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It is widely accepted that the accuracy and efficiency of computational fluid dynamics

(CFD) simulations is heavily influenced by the quality of the mesh upon which the solution

is computed. Unfortunately, the computational tools available for assessing mesh quality

remain rather limited. This report describes a methodology for rigorously investigating the

interaction between a flow solver and a variety of mesh configurations for the purposes of

deducing which mesh properties produce the best results from the solver. The techniques

described herein permit a more detailed exploration of what constitutes a quality mesh in

the context of a given solver and a desired flow regime.

In the present work, these newly developed tools are used to investigate mesh quality as

it pertains to a high-order accurate discontinuous Galerkin solver when it is used to com-

pute inviscid and high-Reynolds number flows in domains possessing smoothly curving

boundaries. For this purpose, two flow models have been generated and used to conduct

parametric studies of mesh configurations involving curved elements. The results of these

studies allow us to make some observations regarding mesh quality when using the dis-

continuous Galerkin method to solve these types of problems. Briefly, we have found that

for inviscid problems, the mesh elements used to resolve curved boundaries should be at

least third order accurate. For viscous problems, the domain boundaries must be approx-

imated by mesh elements that are of the same order as the polynomial approximation of



the solution if the theoretical order of accuracy of the scheme is to be maintained. Increas-

ing the accuracy of the boundary elements to at least one order higher than the solution

approximation typically results in a noticeable improvement in the computed error norms.

It is also noted thatC1-continuity of the mesh is not required at element interfaces along

the boundary.



DEDICATION

For Jennifer, Katelyn, Isaac, and Miranda.

ii



ACKNOWLEDGMENTS

I would like to acknowledge the assistance of my advisor, Dr. Edward Luke for his

insights and encouragement and to the members of my committee for their patience and

willingness to answer the occasional odd question. My thanks also go out to several of

my co-workers who provided me with a sounding board when I just needed to get some

thoughts out of my head.

I would like express my gratitude to the Computational Simulation and Design Center

(formerly the MSU-NSF Engineering Research Center for Computational Field Simula-

tions) for its nearly continual support of my work during my time at Mississippi State

University. I am also grateful for the support of NASA’s Constellation University Insti-

tutes Program (CUIP) under the management of Claudia Meyer and Jeff Ryback, and to

Jeff West for serving as technical monitor and for providing helpful suggestions and sup-

port.

Last, but certainly not least, I am fortunate to have a very patient and supportive family.

I deeply appreciate all that my wife has done for me over the years, and I try not to think

of what it would have been like to go through this without her.

iii



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

NOMENCLATURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

CHAPTER

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Mesh Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2. RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Discontinuous Galerkin . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Curved Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3. IMPLEMENTATION OF A DISCONTINUOUS GALERKIN SOLVER . 16

3.1 Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Discontinuous Galerkin . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.1 Domain Decomposition . . . . . . . . . . . . . . . . . . . . 21
3.2.1.1 Bezier Elements . . . . . . . . . . . . . . . . . . . 22
3.2.1.2 Lagrange Interpolation . . . . . . . . . . . . . . . . 27
3.2.1.3 Hermite Interpolation . . . . . . . . . . . . . . . . . 28

3.2.2 Approximation of the Solution State . . . . . . . . . . . . . . 29
3.2.2.1 Spectral Decomposition . . . . . . . . . . . . . . . 30
3.2.2.2 Choice of Basis Functions . . . . . . . . . . . . . . 31

iv



3.2.3 Convective Fluxes . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.4 Diffusive Fluxes . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.5 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . 34
3.2.6 Time Integration . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.6.1 Explicit Methods . . . . . . . . . . . . . . . . . . . 36
3.2.6.2 Implicit Methods . . . . . . . . . . . . . . . . . . . 38

3.2.7 Matrix Scaling . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3 Spatial Integration and Meshing Considerations . . . . . . . . . . . . 40
3.4 Code Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4.1 Method of Exact Solutions . . . . . . . . . . . . . . . . . . . 44
3.4.2 Method of Manufactured Solutions . . . . . . . . . . . . . . 45
3.4.3 Method of Nearby Solutions . . . . . . . . . . . . . . . . . . 48

3.5 Solver Verification with MMS . . . . . . . . . . . . . . . . . . . . . 50

4. RESEARCH METHODOLOGY . . . . . . . . . . . . . . . . . . . . . . 54

4.1 Basic Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2 Specification of the Test Problems . . . . . . . . . . . . . . . . . . . 56

4.2.1 Coordinate Spaces . . . . . . . . . . . . . . . . . . . . . . . 56
4.2.2 Domain Discretization . . . . . . . . . . . . . . . . . . . . . 58

4.3 Error Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.4 Condition Number Evaluation . . . . . . . . . . . . . . . . . . . . . 61

5. NUMERICAL RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.1 Scope of the Numerical Investigation . . . . . . . . . . . . . . . . . 64
5.2 Supersonic Vortex . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.3 Results for the Supersonic Vortex Cases . . . . . . . . . . . . . . . . 70
5.4 High-Reynolds Number Turbulent Boundary Layer . . . . . . . . . . 79
5.5 Results for the Turbulent Boundary Layer Cases . . . . . . . . . . . 90
5.6 Matrix Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.7 Discussion of Numerical Results . . . . . . . . . . . . . . . . . . . . 109

6. CONCLUDING REMARKS . . . . . . . . . . . . . . . . . . . . . . . . 111

6.1 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

APPENDIX

A. DATA TABLES FOR THE SSV TEST CASES . . . . . . . . . . . . . . . 124

v



B. DATA TABLES FOR THE HRNTBL TEST CASES . . . . . . . . . . . . 131

vi



LIST OF TABLES

3.1 Coefficients for the RK2 and RK3 schemes . . . . . . . . . . . . . . . . . . 37

3.2 L1 errors in the conservative variables for the2nd-order sphere MMS test . . 53

3.3 L1 errors in the conservative variables for the3rd-order sphere MMS test . . 53

5.1 Parameters for the coarsest mesh in each HRNTBL test case . . . . . . . . . 89

A.1 L1-errors inρ, ρu, ρv, andρE for 1st order SSV solutions . . . . . . . . . . 126

A.2 L1-errors inρ, ρu, ρv, andρE for 2nd order SSV solutions . . . . . . . . . . 127

A.3 L1-errors inρ, ρu, ρv, andρE for 3rd order SSV solutions . . . . . . . . . . 128

A.4 L1-errors inρ, ρu, ρv, andρE for 4th order SSV solutions . . . . . . . . . . 129

A.5 L1-errors inρ, ρu, ρv, andρE for 5th order SSV solutions . . . . . . . . . . 130

B.1 L1-errors inρ, ρu, ρv, andρE for 2nd order HRNTBL solutions atRe = 5e5 133

B.2 L1-errors inρ, ρu, ρv, andρE for 3rd order HRNTBL solutions atRe = 5e5 134

B.3 L1-errors inρ, ρu, ρv, andρE for 4th order HRNTBL solutions atRe = 5e5 135

B.4 L1-errors inρ, ρu, ρv, andρE for 2nd order HRNTBL solutions atRe = 1e6 136

B.5 L1-errors inρ, ρu, ρv, andρE for 3rd order HRNTBL solutions atRe = 1e6 137

B.6 L1-errors inρ, ρu, ρv, andρE for 4th order HRNTBL solutions atRe = 1e6 138

B.7 L1-errors inρ, ρu, ρv, andρE for 2nd order HRNTBL solutions atRe = 2e6 139

B.8 L1-errors inρ, ρu, ρv, andρE for 3rd order HRNTBL solutions atRe = 2e6 140

B.9 L1-errors inρ, ρu, ρv, andρE for 4th order HRNTBL solutions atRe = 2e6 141

vii



B.10L1-errors inρ, ρu, ρv, andρE for 2nd order HRNTBL solutions atRe = 4e6 142

B.11L1-errors inρ, ρu, ρv, andρE for 3rd order HRNTBL solutions atRe = 4e6 143

B.12L1-errors inρ, ρu, ρv, andρE for 4th order HRNTBL solutions atRe = 4e6 144

viii



LIST OF FIGURES

3.1 Sequence ofp-refined meshes. . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Linear, quadratic, and cubic control nets for an isotropic curved element. . . . 25

3.3 Linear, quadratic, and cubic control nets for an anisotropic curved element. . 26

3.4 Spherical domain discretized with hexahedral elements. . . . . . . . . . . . 52

5.1 Flow schematic for the curved duct domain geometry. . . . . . . . . . . . . 65

5.2 Density profile for the SSV test case. . . . . . . . . . . . . . . . . . . . . . 66

5.3 Mach number profile for the SSV test case. . . . . . . . . . . . . . . . . . . 67

5.4 Pressure profile for the SSV test case. . . . . . . . . . . . . . . . . . . . . . 68

5.5 Temperature profile for the SSV test case. . . . . . . . . . . . . . . . . . . . 68

5.6 First three mesh refinements for the SSV test cases . . . . . . . . . . . . . . 69

5.7 L1-errors inρ for a1st-order solution of the SSV . . . . . . . . . . . . . . . 73

5.8 L1-errors inρu for a1st-order solution of the SSV . . . . . . . . . . . . . . . 73

5.9 L1-errors inρ for a2nd-order solution of the SSV . . . . . . . . . . . . . . . 74

5.10 L1-errors inρu for a2nd-order solution of the SSV . . . . . . . . . . . . . . 74

5.11 L1-errors inρ for a3rd-order solution of the SSV . . . . . . . . . . . . . . . 75

5.12 L1-errors inρu for a3rd-order solution of the SSV . . . . . . . . . . . . . . . 75

5.13 L1-errors inρ for a4th-order solution of the SSV . . . . . . . . . . . . . . . 76

5.14 L1-errors inρu for a4th-order solution of the SSV . . . . . . . . . . . . . . . 76

ix



5.15 L1-errors inρ for a5th-order solution of the SSV . . . . . . . . . . . . . . . 77

5.16 L1-errors inρu for a5th-order solution of the SSV . . . . . . . . . . . . . . . 77

5.17 L1-errors inρ for all solution orders (SSV) . . . . . . . . . . . . . . . . . . . 78

5.18 L1-errors inρu for all solution orders (SSV) . . . . . . . . . . . . . . . . . . 78

5.19 Turbulent viscosity profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.20 Radial component of shear stress . . . . . . . . . . . . . . . . . . . . . . . . 86

5.21 Radial component of the MMS source term for momentum due to viscous effects 87

5.22 L1-errors inρ for a2nd-order solution atRe = 5e5 . . . . . . . . . . . . . . 92

5.23 L1-errors inρu for a2nd-order solution atRe = 5e5 . . . . . . . . . . . . . . 92

5.24 L1-errors inρ for a2nd-order solution atRe = 1e6 . . . . . . . . . . . . . . 93

5.25 L1-errors inρu for a2nd-order solution atRe = 1e6 . . . . . . . . . . . . . . 93

5.26 L1-errors inρ for a2nd-order solution atRe = 2e6 . . . . . . . . . . . . . . 94

5.27 L1-errors inρu for a2nd-order solution atRe = 2e6 . . . . . . . . . . . . . . 94

5.28 L1-errors inρ for a2nd-order solution atRe = 4e6 . . . . . . . . . . . . . . 95

5.29 L1-errors inρu for a2nd-order solution atRe = 4e6 . . . . . . . . . . . . . . 95

5.30 L1-errors inρ for a3rd-order solution atRe = 5e5 . . . . . . . . . . . . . . . 96

5.31 L1-errors inρu for a3rd-order solution atRe = 5e5 . . . . . . . . . . . . . . 96

5.32 L1-errors inρ for a3rd-order solution atRe = 1e6 . . . . . . . . . . . . . . . 97

5.33 L1-errors inρu for a3rd-order solution atRe = 1e6 . . . . . . . . . . . . . . 97

5.34 L1-errors inρ for a3rd-order solution atRe = 2e6 . . . . . . . . . . . . . . . 98

5.35 L1-errors inρu for a3rd-order solution atRe = 2e6 . . . . . . . . . . . . . . 98

5.36 L1-errors inρ for a3rd-order solution atRe = 4e6 . . . . . . . . . . . . . . . 99

x



5.37 L1-errors inρu for a3rd-order solution atRe = 4e6 . . . . . . . . . . . . . . 99

5.38 L1-errors inρ for a4th-order solution atRe = 5e5 . . . . . . . . . . . . . . . 100

5.39 L1-errors inρu for a4th-order solution atRe = 5e5 . . . . . . . . . . . . . . 100

5.40 L1-errors inρ for a4th-order solution atRe = 1e6 . . . . . . . . . . . . . . . 101

5.41 L1-errors inρu for a4th-order solution atRe = 1e6 . . . . . . . . . . . . . . 101

5.42 L1-errors inρ for a4th-order solution atRe = 2e6 . . . . . . . . . . . . . . . 102

5.43 L1-errors inρu for a4th-order solution atRe = 2e6 . . . . . . . . . . . . . . 102

5.44 L1-errors inρ for a4th-order solution atRe = 4e6 . . . . . . . . . . . . . . . 103

5.45 L1-errors inρu for a4th-order solution atRe = 4e6 . . . . . . . . . . . . . . 103

5.46 Condition numbers for2nd-order HRNTBL solutions atRe = 5e5 . . . . . . 105

5.47 Condition numbers for3rd-order HRNTBL solutions atRe = 5e5 . . . . . . 105

5.48 Condition numbers for4th-order HRNTBL solutions atRe = 5e5 . . . . . . 105

5.49 Condition numbers for2nd-order HRNTBL solutions atRe = 1e6 . . . . . . 106

5.50 Condition numbers for3rd-order HRNTBL solutions atRe = 1e6 . . . . . . 106

5.51 Condition numbers for4th-order HRNTBL solutions atRe = 1e6 . . . . . . 106

5.52 Condition numbers for2nd-order HRNTBL solutions atRe = 2e6 . . . . . . 107

5.53 Condition numbers for3rd-order HRNTBL solutions atRe = 2e6 . . . . . . 107

5.54 Condition numbers for4th-order HRNTBL solutions atRe = 2e6 . . . . . . 107

5.55 Condition numbers for2nd-order HRNTBL solutions atRe = 4e6 . . . . . . 108

5.56 Condition numbers for3rd-order HRNTBL solutions atRe = 4e6 . . . . . . 108

5.57 Condition numbers for4th-order HRNTBL solutions atRe = 4e6 . . . . . . 108

xi



NOMENCLATURE

‘

General Notation

q, α Scalar valued quantity
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CHAPTER 1

INTRODUCTION

1.1 Motivation

The past few decades have seen a remarkable growth in the availability of high-

performance computing hardware, and the sophistication of Computational Fluid Dynam-

ics (CFD) solver capabilities. Along with this growth, the demand from practicing engi-

neers for simulations with greater fidelity over a wider range of flow regimes and domain

complexity has also increased.

Despite this impressive progress, though, there still remains some fluid flow phenom-

ena for which accurate simulations cannot be practically computed. One of the most dif-

ficult flow regimes in which to obtain highly accurate solutions is very high-Reynolds-

number flows in and around complex geometry configurations. These flows typically ex-

hibit unsteady turbulent behavior characterized by coherent vortex structures with widely

varying length scales. While many existing computational tools can be brought to bear

on some aspects of these problems, it still remains impractical to resolve much of the rich

character of the physical phenomena resulting from the turbulent behavior of these flows.

The limitations on current solvers are mostly due to a sharp rise in computational cost

associated with the increase in complexity of the fluid flow. At higher Reynolds numbers,

the length scales of the coherent flow features diminish rapidly. Fully resolving the flow

1



field using Direct Numerical Simulation (DNS) [50] would require the use of highly re-

fined meshes. This is perhaps the most intuitive way to approach the problem; however, the

amount of computational resources required is often prohibitive. When explicit time inte-

gration is used, smaller mesh spacing will also incur a corresponding reduction in the size

of allowable time steps. For implicit time integration, the reduction in mesh scales may

cause the system matrix to become stiff. The increased stiffness may then make it more

difficult for the linear system solver to reach a converged solution. Thus, a linear increase

in Reynolds number will typically incur an exponential rise in computational expense.

This downward pressure on mesh resolution can be partially mitigated through the

use of turbulence modeling. Turbulence modeling relies on the following observation: as

large-scale turbulent flow structures decay into smaller-scale turbulent eddies, their dissi-

pative behavior becomes increasingly uniform. Turbulence models attempt to approximate

the more uniform viscous dissipation effects rather than to fully resolve them.

Among turbulence modeling techniques, Reynolds-Averaged Navier-Stokes (RANS)

methods are the most frequently used for practical engineering problems [72]. Solvers

based on the RANS equations utilize a modified set of governing equations which attempts

to model the turbulent dissipation at all length scales. Depending on the specific turbulence

model used to close the RANS equations, there will typically be one or more additional

state variables that are evolved along with the conservative flow variables. RANS meth-

ods are fairly economical to compute and typically provide good results for steady and

moderately steady flows with no separations. However, RANS is often less effective on

flows with strong separations and large-scale coherent eddy structures [33]. The temporal

2



and spatial averaging schemes employed by RANS methods have a tendency to generate

excessive dissipation in these regions. Unsteady flow features are typically over-damped

and prematurely dissipated [47].

Large Eddy Simulation (LES) methods provide an alternative to RANS for simulations

involving large unsteady features [31]. LES methods employ a spatial filter to distinguish

between the large-scale unsteady flow structures and the smaller-scale eddies that are re-

sponsible for more uniform dissipative behavior. The large scale features are then fully

resolved by the Navier-Stokes solver while the smaller scale features are modeled. The

LES methods have been shown to produce superior results to that of RANS methods in

regions involving large-scale unsteady features. However, when attempting to resolve the

flow in regions of high solution anisotropy, such as those found in thin attached boundary

layers, the LES method begins to encounter resource constraints similar to that of the DNS

method.

In recent years, the hybrid RANS/LES approach has begun to show great potential for

economically simulating a wide range of turbulent behavior with greater accuracy than

previously possible [62]. In the hybrid approach, RANS is used to evolve the turbulent

behavior in the thin attached boundary layers, while LES is used to capture large unsteady

flow features. The LES subgrid-scale turbulence model is then used to model the behav-

ior of the more isotropic turbulent decay in regions away from the boundaries where the

relevant length scales remain relatively large.

The effective application of hybrid RANS/LES techniques to the simulation of high

Reynolds number flows is currently an active area of research. The full potential of hybrid

3



RANS/LES remains difficult to assess, however, with the current generation of second-

order flow solvers. On unstructured meshes, second-order solvers have a tendency to

produce too much numerical dissipation over a wide range of mesh scales. It has been

observed in some instances that the contribution of the LES sub-grid scale turbulence

models are of the same order of magnitude as the numerical errors generated by the solver.

This has prompted some researchers to forgo the sub-grid scale turbulence model in favor

of allowing the numerical dissipation of the solver to control the rate of turbulent energy

cascade as in the Monotone Integrated Large Eddy Simulation (MILES) approach [18].

While many researchers continue to search for practical ways to make LES work well

with second-order solvers [33, 47], others have begun looking to higher-order accurate

solvers to provide a more robust platform for evaluating the subgrid scale turbulence mod-

els [29, 64]. The increased rate by which errors are reduced in higher-order methods allows

them to attain desired levels of error tolerances on much coarser meshes. The availability

of higher-order derivatives has also been considered as an advantage for formulating more

sophisticated turbulence models.

Yet, despite their favorable numerical properties, higher-order methods have still not

seen wide acceptance for performing CFD calculations. In the past these methods have

tended to be somewhat less flexible in terms of how the domain is discretized. High-order

finite difference methods require nearly orthogonal alignment of the grid points, while

some finite volume based methods (e.g. ENO, WENO) rely on wide mesh stencils to form

high-order solution reconstructions. Because of their reliance on extended stencils, many

of these methods require specialized treatment of boundary conditions in order to maintain
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high-order accuracy. Methods which rely on extended stencils are also more difficult to

parallelize due to their increased dependence on non-local data.

Recently, the Discontinuous Galerkin (DG) method has emerged as a promising can-

didate for computing high-order accurate solutions to unsteady flow fields on unstructured

meshes [64]. Solvers based on the DG method have already been used to compute so-

lutions for a wide variety of flow regimes including some fairly ambitious attempts at

simulating turbulent, high-Reynolds number flows. To date, the DG method has been used

to simulate turbulent flow using DNS [28, 29], LES [12, 27], and RANS equations with

one- [46, 49], and two-equation [5, 36, 38] turbulence closure models. There has also

been some recent progress in high-order shock capturing techniques [3, 52]. With these

advancements, the DG method is well on its way to becoming a robust platform for the

investigation of transonic and supersonic, high Reynolds number flow problems.

There is ample evidence in the literature that using linear elements to resolve curved

boundaries is problematic for DG methods [7, 8, 36, 42, 43]. There is considerably

less information, however, regarding the precise relationship of high-order elements to

the overall accuracy of the solver. With the DG method being used to solve very high-

Reynolds number flows, it is only natural to suspect that geometric accuracy of the mesh

elements near the boundary will be even more critical, especially in regions of high solu-

tion anisotropy such as with thin attached boundary layers.

Numerous researchers have reported the need to use curved mesh elements near smoothly

curving boundaries in order to maintain the desired accuracy of the DG solver [7, 8, 36,

42, 43]. For each report, there typically follows a description of how the problem was
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overcome by curving the mesh elements adjacent to the boundary and adjusting the algo-

rithms accordingly. Yet, despite the fact that this is clearly a mesh quality issue, very little

information has been published regarding the minimum or optimum mesh configurations

for discretizing the domain near smoothly curving boundaries. The present work will at-

tempt to remedy this situation by developing a methodology for objectively comparing

multiple meshing strategies for a given domain and fluid flow regime. This methodology

is used to evaluate the quality of the solutions computed by a DG solver on various mesh

configurations. The results of these numerical experiments are then used to make some

recommendations for generating meshes for use with the high-order accurate DG method.

1.2 Mesh Quality

Mesh quality may be loosely defined as a set of criteria which computational meshes

should satisfy in order to allow the solver to produce the most accurate numerical solution

utilizing a reasonable amount of computing resources. Most of what is currently known

about mesh quality derives from the analysis of the Finite Difference (FD), Finite Vol-

ume (FV) and Finite Element (FE) methods [66]. Guided by this analysis and decades

of experience with numerical solvers based on these methods, the CFD community has

arrived at a general consensus on what constitutes good mesh quality for both structured

and unstructured meshes [65].

In general, the following mesh quality criteria will apply to most numerical CFD

solvers [65, 66]:

• The spacing of mesh nodes should not change too rapidly in each coordinate direc-
tion (i.e. adjacent elements should be approximately the same size).
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• Elements with large aspect ratios should be used sparingly, and only in locations
where the relevant time and length scales require their use.

• When utilizing structured mesh topologies, elements should not be excessively sheared
or twisted, (i.e. grid lines should be very nearly orthogonal).

• The mesh elements should conform to all domain boundaries as accurately as pos-
sible, and where possible they should also align with dominant flow features in the
domain (e.g. strong shocks, thin boundary layers).

Although DG owes much of its heritage to both the FE and FV methods, there is

considerably more redundant information present in the DG method which allows for a

greater degree of decoupling of the degrees of freedom in each element. This increased

decoupling allows for considerably more flexibility in how the domain is discretized. One

particular advantage afforded by this ishp-adaptivity in which high-order accuracy may

be traded with mesh resolution to improve the robustness and efficiency of the solver.

