for numerical computations such as the discrete element method. It gives a uni-

fied approach and understanding to apparently different engineering problems and it only

involves the first order derivatives of the functions ui and δui [74].

1.1.3 Brittle Fracture Behavior

Brittle fracture crosses the boundaries between material science, structural engineering,

physics and chemistry. The term fracture mechanics refers to a vital specialization within
10



solid mechanics in which the presence of a crack is assumed, and quantitative relations

need to be determined between the crack length, the material’s inherent resistance to crack

growth, and the stress at which the crack propagates at high speed to cause structural failure

[87].

In brittle polycrystalline materials microstructure plays a significant role in dictating the

modes of fracture and the macroscopic response. These phenomena are very sensitive to

the polycrystalline microstructure [9, 4, 24], and therefore require a detailed investigation

regarding the effect of microstructure on the fracture of brittle materials. Two main types

of fracture are observed in the failure of brittle polycrystalline materials: intergranular,

occurring along the grain boundaries as shown in Figure 1.3a) and transgranular, occurring

through the grains as shown in Figure 1.3b), [101].

Figure 1.3

Schematic of a) Intergranular fracture and b) Transgranular fracture
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Initial studies on brittle fracture can be traced back to Inglis [49] and Griffith [35].

Inglis initiated the concept of stress concentration at a void in a material and Griffith pos-

tulated that brittle failure in glass is a result of the growth of small cracks when the material

is subjected to a large enough tensile stress [31]. The Griffith theory provides the basis for

laws governing brittle fracture under triaxial stress conditions. Lajtai et. al. stated that the

Griffith theory, or at least its basic premise that fracture starts from flaws, is fundamental

to all investigations of brittle fracture, [98]. A sound fracture model should be established

from knowledge of observed fracture behavior and based on both a stress and an energy

criterion, [98].

The material microstructure plays a significant role in dictating the modes of frac-

ture and the macroscopic response in brittle polycrystalline materials. Over the past few

decades, considerable effort has been directed towards the micromechanics study of frac-

ture that relates macroscale material properties, such as fracture toughness, to the under-

lying mechanisms, such as atomic bond breaking during crack propagations and grain

effects that reduce strain energy through crack deflection and grain boundary motions

[3, 15, 29, 30, 54, 108]. Fracture is a dissipative process in which elastic energy is dissi-

pated to break bonds.

1.1.3.1 Griffith Energy-Balance Criterion

One approach used to predict model fracture initiation in brittle materials is the Griffith

Criterion which states that the energy release rate, G, which is the elastic energy released

per unit of crack advance must be equal or larger than the energy necessary to create new
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surfaces (energy to break bonds = surface energy). The basic deformation mechanism

in brittle materials is crack extension. Once nucleated, crack in brittle materials spread

rapidly. The toughness of intrinsically brittle polycrystalline materials (such as metals

like molybdenum and ceramics) increases systematically with increasing fraction of low-

energy strong boundaries.

The energy approach states that crack extension (i.e., fracture) occurs when the energy

available for crack growth is sufficient to overcome the resistance of the material [35].

The material resistance may include the surface energy, plastic work, or other types of

energy dissipation associated with a propagating crack [6]. The total energy of the system,

U = UM + US , consists of two terms: UM the mechanical energy composed of the strain

potential energy stored in the elastic medium and the potential energy of the outer loading

system; and US , the free energy expended in creating new crack surfaces.

The Griffith energy-balance criterion for predicting the fracture behavior of a body,

firmly rooted in the laws of energy conservation, is given by the equilibrium requirements,

dU

dc
= 0, (1.8)

where dc is the virtual crack extension as shown in the schematic in Figure 1.4. A crack

would extend or retract reversibly for small displacements from the equilibrium length,

according to whether the left-hand side of Equation (1.8) is negative or positive.

The Griffith equilibrium equation can be rewritten in the form

σf =

√
EGc

πc
, (1.9)
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Figure 1.4

Static plane-crack system, showing incremental extension of crack length c through dc:
B, elastic body; S, crack surface; A, applied loading, Reprinted from [61]

where Gc is the critical strain energy release rate and E is the Young’s modulus. Equa-

tion (1.9) describes the interrelation between three important aspects of the fracture pro-

cess:

• the material as evidenced in the critical strain energy release rate Gc

• the stress level σf

• the size c of the flaw

The value of c is chosen based on the smallest crack that could be easily detected.

The Griffith energy-balance approach provides meaningful insights to the fracture pro-

cess. Analyses of crack tip stress field for material models other than purely linear elastic

behavior were studied by Rice [71] who proposed the J-integral, a key innovative approach

that can be used as an analytical tool to characterize the crack tip stress and strain field un-

der both elastic and plastic stress and strain. An alternative but equivalent approach to the
14



Griffith approach, based on the stress state near the tip of a sharp crack, is more useful in

engineering practice and is explained in the next section.

1.1.3.2 Stress Intensity Criterion

Near the tip of a crack in an elastic material, each stress component is proportional to a

single constant, KI , called the stress intensity factor. The I subscript is used to denote the

crack opening mode: Mode I is normal opening mode, Mode II and III are shear sliding

and tearing modes respectively. The different fracture modes produce different stress dis-

tributions in the material ahead of the crack tip, the intensity of which are governed by the

stress intensity factors KI , KII and KIII . The stress intensity factors depend only on the

applied loading and the crack geometry. The stress intensity factors are defined without

recourse to any fracture criterion. Since the principle of superposition applies to linear

stresses and displacements, the stress intensity factors for a given mode are additive. Also,

because they uniquely characterize the level of loading in the region near the crack tip, the

K parameters are intimately related to the conditions of crack extension [61].

If the material is assumed to fail locally at some critical combination of stress and strain,

then it follows that the fracture occur at a critical stress intensity KIC . The critical normal

stress criterion states that failure occurs when KI = KIC and thus consider failure to be

solely by mode I loading of a crack. In this case, KI is the driving force for fracture and

KIC is a measure of material resistance, called Fracture Toughness. These stress intensity

factors are used in design and analysis for which a material can withstand crack tip stresses
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up to KIC , beyond which the crack propagates rapidly. The failure stress σf is then related

to the crack length a and the fracture toughness KIc by

σf =
KIC

α
√
πa

(1.10)

where α is a geometrical parameter equal to 1 for edge cracks and generally on the

order of unity for other situations. The literature contains expressions for KI for a large

number of crack and loading geometries, and both numerical and experimental procedures

exist for determining the stress intensity factor of specific geometries. Expressions for KI

for some geometries are given in Table 1.1.

Table 1.1

Stress intensity factors for several common geometries. Adapted from [87]

Type of Crack Stress Intensity Factor, KI

Center crack, length 2a, in an infinite plate σ∞
√
πa

Edge crack, length a, in a semi-infinite plate 1.12σ∞
√
πa

Center crack, length 2a in plate of width W σ∞

√
W tan

πa

W

By comparing Equation (1.9) and Equation (1.10) and making α = 1, the interrelation

between the stress intensity and energy-release approaches can be noticed:

σf =

√
EGc

πc
=
KIC√
πa
→ K2

IC = EGc (1.11)

Cracks can propagate under mixed modes of loading as well. While the critical normal

stress criterion is accepted as the criterion for the crack path in an ideal elastic-brittle

material, there is still controversy over the initial direction of crack growth from a crack tip
16



under mixed mode loading conditions. Palaniswamy and Knauss [76], postulated that the

mixed mode crack extends in the non-coplanar direction of maximum strain energy release

rate, when this quantity reaches a critical value [13]. To obtain the direction of maximum

energy release rate, they calculated the energy release rate for a kinked crack in terms of the

length of the kink, and then let the length of the kink tend to zero. Chao and Shetty [18, 20],

considered this criterion and performed measurements of the elastic modulus with reaso-

nably good agreement in two commercial ceramics by the three flexure methods (four-point

bend, three-point bend and biaxial flexure) and by a compression method. However, more

more work is needed in the area of mixed mode loading to translate from testing to the

understanding of fracture mechanisms [31]. Specifically, it is imperative to find out how

the effects of the various modes should be combined mathematically to calculate fracture

toughness and investigate the mechanisms of crack growth.

1.1.4 Modeling Brittle Fracture

Many theories on brittle polycrystalline materials have been developed at various

size scales from homogenized solids at the macroscale to grain-sized modeling at the mi-

croscale, as well as atomic interactions at the nanoscale. Failure in brittle polycrystalline

materials is a function of microstructural features, such as grain size and orientation, and of

the effective interatomic interactions, both within the grains and across grain boundaries,

and it is critical to understand the failure mechanisms in brittle polycrystalline materials

for improvements in their development and application.

17



Multiscale computational modeling has contributed significantly to this effort. At the

macro-scale, fracture is well described in terms of continuum models. A linear elastic

fracture approximation is appropriated for brittle materials, where cleavage occurs with no

fracture energy consumed by plastic deformation. Likewise non-linear models apply well

to ductile materials where a high density of dislocations generated at the crack tip inhibits

crack propagation. With both approximations, the material is assumed to be isotropic and

at equilibrium. Several continuum damage models based on homogenizing the cracked

solid and finding its response by degrading the elasticity of the material have been deve-

loped [4, 9, 24, 29, 42]. Discrete models based on a phenomenological framework where

the fracture characteristics of the material are embedded in a cohesive surface traction-

displacement relation have also been developed [15, 30, 68, 104]. Models that treat dis-

continuities in finite elements [75], including modifications of the principle of virtual work

statement [26], meshless methods [11], extended finite element methods [10, 92, 66], and

atomistic modeling of fracture [2, 32, 38] have been developed to advance simulation e-

fforts of both quasi-static and dynamic fracture events. For example, the Extended Finite

Element Method (XFEM) was introduced by Belytschko as a means to enrich the finite

element displacement function to include discontinuities, but XFEM still does not capture

complicated branching crack patterns [11].

In typical brittle materials and especially at the scale of grains, fracture often exhibits

a much more complex mix of fracture modes since dislocation nucleation and glide are

restricted to a few planes. Varying degrees of plastic deformation may consume strain

energy depending on the plane and direction of fracture. This complexity is missed with
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continuum approximations even when including crystallographic effects through crystal

plasticity models. Discrete element methods (DEM) address these issues because of their

discrete nature, and it is easier to introduce discontinuities and capture those effects during

fracture. Since brittle polycrystalline materials are composed of an enormous number of

grains, and their properties and performance are determined not only by the characteristics

of individual grains but also by the interaction between them, in this research work, a

computational model is developed based on a discrete element method to simulate fracture

in brittle polycrystalline materials.

1.1.5 Discrete Element Methods

There have been many developments in DEM since its formulation by Cundall [23]

over forty years ago. Many researchers have used these methods to study a variety of

solids, such as concrete [40], rocks [54], sea ice [43] and ceramics [94]. These methods

comprise a set of computational modeling techniques for the simulation of the dynamic

behavior of a collection of multiple, independent, rigid or deformable particles of arbitrary

shape subjected to various loadings [12]. As particles move, they can interact by forming

new contacts or by breaking existing contacts. The interactions give rise to changes in the

contact status and in the contact interactions forces, which in turn influences the subsequent

movement of particles [12]. The microscale parameters needed to describe the material

contact behavior are stiffness and strength parameters for the particles and the bonded

contacts.
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Discrete element methods are specifically geared for simulations involving a large num-

ber of bodies. In DEM the emphasis is on the change of contact locations and conditions,

which cannot be defined a priori and which need to be continuously updated as the solution

progresses [12].

The term DEM is most commonly associated with the definition provided by Cundall

[23] which refers to any computational modeling framework that

• allows finite displacements and rotations of discrete particles, including complete
detachment,

• recognizes new contacts automatically as the solution progresses.

Building a model based on DEM requires generation of a simulation domain composed of

independent particles, detection of contacts, computation of contact forces, simulation of

loading history and post-processing the results. Figure 1.5 shows the main stages of a DEM

model including the addition of the fracture check stage which is the main contribution of

this research. There exists a large number of methods, which in one way or another belong

to a broad class of DEM. These methods are often classified according to the manner they

deal with the features shown in Figure 1.6. A detailed review on the modeling of bodies,

the time integration schemes and the contact force laws developed for DEM can be found

in [50, 84].

Many scientific advances have been made using DEM to better understand the behavior

of brittle materials. In 1996, Kun and Herrmann [59] presented a two dimensional (2D)

discrete element model of deformable, breakable granular solids made from polygonal

cells connected with beams for the simulation of fragmentation processes. The model was

constructed in three steps. First, the granular structure of the solid was implemented by
20



constructing Voronoi polygons representing the smallest particles interacting elastically

with each other. The polygons were considered rigid bodies which do not break and do

not deform. Second, the elastic behavior was determined by the introduction of repulsive

forces between the overlapping polygons and the beam model which was governed by the

Young’s modulus and shear modulus of the beam. Finally, the fracture of the structure was

governed by the von Mises plasticity criterion. Using this model, granular or polycrys-

talline material could be realistically simulated and the trajectory of each fragment could

be determined, which is of practical importance.

Later in 2001, D’Addetta [3] extended the work of Kun and Herrmann to include cohe-

sive frictional materials and performed 2D simulations of explosion of a disc-shaped solid,

the impact of a projectile with a solid block and the collision of macroscopic bodies. The

results of the 2D simulations were found to be in reasonable agreement with the experi-

mental observations. In both studies a micro-parameter calibration was missing.

In 2003, Ibrahimbegovic [48] presented a discrete model of heterogeneous structures

based on a Voronoi cell representation for modeling brittle fracture phenomena for both

quasi-static and dynamic loading. In this work, two types of forces governed the global

response: the cohesive forces which influenced both elastic response and initial rupture

patterns and which employs the geometrically nonlinear beam model of Reissner, and

the contact forces between interacting detached particles governed the fragmentation pro-

cess.From this work constitutive models for fracture at the microscale and mesoscale were

developed. In 2004, Munjiza [70] presented a detailed book about the combined finite-

discrete element method, which was initially developed in early 1990 and is applicable
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Figure 1.5

Main stages of a DEM model
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to several types of material damage problems such as failure, fracture and fragmentation.

Klerck et. al [57] worked on modifications to an explicit discrete element/finite element

code for a 2D model for discrete fracture in quasi-brittle materials under tensile and com-

pressive stress fields which considered the Mohr-Coulomb failure criterion in compression

and three independent anisotropic crack models in tension. Later that year, Potyondy and

Cundall [82] proposed a model, called Bonded Particle Model (BPM), for rock represented

by a dense packing of non-uniform sized circular or spherical particles bonded together at

their contact points and whose behavior was simulated using DEM. Damage and its evolu-

tion were represented explicitly in the BPM as broken bonds; no empirical relations were

needed to define damage or to quantify its effect on material behavior. The BPM repro-

duced qualitatively all of the mechanical mechanisms and phenomena that occur in rock,

although adjustments and modifications could be necessary to obtain quantitative matches

in specific cases.

