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The establishment of perennial grasses as biomass crops has increased the 

production acreage of giant miscanthus (Miscanthus x gigantues Greef et Deu, MXG). 

Yield loss and establishment failure could be detrimental to the sustainable production of 

this crop, and therefore, exploitation of differentiation in cultivar response to fungal 

diseases could be a key management strategy.  A study was initiated in 2010 to evaluate 

MXG cultivars for foliar disease incidence (FDI) and compare to switchgrass (Panicum 

virgatum L., SG) cultivars, isolate and identify fungi from symptomatic leaf material, and 

demonstrate through Koch’s postulates the ability of these fungi to incite symptoms 

observed in the field.  

Giant miscanthus FDI ratings were similar between MXG cultivars, but 

significantly lower when compared to SG cultivars.  Thirty genera of fungi were 

identified from fungal collections, and 16 pathogenic genera were isolated.  Twelve 

isolates were selected and four were demonstrated to be pathogenic on Mxg.   
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CHAPTER I 

INTRODUCTION 

Giant miscanthus, Miscantus x giganteus (Greef et Deu ex. Hodkinson et 

Renvoize) is a tall, C4 perennial grass in the Poaceae family (Greef and Deuter 1993).  

The genus Miscanthus includes species with great phenotypic and genotypic variation.  

The vast physical and physiological differences allows for the application of this crop in a 

variety of ways.  Historically used as a forage grass (Stewart et al. 2009), improved 

miscanthus species are used in landscape settings as ornamental grasses, cultivated and 

bred to develop into specimen plantings with large biomass and large, flowering plumes. 

Recent legislation passed by the United States government in 2006 outlined 

support for research on cellulosic ethanol to be competitive with corn based ethanol has 

increased production of certain non-traditional crops as energy crops.  Similar goals have 

been set forth in the European Union.  Perennial rhizomatous grasses such as giant 

miscanthus, switchgrass (Panicum virgatum L.), and others have advantages for use as 

alternative bioenergy sources.  In general, perennial grasses produce large amounts of 

biomass annually on relatively small acreages.  High production yields are obtainable 

with minimal cultural inputs.  The biomass of perennial grasses contains high levels of 

cellulose and relatively low lignin compared to wood, important for low ash when 

converting into ethanol as well as enabling the crop to stand upright through dry-down 

until harvest.  A far greater amount of energy can be produced from the conversion of 
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these grasses to ethanol than what is required to produce them.  High yields combined 

with minimal production inputs allow for an overall positive net energy gain when using 

perennial rhizomatous grasses for bioenergy feedstock (Lewandowski et al. 2003).  

Giant miscanthus is one of the perennial grasses currently being produced for 

energy conversion.  With a maximum height averaging 3 m, biomass yields of up to 30 T 

dry mass per hectare are attainable on suitable lands (Lewandowski et al. 2003).  High 

yields can be achieved with minimal fertility and irrigation inputs thus reducing the 

financial and energy cost of production inputs.  At initial planting, tilling and weed 

control is required; however, no continual annual cultivation practices are needed.  The 

minimal tillage involved helps reduce costs as well as reducing soil erosion.  Members of 

the genus miscanthus have a large range of native habitat in East Asian countries 

allowing it to be suitable for production across a wide variety of environments and 

growing conditions (Stewart et al. 2009). 

Giant miscanthus is a triploid hybrid, consequently the plant is sterile.  This trait 

is advantageous for preventing the dissemination of giant miscanthus resulting in 

invasive weed issues, but it also creates strict requirements for propagation and 

establishment.  Rhizomes are the primary source of propagation material.  Field 

establishment is accomplished by planting rhizomes either by hand or mechanically.  Due 

to the need for vegetative propagation, many times a single genotype is used for 

widespread dispersal and establishment.  This creates a situation where little to no genetic 

diversity exists.  Monocropping systems such as those used for giant miscanthus 

production can be particularly vulnerable to disease epidemics.  Once natural host 

susceptibility is established, any pathogen could readily spread between plants, 
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eventually colonizing and infecting entire fields.  Determining the breadth of pathogenic 

organisms with the ability to infect, colonize and reduce yield is an important first step 

for giant miscanthus production to remain a viable biofuel alternative.  

Giant miscanthus is produced in a monocropping system and information 

regarding pathogenic relationships in the production of the grass as a biofuel is extremely 

limited.  Research programs to monitor and evaluate this crop for potential pathogens 

before the mass production stages can be initiated are an important first step.  Research 

and the development of understanding in regards to the pathology of giant miscanthus 

allows for the addressing of possible issues before production stages.  It would also help 

to create future control programs that are specific to the crop and area being produced.   

The goal of this research is to identify plant pathogen relationships that exist 

within giant miscanthus genotypes produced as biofuel crops.  Achievement of this goal 

will be determined upon the ability to; (i) assess field disease incidence of giant 

miscanthus cultivars and compare to switchgrass for the growing seasons of 2011 and 

2012, (ii) isolate and identify fungi associated with foliar symptoms of giant miscanthus 

and switchgrass cultivars, and (iii) evaluate pathogenicity of the isolated fungi on giant 

miscanthus cultivars. 
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CHAPTER II 

LITERATURE REVIEW 

Miscanthus (Andersson) is a diverse genera of perennial grasses with origins in 

the East Asian countries of China, Japan, Korea, and Taiwan (Greef and Deuter 1993).  It 

occurs naturally in regions ranging from the tropics to the subartic (Clifton-Brown and 

Lewandowski 2002; Stewart et al. 2009) and is one of only a few C4 grasses able to 

withstand the environmental fluctuations associated with the temperate zone 

(Lewandowski et al. 2000).  Miscanthus was first introduced to Europe in the 19th 

Century (Deuter 2000).  In 1935, the Dutchmen, Aksel Olsen, traveled to Yokohama, 

Japan and observed a miscanthus species with exceptionally vigorous growth and brought 

it back to Denmark to be distributed in many European gardens as “Clone Aksel Olsen” 

(Deuter 2000; Lewandowski 2000).  The native grassland setting of miscanthus in Asia 

gave rise to many natural hybrid crosses due to various species being located in close 

proximity.  The clone returned back by Olsen is thought to be a cross of Miscanthus 

sacchariflorus and Miscanthus sinensis (Greef and Deuter 1993; Greef et al. 1997; 

Lewandowski et al. 2000).  This particular species, noted for its outstanding growth when 

compared to other miscanthus species, was later categorized by Greef and Deuter (1993) 

to be Miscanthus x giganteus Greef et Deu ex. Hodkinson et Renvoize (Hodkinson and 

Renvoize 2001); however, the taxonomy is easily confused within the genus (Hodkinson 

et al. 2002).  
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The management of miscanthus dates back as far as 1,000 years based on ancient 

Japanese historical books describing vast grasslands making the sight of nearby villages 

impossible (Stewart et al. 2009).  People indigenous to the area where miscanthus grows 

naturally have utilized its long stems as thatching material for buildings and houses as 

well as using the leaves to weave bags for charcoal storage (Stewart et al. 2009).  Due to 

the availability and dispersion of this grass across its native area, it has been widely used 

as a feed for livestock.  Many M. sinensis cultivars have been selected for the sole 

purpose of livestock feed, focusing on traits such as shorter heights and broader leaves.  

Miscanthus cultivars are used today as ornamental grasses in landscape settings as well as 

land stabilization plantings on hills along highways (Deuter 2000).  Modern day 

applications of miscanthus use include insulation material, lumber for floor construction, 

as well as additives in potting mixes.  The most recent work being done with miscanthus 

species involves breeding programs focusing on exploiting the wide array of genetic 

variances among the species in order to generate new superior genotypes better suited to 

the production processes and the environment in which it is produced (Clifton-Brown and 

Lewandowski 2002, Greef et al. 1997). 

The genus Miscanthus was first described by Andersson in 1855 and includes 17 

species to date (Hodkinson and Renvoize 2001).  The species Miscanthus × giganteus is 

an interspecific hybrid resulting from a natural cross between the tetraploid, M. 

sacchariflorus and the diploid M. sinensis, producing a allotriploid (2n=3x=57) hybrid 

incapable of producing fertile seed (Hodkinson and Renvoize 2001).  The genus is 

considered to have high genetic diversity among the species, explaining the vast 
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differences and confusion when trying to identify at this level (Hodkinson and Renvoize 

2001). 

Giant miscanthus (Mxg), Miscanthus × giganteus, is a highly persistent 

rhizomatous, C4 perennial grass located within the Poaceae family.  It occurs naturally in 

the form of grasslands, however younger stands will develop circular masses of tillers 

reaching 1 to 2 meters in diameter.  New growth measuring 2 m high with erect culms, 5 

to 10 mm diameter, is initiated each spring from the clump of rhizomatous roots 

(Hodkinson and Renvoize 2001).  Leaf blades are linear, flat, 50 to 66 cm long × 2.2 to 

2.5 cm wide with serrated edges (Hodkinson and Renvoize 2001).  Leaf arrangement is 

alternate on the stem and height can range from 1 to 3 m depending on the species and 

limiting growth conditions such as water and light (Deuter 2000).  Christian et al. (2008) 

reported a maximum stem height of 3.6 meters in a ten-year-old stand of Mxg cultivated 

in England.  It was reported by Liou in 1989 that some tropical and subtropical species of 

miscanthus can reach heights in excess of 5 m (Deuter 2000).  These genotypes are 

typically used for pulp and paper-making raw material.  As the plant flowers mid-

summer, large panicles with racemes form.  The sterile inflorescence is 30 cm long, 

covered with small hairs with 24 racemes which can be 10 to 20 cm long (Hodkinson and 

Renvoize 2001). 

Field trial yields of up to 30 t dry matter (DM) per hectare (ha) have been reported 

in areas with long growing seasons, high average temperatures and supplemental 

irrigation.  The soil type greatly influences the crop.  A sandy soil has faster 

establishment rates, while greater yields can be obtained on clay soils in older stands 

(Venendaal et al. 1997).  Yields of 10 to 25 t DM ha-1 are reported in non-irrigated fields 
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with shorter growing seasons and lower temperatures (Lewandowski 2003).  Giant 

miscanthus can be grown on a wide range of soils; however, sites with stagnant water are 

unsuitable.  A soil profile with good drainage while having enough water holding 

capacity to supply the plant with adequate water for optimum growth will produce the 

largest amount of biomass.  The greatest yields have been observed on well-drained 

loamy soils (Lewandowski 2003).  Giant miscanthus can withstand soil pH levels ranging 

from 3.5 to 7.5, with a range of pH 4 to 6 being ideal.  A miscanthus productivity model 

(MISCANMOD) was developed by John C. Clifton-Brown and has been used to predict 

potential yields in the United States.  Yields of 33 t of DM ha-1 were projected using this 

model for research sites in Illinois (Heaton et al. 2003).  

Giant miscanthus has a characteristically high rhizomatous growth habit which 

makes it a desirable host for biofuel production.  Giant miscanthus, like most perennial 

grasses, has the ability to translocate phytonutrients such as N, P, and K to the rhizomes 

at the end of each growing season.  Storage of these nutrients allow for less fertilizer 

inputs.  Also, the reduced nutrient concentration in harvested plant material is desirable to 

help minimize the problems of corrosion, slagging, fouling and emissions that can occur 

during combustion (Beale and Long 1997).  Beale and Long (1997) did extensive studies 

in northern Europe on the translocation and location of these vital nutrients at different 

times throughout the growing season.  The greatest concentrations of N, P, and K were 

detected in the start of the growing season in June, and thereafter nutrient concentrations 

became diluted with increased amounts of above ground dry matter.  The proportion of 

total nutrients was determined to increase in shoot material in mid-summer, where a 

steady decline in total nutrient allocation occurred.  The study reported that in general, 
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Mxg fertilizer requirements are lower than most agronomic crops such as corn (Zea 

maize L.), sorghum (Sorghum bicolor L.) and wheat (Triticum spp. L.) (Beale and Long 

1997).  Giant miscanthus was also determined to have more efficient nutrient use than the 

abovementioned crops.   

Establishment is a key step in the production of any bioenergy crop, limiting the 

costs associated with this factor helps increase the net energy gain.  Giant miscanthus is a 

sterile hybrid requiring means other than seed to be used in establishing a crop.  Currently 

this is done either by cuttings or through tissue culture, both of which can be an 

expensive input cost at around $4,000 per hectare (Lewandowski et al. 2000).  

Mechanical methods are being developed to relieve some of these establishment costs, 

that when depreciated over the crop lifetime can constitute 50 to 60% of the annual 

variable costs (Venendaal et al. 1997).  Methods such as disc cultivating to separate 

rhizomes, or a process using modified potato pickers and planters can drastically reduce 

propagation costs to an estimated $400 per hectare (Lewandowski et al. 2000). 

Fertilization requirements are low due to the ability of Mxg to redirect stored 

nitrogen to the roots for energy reserves.  A study conducted on Mxg productivity levels 

concluded that no additional yields were noticed with increased nitrogen levels, and that 

if grown on soils with adequate nitrogen levels average yields may be achieved (Beale 

and Long 1997, Christian et al. 2008).  The study also noted that nitrogen applications 

may increase the amount of weeds present during establishment.  Weed control is 

necessary only during the establishment period, but after 1 to 3 years Mxg is capable of 

controlling weeds through competition.  Chemical control with herbicides labeled for 

corn has been successful for weed control in Mxg (Lewandowski et al. 2000).  Venendaal 
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(1997) reported in Denmark glyphosate can be used in the spring on dormant material.  