1.3 Research Objectives

The primary objective of this research is to establish a minimum set of meshing criteria

which will preserve the order of accuracy of the solver. The secondary objective is to

determine if there exist any additional quality criteria that can be shown to improve the

accuracy of the solution and/or the stiffness of the numerical solver. One specific area

that merits a focused investigation is how accurately curved domain boundaries must be

approximated by the mesh geometry in order to maintain the accuracy of the scheme.

1.4 Overview

The following chapters will provide a description of the DG solver implementation

and the diagnostic tools that have been developed to conduct the accuracy and stability
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tests on the solver. The results of the verification studies are presented along with observa-

tions regarding the quality of the various meshing strategies as they pertain to the overall

accuracy and stiffness of the solver for each problem.

In Chapter 2, the literature is reviewed and the relevant context for the current inves-

tigation is provided. Chapter 3 presents the governing equations and an overview of the

DG method. The methodology utilized to verify the implementation of the solver is given

in Chapter 4 along with a description of the techniques used to evaluate the accuracy and

stiffness of the solver. The numerical results are presented in Chapter 5 along with a dis-

cussion of the mesh quality recommendations which are supported by the data. Some

conclusions and suggestions for further study are provided in Chapter 6.
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CHAPTER 2

RELATED WORK

2.1 Discontinuous Galerkin

The Discontinuous Galerkin (DG) method was originally formulated by Reed and Hill

[54] in 1973 to solve the neutron transport problem. Some preliminary analysis of the

method was conducted the following year by Lesaint and Raviart [40]. The method saw

limited use for the next several years before being revived in the late 1980’s and subse-

quently extended to solve many other types of problems.

In 1989, Cockburn and Shu began publishing a series of papers [19, 22, 23, 26] in

which the capabilities of the DG method were steadily expanded upon. The method was

extended from solving scalar, linear, and hyperbolic equations to systems of nonlinear,

hyperbolic, conservation laws in multiple dimensions. The resulting Runge-Kutta Dis-

continuous Galerkin (RKDG) method enabled the development of the first generation of

explicit solvers capable of computing solutions of the Euler equations [8, 19, 22, 24]. A

detailed review of these developments may be found in the survey article by Cockburn

et al. [20].

The first inter-element flux formulas for handling the viscous terms of the Navier-

Stokes equations were proposed by Bassi and Rebay [7]. Despite the successful simulation

of a number of convection-diffusion problems, this formulation (BR1) was later analyzed
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and shown to have poor convergence rates for odd-order polynomial approximations and

to be unstable for certain model problems. Bassi and Rebay then developed a new interface

diffusion operator (BR2) which corrected these short-comings and also resulted in a more

compact scheme [9].

Several alternative schemes for evaluating the diffusive fluxes were developed during

this time by Cockburn and Shu [25, 26], Lomtev and Karniadakis [41], and Baumann

and Oden [11]. Evaluation and analysis of these methods was carried out by Zhang and

Shu [73], and Bassi and Rebay [10]. This analysis showed that Bassi and Rebay’s ini-

tial scheme (BR1) was inconsistent for the Poisson problem and weakly unstable for the

Laplace problem. Their second scheme (BR2), however, did not possess these limitations.

Each of these schemes fall into the category of interior penalty (IP) methods. Interior

penalty methods include a dissipative term which penalizes the solution for being dis-

continuous at the element interface. This dissipative term provides stabilization for the

scheme.

More recently, van Leer [68, 69] has devised a diffusive operator based on a higher-

order continuous reconstruction of the solution at the cell interface. Peraire and Persson

have also revisited the Local Discontinuous Galerkin (LDG) method of Cockburn and Shu

and have produced a more compact scheme referred to as the Compact Discontinuous

Galerkin method (CDG) [51].

The DG method has also been extended to include turbulence modeling. The Reynolds

Averaged Navier-Stokes (RANS) equations have been successfully integrated into DG

solvers by Bassi and Rebay [4, 5, 6, 9]. In their method, thek-ω model is slightly modi-
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fied and the turbulence parametersk andln(ω) are discretized using polynomial approx-

imations in exactly the same manner as the conservative variables. The work of Bassi

and Rebay has demonstrated that the DG method may be effectively utilized to simulate

turbulent flows in complex domains and on problems of engineering interest.

Collis and Ghayour have utilized the DG method for computing complex, turbulent,

compressible flows at relatively low Reynolds numbers using a Direct Numerical Sim-

ulation (DNS) approach [28, 29]. Their results demonstrate that even when computing

turbulent behavior through DNS, the use of a high-order method can significantly reduce

the mesh refinement and time step restrictions. Collis has also explored a variational mul-

tiscale (VMS) method for performing Large Eddy Simulations (LES) in the context of a

DG solver [27].

Peraire and Persson have developed a RANS solver that utilizes the one-equation

Spallart-Alamaras closure model [46]. They have also introduced a high-resolution ar-

tificial viscosity model for shock-capturing [52].

More recently, Bassiet al. continue to expand the capabilities of their solver to in-

clude unsteady, incompressible flows [2] and shock-capturing [3], which is based on an

extension of Peraire and Persson’s artificial viscosity model.

Landmannet al. have also been investigating the use of DG for turbulence simulations

[38], solving the RANS equations using thek-ω closure model of Bassi and Rebay.
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2.2 Curved Elements

In their earliest work on the DG method, Bassi and Rebay found that using linear

elements near curved boundaries would give rise to non-physical unsteady flow features in

the domain [8]. They observed that the accuracy of the solution was significantly improved

if the mesh elements near the boundary were curved to match the actual geometry. To

maintain the optimal order of accuracy of the DG method, Bassi and Rebay determined,

by numerical experimentation, that the reflecting boundary condition must be computed

using curved elements with the same order shape functions as the order of the solution

basis. They found no significant improvement in their error norms when utilizing higher-

order elements.

In their 1973 treatise on the finite element method, Strang and Fix [63] cited the ap-

proximation of smoothly curving domain boundaries by piecewise linear or polynomial

mesh elements among the so-calledvariational crimes. In instances where these approxi-

mations could not exactly reproduce the shape of the boundary geometry, certain underly-

ing assumptions for Rayleigh-Ritz criteria could not be satisfied. The fact that it was even

possible to obtain a solution on these meshes was attributed to the ability of approximation

and interpolation spaces to keep the errors bounded.

In the Computational Fluid Dynamics (CFD) community, the topic of mesh quality

has traditionally been associated with analysis done on structured meshes during the late

1970’s and early 1980’s, and unstructured meshes during the 1990’s [65, 66]. Nearly all

of these studies were concerned with the use of simply shaped mesh elements, particu-

larly those of a restricted set of polygonal (triangles, quadrilaterals) and polyhedral shapes
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(tetrahedra, pyramids, prisms, hexahedra). The development of more advanced element

shapes has occurred primarily within the finite element community. The use of higher-

order element shapes in finite element analysis has roughly paralleled the development

of methods for mathematical descriptions of general free-form surfaces [32]. The terms

sub-parametric, iso-parametric, andsuper-parametriccame into use to describe mesh el-

ements with less than, the same as, or greater than the order of the polynomial basis used

to approximate the solution. Analysis of these elements determined that isoparametric el-

ements were sufficient for retaining the optimal convergence rate in the energy norm for

elliptic problems [39].

Landmann, Kessler,et al. [37, 38] recently conducted several additional numerical

experiments using a high-order accurate discontinuous Galerkin solver to model flows

ranging from purely inviscid to laminar and turbulent viscous flows in two- and three-

dimensions. Their results confirm that the use of linear elements to approximate a curved

boundary significantly degrades the accuracy of the solution and, in many cases, will in-

troduce non-physical, unsteady flow features into the solution. The authors suggest that an

appropriate boundary approximation be at leastC1 continuous at all points of the smoothly

curving surface. The authors utilize cubic Hermite surface patches to accomplish the de-

sired continuity. They also provide some techniques for generating these patches when

only the positions of the mesh nodes are provided [42, 43].

For practical simulations involving turbulent, high Reynolds number flows, the thin

boundary layers are typically resolved with highly anisotropic mesh elements. Shephard,

Flaherty,et al. [55, 59] have considered curved anisotropic mesh elements in the context
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of their hp-adaption algorithms for general finite element methods. They composed a

metric for guiding the remeshing of the domain based on the Hessian of the solution.

They also addressed the issue of maintaining the fidelity of the underlying geometry of the

boundaries during the remeshing step. By interfacing their mesh generator with an internal

representation generated from topology and geometry data extracted from the CAD model,

they are able to accurately refine the mesh and create curved elements which conform to

the boundaries.

The use of curved elements is one of two ways to reduce the errors generated from the

boundary conditions. The other method involves modifying the boundary data applied to

the mesh approximation to account for the displacement error. Recently, Krivodonova and

Berger [35] published an alternative to using explicitly curved mesh elements at reflecting

boundary conditions. Traditional linear elements are used in conjunction with the exact

normal information from the boundary geometry. Unlike traditional reflecting boundary

conditions where a ghost cell state is established and a Riemann problem solved to estab-

lish the interface flux, Krivodonova and Berger allow the normal component of the flow

to leave the domain and instantaneously reappear at another quadrature point symmetric

to the first. This method appears to be limited to two-dimensional problems and mesh

discretizations where the quadrature points can be symmetrically placed on the boundary.

For general three-dimensional surface patches the flow streamlines may not exactly align

with the orientation of the quadrature points. Also, if the shape of the surface patch is not

symmetric, then this approach may not properly account for the production and destruction

of flux at the boundary.

14



Mahajan [45] recently conducted a more detailed study of the specification of the

boundary condition data in the context of second order elliptic problems in one- and two-

dimensions. In this work, the boundary data on the computational mesh was recovered

by integrating the flux functions through the region between the domain boundary and

the mesh boundary. Mahajan was able to maintain the expected order of accuracy for

the solver as long as the displacement of the mesh boundary from the domain boundary

was less than the size of the adjacent mesh element. Since the analysis was conducted on

isotropic meshes in one-dimension, it is not immediately clear how this would extend to

anisotropic meshes in multiple dimensions where the displacement of the physical bound-

ary may be on the order of several cell widths. The cases in the study also involved only

meshes which were completely embedded inside the physical domain; hence, treatment of

convex boundary shapes was not specifically addressed.
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CHAPTER 3

IMPLEMENTATION OF A DISCONTINUOUS GALERKIN SOLVER

To facilitate the investigation of mesh quality as it pertains to the Discontinuous Galerkin

(DG) method, a numerical solver for the compressible Navier-Stokes equations has been

implemented and subjected to numerous code verification tests. Some of these verification

tests form the basis for the research methodology utilized in the present work. This chap-

ter provides the implementation details for the DG solver and then briefly describes the

verification tests, which are relevant to this work. The next chapter describes how these

tests have been extended for the purpose of investigating mesh quality.

3.1 Governing Equations

The problem domains of interest to the present work are inviscid and high-Reynolds

number fluid flows. The pertinent governing equations are the Euler and Navier-Stokes

equations for inviscid and viscous flows, respectively. For the purposes of this research,

only single-species, perfect gases are considered. The thermodynamic state of the fluid at

every point in the domain is described by a set ofd + 2 variables (whered is the num-

ber of spatial dimensions being considered). The conservative variables of mass density

(ρ), momentum density (ρ~u), and total energy density (ρe) are used for this purpose. To
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evolve these quantities in time, a system of coupled Partial Differential Equations (PDEs)

is solved.

The Euler equations, (3.1), (3.2), and (3.3), are a mathematical description of the con-

servation laws of mass, momentum and energy as applied to the motion of a inviscid,

compressible fluid continuum. These equations provide satisfactory results for a wide

range of convection dominated flow problems in which the effects of diffusion processes

are negligible. If we let~u = uı̂ + v̂ + wk̂ be the fluid velocity, then the Euler equations

may be expressed as:

∂

∂t
(ρ) + div(ρ~u) = 0 (3.1)

∂

∂t
(ρ~u) + div(ρ~u~u) = −div(P Ĩ) (3.2)

∂

∂t
(ρe) + div(ρe~u) = −div(P~u) (3.3)

For problems in which the viscous and thermal properties of the fluid cannot be ne-

glected, the Navier-Stokes equations, (3.4), (3.5), and (3.6) must be utilized.

∂

∂t
(ρ) + div(ρ~u) = 0 (3.4)

∂

∂t
(ρ~u) + div(ρ~u~u) = −div(P Ĩ) + div(σ̃) (3.5)

∂

∂t
(ρe) + div(ρe~u) = −div(P~u) + div(σ̃ · ~u) + div(k grad(T )) (3.6)

These systems are closed by providing additional expressions which relate the primi-

tive variables of temperature (T ) and pressure (P ) to the conservative variables.

P (ρ, e0) = (γ − 1)(ρe0) (3.7)

T (e0) =
ρe0
cv

(3.8)
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whereγ = cp/cv is the adiabatic exponent,cp andcv are the specific heats at constant

pressure and volume, respectively,e0 = e− 1/2(~u · ~u) is the specific internal energỹσ is

the shear stress tensor:

σ̃ = 2µD̃ + λdiv(~u)Ĩ (3.9)

D̃ =
1

2

(
grad(~u) + (grad(~u))T

)
(3.10)

λ = µb − 2

3
µdiv(~u) (3.11)

µ = µs + µt (3.12)

whereµs,µt, andµb are the coefficients of shear, turbulent, and bulk viscosity, respectively.

The thermal conductivityk is given by:

k = ks + kt (3.13)

ks =
cpPr

µs

(3.14)

kt =
cpPrt

µt

(3.15)

The laminar and turbulent Prandtl numbers are assumed to be constant withPr = 0.72

andPrt = 0.92.

The system as a whole can be written more compactly as:

∂Q

∂t
+ ~∇ · ~F = S. (3.16)

~F = ~Fc(Q)− ~Fd(Q, ~∇Q) (3.17)

Here,Q denotes the array of conserved quantities (mass, momentum, and total energy

densities), andS represents any additional (non-conservative) source terms.~Fc and~Fd are
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arrays of vector valued convective and diffusive fluxes, respectively. When expressed in

Cartesian component form, the convective fluxes are given by:

~Fc =




ρu ρv ρw

ρu2 + P ρuv ρuw

ρvu ρv2 + P ρvw

ρwu ρwv ρw2 + P

(ρe+ P )u (ρe+ P )v (ρe+ P )w







ı̂

̂

k̂




(3.18)

and the diffusive fluxes by:

~Fd =




0 0 0

σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

sx + k ∂xT sy + k ∂yT sz + k ∂zT







ı̂

̂

k̂




(3.19)

where~s = σ̃ · ~u = sxı̂+ sy ̂+ szk̂.

3.2 Discontinuous Galerkin

The Discontinuous Galerkin (DG) method is derived from both the Finite Element

(FE) and Finite Volume (FV) methods. Like the FE method, DG attains a formal high-

order of accuracy through the use of piecewise polynomial functions, which represent

the solution state in each cell over the domain. Unlike most FE methods, however, the

DG method permits a spatially discontinuous representation of the solution. Within each

cell, the solution state is approximated by a continuous polynomial, but at the interface
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between cells there are no formal continuity requirements explicitly enforced. As a result,

the solution approximation will typically be double valued at the cell interfaces.

In the DG method, the polynomial solution in each element is completely described by

a set of basis functions and a set of coefficients, which are unique to the element. Thus, the

Degrees of Freedom (DOFs) describing the solution are localized to each element. The

DOFs in each element are coupled to the DOFs in adjacent elements through interface

fluxes defined on shared faces. These inter-element fluxes must properly account for the

discontinuities in the solution which will typically arise at shared element interfaces. The

convective interface flux terms are computed using upwinded numerical flux formulations,

which are nearly identical to those used in the FV method. The diffusive interface fluxes

are computed using either an interior penalty method or recovery method.

Since the solution DOFs are localized to each element and are only weakly coupled to

the DOFs in adjacent elements, the resulting discretized equations possess very compact

stencils. It is the compactness of the scheme that endows the method with a number of

desirable numeric and algorithmic properties. The method is well suited for paralleliza-

tion for both explicit and implicit time integration techniques. The relaxed continuity

constraints between adjacent elements allow for much greater freedom in domain dis-

cretization strategies and also enable a number of techniques for solution adaptation (h-

andp-refinement) and convergence acceleration (e.g. multigrid) to be implemented in a

fairly straight-forward manner. Since extended stencils are not required to construct the

solution approximation, there is also no need for special treatments of elements adjacent

to domain boundaries. Although the DG method will typically utilize more DOFs than a
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comparable continuous FE method on a similar mesh, it is perhaps this extra redundancy

of information that permits the considerable flexibility of the scheme.

The DG method utilizes the method of weighted residuals to project the residual of the

numerical solution onto the polynomial approximation space. These projected residuals

are then used to advance the degrees of freedom of the solution in time by explicit or

implicit methods. In the weighted residual approach, the governing equations (3.16) are

multiplied by a weighting (or test) functionψ and then integrated over the entire domainΩ.

∫

Ω
ψ
∂Q

∂t
dΩ +

∫

Ω
ψ(~∇ · ~F) dΩ =

∫

Ω
ψS dΩ (3.20)

When solving the unmodified Navier-Stokes equations,S ≡ 0.

Integration by parts is used to split the volume integral of the flux terms into a combi-

nation of surface and a volume integrals. This results in the weak form of the governing

equations (3.21).

∫

Ω
ψ
∂Q

∂t
dΩ =

∫

Ω
(~∇ψ · ~F) dΩ−

∮

∂Ω
ψ(~n · ~F) dΓ +

∫

Ω
ψS dΩ (3.21)

3.2.1 Domain Decomposition

In order to represent geometrically complex domains in a manner which is conducive

to efficient numerical computations, a partition of space,Th, is introduced. The phys-

ical domain,Ω, is decomposed into a collection of non-overlapping, simply connected

elements,Ωe, such that:

⋃

e∈Th

Ωe = Ωh ≈ Ω. (3.22)
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whereΩh is the mesh approximation to the physical domain,Ω. The weak form of the

governing equations (3.21) must be satisfied on each element:

∫

Ωe
ψ
∂Q

∂t
dΩ =

∫

Ωe
(~∇ψ · ~F) dΩ−

∮

∂Ωe
ψ(~n · ~F) dΓ +

∫

Ωe
ψS dΩ (3.23)

for all Ωe ∈ Ωh.

The manner in which the domain is spatially decomposed into a computational mesh

of discrete elements depends upon the type of flow problem under consideration and the

specifics of the geometry of the domain boundaries. Ultimately, the accuracy of the solu-

tion and the efficiency of the solver are highly dependent upon the mesh elements being

appropriately sized and shaped to resolve the domain geometry and all relevant physical

flow phenomena.

In the following sections we describe the generation of finite element meshes for use

with the discontinuous Galerkin solver. The meshing procedure begins with the generation

of a finite volume mesh to establish an initial partition of space. These meshes are then

p-refined (i.e. the polynomial order of the mesh elements are increased) using additional

geometry information from the domain boundaries. Two strategies are pursued for inter-

polating the mesh to the boundary surfaces: one based on Lagrange interpolation, and the

other based on Hermite interpolation.

3.2.1.1 Bezier Elements

In the current solver implementation, the shapes of the mesh elements are represented

internally as Bezier volumes. The Bezier representation was selected for its well under-

stood numerical properties, particularly the robust and efficient evaluation of positions and
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derivatives within the element. Using the Bezier volume description, the shape of each el-

ement may be specified independently of all other elements, yet still be able to conform,

in a natural way, to shared geometric constraints such as faces shared between adjacent

elements. If greater continuity is required, Bezier elements can also be easily incorporated

into larger B-Spline entities.

Figure 3.1 shows a series of computational meshes generated with linear, quadratic,

and cubic mesh elements.

Figure 3.1

Sequence ofp-refined meshes.

The Bezier representation consists of a set of basis functions and a corresponding set

of control points. The basis functions are the Bernstein polynomials:

Bp
i (ξ) =

1

2p

p!

i!(p− i)!
(1− ξ)(p−i)(1 + ξ)i (3.24)
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and tensor products thereof

Bp
ij(ξ, η) = Bp

i (ξ)B
p
j (η) (3.25)

Bp
ijk(ξ, η, ζ) = Bp

i (ξ)B
p
j (η)B

p
k(ζ) (3.26)

wherep is the degree of the polynomial andi, j, k ∈ [0, p]. For greater flexibility,p may

be chosen independently for each parametric direction:

Bijk(ξ, η, ζ) = Bpi
i (ξ)B

pj

j (η)Bpk
k (ζ) (3.27)

for i ∈ [0, pi], j ∈ [0, pj], andk ∈ [0, pk].

The set of control points – also known as the control net – consists of(p + 1)3, or

(pi +1)× (pj +1)× (pk +1), points in space. The positions of these points determine the

shape of the entity. Figure 3.2 displays the representative control nets for linear, quadratic,

and cubic approximations to an annular arc segment. Since the shape is linear in the radial

direction, only two control points were required in that direction.

Bezier curves interpolate to the first and last control points, while surfaces and volumes

tend to interpolate to the control net at their corners. This is a particularly useful property

for the current application as it allows us to retain the original point spacing specified by a

more traditional input mesh. Assuming that something like a typical finite volume mesh is

provided, its nodes can be used as the corner nodes of the individual element control nets,

thereby preserving the topology and spatial distribution of the original mesh.

For the purposes of curved mesh generation, Bezier allows a variable order represen-

tation that can easily be made to conform to domain boundaries while also maintaining

suitable element shapes away from the wall. If necessary, the curvature of the boundary
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Figure 3.2

Linear, quadratic, and cubic control nets for an isotropic curved element.
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can be propagated further into the domain by simply adjusting the positions of the interior

control points until the desired element shapes are obtained.

In the case of high aspect ratio cells, for example, the curvature of the boundary may

exceed the height of the element adjacent to the boundary. If only the boundary face is

curved, then the overall shape of the resulting element is likely to be unacceptable for

CFD simulations. In Figure 3.3 the shape of the elements on the right will most likely

give rise to negative and singular determinants of the Jacobian of the mapping, whereas

the elements on the left side of the figure will typically possess more favorable derivative

behavior.

Figure 3.3

Linear, quadratic, and cubic control nets for an anisotropic curved element.
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To avoid the generation of negative and singular volumes, it should be sufficient to

ensure that there are no lines crossing in the control mesh. The process for smoothing and

removing kinks from the mesh then becomes quite similar to that practiced in structured

mesh generation for achieving the same purpose [65].

3.2.1.2 Lagrange Interpolation

For the Lagrange interpolation, a set of uniformly spaced points are evaluated on the

boundary surface. A set of Bezier control points is then generated such that the recon-

structed surface passes through each of the given points. The positions of the control

points may be computed directly by solving the following system of equations:

S(ξi, ηj) = ~xij ∀i ∈ [0, pi] andj ∈ [0, pj] (3.28)

The surface definitionS(ξ, η) is a linear combination of the basis functions and control

points, so the following linear system may be solved:

pi∑

m=0

pj∑

n=0

Bpi
m(ξi)B

pj
n (ηj)~bmn = ~xij ∀i ∈ [0, pi] andj ∈ [0, pj] (3.29)

As previously mentioned, the corner points (~x00, ~x0p, ~xp0, ~xpp) are taken to be the mesh

nodes supplied to the solver from the input finite volume mesh. The parametric coordi-

nates (ξi andηj) are uniformly distributed in each parametric direction in the range[−1, 1]

including the endpoints. Intermediate points are generated from a bilinear interpolation of

the four corner nodes.

x̂ij =
1

4
( (1− ξi)(1− ηj)~x00 + (1 + ξi)(1− ηj)~xp0 + (3.30)

(1− ξi)(1 + ηj)~x0p + (1 + ξi)(1 + ηj)~xpp ) (3.31)
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These points are then projected onto the boundary surface using an iterative method which

minimizes the projected distance. This processes then yields the interpolation points,~xij.