Particle size controls model resolution but is not a free parameter. Instead particle size

is related directly to the material fracture toughness which poses a severe limitation on the

size of a region that can be represented with a BPM, because the present micro property

characterization is such that the particle size must be chosen to be of the same order as the

grain size. In 2006 Zhao et. al. [110] presented a particle simulation method to explicitly

simulate the spontaneous crack initiation phenomenon in brittle materials. Solid materials

were represented as circular particles bonded together through cementation in the particle

assembly. Although particles had different shapes and sizes, they were assumed to be rigid.

The strength of the material was simulated by using the strength of the bond at a contact
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between two particles. To validate the particle simulation of spontaneous crack initiation

phenomenon, a laboratory test was conducted using a model composed of gypsum. Even

though the author mentioned that transgranular fracture can be simulated with their model,

no specifics details are given on how this is performed. Yang et. al [106] presented results

regarding the effects of microparameters on macroproperties of parallel-bonded PFC2D

(a commercial discrete element code developed by Itasca Consulting Group) specimens

and quantify their relationships; however those relationships are empirical in nature and

modifications may be needed to model a specific material. In 2009, Tan et. al. [94] used

DEM to model fracture in the machining process of polycrystalline SiC revealing the me-

chanical details of machining process at microscale. Microscopic material properties for

particles and contacts were calibrated by comparing the results of numerical experiments

such as unconfined compressive test, Brazilian test, three-point bending test and fracture

toughness test with the equivalent experimental results.This was a 2D study using circular

particles to represent the solid. Martin et. al [67], used DEM to study the evolution of

cracks generated during sintering processes. They studied how constrained sintering be-

tween two parallel planes may lead a defect to grow into a crack and concluded that the

presence of an initial defect is not a necessary condition to initiate cracks.

In 2010, Kazerani [54, 55] used a commercial discrete element code, called UDEC,

which models material grains as polygonal random-shaped particles. The code was used to

find a unique set of microparameters reproducing all material properties obtained from uni-

axial/triaxial compression and tension simulations for Augig granite. In 2011, Bruchmüller

et. al. [14] presented a fragmentation model based on soft-sphere DEM for clusters of
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spherical brittle particles. The model was only dependent on material parameters. A

theoretically consistent description from the onset of fragmentation to the cloud forma-

tion after breakage was provided and model outcomes compared favorably to experimental

results and other model predictions where very little deviation was encountered. In 2013,

Le et. al. [62] propose a 2D DEM approach in fracture mechanics for brittle materials in

which the material was modeled as an agglomerate of close-packed circular particles in

contact. Crack propagation was indicated by suppression of contacts between particles by

using the maximum circumferential tensile stress criterion. Le and collaborators continued

that work by introducing a classical criterion of mixed mode crack propagation based on

the value of the stress intensity factors, obtained by the analysis of two adjacent contacts

near a crack tip [63]. Wolff et. al. [103] presented a DEM model with spherical particles

to model the mechanical behavior under bending load of dense composite materials made

from ceramic particles bonded together by polymeric layers. They considered the internal

particulate structure of the material, including the particle size distribution, packing struc-

ture, and pore structure. Zhang [109] used the PFC2D code with bonded particle method

to reproduce the fracture features, such as de-bonding, de-lamination and crack deflection,

in ceramic laminates. André et. al. [7] developed a spherical discrete element model based

on interaction given by 3D beam model, with a failure criterion based on an equivalent hy-

drostatic stress which was calibrated to fit experimental values of the macroscopic failure

stress of silica glass, a perfectly brittle elastic material. The criterion produced more re-

alistic crack patterns than traditional fracture mechanics when performing 2D simulations

for studying complex crack phenomena such as the generation of hertzian cone cracks.
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Researchers also tried combinations of DEM and others approaches such as the finite-

discrete element method to model brittle rock [65], fracture process zone method to model

quiasi-brittle materials [95], the impulse based finite-discrete element model to simulate

fragmentation of brittle spheres [77], the extended finite element method to model cracks

and coalescence in brittle materials [90] and most recently, in 2016 Yao et. al. [107] com-

bined DEM with an extended rigid block spring method for modeling damage and failure

in anisotropic cohesive brittle materials in which microstructure was represented using an

anisotropic Voronoi diagram and the macroscopic behavior was controlled by the local

deformation and failure properties of interfaces.

1.2 Motivation

A wide variety of polycrystalline materials are brittle, meaning that the cracks can

form and propagate catastrophically with very little warning. Brittleness is a major pro-

blem with the reliable use of these materials in engineering applications. An unfortunate

number of engineering disasters are related directly to this phenomenon, and engineers

involved in structural design must be aware of the procedures now available to safeguard

against brittle fracture. To overcome the limitations of the mechanical performance of brit-

tle polycrystalline materials, it is necessary to gain a better understanding of the underlying

mechanics and micromechanics of crack initiation and propagation of these materials [61].

In typical brittle materials, especially at the scale of grains, fracture often exhibits a

complex mix of fracture modes. This complexity is missed with continuum approximations

even when including crystallographic effects through crystal plasticity models. Failure in
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these materials is a function of microstructural features, such as grain size and orienta-

tion, and of the effective interatomic interactions, both within the grains and across grain

boundaries.

Realistic representations of polycrystalline materials, appropriate interaction laws and

robust fracture solutions are currently missing from discrete models. In addition, despite

all of the advances in the area of micromechanics, bridging between micro- and macro-

scales still remains one of the most challenging goals [108]. Thus, the development of

reliable computational tools that allow researchers to predict material behavior based on

materials crystalline structure and understanding structure property relations at different

length scales are of crucial importance.

1.3 Objectives and Scope

The main objective of this study is to investigate, numerically, the role of microstruc-

tural features, such as grain orientation and size in the deformation and failure of brittle

polycrystalline materials. This work aims to develop, implement and validate a grain level

micro-mechanical model based on the discrete element method with bonded contacts to

assess inter-granular microcrack initiation and evolution in polycrystalline ceramics mate-

rials. Specifically, the influence of the grain boundary strength and stiffness on the fracture

behavior of these materials was studied under various loading conditions. The focus of

the work is to distinguish between predominately intergranular failure (through the grain

boundaries) versus predominately transgranular failure (across grains) using simulations
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based on microscale failure criteria for tensile, shear, torsion and rolling modes of inter-

granular motion.

The objectives are achieved through the development and implementation of a grain

level micro-mechanical model based on DEM. The digital representation of the microstruc-

ture is composed of hexagonal, prismatic, honeycomb-packed grains of the same size and

shape. The principle of virtual work is used to develop a fracture criteria for brittle poly-

crystalline materials and it is implemented into the discrete element model. At variance

with other DEM methods, our DEM model actually breaks grains, not merely bonds be-

tween the grains.

1.4 Organization

This dissertation is composed of four chapters each of them headed by an introductory

section. Chapter 1 contains detailed background and relevant literature regarding brittle

polycrystalline materials and the discrete element method. Chapter 2 contains the des-

cription of the generation of uniform microstructures, and the development of a bonded

particle model using the United States Army Corps of Engineers Engineer Research and

Development Center (USACE-ERDC) in-house DEM software. Representative numerical

examples are also presented in this chapter. In Chapter 3, a transgranular fracture model

based on the DEM is presented. The fracture criterion is based on the continuous traction

parameters which are described in terms of the discrete contact forces by using the principle

of virtual work. Finally, concluding remarks and future works are presented in Chapter 4.
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CHAPTER 2

INTERGRANULAR FRACTURE MODELING BASED ON DEM FOR BRITTLE

POLYCRYSTALLINE MATERIALS

2.1 Introduction

Brittle polycrystalline materials, such as polycrystalline ceramics, are used in many

applications due their extremely attractive properties, such as durability, high strength,

high electrical and thermal resistance, and an ability to withstand the damaging effects of

acids, oxygen, and other chemicals because of their chemical unreactivity. These materials

are used in electrical and thermal insulators, high temperature crucibles for steel fabrica-

tion, elegant dinnerware, hip and other body parts replacements, car engine components

(that combust fuel more cleanly), catalytic converters (which convert air pollution into less

harmful gases) and many other applications. The list of applications of brittle polycrys-

talline materials is extensive but limited by their brittleness (the lack of any stress relief

mechanisms at crack tips), which results in cracks growing to failure at significantly lower

stresses than those necessary to initiate and propagate cracks in metals [31].

Crack propagation in polycrystalline materials is a complex process and involves a

large number of microscopic events which are part of a generally intractable problem [61].

Crack propagation provides information about how cracks interact with the microstructure

and may be either intergranular (along the grain boundary) or transgranular (through the
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grains) [83]. The direction of the crack path depends on its fracture energy. In polycrys-

talline ceramics, a crack will change direction to follow a grain boundary or not depen-

ding on how much the crack must tilt or twist. The propensity of intergranular fracture

also depends on the chemical composition and the changes in cohesion of the grain boun-

daries [21]. The fracture will continue through the grain instead of deviating along a grain

boundary depending on whether the grain is in a favorable orientation for cleavage or not,

because the cleavage energy of fracture through a grain depends on the crystallographic

orientation [96].

Accurate modeling of failure of brittle polycrystalline materials is key to the design

of microelectronic devices, machining of ceramics and ceramic composites, design of mi-

croelectromechanical systems and many other applications. Failure in brittle materials is

not fully understood, but progress has been made in the characterization, visualization and

modeling of the mechanics of brittle failure. However, many questions remain open for

discussion, such as:

• How does the failure process occur in brittle materials subjected to multi-axial quasi-
static and dynamic compressive loading?

• Can the failure process be quantified?

• How does the rate of deformation under dynamic compressive loading, friction at
the grain boundaries, and the spatial distribution of flaws throughout the specimen
affect the fragmentation of a brittle material?

• What effect does the friction at the grain boundaries have on the macroscopic strength?

Kraft at. al. in [58] presented a detailed description of the contributions made to answer

the aforementioned questions. Many computational models have been developed that seem

capable of describing the physics of the brittle failure process, but they usually neglect the
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actual microstructure of brittle polycrystalline materials. Microstructure has been shown

to play an important role in determining the evolution of microcracks (initiation, growth

and coalescence) and in the failure strength of the material [30, 73, 108].

Since the microstructure of polycrystalline ceramics consist of crystal particles and

pores, the ceramic bulk can be treated as an assemblage of discrete particles bonded to-

gether. Furthermore, the intergranular fracture of the ceramics can be naturally represented

by separation of particles due to breakage of bonds. Brittle polycrystalline materials are

composed of a large number of grains, their properties and performance are determined not

only by the characteristic of each individual grain but also by the connectivity and interac-

tion between them. Thus, a polycrystalline material is an assemblage of distinct grains

variably bonded at grain boundaries and for which the DEM is uniquely suited.

In the current work, we expanded a basic discrete element model for non-cohesive

spherical and cylindrical particles assemblies to include polyhedra-shaped bonded particles

to better represent a brittle polycrystalline microstructure. The original model was devel-

oped at the United States Army Corps of Engineers Engineer Research and Development

Center (USACE-ERDC) and is presented in several publications [17, 45, 46, 79, 80, 97].

This research work was partially sponsored by the ERDC’s Military Engineering (M.E.)

6.1 Basic Research Program on High Performance Materials under the “Discrete Nano-

Scale Mechanics and Simulation” project for ARO Contract # W911NF-11-D-0001-0123.

Herein a description is provided on generating the initial microstructure for a theoreti-

cal model based on DEM to simulate motion of equisized polyhedra particles, specifically

hexagonal prisms, interacting in a 3D domain. An explanation of the main features in-
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cluded in the development and implementation of the bonded hexagonal DEM model, such

as geometry, contact laws, bonding, and contact detection algorithms is provided. Model

failure is governed by the contact constitutive law. The model was implemented for a brit-

tle, polycrystalline material consisting of two crystallographic orientations for the grains.

The new formulation has the capability of capturing intergranular fracture within the par-

ticle model on the basis of bonding properties and forces acting on each discrete element.

The contact detection is verified in a drop test case to observe motion of individual parti-

cles. The new formulation is implemented for several test simulation models of uniaxial

compression, Brazilian test, and four-point bending to observe the effect of various loading

conditions on the fracture behavior of the bulk material formed by an assembly of bonded

particles and the stresses generated in the models.

2.2 Digital representation of the microstructure

The focus of this section is to obtain the geometry of the material microstructure. In

the current work we are interested in the generation of synthetic uniform microstructures.

From a statistical point of view, a microstructure can be classified as uniform if a single

symmetrical peak is observed on a frequency histogram of the grain diameters, intercept

lengths, or areas plotted on a logarithmic scale.

Morphological and crystallographic characteristics of microstructure, alongside other

variables like loading conditions, particle geometry and grain-level constitutive properties,

are among the most important attributes controlling behavioral prediction. Thus, the ability

to digitally represent microstructures with high fidelity in computational models is vital to
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their capability of making accurate property predictions [36]. Synthetic microstructures are

a powerful tool for determining what aspects of the microstructure are important for a given

property and they can play a critical role for testing and understanding computational tools

for material behavior analysis and prediction. Computational tools capable of creating

synthetic microstructure are spatial tessellation tools, physics-based growth models and

geometric packing tools.

Discrete element models require detailed geometric information on individual particles.

The representative shape for a particular body controls the accuracy of the geometrical

modeling of each particle and thus controls the flexibility and scope of the simulations,

the accuracy and the efficiency of the contact detection algorithm and the computation

of the normal and tangential forces at each contact [41]. Flexible shape descriptors are

needed that can represent a variety of arbitrary shapes with minimal data for initiating

DEM simulations.

The grain geometry of a given microstructure can be obtained from digitalization of

scanning electron microscopy images (SEM micrographs) or by means of geometrical

algorithms. Both methods are based on the following steps to generate a synthetic mi-

crostructure for numerical simulations:

1. Obtain statistical characterization from experimental data to get a more com-
plete representation of grain-level microstructures. Groeber presented a list of sta-
tistical descriptors in [36]. They are classified as morphological descriptors, such as
grain volume and spatial orientation; crystallographic descriptors, such as microtex-
ture function and orientation distribution function; and correlation descriptors, such
as aspect ratios.