However, it was noted that caution should be used in warmer climates where material can 

be taken up more readily.  Mechanical weed cultivation is possible through long tine 

harrow and row cultivation.   

Harvest of foliar tissue occurs after senescence, usually in the fall when 

temperatures start to cool.  In Denmark, lethal frost damage can occur at temperatures of 

-2.8°C to -5°C (Jorgensen 1996).  Fields are allowed to stand and dry and are harvested 

when a moisture level of 30.0% is achieved.  A prolonged harvest was reported in 

Denmark, Netherlands, Germany, Austria, and Switzerland which reduces the moisture 

and mineral content of Mxg which is undesirable (Lewandowski et al. 2000).  In 

Germany, a March harvest was recommended to take advantage of optimum dry down 

times; however, harvesting can also be done in the fall of the year to avoid drastic winter 

yield losses, which can be as much as 30.0% (Venendaal et al. 1997).  Harvest methods 

are similar to those of forages used for hay production, and Mxg material is stored in 

round bales (Lewandowski et al. 2000). 

Characteristics of Mxg including high dry matter yields as well as its adaptability 

across a wide soil range has led to research in exploring the use of Mxg as a source of 

biomass feedstock for bioenergy production.  Government legislation in the United States 

as well as the European Union (EU) set specific goals for the contribution of renewable 

resources.  The Advanced Energy Initiative (AEI) established in 2006 by the U.S. 

government set a goal in which 30.0% of petroleum dependency be offset by renewable 

biomass, and going further, called for the production of cellulosic ethanol to be 

competitive with its gasoline counterparts by 2012 (Heaton et al. 2008, Perlack et al. 
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2005).  Similar goals have been set forth in the EU with a target goal of 12.0% of total 

energy consumption displaced by renewable sources (Clifton-Brown et al. 2003).  A 

study funded by the U.S. Department of Energy (DOE) and U.S. Department of 

Agriculture (USDA) was conducted to determine whether land resources in the U.S. can 

produce enough biomass to sustainably meet the goal of displacing 30.0% or more of the 

country’s current petroleum usage.  Estimates figured in the study stated that to displace 

30%, approximately a billion tons of dry matter would need to be produced.  This amount 

is unachievable without disturbing current food production systems (Perlack et al. 2005).  

If all U.S. land used for corn and soybeans (Glycine max (L.) Merr) were converted to 

biofuel production, only 12.0% of total petroleum usage would be replaced (Hill et al. 

2006).  However, the study conducted by Perlack et al. (2005) reported that with the 

development of science and technology to streamline production, amounts of 

approximately 1.4 billion tons of dry matter could be available by 2030 without creating 

impacts on the food production industry (Perlack et al. 2005).   

Many qualities must be present in order for a crop to be considered an ideal 

energy crop.  These include, but are not limited to: 1) having a high concentration of 

lignin and cellulose content; 2) ability to be produced economically on marginal land; 3) 

providing a positive net energy gain; and 4) ability to be produced in large quantities 

without detrimental consequences to the food chain and environment (Beale and Long 

1997; Hill et al. 2006; Lewandowski 2003).  Perennial grasses have high lignin and 

cellulose contents which is especially important for high combustion rates.  This 

characteristic also allows for the vegetation to stand upright for ease of harvest as well as 

enhancing the drying process.  High importance is placed on the ability of the grass to be 
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produced on marginal land.  This enables soils once unsuitable for agricultural production 

to be utilized without reducing current allocations for food production.  The ability of 

biofuel to be produced with a net energy gain is based on the principal of increased 

energy production over energy spent.  Therefore, the crop must be economically capable 

of producing large amounts of biomass with limited inputs.   

Many studies have been conducted to analyze various perennial grasses to be used 

as bioenergy feedstocks.  In 1984 the Herbaceous Energy Crops Research Program 

(HECP) was initiated under the U.S. Department of Energy (DOE) to evaluate 35 various 

herbaceous crops for further research as energy crops, 18 of which were perennial 

grasses.  Results of this study showed switchgrass (Panicum virgatum L.) to have greatest 

potential.  In 1991 HECP evolved into the DOE’s Bioenergy Feedstock Development 

Program (BFDP), and switchgrass was chosen as a model crop to focus research efforts 

in hopes to expedite information concerning the use of perennial grasses as energy crops 

(Lewandowski 2003).  Switchgrass was chosen due to its ability of high yields on 

marginal land, desirable attributes for biofuel, and lack of production limitations.  Europe 

was the first to initiate trials investigating the potential use of the Miscanthus species as a 

bioenergy feedstock in Denmark in the late 1960’s (Heaton et al. 2008; Lewandowski et 

al. 2003; Venendaal et al. 1997).  Breeding trials were set up by the European AIR 

program in 1993 to identify cultivars within Miscanthus spp. having genetics applicable 

to the bioenergy field.  It was found that although M. sinsensis showed improved 

combustion quality of biomass; higher yields were obtained using the hybrid, Mxg.   

While much research has been focused on the viability of Mxg as a biofuel 

feedstock in terms of production and energy harnessing power, limited importance has 



 

12 

been placed on the interaction of plant pathogens and its potentially limiting role in 

biomass yield production.  The possible presence of a pathogen and characteristics of 

miscanthus production warrants investigation. 

Some disadvantages with respect to plant parasitic relationships exist in the 

cultivation of Mxg for biofuel.  Given the perennial nature of Mxg, and harvesting 

techniques, large quantities of plant debris remain in the field providing a source of 

substrate for possible pathogens.  Inoculum may accumulate over time to a sufficient 

level causing an epidemic in Mxg fields.  Giant miscanthus is vegetatively propagated; 

therefore genetic diversity is limited, which creates entire fields of genetic clones that 

may be susceptible to a particular disease.  The monocrop nature of Mxg predisposes the 

crop to rapid destruction with little or no means for control.    

Accounts of vast crop destruction due to monocropping have been witnessed 

throughout history.  Dating back to 1840 in Ireland where nearly 1 million citizens died 

of starvation due to entire losses of the potato crop (Donnelly 2001).  The Irish were 

dependent on one variety of potato which was vegetatively propagated.  An outbreak of 

potato blight caused by the fungus Phytophthora infestans (Mont.) de Bary spread 

quickly and wiped out entire fields (Ristaino 2002).  Other accounts of monocropping 

disasters have been witnessed throughout time.  An epidemic within the last 30 years was 

the approximate loss of over 1 billion dollars or 710 million bushels of corn due to 

southern corn leaf blight, causal organism Bipolaris maydis (Y. Nisik. & C. Miyake), in 

the southeastern United States (Tatum 1971).  The majority of hybrid corn planted 

throughout the Southeast and Midwest at that time contained the Texas male-sterile 

(TMS) cytoplasm.  Vast acres of hybrid TMS corn production were susceptible to a new 
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race of B. maydis  identified as Race T (Tatum 1971).  Past historical epidemic 

occurrences in monocropping production systems raises awareness to potential losses and 

vulnerabilities associated with Mxg.   

Current research is limited concerning pathogens associated with bioenergy crops 

due to their recent emergence into the production market.  However, as production yields 

across different species become more important, so does the relationship of pathogens 

that may potentially limit yield. 

Switchgrass diseases and associated pathogens could be potential pathogens of 

Mxg due to the close proximity associated when these grasses are grown side by side for 

research.  Currently identified pathogenic relationships of switchgrass include rust caused 

by Puccinia emaculata Schwein (Frazier et al. 2013; Hirsch et al. 2010; Zale et al. 2008), 

as well as Colletotrichum navitas Crouch causing anthracnose (Crouch et al. 2009), leaf 

spot caused by Bipolaris oryzae Breda de Haan (Krupinsky et al. 2005; Tomaso-Peterson 

and Balbalian 2010; Waxman and Bergrstom 2011) and leaf smut disease caused by 

Tilletia maclaganii (Berk.) (Thomsen et al. 2008).  Switchgrass smut can have a 

deleterious effect on biomass and tiller production (Thomsen et al. 2008).  Yield 

reductions of 17.0% and 6.6% caused by switchgrass smut in 2002 have been 

documented (Thomsen et al. 2008).  

Limited information is available concerning diseases of Mxg.  Current research 

proposed by M. Gray, Ph.D, University of Illinois Energy Biosciences Institute, focuses 

on potential pest relationships among certain insects, plant diseases, and nematodes in 

Mxg and switchgrass (Gray et al. 2009).  A first report of Pithomyces chartarum (Berk. 

and Curt.) causing a leaf blight of Mxg in Kentucky was published in 2010 (Ahonsi et al. 
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2010).  Leaf blight, caused by Leptosphaeria sp. and it’s anamorph Stagonospora sp., has 

been described occurring on Miscanthus spp. (O’Neill and Farr 1996) as well as more 

recently described occurring on Mxg (Pusz and Plaskowska 2010).  Symptoms of very 

small brown spots which further progressed into complete blighting and necrosis were 

reported in both instances.   
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CHAPTER III 

MATERIALS AND METHODS 

Field Disease Ratings 

Field establishment 

Field research sites were selected to assess foliar disease incidence (FDI) from 

three Starkville, MS locations with two sites located at the Leveck Animal Research 

Center (South Farm) and a third located at the Bearden Dairy Research Center.  All 

research sites were previously established as part of a broader alternative crop breeding 

research program directed by Dr. Brian S. Baldwin, Mississippi State University.  The 

“Dairy” site, established in 2010 at the Bearden Research Center, consisted of ‘Freedom’, 

‘Illinois’, and ‘Nagara’ giant miscanthus (Mxg).  Each cultivar was replicated four times 

in a randomized complete block with plot dimensions of 1.5 m × 3.0 m.   The “Forage” 

site, established in 2009 at the Leveck Research Center, consisted of Freedom and Illinois 

Mxg and ‘EG1101’ switchgrass (SG).  Each cultivar was replicated four times in a 

completely random design with plot dimensions of 9.1 m2.  The final site, “Variety”, 

established in 2002 and also at the Leveck Research Center, consisted of Freedom Mxg 

and ‘Alamo’ SG.  Both cultivars were replicated eight times in a completely random 

design. 
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Disease Assessment and Statistical Analysis 

All cultivars were assessed for FDI on a monthly basis from Jun to Oct, 2011 and 

Apr to Oct for 2012.  FDI was based on the percentage of foliar disease symptoms 

observed within each cultivar plot on a monthly basis throughout a growing season.  

Disease incidence was compared by repeated measures covariate analysis using PROC 

MIXED program in SAS (SAS 9.2; SAS institute, Cary, NC).  Each location was 

analyzed separately due to unique differences in cultivar and conditions.  Disease 

incidence (back transformed) is reported as percent plot displaying foliar disease 

symptoms following arcsine transformation.  Fisher’s protected least significant 

difference at (P ≤ 0.05) was used to compare least square means to determine statistical 

significance among cultivars.  Best fit models were developed when significant cultivar 

variation occurred. 

Fungal Collections 

Disease sampling and fungal isolation 

Samples of leaf material displaying symptoms of fungal infection (Fig. 4.1, 4.2, 

4.3) were harvested from Freedom, Illinois, and Nagara Mxg as well as Alamo and 

EG1101 SG at the Dairy, Forage, and Variety locations.  Cultivars were sampled 

monthly, Jun to Sep, 2011 and Apr to Sep, 2012.  Leaves displaying symptoms were 

removed from the plant, sealed in a labeled plastic bag, and held under refrigeration at 

approximately 4°C until being processed within 48 h of collection.  The diseased material 

at a location was pooled across replicates to ensure an adequate number of tissue samples 

(n = 50). 
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Surface disinfestation was performed using a modified protocol to remove 

contaminants from the leaf surface (Plant Pathologists’s Handbook, 1968).  Briefly, foliar 

lesions were excised with scissors and sectioned to create small segments not exceeding 4 

mm2.  Modified 50 ml Falcon conical centrifuge tubes (BD Biosciences San Jose, CA) 

with holes in the caps facilitated efficient rinsing of leaf lesions during the disinfestation 

process.  Leaf segments were placed in the cleaning tubes, vigorously agitated for 120 s 

in 70% ethanol (ETOH), and 120 s in 0.6 % sodium hypochlorite, then rinsed three times 

in sterile distilled water (sdH2O) for 120 s.  Leaf segments were then placed onto sterile 

filter paper under a laminar flow hood to dry.  Five random leaf segments were plated 

onto a 100 × 15 mm petri plate containing 1.5% water agar (WA).  Fifty randomly 

selected leaf segments were plated for each cultivar at each location.  Leaf segments were 

incubated on a laboratory bench top at 23°C under continuous cool white fluorescent 

lighting for a minimum period of 2 to 4 weeks.  Identification was initially to be 

conducted after 2 to 4 weeks incubation; however, this proved to be an insufficient 

amount of time for mature development of fungal structures and a minimal incubation 

period of 4 weeks was used. 