In the present work, sets of self-similar grids generated from the Lagrange interpolation

method will be designated as Cn, where then represents the number of sample points

taken in each direction (e.g. C2, C3, C4, etc.). Since the original nodes from the finite

volume mesh are assumed to be in all sample sets as the corner points for each element,

then the lowest interpolation order considered is second-order (C2). For the second-order

interpolation, the original mesh nodes are the only points in the control net.

3.2.1.3 Hermite Interpolation

With the Hermite interpolation, both the location of the sample points,~xij, and their

surface tangent directions,(~xij)ξ and(~xij)η, are taken as input. The nodal locations and

the tangent vectors are then used to generate a cubic Bezier control net. For smooth bound-

ary surfaces, the mesh elements which result from this interpolation procedure have the

property that the mapping functions for the adjacent elements areC1-continuous in the

direction normal to the shared face. Thus, for this interpolation strategy, there are no slope

discontinuities at the element interfaces on the boundaries unless one already exists in the

description of the boundary surface.

The system of equations to be solved arises from the conditions that must be satisfied

at each of the sample points: namely, the positions, the tangential derivatives, and their

cross-products.

S(ξi, ηj) = ~xij (3.32)
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∂ξS(ξi, ηj) = (~xij)ξ (3.33)

∂ηS(ξi, ηj) = (~xij)η (3.34)

∂2
ξηS(ξi, ηj) = (~xij)ξ × (~xij)η (3.35)

As with the Lagrange interpolation method, the system may be expressed as a linear sys-

tem and the control points obtained from its solution.

This method will be used to generate mesh elements of fourth and sixth-order. For

the sixth-order element, the extra sample points are generated at the center of the mesh

edges and the mesh face and projected onto the exact geometry definition. The families of

self-similar meshes generated with this method will be designated as Hn, wheren denotes

the number of interpolated points in each parametric direction (e.g. H2, H3).

3.2.2 Approximation of the Solution State

As with the finite element method, the solution stateQ is represented by a set of

piecewise polynomial functions. Unlike most finite element schemes, however, the DG

method does not enforce any continuity constraints on the solution at the interface between

adjacent elements. The result is that the polynomial solution representation within each

element is completely independent of the solution representation in all other elements.

The number of linearly independent basis functions of degreep or less, ind indepen-

dent variables required to span the space ofpth-degree polynomials,Pp, is given by:

N(p, d) =



p+ d

p


 =

(p+ d)!

(d!)(p!)
(3.36)
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The discontinuous solution approximation space for the DG method is obtained by select-

ing a set ofN linearly independent basis functions for each element. These basis functions

are defined such that they are non-zero only within their associated element, and zero ev-

erywhere else.

Φe ≡ {φe ∈ Pp | αiφ
e
i 6= 0, i ∈ [1, N ] ∀ αi 6= 0} (3.37)

The polynomial approximation to the solution within an element is then a linear com-

bination of the basis functions defined on that element1.

Qe = qe
iφ

e
i (3.38)

3.2.2.1 Spectral Decomposition

For any given function of spacef(x, y, z), a piecewise polynomial approximation can

be obtained over a regionΩ by projecting the function into the polynomial space.

∫

Ω
fhφj dΩ =

∫

Ω
fφj dΩ ∀φj ∈ Φ (3.39)

Here,fh = fiφi is the desired polynomial approximation. The polynomial coefficients,fi,

are obtained by solving the linear system:

[∫

Ω
φiφj dΩ

]
[fj] =

[∫

Ω
fφj dΩ

]
(3.40)

Mf = r (3.41)

where

M =
[∫

Ω
φiφj dΩ

]
(3.42)

is the mass matrix,f = [fi] is the vector of unknown polynomial coefficients.

1Here, and in the following sections, we use standard summation convention where repeated indices
imply summation. The range of the summation should be obvious from the context.
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3.2.2.2 Choice of Basis Functions

In theory, any set of linearly independent basis functions which spanPp will form a

sufficient basis for obtaining(p+1)th-order accurate solution approximations. In practice,

the overall numerical stability and computational efficiency of the solver are almost always

improved by selecting a set of orthogonal basis functions, which will produce diagonal

mass matrices. The use of orthonormal basis functions is typically the most efficient. Since

the associated mass matrix is the identity matrix, it does not need to be explicitly inverted

and can be factored out of certain computations. In the current solver implementation,

there are two sets of basis functions available: power series and orthonormal.

The power series basis functions are a set of monomials with the form:

φ(ξ, η, ζ) = ξiηjζk (3.43)

for all permutations ofi, j, k ∈ [0, p] such thati+ j + k ≤ p. The orthonormal basis set is

obtained from the power series through the use of a Gram-Schmidt process [71].

Returning to the discretized governing equations (3.21), the Galerkin finite element

method specifies that the test functionsψ are selected from the same set of basis functions

used to describe the solution.

∫

Ωe
φe

i

∂Qe

∂t
dΩ =

∫

Ωe
(~∇φe

i · ~F) dΩ−
∮

∂Ωe
φe

i (~n · ~F) dΓ +
∫

Ωe
φe

iS dΩ (3.44)

for all φi and all elementsΩe ∈ Ωh.

The surface integrals in the above equation are evaluated at all bounding faces of each

element. Due to the discontinuous nature of the solution approximation, the values of
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the flux functions (and basis functions) in the integrands are not uniquely defined. The

discontinuities are resolved using numerical flux formulations denoted byH ≈ ~F · ~n.

∫

Ωe
φe

i

∂Qe

∂t
dΩ =

∫

Ωe
(~∇φe

i · ~F) dΩ−
∮

∂Ωe
φe

iH dΓ +
∫

Ωe
φe

iS dΩ (3.45)

Due to the fundamental differences in numerical behavior of the convective and diffusive

flux terms, the interface fluxes for each must be treated separately.

3.2.3 Convective Fluxes

For the convective terms, the numerical fluxes at the element interfaces and boundary

faces are computed using an upwinded flux formulation similar to those developed for the

finite volume method [67]. The current solver implementation includes Roe’s approximate

Riemann solver, van Leer’s flux vector splitting method and the local Lax-Friedrichs flux

difference splitting scheme. For the numerical experiments conducted for this report, the

Roe scheme has been used to obtain the convective interface fluxes.

3.2.4 Diffusive Fluxes

The diffusive fluxes must be treated carefully: not only are the solution values discon-

tinuous at the interface, but the gradients of solution are as well. In the literature there have

been numerous formulations for the diffusive fluxes provided. Some of these methods in-

clude: the local discontinuous Galerkin method (LDG) of Cockburn and Shu [25], the

interior penalty method of Oden and Baumann [11, 48], and the lifting operators of Bassi

and Rebay (BR2) [9]. More recently, Peraire and Persson [51] have derived an update

to the LDG method with a more compact stencil which they have appropriately named
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the compact discontinuous Galerkin method (CDG). Also, van Leeret al. [68, 69] have

recently formulated a diffusive operator based on a locally recovered solution approxi-

mation. The recovered solution, which smoothly interpolates the solution between two

adjacent elements, is then used to compute the diffusive fluxes at the interface.

The local lifting operator formulation of Bassi and Rebay (BR2) was selected for use

in the current solver implementation due to its compactness as well as the fact that it

has already been shown to work in multiple dimensions and on complex flow problems,

including those with highly anisotropic curved elements.

In the BR2 scheme, a local lifting operator~re
f is computed on each face for each of the

conserved quantities:
∫

Ωe
φe~re

f dΩ =
∫

Γf

(Q0 −Qe)φe~n dΓ (3.46)

as well as a global lifting operatorR for each element:

∫

Ωe
φe~Re dΩ =

∮

∂Ωe
(Q0 −Qe)φe~n dΓ =

∑

f

~re
f (3.47)

whereQe is the solution state in elemente, andQ0 is the target solution value that could

be obtained on the face if the local lifting operator were applied to the gradient of the

solution within the element. Thus, the local lifting operator serves as a local correction

to the gradient designed to bring the solution states in adjacent elements together at a

common valueQ0. On interior faces, the solution state in the current element,Qe, is

extrapolated to the face and is averaged with the value from the adjacent element,Q∗,

extrapolated to the same location to obtain:Q0 = (Qe + Q∗)/2. On boundary faces with
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Dirichlet conditions this value is set to the prescribed boundary valueQ0 = Qb, and on

boundaries with Neumann conditionsQ0 = Qe.

These two lifting operators are then utilized as a correction to the gradient for the

purpose of computing the diffusive fluxes. It should be noted that the lifting operators are

only applied to the gradients and are not utilized to recompute the solution values at the

interface.

For each element, the volume integration of the diffusive fluxes is given by:

∫

Ωe

~∇φi · Fd(Q
e, ~∇Qe + ~Re) dΩ (3.48)

and the surface integrations by:

∑

Γf∈∂Ωe

∫

Γf
φHf

d dΓ (3.49)

where

Hf
d =

1

2

(
~Fd(Q

e, ~∇Qe +~re
f ) + ~Fd(Q

∗, ~∇Q∗ +~r−f )
)
· ~n (3.50)

3.2.5 Boundary Conditions

The discontinuous Galerkin method allows quite natural treatment of most bound-

ary conditions by simply supplying the prescribed (or derived) boundary values for the

solutionQb (for Dirichlet conditions) or the normal flux~Fb · ~n (for Neumann conditions).

For Dirichlet boundaries, the gradients of the solution at the boundary are taken to be

the same as that of the solution in the adjacent cell (~∇Qb = ~∇Qe), and for Neumann

boundaries, the solution values are taken from the interior state (Qb = Qe). Mixed condi-

tions may be specified through the use of appropriate combinations of these quantities. The
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prescribed values are applied at each quadrature point on the boundary faces where they

may be subject to additional constraints depending on the types of boundary conditions

imposed.

Solid-wall boundaries enforce a zero mass flux condition. Inviscid, slip-wall condi-

tions (i.e. reflecting) prescribe a zero energy flux and a momentum flux based only on

the static pressure directed normal to the wall. Viscous, no-slip boundaries impose a fluid

velocity which matches the wall velocity, however, in this work we consider only cases

with static geometry. Adiabatic and prescribed temperature conditions are also supported.

For flow-through boundaries, a characteristic decomposition is applied to the con-

ditions across the boundary faces. Once the boundary values are obtained through a

characteristic extrapolation procedure [34], they are subsequently used to compute the

flux through the boundary using the numerical interface flux treatments described in Sec-

tions 3.2.3 and 3.2.4.

3.2.6 Time Integration

Once the residual source terms have been obtained from the discretized governing

equations 3.45, they may be used to update the polynomial solution coefficients by using

explicit or implicit time integration methods.

∂Qi

∂t
= R(Q) (3.51)

where

R = M−1
[
−

∮

∂Ωe
φiH dΓ +

∫

Ωe

~∇φi · ~F dΩ
]

(3.52)
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where

~F = ~Fc(Q
e)− ~Fd(Q

e, ~∇Qe) (3.53)

and

H = Hc(Q
e,Q∗;~n)−Hd(Q

e, ~∇Qe,Q∗, ~∇Q∗;~n) (3.54)

andM is the mass matrix (3.42). Since the basis functions are non-zero only in their

prescribed elements, the mass matrix is block diagonal.

3.2.6.1 Explicit Methods

Cockburn and Shu have developed second and third-order accurate explicit Runge-

Kutta algorithms (RK2, RK3) which are total variation bounded (TVB) [23]. Algorithm 3.1

describes the process for akth-order accurate integration.
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Algorithm 3.1 (TVB Runge-Kutta integration)

SetQ(0) = Q(tn)

for i = 1..k

Q(i) =
i−1∑

l=0

(
αilQ

(l) + ∆tnβilR(Q(l))
)

Q(tn+1) = Q(k)

Here∆tn = tn+1 − tn and theα andβ coefficients are given in Table 3.1.

Table 3.1

Coefficients for the RK2 and RK3 schemes

k αil βil

2 1 1
1
2

1
2

0 1
2

1 1
3 3

4
1
4

0 1
4

1
3

0 2
3

0 0 2
3

A standard fourth-order Runge-Kutta (RK4) scheme has also been implemented [53].

k1 = ∆tnR(Q(tn)) (3.55)

k2 = ∆tnR(Q(tn) +
1

2
k1) (3.56)

k3 = ∆tnR(Q(tn) +
1

2
k2) (3.57)

k4 = ∆tnR(Q(tn) + k3) (3.58)

Q(tn+1) = Q(tn) +
1

6
k1 +

1

3
k2 +

1

3
k3 +

1

6
k4 (3.59)
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3.2.6.2 Implicit Methods

Equation (3.51), can be discretized in time as:

(1 + ψ)∆Qn − ψ∆Qn−1 = ∆t
[
(1− θ)Rn(Qn) + θRn+1(Qn+1)

]
(3.60)

where∆Qn = Qn+1−Qn. Equation (3.60) enables the use of a family of time integration

methods including the three point backward (θ = 1, ψ = 1
2
), backward Euler (θ = 1,

ψ = 0), and Crank-Nicholson (θ = 1
2
, ψ = 0) schemes [13, 44].

Due to the non-linearity ofR, updates to the solution are obtained from Equation (3.60)

through the use of an iterative Newton method. The Newton method converges on the

solution toL(Q) = 0 by iteratively solving:

L′(Qn) ∆Qn,p = −L(Qn,p) (3.61)

where

L(Qn+1) = Qn+1−Qn− ∆t

1 + ψ
[(1−θ)R(Qn)+θR(Qn+1)]− ψ

1 + ψ
(Qn−Qn−1) (3.62)

The iteration is initialized with the current solution stateQn,p=0 = Qn and is advanced

by Qn,p+1 = Qn + ∆Qn,p until the norm of the right side of Equation (3.61) falls below

a prescribed tolerance, or a maximum number of iterations is exceeded. The Jacobian of

Equation (3.62) is given by:

L′(Qn) = I− θ∆t

1 + ψ

[
∂

∂Q
R(Qn)

]
(3.63)

3.2.7 Matrix Scaling

The ability of the iterative Newton method to rapidly converge on a solution to the im-

plicit system given above may be adversely affected by poor matrix scaling. It is typically
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advantageous to eliminate, to as much an extent as possible, the effects of poor matrix

scaling prior to solving the system. The solver used in the present work makes use of the

row-scaling, column-scaling, and row-column equilibration algorithms. In each case, the

solver operates on a modified system matrix and right-hand-side.

(D1AD2)y = D1b (3.64)

whereD1 andD2 are diagonal matrices which scale equations and unknowns, respectively,

andx = D2y is the solution toAx = b. For row-scaling,D2 is taken to be the identity,

while for column-scalingD1 is the identity.

When they are not the identity matrix, the scaling factors appearing on the diagonals

of D1 andD2 are computed using the iterative algorithm of Ruiz [57]. In this algorithm,

the maximum value in each row and column are determined. Each row and column are

then multiplied by scaling factors which are the inverse of the square root of the maximum

values (i.e.(||ri||∞)−1/2, and(||cj||∞)−1/2). This continues until the maximum values in

each row and column converge within some prescribed tolerance of one. The resulting

entries in the diagonal matricesD1 andD2 consist of the product of the scaling factors

from each iteration for each row and column, respectively.

Algorithm 3.2 (Iterative row-column equilibration)

Let Â be the matrix scaled byD1 andD2:

Â(0) = A, D
(0)
1 = I, andD

(0)
2 = I,

for k = 0, 1, 2, ..., until convergence

DR = diag
(√

||r(k)
i ||∞

)
, andDC = diag

(√
||c(k)

j ||∞
)

,

Â(k+1) = D−1
R Â(k)D−1

C

D
(k+1)
1 = D

(k)
1 D−1

R , andD
(k+1)
2 = D

(k)
2 D−1

C ,
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3.3 Spatial Integration and Meshing Considerations

The accurate spatial integration of the governing equations is essential to a proper

implementation of the discontinuous Galerkin method. For most problems of engineering

interest, two discrete approximations are commonly utilized to enable the efficient solution

of the governing equations on complex domains: domain decomposition and numerical

quadrature.

For the discontinuous Galerkin method, each element acts as a subdomain all to itself.

Within each element, the solution is approximated with a polynomial function which at-

tempts to satisfy the weak form of the governing equations (3.45) subject to the boundary

conditions imposed on the element by the solutions in the adjacent elements. For a practi-

cal mesh, the elements must be appropriately distributed such that the resulting flow field

can be adequately resolved by the element-wise polynomials and the numerical integration

of the governing equations can be carried out with the required numerical accuracy.

The computational mesh is a partition of space consisting of a collection of simply

shaped elements, which should ideally completely cover the domain with no gaps and no

overlaps. However, depending on the specific geometry of the domain and the sizes and

shapes of available mesh elements, the resulting mesh is often only an approximation to

the exact domain.

In the present work, Bezier volumes are utilized as the internal representation of the

mesh elements. Bezier elements offer a consistent representation of volume and surface

entities which can easily be made to conform to prescribed boundary surfaces to within a

desired order of accuracy. More details are provided in Section 3.2.1.1.
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It is often not practical to evaluate the integrals in the governing equations (3.45) ex-

actly. It is, therefore, common practice to evaluate these integrals using numerical quadra-

ture rules with the appropriate order of accuracy.2 Numerical quadrature rules approxi-

mate the continuous integration operation with a weighted sum of integrand evaluations.

∫
f(x) dx ≈ ∑

q

f(xq)wq (3.65)

Here the integrandf(x) is evaluated at a finite number of locations given byxq, andwq

is a precomputed weight associated with each quadrature point. The weighted sum of

these evaluations is the desired approximation of the integral. The use of more quadrature

points will usually result in a more accurate approximation. Each quadrature rule has an

associated order which determines the rate at which the numerical error in the integration

is reduced as the size of the elements are reduced.

In order to maintain the desired accuracy and stability of the discontinuous Galerkin

method, the order of accuracy of the quadrature rule must be at least twice that of the

polynomial approximation of the solution [61].

Quadrature rules have long been available for a number of common element shapes,

and a comprehensive encyclopedia of quadrature and cubature formulas has recently been

compiled by Cools [30]. The most commonly used element shapes are those for which the

integration by quadrature rules are readily available. Typically, the quadrilateral/hexahedral

and triangular/tetrahedral element shapes are selected because the quadrature rules for

these elements are most easily obtained and are fairly trivial to implement. When these

2The term cubature is sometimes utilized when referring to spatial integration in three or more dimen-
sions. However, it is generally accepted that numerical quadrature can be used, in a generic sense, to describe
the procedure for approximating a continuous integral, of any dimension, with a weighted sum.
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two element types are used together to discretize the same domain, then prism and pyramid

elements may also be required to ensure a topologically valid mesh.

The quadrature rules specify a collection of points in a standard parametric domain and

a set of weights, one for each point. For linear, quadrilateral, and hexahedral elements, the

parametric domains are typically in the range[−1, 1] in each coordinate direction. For

triangular and tetrahedral elements, the points are either provided in Barycentric coordi-

nates (i.e. a linear combination of of the vertexes) with parameters in the range[0, 1], or

the triangle (tetrahedra) is mapped to a degenerate quadrilateral (hexahedra). In the latter

case, care must be taken to avoid evaluating the integrand at, or very near to, the elements’

singularities.

To facilitate the evaluation of the integrals on curved mesh elements, a mapping from

parametric to global coordinates is established. The determinant of the Jacobian of this

mapping then becomes part of the integrand.

∫

Ω
f(x, y, z) dx dy dz =

∫

Ωh

f̂(ξ, η, ζ) J−1 dξ dη dζ

where

f̂(ξ, η, ζ) = f(x(ξ, η, ζ), y(ξ, η, ζ), z(ξ, η, ζ))

and

J−1 =




xξ xη xζ

yξ yη yζ

zξ zη zζ




J−1 = det(J−1)

The quantitydΩh = J−1 dξ dη dζ can be interpreted as a local measure of volume. If

J−1 is constant, then it may be factored out of the integral. The result of the integration

42



in the parametric space is then simply multiplied by the volume of the element. This is

typically what is done in finite volume solvers which rely solely on midpoint rules (one

point quadrature) for integration.

Unfortunately, the constant Jacobian assumption is really only valid for simplex ele-

ment shapes. For non-simplex elements, a constant Jacobian constraint severely limits the

allowable element shapes. For example, a hexahedral element with a constant Jacobian

is a right parallel-piped (i.e. a cube stretched along its principal axes). Any shearing or

twisting of the element caused by non-planar faces or non-orthogonal grid lines would

result in a non-constant Jacobian.

If the Jacobian of the mapping is not constant, then its determinant must be evaluated,

along with the rest of the integrand, at each quadrature point. Inclusion of the determinant

of the Jacobian of the inverse mapping allows the integral to be evaluated in the parametric

space using the aforementioned quadrature rules.

∫

Ωh

f̂ dΩh =
∫

Ωh

f̂(ξ, η, ζ) J−1 dξ dη dζ ≈ ∑
q

f̂(ξq, ηq, ζq) J
−1
q wq

If the mesh is static, then the determinant of the Jacobian can be precomputed and com-

bined with the quadrature weight to form a set of weighted volume elements. The quadra-

ture rule is still a weighted sum, but now the weights also account for variations in the

shape of the element as well.

3.4 Code Verification

Code verification is the process whereby a specific software system is verified to be

properly implemented. A flow solver is an instantiation in code of a set of numerical al-
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gorithms intended to solve the system of governing equations. As such, verification of the

flow solver requires that the implementation of the numerical algorithms be demonstrated

to be accurate to within acceptable tolerances. Upper bounds on the acceptable tolerances

are typically established by the theoretical accuracy of the solver with proper consideration

given to the floating point accuracy limitations of the computational hardware on which

the solver is to be run.

Proper verification of the software implementation of each of the numerical algorithms

is essential to establishing the reliability of the flow solver as a whole. In some instances,

however, it may be impractical to test individual algorithms in isolation. In such cases, it

may be more expedient, and yet still sufficient, to establish the proper functioning of the

flow solver as a whole. The methods of exact, nearby, and manufactured solutions offer

an economical way to test the solver full-up while still being able to detect to the smallest

of implementation mistakes.

3.4.1 Method of Exact Solutions

The Method of Exact Solutions (MES) is employed when there exist known analytic

solutions to the governing equations. With the exact solution readily available, the true

error in the numerical solution can be computed directly at every point in the domain. If

the method is consistent and convergent, one would expect the magnitude of these errors

to diminish as the mesh is refined. The observed rate by which the errors converge should

be of orderO(hp+1), wherep is the degree of the polynomials used to approximate the so-
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lution. The observed rate of convergence is determined by comparing the rate of reduction

in error to the rate of reduction in mesh spacing.

O =
ln

( ||Ei||
||Ej ||

)

ln
(

hi

hj

) (3.66)

where||En|| is the norm of the integrated error in the numerical solution at thenth refine-

ment level andhn is proportional to the mesh spacing at thenth level. Failure to converge

at the expected rate would indicate either a mistake in the implementation or an improper

choice of algorithm(s) for discretizing the problem and/or computing its solution.

The principal drawback of the method of exact solutions is that there exist precious

few known analytic solutions to the Euler equations, even less for the laminar Navier-

Stokes equations, and there are currently no known closed-form solutions to the turbulent

Reynolds-averaged Navier Stokes equations. So, while the method of exact solutions can

provide some very useful information regarding the accuracy of the solver implementation,

its applicability is rather limited to a small set of cases for which analytic solutions are

known to exist.

