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Organic conductors are of considerable interest to the condensed matter community.

In contrast to conventional metal conductors, these organic materials allow for large vari-

ability in their construction giving both quasi-one and two dimensional behavior. Organic

superconductors also give useful insight into the properties of general superconductivity as

well as insight into the properties of strongly correlated electronic materials. These materi-

als exhibit interesting phenomena like spin-Peierls, antiferromagnetic, and superconduct-

ing phases. The aim of this thesis is not only to inform the reader of various studies into

organic superconductors but also to advance research into these materials through mas-

sively parallel numerical methods. This thesis will cover two studies: a quantum Monte

Carlo study on an infnite one-dimensional chain and an exact diagonalization study on a

16-site two-dimensional lattice. These studies will be used to better understand the charge

and bond behavior of quasi-one dimensional 1/4-flled organic superconductors.
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CHAPTER 1

INTRODUCTION

1.1 Outline of Thesis

The following chapters examine numerical studies of 1
4 -flled quasi-one dimensional

organic superconductors. First, we will consider the various models and methods used as

well as briefy survey the types of materials to be studied, specifcally 1
4 -flled quasi-one

dimensional CTS (charge transfer solids). We will then study the differing bond patterns in

1 
4 -flled quasi-one dimensional CTS utilizing quantum Monte Carlo and fnite size scaling

techniques. Finally, we will study the magnetic ground states of these materials, specif-

cally (TMTTF)2X, via a self-consistent exact diagonalization method. By the end of this

thesis, the reader should have a solid fundamental understanding of the bond and charge

ordering of 1
4 -flled quasi-one dimensional organic superconductors as well as considerable

knowledge of current numerical methods used in studying these materials.
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CHAPTER 2

REVIEW OF MODELS AND METHODS

2.1 Survey of quasi-1D Organic Superconductors

John Bardeen, Leon Cooper, and John Robert Schrieffer proposed the frst success-

ful microscopic theory of superconductivity in 1957, the well known BCS theory [1]. At

around the same time the search for highly conducting organic polymers began. In 1964,

W. A. Little [15] proposed the possibility of superconducting organic polymers with very

high transition temperatures. Little’s superconducting polymers have yet to be synthesized,

but his work sparked scientifc interest in fnding organic superconductors. Since then,

there has been great interest in the synthesis of organic superconductors for decades culmi-

nating with the discovery of superconductivity in pressurized (TMTSF)2PF6 in 1980 [13].

A schematic of the molecular structure of TMTSF can be seen in Figure 2.1. A whole

family of superconductors was found in the (TMTSF)2X salts by changing the anion X,

where X = PF6, AsF6, SbF6, ClO4, TaF6, etc. Another family of organic superconductors

can be found by replacing the selenium atoms with sulfur atoms, yielding the (TMTTF)2X

salts. Note that the molecular structure of the TMTTF materials is the same as the TMTSF

materials (see Figure 2.1) except that the selenium atom in TMTSF is replaced with sulfur

in TMTTF. There are some open problems with studying these materials. Experimen-

tally, the (TMTTF)2X crystals are very small, too small for study with many methods such

2



as neutron diffraction. Some properties of various phenomena present in these organic

superconductors, including some details of SP (spin-Peierls) and SC (superconducting)

transitions, are not well known experimentally. Numerical modeling of these salts proves

useful, but is also limited. Limitations on system size prevent the examination of 2D (two

dimensional) lattices at infnite system size.
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Figure 2.1

Molecular structure of the TMTSF salts

Se represents a selenium atom, C a carbon atom, and H a hydrogen atom.

2.2 Lanczos Exact Diagonalization and the Hubbard Model

Consider the following Hubbard Hamiltonian.
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X X X 
H = − tij (ci,σ 

† cj,σ + H.c.) + U ni,↑ni,↓ + V ninj (2.1)
<ij>,σ i <ij> 

In Eq. 2.1, t is the hopping energy, V is the intersite Coulomb interaction, U is the on-

site Coulomb interaction, ci,σ 
† and cj,σ are the Fermion creation and annihilation operators

respectively, ni,σ = ci,σ 
† ci,σ is the density operator, and ni = ni,↑ + ni,↓.

The zero-temperature ground state of this Hamiltonian can be calculated via Lanczos

exact diagonalization. This method allows us to determine the lowest energy eigenvalue

and its corresponding eigenstate without storing or diagonalizing the entire Hamiltonian

matrix. The orthonormal basis for this model can be called the occupation number basis 

[14] and describes all possible states containing N electrons on M sites and each confg-

uration is of the form |spin ↑ occupanciesi|spin ↓ occupanciesi. For example, for an

8-site 1
4 -flled system containing 4 electrons (2 spin ↑ and 2 spin ↓), a typical confguration

is |10001000i|01000100i where in this case “1” represents an occupied site and “0” rep-

resents an unoccupied site. A fairly obvious problem with this type of method is the large

number of possible confgurations. Let Ns be the number of states and it can be shown that

Y N ! 
Ns = (2.2)

Nσ!(N − Nσ)!σ 

For the 8-site 1
4 -flled example above, Ns = 784. The Lanczos procedure constructs a

tri-diagonal matrix that is much smaller than the full Hamiltonian, but has the same lowest

eigenvalue (ground state).