2. Create the grains with a realistic distribution of grain size and shape. The crea-
tion of a collection of idealized grains is performed and distributions of size and
shape equivalent to those observed in the experimental data are required.
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3. Assemble the grains. Arrangement and spatial location of the grains inside a repre-
sentative volume are determined.

4. Assign crystallographic orientation to the grains to account for the micro texture.
The crystallographic orientations are assigned to the grains in such a way that the
crystallographic descriptors are statistically equivalent to the experimental data.

2.2.1 Digitalization of SEM micrographs

Microstructures can be digitally generated, for example, using DREAM.3D, an open

source and modular software package that allows the user to re-construct, instantiate, quan-

tify and visualize the microstructures digitally [37]. In the version 6.2.327 of DREAM.3D

grains can be described as ellipsoids, super-ellipsoids or cube-octahedra and finite element

meshes of the entire microstructure can be obtained for further analysis. Figure 2.1 shows

a synthetic microstructure with its mesh composed of 30 equiaxed grains generated using

DREAM.3D.

Figure 2.1

A sample mesh of a synthetic microstructure composed of 30 grains created using
DREAM.3D
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DREAM.3D does not have a shape class for packing hexagonal cells. Another dis-

advantage is that it does not give independent meshes for each grain which is needed for

creating DEM input data. However, it can be used to extract statistical information re-

garding the size, shape, and orientation distribution of grains from electron backscatter

diffraction (EBSD) stack of images. This information is then used to create the type of

microstructure we are interested in.

Detailed guidance on how to digitally generate microstructures representative of brittle

and biological layered materials, such as polycrystalline ceramics and nacre, is provided in

the ERDC’s interim report [88]. This report contributed to the development of the compu-

tational nanomaterials test-bed under the ERDC’s project Discrete Nano-Scale Mechanics

and Simulations and covers three main points: 1) Explanation of the microstructure gene-

ration process. 2) Description of the steps for generating and meshing microstructures

using DREAM.3D. 3) Process for microstructure’s visualization using PARAVIEW soft-

ware.

2.2.2 Generation of a uniform synthetic microstructure

To computationally simulate a polycrystalline microstructure, a perfectly uniform syn-

thetic microstructure is generated by using prismatic particles of equal size arranged in an

hexagonal close packing (HCP) arrangement to achieve maximal possible efficiency while

filling a 3D space. Here, efficiency means both minimization of the void space and easy to

implement. A close packing of hexagonal prisms, known as hexagonal prismatic honey-

comb lattice was implemented. Each grain is represented by a convex hexagonal prism,
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composed of six rectangular sides of length r and two hexagonal bases separated by a

thickness t as shown in Figure 2.2. Each hexagonal prism has a total of 8 flat faces, 12

vertices (corners), and 18 straight edges. The result of filling a 3D space with grains is a

regular lattice, whereby each lattice point represents the center of a grain.

Figure 2.2

A single grain represented by a hexagonal prism, with side length r and thickness t

In the current study, polycrystalline silicon carbide (3C-SiC and 6H-SiC) are used as a

model materials. Figure 2.3 shows fine grains of 3C-SiC.

The HCP lattice is created one plane at a time with only two plane types (A and B)

needing to be defined, as shown in Figure 2.4. For each plane, two different row types

(Row 1 and Row 2) are created. Table 2.1 summarizes the xyz coordinates for each

lattice point (associated with the grain center) that fill a 3D box with dimensions a× b× c.

The coordinates are described for each row and corresponding plane, where r is the length
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Figure 2.3

Side view (scanning electron microscopy image) and top view (optical microscopy
image) of fine particles on the polycrystalline 3C-SiC source plate [72]

of each side, t is the thickness and the quantity h is given by h =
3r

2
. The natural numbers

i, j and k are the indexes of each lattice point and are in the range:

1 ≤ i ≤
⌊

2a√
3r

⌋
− 2, 1 ≤ j ≤

 2
3
(b+

r

2
)

r

− 1, and 1 ≤ k ≤

c+
t

2
t

− 1.

Given the center of each grain, (cx, cy, cz), the coordinates (vx, vy, vz) of the 12 vertices

of each grain are calculated as described in Table 2.2, where n is a natural number in the

range 1 ≤ n ≤ 6.

The side length r can be ≤ r. For the case where r < r, grains are placed in the box

in such a way that space for the grain boundary is provided, as demonstrated in Figure 2.5.

Details on how the coordinates for both the lattice points and vertices for each grain where

determined are presented in Appendix A and follow the general idea described in [51].
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Example of a HCP lattice consisting of two plane types A and B that fills a 12×12×4 box
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A 9.5× 7.5× 1 box filled with grains with side’s length r = 0.75
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Table 2.1

The xyz coordinates of lattice points

Plane Row cx cy cz
A 1

√
3ir r + (j − 1)h t

2
+ (k − 1)t

A 2
√

3
2

(2i− 1)r r + (j − 1)h t
2

+ (k − 1)t

B 1
√

3ir r + jh t
2

+ kt

B 2
√

3
2

(2i− 1)r r + jh t
2

+ kt

Table 2.2

The xyz coordinates of grain’s vertices

Face vx vy vz
Front r cos (60(n− 1)) + cx r sin (60(n− 1)) + cy −t+ cz
Back r cos (60(n− 1)) + cx r sin (60(n− 1)) + cy t+ cz

Using the lattice as a template, the 3D space can be filled with hexagonal prisms (repre-

senting grains) by placing grain centers at lattice points, as shown in the example in Fig-

ure 2.6. The planes are placed in a simple pattern of A-B-A-B-A...

2.2.2.1 Crystallographic orientation of grains

Identification of cleavage planes is crucial for understanding the fracture behavior of

brittle materials. Introduction of the crystallographic information in material models that

aims accurate modeling of the fracture behavior is also important.

As described in Section 2.2 a uniform synthetic microstructure representative of our

model material was constructed from a single layer of equisized hexagonal prism-shaped
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Figure 2.6

A 3D box filled with hexagonal prisms (representing grains) packed using a HCP lattice

particles, each particle representing a single grain in the microstructure. The grains were

arranged in a HCP arrangement.

For HCP silicon carbide (our model material) the < 1010 > and < 1120 > directions

were identified as the hardest and softest directions on the basal plane, respectively [5, 60]

(See Figure 2.7).

Crystallographic orientation for each grain was assigned randomly in a DEM simula-

tion. The orientation of the crystals were randomly assigned at 0◦, 60◦ or 120◦ with respect

to the < 1010 > or < 1120 > directions, since these orientations correspond to active slip

systems in Si-C.

When simulating transgranular fracture (explained in Chapter 3) each grain was divided

into slabs depending on its crystallographic orientation. Each slab is also a polyhedral
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Figure 2.7

a) Radial indentation pattern on 6H-SiC. b) HCP unit cell. c) Basal plane (c-plane) with
primary (P), intermediate (I) and secondary (S) directions [60]

DEM particle. For the case of the < 1120 > direction, three slabs are created and each of

one is either a rectangular prism or an isosceles triangular prism, as shown in Figure 2.8.

For the case of the < 1010 > direction, two slabs are created they have similar geometry

as shown in Figure 2.9.

2.3 DEM model development

The ERDC-DEM code is a public-domain code for simulating the interaction of rigid

particles and is based on the numerical solution of Newton’s second law of motion using a

Velocity Verlet algorithm [46, 17, 80]. There is no pre-defined material model in DEM. It

only includes contact search algorithms and contact laws. The contact search is performed

in two stages. First, a coarse search is performed to identify potentially contacting parti-
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Figure 2.8

Grains divided into three slabs oriented at 0◦, 60◦ or 120◦ with respect to the < 1120 >
direction

Figure 2.9

Grains divided into two slabs oriented at 60◦ or 120◦ with respect to the < 1010 >
direction
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cles; then a fine search is performed to determine which pairs of particles are actually in

contact [97].

The contact law implemented in the ERDC-DEM code is a binary Coulombic contact

law with Hooke’s law used to compute the contact force. This is a classical formulation

for modeling soils, but the force scheme is modified to better accommodate the behavior

of brittle polycrystalline materials. Currently, the contact is a Kelvin model, represented

by a purely viscous damper and a purely elastic spring connected in parallel as shown in

Figure 2.10 .

Figure 2.10

Kelvin model schematic representation

The ERDC-DEM code only uses the viscous part for unload-reload mode. The fact that

the unload modulus is greater than the loading modulus dissipates energy for the primary
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loading. However, once unloading begins some other damping is needed to eliminate high-

frequency oscillations, i.e., the viscous part is used to maintain the system’s stability state

[78]. The contact forces between two particles are determined from the overlap and relative

movements of the particle pair according to a specified force-displacement law. There are

seven degrees of freedom that DEM can consider: Compression, Tension, Shear, Torsion,

Bending, Rolling and Sliding.

2.3.1 Contact detection

The efficient detection of contacts in a discrete element simulation is of crucial im-

portance for predicting the motion and interaction between particles which yields to the

successful simulation of the mechanical behavior of different types of materials. Contact

searches can involve 50% to as much as 80% of the total computational time of a simulation

regardless of the particle’s shape. When modeling brittle polycrystalline materials, most

DEM models use disks or spherical elements [94, 109, 110, 16, 93, 62, 105, 47, 89, 33, 103,

69] because those particle contacts can be easily detected (only the radius is required to des-

cribe the geometry of the particle) and computer memory and processing time are minimal

compared with detection of contacts between non-spherical particles. However the rotation

and rolling of spherical particles do not reflect the behavior of real grains, therefore DEM

simulations using non-spherical particles to represent grains can more accurately capture

this behavior. Complex geometries, such as polygons and polyhedra can be problematic

because detecting contacts, bonding particles together, and calculating forces and torque
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for edge-edge, edge-corner, and corner-corner contacts can be complicated and computa-

tionally expensive [27, 100].

When dealing with convex polyhedra there are several methods for detecting contacts.

Barbosa proposed a method that first identifies the faces of each polyhedron that are visi-

ble from the centroid of the other and gives the highest probability of contact to the face

that can be seen best [8]. Then, starting with the faces with highest probability and their

respective corners, all corner-to-face contacts are checked. If contacts are detected, the

checks continue with the next visible faces, in order of decreasing probability, until no

more contacts are detected. Next, the possibility of edge-to-edge contacts is examined. An

edge-to-edge contact can only occur if both edges are visible from each other’s centroid.

The disadvantage with this method is that too many combinations need to be tested for the

simple case of two contacting cubes. Cundall proposed a different approach based on the

idea of a “common-plane” bisecting the space between two convex polyhedra [22]. Instead

of testing for contact between the polyhedra directly, he proposed to determine a common-

plane, then test each body separately for contact with it. The geometrical algorithm devised

by Cundall to locate and move the common-plane consists of maximizing the gap between

the common-plane and the closest corners of each body. Once a common-plane has been

defined, only corner-to-plane tests need to be carried out to detect contacts between two

bodies, since face and edge contacts are recognized by counting the number of corner-to-

plane contacts.

The contact detection approach adopted and implemented in our discrete element model

is defined for dilated polyhedral particles. This technique, proposed by Hopkins [44, 45],
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is also suitable for non-convex polyhedra shapes that are based on the dilation process

from mathematical morphology. An arbitrary polyhedron shape is dilated by placing the

center of a sphere of fixed radius at every point on the surface. The dilated vertices become

spheres, and the edges become cylinders. The sharpness of the vertices and edges can be

adjusted by varying the dilation radius. For simplicity, in this work only the vertices and

edges of each particle are dilated. After dilation, each particle has 14 spheres, 36 cylinders

and 24 flat triangular facets. Figure 2.11 shows the desired grain’s shape with a triangular

mesh to be used for the contact search as well as its dilated vertices and dilated edges.

Figure 2.11

A single grain represented by a hexagonal prismatic shaped particle with spheres for the
vertices, cylinders for the edges, and triangular facets for the surfaces

Defining a contact between two dilated polyhedral particles requires determining which

spheres, cylinders and triangular faces, called primitive particles, are in contact. Contact
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between two dilated polyhedral particles can be grouped into four categories: vertex on

vertex, vertex on facet, vertex on edge, and edge on edge (as illustrated in Figure 2.12),

which can be translated as sphere on sphere, sphere on flat triangular surface, sphere on

cylinder, and cylinder on cylinder. Two primitives particles only interact if they penetrate

each other.

The contact detection process is divided into two stages: a coarse detection stage follo-

wed by a fine detection stage. In both stages, the simulation space is discretized into cells of

equal size. Then, a cell-based search is performed which is O(n) and requires that all cells

must be larger than the diameter of the largest particle in the system. The practical cost of

the simple cell method scales as O(m*n), where n is the number of particles and m is the

average number of particles in a cell, making the theoretical cost of O(n)m become large

with a large variation among particles sizes. To overcome this disadvantage, Walizer and

Peters [97] proposed a bounding box search algorithm which essentially tries to makem =

1 even if there is a large difference among particle sizes. Without the initial coarse search

to localize the contacts, an all-on-all search would be required which is O(n2) operation,

for a system with n particles.

The coarse search is performed to detect which particles might be in contact by using

either a basic or bounding box algorithm depending on the distribution of particle size. The

basic search algorithm is simple to implement and requires that all cells be larger than the

diameter of the largest particle in the system. Performance of the basic search algorithm

degrades when particles in the simulated system are not of similar size. Details on the

basic search algorithm are provided in Appendix B. The bounding box search algorithm
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Figure 2.12

Contact detection of two dilated polyhedron particles in a) vertex-edge contact, b)
edge-edge contact and c) vertex-plane contact [52]
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is an extension of the basic search algorithm except the cell size is based on the diameters

of the smallest particle, rather than the largest particle. Therefore, for systems in which

particle sizes are non-uniform, performance is not degraded as it would be in the basic

search algorithm [97]. Details on the bounding box algorithm are provided in Appendix B.

The fine search is performed to find pairs of particles, identified in the previous stage,

that are actually in contact and to determine the degree of contact, i.e., the distance of

penetration or closure. The algorithm loops over each pair of particles listed in the coarse

search stage and proceeds according to the types of particles participating in the contact.

There are a total of four contact cases considered in this research, composed of a combina-

tion of facets, sphere or cylinders. details on how each case is treated can be found in [45].

The sphere-sphere contact penetration is computed in terms of the distance, D, between

the centers of the the radii of the two spheres, RS1 and RS2:

penetration = RS1 +RS2 −D

The sphere-facet contact penetration is computed in terms of the distance, D, between the

center of a sphere to the plane containing the three nodes of the triangular facet and the

radii of the sphere RS1:

penetration = RS1 −D

The sphere-cylinder contact penetration is computed in terms of the distance, D, between

the center of the sphere and the principal axis of the cylinder:

penetration = RS +RC −D

where RS and RC are the radii of the sphere and the cylinder respectively.
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The cylinder-cylinder contact penetration is computed in terms of the closest ap-

proach, D, between the two the principal axes of the cylinders:

penetration = RC1 +RC2 −D

where RC1 and RC2 are the radii of the two cylinders.