Fungal Identification and Preservation 

Identification was based on vegetative (chlamydospores, appressoria) and 

reproductive (asexual fruiting bodies and ascocarps) feature morphology following 

incubation of leaf segments.  Stereo (Meiji Techno RZ, Meiji Techno, Saitama, Japan) 

and compound (Nikon Labophot, Tokyo, Japan) microscopy along with taxonomic keys 

and reference guides were used to facilitate morpho-taxonomic identification to the 

genera level, and to the species level when morphological features allowed (Barnett and 
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Hunter 1998; Domsch et al. 2007; Ellis 1971; Ellis 1976; Guarro et al. 2012; Hanlin 

1990; Murray et al. 2009; Seifert et al. 2011; Sutton 1980; Sivanesan 1987; Ulloa and 

Hanlin 2000; Watanabe 2002). 

Pure fungal cultures were generated for fungi known to be pathogenic to 

gramineaceous hosts (Farr et al. 1989) and from these cultures, isolates were selected for 

pathogenicity evaluations.  Isolates selected for pathogenicity evaluations were identified 

to species level using molecular sequencing, and taxonomic morphology when 

applicable.  Numerous isolation techniques were used including; hyphal tip transfer, 

single conidia or ascospore transfer, as well as the transfer of entire asexual or sexual 

fruiting bodies (Plant Pathologists Pocketbook 1968).  Axenic cultures were established 

on WA and 3.9% potato dextrose agar (PDA).  These cultures were maintained for 

further research purposes including molecular sequencing, long term storage and 

pathogenicity testing. 

Fungal mycelium from one week old cultures grown on PDA was used as 

material for genomic DNA extraction.  Fresh mycelium was lyophilized with liquid 

nitrogen and stored in 1.5 ml microcentrifuge tubes.  DNA was extracted from 

lyophilized material using DNeasy Plant Mini Kit (Qiagen, Valencia, CA) according to 

manufacturer’s instructions.  

Polymerase chain reaction (PCR) was used to amplify the internal transcribed 

spacer (ITS) region.  This portion of the fungal genome is highly variable and widely 

used to identify fungi (White et al. 1990).  The ITS region was used to allow comparative 

analysis and identification with other known sequenced fungi.  Fungal specific primers 

ITS1 and ITS4 were used to amplify ITS1 and ITS2 nucleic acid sequences that represent 
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the 18s rRNA partial sequence; ITS1, 5.8S, and ITS2 complete sequences, and 28S rRNA 

partial sequence (Martin and Rygiewicz 2005).  The master mix used for each aliquot of 

DNA included 28 µl millipore water, 10 µl of 5x GoTaq buffer, 4 µl of 25 mM MgCl2, 

0.8 µl dNTP’s, 3.0 µl ITS1 (5mM), 3.0 µl ITS4 (5 mM), and 0.2 µl TAQ.  The thermal 

cycling protocol used to amplify DNA was as follows: 95°C cycle for 120 s to denature 

material, followed by 35 cycles of 95°C for 30 s, 55°C for 30 s, 72°C for 60 s, followed 

by a final extension stage at 72°C for 10 min.  A 1.5% agarose electrophoresis gel was 

used to confirm amplification of genomic material. Amplified ITS1 and ITS4 was 

purified using ExoSap-IT (USB Products, Cleveland, OH) prior to submission for 

nucleotide sequencing at Eurofins MWG Operon (Huntsville, Al).  Resultant sequences 

were inspected and manually edited with DNASTAR Lasergene Software (DNASTAR 

Inc., Madison, WI) and subjected to BLAST searches in the National Center for 

Biotechnology Information (NCBI) GenBank database.  

Fungal isolates were maintained for long term storage on glass fiber filter paper 

(GFFP) by placing sterilized GFFP onto PDA plates (Young et al. 2010).  The 

subcultured fungi were incubated on GFFP under temperature and light conditions 

previously described.  The GFFP was removed when completely colonized and dried in 

sterile glass petri dishes in a laminar flow hood, cut into 3 mm2 pieces then stored in 

parafilm (American National Can, Greenwich, CT) wrapped 60 mm petri dishes. Fungal 

isolates were maintained at -20°C. Long term storage maintains the viability and 

virulence of fungal isolates indefinitely as well as allowing fresh cultures to be available 

when needed. 
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A frequency of fungal occurrence was generated for all fungi identified from 

symptomatic tissue for each cultivar at each location.  Tissue samples were pooled across 

replicates for each cultivar per location to generate the requisite 50 samples per month.  

Koch’s Postulates 

Koch’s postulates were conducted in a greenhouse at the Rodney R. Foil Research 

Center (North Farm) in Starkville, MS.  Stock plants of Freedom and Illinois Mxg were 

maintained in the greenhouse for use in pathogenicity evaluations. Stock plants were 

established from field harvested rhizomes of Freedom and Illinois Mxg in early spring of 

2011 from the Forage location.  Each 15 cm pot contained three washed rhizomes, 2.5 to 

7.5 cm segments, planted in a 3:1 (v:v) Miracle Grow (Scotts, Vernon Hills, IL): sand 

mix.  Rhizomes were placed in a 26 to 35°C greenhouse with supplemental 117,000 

lumen watt high pressure sodium lighting to maintain a 14 h photoperiod.  Plants were 

watered to maintain adequate moisture and trimmed to the soil line four weeks prior to a 

pathogenicity evaluation.   

Selected fungal isolates generated from the 2011 and 2012 fungal collections and 

reported as graminicolous pathogens were used (Table 3.1).  Isolates were transferred to 

WA, modified PDA (6.0 g PDA + 15.0 g agar (mPDA), or bermudagrass water agar 

(BWA; 1.5% agar, 1.0% ground bermudagrass (Cynodon dactylon (L.) Pers.) tissue) to 

enhance development of reproductive structures.  All cultures used in inoculations were 

incubated 14 days unless otherwise specified on a laboratory bench top as previously 

described and subsequently observed for reproductive structure development using light 

microscopy.   



 

21 

Table 3.1 Selected fungal isolates used in Koch’s postulates.  

Fungus Isolate ID Collection Date Evaluation Date 

Alternaria alternata DF3, FF11 Aug 2012 Oct 2012 

Ascochyta hordei MLS1 Apr 2012 Mar 2013 

Bipolaris cynodontis VF17, VFA4 Sep 2012 Dec 2012 

Bipolaris oryzae FMXGBO1 Nov 2012 Feb 2012 

Bipolaris sorokiniana FMXGBS1 Sep 2012 Feb 2012 

Bipolaris spicifera DN12 May 2012 Feb 2012 

Bipolaris victoriae DN1 May 2012 Nov 2012 

Colletotrichum navitas VF7, VF30 Sep 2012 Apr 2012 

Curvularia lunata FMXGCV Mar 2011 Apr, May 2012 

Phoma herbarum DN24 May 2012 Mar 2013 

Pithomyces chartarum VF38, DI10 Nov 2012 Mar 2012 

Septoria arundinacea FS6 Aug 2012 Mar 2013 

 

The inoculation protocols used for Koch’s postulates were specific to each fungal 

isolate based on published literature when available; however, inoculum production was 

conducted in a similar manner for all isolates.  Either a spore or macerated mycelium 

inoculum (400 ml) was prepared based on the sporulation characteristics of the fungal 

isolate.  To achieve a spore inoculum, axenic cultures of selected fungal isolates were 

flooded with sdH2O containing 0.01% Tween 20.  The surfaces were scraped with a 

rubber policeman to dislodge spores and the solution was decanted into a sterile beaker.  

Spore concentration was calculated using a hemacytometer to meet protocol standards 

per fungal isolate.  To prepare a macerated mycelium solution, one axenic culture grown 
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on mPDA was macerated in 100 ml of sdH2O plus 0.01% Tween 20 using a Waring 

Laboratory Blender (Conair Corporation, Stamford, CT).  Control inoculum was sdH2O 

plus 0.01% Tween 20 or a macerated fungal-free mPDA plate in the same sterile solution.  

If an inoculum protocol was not available for a specific fungal isolate, spore 

concentrations were adjusted to 5 × 104 to 1 × 105 spores/ml.   

Two incubation approaches were used for Koch’s postulates to accommodate the 

range of environmental conditions experienced in the greenhouse.  Initial evaluations 

(Nov 2011 to Jan 2012) were conducted in the greenhouse, while subsequent evaluations 

(post Feb 2012) were conducted in growth chambers.  In the greenhouse, 15 pots each of 

Freedom and Illinois Mxg were inoculated with a fungal preparation as previously 

described and five pots of each cultivar served as the noninoculated control.  Clear plastic 

Sterilite 25 qt storage boxes (Sterilite Corp., Townsend, MA) lined with moistened paper 

towels served as the incubation chambers and contained five pots per cultivar.  The 

control plants were incubated separately.  Plants were misted with a plastic spray bottle 

with the inoculum until dripping, covered in the storage boxes and placed on top of 

greenhouse benches.  The temperature was maintained between 21 to 32°C; however, by 

Feb 2012, the temperature in the greenhouse exceeded 32°C.   

Subsequent evaluations were conducted using two growth chambers (AR-66L 

Controlled Environmental Chambers, Percival Scientific, Perry, IA) each containing four 

storage boxes with five pots each of Freedom or Illinois plants either inoculated or 

noninoculated controls.  As previously described, the storage boxes were lined with 

moistened paper towels and served as the incubation chamber.  Plants were misted with 

inoculum until dripping, then covered in the storage boxes that each contained a 
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humidifier (Cool Mist Evaporative Humidifier, Hunter Fan Company, Memphis, TN).  

Plants were maintained at 28°C in darkness for a period of 16 to 24 h with 100% 

humidity.  After this initial incubation period, plants were then subjected to 28°C with a 

12 h photoperiod in the storage boxes for 14 days.  Plants were subsequently placed in 

the greenhouse to observe symptom development. 

Selected fungal isolates 

Ascochyta hordei var. hordei isolate MLS1.   

Koch’s postulates were conducted in March, 2013 using a conidial suspension (9 

× 103 conidia/mL).  The inoculum was prepared by dislodging pycnidia from five, 14-

day-old cultures of MLS1 grown on BWA.  Giant miscanthus cultivars were misted with 

the As. hordei var. hordei inoculum (400 ml) until runoff and incubated in the growth 

chamber as previously described. 

Alternaria alternata isolates DF3 and FF11.  

Koch’s postulates were conducted in October, 2012 using a conidial suspension (1 

× 105 conidia/mL).  The inoculum (400 ml) was prepared from 14-day-old cultures grown 

on WA (2 cultures of each isolate) and misted onto the leaves of Mxg cultivars until 

runoff.  The plants incubated in the growth chamber. 

Bipolaris cynodontis isolates VF17 and VFA4. 

Koch’s postulates were conducted in December, 2012 using inoculum procedures 

described by Pratt (2006) in which 1.5 to 2.8 × 104 conidia/ml were used as the conidial 

suspension to inoculate bermudagrass and ryegrass.  B. cynodontis cultures grown on 
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PDA were used to create an inoculum (4 × 104 conidia/ml) which was used to inoculate 

Mxg clutivars according to the growth chamber protocol. 

Bipolaris oryzae isolate FMXGBO1 

In February, 2012 Koch’s postulates were conducted to evaluate the pathogenicity 

of B. oryzae on Mxg cultivars.  The inoculum production reported by Krupinsky et al. 

(2004) was followed in which a conidial suspension of 6 to 14 × 103 conidia/ml was 

inoculated on switchgrass.  In this evaluation, 5.6 × 104 conidia/ml was used to inoculate 

Mxg cultivars.  Incubation of plants was according to the greenhouse protocol.  

Bipolaris sorokiniana isolate FMXGBS1 

Koch’s Postulates were conducted in February, 2012 according to a modified 

inoculum reported by Vu et al. (2011) in which a conidia suspension of 2.4 × 104 

conidia/ml was inoculated on switchgrass.  In this evaluation, B. sorokiniana was 

inoculated on Mxg cultivars using a solution of 10% potato dextrose broth (PDB), 15% 

inoculum suspension, and 75% sdH2O with 0.01% Tween 20.  The solution was adjusted 

to 1 × 105 conidia/ml.  Plants were inoculated and incubated according to the growth 

chamber protocol.   

Bipolaris spicifera isolate DN12 

In February, 2012 Mxg cultivars were inoculated with B. spicifera according to 

inoculum procedures reported by Vu et al. (2011b) in which a suspension of 4.5 × 106 

conidia/ml was used to inoculate switchgrass.  Isolate DN12 was inoculated onto Mxg 

cultivars using an inoculum of 10% PDB, 10% inoculum suspension (6.3 × 104 
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conidia/ml), and 80% sdH2O with 0.01% Tween 20.  Inoculated Mxg cultivars were 

incubated based on the growth chamber protocol.   

Koch’s postulates using Bipolaris victoriae was conducted in November, 2012.  

Isolate DN12 had insufficient sporulation to create a conidial suspension inoculum at 

time of evaluation, therefore a macerated mycelium solution was created on PDA for 

inoculations.  Inoculations were conducted using the growth chamber protocol.  