2.3 Self-consistent Lanczos and the Peierls-extended Hubbard Model

Consider the following Peierls-extended Hubbard Hamiltonian.
4



X X XK1 
Δ2H = − (t − αΔi)Bi,σ + i + U ni,↑ni,↓

2 
i i i (2.3)X X XK2 2+ V nini+1 + β vini + vi2 
i i i P †In Eq. 2.3, Bi,σ = σ(ci+1,σci,σ + H.c.), α and β are the inter and intrasite e-ph

(electron-phonon) couplings, respectively, and vi and Δi are the lattice distortions with

corresponding model spring constants K1 and K2. With the inclusion of e-ph interactions

we now consider another aspect of the Lanczos method: self-consistency. Considering the

Hamiltonian in Eq. 2.3, certain self-consistency equations can be derived:

∂hHi ∂hHi 
= 0 and = 0 (2.4)

∂Δi ∂vi 

Solving these equations leads to the following self-consistency conditions.

α β 
Δi = − hBi,σi and vi = − hnii (2.5)

K1 K2 

The system starts off in one of a number of states depending on the model parameters

with an arbitrary or selected choice of vi and Δi. It could start in a state of uniform

charge distribution or in a randomly constructed state. A tolerance is set, and with the self-

consistency conditions, the system is iterated until the tolerance is met. Typically in this

calculation, the tolerance will be set in the 7th or 8th decimal places. What this method

allows us to do is scan the phase space, detecting changes in the bond and charge ordering

along the way. The phase space used here is (tb, V ), where V is the intersite Coulomb

repulsion and tb is the hopping parameter in the b (or vertical, see Figure 4.1) direction.

This thesis will show that using this method we can map out the ground state phase diagram
5



of (TMTTF)2X for an 8 × 2 lattice in an effort to learn more about the zero-temperature

SP phase.

2.4 Survey of Quantum Monte Carlo/Stochastic Series Expansion

Consider the Hamiltonian in Eq. 3.1 (to be discussed further in Chapter 3). The purpose

of this method is to perform calculations on lattice sizes much larger than those reachable

by Lanczos. Lanczos can perform calculations on lattice sizes up to about 20, where SSE

(stochastic series expansion) can perform calculations on lattice sizes in the 100’s in 1D

(one dimension). To measure certain observables like the bond susceptibility, χB , or the

charge susceptibility, χρ, we must evaluate the partition function,

Z = Tr{e −βH }. (2.6)

In Eq. 2.6, β is the inverse temperature and H is the Hamiltonian. There are a number

of methods used to evaluate Z. So called world line methods [8] evaluate path integrals in

imaginary time and rely on the Suzuki-Trotter decomposition of e−βH [23, 24]. Another

method was developed by Handscomb [7] using the power series expansion of e−βH to

solve the Heisenberg ferromagnet. Decades later a more general approach utilizing the

power series expansion of e−βH was introduced by Sandvik [21] called the Stochastic Se-

ries Expansion. In SSE the partition function is written as follows,

X ∞ 
(−β)nX 

Z = hα|Hn|αi. (2.7)
n! 

α n=0 

The trace has been written as a sum over all diagonal elements of H in a conveniently

chosen basis |αi. The power of the SSE method comes from the fact that, unlike world
6



line methods, we are able to sample from Eq. 2.7 without needing to discretize imaginary

time. Further advancements to the SSE approach use directed-loop updates [25] that allow

for better confguration sampling. Another convenient part of this method is the fact that

the power series expansion of H can be accurately truncated. It can be shown [25] that the

power series expansion can be truncated at an integer M , where M is directly proportional

to the inverse temperature and the system size, M ∼ βN . The method works by taking in

an initial confguration (β, system size, flling, etc.) and randomly samples possible con-

fgurations that ft this input. Two loop updates are used to improve the sampling: diagonal

update and operator loop update. The diagonal update changes the order of the operators

in the confguration by inserting a null operator. The operator loop update acts to modify

the confguration by changing the spin of electrons as well as creating and annihilating

electrons. Once the updates are fnished, each confguration is used to calculate certain

observables and the average of all of these calculations is reported.

This method is very useful in studying purely one-dimensional strongly correlated sys-

tems. In 1D, there is no exponential loss of precision known as the “fermion sign problem”.

This is because in Eq. 2.7, all matrix elements have the same sign in the case of a 1D lat-

tice. Unlike the exact diagonalization method described in Section 2.3, this method does

not rely on the diagonalization of very large matrices and can therefore be used for large

system sizes. Large system sizes allow for 1D calculations to be done at the limit of infnite

system size with the use of fnite size scaling. This thesis will show the use of this method

in observing differing bond patterns in the ground states of 1
4 -flled quasi-1D organic su-

7



perconductors. These differing bond patterns will be observed in the (U, V ) phase diagram

of these materials.
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CHAPTER 3

STUDY OF BOND PATTERNS IN ONE DIMENSIONAL 1
4 -FILLED CHARGE

TRANSFER SOLIDS

Among the 1
4 -flled quasi-one dimensional molecular charge transfer solids there ex-

ist two distinct classes of spin-Peierls transitions. This phase is characterized by both

charge and bond distortions giving it the name bond charge density wave (BCDW). The

two classes (BCDW1 and BCDW2) are distinguished by differing bond patterns along the

chain direction: either the pattern Strong-Medium-Weak-Medium or the pattern Strong-

Weak-Strong-Weak’, where the Weak bond is stronger than the Weak’ (Weak prime) bond.