For non-bonded contact, if penetration is greater than 0, then contacts is made. For

bonded contacts, if |penetration| ≤ bonding distance or penetration ≥ 0, then contact

is made.

2.3.2 Contact force law

After particle contacts are identified, the contact forces are computed and integrated

to determine particle motions. The normal and shear components of the contact force are

calculated from a modified Hooke’s model with parallel viscous damping and a Coulomb

friction cap on the tangential force. This spring-slider force scheme is intended for repul-

sive forces only and is meant for the modeling of granular materials (shown in Figure 2.13

below). Therefore damping of the system is achieved using an alternative energy dissipa-

tion method. This is accomplished by applying a multiplier (reciprocal of the coefficient of

restitution) to increase the spring stiffness during the unload portion of the contact cycle.

When applied to every contact instance, the system is effectively damped at the particle-

particle level. The contact forces and moments are computed from the relative particle

motion, material properties, and the existing contact force.

The microscale parameters that must be defined within DEM to adequately calculate

the particle motion due to frictional resistance at the contacts are the translational and ro-
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Figure 2.13

Particle contact interaction Model

tational stiffness parameters for each contact type (determined by the particle’s material

pair). The stiffness parameters describe the resistance to deformation in response to an

applied force. Translational stiffness parameters represent the ratio of the corresponding

component of the applied force on the body to the corresponding deformation. Rotational

stiffness parameters represent the ratio of the corresponding component of the applied mo-

ment to the angle of rotation. In the International System of Units, translational stiffness is

typically measured in newtons per meter (N/m) and rotational stiffness is typically mea-
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sured in newton-meters per radian (Nm/rad). Shi and Polycarpou [91], and the references

therein, present approaches for measuring and modeling contact stiffness at the mesoscale.

Translational Stiffness Parameters


Kn normal spring stiffness

Ks shear spring stiffness

(2.1)

Rotational Stiffness Parameters


Kr rotational stiffness

Kt torsional stiffness

(2.2)

The contact force ~F and the contact moment ~M are calculated as:

~F = ~F s
n + ~F s

t + ~F d
n + ~F d

t

~M = ~Mr + ~Mt + ~Md
r + ~Md

t (2.3)

where ~F s
n and ~F s

t are the normal and tangential components of the contact force, ~F d
n and

~F d
t are the normal and tangential components of the damping force, Mr and Mt are the

rolling and torsional moments, and ~Md
r and ~Md

t are the damping moments for rotational

and torsional modes respectively.

The normal (~F s
n) and shear (~F s

t ) components of the contact force are computed in terms

of the relative displacement (~Ur) as:

~F s
n = −Kn

~Un

~F s
t =


−(Ks

~Us) ‖~F s
t ‖ < ‖~F s

n‖µs

~F s
t

(
~Ffs

‖~F s
t ‖

)
‖~F s

t ‖ ≥ ‖~F s
n‖µs, ‖~F s

t ‖ 6= 0

(2.4)
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where Un is the projection vector of relative displacement, ~Ur, on normal vector, ~n, bet-

ween the particles centers, Us = Ur −Un~n is the projection vector of the relative displace-

ment on shear vector, ~s, and µs is the sliding friction coefficient. The relative displacement

~Ur is computed in terms of the translational (V ) and rotational (Vt) velocities of particles

A and B as:

~Ur = ∆t((VB + VtB)− (VA + VtA))

And the Coulomb frictional forces are computed as:

~Ffr = ~Fft = −~Fnµr

~Ffs = −~Fnµs (2.5)

where µr is the rolling coefficient of friction and µs is the sliding coefficient of friction.

Within the DEM code the force is composed of the state variable contact force and a

damping force. The latter depends on the current velocity but it is not included as part of the

contact state. The normal and tangential components of the damping force are computed

as:

~F d
n = 0.1

√
CresKnmcrit

‖Un‖
∆t

~F d
t = 0.1

√
Ksmcrit

‖Us‖
∆t

(2.6)

where Cres is the coefficient of restitution and mcrit is the critical mass for damping com-

putation.
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The rolling resistance (Mr) and torsional resistance (Mt) components of the moments

are computed in terms of the relative angular velocity (∆ω) as:

Mr = Kr∆ωr∆t+ ~Md
r

Mt = Kt∆ωt∆t+ ~Md
t (2.7)

where ωt is the normal component of the relative angular velocity between two particles in

contact, and ∆ωr = ∆ω−∆ωt is the shear component of the relative angular velocity. ~Md
r

and ~Md
t are the damping moments for rotational and torsional modes respectively, they are

computed as:

~Md
r = 0.1

√
KrIcrit∆ωr

~Md
t = 0.1

√
KrIcrit∆ωt (2.8)

where Icrit is computed from the moment of inertia tensor of each particle.

Therefore, each kinematic variable (Un, Us, ωr, ωt) has a conjugated variable (Fn, Fs,

Mr,Mt). The contact state is saved for use in the next time step and the combined contact

force and damping force are summed into each contacting particle to get total momentum

balance.

2.3.3 Bonded contacts

To model bonded contacts, our DEM adopts a simplified description of the Bonded

Particle Model (BPM) proposed by Potyondy and Cundall [82]. This model mimics the

behavior of a collection of grains joining by bonded contacts by assuming that the Coulomb

contact and the bonding act in parallel as illustrated in Figure 2.14. The deformations are
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common for both spring contacts and bonding, and the forces are additive. However, a

fully parallel model requires force-state variables to be stored separately for contact and

bonding, requiring an excessively large amount of memory. The problem is resolved by

using a quasi-parallel model. The normal force is fully parallel because the normal pene-

tration is an absolute quantity and therefore the contact force is not a state variable. The

shear force and moment quantities are based on incremental relationships and thus require

the force as a state variable. Details can be found in [81].

Figure 2.14

Two bonded polyhedra-shaped discrete elements
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The required parameters to define the bonded contacts are

kbn : continuum bond normal stiffness

kbs : continuum bond shear stiffness (2.9)

From these bond parameters, the spring normal stiffness (Kbn) and the spring shear stiff-

ness (Kbs) are defined as:

Kbn = kbnAb

Kbs = kbsAb (2.10)

where Ab = πr2 is the effective bond area based on the dilation radius of the smallest

contacting particle.

Similarly, the spring rotational stiffness (Kbr) and the spring torsional stiffness (Kbt)

are defined as

Kbr = kbsJb

Kbt = kbnIb (2.11)

where Ib = 0.25πr4 is the area moment of inertia and Jb = 2Ib is the polar moment of

inertia.

Therefore, the normal (Fbn) and the shear (Fbs) forces due to bonding are computed

from the scaled stiffness values 2.10 as:

Fbn = Kbn∆vn∆t

Fbs = Kbs∆vs∆t (2.12)
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Similarly, the rolling resistance moment (Mbr) and the torsional resistant moment (Mbt)

are defined as:

Mbr = Kbr∆ωr∆t

Mbt = Kbt∆ωt∆t (2.13)

In contrast to the compression-only criteria for cohesionless materials, bonded contacts

can carry a tensile load up to a tension limit. The parameters for defining the yield criteria

for the bonds are:

tbn : bond normal strength

tbs : bond shear strength (2.14)

Thus, the normal, shear, rolling and torsional limits of failure are computes respectively

as:

Fbn limit = tbnAb

Fbs limit = tbsAb

Mr limit = tbn

(
I

r

)
Mt limit = tbs

(
J

r

)
(2.15)

Failure occurs when the total force and total moment due to any of the contact modes

exceeds these limits for a combined yield criterion. Bond failure due to tension, shear
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bending and torsion occurs when the corresponding bonding force exceeds the particle-to-

particle corresponding strength

Fbn > Fbn limit

Fbs > Fbs limit

Mbr = Mr limit + Ffr

Mbt = Mt limit + Fft (2.16)

The bond is considered brittle and is broken if the limit load is exceeded for any mode

of contact. In the case of loss of bonding, the contact behaves a a simple Coulomb contact

for the duration of the simulation. The properties of the bulk material will change as

expected in a material with damage as the bonds are being broken.

Part of the DEM model preparation is the bond initialization stage which is performed

after an assembly of particles has been generated and compacted up to a point in which

particles are in contact. During the particle placement process the bonding parameter va-

lues are initialized to zero. During the bond initialization stage particles will be bonded

together if their contact radii overlap. Bonds are formed between particles which are not

necessarily in direct contact. At the end of the particle placement process an initial stress-

free state is obtained by resetting all physical overlaps to zero and residual forces and

moments are also reset to zero as well as the velocities to zero out the kinetic energy. This

stress-free state is attained by storing, as a custom contact property, any physical overlap

that exists between two particles during the bond initialization stage. This “ initial” overlap

is then subtracted from each subsequent determination of overlap at each contact, resulting
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in a static assembly of bonded particles with zero overlap and no contact force at the

start of each loading simulation. Resetting the overlaps is an important process to avoid

prematurely broken bonds from expansion due to spurious residual stresses during particle

placement. If overlaps are not reset, when bonds are broken the contact overlaps may

produce exaggerated contact forces leading to non-physical behavior. After bonds have

been applied the material model is completed and ready for computational testing.

2.4 Discrete Element Stress

An equivalent Cauchy stress tensor is computed for each discrete element as proposed

by André [7] and Peters [79]:

σ̄i =
1

2Vi

[
1

2

∑
j

~dij ⊗ ~fij + ~fij ⊗ ~dij

]
(2.17)

where ⊗ is the tensor product, σ̄i is the equivalent Cauchy stress tensor of the discrete

element i, Vi is the volume of the discrete element i, ~fij is the total contact force exerted on

the discrete element i by the discrete element j and ~dij is the moment arm vector between

the centroid of the discrete element i and each contact point with the discrete element j.

Using the Cauchy stress tensor, the 2D invariants p and q are also computed for each

particle:

p =
σxx + σyy

2

q =

√
1

4
(σxx − σyy)2 + σ2

xy

θ =
1

2
tan−1

(
2σxy

σxx − σyy

)
(2.18)
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2.5 DEM simulations

The implementation of the contact-bonding force law, hexagonal prismatic particle

DEM model was implemented in the initial ERDC DEM code. The code was used to

perform several testing under different loading conditions. Multiple simulations using the

same particle size and packing with an increased size in simulation box were performed.

To verify that the contact detection procedure works properly a simple drop test simulation

was performed and the particle-particle and particle-surface interactions observed.

This research aims to model the fracture behavior of brittle polycrystalline materials.

There are a number of accepted tests for determining the elastic moduli, strength, fracture

toughness of brittle polycrystalline materials, as well as measuring the crack growth rate as

a function of the stress intensity factor. For a detailed list of these tests, see [31, 96]. The

implementation of the contact-bonding law was tested with three different model confi-

gurations (uniaxial compression, Brazilian test, and four-point bending test) were loaded

until fracture to observe the breakage of bonds and resulting fracture morphology in the

microstructure (see Figure 2.15). The parameters used in the initial setup for the simulation

tests are included in Table 2.3. The bonding parameters used in the bonded particle models

for the three simulation tests are provided in Table 2.4.

Different software tools are available to visualize the microstructure. We chose two

visualization software tools: PARAVIEW [56] and POV-RAY [1]. The former is an open-

source, multi-platform data analysis and visualization application developed by Kitware

which is very flexible but difficult to customize. The latter is a high-quality ray-tracing soft-
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Figure 2.15

Simulation Tests: a) Uniaxial compression test. b) Brazilian test and c) Four point
bending test
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Table 2.3

DEM contact parameters used for the simulation tests

Input Parameters Values
Time step increment 0.001

Particle size
Particle specific gravity 3.10
Gap for initial contact 0.02

Particle - particle normal spring stiffness constant, Kn 5000
Particle - particle shear spring stiffness constant, Ks 2000

Particle - particle rolling stiffness constant, Kr 0.0
Particle - particle torsional stiffness constant, Kt 0.0

Particle - particle inverse of coefficient of restitution, Cres 2.0
Particle - particle Coulomb sliding friction coefficient, µs 0.0
Particle - particle Coulomb rolling friction coefficient, µr 0.5

Particle - wall normal spring stiffness constant, Kn 10000
Particle - wall shear spring stiffness constant, Ks 2000

Particle - wall rolling stiffness constant, Kr 0.0
Particle - wall torsional stiffness constant, Kt 0.0

Particle - wall inverse of coefficient of restitution, Cres 10.0
Particle - wall Coulomb sliding friction coefficient, µs 0.0
Particle -wall Coulomb rolling friction coefficient, µr 0.0

Table 2.4

DEM bonding parameters used in the drop and uniaxial compression simulation tests

Bonding Input Parameters Values
Bond normal stiffness, Kbn 5000
Bond shear stiffness, Kbs 2000

Bond normal “tensile” strength, tbn 20000
Bond shear strength, tbs 10000
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ware tool for creating nearly any data portrayal that can be imagined. We used PARAVIEW

for initial visualizations of our data, and then used POV-RAY for special visualizations.

2.5.1 Drop test on unbonded particles

The drop test is used to verify that contacts between particles and surfaces are correctly

detected. The drop test model consists of 168 close packed hexagonal prismatic particles

not bonded of randomly assigned crystallographic orientation. The blue colored particles

have crystallographic orientation at 60◦ with respect to the {1010} plane, and the gray

colored particles have crystallographic orientation at 120◦ with respect to the {1010} plane.

DEM and bonding input parameters used in this simulation test are defined in Tables ?? and

?? respectively. After generating the particles, and completing the DEM simulation, the

results were visualized using PARAVIEW. Starting from their initial positions at a height of

50 mm, as shown in Figure 2.16a), the particles were affected only by gravitational forces

and start immediately fell towards the ground floor, as shown in Figure 2.16b). Once the

particles came into contact with each other, they started to repel each other, as visible in

Figure 2.16c). Contacts are indicated by the small red spheres visible in the simulation

results. As contacts were broken, the red spheres disappear. The particles bounced up and

down until all particles finally settled due to the dissipated energies through the collisions

as shown in Figure 2.16d) and Figure 2.16e).