Colletotrichum navitas isolates VF30 and VF7 

Koch’s Postulates were conducted in April, 2012 using an inoculum protocol 

adapted from Crouch et al. (2009). Briefly, a solution of 5 × 104 conidia/ml was 

suspended in 0.1% PDB and used to inoculate Mxg cultivars.  These plants were 

incubated in the growth chamber.   

Curvularia lunata isolate FMXGCV 

Koch’s postulates were conducted in April and May 2012 using an inoculum 

production protocol reported by Roberts and Tredway (2008).  C. lunata conidia were 

harvested from cultures grown on WA.  A conidia suspension consisting of 3 × 105 

conidia/ml for the April evaluation, while a solution of 2 × 105 conidia/ml was used in the 

May evaluation.  Giant miscanthus cultivars incubated in the growth chamber.   

Phoma herbarum isolate DN24 

Koch’s postulates were conducted, March 2013, using a conidia inoculum 

preparation of 5.6 × 104 conidia/ml.  The inoculum was prepared from nine P. herbarum 

cultures grown on BWA.  Giant miscanthus cultivars incubated under the growth 

chamber protocol.   
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Pithomyces chartarum isolates VF38, DI10, DIS9, and DIS24 

Koch’s postulates were conducted in March, 2012 and January, 2013.  The 

inoculum protocol described by Ahonsi et al. (2010) was followed using isolates VF38 

and DI10 with a condia suspension adjusted to 2 × 106 conidia/ml and an incubation 

schedule for Mxg cultivars consisting of a 48 h darkness period at 26°C, followed by a 15 

h day/9 h night photoperiod at 25°C/23°C, respectively.  P. chartarum inoculations in 

2013 were conducted using isolates DIS9 and DIS24 grown on PDA and an inoculum 

consiting of 5 × 104 conidia/ml.  Inoculated Mxg cultivars incubated under the growth 

chamber protocol. 

Septoria arundinacea isolate FS6 

Koch’s postulates were conducted in March, 2013 using cultures grown on BWA 

to produce a conidia suspension consisting of 2.6 × 104 conidia/ml.  The inoculum was 

applied to Mxg cultivars and incubated under the growth chamber protocol. 
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CHAPTER IV 

RESULTS 

Field Disease Ratings 

Symptom characterization 

Primary symptoms observed on Mxg were various leaf spots.  All initial 

symptoms began as small (1 to 3 mm), roughly circular to elliptical, red to brown lesions 

which further progressed, enlarged, or coalesced into different leaf spots, blotches, and 

blight (Figs 4.1 to 4.3).  Leaf spots began as small, reddish-brown, circular lesions which 

developed into larger (1 to 2 cm), broadly elliptical spots with bleached to tan-colored 

necrotic centers and reddish-brown to dark-brown to black margins (Fig 4.1 a).  Leaf spot 

distribution was typically isolated on the leaf; however, leaf spots in some instances were 

observed to enlarge and coalesce (Fig 4.1 b, c).  Leaf spot orientation was generally 

elliptically elongated and parallel to leaf venation; however, in some instances larger, 

coalescing spots were observed to expand laterally across the leaf blade delimited by the 

midrib and leaf margins (Fig 4.1 d, e).  Leaf blotch lesions initially began as small, 

scattered red flecks (Fig 4.2 a).  Flecks later progressed into large areas of dark brown to 

black necrosis, with straw colored blotches of necrosis associated with black margins 

(Fig 4.2 b).  Leaf spots that eventually developed into blighted and necrotic leaf areas 

initially began as small, densely compacted, red or reddish-brown lesions sometimes 

associated with light chlorosis (Fig 4.3 a, b).  Lesions enlarged, elongated, or coalesced 
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into larger spots with black margins and necrotic areas of blighted tissue that ultimately 

led to premature desiccation and leaf death (Fig 4.3 c, d). 

 

Figure 4.1 Leaf spot symptoms observed on giant miscanthus (Miscanthus x 
giganteus) cultivars throughout the growing season, 2011 and 2012.   

(a)  Small, reddish-brown lesions of initial leaf spot symptoms.  (b,c)  Mature, coalesing 
leaf spot lesions parallel to leaf venation.  (d,e)  Expanding leaf spots delimited by midrib 
and leaf margins. 
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Figure 4.2 Leaf blotch symptoms observed on giant miscanthus (Miscanthus x 
giganteus) cultivars throughout the growing season, 2011 and 2012.   

(a)  Small, scattered reddish flecks of initial leaf blotch symptoms.  (b)  Elongated, straw-
colored blotches of necrotic tissue with black margins.  

 

Figure 4.3 Leaf blight symptoms observed on giant miscanthus (Miscanthus x 
giganteus) cultivars throughout the growing season, 2011 and 2012.   

(a, b)  Densely compacted reddish-brown lesions and light chlorosis associated with 
initial leaf blight symptoms.  (c, d)  Expanding, elongated lesions and leaf blight with 
dark-brown to black necrosis.  
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Disease Assessment 

Freedom, Illinois, and Nagara Mxg stands at the Dairy location were considered 

juvenile, having been established for two years.  Foliar disease incidence (FDI) was 

similar for the three Mxg cultivars (F=0.3659) over the two year study (Table 4.1).  Mean 

(n = 8) FDI throughout the two growing seasons was relatively low, resulting in 1.8% for 

Freedom, 2.2 % for Illinois, and 2.7% for Nagara (Table 4.2).  Foliar disease incidence 

response over time (month) was significant (P = 0.05), indicating FDI within the three 

Mxg cultivars changed over time (Table 4.1). 

Cultivars of Freedom and Illinois Mxg and EG1101 SG at the Forage location 

were considered juvenile as well having been established for three years; however, stands 

were better established at this location due to management practices and reduced weed 

pressure.  Cultivar response to FDI was significant (P = 0.05) with the probability of 

observing a higher F ratio of < 0.0001 (Table 4.1).  Foliar disease incidence was 

significantly higher for EG1101 Swg when compared to Freedom and Illinois.  Mean FDI 

(n = 8) throughout the two growing seasons was less than 2.6% for Freedom and Illinois 

in comparison to 13.0% in EG1101 SG plots (Table 4.2).  When initial assessments were 

conducted in Apr, FDI was < 1.0% for both Freedom and Illinois Mxg, but 5.0% for 

EG1101.  By mid-season (Jul), FDI had increased by 2.0% for Freedom, 1.4% for 

Illinois, and 7% for EG1101.  At the end of the assessment period (Oct) FDI had 

escalated by 7.0% for Freedom, 6.0% for Illinois, and 16.0% for EG1101.  A best fit 

model, fitted for each cultivar across monthly FDI assessments, supports the observation 

of greater disease incidence associated with EG1101 SG as compared to the Mxg 

cultivars (Fig. 4.4).  FDI response over time was also significant (Table 4.1). 
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Freedom Mxg and Alamo SG established at the Variety location were considered 

mature, having been established for ten years.  Similar to results observed at the Forage 

location, FDI cultivar response among Freedom and Alamo were significantly different ( 

P = 0.05), with the probability of observing a greater F ratio of < 0.0001 (Table 4.1).  

Foliar disease incidence was significantly greater for Alamo when compared to Freedom 

therefore best fit models were applied to cultivars and plotted across months (Table 4.2; 

Fig 4.5).  Overall mean FDI (n = 16) was 2.8% for Freedom and 16.7% for Alamo 

throughout the two growing seasons (Table 4.2; Fig 4.5).  Initial observations (April) of 

FDI were < 1.0% for Freedom in contrast to 9.2% for Alamo.  As the season progressed, 

a slight increase in FDI was observed in Freedom, but Alamo continued to express 

increased FDI.  Foliar disease incidence associated with Alamo increased 63.0% over the 

growing season and was 58.0% greater than FDI of Freedom.  Foliar disease incidence 

response over time was also significant, indicating FDI between the two grasses changed 

over the growing season (Table 4.1).   

Table 4.1 Mixed procedure analysis of variance tests of hypotheses between subject 
effects for field disease incidence of giant miscanthus (Miscanthus x 
giganteus) and switchgrass (Panicum virgatum) cultivars at three locations 
in combined years, 2011 and 2012. 

 Location 
 Dairy Forage Variety 

Subject Effects  F Value z  
Cultivar (C) 1.02 NS 47.72 *** 534.82 *** 
Month (M) 67.52 *** 62.23 ** 181.29 *** 

C*M 0.05 NS 1.85 NS 12.55 ** 
z (**) Significant at P = 0.001; (***) Significant at P = 0.0001; (NS) Not significant at P 
= 0.05. 
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Table 4.2 Mean foliar disease incidence ratings for giant miscanthus (Miscanthus x 
giganteus) and switchgrass (Panicum virgatum) cultivars at the Dairy, 
Forage, and Variety locations, 2011-2012. 

Location Cultivar 
Mean foliar  

disease incidence 
(%) z 

P-value 

Dairy 
  

0.3659 

 
Freedom 1.8 a 

 

 
Illinois 2.2 a 

 

 
Nagara 2.7 a 

 

Forage 
  

< 0.0001 

 
Freedom 2.6 b 

 

 
Illinois 1.9 b 

 

 
EG1101 13.0 a 

 

Variety 
  

< 0.0001 

 
Freedom 2.8 b 

 

 
Alamo 16.7 a 

 
z  Means within location columns shared by the same letter are not statistically significant 
according to Fisher’s protected LSD at P= 0.05.  
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Figure 4.4 Field disease incidence of giant miscanthus (Miscanthus x giganteus) 
throughout two growing seasons, 2011 and 2012, at the Dairy location in 
Sessums, MS. 

A) Freedom, B) Illinois, and C) Nagara; (April=4; October =10) 
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Figure 4.5 Field disease incidence of giant miscanthus (Miscanthus x giganteus) and 
switchgrass (Panicum virgatum) throughout two growing seasons, 2011 
and 2012, at the Forage location in Starkville, MS. 

A) Freedom, B) Illinois, C) EG1101; (April=4; October =10) 
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Figure 4.6 Field disease incidence of giant miscanthus (Miscanthus x giganteus) and 
switchgrass (Panicum virgatum) throughout two growing seasons, 2011 
and 2012, at the Variety location in Starkville, MS. 

A) Freedom, B) Alamo; (April=4; October =10) 

Fungal Collections 

Observed Fungi 

Four thousand four hundred (n = 4,400) leaf segments displaying foliar lesions 

were plated and observed over the 2011 and 2012 growing seasons.  Isolates representing 

30 fungal genera were collected and described herein.  This compilation includes 

graminicolous pathogens as well as cosmopolitan saprophytes (Farr et al. 1989).   
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Alternaria (Nees.).  DEUTEROMYCOTA.  HYPHOMYCETE 

The members of this genus are considered parasites or saprophytes on plant 

material (Barnett and Hunter 1998).  Alternaria isolates appeared thick and dark grey 

when cultured on PDA, while colonies cultured on WA were sparse grey with prolific 

sporulation.  Hyphae, conidiophores, and conidia were pigmented, appearing light to 

dark-brown.  Ovoid to ellipsoidal, transverse and longitudinally septate conidia were 

produced in chains with a broadly rounded base and apical beak (Fig 4.7) (Barnett and 

Hunter 1998; Domsch et al. 2007).  Isolate DF3 was isolated in August, 2012 from 

Freedom Mxg at the Dairy location.  The DF3 isolate was sequenced with ITS primers 

and subjected to a BLAST search against the NCBI GenBank.  The 562 bp ITS fragment 

shared 99.0% identity and 100% query coverage to Alternaria alternata isolate IEIHBT 

(GenBank Accession Number GQ121322).  

 

Figure 4.7 Germinating conidia of Alternaria alternata with transverse and 
longitudinal septa.  
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Ascochyta (Lib).  DEUTEROMYCOTA.  COELOMYCETE 

Primarily causes leaf spots, classifying the genus as parasitic to many plant 

species (Barnett and Hunter 1998).  Hyphae were pale brown, branched, and septate 

(Sutton 1980).  Dark brown to black, globose, ostiolate, immersed pycnidia were 

observed within leaf segments and in axenic culture.  Conidia were thin walled, hyaline, 

two-celled and oblong to ovoid to irregular (Fig 4.8) (Sutton 1980; Barnett and Hunter 

1998).  Isolate MLS1 suspected to be Ascochyta sp. was isolated in April, 2012 from leaf 

spot symptoms with visible pycnidia observed on Freedom Mxg.  In culture, MLS1 

produced grey, fluffy colonies on mPDA and PDA.  Mycelia was pale to dark brown, 

branched, and immersed in culture media.  The MLS isolate was sequenced with ITS 

primers and subjected to a BLAST search against the NCBI GenBank.  The 515 bp ITS 

fragment shared 98% identity and 94% query coverage to Ascochyta hordei var. hordei 

strain CBS 544.75 (GenBank Accession Number GU237887).   
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Figure 4.8 Identifying characteristics of Ascochyta sp. 

 a)  Leaf spot symptom in which Ascochyta hordei isolate MLS was isolated from, with 
visible pycnidia in center of lesion. b) Pycnidia produced in axenic culture. c) Two-celled 
conidia of Ascochyta hordei.  