Experimentally the SP transition temperature of CTS of the frst type, SMWM, is much

higher than those of the second type SWSW’. This indicates that the small change in bond

patterns within the SP phase greatly affects the electronic behavior of the CTS. We show

that this behavior can be observed within the Peierls-extended Hubbard Model and calcu-

late the phase boundary in the infnite chain limit.

3.1 Differing Bond Patterns in · · · 1100 · · · SP Region

In general, one expects two types of phase transitions with the · · · 1100 · · · SP region:

a charge or bond transition at high temperature and a magnetic transition at low temper-

ature [5]. A well-known, well-studied example of this are the (TMTTF)2X organic salts

9



[2, 6, 16, 17, 18, 22]. These organic superconductors exhibit CO (charge order) and MI

(metal-insulator) transitions at high temperature and SP, AFM (antiferromagnetism), and

superconducting phases at low temperature, see the T-P (temperature-pressure) phase dia-

gram in Figure 3.1. Another example is the MEM(TCNQ)2 salt [9, 28]. Measurement of

the spin susceptibility (see Fig. 6 in [9]) for this material shows a spin-Peierls transition at

low temperature, around 18 K and a lattice dimerization at high temperature, around 335

K [9]. Not all 1
4 -flled 1D SP materials follow this pattern, however. (EDO-TTF)2X for

example has a single SP transition coincident with the MI transition at high temperature,

around 280 K with X=PF6 [19]. Another organic crystal, (BDTFP)2X, also has a single

metal-insulator transition at high temperature, around 175 K with X=(PF6)(PhCl)0.5 [10].

As shown below, these materials can be separated into two types: BCDW1 (SMWM) and

BCDW2 (SWSW’).

3.1.1 Difference between BCDW1 and BCDW2 Materials

Type 1 (BCDW1) materials exhibit the bond pattern SMWM and go through a sin-

gle high temperature SP transition. Type 2 (BCDW2) materials exhibit the bond pattern

SWSW’ and go through both a low and high temperature transition. Both have the CO

pattern · · · 1100 · · · , where “1” represents a charge rich site (0.5 + δ) and “0” represents

a charge poor site (0.5 - δ). CO is a phase transition in which translational symmetry is

broken and a system goes from a state of uniform charge density to non-uniform charge

ordering. To understand this behavior one can examine the bond and spin behavior in

Figure 3.2. The strongest bond in the SMWM pattern occurs in between two charge rich

10
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after Fig. 5 of [31]
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Figure 3.2

Bond and charge structure for BCDW1 (top) and BCDW2 (bottom) phases

“1” and a shaded circle represent a charge rich region, “0” and an empty circle
represent a charge poor region. An up arrow represents a spin-up electron, a
down arrow represents a spin-down electron. A solid line represents a stronger
bond than a dashed line and double solid lines represent a stronger bond than
a single solid line.
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regions, 1=1. A spin singlet forms between the two “1” sites. The two “1” sites can be seen

as a single charge rich site and the two charge poor sites can be seen as a single charge poor

site, resulting in an effective 1
2 -flled lattice of charge order · · · 2020 · · · . In this effective

1 
2 -flled lattice, only a single phase transition is expected: a transition from uniform charge

density and uniform bond order, · · · 1111 · · · to · · · 2020 · · · . Because the singlet coincides

with the strongest bond, the spin gap is large with a high Tsp. This generalization cannot be

made for the SWSW’ lattice as a singlet does not coincide with the strongest bond, allow-

ing for both low and high temperature transitions. The high temperature transition is either

a lattice dimerization, as with MEM(TCNQ)2, or a · · · 1010 · · · CO, as with (TMTTF)2X.

3.1.2 Peierls-extended Hubbard Model Hamiltonian

The model I consider is given by the following Hamiltonian.

X X X XK1
H = − [t − αΔi]Bi,σ + Δ2 

i + U ni,↑ni,↓ + V ni+1ni (3.1)
2 

i,σ i i i P †Where Bi,σ = σ(ci+1,σci,σ + H.c.), t is the hopping energy, Δi is the deviation in the

bond pattern from sites i + 1 to i, V is the intersite Coulomb interaction, U is the onsite

Coulomb interaction, α is the intersite electron-phonon coupling with the corresponding

model spring constant K1, ci,σ 
† and ci,σ are the Fermion creation and annihilation operators

respectively, ni,σ = ci,σ 
† ci,σ is the density operator, and ni = ni,↑ + ni,↓. For convenience,

energies will be given in units of t.