2.5.2 Uniaxial compression test

For the uniaxial compression test, a single plane model consisting of 44 hexagonal

prismatic particles, resulting in model specimen size 5mm×10mm×2mmwas generated
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Figure 2.16

Drop Test consisting of 168 polyhedra at a) Initial configuration, b) after 296 time
steps/seconds, c) after 350 time steps/seconds, d) after 400 time steps/seconds and e) after

500 time steps/seconds
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as described in Section 2.2.2. The parameters used in the initial DEM simulation are

included in Table ??. Loading velocity of 50 mm/s was applied on the four wall surfaces

using DEM rigid elements to compress the particles until initial contact was achieved as

shown in Figure 2.17. After the initial contact model was generated, only upper and bottom

walls were loaded to perform the uniaxial compression simulation test. Loading velocity of

0.001mm/s was applied on the two wall surfaces using DEM rigid elements to compress

the particles as shown in Figure 2.18. The bonding forces were activated and dynamic

equilibrium was performed until the energy of the system was minimized. A dilation radii

of 0.05 mm was used for detection of contacts.

The uniaxial compression DEM simulation consists of 4 steps: First, after creation of

the simulation domain as shown in Figure 2.17a), the top, bottom, right and left walls are

loaded until they interact with the particles at the boundaries as shown in Figure 2.17b).

Second, the four walls are kept loaded until all polyhedral particles are in contact depicted

by red beams as shown in Figure 2.17c). In this part of the simulation the four walls

are identically loaded. Figure 2.17d) shows depiction of the unbonded contacts. Third,

initialization of bonds is performed by making each contact detected in the previous step

a bonded contact which are depicted as black beams as shown in Figure 2.18a). Contacts

between particles and surface plates are kept unbonded (represented by the red beams). In

this step all forces and stresses are reset to zero as explained in Section 2.3.3. The bonding

parameters applied to the model are provided in Table ??. Depiction of the bonds at this

stage is shown in Figure Figure 2.18c). Finally, the top and bottom walls are loaded to

perform the actual uniaxial compression simulation test. Figure 2.18b) shows the breakage
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of the bonded contacts after 100 time steps, and Figure 2.18d) shows the remaining bonded

and broken contacts represented by black and red beams respectively. When particles are

no longer in contact, i.e. when contacts are lost, the beams disappear. All of this simulation

results are visualized using PARAVIEW. Particle stresses are also depicted using POV-RAY

as illustrated in Figure 2.19. The particle stresses were calculated as described in Section

2.4. The DEM input files used for this simulation are in Appendix C.

2.5.3 Four-point bending test

A simply supported rectangular beam loaded in four-point flexure is illustrated in

Figure 2.15c). This test is used for the evaluation of ceramics under development, and

provides a larger area under stress and a greater sampling of the flaw population over the

three-point flexure test. Another advantage of the four-point flexure test over the three-

point flexure test is the the former represents pure bending and the latter provides shear

stress contributions [31]. The maximum stress in the central portion of the beam between

de upper loading points on the opposite surface is:

σ =
PLi

wt2

where P is the load and Li is the distance between the outer support and the inner support.

Usually Li = L
4

or Li = L
3

. It is recommended for most ceramics that the span-to height

ratio be between approximately 5:1 and 10:1 to avoid shear stress contributions for the

shorter bars and large deflections affecting the calculations for the longer bars [31]. It is

expected that failure take the form of a tensile crack from the bottom to the top.
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Figure 2.17

Configuration set up of 44 polyhedra at a) Initial configuration, b) after 1000 time
steps/seconds when walls get in touch with particles at the boundary, c) after 800 time

steps/second when particles are in contact, d) Depiction of contacts (red
beams)corresponding to the figure in c)
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Figure 2.18

Uniaxial test consisting of 44 polyhedra at a) Initial configuration with bonded contacts
depicted by black beams, b) after 100 time steps/seconds when load is applied in the

vertical direction. c) and d) Depiction of contacts at 0 and 100 time steps/second
respectively. Broken bonds are shown in red
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Figure 2.19

Particle stresses at a) first time step b) after 100 time steps/seconds when load is applied
in the vertical direction. Blue and green lines represent principal directions
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For the four-point bending test, a single plane model consisting of 95 polyhedral par-

ticles (Figure 2.20a)), resulting in model specimen size 20 mm × 5 mm × 5 mm was

generated as described in Section 2.2.2. The parameters used in the initial DEM simu-

lation are included in Table ??. Loading velocity of 30 mm/s was applied on the four

wall surfaces using DEM rigid elements to compress the particles until initial contacts bet-

ween particles were achieved as shown in Figure 2.20b). After the initial contact model

was generated, bonds were initialized and only the two upper flexure points were loaded

to perform the four-point bending simulation test (Figure 2.20c)). Loading velocity of the

two upper plates was 2 mm/s represented by DEM rigid elements to compress the beam

at the top as shown in Figure 2.20c) after 500 time steps. Figure 2.20d) shows depiction

of the bonded contacts. The bonding forces were activated and dynamic equilibrium was

performed until the energy of the system was minimized. A dilation radii of 0.05 mm

was used for detection of contacts. the bonding parameters were all set as described in

Table 2.5. Figure 2.21a) - Figure 2.21d) shows evolution of the simulations at 150, 250,

400, and 500 time steps. Figure 2.22a) - Figure 2.22d) depic evolution of the contacts at

150, 250, 400, and 500 time steps. It is observed that bonds start to be broken from the

bottom up to the top of the beam.

2.5.4 Brazilian test

In this test a circular specimen is loaded in compression along its diameter (at two

opposing circumferential points) as shown in Figure 2.15b), producing a tensile stress at

the center of the disk. A biaxial stress state is generated in a specimen under diametral
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Figure 2.20

Four-point bending test consisting of 95 polyhedral particles at a) Initial configuration, b)
after 1500 time steps when initial contacts (red beams) between particles were achieved,

c) initialization of bonds and d) depiction of bonded contacts in blue.
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Figure 2.21

Four-point bending test consisting of 95 polyhedral particles at a) after 150 time steps, b)
after 250 time steps, c) after 400 time steps d) after 500 time steps
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Figure 2.22

Four-point bending test with bonded and broken contacts at a) after 150 time steps, b)
after 250 time steps, c) after 400 time steps d) after 500 time steps
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Table 2.5

DEM bonding parameters used in four-point bending and Brazilian tests

Bonding Input Parameters Values
Bond normal stiffness, Kbn 5000
Bond shear stiffness, Kbs 2000

Bond normal “tensile” strength, tbn 1000
Bond shear strength, tbs 1000

compression, with a compressive stress in the direction of loading and tensile stress in the

direction perpendicular to that of the loading [31]. The magnitude of maximum tensile

stress is given by:

σ =
2P

πDt

where P is the load, D is the diameters of the disk and t is the thickness.

For the brazilian test, a single plane model consisting of 187 polyhedral particles, re-

sulting in model specimen size 15 mm × 15 mm × 5 mm was generated as described in

Section 2.2.2. The parameters used in the initial DEM simulation are included in Table

??. To make particles in contact with each other from the beginning of the simulation, the

bonding distance parameter was set to 0.08 mm. This allows a reduction on the simulation

time. To make the plates be in contact with the particles at the boundary, loading velocities

of 400 mm/s, −1000 mm/s to the top and bottom plates respectively. Then, initialization

of the bonds was performed. Finally, uniaxial loading was applied to the circular specimen

by moving the top and bottom plates at a loading velocity of 0.001 mm/s as shown in

Figure 2.23a). Corresponding depiction, at the beginning of the simulation, of the bonded

contacts (represented by green beams) and depiction of unbonded contacts (represented by
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red beams) is shown Figure 2.23b). Evolution of bond breakage at time steps 300 and 500

are shown in Figure 2.23c) and Figure 2.23e) with corresponding depiction of bonded and

unbonded contacts in Figure 2.23d) and Figure 2.23f) respectively. In this simulation the

bonding parameters were all set as described in Table ??. A dilation radii of 0.05 mm was

used for detection of contacts.

Particles stresses for the Brazilian test simulation are depicted using POVRAY. Blue

colored particles have lower stresses, red colored particles have higher stresses. For a single

crystal the average stresses are compressive. If we simulate the cylinder with multiple

crystals, we begin to see tensile cracks. When looking at the specimen in detail (as in

Figure 2.24c)) we observed the crystals form compressive wedges where contact is made

with the top and bottom plates (no depicted in the figure) that forces the particles in the

central part of the specimen apart. In the limit where the crystals become vanishingly small

and infinitely numerous, this wedge in the contact zone will likewise diminish to zero size,

leaving the entire central part of the specimen in tension. In this limit, the contact points

are singularities that support infinite compression, thus balancing the tensile stress formed

in the remainder of the specimen [102].
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Figure 2.23

Four-point bending test with bonded and broken contacts at a) after 150 time steps, b)
after 250 time steps, c) after 400 time steps d) after 500 time steps
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Figure 2.24

Particles stresses for the Brazilian test simulation: a) at time step 0, b) at time step 300
and c) at time step 500. Blue colored particles have lower stresses, red colored particles

have higher stresses
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CHAPTER 3

TRANSGRANULAR FRACTURE MODELING BASED ON DEM

3.1 Introduction

Performance of polycrystalline materials is to a large extent governed by their mi-

crostructure and its evolution under deformation [99]. In these materials, crack propaga-

tion can be intergranular (along the grain boundaries) or transgranular (through the grains)

as depicted in Figure 1.3. Fracture is generally intergranular at very fine grain sizes but

transgranular as the grain size increases. The transgranular fracture occurs if the grain is

in a favorable orientation for cleavage.

Since the microstructure of polycrystalline ceramics consist of crystal particles and

pores, the ceramic bulk can be treated as an assemblage of discrete particles bonded to-

gether randomly. Furthermore, the intergranular fracture of ceramics can be naturally

represented by the separation of particles due to breakage of bonds, and the transgranu-

lar fracture of ceramics can be represented by the fragmentation of particles due to high

stresses acting on the particles.

In this chapter, a transgranular fracture model is presented based on the discrete ele-

ment method. Fracture within the grains will be performed by replacing a grain (an intact

discrete element) with a fractured one (with two intact discrete elements bounded by a

fractured surface). The fracture criteria is based on the continuous traction parameters
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described in terms of the discrete forces by using the principle of virtual work. The com-

putation of the traction parameters is explained in Section 3.2.

For the fracture of a single discrete element , tractions are computed on all facets of

the discrete element . Then by using the equilibrium condition, the tractions are calculated

on potential fracture planes at a specified spacing within the discrete element based on

its crystallographic orientation. When the fracture criteria is met, the discrete element

is separated into two discrete elements along the fracture plane. Two discrete elements

created from the fracture of a single discrete element are illustrated in Figure 3.1.

Figure 3.1

A discrete element and its corresponding fragments after transgranular fracture

80



3.2 Consistent Traction Formulation for Discrete Elements

In a DEM system all compliance occurs at the interface between discrete elements. In

this section consistent tractions at the interface between discrete elements are defined to

facilitate modeling large discontinuous deformation such as when materials fracture. Two

pair of discrete elements in contact are illustrated in Figure 3.2. Prior to fracture, these

elements approximate the continuous medium; after fracture, the elements naturally model

the collection of interacting fragments. The inter-element continuity at the interface bet-

ween two discrete finite elements is approximated by contact laws that are usually defined

by elastic springs for an unfractured interface. The spring constants are chosen such that

the assemblage of elements displays the correct elastic response for the continuum body

represented by the assemblage. When the fracture criteria is met at the interface, the elastic

contact laws are replaced by a frictional contact with compressive-only normal forces. For

both pre-fracture and post-fracture, the kinetics at the interface are defined by discrete

forces.

A relationship is derived between the pre-fractured discrete contact forces and the

continuous tractions that are assumed to exist across the interfaces. The creation of a

fracture between two preexisting discrete elements is straightforward because the element

boundary coincides with the fracture plane. For example, element boundaries are useful for

modeling grain boundaries in polycrystalline materials. However, where the grains them-

selves fracture, a criteria for fracture must be included in the model and this is developed

in the following section 3.3.
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Figure 3.2

Pair of polyhedra-shaped discrete elements

Equivalence between the contact forces (Figure 3.3) and the tractions at the particle’s

boundary faces (Figure 3.4) is established by using the principle of virtual work, which

allows the computations of the tractions that are consistent with the contact forces in the

sense that they yield the same virtual work in response to an arbitrary virtual deformation.

Since we are dealing with a dynamic system of particles, we apply D’Alembert’s principle,

a form of Newton’s second law, which states that the resultant of the external forces F and

the kinetic reaction acting on a body equals zero (
Nc∑
n=1

F n−ma = 0). For simplicity, gravity

is considered to be zero.

In this section, we presented a formulation to compute the consistent tractions at each

of the boundary faces of a discrete element which is assumed to be in contact at each of its

faces with other discrete elements.
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Figure 3.3

Discrete forces acting on a discrete element

Figure 3.4

Tractions on the discrete element’s boundary faces
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3.2.1 Coordinate System

Two types of coordinate systems are considered in this work. A global coordinate

system (GCS) as defined within DEM (X, Y, Z) to describe the discrete elements collec-

tive motions. The global coordinate system is a left-handed coordinate system, where the

Z axis acts in the gravitational direction, as shown in Figure 3.5. Local coordinate sys-

tems (LCS) (xi, yi, zi) are also defined where i represents the face number, to describe the

mechanism involved at each of the discrete elements boundary faces. These local coordi-

nate systems are aligned such that xi axes and yi axes lie in the plane face and zi axes are

directed normal to the face i of the discrete element. These directions coincide with the

sliding and separation that occurs on these surfaces and are shown in Figure 3.6.

Figure 3.5

Global Coordinate System (GCS)
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Figure 3.6

Local Coordinate System (LCS) for one of the boundary faces of a discrete element

The tractions are computed in the LCS from the discrete forces acting at each discrete

element boundary faces. Also, it is assumed that the xi- and yi- axes are placed at the

centroid of the boundary face.

3.2.2 Force Vector Coordinate Transformation

The first step in computing the tractions at each discrete element face is to take the

discrete forces acting at each face and transform them from the GCS (Figure 3.7) to the

corresponding LCS (Figure 3.12).