Aspergillus (Link.).  DEUTEROMYCOTA.  HYPHOMYCETE 

A cosmopolitan fungus with over 260 species found in environments such as soil, 

compost, decayed plant material, and stored grain (Domsch et al. 2007; Seifert et al. 

2011).  Erect conidiophores were produced on the surface of leaf segments, ending in a 

globose or clavate swelling covered in a layer of phialides radiating from the apex 

(Barnett and Hunter 1998; Domsch et al. 2007).  Dry basipetal chains of hyaline, globose, 

single-celled conidia were produced from the phialides.   

Bipolaris (Shoem.).  DEUTEROMYCOTA.  HYPHOMYCETE 

Bipolaris sp. is parasitic, mostly on gramineaceous hosts (Barnett and Hunter 

1998).  Cultures produced on PDA were brown, grey, or black.  Conidiophores were 

a

A 

b

B 

c

C 
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simple, brown, with sympodial growth and conidia produced from apical pores.  Conidia 

were dematiaceous, multi-septate, elliptical, straight or curved, with bipolar germination 

(Barnett and Hunter 1998).   

Bipolaris cynodontis (Nelson) 

Bipolaris cynodontis is a parasite of many agronomic crops, including Cynodon 

dactylon, Oryza, Panicum, Pennisetum, Triticum, and Zea, among other genera 

(Sivanesan 1987), with a nearly worldwide distribution.  According to the literature 

(Sivanesan 1987), conidia of B. cynodontis were slightly curved, cylindrical, pale to mid 

golden-brown, 3 to 9 (commonly 7 to 8) septate, with an average size range of 30 to 75 × 

10 to 16 µm (Fig 4.9).  Isolate VF17 suspected to be B. cynodontis was isolated 

September, 2012 from Freedom Mxg at the Variety location.  Conidia were hyaline to 

light tan, slightly curved, cylindrical with slightly tapered end cells, 4 to 8 septate, with a 

size range of 42.5 to 50 × 10 to 12.5 µm (average 46.8 × 11.2 µm).  Isolate VF17 was 

sequenced with ITS primers and subjected to a BLAST search against the NCBI 

GenBank.  The 567 bp ITS fragment shared 100% identity and 100% query coverage to 

Cochliobolus cynodontis strain NBRC 9793 (GenBank Accession Number JN943389).   
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Figure 4.9 Slightly curved, cylindrical conidia of Bipolaris cynodontis. 

 

Bipolaris oryzae (Breda de Haan) Shoemaker 

B.oryzae is a parasite of Oryza sativa L., as well as many other grass genera 

(Sivanesan 1987).  Literature (Sivanesan 1987) describes morphological features as grey 

to dark grey colonies and conidia which were curved, fusoid, pale to mid golden brown, 6 

to 14 distoseptate, with an average size of 63 to 153 × 14 to 22 µm.  Isolate DFCA20 was 

isolated on Nov, 2012 from Freedom Mxg at the Dairy location.  Conidia produced in 

axenic culture were tan to light golden-brown, curved, 5 to 7 septate, and 102 to 127.5 × 

20.4 to 25.5 µm in size (Fig 4.10).  Isolate DFCA20 was identified as B. oryzae based on 

conidial morphology (conidia size, shape, and color) as compared to the appropriate 

literature (Sivanesan 1987).   
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Figure 4.10 Identifying characteristics of Bipolaris oryzae. 

a)  Plated leaf segment on WA with sporulation of B. oryzae.  b)  Curved, pale to mid 
golden-brown conidia of B. oryzae.  

Bipolaris sorokiniana (Sacc.) Shoemaker 

B. sorokiniana is described as a parasite of Avena, Hordeum, Secale, Triticum, 

and other grasses.  It has been isolated from a wide variety of other plants with a 

worldwide distribution (Sivanesan 1987).  Cultures described from literature were grey to 

dark-brown with abundant sporulation (Sivanesan 1987). Conidia produced by B. 

sorokiniana were curved, broadly ellipsoidal, dark olivaceous-brown, smooth, 3 to 12 

septate (commonly 6 to 10), and 40 to 120 × 17 to 28 µm (Sivanesan 1987).  Isolate 

DFCS22 suspected to be B. sorokiniana was isolated Sep, 2012 from Freedom Mxg at the 

Dairy location.  Axenic cultures produced on PDA were light to dark-grey.  Conidia 

produced on conidiophores were brown to olivaceous, broadly ellipsoidal, had 4 to 8 

septa, and were 61.2 to 91.8 × 15.3 to 25.5 µm in size (Fig 4.11).  Isolate DFCS22 was 

tentatively identified as B. sorokiniana based on conidia size and color; in addition, ITS 

sequences were also subjected to a BLASTn search against the NCBI GenBank.  The 575 

bp fragment shared 99% identity and 100% query coverage with B. sorokiniana isolate 

OTU730 (GenBank Accession Number GU934504).   
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Figure 4.11 Identifying characteristics of Bipolaris sorokiniana. 

 a)  Plated leaf segment on WA with sporulation of B. sorokiniana.  b) Broadly ellipsoid, 
dark olivaceous-brown conidia of B. sorokiniana.  

Bipolaris spicifera (Nelson) 

B. spicifera has been described to cause leaf spot, root rot, and has also been 

associated with spring dead spot of Cynodon dactylon and foot rot of winter wheat 

(Sivanesan 1987).  Many common agronomic crops such as Agrostis, Avena, Cynodon, 

Oryza, Panicum, Pennisetum, Poa, Saccharum, Sorghum, Triticum, Zea, as well as many 

other grasses have been described as hosts of B. spicifera (Sivanesan 1987).  Conidia are 

described in literature as straight, oblong or cylindrical with rounded distal cells, golden 

brown, always 3-septate, with a size of 20 to 40 × 9 to 14 µm (Sivanesan 1987).  Isolate 

DN12 suspected to be B. spicifera was isolated from Nagara Mxg at the Diary location in 

May, 2012.  Cultures produced on PDA were grey.  Conidia were produced sympodially 

on conidiophores, were tan, straight, 2 to 3 septate, and 20 to 22.5 × 7.5 to 10 µm in size 

(Fig 4.12).  Isolate DN12 was identified as B. spicifera based on conidia morphology 

(size); however, ITS sequences were subjected to a BLASTn search against the NCBI 
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GenBank.  The 551 bp fragment shared 100% identity and 100% query coverage with B. 

spicifera strain 2199 (GenBank Accession No. HM195265). 

 

Figure 4.12 Identifying characteristics of Bipolaris spicifera. 

a)  Sporulation of B. spicifera on plated leaf segment on WA.  b)  Golden-brown 
cylindrical conidia characteristic of B. spicifera.  

Bipolaris victoriae (Meehan and Murphy) Shoem 

B. victoriae is a parasite of oat (Avena spp.) cultivars specifically related to cv. 

Victoria in North America, causing seedling blight and culm necrosis (Sivanesan 1987).  

Major agronomic crops such as Agropyron, Avena, Hordeum, Panicum, Paspalum, 

Oryza, Setaria, Sorghum, Triticum, and Zea are known hosts of this fungus (Sivanesan 

1987).  According to literature (Sivanesan 1987) conidia are slightly curved, broadly 

fusiform, pale to mid golden brown, 4 to 11 septate (mostly 8 to 10), with a size of 40 to 

120 × 12 to 19 µm.  Isolate DN1 suspected to be B. victoriae was isolated from Nagara 

Mxg at the Dairy location in May, 2012.  Axenic cultures were light to dark grey.  

Conidia of DN1 were slightly curved to mostly straight, pale to golden brown, 5 to 7 

septate, with a size of 56 to 87 × 15 to 25 µm (Fig 4.13).  Isolate DN1 was identified as 
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B. victoriae based on molecular identification.  Internal transcribed spacer sequences 

were subjected to a BLASTn search against the NCBI GenBank.  The 568 bp fragment 

shared 100% identity and 100% query coverage with Cochliobolus victoriae isolate 

HVW (GenBank Accession No. EF452448). 

 

Figure 4.13 Identifying characteristics of Bipolaris victoriae.  

a)  Sporulation of B. victoriae on plated leaf segment on WA.  b) Slightly curved, golden-
brown conidia of B. victoriae.  

Cephaliophora (Thaxt).  DEUTEROMYCOTA.  HYPHOMYCETE 

Members of the genus Cephaliophora exists as a saprophyte on dung or decaying 

plant material (Barnett and Hunter 1998).  Conidiophores were short with an enlarged 

rounded apical cell bearing numerous blastoconidia on all sides produced simultaneously 

(Barnett and Hunter 1998; Domsch et al. 2007).  Conidia appeared lightly pigmented, 1 

to 3 septate, obovoid to elongate and narrower at the base.   

Chaetomium (Kunze).  ASCOMYCOTA.  SORDARIOMYCETES 

Commonly found on cellulose substrates as well as on seed, soil, and dung 

(Domsch et al. 2007).  Ascomata were ostiolate perithecia, attached to the colonized leaf 
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segments by rhizoids (Domsch et al. 2007).  Perithecia were superficial, globose or vase-

shaped and covered with lateral and terminal, septate, coiled or arcuate, smooth or 

roughened hairs (Hanlin 1990).  Asci were clavate and 4 to 8 spored.  Ascospores were 

aseptate, light olive brown to dark brown, limoniform and apiculate, globose, smooth, 

and pushed out of the ostiole in a cirrhus (Hanlin 1990). 

Colletotrichum (Corda).  DEUTEROMYCOTA. COELOMYCETE 

Many species in the Colletotrichum genus are recognized as plant pathogens 

causing anthracnose and leaf spots (Domsch et al. 2007).  Black pointed sterile setae were 

produced on edges of cushion shaped, subepidermal acervuli on leaf segments and in 

axenic culture (Barnett and Hunter 1998).  Conidia produced on short conidiophores 

inside acervuli were hyaline, aseptate, falcate, and sometimes guttulate (Fig 4.14) (Sutton 

1980).  Rounded or irregular, brown appressoria were produced on leaf segments as well 

as the bottom of culture plates.  Isolate VF 7 suspected to be Colletotrichum sp. was 

isolated Sep 2012 from the Freedom Variety location.  The VF7 isolate was sequenced 

with ITS primers and subjected to a BLAST search against the NCBI GenBank.  The 587 

bp ITS fragment shared 99% identity and 92% query coverage to C. navitas culture-

collection CBS: 125086 (GenBank Accession Number JQ005769).   
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Figure 4.14 Identifying characteristics of Colletotrichum sp. 

a) Acervuli developing on plated leaf segment on WA.  b)  Setae and hyaline, falcate, one 
celled conidia of Colletotrichum navitas.  

Coniella (Höhn).  DEUTEROMYCOTA.  COELOMYCETE 

Coniella sp. produced separate, globose, pale brown, immersed, ostiolate pycnidia 

on leaf segments as well as in axenic culture (Sutton 1980).  Conidia were olivaceous to 

brown, aseptate, and fusoid with a broad base and an obtuse apex (Fig 4.15) (Sutton 

1980). 

 

Figure 4.15 Pale-brown, fusoid conidia of Coniella sp. 
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Curvularia (Boedijn).  DEUTEROMYCOTA.  HYPHOMYCETE 

Some species in this genus are located in tropical and subtropical climates 

existing as facultative parasites or saprophytes; however, some species are ubiquitous on 

plant and other organic substrates (Barnett and Hunter 1998; Domsch et al. 2007).  Short, 

simple, and dark-brown pigmented conidiophores produced conidia at the apex.  Conidia 

were dark, fusiform, had 3 or more transverse septa, and had an enlarged central cell 

causing spores to be bent (Fig 4.16).  Isolate FMXGCV thought to be Curvularia was 

isolated from Freedom Mxg in March, 2011.  The fungus was identified as C. lunata 

based on morphological features of conidia such as an enlarged median cell and size 

consistent with taxonomic keys (Ellis 1971).   

 

Figure 4.16 Conidia of Curvularia lunata with 3 or more transverse septa and enlarged 
central cell.  

 

Epicoccum (Link).  DEUTEROMYCOTA.  HYPHOMYCETE 

Epicoccum is cosmopolitan and mostly saprophytic on leaves and stems (Barnett 

and Hunter 1998; Seifert et al. 2011).  Dark brown, globose, dictyosporous conidia were 
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produced on short conidiophores located inside dark colored sporodochia on the surface 

of leaf segments (Barnett and Hunter 1998).   

Exserohilum (Dreschler)  Leonard & Suggs.  DEUTEROMYCOTA. HYPHOMYCETE 

Exserohilum is cosmopolitan on leaves of grasses and contains approximately 30 

species (Seifert et al. 2011). Isolates in axenic culture produced dark grey colonies.  

Sporulation was prolific on the surface of leaf segments.  Conidiophores were long, 

olivaceous to dark-brown, and smooth with sympodial conidiogenesis (Sivanesan 1987).  

Conidia were light brown, fusiform to obclavate, straight to slightly curved, and multi-

distoseptate (Fig 4.17) (Sivanesan 1987).  A strongly protuberant hilum is present at both 

ends, while the septation above this hilum thickened (Domsch et al. 2007; Seifert et al. 

2011; Sivanesan 1987). 

 

Figure 4.17 Identifying characteristics of Exserohilum sp. 