13



3.1.3 Bond Pattern

In order to calculate the boundary between the BCDW1 and BCDW2 phases, one must

understand the nature of the bond and charge patterns in the 1D 1
4 -flled CTS. The bond

and charge ordering in the · · · 1010 · · · phase are dominated by their period 2 (4kF ) parts

and correspond to a 4kF charge density wave (CDW). The bond and charge ordering in

the · · · 1100 · · · phase are dominated by a cooperation between both period 2 and period

4 (2kF ) parts corresponding to a cooperative 2kF CDW and a 2kF + 4kF BOW. The dis-

placement of the jth molecule from equilibrium is given by uj . In general, at 1
4 -flling uj 

has 2kF and 4kF components:

uj = u0 [a2 cos (2kF j − φ2) + a4 cos(4kF j − φ4)] (3.2)

In Eq. 3.2, u0 is the overall amplitude of the bond distortion, a2 and a4 are the am-

plitudes of the 2kF and 4kF parts respectively, and phase angles φ2 = π 
4 , φ4 = 0 are

appropriate for BCDW1 and BCDW2 [27]. The switch over from SWSW’ to SMWM oc-

curs when the hopping integrals t0,1 and t1,2 are equal, with ta,b = t − α(ub − ua). This

implies a relationship between a2 and a4. Now let us evaluate t0,1 = t1,2:

t − α(u1 − u0) = t − α(u2 − u1). (3.3)

Evaluating Eq. 3.3 gives the following condition:

√ 
− 2a2 + 4a4 = 0 (3.4)

We further assume the normalization condition a2 + a4 = 1. We now have a set of

linear equations allowing us to solve for a2 and a4:
14



√ 
2 

a4 = √ = 0.2612 (3.5)
4 + 2 

With this we are able to evaluate the ratio of a4 and a2 explicitly:

√ 
a4 2 

= (3.6)
a2 4 

Note that the value of a4 is incorrect in Ref. [27]. Now we defne the bond distortion

between sites j + 1 and j, Δj .

Δj = uj+1 − uj 

√ 
= − 2u0 

h � �π 
a2 sin j

2 

i√ 
+ 2a4 cos(πj) (3.7)h �π � i 

0 
4 cos(πj)

0 0 sin2 j + a= u a0 2 
Simplifying Δj gives the ratio of the 4kF part of Δj to the 2kF part:

√ 
0 2a4 
= = 

1a 
a 
4 

2 
(3.8)0 2a2 

Finally, reorganizing Δj yields

Δj = Δ0[a 0 2 cos(2kF j − φ2) + a 0 4 (3.9)cos(4kF j − φ4)] 

In Eq. 3.9, φ2 = 3
2 
π and φ4 = π are found by comparing Δj to uj .

3.1.4 Observables

In order to calculate the boundary between the BCDW1 and BCDW2 phases within

the Peierls-extended Hubbard Model using the SSE method, a linear response function is

used, specifcally the bond order susceptibility, χB .Z βX 
iq(j−l)h ˜χB (q) = 

1 
e Bj (τ)B̃ 

l(0)idτ (3.10)
N 0j,l 

15



˜ −τH ˜ τH ˜Where N is the system size, β is inverse temperature, Bj (τ) = e Bj e , Bj = 

Bj − hBi. Consider also the charge susceptibility, χρ 

ZX β1 iq(j−l)h˜χρ(q) = e nj (τ )ñl(0)idτ (3.11)
N 0j,l 

Where nj is the charge density operator.

3.1.5 Use of Stochastic Series Expansion / Quantum Monte Carlo

Quantum Monte Carlo simulations are used to calculate the bond order susceptibility

at the limit of 0+ electron-phonon coupling. The method used here is the Stochastic Se-

ries Expansion with directed loop updates [25]. This system is purely one dimensional,

allowing us to calculate the bond order susceptibility, χB, free of the Fermion sign prob-

lem that limits Hubbard model studies at higher dimensions. Secondly, this method is

absent of Trotter discretization of imaginary time and is therefore statistically exact in one

dimension. This method also allows for the use of very large system sizes compared to

self-consistent methods. Large system sizes favor the use of fnite size scaling and allow

us to ignore fnite size effects. The inverse temperature, β, is chosen to be large such that

the method gives ground state results. In this case, we choose β = 512.

3.1.6 Boundary Between BCDW1 and BCDW2 Phases

In Figure 3.3 the charge susceptibility, χρ, is shown. Our QMC calculations do not pro-

vide a direct measurement of the charge order amplitude in the BCDW1/BCDW2 phases;

however, the charge susceptibility can be calculated. The charge susceptibility gives useful

insight into the behavior of the charge order. As seen in Figure 3.3, χρ in the BCDW1
16



phase has a 2kF peak as well as a very large 4kF peak, where χρ in the BCDW2 phase

is dominated only by a 2kF peak. This indicates that the 2kF · · · 1100 · · · CO will be

stronger in the BCDW1 phase, consistent with the higher TSP found there. Plots of charge

density and bond order versus site number were made from a 1
4 -flled 16-site Lanczos ex-

act diagonalization calculation. Charge density and bond order plots for the BCDW1 and

BCDW2 phases can be found in Figure 3.4 and Figure 3.5, respectively.