Suppose G = {~e1, ~e2, ~e3} is a base for the GCS and L = {~l1, ~l2, ~l3} is a base for the

LCS at one of the faces.
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Figure 3.7

Forces in the global system

Figure 3.8

Forces in the local system
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~e1 =


1

0

0

 , ~e2 =


0

1

0

 , ~e3 =


0

0

−1

 (3.1)

~l1 =


x1

y1

z1

 , ~l2 =


x2

y2

z2

 , ~l3 =


x3

y3

z3

 (3.2)

Each vector of the base G can be expressed as a linear combination of the elements of

the base L:

~ei = ai~l1 + bi~l2 + ci~l3, i = 1, 2, 3 (3.3)

where values for {ai, bi, ci} are found by solving the linear systems


x1 x2 x3

y1 y2 y3

z1 z2 z3




ai

bi

ci

 = ~ei, i = 1, 2, 3 (3.4)

Therefore, a vector ~F = [F1, F2, F3] in the global coordinate system, can be trans-

formed into a vector in the local coordinate system by using the following expression:

~F = (F1a1 + F2a2 + F3a3)~l1 + (F1b1 + F2b2 + F3b3)~l2 + (F1c1 + F2c2 + F3c3)~l3

(3.5)
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3.2.3 Kinematics

The kinematics describe the relative motion between two adjacent discrete elements

in the LCS. The location of a point in a discrete element relative to the centroid of the face

(x0, y0, z0), to which the point belongs to, can be expressed as

x = x0 +R cos(ω)

y = y0 +R sin(ω),

z = z0 + hzx sin θx + hzy sin θy

(3.6)

where θx, θy are the relative rotations with respect to the x-axis, y-axis respectively, and ω

is the relative rotation about the z-axis as shown in Figure 3.9, Figure 3.10 and Figure 3.11

respectively.

Figure 3.9

Relative rotation about x- axis (θx)
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Figure 3.10

Relative rotation about y- axis (θy)

Figure 3.11

Relative rotation about z-axis (ω)
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Assuming a small angle approximation, the arc lengths Sx and Sy representing the

relative rotations about the x-axis and y-axis, are approximately equal to hzx, hzy, respec-

tively, as shown in Figure 3.9 and Figure 3.10. The motion of a discrete element consists

of in-plane movements, δu and δv, and the out-of-plane separation motion normal to the

interface plane, δw. Thus, the motion of a particular point (x, y, z) in a discrete element is

given in terms of its rigid body motions (δu, δv, δw) and the relative rotations between the

contacting surfaces (δω, δθx, δθy) as,

δu = δuo −R sin(ω)δω = δuo − yδω

δv = δvo +R cos(ω)δω = δvo + xδω

δw = δwo + hzx cos(θx)δθx + hzy cos(θy)δθy = δwo + xδθx + yδθy

(3.7)

Note that although δuo, δvo, δwo are constant motion acting across the boundary plane, they

are not to be confused with rigid-body motions (δu, δv, δw) because they represent motion

of one discrete element face relative to the other. These relative displacements are in the x,

y, and z directions measured with respect to a convenient location between two contacting

surfaces

3.2.4 Virtual Work Principle (VWP)

In this section, the virtual work done by the forces (computed from the contact force

laws) acting on the contacting surface is equated to the virtual work done by a set of

hypothetical consistent tractions that act uniformly on the surface. To accomplish this,

an equivalence between the motions at any particular point on the surface and uniformly

varying motions that are thermodynamic conjugates of the tractions is set up.
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3.2.4.1 VWP for Discrete Forces

Due to the rigidity of the discrete element, only six kinematics variables δuo, δvo, δwo,

δθx, δθy, δω are required to describe the virtual work done by the forces acting on each the

discrete element’s face. Suppose there are Nc forces acting on one of the faces, F1, ...,FNc

which are expressed in global coordinates. First, each of those forces has to be transformed

to the local coordinate system corresponding to the face they act on. This is done by using

Equation (3.5). Thus, we get Nc forces, f1, ..., fNc , in the local coordinate system acting on

the face, as shown in Figure 3.12. Next, from the D’Alembert’s principle
Nc∑
n=1

fn−ma = 0,

(m and a are the discrete element’s mass and acceleration respectively), and the principle

of virtual work, the total work done by the forces is:

Figure 3.12

Nc = n Discrete forces acting on a discrete element boundary face
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δW =

(
Nc∑
n=1

fn −ma
)
δU

=

(
Nc∑
n=1

fn
x −max

)
δu+

(
Nc∑
n=1

fn
y −may

)
δv +

(
Nc∑
n=1

fn
z −maz

)
δw

+

(
Nc∑
n=1

fn
x −max

)
(δuo − yδω) +

(
Nc∑
n=1

fn
y −may

)
(δvo + xδω)

+

(
Nc∑
n=1

fn
z −maz

)
(δwo + xδθx + xyδθy)

=

(
Nc∑
n=1

fn
x −max

)
δuo +

(
Nc∑
n=1

fn
y −may

)
δvo +

(
Nc∑
n=1

fn
z −maz

)
δwo

+

(
Nc∑
n=1

fn
z −maz

)
xδθx +

(
Nc∑
n=1

fn
z −maz

)
yδθy

+

[
x

(
Nc∑
n=1

fn
y −may

)
− y

(
Nc∑
n=1

fn
x −max

)]
δω

(3.8)

3.2.4.2 VWP for Continuous Tractions

Next, the tractions acting on each face of the discrete element are defined in terms of

the discrete forces acting on each face. The shear tractions, tx and ty, acting on the plane

with area A of the boundary face are assumed to be constant, whereas the normal stress,
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tn, is assumed to have a linear distribution. Therefore, the tractions acting on the plane S

(Figure 3.13) are:

tn = to + C1x+ C2y

ts =
√
t2x + t2y

tx, ty = constants

(3.9)

Figure 3.13

Tractions acting on a discrete element boundary face
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Thus, the virtual work done by the tractions is

δW =

∫
A

[txδu+ tyδv + tnδw]dA

=

∫
A

[tx(δuo − yδω) + ty(δvo + xδω) + tn(δwo + xδθx + yδθy)]dA

=

∫
A

[(δuo − yδω)tx + (δvo + xδω)ty + (δwo + xδθ + yδθ)tn]dA

=

∫
A

txdA

 δuo +

∫
A

tydS

 δvo +

∫
A

tndA

 δwo +

∫
A

xtndA

 δθx

+

∫
A

ytndA

 δθy +

∫
A

(xty − ytx)dA

 δω

(3.10)

where A is the face’s surface area for which tractions are being computed.

The virtual work equality is set up such that the work done by the discrete forces,

moments, displacements and rotations for the contacts (Equation (3.8)) is at one side of the

equation and the work done by the uniform motions and the tractions (Equation (3.10)) is

on the other side of the equation. Because the virtual motions are independent and arbitrary,

the equality of virtual work in Equation (3.8) and Equation (3.10) must be maintained for

all values of virtual displacements and rotations. The equality is insured by making each

expression multiplying a virtual kinematic variable in Equation (3.8) to be equal to the

expression multiplying the respective virtual kinematic variable in Equation (3.10).
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Therefore, we obtain:∫
A

txdA =

(
Nc∑
n=1

fn
x −max

)

∫
A

tydA =

(
Nc∑
n=1

fn
y −may

)

∫
A

tndA =

(
Nc∑
n=1

fn
z −maz

)

∫
A

xtndA = x

(
Nc∑
n=1

fn
z −maz

)

∫
A

ytndA = y

(
Nc∑
n=1

fn
z −maz

)

∫
A

(xty − ytx)dA = x

(
Nc∑
n=1

fn
y −may

)
− y

(
Nc∑
n=1

fn
x −max

)

(3.11)
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After substituting the linear relationship for tn we obtain∫
A

txdA =

(
Nc∑
n=1

fn
x −max

)

∫
A

tydA =

(
Nc∑
n=1

fn
y −may

)

∫
A

(to + C1x+ C2y)dA =

(
Nc∑
n=1

fn
z −maz

)

∫
A

(xto + C1x
2 + C2xy)dA = x

(
Nc∑
n=1

fn
z −maz

)

∫
A

(yto + C1xy + C2y
2)dSA = y

(
Nc∑
n=1

fn
z −maz

)

∫
A

(xty − ytx)dA = x

(
Nc∑
n=1

fn
y −may

)
− y

(
Nc∑
n=1

fn
x −max

)

(3.12)

From the above Equation (3.12), we define the following quantities:

A =

∫
A

dA Qy =

∫
A

xdA

Qx =

∫
A

ydA Mz =

∫
A

(xty − ytx)dA

I =

 Ixx Ixy

Ixy Iyy

 Iab =

∫
A

(ba)dA; a, b = x, y

(3.13)
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where Qx is the first moment of area about x axis, Qy is the first moment of area about y

axis, I is the second moment of area and Mz, is the moment about z axis; it is sometimes

referred as T , is the torque acting on the plane of the surface. Therefore, the parameters

to, C1, C2, tx, ty,Mz can be expressed in terms of the discrete forces acting on a discrete

element as follows:

tx =
1

A

(
Nc∑
n=1

fn
x −max

)

ty =
1

A

(
Nc∑
n=1

fn
y −may

)

toA+ C1Qy + C2Qx =

(
Nc∑
n=1

fn
z −maz

)

toQy + C1Ixx + C2Ixy = x

(
Nc∑
n=1

fn
z −maz

)

toQx + C1Ixy + C2Iyy = y

(
Nc∑
n=1

fn
z −maz

)

Mz = x

(
Nc∑
n=1

fn
y −may

)
− y

(
Nc∑
n=1

fn
x −max

)

(3.14)
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where explicit expressions for to, C1 and C2 are found by solving the system of equations

from Equation (3.14) c)− e):
A Qy Qx

Qy Ixx Ixy

Qx Ixy Iyy


︸ ︷︷ ︸

K


to

C1

C2

 =


1

x

y


(

Nc∑
n=1

fn
z −maz

)
(3.15)

Note that the system of equations (3.14) c)− e) is solvable since det(K) 6= 0.
to

C1

C2

 =
1

det(K)
B


1

x

y


(

Nc∑
n=1

fn
z −maz

)
(3.16)

where

B =


det(I) QxIxy −QyIyy QyIxy −QxIxx

QxIxy −QyIyy AIyy − (Qx)2 QyQx − AIxy

QyIxy −QxIxx QyQx − AIxy AIxx − (Qy)
2

 (3.17)

From the above, explicit expressions for the continuous tractions tn, ts and the torque

Mz in terms of the discrete forces are found, as shown in Figure 3.14.

tn = to + C1x+ C2y

ts =
√
t2x + t2y

Mz = x

(
Nc∑
n=1

fn
y −may

)
− y

(
Nc∑
n=1

fn
x −max

) (3.18)
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Figure 3.14

Steps to compute tractions from discrete forces

where

tx =
1

A

(
Nc∑
n=1

fn
x −max

)

ty =
1

A

(
Nc∑
n=1

fn
y −may

)

to =

(
Nc∑
n=1

fn
z −maz

)
det(K)

(det(I) + x(QxIxy −QyIyy) + y(QyIxy −QxIxx))

C1 =

(
Nc∑
n=1

fn
z −maz

)
det(K)

(
(QxIxy −QyIyy) + x(AIyy − (Qx)2) + y(QyQx − AIxy)

)

C2 =

(
Nc∑
n=1

fn
z −maz

)
det(K)

(
(QyIxy −QxIxx) + x(QyQx − AIxy) + y(AIxx − (Qy)

2)
)

(3.19)
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3.3 Consistent Tractions Formulation for 3D Fractured Discrete Elements

To compute the tractions at a potential fracture plane within the discrete element, the

tractions at each of the boundary faces of the discrete element have to be computed from

the discrete forces acting on them, as described in the previous Section 3.2 and shown in

Figure 3.15. This smoothing step simplifies dealing with contact forces acting on crystal

boundaries that are cut by fracture. Each set of tractions at each of the faces is described

in the local coordinate system (x, y, z) defined for the face in which the tractions were

computed.

Figure 3.15

Transition from tractions at each particle’s faces to tractions at potential crack plane
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3.3.1 Tractions at Potential Crack Plane

To compute the tractions at a potential fracture plane, first the total force and total

moment acting on each face have to be computed from the previously computed tractions

acting on each face as shown in Figure 3.16 and Figure 3.17. the total force and total

moment have to be transformed from the local coordinate system to the global coordinate

system.

F i = tin ∗ Ai ∗ ni + tix ∗ Ai ∗mi + tiy ∗ Ai ∗ li (3.20)

where i = 1, ..., Nfaces, ni, mi and li are the normal and tangential vectors for face i

respectively and Ai is the surface area of face i.

Figure 3.16

Tractions at one discrete element’s face in the local coordinate system
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Figure 3.17

Total force and moment for discrete element’s face in the global coordinate system

Next, the total forces and moments acting on each of the faces have to be transformed

to the global coordinate system (Xg, Yg, Zg), since the tractions are defined in the cor-

responding local coordinate system. To accomplish this, we use the fact that distributed

forces within a body can be represented by a statically equivalent system consisting of a

force and a moment vector acing at the centroid of a section. Thus, the total force and total

moment are computed at the centroid (described in the global coordinate system) for each

of the fragments that will result if the discrete element fractures.

Fcentroid =

Nfaces∑
i=1

F i

Mcentroid =

Nfaces∑
i=1

(M i +Ri × F i)
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where Ri is the moment arm from the centroid of the fragment to the centroid of the face

in which the force F i is acting on.

The following step is to use the equilibrium condition, to compute the total force F ∗

and moment M∗ acting at the centroid of the potential crack plane:

F crack
centroid = −Fcentroid

M crack
centroid = −Mcentroid

The final step is to get the tractions acting on the potential fracture plane from the total

force and total moment, which have to be transformed from the global coordinate system

to the local coordinate system. Therefore,

tx =
F crack
centroid(1)

Areacrack
∗mlocal (3.21)

ty =
F crack
centroid(2)

Areacrack
∗ llocal

tn =
F crack
centroid(3)

Areacrack
∗ nlocal

ts =
√
t2x + t2y

3.4 Microscopic Fracture Criterion

A transgranular fracture criterion at the grain scale, is developed based on the Discrete

Element model presented in Chapter 2, the Euler-Bernoulli Bean Theory and the Griffith

Fracture Theory. This criterion allows fragmentation of a single discrete element into two

discrete element s along its cleavage plane.

The fracture criterion developed consists of two stages: First, an average Cauchy stress

tensor, σ̄i, is computed for each grain i (represented by a discrete element) from the discrete
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contact forces acting on it as described in Section 2.4. In this stage, the criterion assumes

that transgranular fracture occurs if the hydrostatic stress is higher than a threshold value

σhyd
f , Damien et. al [7]

1

3
tr(σ̄i) ≥ σhyd

f (3.22)

If this stress criterion is reached, then second stage consists of the calculation of the

tractions at the potential crack plane from the tractions at the boundary of the grain. The

potential crack plane orientation is chosen according to the crystallographic orientation of

the grain. Next, the stress intensity factors (KI , KII) are computed based on the traction

values and the normal and shear stresses computed using the Euler-Bernoulli beam theory.