3.4.2 Method of Manufactured Solutions

The Method of Manufactured Solutions (MMS) was developed to address the lack of

available analytic solutions for certain nonlinear PDEs. The MMS approach allows for a

detailed evaluation of specific numerical solver implementations under a much wider range

of conditions than was previously possible using MES, and with far greater resolution

and accuracy than was ever possible when comparing numerical results to experimentally

obtained data.
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Rather than try to obtain an exact solution to the governing equations, a solution is

manufactured instead. There is no requirement for the prescribed solution to be an exact

solution to the governing equations. However, if the prescribed functions are not an exact

solution, then additional source terms must be generated and added to the system in order

balance the equations. In the present work, the volume integrated source terms,Ie
m, are

obtained by substituting the prescribed functions,Qm, into Equation (3.20).

Ie
m =

∫

Ωe
φe∂Qm

∂t
dΩ +

∫

Ωe
φe(~∇ · ~F(Qm)) dΩ−

∫

Ωe
φeS dΩ (3.67)

These terms are then added to the other numerical source terms already present in the

solver.

This source term is then used to modify the system of equations shown in Equa-

tion (3.45).

∫

Ωe
φe∂Q

e

∂t
dΩ =

∫

Ωe
(~∇φe · ~F) dΩ−

∫

∂Ωe
φeH dΩ +

∫

Ωe
φeS dΩ + Ie

m (3.68)

Under the additional influence of this term, the manufactured solution becomes an ex-

act solution to the modified equations. Thus, in the presence of the manufactured source

terms, the solver will tend to drive the numerical solution towards the manufactured solu-

tion. The accuracy with which the solver recovers the manufactured solution on a family

of refined meshes can then be used to determine the solver’s rate of convergence using

Equation (3.66).

If the PDEs to be solved are of orders (i.e. sth-order derivatives of the solution are

present), then the manufactured solution must be at leastCs+1 continuous to ensure that
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the manufactured source terms are continuous when the differential operators have been

applied to the prescribed solution.

If one wishes to test apth-order-accurate solver, then the manufactured solution should

also be at leastCp+1-continuous. If this condition is not satisfied, then it is possible that

the solver will be able to exactly capture the manufactured solution with the available

degrees of freedom. Once this occurs, there will likely be no further convergence of the

error norms.

Knupp and Salari describe the MMS in greater detail and provide specific recommen-

dations on functions which are admissible for use with the MMS [58]. Bondet al. have

recently extended the technique to allow for the validation of several different kinds of

boundary conditions [14, 15, 16, 17].

The method of manufactured solutions has been utilized extensively during the devel-

opment of the solver used in this research. The MMS tests have been an invaluable tool for

assessing the accuracy of the solver on nearly arbitrary solutions. The MMS is also very

sensitive to a wide variety of errors in solver implementation and problem specification.

It is for this reason that the MMS test is often considered to be among the most rigorous

verification tests that a solver can be subjected to, second only to full theoretical analysis

of the solver algorithms.

Despite the usefulness of the MMS for detecting errors in the solver implementation,

the method lacks precision when it comes to identifying the source of the errors. Also,

when utilizing arbitrary functions, it is possible for the magnitude of the manufactured

source terms to be quite large. If the manufactured source terms are much larger than
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the numerical source terms, then the convergence tests may only be showing the rate of

convergence for the manufactured source terms. One must take care when selecting the

manufactured solution not to inadvertently bias the results in this way. This condition can

be easily tested for by purposefully introducing an inconsistency in the solver implemen-

tation and checking to see if the convergence tests confirm the presence of the anomaly.

Section 3.5 describes the form of the manufactured solution used to verify the current

implementation of the DG flow solver. In Chapter 5, two additional flow models are

presented. These models are meant to replicate the behavior of high-Reynolds number

flows in a curved duct. These flow models provide the opportunity to evaluate several

different mesh configurations by supplying precise error measures throughout the domain.

3.4.3 Method of Nearby Solutions

Similar to the Method of Exact Solutions is the Method of Nearby Solutions (MNS),

also known as the Method of Nearby Problems [56]. In this method, the solution to a

particular flow problem is obtained from a numerical simulation generated by an alter-

nate solver (which has presumably already been verified and/or validated), typically on a

refined mesh. A continuous solution is then generated by interpolating the numerical so-

lution with piecewise high-order splines. Since there is no guarantee that the interpolated

function will exactly satisfy the governing equations, it necessary to augment the solver

with a set of source terms to balance the equations. The source terms are obtained in the

same manner as for the MMS (See Section 3.4.2)..
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One significant advantage of MNS is that the magnitude of the source terms used to

modify the governing equations are much smaller than with MMS. It should, therefore, be

much easier to detect errors generated by the solver since the manufactured source terms

are exerting less influence. Another advantage is that the nearby solutions more accurately

approximate flow conditions that are likely to be encountered by the solver in practice. The

obtained solution is very nearly an exact solution to the PDEs and is, therefore, providing

a much more accurate indicator of the kinds of errors that will be generated by the solver

when it is used to solve the unmodified governing equations.

The primary challenge to using the MNS is the generation of high-order splined so-

lutions which are required to test the high-order accuracy of the solver. There is a good

chance that attempting to interpolate a high-order spline through potentially noisy data

could result in oscillatory behavior in the reconstructed function. Another disadvantage to

the method is that the nearby solution may be difficult to reproduce precisely. The nearby

solution may vary significantly depending on which solver is used to obtain the numerical

solution from which the splined solution is generated.

To address the issues mentioned in the preceding sections, it is necessary to take an

approach somewhere between the methods of manufactured and nearby solutions. In the

current work, a solution generated from a mathematical description is prescribed, but with

the the function being specifically selected such that it closely resembles a physically

realistic flow profile. The resulting function is somewhat nearby and, therefore, possesses

relatively small manufactured source terms. The profile is also easier to reproduce since

it is based on a precise mathematical formulation. With this method, it is also possible to
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approximate certain specific flow phenomena which are of interest to the solver developer.

In this way, the solver can be tested on conditions very near to its intended use while still

having an exact representation of the desired output available to compare against and to

generate precise error estimates.

3.5 Solver Verification with MMS

The method of manufactured solutions (MMS) has been used throughout the devel-

opment of the solver for the purposes of code verification. These tests verify that the

solver algorithms are operating as expected and establish confidence in the solver’s abil-

ity to produce solutions of the desired order of accuracy. The MMS tests can be quickly

conducted, and they provide data on the observed behavior of a specific solver implemen-

tation. To pass the MMS tests, the errors in the solution approximation must be reduced at

an expected rate when the computational mesh is isotropically refined.

The numerical solver has been subjected to a number of verification tests designed to

detect implementation errors during its development. The manufactured solution verifica-

tion tests demonstrate that the solver is capable of attaining the desired order of accuracy

on a wide variety of mesh and flow configurations when Dirichlet boundary conditions are

imposed.

Following the recommendations of Salari and Knupp [58] the prescribed manufactured

solutions have been chosen so that they possess continuous derivatives of arbitrarily high-
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order. The baseline manufactured solutions utilized for solver verification in the present

work have the following functional form:

f(x, y, z) = f̄ +fxx+fyy+fzz+A cos(ωxx+ψx) cos(ωyy+ψy) cos(ωzz+ψz) (3.69)

For the general MMS verification tests, Equation (3.69) is used to generate descrip-

tions for the primitive variables (pressure, temperature, and velocity). The eleven free

parameters (̄f , fx, fy, fz, A, ωx, ωy, ωz, ψx, ψy, ψz) are randomly generated constants,

subject to some constraints which keep the functions bounded to physically realistic val-

ues (e.g. positive pressure and temperature), and reasonable frequency content. The latter

constraint ensures that the solver can be expected to resolve most of the dominant features

in the solution on the coarsest computational mesh. The goal is to be in the asymptomatic

range3 from the coarsest to finest meshes.

In these tests, the boundary conditions are obtained by evaluating the manufactured

solution at the mapped physical coordinates of the mesh boundaries, and applying a char-

acteristic decomposition of the flow state in the surface normal direction.

Given the analytic expression for the manufactured solution, the solver automatically

computes the source terms and incorporates them into the residuals which are used to drive

the evolution of the numerical solution. The solver is run to convergence and the errors in

the resulting numerical solution are computed usingL1, L2, andL∞ norms. This process

is repeated on successively finer meshes. The observed order of accuracy is then computed

from the integrated error norms obtained from solutions on two meshes differing only in

3The asymptomatic range refers to a range of possible mesh discretizations within which the most sig-
nificant flow features are properly resolved. Within this range, solution errors are expected to decrease at a
rate commensurate with the mesh spacinghp, wherep is the order of the method.
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their level of refinement using Equation (3.66). The results of these tests indicate that

the DG method is able to maintain high-order accurate convergence on a wide variety of

prescribed solutions and mesh configurations.

We present here the results of one such test involving the manufactured solution Equa-

tion (3.69) solved over a spherical domain. The discretization of the domain was accom-

plished by first decomposing the sphere into tetrahedra and then further subdividing each

tetrahedron into four hexahedra. (See Figure 3.4) This mesh was then used to generate a

family of isotropically refined meshes by subdividing the hexahedral elements. A sample

of the error data and convergence rates are presented in Table 3.2 and Table 3.3.

Figure 3.4

Spherical domain discretized with hexahedral elements.
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Table 3.2

L1 errors in the conservative variables for the2nd-order sphere MMS test

ρ ρu ρv ρw ρe
L1-error norm

0.00110515 0.189053 0.259318 0.294097 234.99
0.00028037 0.0420182 0.0607268 0.07018 60.9734
6.89971e-05 0.00829666 0.0132533 0.0153815 15.2542

Convergence rate
1.9788 2.1697 2.0943 2.0672 1.9463
2.0227 2.3404 2.1960 2.1899 1.9990

Table 3.3

L1 errors in the conservative variables for the3rd-order sphere MMS test

ρ ρu ρv ρw ρe
L1-error norm

0.000132775 0.0316843 0.0393676 0.045941 30.9613
1.64077e-05 0.00288955 0.00400252 0.00470231 4.03834
1.86469e-06 0.000145986 0.000295765 0.000348658 0.468995

Convergence rate
3.0165 3.4549 3.2980 3.2883 2.9386
3.1374 4.3069 3.7584 3.7535 3.1061
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CHAPTER 4

RESEARCH METHODOLOGY

As discussed earlier, there have been numerous reports in the Discontinuous Galerkin

(DG) literature of researchers having difficulty obtaining stable solutions – or solutions

which converge with the desired order of accuracy – to flow problems in and around do-

main boundaries with smoothly curving surfaces. In almost all instances, the proposed

remedy for the problem involves using curved mesh elements to more accurately approxi-

mate the true boundary shape.

Despite the fact that this problem has been successfully diagnosed as being related

to the quality of the mesh discretization, there has, as yet, been no detailed study of the

precise relationship between the mesh representation and the accuracy and stability of the

solver published in the literature. In this chapter we describe an experimental methodology

for investigating and documenting this relationship.

4.1 Basic Approach

The verification techniques described in Section 3.4 are capable of serving as very

sensitive error detectors; yet by themselves, they provide very little information regarding

the nature of the fault that is preventing the solver from attaining its optimal convergence

rate. For example, it can be rather difficult to distinguish between implementation errors
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(caused by incorrect implementation of solver algorithms) and problem specification errors

(errors in the data provided to the solver from which the numerical solution is obtained).

The most expedient course of action is typically to begin with simple verification tests

to gain confidence in the core solver algorithms, and then steadily increase the scope and

complexity of the tests until the all of the solver capabilities have been verified. Once the

solver implementation has been sufficiently verified, however, one can take advantage of

this knowledge to deliberately investigate the sensitivity of the solver to variations in the

data supplied as input. With the Method of Manufactured Solutions (MMS), it is possi-

ble to target very specific flow conditions and, therefore, conduct very specific numerical

investigations of the solver.

For the purposes of the current investigation, we will focus on the process of generating

computational meshes of sufficient quality to be used for obtaining high-order accurate

solutions to inviscid and very high-Reynolds number flow fields near smoothly curving

boundaries. The MMS is used to obtain precise error norms for a prescribed solution.

Several families of self-similar meshes with telescoping resolutions have been generated

and used to obtain numerical solutions to the prescribed problem. The integrated mean

error norms and estimates for the condition number of the system matrix are computed for

each test case on each mesh.

The following sections provide additional details regarding the methodology used to

conduct the numerical experiments. The specific flow models used in the experiments and

the resulting data are provided in Chapter 5.
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4.2 Specification of the Test Problems

The exact solution to each of the test problems considered in this investigation are

specified by an analytic description of the geometry of the domain,Ω, and an exact, an-

alytic description of the solution state at all points within the domain. The prescribed

solution state is given as a set of continuous functions describing the primitive solution

variables:q = [ρ, u, v, w, T ]. If the prescribed solution is not an exact solution to the

governing equations, then manufactured source terms are generated as described in Sec-

tion 3.4.2.

The numerical solution consists of polynomial approximations to the conservative vari-

ables:Qh ≈ [ρ, ρu, ρv, ρw, ρe], which is computed on a series of meshes with elements

that approximate the exact geometry with varying orders of accuracy. The numerical

solution is initialized by transforming the primitive variables in the prescribed solution

into conservative variables and then projecting the resulting functions into the polynomial

spaces within each of the elements as described in Section 3.2.2.1. The treatment of the

boundary conditions is described in Section 3.2.5.

4.2.1 Coordinate Spaces

The topology of the hexahedral elements naturally gives rise to a local curvilinear

coordinate system within each element in which the coordinate directions are aligned with

the edges of the element. We assume the existence of one-to-one onto mapping functions,

~fe : <3 → <3, from the parametric to global coordinates, and that these functions are

invertible (i.e. the Jacobian of the mappings are non-singular). For the present study, the
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parametric to global mapping functions are provided by the Bezier volume descriptions of

the mesh elements. (See Section 3.2.1.1.)

The prescribed solutions used in this study have been specified in such a way as to

precisely satisfy certain boundary conditions when evaluated at locations along the exact

domain boundary. Due to the approximate nature of the mesh representation, however,

there exists some ambiguity regarding the locations where the prescribed solution and the

numerical solutions are to be evaluated (e.g. for implementing boundary conditions, eval-

uating source terms, and computing error norms). It is, therefore, necessary to consider

an idealized mesh space in which the mesh elements exactly conform to the physical do-

main. The idealized mesh is the limit to which the approximate mesh will approach as the

polynomial degree of the element shapes are increased.

Using the parametric space of each element as a reference, points on the approximate

mesh can be associated with points on the idealized mesh. Any evaluation of the prescribed

solution will be made in the idealized mesh space, while the numerical solution will be

evaluated in the approximate mesh space. In this way, meaningful comparison can be made

between the two solutions, and valid boundary condition data can be obtained regardless

of the accuracy of the approximate mesh configuration.

All geometry data required by the solver is obtained from the approximate mesh el-

ement descriptions. When using the Bezier volume representation to describe the shape

of the mesh elements, curved or otherwise, the mapping from parametric to physical co-

ordinates will almost always be a high-order polynomial function. This implies that the

determinant of the Jacobian of the inverse mapping and the element surface normals – both
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of which are required to integrate the governing equations (3.45) – will be typically be non-

constant.1 Thus, it will be necessary to evaluate these quantities with at least the order of

accuracy required by the scheme in all numerical computations (e.g. flux calculations and

quadrature integrations).

4.2.2 Domain Discretization

The principal mesh parameters to be varied in these experiments are those which deter-

mine the mesh resolution, the distribution of elements within the domain, the polynomial

degree of the mesh element shape functions, and the continuity constraints between adja-

cent elements. The resolution and the placement of the mesh elements within the domain

are established for the coarsest mesh such that the polynomial solution approximations

in each element stand a good chance of resolving nearly all of the relevant flow features.

As the mesh is refined, the relative distribution of the elements remains fixed while each

element is further subdivided.

A standard finite volume type mesh is used to establish an initial distribution of linear

mesh elements. These mesh nodes, along with the geometric description of the domain

boundaries, are then used to generate a collection of mesh elements, which have been

curved to approximate the domain boundaries with the desired order of accuracy.

The shapes of the individual elements are represented internally as Bezier volume el-

ements. The principal requirement for the mesh representation is that it forms a valid

partition of space. That is, the set of all mesh elements should ideally cover the entire

1The only circumstance in which the Bezier representation of a hexahedral element will produce a con-
stant Jacobian is when the shape of the element is a right-parallelepiped.
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domain with no gaps and no overlaps. This condition is trivial to implement in the interior

of the domain and slightly more challenging to satisfy near curved boundary surfaces. In

the interior of the domain,C0 mesh continuity can be accomplished by simply requiring

adjacent elements to reference the same set of control points for each shared edge and

face. At the domain boundaries the surface geometry may only be approximated with

an order of accuracy commensurate with the order of the elements’ Bezier polynomial

representations.

For the present work, the control points for the approximating Bezier surface patches in

each element are obtained from one of two techniques. The first technique – referred to as

Lagrange interpolation – generatesmth order surface patches using anm×m set of sample

points evaluated on the provided surface. This technique establishes onlyC0-continuity

at the interface between elements at the boundary. The second technique – referred to

as Hermite interpolation – creates a2mth order patch from the position and normal data

evaluated for a set ofm × m sample points on the surface. The Hermite interpolation

method allows for the enforcement of aC1-continuity constraint at the element interfaces

along the curved boundary surfaces. In each case, the original mesh nodes provided by

the finite volume input mesh are retained as the corner points of each mesh element. For

m > 2, the remaining sample points are obtained by generating a set of uniformly spaced

points between the mesh nodes and then projecting them onto the exact boundary surface.

For more details regarding the algorithms used to generate the Lagrange and Hermite

surface patches, refer to Sections 3.2.1.2 and 3.2.1.3.
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4.3 Error Evaluation

The accuracy of a given solver implementation is often difficult to assess without

access to the exact solution. The investigation makes use of the method of manufactured

solutions to obtain reliable measures of solution error. The basic approach of this method

is given in Section 3.4.2.

The solver is initialized by projecting the prescribed solution into the polynomial ap-

proximation space within each element as described in Section 3.2.2.1. The solver is then

allowed to run (under the influence of the manufactured source terms if applicable) until

the magnitude of the residual falls below some tolerance or the integrated error norms have

converged to greater than four digits of precision.

The error metrics used in the present work are the integratedLs-norms of the difference

between the prescribed solution and the numerical solution.

Es =
(∫

Ω
(|Q−Qh|)s dΩ

) 1
s

(4.1)

In the solver, this integral is computed using numerical quadrature over each element. The

volume-weighted element-wise errors are summed up and divided by the total volume of

the mesh to obtain the mean total integrated error norm. The use of the mean error (volume

weighted and normalized) allows a more meaningful comparison with theL∞-norm and

mean error norms computed on other mesh configurations, which may have a different

distribution of mesh elements and/or total mesh volume.

Ee
s =

Nq∑

q=1

(
(|Qe −Qe

h|)s (J−1)e
)

q
wq (4.2)
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Es =


 1

V

∑

e∈Th

Ee
s




1
s

(4.3)

HereV is the volume of the entire mesh,Qe, Qe
h, and(J−1)e are evaluations of the pre-

scribed solution, the numerical solution, and the determinant of the Jacobian of the inverse

coordinate mapping at each quadrature point within each element.

The error norms reported in the next chapter have been computed using theL1-norm.

Errors computed with theL2 andL∞-norms have also been computed and observed to

converge at approximately the same rate as theL1 error unless specifically noted otherwise.

4.4 Condition Number Evaluation

The stability of the solver as well as the ability of the solver to reach an accurate,

converged solution with a reasonable amount of computational effort are issues of much

practical concern. When considering the solver implementation, obtaining the solution

to the linearized equations is often where the greatest amount of computing effort is ex-

pended. The stiffness of the problem under consideration influences the stiffness of the

system matrix which, in turn, influences the efficiency and stability of the solver. The con-

dition number of the system matrix – the ratio of its maximum to minimum eigenvalues –

is usually a fairly good measure of the ability of the solver to efficiently obtain a solution

to a given flow problem. For large matrices it is often impractical to compute the eigen-

values directly. Instead, we use an estimate of the condition number, which we take as a

lower bound on the actual condition number.

In addition to the essential stiffness of the flow problem under consideration, there

exist a number of other non-essential sources of matrix stiffness which can affect the mag-
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nitude of the computed or estimated condition number. One such source of non-essential

stiffness is caused by poor matrix scaling. In the present solver implementation, most of

the adverse matrix scaling effects are likely due to the choice of units for the conserved

solution variables. For non-dimensional codes, the choice of reference quantities would

have a similar effect.

Since we would like to infer something about the stiffness of the problem from an es-

timate of the condition number, we must attempt to remove as much of the non-essential

stiffness from the matrix as possible. The removal, or reduction, of the influences of ma-

trix scaling on the condition number should permit a more reliable evaluation of the effects

of the essential stiffness of the flow problem. The matrix scaling algorithm described in

Section 3.2.7 should provide a consistent matrix representation regardless of any partic-

ular choice of units or reference quantities. The scaled matrix is then used to obtain the

condition number estimate.

To compute the condition number estimate, we letÂ = (D1AD2) be the scaled system

matrix resulting from Algorithm 3.2. For the linear system̂Az = w, the condition number

may be estimated by the following expression:

κ1(Â) ≥ ||Â||1||Â−1w||1
||w||1 =

||Â||1||z||1
||w||1 (4.4)

Equality will occur when the sample vectorz is aligned with the direction of maximum

elongation of the matrix. Since it may be difficult to determine this directiona priori, we

utilize an iterative approach where a large number of randomly generated sample vectors,

z(k), are transformed by the system matrix,w(k) = Âz(k). The condition number estimate
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is then computed from Equation (4.4), with the largest value taken as the lower bound on

the actual condition number.

κ1(Â) ≥ max
k

( ||Â||1||z(k)||1
||w(k)||1

)
(4.5)

In the present work we use a sample size of five-hundred randomly generated vectors.

We then examine these estimates and use them as a somewhat crude tool for evaluating

the relative stiffness of the system matrix when the same flow problem is evaluated on

multiple meshes. We seek to determine if such variations in mesh configurations have any

significant effects on the condition of the system matrix.
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CHAPTER 5

NUMERICAL RESULTS

5.1 Scope of the Numerical Investigation

The present work seeks to determine the effects of mesh discretization of smoothly

curving solid wall boundaries on the accuracy and stiffness of the computed solution. To

accomplish this, two model flow fields inside of a curved duct domain are investigated.

The first model prescribes an exact solution to the inviscid Euler equations (3.1), (3.2),

and (3.3), while the second model prescribes a flow profile which approximates the be-

havior of a turbulent boundary layer. The latter profile is designed to be a nearby solution

to the Navier-Stokes equations (3.4), (3.5), and (3.6). The boundary layer profile has been

carefully selected such that the prescribed solution possesses many of the expected prop-

erties of a high-Reynolds number flow near a curved solid wall boundary.

There are several variations in the flow profiles that could be generated by varying the

input parameters to each model. In the following sections, the implementation details for

each model is provided, followed by the numerical results from a select few instantiations

of these flow models.
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Figure 5.1

Flow schematic for the curved duct domain geometry.

5.2 Supersonic Vortex

The first test case is commonly referred to as the supersonic vortex [1, 60]. This exact

solution to the inviscid equations is an idealized vortex flow. The domain is a curved duct

bounded by two circular arcs (See Figure 5.1). The internal flow is tangentially directed

around the bend by pressure and density variations in the radial direction. The prescribed

density distribution is given by the following expression (Figure 5.2).

ρ(r) = ρi

[
1 +

γ − 1

2
M2

i

{
1−

(
ri

r

)2
}] 1

γ−1

(5.1)
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Figure 5.2

Density profile for the SSV test case.

The velocity of the flow is oriented tangential to the cylinder at all points in the domain

(no flow along the axis or in the radial direction), while the magnitude of the flow velocity

is inversely proportional to the radius.