3.2 Discussion of Bond Order Susceptibility

The bond order susceptibility, χB, measures the effect of perturbations to the bond

strength at different wave vectors. The change over from SMWM (BCDW1) to SWSW’

(BCDW2) occurs when the 4kF part becomes signifcant compared to the 2kF part. This

can be measured by taking the ratio of the 4kF part of the bond order susceptibility with

respect to the 2kF part, χB (4kF )/χB(2kF ). By using Δj as the form of the bond distortion

in Eq. 3.10, it can be shown that

χB(4kF ) 4a4
20 

= 
20 (3.12)

χB(2kF ) a2 

4 1Recalling that a

a0

0 
= 

2 gives
2 

χB(4kF ) 
= 1 (3.13)

χB(2kF ) 

This tells us that the switch over from BCDW1 to BCDW2 occurs when the ratio of the

4kF part of the bond susceptibility to the 2kF part is greater than one, χB (4kF ) > 1.
χB (2kF ) 
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Figure 3.3

Charge susceptibility χB (q) as a function of q 

Data taken from a 48 site chain for parameters in the BCDW1 and BCDW2
phases. Open symbols correspond to the BCDW1 region (U = 3, V = 0.5),
and flled symbols to the BCDW2 region (U = 6, V = 1). Statistical errors are
smaller than points. Note that q = π 

2 is 2kF and q = π is 4kF .
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Figure 3.4

Charge density and bond order as a function of site number for the BCDW1 phase

hnii is the charge density, hBii is the bond order, and i is the site number.
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Figure 3.5

Charge density and bond order as a function of site number for the BCDW2 phase

hnii is the charge density, hBii is the bond order, and i is the site number.
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3.3 Use of Finite Size Scaling

It has been established above that the switch over from SMWM to SWSW’ occurs

when the ratio of the 4kF part of the bond order susceptibility with respect ot the 2kF 

part, χB(4kF )/χB (2kF ), is equal to one. We intend to calculate this boundary in the

(U, V ) parameter space. In order to do this, χB(4kF )/χB (2kF ) is plotted versus the in-

tersite Coulomb potential, V for a fxed value of the onsite Coulomb U and for a fxed

system size, N , see Figure 3.6. As seen in Figure 3.6 this data fts to a straight line. Use

of a linear regression yields the critical value of the Coulomb V , Vc, at which the ratio

χB (4kF )/χB(2kF ) = 1. Finite size scaling is done by plotting this Vc as a function of

1/N . This can be seen in the inset of Figure 3.6. Again, this data fts to a straight line

and a linear regression gives the y-intercept. The y-intercept represents the value of Vc in

the limit N → ∞, the infnite chain limit, for a particular Coulomb U . This procedure is

repeated for various Coulomb U to map out the phase boundary in (U, V ) space.

3.4 BCDW1/BCDW2 Boundary

The observed BCDW1/BCDW2 boundary can be seen in Figure 3.7. This boundary

was determined in the physical region of the 1D 1
4 -flled CTS phase diagram. It is expected

for actual materials that the Coulomb V will be less than half of the Coulomb U, V < U/2.

For details of the · · · 1010 · · · CO region, see [4]. It should also be noted that the slope

of the BCDW1/BCDW2 curve gets fatter at increasing Coulomb U. This indicates that

perhaps a minimum Coulomb V is required to realize the BCDW2 phase.
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Figure 3.6

Ratio of χB(4kF )/χB(2kF ) as a function of V with U = 6.25 

Circles, diamonds, triangles, and squares are for 32, 48, 64, and 96 site chains,
respectively. The inset shows the fnite-size scaling of the BCDW1/BCDW2
boundary determined from χB (4kF )/χB(2kF ) = 1.
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Figure 3.7

Zero temperature phase diagram of the 1 
4
-flled 1D extended Hubbard model

Open points are the boundary between BCDW1 and BCDW2 regions. For the
boundary to the CO region see Ref. [4]. The dashed line indicates the region

Uof physical relevance for organic CTS, V < .
2 
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3.5 Conclusion

As seen above, the BCDW1/BCDW2 phase boundary can be calculated within the

Peierls-extended Hubbard Model in one dimension. This calculation was also done at the

infnite chain limit, which to the best of our knowledge has not been done before. Attempts

have been made to explain the single high SP transition temperature in (EDO-TTF)2X by

considering exotic effects like molecular bending [26] and electronic polarization [11].

While these effects can be added to the Hubbard Hamiltonian, they are not necessary to

observe the BCDW1/BCDW2 phase boundary. The BCDW1/BCDW2 phase boundary can

be seen within the Peierls-extended Hubbard model considering only intersite and onsite

Coulomb interactions.
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CHAPTER 4

STUDY OF THE MAGNETIC GROUND STATES OF QUASI-ONE DIMENSIONAL

1 -FILLED CHARGE TRANSFER SOLIDS
4 

In this chapter, we examine a minimal model for the pressure dependent phases of the

(TMTTF)2X salts, the extended Hubbard model on a two dimensional lattice with both

inter-site and on-site electron-phonon couplings. Recent calculations have suggested that

two distinct SP phases with different charge and bond ordering occur within this model. It

will be argued here that two distinct SP phases are not supported by experiment and are a

result of unsuitable parameter choices as well as fnite-size effects within calculations. Pre-

sented here are the results of further numerical calculations as well as an investigation into

the effect of magnetic frustration on the AFM and SP phases. These results are published

in Ref. [29].

4.1 Experimental Signatures of Interchain Coupling

Among the quasi-one dimensional 1
4 -flled molecular charge transfer solids, an inter-

esting and well-studied example are the (TMTTF)2X materials. As a function of pressure

the ground state of the (TMTTF)2X salts is either one of two separate AFM phases, SP, or

superconducting, as seen in Figure 3.1. Increasing pressure is usually thought to decrease

the dimensionality of the crystal. The occurence of the SP phase (conventially believed to
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be a one-dimensional effect) is then counterintuitive, as it enters at higher pressure than

the frst AFM phase. In this study, we seek to further examine the SP phase within the 2D

Peierls- and Holstein- extended Hubbard model using Lanczos exact diagonalization on a

16-site 1
4 -flled lattice.