Light brown, multi-distoseptate conidia of Exserohilum with protuberant hilum at both 
ends.  
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Fusarium (Link.).  DEUTEROMYCOTA.  HYPHOMYCETE 

Fusarium is a cosmopolitan cellulose decomposer as well as a plant parasite 

causing root and stem rot, vascular wilt, and fruit and grain diseases (Domsch et al. 

2007).  Colonies produced on PDA were white to pink to pale yellow and cotton-like.  

Conidiophores were produced on hyaline, immersed mycelium singly or in groups 

(sporodochia) bearing both macro and micro hyaline phialoconidia which form a slimy 

mass with maturity (Barnett and Hunter 1998).  Macroconidia were 1 to 7 septate, and 

slightly fusiform to curved (Fig 4.18).  Microconidia were smaller, aseptate, ovoid or 

oblong, and produced singly or in chains (Barnett and Hunter 1998; Domsch et al. 2007). 

 

Figure 4.18 Identifying characteristics of Fusarium sp. 

 a)  Sporodochia surrounding plated leaf segments in axenic culture.  b)  Multiseptate 
macroconidia of Fusarium sp.  

Lacellinopsis (Subramanian).  DEUTEROMYCOTA.  HYPHOMYCETE 

Lacellinopsis is a cosmopolitan pantropical saprophyte on leaves of many grasses 

as well as soil litter  (Seifert et al. 2011).  Simple, septate, and brown setae were 

produced.  Mixed in with setae were conidiophores with a globose apex becoming 

cupulate with maturity and detachment of conidia (Barnett and Hunter 1998).  Conidia 
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borne on this apex were brown, globose, aseptate, and produced in acropetal chains 

(Barnett and Hunter 1998). 

Leptosphaeria (Ces. & De Not.).  ASCOMYCOTA.  DOTHIDEOMYCETES 

With over 700 described species (Domsch et al. 2007), Leptosphaeria sp. is a 

known parasite and saprophyte on herbaceous dicot leaves and stems (Hanlin 1990).  

Ascomata were separate or scattered perithecoid pseudothecia which were immersed, 

glabrous, and dark-brown.  Pseudothecia containing bitunicate asci with 4 to 8 spores 

were produced (Fig 4.19a) (Hanlin 1990).  Ascospores were pale brown to almost 

hyaline, fusiform, cylindrical to filiform, constricted at the median cell, with 3 to many 

transverse septa (Fig 4.19b).  Anamorphs include; Coniothyrium, Phoma, Septoria, and 

Stagonospora (Hanlin 1990).   

 

Figure 4.19 Identifying characteristics of Leptosphaeria sp. 

a)  Leptosphaeria sp. pseudothecia produced in axenic culture with asci and 4 to 8 
ascospores.  b)  Hyaline, fusiform ascospores with constricted median cell and 3 septa.  
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Mortierella (Coemans).  ZYGOMYCOTA.  ZYGOMYCETE 

This fungus is a common soil saprophyte (Barnett and Hunter 1998).  

Sporangiophores produced on leaf segments were black, thick at the base and tapered 

upward.  Sporangiospores were globose and hyaline (Domsch et al. 2007). 

Nigrospora (Zimmerm.).  DEUTEROMYCOTA.  HYPHOMYCETE 

Nigrospora is a weak plant parasite and soil saprophyte (Barnett and Hunter 

1998). Colonies produced on WA and mPDA were white to pale grey.  Broad, peg-like 

conidiophores were produced directly on mycelia.  Conidia were shiny black, smooth, 

aseptate, globose with an equatorial germ slit (Fig 4.20) (Domsch 2007). 

 

Figure 4.20 Identifying characteristics of Nigrospora sp. 

Shiny black, aseptate, globose conidia of Nigrospora produced in axenic culture.  

Paecilomyces (Bainer).  DEUTEROMYCOTA.  HYPHOMYCETE 

This fungus is a common soil saprophyte.  Similar in morphology, Paeciloymyces 

is distinguished from Penicillium by its irregular branching conidiophores and divergent, 

long and slender phialides (Domsch et al. 2007).  Phialoconidia were produced in dry 

basipetal chains, aseptate, hyaline, and ovoid to fusoid (Barnett and Hunter 1998).   
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Paraphaeosphaeria (Westendorp).  ASCOMYCOTA.  DOTHIDEOMYCETES 

Paraphaeosphaeria contains 22 described species (Fukuhara 2002).  Ascomata 

produced on plated segments were scattered, immersed in tissue, brown, globose to 

erumpent perithecia.  Asci were bitunicate, cylindrical with a broadly rounded apex with 

8 ascospores.  Ascospores were biseptate, broadly elliptical, widest near the central cell 

and constricted at apical septa, echinulate and dark yellowish brown (Fig 4.21) 

(Shoemaker and Erikson 1967).   

 

Figure 4.21 Identifying characteristics of Paraphaeosphaeria sp. 

Paraphaeosphaeria sp. perithecia with emerging asci holding 8 ascospores which were 
broadly elliptical, biseptate, and widest at central cell with constricted apical septa.  

Penicillium (Link).  DEUTEROMYCOTA.  HYPHOMYCETE 

This fungus is a ubiquitous soil saprophyte with over 40 species (Domsch et al. 

2007).  Conidiophores arose singly from plated segments and branched near the apex 

ending in a cluster of phialides.  Phialoconidia were hyaline, aseptate, globose or ovoid 

and produced in dry basipetal chains (Barnett and Hunter 1998). 
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Pestalotia (de Not.).  DEUTEROMYCOTA.  COELOMYCETE 

Pestalotia sp. is a plant parasite as well as saprophyte (Barnett and Hunter 1998).  

This fungus produced immersed, septate, brown mycelium.  Dark, cushion or disc shaped 

acervuli were produced within mycelium (Sutton 1980).  Conidia were dark, 4 to 5 

septate, fusiform, straight to slightly curved, hyaline, with 3 to 9 long, thin, simple 

appendages (Fig 4.22) (Sutton 1980, Barnett and Hunter 1998). 

 

Figure 4.22 Identifying characteristics of Pestalotia sp. 

a) Acervuli produced in axenic culture.  b) Pycnidia with 3 to 9 long, simple appendages. 

Phoma (Sacc.).  DEUTEROMYCOTA.  COELOMYCETE 

Phoma sp. is the largest and most widely distributed member of the 

Sphaeropsidales (Domsch et al. 2007), with over 2,000 described species (Sutton 1980).  

They are found as parasites of most plant parts (Barnett and Hunter 1998).  Mycelium 

was immersed, septate, and pale brown.  Separate, immersed, erumpent with maturity, 

ostiolate, brown, and globose pycnidia with thin walls were produced on WA and mPDA 

(Fig 4.23a).  Conidia were hyaline, aseptate, guttulate, and ellipsoid to cylindrical to 

fusiform to pyriform to globose (Fig 4.23b) (Sutton 1980).  Isolate DN24 suspected to be 



 

54 

Phoma sp. was isolated in May, 2012 from Nagara Mxg at the Dairy location.  The DN24 

isolate was sequenced with ITS primers and subjected to a BLAST search against the 

NCBI GenBank.  The 525 bp ITS fragment shared 99% identity and 98% query coverage 

to Ph. herbarum strain C2P21B (GenBank Accession Number JQ936276).  

 

Figure 4.23 Identifying characteristics of Phoma sp. 

a) Dark-brown to black pycnidia produced on plated leaf segments.  b) Pycnidia with 
hyaline, globose to ellipsoid to cylindrical to fusiform conidia.  

Pithomyces (Berk. and Broome).  DEUTEROMYCOTA.  HYPHOMYCETE 

This fungus contains 15 species which are common globally as saprophytes on 

dead leaves and stems of many plants (Domsch et al. 2007).  Conidiophores were 

produced on short lateral pegs from hyaline mycelium on WA and mPDA.  Condia were 

single, broadly ellipsoidal, pale to dark brown, verrucose, 0 to 13 transverse septa and 

one or more longitudinal septa (Fig 4.24) (Barnett and Hunter 1998).  Isolates DIS9 and 

DIS24 thought to be Pithomyces sp. based on conidia morphology observed were isolated 

in Nov 2012 from Illinois Mxg at the Dairy location.  Both isolates were easily identified 

as P. chartarum due to their broadly ellipsoid shape as well as presence of transverse and 

longitudinal septa (Ellis 1976).   
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Figure 4.24 Identifying characteristics of Pithomyces sp. 

a) Conidia produced in mycelium on plated leaf segment.  b)  Transverse and longitudinal 
septa indicative of P. chartarum.  

Puccinia (Persoon).  BASIDIOMYCOTA.  PUCCINIOMYCETES 

Species of Puccinia cause rust diseases of many vascular plants.  There are 3,000 

to 4,000 species of Puccinia which can be found globally in all environments except the 

artic.  These fungi can be heteroecious or autoecious with many variations in life cycles 

(Ramachar and Cummins 1965).  Puccinia produced uredinia which were epidermal on 

leaf segments and produced variably echinulate spores born singly on small pedicles (Fig 

4.25).  Puccinia telia observed from field collections before surface disinfestation were 

subepidermal at first then became erumpent with maturity, producing 2-celled spores 

with a longitudinal septum born on a long hyaline pedicle (Ramachar and Cummins 

1965).   
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Figure 4.25 Identifying characteristics of Puccinia sp. 

a) Uredinia present on leaf surface of switchgrass.  b) Orange echinulate urediniospores 
with germ pore present.  

Rhinocladiella (Nannf.).  DEUTEROMYCOTA.  HYPHOMYCETE 

Rhinocladiella sp. is a common wood saprophyte (Barnett and Hunter 1998).  

Long brown conidiophores which are simple and elongated by sympodial growth were 

produced.  Conidia were produced apically on new sympodial growth points, and were 

dry, hyaline to dark, and ovoid to oblong-ellipsoidal (Barnett and Hunter 1998). 

Septoria (Sacc).  DEUTEROMYCOTA.  COELOMYCETES 

Septoria sp. with over 2,000 described species (Sutton 1980) is parasitic; 

however, some species can cause leaf spots (Barnett and Hunter 1998).  The fungus 

produced pale brown, immersed and branching mycelia on plated leaf segments as well 

as in culture on WA and mPDA.  Pycnidia were immersed, separate or aggregated, 

ostiolate, globose and dark brown to black (Barnett and Hunter 1998).  Conidia produced 

were hyaline, multiseptate, and narrowly elongate to filiform (Fig 4.26) (Sutton 1980).  

Isolate FS6 suspected to be Septoria sp. was isolated in Aug 2012 from EG1101 Swg at 

the Forage location.  The FS6 isolate was sequenced with ITS primers and subjected to a 
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BLAST search against the NCBI GenBank.  The 886 bp ITS fragment shared 98% 

identity and 98% query coverage to S. arundinacea strain 281.72 (GenBank Accession 

Number AJ496628).  

 

Figure 4.26 Identifying characteristics of Septoria sp. 

Dark brown to black globose pycnidia of Septoria sp. expelling hyaline, narrowly 
elongated conidia.  

Spegazinnia (Sacc).  DEUTEROMYCOTA.  HYPHOMYCETE 

Members of this specific genus are common saprophytes on plants and soil 

(Seifert et al. 2011).  Spegazzinnia sp. produced small, dark sporodochium bearing 2 

different types of conidia: one, a 4-celled, spiny, apically born on a long conidiophore; 

and another, a 4-celled, smooth spore born on a short conidiophore (Fig 4.27) (Barnett 

and Hunter 1998). 
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Figure 4.27 Identifying characteristics of Spegazzinia sp. 

Four-celled spiny conidia as well as smooth four celled conidia of Spegazzinia.  

Stagonospora (Sacc).  DEUTEROMYCOTA.  COELOMYCETE 

Stagonospora sp. is a parasite and saprophyte on leaves and stems of many plants 

(Barnett and Hunter 1998).  Mycelium produced was immersed, branched, septate and 

brown.  Pycnidia produced were separate, immersed, globose, black, and ostiolate (Fig 

4.28a).  Conidia were hyaline, smooth, with 1 to 4 transverse eusepta, cylindrical to 

fusiform, straight to slightly curved, and sometimes guttulate (Fig 4.28b) (Sutton 1980).  

Isolate FIS17 suspected to be Stagonospora sp. was isolated in Nov 2012 from Illinois 

Mxg at the Forage location.  The FIS17 isolate was identified as Stagonospora sp. based 

on pycnidia and conidia morphology (Sutton 1980).   
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Figure 4.28 Identifying characteristics of Stagonospora sp. 

a) Pycnidia of different maturation stages present on plated leaf segment.  b) Pycnidia of 
Stagonospora with hyaline, cylindrical conidia with 1 to 4 septa.   

Tetraploa (Berk. and Broome).  DEUTEROMYCOTA.  HYPHOMYCETE 

The described members of this genus are exclusively considered to be 

saprophytes (Barnett and Hunter 1998).  Conidiophores produced by Tetraploa are 

verrucose, arising from superficial mycelium that branch and anastomose to form an 

intricate network.  Conidia were produced singly, pleurogenous, verruculose to 

verrucose, with mature conidia having long appendages and shallow furrows between 3 

to 4 columns of cells which developed individually (Fig 4.29) (Ellis 1971). 
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Figure 4.29  Identifying characteristics of Tetraploa sp. 