KI = σ
√
aπ KII = τ

√
aπ (3.23)

where a is the crack length and

σ =
tn
A
± Mzy

I
τ =

tsQ

Ib
(3.24)

tn and ts are the normal and shear tractions at the crack plane computed by the expressions

in (3.21), y is the distance from the neutral axis, A is the area of the fracture surface, Mz is

the bending moment around the z−axis, Q and I are the first and second area moment of

inertia respectively.

Transgranular fracture occurs if

(
KI

KIc

)2

+

(
KII

CKIc

)2

≥ 1 (3.25)
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where C = 0.816, as originally suggested by Palaniswamy and Knauss in 1978.

The trasgranular fracture approach was implemented into the DEM code so polyhe-

dra particles can fragment according to the fracture criteria described in 3.22 and 3.25.

The algorithm below contains the steps on how the fragmentation process is performed.

Transgranular Fracture Algorithm

Step 1. Compute contact forces and moments as described in Chapter 2

Step 2. Compute stresses for each particle as described in Equation (2.17)

Step 3. Check Stress Criterion 3.25. If the criterion is met, then for each particle:

3.1. Compute tractions for each of the six rectangular faces of the polyhedron rep-
resenting the particle as described in Equation (3.19)

3.2. Compute tractions at the potential “crack plane” as described in Equation (3.21)

3.3. Check Stress Intensity Factor Criterion 3.25. If criterion is met, proceed to
fragment particle by replacing it with two discrete elements. I criterion is not
met, continue to examine the next particle.

Step 4. Continue computation for next time step.

3.5 DEM Simulations

3.5.1 Drop test on unbonded particles

The drop test model consists of 44 close packed hexagonal prismatic particles of ran-

dom crystallographic orientation. After generating the microstructure, and completing the

DEM simulation, the results were visualized using PARAVIEW. Starting from their ini-

tial positions, as shown in Figure 3.18a), the particles were affected only by gravitational

forces and started immediately to move towards the bottom of the box as shown in Fig-

ure 3.18b). Once the particles come into contact with each other and with the bottom
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wall (Figure 3.18c) - Figure 3.18e)), they started to repel each other and fragment. Un-

bonded contacts are indicated by the small red spheres visible in the simulation results. As

particles are no longer in contact, the red spheres disappear. The particle fragments will

bounce up and down until all particles finally settle due to the dissipated energies through

the collisions as shown in Figure 3.18f). This simulation was run for 10000 time steps.

The parameters used in this DEM simulation are included in Table ??.

3.5.2 Uniaxial compression test

For the uniaxial compression tests, a single plane models consisting of 44 hexagonal

prismatic particles, resulting in a model size of 5 mm× 10 mm× 2 mm was generated as

described in Section 2.2.2. The parameters used in the initial DEM simulation are included

in Table ??. Loading velocity of 0.001mm/s was applied on the upper and lower surfaces

using DEM rigid elements to compress the particles until initial contact was achieved. Af-

ter the initial contact model was generated, the bonding forces were activated. The initial

bonding parameters applied to the models are provided in Table ??. Polyhedra particles

fragment according to the stress criteria 3.22 and the stress intensity fracture criteria 3.25

both describe in Section 3.4. Figure 3.19a) - Figure 3.19d) show the evolution of trans-

granular fracture at time steps 0, 100, 300 and 500 respectively.

3.5.3 Brazilian test simulation

For the Brazilian tests, a single plane models consisting of 160 polyhedral particles,

resulting in a model size of 156 mm × 156 mm × 18 mm was generated as described in

Section 2.2.2. The parameters used in the initial DEM simulation are included in Table
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Figure 3.18

Simulation of falling polyhedral particles which fragment when touching the ground.
Contacts are represented by red spheres. Particle colors represent crystallographic
orientations of the grains. a) initial step, b) - e) intermediate steps, and f) final step
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Figure 3.19

Uniaxial compression test with transgranular fracture a) initial step, b) at 100 step, c) at
300 step and d) at 500 step
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??. Loading velocity of 0.001mm/s was applied on the upper and lower surfaces using

DEM rigid elements to compress the particles until initial contact was achieved. After the

initial contact model was generated, the bonding forces were activated. The initial bonding

parameters applied to the models are provided in Table ??. Polyhedra particles fragment

according to the stress criteria 3.22 and the stress intensity fracture criteria 3.25 both des-

cribed in Section 3.4. Figure 3.20a) - Figure 3.20d) show the evolution of transgranular

fracture at time steps 0, 100, 500 and 2000 respectively.

A transgranular fracture model was developed based on the discrete element method.

Fracture within the grains was be performed by replacing a grain (an intact discrete el-

ement) with a fractured one (with two intact discrete elements bounded by a fractured

surface). The fracture criteria is based on the continuous traction parameters described

in terms of the discrete forces by using the principle of virtual work. The model was

implemented into the ERDC DEM code and it was tested by performing three types of

simulations tests: drop, uniaxial compression and Brazilian.

109



Figure 3.20

Brazilian test with depiction of transgranular fracture at a) time step 0, b) time step 100, c)
time step 500 and d) time step 2000
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CHAPTER 4

CONCLUSIONS

4.1 Summary

The main goal of this dissertation was to develop a fracture model for brittle poly-

crystalline materials based on a discrete element method. In this work, the development,

implementation, verification and validation of a bonded particle model for the study of co-

hesive particles and brittle structures using a discrete element method were presented. The

developed model has been successfully implemented into the initial USACE-ERDC DEM

code. The most important features of our DEM are the way in which bonded contacts are

treated and the way in which discrete elements are fragmented based on the tractions acting

at the discrete elements surfaces.

In Chapter 1 an overview of the fundamental theory and fracture behavior of brittle

polycrystalline materials was presented as well as an overview on the current state on the

development of discrete element methods to simulate the brittle fracture. In Chapter 2 a

detailed explanation of the main features in the development and implementation of the

bonded polyhedra DEM model, such as discrete element geometry, contact detection al-

gorithms, contact law and bonded contacts were provided. The model was implemented

for a brittle, polycrystalline material consisting of two crystallographic orientations for the

grains. The new formulation has the capability of capturing intergranular fracture within
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the particle model on the basis of bonding properties and forces acting on each discrete ele-

ment. The contact detection was verified in a drop test case to observe motion of individual

particles.

In Chapter 3 a transgranular fracture model for brittle polycrystalline materials was

described. These type of materials are composed of grains separated incompatibly by

grain boundary regions, in this work we describe the material as an assemblage of grains

modeled as discrete elements whereby the grain and grain boundaries have distinct frac-

ture criteria. The discrete elements used to represent the grains were assumed to be rigid,

making the stress state statically indeterminate. To tackle this, we used the virtual work

principle to determine statically equivalent stress states in the forms of average stresses

(within the grains) and tractions (on grain boundaries) from which continuos fracture cri-

teria can be employed. Specifically, the transgranular fracture criterion was based on the

continuous tractions parameters calculated in terms of the discrete forces by using the prin-

ciple of virtual work.

4.2 Contributions

In the current work, we expand a basic discrete element model for non-cohesive sphe-

rical and cylindrical particle assemblies to include polyhedral-shaped bonded particles to

better represent intergranular fracture of a brittle polycrystalline microstructure. Although

a basic contact-bonding law was implemented in the initial ERDC DEM code, further tests

were needed. In this work several modifications/improvements were made to the polyhedra

particle model and to the bonded contact definitions:
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• Implemented a technique for generating a synthetic polycrystalline microstructure
with random crystallographic orientation for the DEM model.

• Changed prismatic particle “sectioning” for fracture implementation.

• Added subroutine to DEM code to visualize frictional contacts using color-coded
beams and bonded contacts using beams in the simulation.

• Added particle stress output subroutine based on magnitude and orientation for vi-
sualization in POV-RAY.

• Verified the contact detection procedure using a drop test model.

• Tested the implementation of the bonded-contact model using uniaxial compression,
four-point bending test, and Brazilian test.

• Development of a framework based on a discrete element method is presented to
model the behavior of polycrystalline grains and grain boundaries.

• Failure of the model material was simulated as a combination of intergranular and
transgranular modes depending on the specific material properties and loading con-
figurations.

• Use of the virtual work method to link discrete contact forces to equivalent contin-
uous tractions allows the creation of any number of statically equivalent load distri-
butions as might be needed to create realistic fracture criteria.

• Development of a fracture criterion for the rigid discrete elements which are stati-
cally indeterminate.

4.3 Further Research

A fracture model based on a discrete element method to model the mechanical behavior

of brittle polycrystalline materials has been presented in this dissertation. Although a new

approach has beed developed to account for transgranular fracture of discrete elements

representative of polycrystalline grains, several issues have been left for future work:

• A particle size effect study.

• Optimization of contact search approach.

• Improvement of the contact law by means of the implementation of an orthotropic
cohesive contact law.
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• Calibration of the model proposed in this work using dimensional analysis and the
principle of similitude.

• Validation of the model for ceramic materials using experimental data from the litera-
ture.

• Implementation of more types of crystallographic orientations.

• Paralellization of the DEM code.

From the author’s point of view, all the above mentioned issues should be addressed to

gain better understanding of the fracture behavior of brittle polycrystalline materials. The

author is aware of the computational challenges in terms of computational resources and

implementation of the approaches that might help in this regard but the author is hopeful

that the contributions made in this dissertation can help in the advancement on the develop-

ment of discrete elements methods to model the fracture behavior of brittle polycrystalline

materials.
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APPENDIX A

HCP LATTICE GENERATION
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The hexagonal prismatic honeycomb lattice used to create DEM prismatic particles is

created by defining the coordinates of lattice points for two different types of planes (A

and B) as shown in Figure A.1.
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Figure A.1

Coordinate centers of the lattice points for Plane A and B of the HCP Lattice to fill a box
with dimensions 12×12×1

The planes are placed in a simple pattern of A−B−A−B−A.... Also, it is assumed

that each lattice point will be non-negative to easily transform and translate the grain’s

positions using the HCP lattice points to fill any 3D space. Thus, the best location for the

3D space we aim to fill is with one corner at the origin as indicated in Figure 2.4.

A.1 Generation of Plane A

Plane A is generated by following the steps below:

a) Begin by making one row of grains.
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Start with a hypothetical grain with side length r and center at (0,r, 1
2
t) on the xyz

space. Some of this grain’s volume will be outside the box, so its center will not end
up on the lattice; but it will be used as starting point. While keeping the y− and z−
coordinates the same, add another grain so that the two grains touch. Continue by
adding more grains in this row, along this line, until the x− coordinate boundary of
the box

(⌊
2a√
3r

⌋
− 2
)

is reached, see Figure A.2.

The coordinates for the lattice points of the first row will be(√
3ir, r,

1

2
t

)
, for 1 ≤ i ≤

⌊
2a√
3r

⌋
− 2.

b) To form the next row of grain centers on this plane, place a grain in the same z−
coordinate plane as the first row, but with a different y− coordinate so that it will
touch the first two grains of that first row.

As shown in Figure ??, the three centers of these grains form an equilateral triangle
with base

√
3r and a height equals the y− pitch from the first row to the second row,

i.e.,

h =

√√√√(
√

3r)2 −

(√
3

2
r

)2

=
3

2
r.

The x− coordinate of the new grain is the same as the x− coordinate of the point of
contact between the grains in the first row, such that all the grains in the second row
will have shifted a distance

√
3

2
r.

Next, place the grains in a row with this new y− coordinate, r+ h, and the same z−

coordinate until the x− coordinate boundary of the box is reached.

Lattice points (grain’s center) coordinates of the second row will be given by:

(√
3

2
(2i− 1)r, r + h,

1

2
t

)
, for 1 ≤ i ≤

⌊
2a√
3r

⌋
− 2.

c) Continuing this process of making new rows by adding the y− pitch and shifting the

rows in the x− direction a distance
√

3
2
r until reaching the y− coordinate boundary

of the box
(⌊

2
3

(b+ r
2

)

r

⌋
− 1
)

. This completes the generation of plane A for the lattice.
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Figure A.2

Construction of Plane A of the hexagonal prismatic honeycomb lattice

A.2 Generation of Plane B

Plane B is generated in the same way as plane A by only changing the z-coordinate.

In this case, for each lattice point we need:

• The x− coordinate varies from 1 to
⌊

2a√
3r

⌋
− 2.

• The y− coordinate varies from 1 to
⌊

2
3

(b+ r
2

)

r

⌋
− 1.

• The z− coordinate requires the addition of the z− pitch 1
2
t+ t.

A.3 Generation of Additional Planes

Continue the process as in step b) (page 16) alternating A and B planes and rows 1 and

2 within each plane until the z− coordinate boundary
(⌊

c+ t
2

t

⌋
− 1
)

is reached. The z−

coordinates are given by
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z =
t

2
+ (k − 1)t, for 1 ≤ k ≤

⌊
c+ t

2

t

⌋
− 1.

Table ?? summarizes the xyz coordinates for each lattice point and Table ?? summa-

rizes the xyz coordinates for each grain’s vertex.

The steps to generate the coordinates of each HCP lattice point and the coordinates

of their corresponding vertices that form an hexagonal prism with center at each lattice

point are described in Algorithm A.3 and example is shown in Figure 2.6. This algo-

rithm was implemented in several MATLAB subroutines, HCP LatticePoints.m and

Grain V ertices.m, included at the end of this appendix.

Algorithm for HCP packing of Hexagonal Grains.

Step 1. Define the dimensions a, b, and c for the 3D space to be filled.

Step 2. Define side length r.

Step 3. Compute the coordinates for each lattice point at each plane as described in Ta-
ble 2.1.

Step 4. For each lattice point, compute its corresponding vertices to form the hexagonal
prism as described in Table 2.2.

Step 5. Write files with center coordinates and vertices coordinates.