4.2 2D Peierls- and Holstein- extended Hubbard Model

The model I consider has the following Hamiltonian.

X X 
† †H = − tij (1 + uij )(ci,σcj,σ + H.c.) − tij (ci,σcj,σ + H.c.) 

<ij>a,σ <ij>b,σ 
(4.1)X X X X XK1 2 K2 2+ uij + U ni,↑ni,↓ + Vij ninj − vini + vi2 2 

<ij>a i <ij> i i 

In Eq. 4.1, t is the hopping energy, V is the intersite Coulomb interaction, U is the onsite

Coulomb interaction, uij and vi are bond and intramolecular distortions, respectively, with

corresponding model spring constants K1 and K2, c † and cj,σ are the Fermion creationi,σ 

and annihilation operators respectively, ni,σ = c † 
i,σci,σ is the density operator, and ni = 

ni,↑ + ni,↓. Unlike the Hamiltonian in Eq. 3.1, this Hamiltonian absorbs the e-ph coupling,

α, into the defnition of K1. What is important here is not the explicit value of α, but the

value of the ratio K
α 
1 such that a decrease in K

α 
1 represents an increase in the strength of the

inter-site e-ph coupling. Also, K2 in the Hamiltonian now represents the ratio K
β 
2 , where

β is the intra-site e-ph coupling.

4.2.1 Use of Lanczos Exact Diagonalization Method

A Lanczos exact diagonalization method with self-consistent solutions for uij and vi 

was used to determine the lowest energy eigenvalue and its corresponding eigenstate for
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a 16-site 2D lattice, see Figure 4.1. This eigenstate is used to determine certain correla-

tion functions as well as bond and charge ordering. The charge density on the ith site is

given by hnii, the bond order is given by hBii, the charge-charge correlation function is

given by hninj i, the spin-spin correlation function is given by h(ni,↑ − ni,↓)(nj,↑ − nj,↓)i.

Here we wish to examine the P dependent behavior of the TMTTF salts by creating a

zero temperature phase diagram in (tb, V ) space. We distinguish between the phases of

these 1
4 -flled quasi-1D CTS by looking at differences in bond and charge patterns. Various

phase transitions are expected in the quasi-1D picture of these organic salts, important ones

among them are listed in Table 4.1, where “1” represents a charge rich site (0.5 + δ) and

“0” represents a charge poor site (0.5 - δ). DM+SP is a dimerized Mott insulating phase

created by a lattice dimerization (SP). DM+2DAFM is a coexisting dimerized Mott insu-

lating phase and a two dimensional antiferromagnetic phase. FCO+2DAFM is a coexisting

ferroelectric charge ordering phase with a 2D antiferromagnetic phase. For (TMTTF)2X,

the FCO phase is a 4kF (· · · 1010 · · · ) CO phase at high temperature. This phase is due to

the intersite Coulomb interaction, V .

Table 4.1

Various phases of 1
4 quasi-1D CTS

Phase Charge Description
DM+SP
FCO+2DAFM
DM+2DAFM

· · · 1100 · · · 
· · · 1010 · · · 

uniform

dimer-Mott + spin-Peierls
Ferroelectric Charge Order + Antiferromagnetism
dimer-Mott + Antiferromagnetism
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4.3 Signifcance of Zero-Temperature Spin-Peierls Phase

Yoshimi et al. [30] have attempted to explain the pressure dependent behavior of Fabre

salts which exhibit CO, AFM, and SP phases, see Figure 3.1. Experiments fnd two AFM

phases [12, 31], AFM1 at large P and AFM2 at small P. Yoshimi et al. suggest that there

also exist two distinct zero-temperature SP phases, SP1 and SP2. Here we point out that

the occurence of two distinct SP phases contradicts experiments [12, 31] and is found by

Yoshimi et al. because of unrealistic model parameters. Experiments [12, 31] emphasize

cooperative interaction between the FCO and AFM2 phases. In the experimental phase

diagram [12, 31] TCO and the Néel temperature in the AFM2 phase both decrease with P 

(pressure). Thus charge occupancies in the FCO and AFM2 phases are likely the same. In

contrast, P increases [12, 31] the SP transition temperature, indicating that FCO and SP2 

phases compete. No CO was detected for P > 0.5 GPa in (TMTTF)2SbF6 [12, 31], in the P 

region where SP2 phase occurs at lower temperature. It is then unlikely that SP2 and FCO

coexist at zero temperature.

4.4 Choice of Model Parameters

Before the Lanczos calculation can be done certain model parameters need to be set.

The most important amongst them are the hopping parameters, tij , intersite Coulomb inter-

actions, V, and the onsite Coulomb interactions, U. See Figure 4.1 for the structure of the

lattice to be considered. a is the chain direction as well as the direction of the dimerization,

b is the direction perependicular to the chain, and q is the diagonal. The hopping param-

eters in Ref [30] were calculated via frst-principles density functional theory (DFT) for
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(TMTTF)2X in units of meV as {ta1, ta2, tb, tq1, tq2} = {−155, −203, 26.2, −1.31, −3.29} 

for X=PF6 and {−149, −207, 16.4, −16.4, −9.73} for X=SbF6. The hopping parameters

are generalized as follows: ta1 = −0.8, ta2 = −1, and tq1 = tq2 = 0 in units of ta2, see

Figure 4.1. The hopping parameters used by the authors in their model calculations are re-

alistic. Their choice of Coulomb interactions is, however, unrealistic. The onsite Coulomb

interaction assumed, U/ta2 = 4, is too small. In the purely electronic one dimensional

model no 4kF (· · · 1010 · · · ) CO occurs for this U [4, 22]. The assumed intersite Coulomb

interactions, Vb = 0 and Vq = Va, are also unrealistic. Given the lattice geometry, see Fig.