Verruculose to verrucose conidia of Spegazzinia sp. with long appendages and shallow 
furrows which create 3 to 4 columns of individually developing cells.  

2011 Results 

One thousand six hundred (1,600) foliar lesions were plated and observed over 

the growing season between Jun and Sep 2011. From the infected foliar tissues, isolates 

representing 19 fungal genera were collected.  This compilation includes both known 

pathogens of gramineaceous hosts as well as cosmopolitan saprophytes (Farr et al. 1989).  

Fungal frequency of occurrence was recorded monthly and compiled for the growing 

season. 

Of the 17 genera of fungi that were identified on foliar lesions associated with 

Freedom, Illinois, and Nagara Mxg plots at the Dairy location, 70% were graminicolous 

parasites.  Fourteen fungi identified were Hyphomycetes while two, Phoma and 

Stagonospora, were Coelomycetes.  When compiled and averaged across all cultivars, 

Alternaria and Phoma were the predominant pathogens with isolation frequencies of 

38.0% and 56.0%, respectively (Table 4.3).  Curvularia (10.0%) and Stagonospora 

(12.0%) were also isolated at relatively high frequencies.  Overall, fungi most frequently 

(> 10.0%) identified from Mxg cultivars included Alternaria, Curvularia, Phoma, and 
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Stagonospora in contrast to those identified at lower frequencies (< 10.0%) Aspergillus, 

B. cynodontis, B. oryzae, Cephaliophora, Epicoccum, Exserohilum, Fusarium, 

Leptosphaeria, Nigrospora, Pithomyces, Paecilomyces, Spegazinnia, and Tetraploa 

(Table 4.3).  

Seventeen fungi were identified from foliar lesions associated with Freedom and 

Illinois Mxg and EG1101 Swg at the Forage location in which 65.0% were pathogens of 

gramineaceous hosts.  Of the fungi identified, ten were Hyphomycetes and three were 

Coelomycetes.  Again, Alternaria and Phoma were the predominant fungi, both having 

isolation frequencies of 42.0%.  Colletotrichum (19.0%), Epicoccum (15.0%), and 

Stagonospora (15.0%) were also identified at relatively high frequencies.  Overall, fungi 

most frequently (> 10.0%) identified from Mxg and Swg cultivars included Alternaria, 

Colletotrichum, Epicoccum, Phoma, and Stagonospora, in contrast to those identified at 

lower frequencies (< 10.0%) Aspergillus, Bipolaris cynodontis, B. oryzae, B. sorokiniana, 

B. spicifera, Curvularia, Fusarium, Leptosphaeria, Cephaliophora, Nigrospora, 

Paecilomyces, and Puccinia.  

Fifteen fungi were identified from foliar lesions associated with Freedom Mxg 

and Alamo Swg at the Variety location, and of these, 80.0% have previously been 

reported as pathogens of gramineaceous hosts.  Ten of these were Hyphomycetes and 

four were Coelomycetes. The predominant pathogens observed were Alternaria (34.0%), 

Colletotrichum (26.0%), and Phoma (41.0%); with Fusarium (12.0%) and Stagonospora 

(10.0%) having relatively high frequencies as well.  Overall, fungi most frequently (> 

10.0%) identified from Mxg and Swg cultivars included Alternaria, Colletotrichum, 

Fusarium, and Phoma, while those fungi identified at lower frequencies (< 10.0%) were 
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Aspergillus, B. cynodontis, B. oryzae, B. sacchari, B. spicifera, Curvularia, Epicoccum, 

Cephaliophora, Septoria, Nigrospora, Paecilomyces, Pithomyces, Puccinia, and 

Stagonospora.  

2012 Results 

Two thousand and eight hundred (2,800) foliar lesions were collected and plated 

over the growing season between Apr and Oct 2012.  From the infected foliar tissues, 

isolates representing 28 fungal genera were identified.  This compilation includes both 

known pathogens of gramineaceous hosts as well as cosmopolitan saprophytes (Farr et al. 

1989).  Fungal frequency of occurrence was recorded monthly and compiled for the 

growing season.  

Of the 20 genera of fungi identified from foliar lesions associated with Freedom, 

Illinois, and Nagara Mxg at the Dairy location, 55.0% had previously been reported to be 

pathogens of gramineaceous hosts.  From these foliar lesions 15 fungi identified were 

Hyphomycetes, while three were Coelomycetes.  Fungi with the greatest identification 

frequencies were Alternaria (18.0%), Epicoccum (12.0%), and Phoma (35.0%).  Fungi 

isolated at lower frequencies (< 10.0%) from Mxg cultivars include; Ascochyta, 

Aspergillus, B. oryzae, B. spicifera, Cephaliophora, Coniella, Curvularia, Epicoccum, 

Exserohilum, Fusarium, Mortierella, Nigrospora, Paraphaeosphaeria, Penicillium, 

Pestalotia, Phoma, Pithomyces, Rhinocladiella, Stagonospora, and Tetraploa (Table 

4.4).  

A total of 21 fungal genera were identified from foliar lesions associated with 

Freedom and Illinois Mxg and EG1101 Swg at the Forage location and of these, 57.0% 

had previously been reported as pathogens of gramineaceous hosts.  Eleven fungi were 
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classified as Hyphomycetes, while five were Coelomycetes.  Alternaria (28.0%) and 

Epicoccum (23.0%) had the greatest frequency of identification; while Colletotrichum 

(12.0%), Fusarium (11.0%), and Phoma (15.0%) were relatively high as well.  Fungi 

isolated at low frequencies (< 10.0%) included Ascochyta, B. cynodontis, B. oryzae, B. 

spicifera, B. victoriae, Cephaliophora, Coniella, Curvularia, Glomerella, Lacellinopsis, 

Leptosphaeria, Mortierella, Nigrospora, Paecilomyces, Paraphaeosphaeria, Septoria, 

Stagonospora, and Tetraploa (Table 4.4).  

Fewer fungi were identified from foliar lesions collected from Freedom Mxg and 

Alamo Swg at the Variety location than the others in 2012, with 16 genera observed.  Of 

those, 69.0% have previously been reported as graminicolous pathogens.  This includes 

nine Hyphomycetes and five Coelomycetes.  Averaged across both Freedom and Alamo, 

Alternaria (24.0%), Colletotrichum (19.0%), Epicoccum (12.9%), Fusarium (18.0%), and 

Phoma (17.0%) were the predominantly reoccurring pathogens.  Fungi isolated at the 

other locations were at frequencies < 10.0% and include Ascochyta, B. cynodontis, B. 

oryzae, Chaetomium, Curvularia, Nigrospora, Paecilomyces, Puccinia, Rhinocladiella, 

Septoria, Stagonospora, and Tetraploa (Table 4.4).  
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Table 4.3 Fungal frequency (%) associated with field disease collections from giant 
miscanthusz (Miscanthus x giganteus) and switchgrassz (Panicum virgatum) 
across the June to September, 2011 growing season at research locations in 
Starkville, MS. 

Fungi Location 

 Dairy Forage Variety 
FMXG IMXG NMXG FMXG IMXG ESWG FMXG ASWG 

Alternaria 42.0 42.0 32.0 56.0 44.0 28.0 32.5 35.0% 
Aspergillus 0.5 1.0 0.0 0.0 1.0 0.5 0.0 0.5 
Bipolaris 

cynodontis 0.0 3.0 0.0 0.0 2.0 0.5 0.5 0.0 

B. oryzae 3.0 4.0 7.0 5.0 2.0 1.5 0.5 0.5 
B. sacchari 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 

B. sorokiniana 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 
B. spicifera 0.0 0.0 0.0 5.5 3.5 2.0 2.5 0.0 

Cephaliophora 3.5 3.5 0.0 0.0 0.0 0.5 0.0 0.5 
Colletotrichum 0.0 0.0 0.0 1.0 0.0 57.0 4.0 47.0 

Curvularia 9.5 11.0 10.0 15.0 5.5 2.5 4.5 4.5 
Epicoccum 7.5 6.5 5.0 22.5 14.0 8.0 8.5 6.0 

Exserohilum 0.0 0.0 2.5 0.0 0.0 0.0 0.0 0.0 
Fusarium 1.0 9.0 2.0 3.0 4.0 11.0 4.5 19.0 

Leptosphaeria 1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 
Nigrospora 8.0 7.5 0.0 4.5 4.5 0.5 4.5 1.0 

Paecilomyces 1.5 0.5 1.5 3.0 3.0 1.0 1.5 1.0 
Phoma 52.5 61.0 57.5 51.5 57.5 17.5 57.5 25.0 

Pithomyces  1.5 2.5 1.5 0.0 0.0 0.0 1.0 0.0 
Puccinia 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.5 
Septoria 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 

Spegazinnia 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Stagonospora 10.5 14.5 9.5 6.0 23.5 14.0 11.0 8.5 

Tetraploa 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
z  FMXG= Freedom giant miscanthus; IMXG= Illinois giant miscanthus; NMXG= 
Nagara giant miscanthus; ESWG= EG1101 switchgrass; ASWG= Alamo switchgrass. 
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Table 4.4 Fungal frequency (%) associated with field disease collections from giant 
miscanthusz (Miscanthus x giganteus) and switchgrassz (Panicum virgatum) 
across the April to September, 2012 growing season at research locations in 
Starkville, MS. 

Fungi Location 

 Dairy Forage Variety 
FMXG IMXG NMXG FMXG IMXG ESWG FMXG ASWG 

Alternaria 17.7 17.7 17.1 27.7 29.7 26.5 16.5 30.5 
Ascochyta 0.0 5.5 0.2 0.5 0.5 0.0 0.0 1.0 
Aspergillus 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 

Bipolaris cynodontis 0.0 0.0 0.0 0.2 0.0 0.0 1.7 0.5 
B. oryzae 0.0 0.8 1.7 0.0 0.2 0.0 0.0 0.2 

B. spicifera 0.0 0.0 1.1 0.5 0.0 0.2 0.0 0.0 
B. victoriae 0.0 0.0 0.0 0.2 0.2 0.2 0.0 0.0 

Cephaliophora 0.0 0.0 0.2 0.0 0.5 0.0 0.0 0.0 
Chaetomium 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 

Colletotrichum 0.0 0.0 0.0 9.0 0.5 27.0 0.0 37.0 
Coniella 1.1 0.0 7.0 0.0 0.2 0.0 0.0 0.0 

Curvularia 0.2 1.4 0.5 2.2 1.4 0.5 1.7 2.8 
Epicoccum 9.0 14.0 14.0 25.0 28.0 15.4 21.0 4.8 

Exserohilum 0.0 1.1 0.2 0.0 0.0 0.0 0.0 0.0 
Fusarium 8.5 6.2 8.8 6.5 5.7 22.0 11.1 24.2 

Glomerella 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 
Lacellinopsis 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 
Leptosphaeria 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 

Mortierella 0.2 0.0 0.0 1.4 0.0 0.2 0.0 0.0 
Nigrospora 2.5 8.2 4.8 7.7 4.2 1.7 3.1 0.2 

Paecilomyces 0.0 0.0 0.0 0.8 0.8 0.0 0.2 0.0 
Paraphaeosphaeria 0.0 0.2 0.5 0.0 0.2 0.8 0.0 0.0 

Penicillium 0.0 0.0 1.1 0.0 0.0 0.0 0.0 0.0 
Pestalotia 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 

Phoma 45.4 32.5 28.2 16.0 17.1 12.0 26.8 7.4 
Pithomyces 0.0 1.7 0.0 0.0 0.0 0.0 0.0 0.0 

Puccinia 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.1 
Rhinocladiella 0.0 0.2 0.0 0.0 1.1 0.8 1.4 0.0 

Septoria 0.0 0.0 0.0 2.0 0.5 0.8 0.0 0.8 
Stagonospora 1.7 2.5 0.0 2.2 2.5 3.7 0.2 2.5 

Tetraploa 0.0 0.8 0.0 0.2 0.0 0.0 0.2 0.0 
z  FMXG= Freedom giant miscanthus; IMXG= Illinois giant miscanthus; NMXG= 
Nagara giant miscanthus; ESWG= EG1101 switchgrass; ASWG= Alamo switchgrass 

Koch’s postulates 

Koch’s postulates conducted with B. oryzae isolate FMXGBO1 produced foliar 

symptoms three days post-inoculation (DPI) consisting of small (2 to 5 mm), red to 

reddish-brown flecks which developed into small lesions with slight chlorotic halos.  
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Lesions further progressed (7 DPI) into larger eyespot lesions containing straw colored 

centers with distinct reddish-brown to black margins (Fig. 4.30a).  Similar foliar 

symptoms were observed on both Freedom and Illinois Mxg.  No symptoms were 

observed on the noninoculated controls.  Upon investigation of symptoms with light 

microscopy, conidia were observed germinating in infection centers (Fig. 4.30b).  B. 

oryzae was reisolated from diseased material and identified based on conidia morphology 

(Fig. 30c).   