~u(r, θ) = ui

(
ri

r

)
(r sin θ ı̂− r cos θ ̂) (5.2)

Hereri is the radius of inner arc, andui = Miai is the magnitude of the flow velocity at

the inner channel wall (Figure 5.3).

The remaining solution state is obtained from the isentropic conditions:

T0

T
=

(
1 +

γ − 1

2
M2

)
=

(
a0

a

)2

=
(
P0

P

) (γ−1)
γ

=

(
ρ0

ρ

)(γ−1)

, (5.3)

and the equations of state for a perfect gas:

P = ρRT, (5.4)
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Figure 5.3

Mach number profile for the SSV test case.

P = (γ − 1)
(
ρe− 1

2
ρ~u · ~u

)
, (5.5)

a =
√
γRT (5.6)

The radial variations in pressure and temperature are plotted in Figures 5.4 and 5.5.

The results presented in the next section are for runs of the supersonic vortex test case

with the following conditions:

ri = 1.0 m ro = 1.384 m Mi = 2.25 Ti = 300 K ρi = 1.0 kg/m3 (5.7)

Figure 5.6 displays the first three mesh refinements used in the SSV test cases. Al-

though the meshes shown have linear element shapes, all curved meshes also utilize the

same distribution and spacing of mesh elements.
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Figure 5.4

Pressure profile for the SSV test case.
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Figure 5.5

Temperature profile for the SSV test case.
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Figure 5.6

First three mesh refinements for the SSV test cases
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Time integration is performed using the backward Euler method. Since this is an exact

solution to the inviscid equations, there are no manufactured source terms present. The

solver is run to convergence, where the residuals are allowed to drop to10−10.

The solver computed the solution to the supersonic vortex case with first through fifth-

order solution approximations, and on seven different mesh configurations (C2, C3, C4,

C5, C6, H2, H3). TheL1-error norm data for these runs are plotted on the following pages.

The raw data is provided in Appendix A.

5.3 Results for the Supersonic Vortex Cases

Figures 5.7 and 5.8 display logarithmic plots of theL1-error norms in density and x-

momentum against the reciprocal of mesh spacing for the supersonic vortex case run with

a first-order (piecewise constant) solution approximation. The solid line is provided for

reference and represents the slope at which first-order convergence is attained. Since there

is no discernible difference in computed error norms for these solutions, then it would

appear that the choice of mesh discretization is irrelevant for first-order solutions.

Figures 5.9 and 5.10 plot theL1 density and momentum error norms computed with

a second-order solution approximation. While all of the solutions converge at second-

order rate, the errors are clearly greater when the linear (C2) elements are used. No clear

advantage is gained, however, by using elements with greater than third-order accuracy.

Figures 5.11 and 5.12 show theL1 density and momentum error norms for the third-

order solutions. Once again, it can be seen that the curved mesh elements are providing

much more accurate solutions. This time, however, the computed error norms for the linear
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elements (C2) are only converging at a second-order rate, while all of the meshes which

use curved elements (C3, C4, C5, C6, H2, H3) appear to be converging at the expected

third-order rate. As before, there are no clear improvements in the error norms when using

higher than third-order elements.

The fourth-order errors are plotted in Figures 5.13 and 5.14. The linear elements are

still generating a significant amount of error and limiting the solution to second-order

convergence. The curved elements are all converging at a fourth-order rate; however, now

there appears to be some small difference in the magnitude of the computed error norms

amongst the higher-order curved elements. In order of least to most accurate: Hermite

cubic (H2), Lagrange quadratic (C3), Lagrange cubic (C4), then all higher-order elements

(C5, C6, H3). With the exception of the Hermite cubic elements, the data indicate that

there is a slight reduction in error with higher-order geometry representation, although

beyond fifth-order (C5), there does not appear to be any noticeable improvement.

Since the quadratic elements appear to be attaining fourth-order accurate convergence

rates, there would seem to be a violation of the iso-parametric element criteria which

is typically cited in the literature. To determine if this trend continues, the supersonic

vortex case was run again with a fifth-order solution approximation. TheL1-error norms

are plotted in Figures 5.15 and 5.16. From this data, it can clearly be seen that both the

quadratic (C3) and cubic (C4, H2) elements are limited to fourth-order convergence, while

the fifth-order (C5), and above (C6, H3) elements maintain the expected fifth-order rate.

This data clearly shows that the linear elements are incapable of delivering higher

than second-order accuracy, regardless of the polynomial order of the solution represen-
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tation. Figures 5.17 and 5.18 show the behavior of the error norms for just the linear

(C2) elements when used with first through fifth-order solution approximations. The sec-

ond through fifth-order solutions appear to be limited by the second-order accuracy of the

mesh representation. It is also worth noting that, for a given mesh resolution, the magni-

tudes of the error norms actually increase with higher-order solution approximations. This

data is consistent with observations in the literature which suggest that the use of linear

mesh elements may cause non-physical unsteady phenomena to develop in response to the

faceted surface geometry. Since the higher-order schemes produce much less numerical

dissipation, they become less and less capable of damping out these non-physical flow

features before they contaminate the rest of the flow field.
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L1-errors inρ for a1st-order solution of the SSV
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L1-errors inρu for a1st-order solution of the SSV
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L1-errors inρ for a2nd-order solution of the SSV
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L1-errors inρu for a2nd-order solution of the SSV
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L1-errors inρ for a3rd-order solution of the SSV
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L1-errors inρu for a3rd-order solution of the SSV
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L1-errors inρ for a4th-order solution of the SSV
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L1-errors inρu for a4th-order solution of the SSV
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L1-errors inρ for a5th-order solution of the SSV
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L1-errors inρu for a5th-order solution of the SSV
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L1-errors inρ for all solution orders (SSV)
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L1-errors inρu for all solution orders (SSV)
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5.4 High-Reynolds Number Turbulent Boundary Layer

We present here a new nearby, manufactured solution which attempts to mimic many

of the features typically found in turbulent boundary layers. As with the method of nearby

solutions, the goal is to make the source terms as small as possible by prescribing a solution

state which is as close to a real solution as is practical. Unlike the traditional method

of nearby solutions, which utilize a splined interpolation of a solution computed from

another flow solver, the prescribed flow state in this test case will be derived from the

analytically and empirically derived expressions which comprise the well known law-of-

the-wall relations [70, 72].

Although the law-of-the-wall relations which form the basis of this profile were orig-

inally derived for a flat plate, they are adapted here for use with the same curved duct

geometry used in the supersonic vortex case (Figure 5.1). Using this configuration will

permit the investigation of the behavior of the solver when highly anisotropic flow fea-

tures are present near smoothly curving domain boundaries. To accomplish this objective

with minimal added complexity to the flow profile model, a single boundary layer cross-

section, generated from the flat-plate boundary layer expressions, is mapped into the radial

direction of the curved duct domain. In this configuration, the inner duct wall serves as an

adiabatic, no-slip, viscous wall.

It should be noted here that no attempt is being made to precisely model the actual flow

that would develop in the duct. Rather, we are specifying a flow profile model, which is

based on some well known relations from boundary-layer theory. This model has a fairly
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convenient mathematical description and possesses some of the general characteristics of

attached turbulent boundary layers.

Beginning with the density and temperature profiles for the supersonic vortex profile

described in Section 5.2, the flow velocity profile is modified to approximate the rate of

growth of the flow speed in a viscous boundary layer. The radial cross-section of the

velocity profile is taken to be that of a turbulent, flat plate boundary layer that has traveled

a distance ofx along the flat plate before entering the curved duct. The Reynolds number

of the flow is given by:

Re =
ρ∞u∞x
µ∞

(5.8)

and the width of the boundary layer is given by:

δ = 0.074 x Re−
1
5 (5.9)

The velocity profile consists of a piecewise function which maintains at leastC3-

continuity throughout the domain, as required by the MMS technique. The functional

form of the velocity profile is specified in two parts: the viscous sublayer is represented as

a sixth-order polynomial, and the log-layer is of the standard law-of-the-wall form [70].

u+(y+) =





∑5
i=0 ai(y

+)i for y+ ≤ 30

1
κ

ln(y+) + C for 30 < y+ ≤ y+
δ

(5.10)

The scaled wall distance (y+) is related to the radial distance by:

y+ =
ρwuτ

µw

(r − ri) (5.11)

and the scaled velocity (u+) is related to the magnitude of the tangential velocity (û) by:

u+ =
û

uτ

(5.12)
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Here, the friction velocity (uτ ) is:

uτ =

√
τw
ρw

(5.13)

Terms sub-scripted with aw denote quantities evaluated at the wall (ρw: density,µw:

viscosity,τw: shear stress). In terms of the skin friction (cf ), freestream density (ρ∞), and

freestream velocity (̂u∞), the wall shear stress is:

τw =
1

2
ρ∞û2

∞cf (5.14)

where

cf = 0.36 Re−
1
5 . (5.15)

The spline fit to the viscous sublayer must satisfy two conditions at the wall and four

conditions aty+ = 30. The polynomial coefficients for the resulting sixth-order spline are

thus derived from the following conditions:

At y+ = 0:

u+ = 0, (5.16)

∂u+

∂y+
= 1, (5.17)

(5.18)

and aty+ = 30:

u+ =
1

κ
ln(30) + C, (5.19)

∂u+

∂y+
=

1

κ

(
1

30

)
, (5.20)

∂2u+

(∂y+)2
=

1

κ

(
− 1

302

)
, (5.21)

∂3u+

(∂y+)3
=

1

κ

(
1

303

)
. (5.22)
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Since these derivatives are satisfied in the (u+,y+)-space, only one set of coefficients are

required, regardless of the effects of scaling the boundary layer. If we letκ = 0.41 and

C = 4.9, then we have:

a0 = 0

a1 = 1

a2 =
10

369
ln(30)− 11083

110700

a3 =
877

184500
− 2

1107
ln(30)

a4 =
1

22140
ln(30)− 6913

66420000

a5 =
403

467015625
− 1

2490750
ln(30)

Since there is no turbulence model currently implemented, a turbulent viscosity profile

is provided as part of the prescribed solution. There are two principal parts to the turbulent

viscosity profile; the inner and outer layers. The inner viscosity profile derives from the

constant shear stress assumption and has the form:

µti =
τw
dû
dr

− µs (5.23)

The outer viscosity profile is based on the Cebeci-Smith model [72]:

µto = α ρ û∞ δ∗v Fkleb(y; δ), (5.24)

where

lmix = κy
[
1− e−y+/A+

]
, (5.25)

Fkleb(y; δ) =

[
1 +

(
y

δ

)6
]−1

, (5.26)
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δ∗v =
∫ δ

0
(1− û/û∞) dy, (5.27)

κ = 0.41, α = 0.0168, A+ = 26 (5.28)

The combined profile is typically treated as a piecewiseC0-continuous function:

µt =





µti y+ < y+
m

µto y+ > y+
m

(5.29)

with y+
m being the location where the values of the two functions intersect. Figure 5.19

plots the inner and outer turbulent viscosity profiles (in the radial direction) as the red and

blue traces, respectively. Note that the radial component of shear stress (τ = (µs+µt)∂rû),

plotted in Figure 5.20, is onlyC0-continuous. This results in a discontinuity in the radial

component of the manufactured source term for momentum (∇ · σ̃ = ∂rτ r̂) as shown

in Figure 5.21. In order to meet the smoothness requirements for the MMS, the source

term should be at leastC1-continuous. As stated in Section 3.4.2, quantities in the profile

should be at least one order higher in continuity than the highest derivative taken of that

quantity. Since the Navier-Stokes equations posses first-order derivatives of viscosity, the

viscosity profile must therefore be at leastC2-continuous.

One way to generate a smooth viscosity profile is to utilize a blending function to

smoothly transition from one function to the next.

µtkleb
= Fkleb(y

+; y+
m)µti + (1− Fkleb(y

+; y+
m))µto (5.30)

This blended profile is plotted in Figure 5.19, as the green trace. In Figure 5.20, one can

see that the shear stress is continuous, as is the source term in Figure 5.21. Although this

form of the viscosity function does provide a smooth transition between the inner and outer
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viscosity profiles, the resulting manufactured source term possess a significant oscillation

neary+
m. As the Reynolds number increases, this feature becomes even more anisotropic;

the amplitude of the oscillation grows while it’s width diminishes. The presence of highly

anisotropic features in the source terms is not necessarily a show-stopper; however, it does

impact the requirement that the mesh be made fine enough to enable accurate integration

of the source terms.

Rather than concern ourselves with adapting the mesh to resolve arbitrary features in

the source terms, an alternative blending technique is utilized which does not result in a

substantial oscillation in the source term.. In this approach, a sixth-order spline is used to

patch together the two viscosity layers. The spline function is constructed to match the

inner and outer viscosity profiles, and their first two derivatives, at a distance ofεmy
+
m on

either side ofy+
m.

µts =
5∑

i=0

ci (y+)i (5.31)

µt =





µti y+ ≤ (1− εm)y+
m

µts (1− εm)y+
m < y+ ≤ (1 + εm)y+

m

µto y+ > (1 + εm)y+
m

(5.32)

In the present work,εm = 0.5, and the spline coefficients,ci, which satisfy the con-

tinuity constraints, are numerically computed. As can be seen in Figure 5.21, the source

terms due to the splined viscosity profile (red, black, and blue traces) maintain the con-

stant shear stress assumption of the inner viscosity layer further into the domain before

smoothly transitioning to the outer layer without the oscillatory behavior observed with

the previous approach.
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Figure 5.19

Turbulent viscosity profiles
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Figure 5.20

Radial component of shear stress
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Figure 5.21

Radial component of the MMS source term for momentum due to viscous effects
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The prescribed solution functions, consisting of the density and temperature profiles

from the supersonic vortex case and the modified velocity and viscosity profiles given

above, are substituted into the original governing equations (3.20) and the manufactured

source terms (3.67) are obtained. These source terms are added to the numerical source

terms already present in the solver (3.68). Under the influence of these source terms the

solver will evolve the solution towards the prescribed solution. Once the solver has con-

verged, error norms are computed (4.2) which are then utilized to determine the observed

order of accuracy of the scheme (3.66).

The High-Reynolds Number Turbulent Boundary Layer (HRNTBL) test case has been

run at four different Reynolds numbers (Re ∈ {5 · 105, 1 · 106, 2 · 106, 4 · 106}) on seven

different mesh configurations (C2, C3, C4, C5, C6, H2, H3). The mesh configurations

denoted by Cn utilizenth-order Bezier volumes which have been generated by a Lagrange

interpolation throughn points in each parametric direction. The configurations denoted by

Hn make use of a Hermite interpolation procedure and produce2nth-order Bezier mesh

elements. These interpolation algorithms are described in more detail in Sections 3.2.1.2

and 3.2.1.3.

For each Reynolds number case, an initial coarse mesh is generated such that the loca-

tion of the first point off the wall isy+ ≈ 5. An exponential stretching function (5.33) is

then used in the radial direction to relax the point spacing away from the wall, such that

the mesh is nearly isotropic near the outer boundary.

r(z) = ri +
eαz − 1

eα − 1
(ro − ri), 0 ≤ z ≤ 1 (5.33)
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From the initial coarse mesh, a series of self-similar meshes are generated in which the

number of elements in each direction is doubled for each additional level of refinement.

The point spacing in the radial direction is obtained by splitting the uniform point distri-

bution in parametric space (z) prior to applying the stretching function (5.33). In this way,

the rate of growth for the elements remains smooth.

Table 5.1 lists the resolutions of the coarsest meshes, the exponential stretching factors

used in Equation 5.33, and the minimum and maximum element aspect ratios.

Table 5.1

Parameters for the coarsest mesh in each HRNTBL test case

Re Nθ ×Nr α min(hθ/hr) max(hθ/hr)
5 · 105 5× 11 2.0 2.18516 25.4179
1 · 106 5× 11 3.2 1.66581 58.3019
2 · 106 5× 15 4.0 1.86636 143.754
4 · 106 5× 34 4.0 2.18516 328.881

In the next section, theL1-errors norms for density and x-momentum are presented.

The data is plotted for each mesh configuration over a series of refined meshes. The data

shows theL1-error norms (E1) on the y-axis versus the inverse of the mesh spacing (1/h)

on the x-axis. The solid lines on the plots are provided to illustrate the slopes which

correspond to second, third, and forth-order rates of convergence. The raw data for all

four conservative variables for each set of runs are given in Appendix B.
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5.5 Results for the Turbulent Boundary Layer Cases

As with the supersonic vortex case, the data indicates that computing second-order

accurate solutions may be obtained with any of the mesh configurations; however, there

is a noticeable improvement in the computed error norms when curved meshes (C3, C4,

C5, C6, H2, H3) are employed. There is no additional improvement in error norms when

greater than third-order elements are used. (See Figures 5.22, 5.23, 5.24, 5.25, 5.26, 5.27,

5.28, and 5.29)

When the solver is run with a third-order solution approximations, the linear mesh

elements (C2) still show only second-order convergence of the error norms. Third-order

convergence may be obtained with quadratic or higher mesh elements. Unlike the super-

sonic vortex, however, there now appears to be a noticeable difference in error norms com-

puted on the third-order geometry (C3) when compared to the higher-order mesh elements

(C4, C5, C6, H2, H3), particularly on the coarser meshes. The errors norms computed

for the higher-order mesh shapes (C4, C5, C6, H2, H3) are effectively the same. (See

Figures 5.30, 5.31, 5.32, 5.33, 5.34, 5.35, 5.36, and 5.37)

When fourth-order solution approximations are used, it becomes very difficult for the

solver to arrive at a converged solution on meshes with linear elements (C2). When so-

lutions are obtained on the linear meshes, the convergence rate is still only second-order.

With quadratic elements, the error norms in density and energy are converging at a fourth-

order rate; however, the error norms for momentum appear to only be third-order accurate.

Fourth-order convergence is only obtained when the solver runs on cubic meshes (C4, H2)

or better (C5, C6, H3). It is worth noting that there is a slight improvement in error norms
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on meshes with greater than fourth-order elements (C5, C6, H3), but once again, we see

that there is no further improvement in error norms once the geometry is represented at

one order higher than the solution. (See Figures 5.38, 5.39, 5.40, 5.41, 5.42, 5.43, 5.44,

and 5.45)

In general, it seems that the Hermite cubic meshes (H2) seem to generate slightly

greater error norms than the Lagrange cubic meshes (C4). This is most likely due to the

fact that the Lagrange interpolated elements pass through more points on the actual bound-

ary surface for a given order of accuracy. Thus, the Lagrange elements are more likely to

conform more closely to the boundary than the Hermite interpolated geometry which only

passes through half as many points on the boundary. Although, there does not appear to

be any noticeable difference in errors generated from the sixth-order interpolations, expe-

rience with the cubic elements suggests that a sixth-order solution may reveal a preference

for theC6 elements over theH3 type. (See again Figures 5.38, 5.39, 5.40, 5.41, 5.42,

5.43, 5.44, and 5.45)
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L1-errors inρ for a2nd-order solution atRe = 5e5
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L1-errors inρu for a2nd-order solution atRe = 5e5
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L1-errors inρ for a2nd-order solution atRe = 1e6
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L1-errors inρu for a2nd-order solution atRe = 1e6
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L1-errors inρ for a2nd-order solution atRe = 2e6
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L1-errors inρu for a2nd-order solution atRe = 2e6
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L1-errors inρ for a2nd-order solution atRe = 4e6
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L1-errors inρu for a2nd-order solution atRe = 4e6
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L1-errors inρ for a3rd-order solution atRe = 5e5
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L1-errors inρu for a3rd-order solution atRe = 5e5
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L1-errors inρ for a3rd-order solution atRe = 1e6
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L1-errors inρu for a3rd-order solution atRe = 1e6
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L1-errors inρ for a3rd-order solution atRe = 2e6
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L1-errors inρu for a3rd-order solution atRe = 2e6

98



1e-07

1e-06

1e-05

1e-04

0.001

0.01

0.1

L1
(E

)

1/h

C2
C3
C4
C5
C6
H2
H3

Figure 5.36

L1-errors inρ for a3rd-order solution atRe = 4e6
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L1-errors inρu for a3rd-order solution atRe = 4e6

99



1e-09

1e-08

1e-07

1e-06

1e-05

1e-04

0.001

0.01

0.1

L1
(E

)

1/h

C2
C3
C4
C5
C6
H2
H3

Figure 5.38

L1-errors inρ for a4th-order solution atRe = 5e5
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L1-errors inρu for a4th-order solution atRe = 5e5
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L1-errors inρ for a4th-order solution atRe = 1e6
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L1-errors inρu for a4th-order solution atRe = 1e6
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L1-errors inρ for a4th-order solution atRe = 2e6
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L1-errors inρu for a4th-order solution atRe = 2e6
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L1-errors inρ for a4th-order solution atRe = 4e6
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L1-errors inρu for a4th-order solution atRe = 4e6
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5.6 Matrix Condition

The condition number for the scaled system matrices for each of the HRNTBL cases

have been estimated and are plotted on the following pages. Since these are only estimates

of the condition number, one can expect a small amount of variance from the actual values.

In general, the condition number tends to increase as the mesh is refined, although for

theRe = 5e5 case, there opposite appears to be true. The most noticeable trend shown

in these plots is the difference in condition number estimates for linear elements versus

curved elements, particularly on the coarser meshes. As the meshes are refined, however,

the condition number estimates for all element types tend towards the same values. Among

the curved elements, there appears to be very little difference in condition number for a

given mesh resolution. Of the significant variances which do exist, there appears to be one

particular mesh for which the condition numbers diverge. The source of these deviations

and their significance have not yet been determined.

From the data provided, it would appear that poor matrix conditioning is not a serious

obstacle for these types of problems. While preparing these test cases to run, a variety of

mesh resolutions and distributions were evaluated to find specific configurations on which

converged solutions could be obtained. Based on that experience, and the data presented

here, it appears as though the condition number estimate is more strongly affected by

the mesh resolution than the specific shapes of the elements. In fact, for a sufficiently

refined mesh, the order of the mesh element shapes appears to have almost no affect on

the condition number estimate.
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Condition numbers for2nd-order HRNTBL solutions atRe = 5e5
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Condition numbers for3rd-order HRNTBL solutions atRe = 5e5
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Condition numbers for4th-order HRNTBL solutions atRe = 5e5
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Condition numbers for2nd-order HRNTBL solutions atRe = 1e6
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Condition numbers for3rd-order HRNTBL solutions atRe = 1e6
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Condition numbers for4th-order HRNTBL solutions atRe = 1e6
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Condition numbers for2nd-order HRNTBL solutions atRe = 2e6
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Condition numbers for3rd-order HRNTBL solutions atRe = 2e6
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Condition numbers for4th-order HRNTBL solutions atRe = 2e6
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Condition numbers for2nd-order HRNTBL solutions atRe = 4e6
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Condition numbers for3rd-order HRNTBL solutions atRe = 4e6
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Condition numbers for4th-order HRNTBL solutions atRe = 4e6
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5.7 Discussion of Numerical Results

Based on the results of these numerical experiments, there are a number of useful ob-

servations may be made with regard to mesh quality considerations for the discontinuous

Galerkin method. With respect to the minimum criteria required to maintain the accuracy

of the scheme:

• Linear elements should not be used to compute solutions when greater than second-
order accuracy is desired,

• For inviscid simulations, quadratic and cubic elements may be used to obtain solu-
tions that are up to fourth-order accurate,

• For viscous simulations, the mesh elements used near no-slip viscous boundary con-
ditions must be iso-parametric or super-parametric,

• Boundary surfaces patches must be at leastC0-continuous at element interfaces, but
C1-continuity does not appear to be required,

The preponderance of numerical evidence presented both here and in prior published

works, make it abundantly clear that use of linear mesh elements to resolve smoothly

curving boundaries will result in severely degraded solution accuracy. The data from the

supersonic vortex test and the turbulent boundary layer cases confirm that the DG solver

is restricted to second-order accuracy, regardless of the order of the polynomial solution

approximation. This trend appears to hold even when these boundary surfaces are covered

with very fine meshes.