5 in [20], it is highly unlikely that Vb � Vq, and with large interchain separation Vq = Va 

is equally unrealistic. By observing the structure of (TMTTF)2PF6 it can be seen that the

displacement of the stacks in the b direction is greater than in the a direction. We fnd that

4 ≤ U ≤ 8 and Vb ' Vq � Va are more appropriate restrictions.

4.4.1 8 × 2 Lanczos Calculation

We repeated the 8 × 2 calculations in [30] with more realistic model parameters:

Va = V , Vb = Vq = 0 and 4 ≤ U ≤ 8. We have three main observations. (i) For

Va = V , Vb = Vq = 0, we fnd a phase diagram similar to that in [30]. The (tb, V ) phase

diagram by Yoshimi et al. can be seen in Fig. 3 of [30] and the (tb, V ) phase diagram from

our work can be seen in Figure 4.5. The choice Vq = V , Vb = 0 is also not required to

realize the FCO phase; FCO can be stabilized by antiferromagnetic superexchange along

the tb bonds. (ii) As U increases the FCO + SP phase narrows. (iii) For both these and the

parameters assumed in [30], the width of the FCO + SP phase is directly proportional to
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tq1

Figure 4.1

Lattice structure with corresponding hopping terms

For the 8 × 2 calculation, 16 total lattice sites were used. As seen from the site
numbering, the fgure continues to the right until the bottom chain reaches (8)
and the top chain reaches (16). Consistent with the structure of (TMTTF)2X
above the SP transition, the hopping parameters along the chain are dimerized.
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the strength of the intersite electron phonon coupling (larger K1 gives weaker coupling).

Unconditional transitions in the thermodynamic limit occur in the limit of 0+ phonon cou-

pling. Importantly, point (iii) was not discussed in [30], and together with (ii) suggests

that in the thermodynamic limit the FCO + 2DAFM and DM + SP phases may share a

common border. Plots of charge density and bond order over the 16-site lattice in the

DM+SP, DM+2DAFM, and FCO+2DAFM phases can be found in Figure 4.2, Figure 4.3,

and Figure 4.4, respectively.

4.5 Conclusion

To understand the phase diagram one must consider thermodynamics. For large Coulomb

interactions, the free energy is dominated by spin excitations. It was previously shown that

the same DM + SP ground state can have two kinds of soliton spin excitations: (i) with

local CO, or (ii) with uniform charge but local distortion [3]. In this picture, see Fig. 5

of [31], to the left of the line bisecting the SP phase, soliton excitations with local CO

dominate at fnite T; to the right occur excitations with uniform site charges. A unique SP

ground state is expected at all pressures between AFM1 and AFM2.
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Figure 4.2

Charge density and bond order as a function of site number for the DM+SP phase

hnii is the charge density, hBii is the bond order, and i is the site number.
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Charge density and bond order as a function of site number for the DM+2DAFM phase

hnii is the charge density, hBii is the bond order, and i is the site number.

33



0.3

0.45

0.6

0.75

<
n i>

0 4 8 12 16
 i

0

0.1

0.2

0.3

0.4

0.5

 <
B i>

Figure 4.4

Charge density and bond order as a function of site number for the FCO+2DAFM phase

hnii is the charge density, hBii is the bond order, and i is the site number.
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Phase diagram in (tb, V ) space for an 8 × 2 1
4 -flled lattice

DM+SP represents a dimer-Mott insulating phase created by a lattice dimer-
ization. FCO+SP is a proposed [30] phase of coexisting ferroelectric charge
order and lattice dimerization. DM+2DAFM is a coexisting dimer-Mott in-
sulator and two dimensional antiferromagnetic phase. FCO+2DAFM is a co-
existing ferroelectric charge ordering phase with a two dimensional antiferro-
magnetic phase.
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CHAPTER 5

CONCLUSIONS

This thesis has sought to introduce various concepts in studying bond patterns in 1
4 -

flled quasi-1D organic superconductors as well as advance research interests in these ma-

terials. We have examined the differing bond patterns in these materials using QMC and

fnite size scaling. We have also studied the magnetic ground states in these quasi-1D

materials via an 8 × 2 self-consistent Lanczos calculation.

5.1 Bond Patterns in quasi-1D 1
4 -flled CTS

We were able to observe the BCDW1/BCDW2 phase boundary within the 1D Peierls-

extended Hubbard model. For the frst time, this calculation has been done at the infnite

chain limit. It has also been shown that this behavior is not unique to (EDO-TTF)2X and

is shared by other quasi-1D 1
4 -flled CTS. It is an open question as to whether the BCDW2

phase requires V > 0.