HoneycombLattice.m

function [Lattice]=HoneycombLattice(x,y,z,r,t)

% %This program will create a hexagonal lattice that fills a

three

% % dimensional space with xyz dimensions.
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% % This lattice will give a honeycomb arrangement for the grains,

% % which have hexagonal prisms shape

% % Inputs:

% % Box dimensions = x,y and z

% % Grain dimensions = r (side length), t (thickness)

% % Output:

% % Lattice points coordinates = Lattice

% % Copyright (c) 2013 Katerine SalemeRuiz. All rights reserved.

m = fix(x/(sqrt(3)*r));

n = ceil(((2/3).*(y+(1/2)*r))./r)-1;

l = ceil((z + t/2)/t);

planeA = zeros(m*n,3);

Lattice = zeros(m*n*l,3);

i=zeros(m,1);

cont = 1;

for k=1:m

i(k)=k;

end

% % compute lattice points

for k =1 : l

for j = 1 : n

130



if cont == 1

planeA((j-1)*m+1:j*m,1) = sqrt(3).*i.*r;

planeA((j-1)*m+1:j*m,2) = r.*ones(m,1) + (j-1).*(3/2).*r.*ones(m,1);

planeA((j-1)*m+1:j*m,3) = (t/2).*ones(m,1) + (k-1)*t*ones(m,1);

cont = 0;

else

planeA((j-1)*m+1:j*m,1) = (((sqrt(3)/2)*(2*i-1)).*ones(m,1)).*r;

planeA((j-1)*m+1:j*m,2) = r.*ones(m,1) + (j-1).*(3/2).*r.*ones(m,1);

planeA((j-1)*m+1:j*m,3) = (t/2).*ones(m,1) + (k-1)*t*ones(m,1);

cont = 1;

end

end

Lattice((k-1)*m*n+1:k*m*n,:)= planeA;

end

GrainVertices.m

function [Vertices] = GrainVertices(n,r,t, center)

% % This subroutine reads the center’s coordinate of a

% % hexagonal prism and computes its 12 vertices.

% % for each finite element of each wall of the box.

% % Inputs:

% % Number of sides = r
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% % Grain dimensions = r (side length), t (thickness)

% % Grain center coordinates = center

% % Output:

% % Vertices = 12x3 matrix with the 12 vertices coordinates

% % Copyright (c) 2013 Katerine SalemeRuiz. All rights reserved.

%% Auxiliar data

theta = (360/n)*(pi/180);

Vertices = zeros(2*n,3);

aux = zeros(n,1);

auxc = zeros(n,1);

for i = 1:n

aux(i) = i-1;

auxc(i) = 1;

end

%% vertices

% front face

Vertices(1:n,1) = r * sin(theta.*aux(:)) + auxc(:).*center(1);

Vertices(1:n,2) = r * cos(theta.*aux(:)) + auxc(:).*center(2);

Vertices(1:n,3) = -(t/2) + auxc(:).*center(3);

% back face
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Vertices(n+1:2*n,1) = r * sin(theta.*aux(:)) + auxc(:).*center(1);

Vertices(n+1:2*n,2) = r * cos(theta.*aux(:)) + auxc(:).*center(2);

Vertices(n+1:2*n,3) = (t/2) + auxc(:).*center(3);
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APPENDIX B

CONTACT DETECTION ALGORITHMS
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B.1 Coarse Contact Detection

The coarse search is performed to detect which particles might be in contact by using

either a basic or bounding-box algorithm depending on the distribution of particle size.

1. Basic Spatial Discretization Algorithm.
This algorithm is simple to implement and requires that all cells be larger than the
diameter of the largest particle in the system.

Basic Search Algorithm.

Step 1. Discretize the simulation space into cells of equal size.

Step 2. Place each particle in a single cell based on the location of the particle’s
center. The particle’s placement is based on converting the real coordinates of
the particle center to integer coordinates. The integer coordinates correspond
to the cell indices.

Step 3. Perform a particle-based search for potential contacts. Loop the contact
search over the particles. Select a particle, identify which cell the particle’s
center resides in, and search for potential contacts over the central cell and the
26 neighboring cells (in a three dimensional space).

Performance of the algorithm degrades when particles in the simulated system are
not of similar size.

2. Bounding Box Algorithm.
This search algorithm is an extension of the Algorithm 1. However, the cell size
is based on the diameter of the smallest particles, rather than the largest particles.
Therefore, for systems in which particle sizes are nonuniform, performance is not
degraded as it would be in the basic search algorithm [97].

Bounding Box Search Algorithm.

Step 1. Discretize the simulation space into cells of equal size.

Step 2. Identify all cells which any part of a target particle may occupy.

• Locate the particle center.
• Add and subtract the particle radius to determine the maximum and mini-

mum bounds, respectively, in all dimensions.

Step 3. List the target particle as present in those cells identified in Step 2.

Step 4. Search for potential contacts over the same set of cells (the “bounding box”)
obtained in Step 2.
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B.2 Fine Contact Detection

The fine search is performed to find which pairs of particles, identified in the previous

stage, are actually in contact and to determine the degree of contact, i.e. the distance of

penetration or closure. The algorithm loops over each pair of particles listed in the coarse

search stage and proceeds according to the types of particles participating in the contact.

Fine Contact Algorithm.

Step 1. Identify the contact case for each pair of particles identified in the coarse search
stage. The polyhedra particles (grains) considered in this research are clusters com-
posed of three primitive particles: Facet, Sphere, and Cylinder, as shown in Figure
??.

Therefore there are five contact cases, but only four are consider here:

• Sphere - Sphere

• Sphere - Facet

• Cylinder - Cylinder

• Sphere - Cylinder

• Cylinder - Facet is not geometrically possible.

Step 2. Apply correct contact detection algorithm based on the contact case. The goal is
to compute penetration between particles depending on contact case. Formulas to
compute penetration for each contact case are provided below:

• Sphere - Sphere:
Compute the distance between the centers of the spheres, D, and compute pen-
etration:

penetration = (RS1 +RS2)−D
where RS1 and RS2 are the radii of the two spheres.

• Sphere - Facet:
Compute the distance from the center of the sphere to the plane containing the
three nodes of the facet, D. Then compute penetration:

penetration = RS −D
where RS is the radii of the sphere.
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• Cylinder - Cylinder
Compute the closest approach between the two principal axes of the cylinders
, D. Then compute penetration:

penetration = (RC1 +RC2)−D

where RC1 and RC2 are the radii of the two cylinders.

• Sphere - Cylinder
Compute the distance from the center of the sphere to the principal axis of the
cylinder, D. Then compute penetration:

penetration = (RS +RC)−D

where RS and RC are the radii of the sphere and cylinder respectively.

Details on how each case is treated can be found in [45]. Many other algorithms to
compute distance between the class types mentioned above can be found online.

Step 3. Depending of the contact type, determine if contact is made. Then, proceed to
update contact list.

• For non-bonded contact, if penetration is greater than 0, then contacts is made.

• For bonded contacts, ifD ≤ (1+bonding distance)(RA+RB), i.e. penetration ≤
0, then contact is made.
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APPENDIX C

DEM INPUT FILES
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C.1 Initial DEM input files

C.1.1 Biaxial compression to get walls closer to particles

UNIAX.SCP

RNEW

9807.00

1.00

1.0

0.002

1.0

1

3.10

1

2

1 1 1

2 1 2

2 2 1

2 2 2

2

5000.0

2.0

2000.0

0.0
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0.0

0.0

0.0

0.0

0.0

0.0

0.0

10000.0

10.0

2000.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

139.14

100.10

0.0 5.5 0.0 10.5 0.0 2.5 1.0

44
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0.05000

1 1 2 14 1.0392 0.6000 0.6500 0

1 0.0000 0.5000 -0.5000

2 0.4330 0.2500 -0.5000

3 0.4330 -0.2500 -0.5000

4 0.0000 -0.5000 -0.5000

5 -0.4330 -0.2500 -0.5000

6 -0.4330 0.2500 -0.5000

7 0.0000 0.5000 0.5000

8 0.4330 0.2500 0.5000

9 0.4330 -0.2500 0.5000

10 0.0000 -0.5000 0.5000

11 -0.4330 -0.2500 0.5000

12 -0.4330 0.2500 0.5000

13 0.0000 0.0000 -0.5000

14 0.0000 0.0000 0.5000

24

1 13 2

2 13 3

3 13 4

4 13 5

5 13 6
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6 13 1

1 2 8

1 8 7

2 3 9

2 9 8

3 4 10

3 10 9

4 5 11

4 11 10

5 6 12

5 12 11

6 1 7

6 7 12

7 8 14

8 9 14

9 10 14

10 11 14

11 12 14

12 7 14

2 1 2 14 2.0785 0.6000 0.6500 0

.

.
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.

44 1 2 14 4.1569 9.6000 0.6500 0

1 0.0000 0.5000 -0.5000

2 0.4330 0.2500 -0.5000

3 0.4330 -0.2500 -0.5000

4 0.0000 -0.5000 -0.5000

5 -0.4330 -0.2500 -0.5000

6 -0.4330 0.2500 -0.5000

7 0.0000 0.5000 0.5000

8 0.4330 0.2500 0.5000

9 0.4330 -0.2500 0.5000

10 0.0000 -0.5000 0.5000

11 -0.4330 -0.2500 0.5000

12 -0.4330 0.2500 0.5000

13 0.0000 0.0000 -0.5000

14 0.0000 0.0000 0.5000

24

1 13 2

2 13 3

3 13 4

4 13 5

5 13 6
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6 13 1

1 2 8

1 8 7

2 3 9

2 9 8

3 4 10

3 10 9

4 5 11

4 11 10

5 6 12

5 12 11

6 1 7

6 7 12

7 8 14

8 9 14

9 10 14

10 11 14

11 12 14

12 7 14

32 0 16 8 0

1 -1.0000 -1.0000 -1.0000

2 -1.0000 11.5000 -1.0000
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3 5.5000 -1.0000 -1.0000

4 5.5000 11.5000 -1.0000

5 5.5000 -1.0000 3.5000

6 -1.0000 -1.0000 3.5000

7 5.5000 -1.0000 -1.0000

8 -1.0000 -1.0000 -1.0000

9 5.5000 11.5000 3.5000

10 -1.0000 11.5000 3.5000

11 5.5000 11.5000 -1.0000

12 -1.0000 11.5000 -1.0000

13 -1.0000 -1.0000 3.5000

14 -1.0000 11.5000 3.5000

15 5.5000 -1.0000 3.5000

16 5.5000 11.5000 3.5000

17 5.5000 -1.0000 -1.0000

18 5.5000 -1.0000 3.5000

19 5.5000 11.5000 3.5000

20 5.5000 11.5000 -1.0000

21 -1.0000 -1.0000 -1.0000

22 -1.0000 -1.0000 3.5000

23 -1.0000 11.5000 3.5000

24 -1.0000 11.5000 -1.0000
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25 -1.1000 12.0000 -1.5000

26 -1.1000 12.0000 4.0000

27 5.4000 12.0000 -1.5000

28 5.4000 12.0000 4.0000

29 -1.1000 -1.5000 -1.5000

30 -1.1000 -1.5000 4.0000

31 5.4000 -1.5000 -1.5000

32 5.4000 -1.5000 4.0000

0

2

1 2 1 2 4

2 2 1 4 3

2

3 2 5 6 8

4 2 5 8 7

2

5 2 9 12 10

6 2 9 11 12

2

7 2 13 16 14

8 2 13 15 16

2
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9 2 17 19 18

10 2 17 20 19

2

11 2 21 22 23

12 2 21 23 24

2

13 2 25 26 28

14 2 25 28 27

2

15 2 32 30 29

16 2 32 29 31

10

0.00 0.00 0.00

0 0 0 2.2500 5.2500 -1.0000

10

0.00 0.00 0.00

0 0 0 2.2500 -1.0000 1.2500

10

0.00 0.00 0.00

0 0 0 2.2500 11.5000 1.2500

10

0.00 0.00 0.00
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0 0 0 2.2500 5.2500 3.5000

10

0.00 0.00 0.00

0 0 0 -1.0000 5.2500 1.2500

10

0.00 0.00 0.00

0 0 0 5.5000 5.2500 1.2500

10

0.00 0.00 0.00

0 0 0 2.7500 12.0000 1.2500

10

0.00 0.00 0.00

0 0 0 2.7500 -1.5000 1.2500

TIME 0.01001 0.000010 0.100

OBJE 1 ON

OBJE 2 ON

OBJE 3 ON

OBJE 4 ON

OBJE 5 ON

OBJE 6 ON

OBJE 7 OFF

OBJE 8 OFF
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OBJV 1 0.00 0.00 +0.00

OBJV 2 0.00 +100.00 0.00

OBJV 3 0.00 -130.00 0.00

OBJV 4 0.00 0.00 -0.00

OBJV 5 -85.00 0.00 0.00

OBJV 6 +100.00 0.00 0.00

GRAV OFF

WBND OFF

WPSN OFF

WROT OFF

WKNE OFF

WSTR OFF

ENDT

ENDF

C.1.2 Biaxial compression to get particles in contact

UNIAXR2.SCP

RSTR

uniax rstart.rst new

TIME 0.008 0.00001 0.1

OBJE 1 ON

OBJE 2 ON

149



OBJE 3 ON

OBJE 4 ON

OBJE 5 ON

OBJE 6 ON

OBJE 7 OFF

OBJE 8 OFF

OBJV 1 0.00 0.00 +0.00

OBJV 2 0.00 +25.00 0.00

OBJV 3 0.00 -25.00 0.00

OBJV 4 0.00 0.00 -0.00

OBJV 5 -25.00 0.00 0.00

OBJV 6 +25.00 0.00 0.00

GRAV OFF

WBND OFF

WPSN OFF

WROT OFF

WKNE OFF

WSTR OFF

ENDT

ENDF
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C.2 Bond Initialization input file

UNIAXR3.SCP

RSTR

uniaxr2 rstart.rst new

TIME 0.0001 0.0001 0.1

OBJE 1 ON

OBJE 2 ON

OBJE 3 ON

OBJE 4 ON

OBJE 5 ON

OBJE 6 ON

OBJE 7 OFF

OBJE 8 OFF

OBJV 1 0.00 0.00 +0.00

OBJV 2 0.00 +00.00 0.00

OBJV 3 0.00 -00.00 0.00

OBJV 4 0.00 0.00 -0.00

OBJV 5 -00.00 0.00 0.00

OBJV 6 +00.00 0.00 0.00

BDON

GRAV OFF

WBND OFF
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WPSN OFF

WROT OFF

WKNE OFF

WSTR OFF

ENDT

ENDF

C.3 Uniaxial compression input file

UNIAXR4.SCP

RSTR

uniaxr3 rstart.rst new

TIME 0.0050 0.00001 0.1

OBJE 1 OFF

OBJE 2 ON

OBJE 3 ON

OBJE 4 OFF

OBJE 5 OFF

OBJE 6 OFF

OBJE 7 OFF

OBJE 8 OFF

OBJV 2 0.00 +0.001 +0.00

OBJV 3 0.00 -0.001 +0.00
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GRAV OFF

WBND OFF

WPSN OFF

WROT OFF

WKNE OFF

WSTR OFF

ENDT

ENDF
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