Using curved element shapes of quadratic or higher order appears to be sufficient to

allow the solver to obtain first through fourth-order accurate solutions of inviscid flows.

However, for fifth-order accurate solutions, both the quadratic and cubic elements were

insufficient. This suggests that there may be some even-odd coupling between the orders
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of the mesh and solution approximations when solving systems of hyperbolic conservation

laws.

When computing convection-diffusion solutions, the use of iso-parametric elements is

required to maintain the desired order of accuracy of the scheme. Slight improvements in

solution errors have been observed when using mesh elements of at least one order higher

than the desired solution accuracy. The improvement is most noticeable on coarser meshes.

This suggests that it may be possible to trade mesh resolution for accuracy of surface

approximation so long as the mesh remains fine enough to accurately resolve relevant flow

features near the boundary.

From these numerical tests, it appears thatC1-continuity of the mesh elements near the

boundary does not produce any significant benefits overC0-continuity. In fact, the data

provided in this report seems to indicate that the error norms are slightly worse for theC1-

continuous boundary representations. Thus, for a given polynomial order of mesh element,

the data suggests that it is more appropriate to minimize surface displacement error than

attempt to maintain the continuity of surface normal directions at element interfaces. This

is an encouraging result that further demonstrates the compact nature of the DG scheme.

The stiffness of the solver, as indicated by the condition number estimates obtained

for the scaled system matrix, does not appear to be related to the order of the mesh ele-

ment shapes. There are some indications that the condition number may be more strongly

influenced by the resolution and distribution of the mesh elements.
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CHAPTER 6

CONCLUDING REMARKS

The current study has taken the position that mesh quality is as much dependent upon

the numerical methods and algorithms employed by the solver as it is on the physical char-

acteristics of the domain and the flow under consideration. In practice, it is often imprac-

tical to obtain a rigorous theoretical analysis for a particular solver implementation. Even

when available, such analysis does not always give a complete picture of how the solver

will perform on complex flow problems. In these situations, the only practical solution is

to empirically evaluate the behavior of the solver under realistic usage conditions.

There are a number of existing verification methods which can be utilized to assess the

numerical accuracy of a given solver implementation. Although these methods provide

very little insight into the exact nature of the errors generated by the solver, they are in-

valuable for establishing confidence in the correct implementation of the solver algorithm.

These verification methods may also be used to assess the numerical accuracy of a solver

under conditions which approximate very specific flow regimes. This is a critical capa-

bility which allows for highly accurate characterization of the numerical errors produced

by the solver in regions that have traditionally been very difficult to analyze with standard

theoretical techniques.
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In the present work, we have taken these new capabilities one step further by utilizing

the increased error sensitivity to investigate of the issue of mesh quality as it pertains to

a high-order accurate discontinuous Galerkin solver implementation. By systematically

varying the mesh approximation space and then examining the numerical errors and con-

dition number estimates, relationships between the accuracy and stiffness of the solver to

various mesh properties have been deduced. The resulting data has provided some useful

insights into the meshing strategies which best preserve the theoretical accuracy of the

method and also yield the most accurate solutions.

These analysis techniques should be generally applicable to a wide variety of numer-

ical solvers and mesh configurations. The only requisite condition is that there exist a

well defined mathematical description of the flow field in the region under consideration.

This description may be obtained from exact known solutions, nearby splined approxima-

tions to previously computed solutions, or even empirically and theoretically derived flow

models.

6.1 Summary of Results

When considering problems involving smoothly curving boundaries, we have con-

firmed that the use of linear mesh elements near curved boundaries will prevent the solver

from attaining any higher than second order error convergence, regardless of the polyno-

mial order of the solution approximation. The use of curved elements permits a significant

reduction in computed error norms, even in second-order accurate solutions.
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When solving the inviscid equations, quadratic and cubic elements may be used to

compute up to fourth-order accurate solutions. For viscous flows, however, it was ob-

served that the error convergence rate was limited to the same order of accuracy as the

mesh element approximations to the domain boundaries. This result confirms the stan-

dard practice in the finite element community of utilizing iso-parametric mesh elements to

discretize the domain.

The iso-parametric condition is only a minimum criteria required to maintain the the-

oretical order of accuracy of the scheme. The data from our experiments indicate that

increasing the polynomial order of the boundary elements to at least one order higher than

the solution approximation typically results in a noticeable decrease in the computed error

norms. This result was most dramatic for second order solutions where the computed error

decreased by up to an order of magnitude when curved elements were employed. It is fur-

ther noted that increasing the polynomial order of the mesh elements beyond one greater

than the solution approximation did not produce any further reduction in the error norms.

With regards to the specific interpolation techniques used to generate the curved mesh

element shapes, our results indicate that there is no requirement for the surface patches to

maintain continuous normal directions between elements. In fact, the data from this in-

vestigation indicates that enforcingC1-continuity at the element interfaces actually results

in slightly higher computed error norms than that which is produced by the same order

element generated with onlyC0-continuity.

We therefore conclude that the degrees of freedom for the mesh element should be

optimized for minimizing the surface displacement error within each element rather than
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attempting to preserve continuity of the surface normal direction at the element interfaces.

This is a significant result because it indicates that the only coupling between adjacent

mesh elements is theC0-continuity constraint which is required to form a valid partition

of space. The implications of this finding is that it should be much easier to generate

a satisfactory curved element mesh than is currently believed. In particular, the current

practice of generating cubic surface patches from positions and normals at the mesh nodes

may neither be required nor optimal.

6.2 Future Work

One of the conclusions of this work was that requiringC1-continuity along the bound-

ary at element interfaces resulted in slightly worse error norms than those which required

onlyC0-continuity. Although we concluded that the smoothness condition along the edge

between two elements on the boundary is not a requirement for generating a quality mesh,

there is one particular solver implementation detail which may influence this result. In

the current implementation, the numerical quadrature integrations are computed using the

Gauss-Legendre points. Since this set of points does not include the end-points of the

parametric interval,[−1, 1], the solver may not be actually sampling the geometry along

the edges of the boundary surface patches. It is possible that if the solver were to use an

alternative quadrature rule that does include the end-points (e.g. Gauss-Lobatto), then the

smoothness condition may play a more significant role that we claim here.

In this work, the curved meshes were generated by fitting all of the mesh element

shapes to sections of cylindrical coordinate system. In other words, all of the elements
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throughout the domain were curved in such a way that their interfaces were interpolating

surfaces of constant cylindrical coordinates (i.e.r, θ, z). This was done to avoid some of

the mesh generation difficulties associated with grid line overlapping which would likely

occur if only the boundary surfaces of the anisotropic mesh elements were curved. A more

robust solver would provide facilities for propagating the surface curvature further into the

domain if necessary. There are a number of ways in which this could be accomplished,

several of which already appear in the literature [42, 43, 55, 59].

There are a number of ways in which the turbulent boundary layer profile (described in

Section 5.4) may be improved to make it more nearby. Most notably, the thermodynamic

state of the fluid, described by density, pressure, and temperature, were taken directly

from the supersonic vortex case, which assumed isentropic conditions. Obviously, viscous

flows are not isentropic. So, it is likely that a more realistic thermodynamic state for the

fluid that can be derived. The velocity profile for the turbulent boundary layer is primarily

derived from the law-of-the-wall relations for a flat plate. A better flow model would more

accurately account for the curvature of the domain and the compressibility of the fluid,

possibly even allowing for the growth of the thickness of the boundary layer. This latter

enhancement would need to be properly correlated with the pressure and density profiles

which would be derived from the thermodynamic equations of state.

The domains for the test cases given in this report are much less complex than practical

engineering domains. This was done to reduce the number of complicating factors in the

experimental analysis. However, the results presented in this report could benefit from ad-

ditional test cases involving more complex geometric bodies. Surfaces with non-constant
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curvature would be a logical next step as would the extension to three-dimensional flow

fields.

The methodology developed for the current work should serve as a useful framework

for those wishing to conduct similar or even more ambitions investigations. These tech-

niques should allow the investigator to explore a variety of circumstances in which the

ability of the solver to effectively compute an accurate solution may be dependent upon

the manner in which the domain has been discretized. The turbulent boundary layer profile

described in Section 5.4 is just one example of how these methods may be used.
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APPENDIX A

DATA TABLES FOR THE SSV TEST CASES
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The following tables list theL1-error norms for the Supersonic Vortex (SSV) test cases

described in Section 5.2 and for which the results are discussed in Section 5.3.

On each page, there are four tables depicting theL1-error norm data for density, x-

momentum, y-momentum, and total energy, in that order. Each table is split into two

sections: the first section lists the actualL1-error norms computed for each mesh con-

figuration (labeled columns) versus the level of mesh refinement (each successive row

represents a factor of two reduction in mesh spacing). The second section of each table is

the rate at which the errors are being reduced as computed from Equation (3.66).

Blank entries in the tables indicate runs which failed to produce a converged solution.

Typically, when the solution could not be obtained, the solver failed to reach iterative

convergence to within the specified tolerance.

The data for the SSV cases with the solution approximation set to first through fourth-

order are provided in Table A.1, Table A.2, Table A.3, Table A.4, Table A.5.
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Table A.1

L1-errors inρ, ρu, ρv, andρE for 1st order SSV solutions

C2 C3 C4 C5 C6 H2 H3

3.132e+00 2.998e+00 2.994e+00 2.994e+00 2.994e+00 2.994e+00 2.994e+00
2.324e+00 2.291e+00 2.290e+00 2.290e+00 2.290e+00 2.290e+00 2.290e+00
3.477e-01 3.415e-01 3.414e-01 3.414e-01 3.414e-01 3.414e-01 3.414e-01
1.509e-01 1.494e-01 1.494e-01 1.494e-01 1.494e-01 1.494e-01 1.494e-01
7.336e-02 7.299e-02 7.298e-02 7.298e-02 7.298e-02 7.298e-02 7.298e-02
3.678e-02 3.670e-02 3.670e-02 3.670e-02 3.670e-02 3.670e-02 3.670e-02
0.43 0.3877 0.3866 0.3865 0.3865 0.3867 0.3865
2.741 2.746 2.746 2.746 2.746 2.746 2.746
1.204 1.193 1.192 1.192 1.192 1.192 1.192
1.041 1.034 1.034 1.034 1.034 1.034 1.034
C2 C3 C4 C5 C6 H2 H3

6.118e+01 9.948e+01 9.909e+01 9.910e+01 9.910e+01 9.898e+01 9.910e+01
4.881e+01 4.463e+01 4.467e+01 4.467e+01 4.467e+01 4.467e+01 4.467e+01
4.793e+01 4.712e+01 4.717e+01 4.717e+01 4.717e+01 4.717e+01 4.717e+01
2.754e+01 2.736e+01 2.737e+01 2.737e+01 2.737e+01 2.737e+01 2.737e+01
1.611e+01 1.607e+01 1.607e+01 1.607e+01 1.607e+01 1.607e+01 1.607e+01
9.222e+00 9.212e+00 9.212e+00 9.212e+00 9.212e+00 9.212e+00 9.212e+00
0.3259 1.156 1.149 1.15 1.15 1.148 1.15
0.02624 -0.07822 -0.07844 -0.07845 -0.07845 -0.07835 -0.07845
0.7994 0.7845 0.7852 0.7852 0.7852 0.7852 0.7852
0.7734 0.7678 0.7682 0.7682 0.7682 0.7682 0.7682
C2 C3 C4 C5 C6 H2 H3

1.074e+02 1.513e+02 1.498e+02 1.498e+02 1.498e+02 1.497e+02 1.498e+02
5.040e+01 5.229e+01 5.218e+01 5.218e+01 5.218e+01 5.218e+01 5.218e+01
6.793e+01 6.846e+01 6.849e+01 6.849e+01 6.849e+01 6.849e+01 6.849e+01
4.105e+01 4.120e+01 4.121e+01 4.121e+01 4.121e+01 4.121e+01 4.121e+01
2.372e+01 2.376e+01 2.376e+01 2.376e+01 2.376e+01 2.376e+01 2.376e+01
1.334e+01 1.335e+01 1.335e+01 1.335e+01 1.335e+01 1.335e+01 1.335e+01
1.092 1.533 1.522 1.522 1.522 1.521 1.522
-0.4308 -0.3887 -0.3924 -0.3924 -0.3924 -0.3924 -0.3924
0.7268 0.7327 0.733 0.733 0.733 0.733 0.733
0.7913 0.7942 0.7944 0.7944 0.7944 0.7944 0.7944
C2 C3 C4 C5 C6 H2 H3

1.528e+06 1.459e+06 1.457e+06 1.457e+06 1.457e+06 1.457e+06 1.457e+06
1.057e+06 1.040e+06 1.040e+06 1.040e+06 1.040e+06 1.040e+06 1.040e+06
1.511e+05 1.479e+05 1.479e+05 1.479e+05 1.479e+05 1.479e+05 1.479e+05
6.488e+04 6.411e+04 6.410e+04 6.410e+04 6.410e+04 6.410e+04 6.410e+04
3.176e+04 3.158e+04 3.158e+04 3.158e+04 3.158e+04 3.158e+04 3.158e+04
1.637e+04 1.633e+04 1.633e+04 1.633e+04 1.633e+04 1.633e+04 1.633e+04
0.5316 0.4882 0.4865 0.4864 0.4864 0.4866 0.4864
2.807 2.814 2.814 2.814 2.814 2.814 2.814
1.22 1.206 1.206 1.206 1.206 1.206 1.206
1.031 1.021 1.021 1.021 1.021 1.021 1.021
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Table A.2

L1-errors inρ, ρu, ρv, andρE for 2nd order SSV solutions

C2 C3 C4 C5 C6 H2 H3

4.030e-01 6.750e-02 6.752e-02 6.757e-02 6.757e-02 6.740e-02 6.757e-02
1.084e-01 2.124e-02 2.124e-02 2.124e-02 2.124e-02 2.124e-02 2.124e-02
3.125e-02 6.204e-03 6.204e-03 6.204e-03 6.204e-03 6.205e-03 6.204e-03
8.670e-03 1.699e-03 1.699e-03 1.699e-03 1.699e-03 1.699e-03 1.699e-03
2.373e-03 4.466e-04 4.466e-04 4.466e-04 4.466e-04 4.466e-04 4.466e-04
6.399e-04 1.147e-04 1.147e-04 1.147e-04 1.147e-04 1.147e-04 1.147e-04
1.895 1.668 1.668 1.669 1.669 1.666 1.669
1.794 1.776 1.776 1.776 1.776 1.776 1.776
1.85 1.868 1.868 1.868 1.868 1.869 1.868
1.87 1.928 1.928 1.928 1.928 1.928 1.928

C2 C3 C4 C5 C6 H2 H3

9.253e+01 4.703e+01 4.700e+01 4.707e+01 4.707e+01 4.688e+01 4.707e+01
3.096e+01 1.380e+01 1.379e+01 1.380e+01 1.380e+01 1.379e+01 1.380e+01
9.507e+00 3.857e+00 3.857e+00 3.857e+00 3.857e+00 3.857e+00 3.857e+00
2.674e+00 1.025e+00 1.025e+00 1.025e+00 1.025e+00 1.025e+00 1.025e+00
7.508e-01 2.651e-01 2.651e-01 2.651e-01 2.651e-01 2.651e-01 2.651e-01
2.056e-01 6.743e-02 6.743e-02 6.743e-02 6.743e-02 6.743e-02 6.743e-02
1.579 1.769 1.769 1.77 1.77 1.765 1.77
1.703 1.839 1.839 1.839 1.839 1.838 1.839
1.83 1.912 1.912 1.912 1.912 1.912 1.912
1.832 1.952 1.952 1.952 1.952 1.952 1.952
C2 C3 C4 C5 C6 H2 H3

1.426e+02 7.070e+01 7.072e+01 7.075e+01 7.075e+01 7.064e+01 7.075e+01
5.023e+01 2.250e+01 2.250e+01 2.250e+01 2.250e+01 2.251e+01 2.250e+01
1.537e+01 6.601e+00 6.602e+00 6.602e+00 6.602e+00 6.603e+00 6.602e+00
4.370e+00 1.813e+00 1.813e+00 1.813e+00 1.813e+00 1.813e+00 1.813e+00
1.209e+00 4.772e-01 4.772e-01 4.772e-01 4.772e-01 4.772e-01 4.772e-01
3.241e-01 1.226e-01 1.226e-01 1.226e-01 1.226e-01 1.226e-01 1.226e-01
1.505 1.652 1.652 1.653 1.653 1.65 1.653
1.708 1.769 1.769 1.769 1.769 1.769 1.769
1.815 1.865 1.865 1.865 1.865 1.865 1.865
1.854 1.926 1.926 1.926 1.926 1.926 1.926
C2 C3 C4 C5 C6 H2 H3

1.925e+05 4.695e+04 4.695e+04 4.699e+04 4.699e+04 4.687e+04 4.699e+04
5.481e+04 1.465e+04 1.465e+04 1.465e+04 1.465e+04 1.465e+04 1.465e+04
1.609e+04 4.248e+03 4.249e+03 4.248e+03 4.248e+03 4.249e+03 4.248e+03
4.529e+03 1.159e+03 1.159e+03 1.159e+03 1.159e+03 1.159e+03 1.159e+03
1.249e+03 3.042e+02 3.042e+02 3.042e+02 3.042e+02 3.042e+02 3.042e+02
3.372e+02 7.803e+01 7.803e+01 7.803e+01 7.803e+01 7.803e+01 7.803e+01
1.812 1.68 1.68 1.682 1.682 1.678 1.682
1.768 1.786 1.786 1.786 1.786 1.786 1.786
1.829 1.874 1.874 1.874 1.874 1.874 1.874
1.859 1.93 1.93 1.93 1.93 1.93 1.93
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Table A.3

L1-errors inρ, ρu, ρv, andρE for 3rd order SSV solutions

C2 C3 C4 C5 C6 H2 H3

– 6.455e-03 6.404e-03 6.415e-03 6.415e-03 6.530e-03 6.415e-03
– 1.026e-03 1.018e-03 1.018e-03 1.018e-03 1.029e-03 1.018e-03
4.329e-02 1.476e-04 1.469e-04 1.470e-04 1.470e-04 1.478e-04 1.470e-04
1.187e-02 1.992e-05 1.987e-05 1.988e-05 1.988e-05 1.993e-05 1.988e-05
3.231e-03 2.591e-06 2.588e-06 2.588e-06 2.588e-06 2.592e-06 2.588e-06
8.677e-04 3.306e-07 3.304e-07 3.304e-07 3.304e-07 3.306e-07 3.304e-07
– 2.654 2.654 2.655 2.655 2.665 2.655
– 2.797 2.792 2.792 2.792 2.8 2.792
1.867 2.89 2.886 2.887 2.887 2.891 2.887
1.877 2.942 2.941 2.941 2.941 2.943 2.941

C2 C3 C4 C5 C6 H2 H3

– 4.555e+00 4.479e+00 4.492e+00 4.492e+00 4.608e+00 4.492e+00
– 6.579e-01 6.519e-01 6.528e-01 6.528e-01 6.605e-01 6.528e-01
1.407e+01 8.992e-02 8.951e-02 8.957e-02 8.957e-02 9.007e-02 8.957e-02
3.963e+00 1.179e-02 1.177e-02 1.178e-02 1.178e-02 1.181e-02 1.178e-02
1.097e+00 1.513e-03 1.512e-03 1.512e-03 1.512e-03 1.514e-03 1.512e-03
2.949e-01 1.916e-04 1.915e-04 1.916e-04 1.916e-04 1.917e-04 1.916e-04
– 2.791 2.78 2.783 2.783 2.803 2.783
– 2.871 2.865 2.866 2.866 2.874 2.866
1.828 2.93 2.927 2.927 2.927 2.931 2.927
1.853 2.963 2.961 2.962 2.962 2.963 2.962
C2 C3 C4 C5 C6 H2 H3

– 6.578e+00 6.517e+00 6.530e+00 6.530e+00 6.648e+00 6.530e+00
– 1.073e+00 1.066e+00 1.067e+00 1.067e+00 1.079e+00 1.067e+00
2.392e+01 1.564e-01 1.559e-01 1.560e-01 1.560e-01 1.568e-01 1.560e-01
6.495e+00 2.125e-02 2.122e-02 2.123e-02 2.123e-02 2.128e-02 2.123e-02
1.741e+00 2.773e-03 2.772e-03 2.773e-03 2.773e-03 2.777e-03 2.773e-03
4.594e-01 3.544e-04 3.545e-04 3.545e-04 3.545e-04 3.547e-04 3.545e-04
– 2.616 2.612 2.613 2.613 2.624 2.613
– 2.778 2.773 2.774 2.774 2.782 2.774
1.881 2.88 2.877 2.878 2.878 2.882 2.878
1.899 2.938 2.936 2.936 2.936 2.938 2.936
C2 C3 C4 C5 C6 H2 H3

– 4.446e+03 4.402e+03 4.409e+03 4.409e+03 4.486e+03 4.409e+03
– 7.010e+02 6.961e+02 6.968e+02 6.968e+02 7.033e+02 6.968e+02
2.303e+04 1.005e+02 1.001e+02 1.002e+02 1.002e+02 1.007e+02 1.002e+02
6.325e+03 1.354e+01 1.351e+01 1.351e+01 1.351e+01 1.355e+01 1.351e+01
1.720e+03 1.760e+00 1.758e+00 1.758e+00 1.758e+00 1.760e+00 1.758e+00
4.614e+02 2.244e-01 2.243e-01 2.243e-01 2.243e-01 2.244e-01 2.243e-01
– 2.665 2.661 2.662 2.662 2.673 2.662
– 2.802 2.798 2.798 2.798 2.805 2.798
1.864 2.892 2.89 2.89 2.89 2.893 2.89
1.879 2.944 2.942 2.942 2.942 2.944 2.942
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Table A.4

L1-errors inρ, ρu, ρv, andρE for 4th order SSV solutions

C2 C3 C4 C5 C6 H2 H3

– 7.363e-04 3.027e-04 2.669e-04 2.669e-04 1.059e-03 2.669e-04
– 6.527e-05 3.007e-05 2.179e-05 2.179e-05 8.711e-05 2.179e-05
– 5.233e-06 2.449e-06 1.640e-06 1.640e-06 7.445e-06 1.640e-06
1.494e-02 3.814e-07 1.820e-07 1.141e-07 1.141e-07 5.846e-07 1.141e-07
4.152e-03 2.680e-08 1.253e-08 7.527e-09 7.527e-09 4.119e-08 7.527e-09
1.121e-03 1.837e-09 8.336e-10 4.830e-10 4.830e-10 2.748e-09 4.828e-10
– 3.496 3.331 3.614 3.615 3.603 3.615
– 3.641 3.618 3.732 3.732 3.549 3.732
– 3.778 3.75 3.845 3.845 3.671 3.845
1.847 3.831 3.86 3.922 3.922 3.827 3.922
C2 C3 C4 C5 C6 H2 H3