5.2 Magnetic Ground States of quasi-1D 1
4 -flled CTS

By performing a self-consistent exact diagonalization calculation, we were able to bet-

ter understand the SP transition in the quasi-1D 1
4 -flled (TMTTF)2X materials. It was

found that the existence of a unique SP2 transition is heavily dependent on the strength of
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the e-ph coupling and most likely disappears at the thermodynamic limit. It is more likely

that there exists a single unique SP phase in the ground state of (TMTTF)2X. While useful,

the exact diagonalization method used here is limited by small system size. Larger lattice

calculations are needed for further study.
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[13] D. Jérome, A. Mazaud, M. Ribault, and K. Bechgaard, “Superconductivity in a syn-
thetic organic conductor (TMTSF)2PF6,” J. Phys. (Paris) Lett., vol. 41, 1980, pp.
L95–L98.

[14] H. Q. Lin and J. E. Gubernatis, “Exact diagonalization methods for quantum sys-
tems,” Computers in Physics, vol. 7, 1993, p. 4.

[15] W. A. Little, “Possibility of synthesizing an organic superconductor,” Phys. Rev., vol.
134, 1964, pp. A1416–1424.

[16] S. Mazumdar, S. Ramasesha, R. T. Clay, and D. K. Campbell, “Theory of Coexist-
ing Charge- and Spin-Density Waves in (TMTTF)2Br, (TMTSF)2PF6, and α-(BEDT-
TTF)2MHg(SCN)4,” Phys. Rev. Lett., vol. 82, 1999, pp. 1522–1525.

[17] P. Monceau, F. Nad, J. M. Fabre, and T. Nakamura, “Charge and anion ordering in
(TMTTF)2X quasi-one-dimensional conductors,” J. Low T. Phys., vol. 142, 2006, p.
367.

[18] T. Nakamura, “Possible Charge Ordering Patterns of the Paramagnetic Insulating
States in (TMTTF)2X,” J. Phys. Soc. Jpn., vol. 72, 2003, pp. 213–216.

[19] A. Ota, H. Yamochi, and G. Saito, “A novel metal-insulator phase transition observed
in (EDO-TTF)2PF6,” J. Mater. Chem., vol. 12, 2002, p. 2600.

[20] S. Ravy, “Diffuse X-ray scattering studies of molecular conductors,” Annu. Rep. 
Prog. Chem., Sect. C: Phys. Chem., vol. 103, 2007, pp. 223–260.

[21] A. W. Sandvik, “A generalization of Handscomb’s quantum Monte Carlo scheme-
application to the 1D Hubbard model,” J. Phys. A, vol. 25, 1992, pp. 3667–3682.

[22] H. Seo, J. Merino, H. Yoshioka, and M. Ogata, “Theoretical aspects of charge order-
ing in molecular conductors,” J. Phys. Soc. Jpn., vol. 75, 2006, p. 051009.

39



[23] M. Suzuki, “Relationship between d-dimensional quantal spin systems and (d+1)-
dimensional Ising Systems: Equivalence, critical experiments and systematic approx-
imants of the partition function and spin correlations,” Prog. Theor. Phys., vol. 56,
1976, p. 1454.

[24] M. Suzuki, S. Miyashita, and A. Kuroda, “Monte Carlo simulation of quantum spin
systems. I,” Prog. Theor. Phys., vol. 58, 1977, p. 1377.

[25] O. F. Syljuasen and A. W. Sandvik, “Quantum Monte Carlo with directed loops,”
Phys. Rev. E, vol. 66, 2002, p. 046701.

[26] M. Tsuchiizu and Y. Suzumura, “Peierls ground state and excitations in the electron-
lattice correlated system (EDO-TTF)2X,” Phys. Rev. B, vol. 77, 2008, p. 195128.

[27] K. C. Ung, S. Mazumdar, and D. Toussaint, “Metal-Insulator and Insulator-Insulator
Transitions in the Quarter-Filled Band Organic Conductors,” Phys. Rev. Lett., vol. 73,
1994, pp. 2603–2606.

[28] R. J. J. Visser, S. Oostra, C. Vettier, and J. Voiron, “Determination of the spin–
Peierls distortion in N-methyl-N-ethyl-morpholinium ditetracyanoquinodimethanide
[MEM(TCNQ)2]: Neutron diffraction study at 6 K,” Phys. Rev. B, vol. 28, 1983, pp.
2074–2077.

[29] A. B. Ward, R. T. Clay, and S. Mazumdar, “Comment on “Tuning the Magnetic
Dimensionality by Charge Ordering in the Molecular TMTTF Salts,” Phys. Rev. 
Lett., vol. 108, 2014, p. 029701.

[30] K. Yoshimi, H. Seo, S. Ishibashi, and S. E. Brown, “Tuning the Magnetic Dimen-
sionality by Charge Ordering in the Molecular TMTTF Salts,” Phys. Rev. Lett., vol.
108, 2012, p. 096402.

[31] W. Yu, F. Zhang, F. Zamborszky, B. Alavi, A. Baur, C. A. Merlic, and S. E.
Brown, “Electron-lattice coupling and broken symmetries of the molecular salt
(TMTTF)2SbF6,” Phys. Rev. B, vol. 70, 2004, p. 121101.

40


	Bond Patterns in the Ground States of Quasi-One Dimensional 1/4-Filled Organic Superconductors
	Recommended Citation

	tmp.1625165283.pdf.pdqYC