– 2.667e-01 1.919e-01 1.770e-01 1.770e-01 3.994e-01 1.770e-01
– 2.154e-02 1.584e-02 1.472e-02 1.472e-02 2.868e-02 1.472e-02
– 1.758e-03 1.168e-03 1.058e-03 1.058e-03 2.255e-03 1.058e-03
4.793e+00 1.324e-04 8.120e-05 7.130e-05 7.130e-05 1.750e-04 7.130e-05
1.318e+00 9.475e-06 5.454e-06 4.624e-06 4.624e-06 1.268e-05 4.624e-06
3.506e-01 6.519e-07 3.603e-07 2.944e-07 2.943e-07 8.689e-07 2.942e-07
– 3.63 3.599 3.587 3.588 3.8 3.588
– 3.616 3.761 3.799 3.799 3.669 3.799
– 3.731 3.847 3.891 3.891 3.687 3.891
1.862 3.804 3.896 3.947 3.946 3.787 3.947
C2 C3 C4 C5 C6 H2 H3

– 3.838e-01 2.347e-01 2.231e-01 2.231e-01 5.042e-01 2.231e-01
– 3.276e-02 2.387e-02 2.135e-02 2.135e-02 4.219e-02 2.135e-02
– 2.666e-03 1.896e-03 1.669e-03 1.669e-03 3.530e-03 1.669e-03
7.838e+00 1.977e-04 1.385e-04 1.176e-04 1.176e-04 2.791e-04 1.176e-04
2.122e+00 1.414e-05 9.531e-06 7.813e-06 7.813e-06 2.006e-05 7.813e-06
5.613e-01 9.859e-07 6.285e-07 5.029e-07 5.030e-07 1.367e-06 5.028e-07
– 3.55 3.298 3.386 3.386 3.579 3.386
– 3.619 3.654 3.677 3.677 3.579 3.677
– 3.753 3.775 3.827 3.827 3.661 3.827
1.885 3.805 3.862 3.912 3.912 3.799 3.912

C2 C3 C4 C5 C6 H2 H3

– 3.758e+02 1.714e+02 1.582e+02 1.582e+02 5.465e+02 1.582e+02
– 3.386e+01 1.755e+01 1.438e+01 1.438e+01 4.459e+01 1.438e+01
– 2.728e+00 1.426e+00 1.091e+00 1.091e+00 3.797e+00 1.091e+00
7.819e+03 2.009e-01 1.063e-01 7.605e-02 7.605e-02 2.994e-01 7.605e-02
2.171e+03 1.423e-02 7.352e-03 5.022e-03 5.022e-03 2.130e-02 5.022e-03
5.856e+02 9.816e-04 4.888e-04 3.224e-04 3.224e-04 1.435e-03 3.223e-04
– 3.472 3.288 3.459 3.459 3.615 3.459
– 3.634 3.621 3.721 3.721 3.554 3.721
– 3.763 3.745 3.843 3.843 3.665 3.843
1.848 3.82 3.854 3.921 3.921 3.813 3.921
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Table A.5

L1-errors inρ, ρu, ρv, andρE for 5th order SSV solutions

C2 C3 C4 C5 C6 H2 H3

– 1.246e-03 4.953e-04 3.612e-05 3.594e-05 1.528e-03 3.599e-05
– 1.273e-04 5.377e-05 1.685e-06 1.675e-06 1.775e-04 1.677e-06
– 9.609e-06 4.128e-06 6.442e-08 6.436e-08 1.590e-05 6.438e-08
2.146e-02 9.388e-07 3.515e-07 2.271e-09 2.269e-09 1.075e-06 2.270e-09
7.778e-03 8.031e-08 3.266e-08 7.579e-11 7.589e-11 1.079e-07 7.579e-11
2.118e-03 – – – – – –
– 3.291 3.203 4.422 4.423 3.105 4.424
– 3.727 3.703 4.709 4.702 3.481 4.703
– 3.356 3.554 4.826 4.826 3.887 4.826
1.464 3.547 3.428 4.905 4.902 3.316 4.904
C2 C3 C4 C5 C6 H2 H3

– 3.894e-01 1.486e-01 2.400e-02 2.392e-02 4.562e-01 2.393e-02
– 3.237e-02 1.250e-02 1.054e-03 1.053e-03 4.302e-02 1.053e-03
– 2.400e-03 9.245e-04 3.886e-05 3.886e-05 3.728e-03 3.886e-05
6.023e+00 2.177e-04 7.607e-05 1.331e-06 1.331e-06 2.551e-04 1.331e-06
2.030e+00 1.773e-05 6.675e-06 4.374e-08 4.381e-08 2.370e-05 4.373e-08
5.503e-01 – – – – – –
– 3.589 3.572 4.509 4.505 3.407 4.506
– 3.753 3.757 4.762 4.76 3.528 4.761
– 3.463 3.603 4.867 4.868 3.869 4.868
1.569 3.618 3.51 4.928 4.925 3.428 4.928
C2 C3 C4 C5 C6 H2 H3

– 6.003e-01 2.533e-01 3.019e-02 3.013e-02 7.892e-01 3.015e-02
– 6.127e-02 2.674e-02 1.531e-03 1.527e-03 8.777e-02 1.527e-03
– 4.326e-03 1.921e-03 6.198e-05 6.195e-05 7.537e-03 6.195e-05
1.041e+01 4.280e-04 1.589e-04 2.227e-06 2.226e-06 4.698e-04 2.227e-06
3.758e+00 3.561e-05 1.453e-05 7.495e-08 7.508e-08 4.800e-05 7.498e-08
9.956e-01 – – – – – –
– 3.292 3.244 4.301 4.303 3.169 4.303
– 3.824 3.799 4.627 4.623 3.542 4.624
– 3.337 3.596 4.799 4.798 4.004 4.798
1.47 3.587 3.451 4.893 4.89 3.291 4.892

C2 C3 C4 C5 C6 H2 H3

– 6.383e+02 2.549e+02 2.351e+01 2.339e+01 7.842e+02 2.343e+01
– 6.469e+01 2.735e+01 1.114e+00 1.109e+00 9.007e+01 1.110e+00
– 4.832e+00 2.074e+00 4.313e-02 4.310e-02 8.014e+00 4.311e-02
1.093e+04 4.714e-01 1.758e-01 1.524e-03 1.523e-03 5.369e-01 1.523e-03
3.942e+03 4.008e-02 1.624e-02 5.088e-05 5.096e-05 5.379e-02 5.089e-05
1.070e+03 – – – – – –
– 3.302 3.22 4.4 4.398 3.122 4.399
– 3.743 3.721 4.691 4.686 3.49 4.687
– 3.358 3.561 4.823 4.823 3.9 4.823
1.472 3.556 3.436 4.904 4.902 3.319 4.904
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APPENDIX B

DATA TABLES FOR THE HRNTBL TEST CASES

131



The following tables list theL1-error norms for the High-Reynolds Number Turbulent

Boundary Layer (HRNTBL) test cases described in Section 5.4 and for which the results

are discussed in Section??.

On each page, there are four tables depicting theL1-error norm data for density, x-

momentum, y-momentum, and total energy, in that order. Each table is split into two

sections: the first section lists the actualL1-error norms generated for each mesh con-

figuration (labeled columns) versus the level of mesh refinement (each successive row

represents a factor of two reduction in mesh spacing). The second section of each table is

the rate at which the errors are being reduced as computed from Equation (3.66).

Blank entries in the tables indicate runs which failed to produce a converged solution.

Typically, when the solution could not be obtained, the solver failed to reach iterative

convergence to within the specified tolerance.

The data for case ofRe = 5e5 are provided in Table B.1, Table B.2, and Table B.3.

For the case ofRe = 1e6, the data are presented in Table B.4, Table B.5, and Table B.6.

For the case ofRe = 2e6, the data is given in Table B.7, Table B.8, and Table B.9. For the

case ofRe = 4e6, the data is given in Table B.10, Table B.11, and Table B.12.
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Table B.1

L1-errors inρ, ρu, ρv, andρE for 2nd order HRNTBL solutions atRe = 5e5

C2 C3 C4 C5 C6 H2 H3

2.053e-02* 1.089e-02 1.086e-02 1.088e-02 1.088e-02 1.083e-02 1.088e-02
4.759e-03* 2.699e-03 2.695e-03 2.696e-03 2.696e-03 2.693e-03 2.696e-03
1.041e-03 6.363e-04 6.360e-04 6.361e-04 6.361e-04 6.359e-04 6.361e-04
2.629e-04 1.520e-04 1.520e-04 1.520e-04 1.520e-04 1.520e-04 1.520e-04
7.129e-05* – 3.713e-05 – 3.713e-05 3.713e-05 3.713e-05
2.109 2.013 2.011 2.013 2.013 2.008 2.013
2.193 2.085 2.083 2.084 2.084 2.082 2.084
1.985 2.066 2.065 2.065 2.065 2.065 2.065
1.883 – 2.033 – 2.033 2.033 2.033

C2 C3 C4 C5 C6 H2 H3

1.433e+01* 2.911e+00 2.909e+00 2.915e+00 2.915e+00 2.899e+00 2.915e+00
3.751e+00* 6.982e-01 6.984e-01 6.986e-01 6.986e-01 6.982e-01 6.986e-01
9.742e-01 1.724e-01 1.724e-01 1.724e-01 1.724e-01 1.724e-01 1.724e-01
2.414e-01 4.337e-02 4.339e-02 4.339e-02 4.339e-02 4.339e-02 4.339e-02
6.018e-02* – 1.101e-02 – 1.101e-02 1.101e-02 1.101e-02
1.934 2.06 2.058 2.061 2.061 2.054 2.061
1.945 2.018 2.018 2.018 2.018 2.018 2.018
2.013 1.991 1.991 1.991 1.991 1.99 1.991
2.004 – 1.978 – 1.978 1.978 1.978
C2 C3 C4 C5 C6 H2 H3

1.056e+01* 3.167e+00 3.163e+00 3.170e+00 3.170e+00 3.154e+00 3.170e+00
2.908e+00* 7.393e-01 7.390e-01 7.394e-01 7.394e-01 7.384e-01 7.394e-01
7.718e-01 1.757e-01 1.756e-01 1.756e-01 1.756e-01 1.756e-01 1.756e-01
1.932e-01 4.453e-02 4.451e-02 4.451e-02 4.451e-02 4.451e-02 4.451e-02
4.901e-02* – 1.142e-02 – 1.142e-02 1.142e-02 1.142e-02
1.86 2.099 2.098 2.1 2.1 2.095 2.1
1.914 2.073 2.073 2.074 2.074 2.072 2.074
1.998 1.98 1.98 1.98 1.98 1.98 1.98
1.979 – 1.962 – 1.962 1.962 1.962
C2 C3 C4 C5 C6 H2 H3

1.024e+04* 3.757e+03 3.744e+03 3.753e+03 3.753e+03 3.729e+03 3.753e+03
2.526e+03* 9.474e+02 9.457e+02 9.463e+02 9.463e+02 9.448e+02 9.463e+02
5.812e+02 2.228e+02 2.227e+02 2.227e+02 2.227e+02 2.226e+02 2.227e+02
1.513e+02 5.276e+01 5.275e+01 5.275e+01 5.275e+01 5.275e+01 5.275e+01
4.193e+01* – 1.268e+01 – 1.268e+01 1.268e+01 1.268e+01
2.019 1.988 1.985 1.988 1.988 1.981 1.988
2.12 2.088 2.087 2.087 2.087 2.086 2.087
1.941 2.078 2.078 2.078 2.078 2.077 2.078
1.852 – 2.056 – 2.056 2.056 2.056
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Table B.2

L1-errors inρ, ρu, ρv, andρE for 3rd order HRNTBL solutions atRe = 5e5

C2 C3 C4 C5 C6 H2 H3

– 1.405e-04 9.883e-05 9.940e-05 9.943e-05 1.070e-04 9.943e-05
– 1.525e-05 1.199e-05 1.199e-05 1.200e-05 1.197e-05 1.200e-05
1.271e-03* 2.074e-06 1.902e-06 1.899e-06 1.899e-06 1.916e-06 1.899e-06
3.250e-04 2.327e-07 2.165e-07 2.166e-07 2.166e-07 2.174e-07 2.166e-07
– – – – – – –
– 3.204 3.043 3.051 3.051 3.16 3.051
– 2.878 2.657 2.659 2.659 2.644 2.659
1.968 3.156 3.135 3.132 3.132 3.14 3.132
– – – – – – –
C2 C3 C4 C5 C6 H2 H3

– 1.034e-01 1.016e-01 1.018e-01 1.018e-01 1.056e-01 1.018e-01
– 1.278e-02 1.241e-02 1.243e-02 1.243e-02 1.262e-02 1.243e-02
5.911e-01* 1.766e-03 1.744e-03 1.743e-03 1.743e-03 1.742e-03 1.743e-03
2.366e-01 2.569e-04 2.436e-04 2.436e-04 2.436e-04 2.438e-04 2.436e-04
– – – – – – –
– 3.016 3.033 3.034 3.034 3.065 3.034
– 2.855 2.832 2.834 2.834 2.857 2.834
1.321 2.781 2.84 2.839 2.839 2.837 2.839
– – – – – – –
C2 C3 C4 C5 C6 H2 H3

– 1.013e-01 9.638e-02 9.590e-02 9.592e-02 9.353e-02 9.592e-02
– 1.291e-02 1.206e-02 1.205e-02 1.205e-02 1.204e-02 1.205e-02
4.630e-01* 1.830e-03 1.730e-03 1.727e-03 1.727e-03 1.705e-03 1.727e-03
1.886e-01 2.541e-04 2.354e-04 2.353e-04 2.353e-04 2.341e-04 2.353e-04
– – – – – – –
– 2.972 2.999 2.993 2.993 2.958 2.993
– 2.819 2.801 2.802 2.802 2.82 2.802
1.296 2.848 2.877 2.876 2.876 2.864 2.876
– – – – – – –

C2 C3 C4 C5 C6 H2 H3

– 4.798e+01 2.838e+01 2.809e+01 2.811e+01 3.014e+01 2.811e+01
– 4.690e+00 3.563e+00 3.538e+00 3.538e+00 3.467e+00 3.538e+00
7.012e+02* 5.854e-01 4.980e-01 4.989e-01 4.989e-01 5.108e-01 4.989e-01
1.673e+02 7.995e-02 7.480e-02 7.478e-02 7.478e-02 7.474e-02 7.478e-02
– – – – – – –
– 3.355 2.994 2.989 2.99 3.12 2.99
– 3.002 2.839 2.826 2.826 2.763 2.826
2.067 2.872 2.735 2.738 2.738 2.773 2.738
– – – – – – –
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Table B.3

L1-errors inρ, ρu, ρv, andρE for 4th order HRNTBL solutions atRe = 5e5

C2 C3 C4 C5 C6 H2 H3

– 1.195e-04 1.378e-05 1.188e-05 1.186e-05 2.768e-05 1.186e-05
– 1.104e-05 7.809e-07 6.874e-07 6.870e-07 2.180e-06 6.869e-07
1.319e-03* 8.977e-07 4.375e-07 4.349e-07 4.349e-07 4.175e-07 4.349e-07
3.575e-04* 6.328e-08 4.501e-08 4.470e-08 4.470e-08 4.341e-08 4.605e-08
– – – – – – –
– 3.436 4.141 4.112 4.11 3.666 4.11
– 3.621 0.836 0.6605 0.6595 2.385 0.6595
1.884 3.827 3.281 3.282 3.282 3.266 3.24
– – – – – – –
C2 C3 C4 C5 C6 H2 H3

– 6.273e-02 5.395e-03 3.732e-03 3.732e-03 2.295e-02 3.731e-03
– 7.779e-03 3.513e-04 2.274e-04 2.274e-04 1.330e-03 2.274e-04
9.589e-01* 1.004e-03 7.732e-05 7.437e-05 7.437e-05 1.324e-04 7.437e-05
2.430e-01* 1.268e-04 6.784e-06 6.631e-06 6.631e-06 9.873e-06 6.722e-06
– – – – – – –
– 3.012 3.941 4.037 4.036 4.109 4.036
– 2.954 2.184 1.613 1.613 3.328 1.613
1.98 2.985 3.511 3.487 3.487 3.746 3.468
– – – – – – –
C2 C3 C4 C5 C6 H2 H3

– 6.740e-02 5.655e-03 4.598e-03 4.599e-03 1.940e-02 4.599e-03
– 8.341e-03 3.688e-04 2.425e-04 2.425e-04 1.085e-03 2.425e-04
7.730e-01* 1.072e-03 1.187e-04 1.217e-04 1.217e-04 1.757e-04 1.217e-04
2.040e-01* 1.312e-04 1.022e-05 1.038e-05 1.038e-05 1.344e-05 1.056e-05
– – – – – – –
– 3.015 3.938 4.245 4.245 4.16 4.245
– 2.96 1.636 0.9945 0.9948 2.626 0.9948
1.922 3.03 3.538 3.552 3.552 3.709 3.527
– – – – – – –

C2 C3 C4 C5 C6 H2 H3

– 3.981e+01 4.872e+00 3.320e+00 3.313e+00 1.671e+01 3.312e+00
– 3.769e+00 2.874e-01 2.004e-01 2.003e-01 1.203e+00 2.003e-01
7.628e+02* 2.850e-01 1.108e-01 1.078e-01 1.078e-01 9.567e-02 1.078e-01
2.062e+02* 1.851e-02 1.247e-02 1.222e-02 1.222e-02 1.073e-02 1.269e-02
– – – – – – –
– 3.401 4.083 4.05 4.048 3.796 4.048
– 3.725 1.375 0.8947 0.8936 3.652 0.8935
1.888 3.944 3.151 3.141 3.141 3.156 3.086
– – – – – – –
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Table B.4

L1-errors inρ, ρu, ρv, andρE for 2nd order HRNTBL solutions atRe = 1e6

C2 C3 C4 C5 C6 H2 H3

2.610e-02* 1.297e-02 1.293e-02 1.295e-02 1.295e-02 1.290e-02 1.295e-02
7.117e-03* 2.428e-03 2.422e-03 2.423e-03 2.423e-03 2.420e-03 2.423e-03
1.815e-03 4.767e-04 4.760e-04 4.761e-04 4.761e-04 4.759e-04 4.761e-04
4.379e-04* 1.188e-04* 1.188e-04* 1.188e-04* 1.188e-04* 1.188e-04* 1.188e-04*
1.075e-04* 3.155e-05* 3.155e-05* 3.155e-05* 3.155e-05* 3.155e-05* 3.155e-05*
1.875 2.417 2.417 2.418 2.418 2.415 2.418
1.972 2.349 2.347 2.347 2.347 2.346 2.347
2.051 2.004 2.003 2.003 2.003 2.002 2.003
2.026 1.913 1.913 1.913 1.913 1.913 1.913
C2 C3 C4 C5 C6 H2 H3

1.513e+01* 4.133e+00 4.130e+00 4.137e+00 4.137e+00 4.118e+00 4.137e+00
3.988e+00* 1.026e+00 1.027e+00 1.027e+00 1.027e+00 1.026e+00 1.027e+00
1.008e+00 2.373e-01 2.373e-01 2.373e-01 2.373e-01 2.373e-01 2.373e-01
2.547e-01* 5.846e-02* 5.848e-02* 5.848e-02* 5.848e-02* 5.847e-02* 5.848e-02*
6.379e-02* 1.450e-02* 1.450e-02* 1.450e-02* 1.450e-02* 1.450e-02* 1.450e-02*
1.924 2.01 2.008 2.011 2.011 2.005 2.011
1.984 2.113 2.113 2.113 2.113 2.113 2.113
1.984 2.021 2.021 2.021 2.021 2.021 2.021
1.998 2.012 2.012 2.012 2.012 2.012 2.012
C2 C3 C4 C5 C6 H2 H3

1.210e+01* 4.798e+00 4.793e+00 4.801e+00 4.801e+00 4.782e+00 4.801e+00
3.481e+00* 1.146e+00 1.146e+00 1.146e+00 1.146e+00 1.145e+00 1.146e+00
8.797e-01 2.392e-01 2.391e-01 2.391e-01 2.391e-01 2.391e-01 2.391e-01
2.149e-01* 5.829e-02* 5.828e-02* 5.829e-02* 5.829e-02* 5.828e-02* 5.829e-02*
4.374e-02* 1.450e-02* 1.450e-02* 1.450e-02* 1.450e-02* 1.450e-02* 1.450e-02*
1.798 2.066 2.065 2.066 2.066 2.062 2.066
1.985 2.261 2.261 2.261 2.261 2.26 2.261
2.033 2.037 2.037 2.037 2.037 2.036 2.037
2.297 2.007 2.007 2.007 2.007 2.007 2.007

C2 C3 C4 C5 C6 H2 H3

1.254e+04* 4.568e+03 4.555e+03 4.564e+03 4.564e+03 4.541e+03 4.564e+03
3.372e+03* 8.916e+02 8.895e+02 8.901e+02 8.901e+02 8.885e+02 8.901e+02
8.818e+02 1.717e+02 1.715e+02 1.715e+02 1.715e+02 1.714e+02 1.715e+02
2.129e+02* 4.125e+01* 4.123e+01* 4.124e+01* 4.124e+01* 4.123e+01* 4.124e+01*
5.605e+01* 1.087e+01* 1.086e+01* 1.086e+01* 1.086e+01* 1.086e+01* 1.086e+01*
1.895 2.357 2.356 2.358 2.358 2.353 2.358
1.935 2.377 2.375 2.376 2.376 2.374 2.376
2.05 2.057 2.056 2.056 2.056 2.056 2.056
1.926 1.925 1.924 1.924 1.924 1.924 1.924

136



Table B.5

L1-errors inρ, ρu, ρv, andρE for 3rd order HRNTBL solutions atRe = 1e6

C2 C3 C4 C5 C6 H2 H3

2.452e-02* 2.822e-04 1.297e-04 1.312e-04 1.312e-04 1.425e-04 1.312e-04
5.140e-03* 2.337e-05 1.330e-05 1.330e-05 1.330e-05 1.344e-05 1.330e-05
1.434e-03* 2.306e-06 2.058e-06 2.054e-06 2.054e-06 2.051e-06 2.054e-06
3.710e-04 3.198e-07 3.051e-07 3.055e-07 3.046e-07 3.042e-07 3.046e-07
9.319e-05* 5.476e-08* 5.205e-08* 5.208e-08* 5.207e-08* 5.215e-08* 5.209e-08*
2.254 3.594 3.286 3.302 3.302 3.407 3.302
1.842 3.341 2.692 2.695 2.695 2.712 2.695
1.951 2.85 2.754 2.749 2.753 2.753 2.753
1.993 2.546 2.551 2.553 2.548 2.544 2.548
C2 C3 C4 C5 C6 H2 H3

1.484e+01* 1.539e-01 1.499e-01 1.502e-01 1.502e-01 1.547e-01 1.502e-01
3.932e+00* 1.764e-02 1.736e-02 1.738e-02 1.738e-02 1.756e-02 1.738e-02
9.602e-01* 2.243e-03 2.208e-03 2.208e-03 2.208e-03 2.208e-03 2.208e-03
2.433e-01 3.067e-04 2.961e-04 2.961e-04 2.961e-04 2.960e-04 2.961e-04
6.230e-02* 4.736e-05* 4.378e-05* 4.378e-05* 4.378e-05* 4.379e-05* 4.378e-05*
1.916 3.124 3.11 3.111 3.112 3.138 3.112
2.034 2.976 2.975 2.977 2.977 2.992 2.977
1.981 2.87 2.899 2.898 2.898 2.899 2.898
1.965 2.695 2.758 2.758 2.758 2.757 2.758
C2 C3 C4 C5 C6 H2 H3

8.266e+00* 1.555e-01 1.500e-01 1.496e-01 1.496e-01 1.469e-01 1.496e-01
3.219e+00* 1.772e-02 1.663e-02 1.661e-02 1.661e-02 1.650e-02 1.661e-02
7.712e-01* 2.270e-03 2.127e-03 2.124e-03 2.124e-03 2.103e-03 2.124e-03
2.011e-01 3.092e-04 2.834e-04 2.833e-04 2.832e-04 2.820e-04 2.832e-04
5.211e-02* 4.803e-05* 4.315e-05* 4.314e-05* 4.314e-05* 4.304e-05* 4.314e-05*
1.361 3.134 3.174 3.171 3.171 3.155 3.171
2.062 2.965 2.967 2.967 2.967 2.972 2.967
1.939 2.876 2.908 2.906 2.907 2.899 2.907
1.948 2.687 2.715 2.715 2.715 2.712 2.715
C2 C3 C4 C5 C6 H2 H3

1.311e+04* 9.813e+01 4.326e+01 4.310e+01 4.311e+01 4.407e+01 4.311e+01
2.549e+03* 7.756e+00 4.284e+00 4.273e+00 4.273e+00 4.369e+00 4.273e+00
6.947e+02* 7.190e-01 6.047e-01 6.056e-01 6.056e-01 6.144e-01 6.056e-01
1.823e+02 9.441e-02 8.989e-02 9.004e-02 8.996e-02 9.055e-02 8.996e-02
4.844e+01* 1.549e-02* 1.484e-02* 1.486e-02* 1.486e-02* 1.492e-02* 1.486e-02*
2.362 3.661 3.336 3.334 3.335 3.334 3.335
1.875 3.431 2.825 2.819 2.819 2.83 2.819
1.93 2.929 2.75 2.75 2.751 2.762 2.751
1.912 2.608 2.599 2.599 2.598 2.601 2.598
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Table B.6

L1-errors inρ, ρu, ρv, andρE for 4th order HRNTBL solutions atRe = 1e6

C2 C3 C4 C5 C6 H2 H3

3.109e-02* 2.075e-04 1.875e-05 1.459e-05 1.455e-05 4.063e-05 1.454e-05
– 1.831e-05 2.719e-06 2.650e-06 2.650e-06 2.987e-06 2.650e-06
1.440e-03* 9.964e-07* 2.386e-07 2.350e-07 2.350e-07* 2.381e-07* 2.349e-07*
– 3.923e-08* 2.848e-09* 1.766e-09* 1.766e-09* 8.958e-09* 1.766e-09*
– – – – – – –
– 3.502 2.786 2.461 2.457 3.766 2.456
– 4.2 3.51 3.495 3.495 3.649 3.496
– 4.667 6.388 7.056 7.056 4.732 7.056
– – – – – – –
C2 C3 C4 C5 C6 H2 H3

1.560e+01* 7.116e-02 6.623e-03 4.869e-03 4.866e-03 2.329e-02 4.866e-03
– 9.075e-03 6.744e-04 5.970e-04 5.970e-04 1.667e-03 5.970e-04
9.911e-01* 1.153e-03* 4.988e-05 4.510e-05 4.510e-05* 1.082e-04* 4.509e-05*
– 1.480e-04* 1.456e-06* 1.063e-06* 1.063e-06* 4.243e-06* 1.063e-06*
– – – – – – –
– 2.971 3.296 3.028 3.027 3.804 3.027
– 2.977 3.757 3.727 3.726 3.945 3.727
– 2.961 5.098 5.407 5.407 4.673 5.406
– – – – – – –
C2 C3 C4 C5 C6 H2 H3

9.424e+00* 7.579e-02 6.548e-03 5.225e-03 5.226e-03 1.916e-02 5.226e-03
– 9.934e-03 9.154e-04 9.621e-04 9.622e-04 1.960e-03 9.622e-04
8.287e-01* 1.206e-03* 6.908e-05 7.226e-05 7.226e-05* 1.352e-04* 7.224e-05*
– 1.497e-04* 1.471e-06* 1.061e-06* 1.062e-06* 3.960e-06* 1.062e-06*
– – – – – – –
– 2.932 2.839 2.441 2.441 3.289 2.441
– 3.042 3.728 3.735 3.735 3.858 3.735
– 3.01 5.553 6.089 6.089 5.093 6.089
– – – – – – –
C2 C3 C4 C5 C6 H2 H3

1.526e+04* 7.026e+01 6.911e+00 5.184e+00 5.170e+00 1.828e+01 5.169e+00
– 6.343e+00 6.888e-01 5.938e-01 5.938e-01 1.196e+00 5.938e-01
7.860e+02* 3.597e-01* 5.961e-02 5.474e-02 5.473e-02* 7.512e-02* 5.472e-02*
– 1.622e-02* 1.456e-03* 6.202e-04* 6.201e-04* 4.884e-03* 6.201e-04*
– – – – – – –
– 3.469 3.327 3.126 3.122 3.934 3.122
– 4.141 3.531 3.439 3.439 3.993 3.44
– 4.471 5.356 6.464 6.464 3.943 6.463
– – – – – – –
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Table B.7

L1-errors inρ, ρu, ρv, andρE for 2nd order HRNTBL solutions atRe = 2e6

C2 C3 C4 C5 C6 H2 H3

4.053e-02* 8.892e-03 8.870e-03 8.882e-03 8.883e-03 8.851e-03 8.883e-03
1.081e-02* 1.411e-03 1.410e-03 1.410e-03 1.410e-03 1.411e-03 1.410e-03
2.948e-03 2.319e-04 2.317e-04 2.317e-04 2.317e-04 2.316e-04 2.317e-04
6.688e-04* 6.499e-05* 6.495e-05* 5.935e-05* 6.496e-05* 6.495e-05* 6.496e-05*
1.495e-04* 1.787e-05* 1.420e-05* 1.828e-05* 1.828e-05* 1.828e-05* 1.828e-05*
1.907 2.656 2.653 2.655 2.655 2.65 2.655
1.874 2.605 2.606 2.605 2.605 2.606 2.605
2.14 1.835 1.835 1.965 1.835 1.835 1.835
2.161 1.863 2.193 1.699 1.829 1.829 1.829
C2 C3 C4 C5 C6 H2 H3

1.664e+01* 4.598e+00 4.595e+00 4.602e+00 4.602e+00 4.583e+00 4.602e+00
4.152e+00* 1.198e+00 1.198e+00 1.198e+00 1.198e+00 1.197e+00 1.198e+00
9.976e-01 2.654e-01 2.654e-01 2.655e-01 2.655e-01 2.654e-01 2.655e-01
2.623e-01* 6.479e-02* 6.480e-02* 6.462e-02* 6.481e-02* 6.480e-02* 6.481e-02*
7.016e-02* 1.617e-02* 1.556e-02* 1.616e-02* 1.616e-02* 1.616e-02* 1.616e-02*
2.003 1.941 1.94 1.942 1.942 1.937 1.942
2.057 2.174 2.174 2.174 2.174 2.173 2.174
1.927 2.034 2.034 2.039 2.034 2.034 2.034
1.902 2.002 2.058 2 2.004 2.004 2.004
C2 C3 C4 C5 C6 H2 H3

1.315e+01* 4.868e+00 4.863e+00 4.871e+00 4.871e+00 4.853e+00 4.871e+00
3.980e+00* 1.261e+00 1.261e+00 1.261e+00 1.261e+00 1.260e+00 1.261e+00
9.226e-01 2.600e-01 2.600e-01 2.600e-01 2.600e-01 2.600e-01 2.600e-01
2.069e-01* 6.334e-02* 6.333e-02* 6.291e-02* 6.333e-02* 6.333e-02* 6.333e-02*
4.552e-02* 1.580e-02* 1.547e-02* 1.580e-02* 1.580e-02* 1.580e-02* 1.580e-02*
1.724 1.949 1.948 1.95 1.95 1.946 1.95
2.109 2.278 2.277 2.278 2.278 2.277 2.278
2.157 2.037 2.037 2.047 2.038 2.037 2.038
2.184 2.004 2.034 1.993 2.003 2.003 2.003

C2 C3 C4 C5 C6 H2 H3

1.874e+04* 3.428e+03 3.418e+03 3.426e+03 3.426e+03 3.406e+03 3.426e+03
4.959e+03* 6.484e+02 6.483e+02 6.484e+02 6.484e+02 6.481e+02 6.484e+02
1.339e+03 9.817e+01 9.811e+01 9.814e+01 9.814e+01 9.807e+01 9.814e+01
3.186e+02* 2.144e+01* 2.143e+01* 2.146e+01* 2.143e+01* 2.143e+01* 2.143e+01*
7.568e+01* 6.486e+00* 5.377e+00* 6.392e+00* 6.392e+00* 6.392e+00* 6.392e+00*
1.918 2.402 2.398 2.402 2.402 2.394 2.402
1.889 2.724 2.724 2.724 2.724 2.724 2.724
2.071 2.195 2.195 2.193 2.195 2.194 2.195
2.074 1.725 1.995 1.747 1.745 1.745 1.745
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Table B.8

L1-errors inρ, ρu, ρv, andρE for 3rd order HRNTBL solutions atRe = 2e6

C2 C3 C4 C5 C6 H2 H3

– 2.260e-04 1.334e-04 1.337e-04 1.338e-04 1.445e-04 1.338e-04
– 1.595e-05 1.342e-05 1.340e-05 1.340e-05 1.339e-05 1.340e-05
– 1.888e-06 1.779e-06 1.776e-06 1.776e-06 1.754e-06 1.776e-06
4.345e-04 2.696e-07 2.562e-07 2.559e-07 2.559e-07 2.540e-07 2.559e-07
– – – – – – –
– 3.824 3.313 3.319 3.32 3.432 3.32
– 3.079 2.915 2.915 2.915 2.932 2.915
– 2.808 2.796 2.795 2.795 2.788 2.795
– – – – – – –
C2 C3 C4 C5 C6 H2 H3

– 1.623e-01 1.583e-01 1.590e-01 1.590e-01 1.664e-01 1.590e-01
– 1.867e-02 1.835e-02 1.837e-02 1.837e-02 1.867e-02 1.837e-02
– 2.284e-03 2.235e-03 2.236e-03 2.236e-03 2.246e-03 2.236e-03
2.490e-01 3.005e-04 2.904e-04 2.904e-04 2.904e-04 2.909e-04 2.904e-04
– – – – – – –
– 3.12 3.109 3.114 3.114 3.156 3.114
– 3.031 3.038 3.039 3.039 3.055 3.039
– 2.926 2.944 2.944 2.944 2.949 2.944
– – – – – – –
C2 C3 C4 C5 C6 H2 H3

– 1.710e-01 1.595e-01 1.593e-01 1.593e-01 1.589e-01 1.593e-01
– 1.897e-02 1.781e-02 1.778e-02 1.778e-02 1.760e-02 1.778e-02
– 2.293e-03 2.168e-03 2.166e-03 2.166e-03 2.147e-03 2.166e-03
1.783e-01 2.985e-04 2.826e-04 2.825e-04 2.825e-04 2.815e-04 2.825e-04
– – – – – – –
– 3.173 3.163 3.163 3.163 3.174 3.163
– 3.048 3.038 3.038 3.038 3.035 3.038
– 2.941 2.94 2.939 2.939 2.931 2.939
– – – – – – –

C2 C3 C4 C5 C6 H2 H3

– 9.025e+01 5.430e+01 5.382e+01 5.383e+01 5.780e+01 5.383e+01
– 6.262e+00 4.991e+00 4.971e+00 4.972e+00 4.967e+00 4.972e+00
– 6.802e-01 6.286e-01 6.274e-01 6.274e-01 6.215e-01 6.274e-01
2.324e+02 9.512e-02 9.240e-02 9.228e-02 9.228e-02 9.150e-02 9.228e-02
– – – – – – –
– 3.849 3.444 3.436 3.437 3.541 3.437
– 3.203 2.989 2.986 2.986 2.999 2.986
– 2.838 2.766 2.765 2.765 2.764 2.765
– – – – – – –
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Table B.9

L1-errors inρ, ρu, ρv, andρE for 4th order HRNTBL solutions atRe = 2e6

C2 C3 C4 C5 C6 H2 H3

– 2.606e-04 3.264e-05 1.172e-05 1.168e-05 9.161e-05 1.169e-05
– 1.689e-05 1.619e-06 5.828e-07 5.824e-07 4.259e-06 5.824e-07
– 9.509e-07* 9.339e-08* 6.175e-08* 6.175e-08* 2.046e-07* 6.175e-08*
– – – – – – –
– – – – – – –
– 3.947 4.333 4.33 4.326 4.427 4.326
– 4.151 4.116 3.238 3.238 4.38 3.237
– – – – – – –
– – – – – – –
C2 C3 C4 C5 C6 H2 H3

– 1.018e-01 8.293e-03 4.028e-03 4.021e-03 2.979e-02 4.021e-03
– 1.111e-02 4.699e-04 2.482e-04 2.480e-04 1.658e-03 2.480e-04
– 1.390e-03* 2.956e-05* 2.112e-05* 2.111e-05* 9.939e-05* 2.111e-05*
– – – – – – –
– – – – – – –
– 3.196 4.142 4.021 4.019 4.167 4.019
– 2.999 3.991 3.555 3.554 4.061 3.554
– – – – – – –
– – – – – – –
C2 C3 C4 C5 C6 H2 H3

– 1.022e-01 6.217e-03 4.392e-03 4.390e-03 2.060e-02 4.390e-03
– 1.161e-02 4.419e-04 3.025e-04 3.025e-04 1.273e-03 3.025e-04
– 1.434e-03* 2.993e-05* 2.474e-05* 2.474e-05* 8.782e-05* 2.474e-05*
– – – – – – –
– – – – – – –
– 3.138 3.814 3.86 3.859 4.016 3.859
– 3.016 3.884 3.612 3.612 3.858 3.612
– – – – – – –
– – – – – – –
C2 C3 C4 C5 C6 H2 H3

– 9.619e+01 1.166e+01 4.329e+00 4.313e+00 3.592e+01 4.314e+00
– 6.520e+00 6.281e-01 1.807e-01 1.805e-01 1.956e+00 1.805e-01
– 3.946e-01* 3.914e-02* 1.636e-02* 1.636e-02* 1.080e-01* 1.636e-02*
– – – – – – –
– – – – – – –
– 3.883 4.215 4.583 4.579 4.199 4.579
– 4.046 4.004 3.465 3.464 4.179 3.464
– – – – – – –
– – – – – – –
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Table B.10

L1-errors inρ, ρu, ρv, andρE for 2nd order HRNTBL solutions atRe = 4e6

C2 C3 C4 C5 C6 H2 H3

4.261e-02* 4.783e-03* 4.756e-03* 4.771e-03* 4.770e-03* 4.744e-03* 4.770e-03*
7.657e-03* 7.987e-04* 7.974e-04* 7.977e-04* 7.977e-04* 7.977e-04* 7.977e-04*
3.066e-03* 1.415e-04 1.414e-04 1.414e-04 1.414e-04 1.413e-04 1.414e-04
– 4.214e-05* 3.892e-05* 4.211e-05* 4.206e-05* 4.110e-05* 4.114e-05*
1.658e-04* 6.257e-06* 6.261e-06* 6.260e-06* 5.478e-06* 6.236e-06* 6.260e-06*
2.477 2.582 2.576 2.58 2.58 2.572 2.58
1.32 2.497 2.496 2.496 2.496 2.497 2.496
– 1.748 1.861 1.748 1.75 1.782 1.781
– 2.752 2.636 2.75 2.941 2.72 2.716

C2 C3 C4 C5 C6 H2 H3

1.861e+01* 4.030e+00* 4.023e+00* 4.036e+00* 4.036e+00* 4.004e+00* 4.036e+00*
3.658e+00* 9.852e-01* 9.849e-01* 9.856e-01* 9.856e-01* 9.838e-01* 9.856e-01*
1.239e+00* 2.344e-01 2.344e-01 2.345e-01 2.345e-01 2.344e-01 2.345e-01
– 5.797e-02* 5.795e-02* 5.798e-02* 5.798e-02* 5.796e-02* 5.797e-02*
6.501e-02* 1.426e-02* 1.427e-02* 1.427e-02* 1.437e-02* 1.427e-02* 1.427e-02*
2.347 2.032 2.03 2.034 2.034 2.025 2.034
1.561 2.071 2.071 2.072 2.072 2.07 2.072
– 2.016 2.016 2.016 2.016 2.016 2.016
– 2.023 2.022 2.023 2.012 2.022 2.023
C2 C3 C4 C5 C6 H2 H3

1.196e+01* 4.444e+00* 4.436e+00* 4.446e+00* 4.446e+00* 4.421e+00* 4.446e+00*
2.795e+00* 1.019e+00* 1.019e+00* 1.019e+00* 1.019e+00* 1.018e+00* 1.019e+00*
7.014e-01* 2.398e-01 2.397e-01 2.398e-01 2.398e-01 2.397e-01 2.398e-01
– 5.887e-02* 5.836e-02* 5.886e-02* 5.885e-02* 5.876e-02* 5.877e-02*
4.033e-02* 1.427e-02* 1.426e-02* 1.426e-02* 1.428e-02* 1.426e-02* 1.426e-02*
2.097 2.124 2.122 2.125 2.125 2.119 2.125
1.995 2.088 2.087 2.088 2.088 2.086 2.088
– 2.026 2.038 2.026 2.027 2.028 2.029
– 2.045 2.033 2.045 2.043 2.043 2.043
C2 C3 C4 C5 C6 H2 H3

2.260e+04* 2.249e+03* 2.238e+03* 2.246e+03* 2.246e+03* 2.229e+03* 2.246e+03*
4.625e+03* 3.805e+02* 3.801e+02* 3.803e+02* 3.803e+02* 3.800e+02* 3.803e+02*
1.530e+03* 4.558e+01 4.553e+01 4.557e+01 4.557e+01 4.548e+01 4.557e+01
– 9.478e+00* 1.007e+01* 9.475e+00* 9.484e+00* 9.559e+00* 9.564e+00*
8.564e+01* 3.420e+00* 3.424e+00* 3.423e+00* 2.534e+00* 3.405e+00* 3.423e+00*
2.289 2.564 2.558 2.562 2.562 2.553 2.562
1.596 3.061 3.061 3.061 3.061 3.063 3.061
– 2.266 2.177 2.266 2.264 2.25 2.252
– 1.47 1.556 1.469 1.904 1.489 1.482
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Table B.11

L1-errors inρ, ρu, ρv, andρE for 3rd order HRNTBL solutions atRe = 4e6

C2 C3 C4 C5 C6 H2 H3

– 1.596e-04* 1.347e-04* 1.319e-04* 1.319e-04* 1.288e-04* 1.319e-04*
– 1.287e-05 1.241e-05 1.230e-05 1.230e-05 1.200e-05 1.230e-05
– 1.535e-06 1.517e-06 1.513e-06 1.513e-06 1.478e-06 1.513e-06
– 2.422e-07* 2.316e-07* 2.111e-07* 2.291e-07* 2.296e-07* 2.312e-07*
– – – – – – –
– 3.632 3.44 3.423 3.423 3.424 3.423
– 3.068 3.032 3.023 3.023 3.021 3.023
– 2.664 2.712 2.841 2.723 2.686 2.71
– – – – – – –
C2 C3 C4 C5 C6 H2 H3

– 1.263e-01* 1.169e-01* 1.174e-01* 1.174e-01* 1.276e-01* 1.174e-01*
– 1.354e-02 1.297e-02 1.301e-02 1.301e-02 1.352e-02 1.301e-02
– 1.704e-03 1.676e-03 1.678e-03 1.678e-03 1.700e-03 1.678e-03
– 2.374e-04* 2.386e-04* 2.363e-04* 2.386e-04* 2.394e-04* 2.386e-04*
– – – – – – –
– 3.222 3.172 3.174 3.174 3.239 3.174
– 2.99 2.952 2.955 2.955 2.992 2.955
– 2.843 2.813 2.828 2.814 2.828 2.814
– – – – – – –
C2 C3 C4 C5 C6 H2 H3

– 1.275e-01* 1.210e-01* 1.203e-01* 1.203e-01* 1.152e-01* 1.203e-01*
– 1.338e-02 1.264e-02 1.259e-02 1.259e-02 1.220e-02 1.259e-02
– 1.667e-03 1.613e-03 1.610e-03 1.610e-03 1.583e-03 1.610e-03
– 2.255e-04* 2.215e-04* 2.210e-04* 2.211e-04* 2.195e-04* 2.213e-04*
– – – – – – –
– 3.252 3.259 3.256 3.257 3.239 3.257
– 3.004 2.97 2.967 2.967 2.946 2.967
– 2.886 2.864 2.865 2.864 2.85 2.863
– – – – – – –

C2 C3 C4 C5 C6 H2 H3

– 8.541e+01* 7.212e+01* 7.081e+01* 7.082e+01* 7.112e+01* 7.082e+01*
– 6.503e+00 5.997e+00 5.932e+00 5.932e+00 5.843e+00 5.932e+00
– 7.592e-01 7.366e-01 7.334e-01 7.334e-01 7.206e-01 7.334e-01
– 1.150e-01* 1.105e-01* 1.059e-01* 1.097e-01* 1.095e-01* 1.103e-01*
– – – – – – –
– 3.715 3.588 3.577 3.578 3.605 3.578
– 3.098 3.025 3.016 3.016 3.019 3.016
– 2.723 2.737 2.792 2.741 2.718 2.733
– – – – – – –
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Table B.12

L1-errors inρ, ρu, ρv, andρE for 4th order HRNTBL solutions atRe = 4e6

C2 C3 C4 C5 C6 H2 H3

– 2.156e-04 2.809e-05* 8.309e-06 8.298e-06 1.191e-04 8.299e-06
– 1.785e-05* 2.000e-06* 5.561e-07* 5.560e-07* 7.307e-06* 5.560e-07*
– 1.254e-06* – 2.786e-08* 2.786e-08* – 2.786e-08*
– – – – – – –
– – – – – – –
– 3.594 3.812 3.901 3.9 4.027 3.9
– 3.831 – 4.319 4.319 – 4.319
– – – – – – –
– – – – – – –
C2 C3 C4 C5 C6 H2 H3

– 1.196e-01 1.407e-02* 6.965e-03 6.961e-03 5.158e-02 6.961e-03
– 1.446e-02* 9.218e-04* 4.202e-04* 4.201e-04* 3.078e-03* 4.201e-04*
– 1.773e-03* – 2.391e-05* 2.391e-05* – 2.391e-05*
– – – – – – –
– – – – – – –
– 3.048 3.932 4.051 4.051 4.067 4.051
– 3.028 – 4.135 4.135 – 4.135
– – – – – – –
– – – – – – –
C2 C3 C4 C5 C6 H2 H3

– 1.305e-01 1.108e-02* 7.468e-03 7.467e-03 2.557e-02 7.467e-03
– 1.518e-02* 6.398e-04* 4.354e-04* 4.355e-04* 1.600e-03* 4.355e-04*
– 1.824e-03* – 2.493e-05* 2.493e-05* – 2.493e-05*
– – – – – – –
– – – – – – –
– 3.104 4.115 4.1 4.1 3.998 4.1
– 3.056 – 4.126 4.126 – 4.126
– – – – – – –
– – – – – – –

C2 C3 C4 C5 C6 H2 H3

– 9.883e+01 1.436e+01* 6.138e+00 6.134e+00 5.278e+01 6.134e+00
– 8.242e+00* 9.714e-01* 3.757e-01* 3.757e-01* 3.152e+00* 3.757e-01*
– 5.901e-01* – 2.172e-02* 2.172e-02* – 2.172e-02*
– – – – – – –
– – – – – – –
– 3.584 3.886 4.03 4.029 4.066 4.029
– 3.804 – 4.112 4.112 – 4.112
– – – – – – –
– – – – – – –
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