 

Figure 4.29 Koch’s postulates conducted with Bipolaris oryzae isolate FMXGBO1 on 
Freedom and Illinois giant miscanthus (Miscanthus x giganteus).   

a) Red flecking and eyespot symptoms observed 8 DPI on Freedom giant miscanthus  b) 
Germinating conidia of B. oryzae on Freedom leaf tissue. c)  Curved conidia indicative of 
B. oryzae present on plated leaf segment for pathogen reisolation.   
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Koch’s postulates conducted with B. sorokiniana isolate FMXGBS1 was positive 

on both Mxg cultivars, producing symptoms 7 DPI  Foliar symptoms consisted of small 

(2 to 5 mm), brown, elongated spots with chlorotic halos which progressed into larger (5 

mm to 2 cm) elongated lesions surrounded by distinct chlorotic and necrotic areas along 

leaf veins (Fig. 4.31a).  No symptoms were observed on the noninoculated control plants.  

B. sorokiniana was reisolated from disease symptoms and confirmed according to conidia 

morphology (Fig. 4.31b).   

 

Figure 4.30 Koch’s postulates conducted with Bipolaris sorokiniana isolate FMXGBS1 
on Freedom and Illinois giant miscanthus (Miscanthus x giganteus). 

a)  Brown spots and larger, elongated lesions with distinct chlorotic and necrotic halos.  
b)  Confirmation of B. sorokiniana based on conidia morphology colonizing infected 
giant miscanthus (Miscanthus x giganteus) tissue.   

Koch’s Postulates conducted with B. victoriae isolate DN1 produced symptoms 7 

DPI on all inoculated plants of both Freedom and Illinois Mxg, while no symptoms were 

observed on the noninoculated control plants.  Foliar symptoms initially consisted of 

small (2 to 5 mm), red lesions with slight chlorotic halos (Fig. 4.32a).  Lesions increased 

in size slightly (5 to 10 mm), and developed necrotic centers creating a characteristic 
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eyespot lesion with distinct reddish-brown to black margins and straw colored centers 

(Fig. 4.32b).  Chlorotic halos were present on mature symptoms, but not to the extent as 

that observed in foliar symptoms caused by B. sorokiniana .  B. victoriae was reisolated 

and confirmed based on conidia morphology as well as ITS sequencing.   

 

Figure 4.31 Koch’s Postulates conducted with Bipolaris victoriae isolate DN1 on 
Freedom and Illinois giant miscanthus (Miscanthus x giganteus). 

a)  Small, red lesions progressing into larger lesions with distinct red margins and 
necrotic centers.  b)  Red eyespot lesions on foliar tissue of giant miscanthus.   

Koch’s Postulates conducted with C. navitas isolates VF7 and VF30 produced 

symptoms 10 DPI.  Growth chambers were maintained at 30°C with a 16 h photoperiod.  

During the incubation period, a serendiptious event occurred causing the cooling unit to 

fail in one of the growth chambers housing half of the experiment. The temperature in 

this growth chamber exceeded 37°C, causing the lighting system to automatically turn 

off.  Inoculated Mxg plants incubating in this growth chamber became etiolated and 

stressed due to high temperatures and lack of light.  These heat stressed and etiolated 

plants developed symptoms consisting of elongated elliptical lesions with brown borders 

mainly on leaf margins.  These lesions expanded and sometimes coalesced with age.  
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Areas of severe chlorosis and necrosis bordered these lesions (Fig 4.33).  Signs of 

acervuli and setae, oriented vertically with leaf veins, were present upon further 

examination with a compound microscope.  Symptoms were observed only on Freedom 

Mxg plants present in the failed growth chamber; however, symptoms were not present 

on noninoculated controls nor Illinois plants held in the growth chamber that did not fail.  

The pathogen was reisolated and identified as C. navitas based on conidia morphology.   

 

Figure 4.32 Koch’s postulates conducted with Colletotrichum navitas on 
environmentally stressed Freedom giant miscanthus (Miscanthus x 
giganteus).   

Chlorotic and necrotic elliptical lesions resulting from infection caused by C. navitas 
isolates VF7 and VF30.  

Koch’s postulates conducted with the remaining fungi, Alternaria alternata, 

Ascochyta hordei, Bipolaris cynodontis, B. spicifera, Phoma herbarum, Pithomyces 

chartarum, and Septoria arundinacea did not result in symptom development under 

inoculation and incubation procedures carried out in this study.   
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CHAPTER V 

DISCUSSION 

Field Disease Ratings 

Symptom characterization  

The symptoms observed on Mxg culitvars over the two year study were consistent 

with fungal infections of major crops within the Gramineae family such as barley 

(Hordeum spp.), corn (Zea spp.), oat (Avena spp.) rice (Oryza spp.), sorghum (Sorghum 

spp.), sugarcane (Saccharum spp.), and wheat (Tritichum spp.).  Principal symptoms 

observed on Mxg during this study were categorized as leaf spots, leaf blotches, as well 

as some that initially began as leaf spots but later developed into leaf blights; all of which 

are symptoms of diseases previously reported and regularly diagnosed on grasses.  Leaf 

spots like those observed on Mxg (Fig. 4.1) have been described from many grass hosts: 

rough leaf spot (Ascochyta sorghina) and target leaf spot (Bipolaris sorghicola) of 

sorghum (Frederiksen 2000); ring spot (Leptosphaeria sacchari) and eye spot (Bipolaris 

sacchari) of sugarcane (Edgerton 1955); Northern leaf spot (Cochliobolus carbonum) and 

grey leaf spot (Cercospora zeae-maydis) of corn (White 1999); Ascochyta leaf spot 

(Ascochyta tritici) and tan spot (Pyrenophora tritici-repentis) of wheat (Wiese 1977; 

Murray et al. 2009); as well as brown leaf spot (Bipolaris oryzae) of rice (Webster 1992).  

Leaf blotches (Fig. 4.2) have been previously reported and commonly diagnosed such as 

spot blotch (Cochliobolus sativus) of wheat and barley as well as many other grasses 
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(Murray et al. 2009), leaf blotch (Rhynchosporium spp.) of barley and rye (Murray et al. 

2009), as well as Septoria leaf blotch of wheat (Septoria nodorum, S. tritici) (Murray et 

al. 2009).  Symptoms of leaf blight (Fig. 4.3) are common diseases of grass hosts as well, 

including southern corn leaf blight (B. maydis) and Northern leaf blight (E. turcicum) of 

corn (White 1999), and Alternaria leaf blight (A. triticina) of wheat (Wiese 1977).  The 

fact that these fungi were observed on Mxg is consistent with the published literature of 

foliar diseases of most gramineaceous hosts.   

Disease Assessment 

The foliar disease assessment conducted in this study showed results in which 

significant host differences were observed in locations where both Swg and Mxg 

cultivars were present (Forage and Variety locations), and under closer examination 

cultivars of Alamo and EG1101 Swg had an average of 83.0% greater incidence of foliar 

diseases than cultivars of Freedom and Illinois Mxg at the locations where Swg was 

present (Table. 4.2)  Switchgrass had far more initial disease when compared to Mxg in 

both growing seasons, suggesting that perennial inoculum levels may be present and may 

be an increasing problem as the ages of these individual stands of perennial bioenergy 

crops increase.  Switchgrass is native to the grasslands of the United States (Ghimire et 

al. 2011), and Mxg has been introduced within the last 30 years (Stewart 2009).  The age 

of crop establishment in the U.S. could possibly be a factor in explaining greater foliar 

disease pressure in Swg that has continually been exposed to pathogens.  In contrast, Mxg 

is a recently introduced crop not having long-term exposure to disease pressure, 

coinciding with what was observed with the foliar disease assessment.  In this study, leaf 

spot (B. oryzae), anthracnose (C. navitas), as well as rust (P. emaculata) were the 
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primary diseases observed on switchgrass and may account for higher disease incidence 

when compared to only leaf spot diseases of Mxg.  In addition, anthracnose which has 

been reported in the states of: Iowa, New Jersey, New York, North Carolina, 

Pennsylvania, and Tennessee (Crouch et al. 2009), was observed to have severe effects 

on Swg in stands in Starkville; however, anthracnose symptoms were not observed on 

Mxg, nor has incidence of Mxg anthracnose been reported anywhere else.  The close 

proximity of inoculum reservoirs such as Swg, as well as the positive Koch’s postulates 

demonstrated through this research, suggests that anthracnose may become a primary  

disease of Mxg in the near future.  Another disease that could potentially be problematic 

for Mxg is leaf spot (B. oryzae).  Like anthracnose, leaf spot caused by B. oryzae has 

been previously described as a pathogen of Swg in Mississippi, New York, and North 

Dakota (Krupinsky et al. 2004; Tomaso-Peterson and Balbalian 2010; Waxman and 

Bergstom 2011).  The presence of this pathogen on Swg has already been confirmed in 

Mississippi (Tomaso-Peterson and Balbalian 2010), and through this research the 

pathogen has been isolated and pathogenic capabilities demonstrated on Mxg.  The more 

predominant and drastic foliar disease of Swg, rust, was never observed on Mxg over the 

two year study period.   

At the Dairy location where only the Mxg cultivars Freedom, Illinois, and Nagara 

were present, no cultivar differences were observed in terms of foliar disease incidence.  

The similar cultivar response at this location was expected, as little genetic diversity 

exists among Mxg cultivars.  In essence, the recent establishment of Mxg as a second 

generation biofuel crop is advantageous when considering disease management.  The 

pathogens that incite foliar diseases of traditional grass hosts such as Swg may have not 
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developed the host-pathogen relationship with Mxg due to the relative short existence of 

the host crop.  One would expect this relationship to shift in favor of the pathogen over 

time due to continual exposure and the perennial nature of Mxg.   

Fungal Collections 

Fungi representing 30 genera were collected and identified from foliar disease 

collections of symptomatic material observed on Swg and Mxg stands located in 

Starkville, MS, of these, 16 known pathogens of gramineaceous hosts were identified 

(Farr et al. 1989).  Of the fungi identified, many are economically important pathogens of 

major agronomic crops such as: Aspergillus, Bipolaris, Colletotrichum, Exserohilum, 

Fusarium, Puccinia, and Septoria.  However, these pathogens were identified at 

relatively low frequencies compared to those fungi identified as saprophytes or 

endophytes such as Alternaria, Curvularia, and Epicoccum (Barnett and Hunter 1998).  

Of the many fungi that have been reported to be pathogenic on Swg in other states; 

Alternaria (Vu 2012), B. oryzae (Krupinsky et al. 2004; Tomaso-Peterson and Balbalian 

2010; Waxman and Bergstrom 2011), B. sorokiniana (Vu 2011), B. spicifera (Vu 2011), 

C. navitas (Crouch et al. 2009; Waxman and Bergstrom 2011), Curvularia (Fajolu 2012), 

and Puccinia (Frazier et al. 2013; Hirsch et al. 2010; Zale et al. 2008) have been 

identified from symptomatic leaves collected from Swg in Mississippi.  Of the reported 

pathogens of Miscanthus, such as P. chartarum (Ahonsi et al. 2010) and Stagonospora 

(O’Neill and Farr 1996; Pusz and Plaskowska 2010), both were identified from Mxg in 

Mississippi.  The observation of these pathogens from both Swg and Mxg suggests 

disease issues of these crops may be more prevalent and exacerbated with the increased 

attention of the bioenergy industry and production of bioenergy grasses. 
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Differences in the number of fungal genera identified between seasons were 

observed, with a greater number of genera identified from the 2012 growing season (28 

genera) than the 2011 season (19 genera).  Possible explanations for this include 

differences in environmental conditions between the two seasons, the greater amount of 

time in which samples were collected for the 2012 season, as well as an increase in 

diagnostic skills, experience, and knowledge in fungal identification.  Environmental 

conditions between the two growing seasons were relatively similar (Table 5.1).  

However, the slightly lower temperatures observed in 2012 (-1.4°C), as well as the 

increased rainfall (0.28 cm) and greater humidity (2.0%) could contribute to the greater 

number of fungal genera observed.  The addition of two months to the growing season in 

2012, due to the earlier emergence of plant material, could be another possible 

explanation for the greater number of fungal genera observed as well.  Finally, the 

diagnostic capabilities of the author greatly improved after the experience of recognizing 

and identifying fungi from the first season, and may have contributed to the increase of 

fungal genera observed in the 2012 season.   
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Table 5.1 Monthly environmental conditions associated with the 2011 and 2012 
growing seasons in Starkville, MS.  

Date Average 
Temperature (°C) Total Rainfall (cm) Total Humidity (%) 

Jun 2011 28.05 11.55 67.0 

Jul 2011 28.16 10.66 73.0 

Aug 2011 28.50 3.81 66.0 

Sep 2011 22.55 6.04 70.0 

Oct 2011 16.39 2.10 66.0 

2011z 24.73 6.83 68.0 

Apr 2012 19.22 9.14 66.0 

May 2012 23.88 9.88 69.0 

Jun 2012 26.61 3.70 62.0 

Jul 2012 27.77 18.74 73.0 

Aug 2012 25.77 5.94 75.0 

Sep 2012 23.27 0.05 72.0 

Oct 2012 16.88 2.31 70.0 

2012z 23.33 7.11 70.0 
z 2011 and 2012 seasonal total rainfall reported as average monthly rainfall (cm). 
Climate data obtained from the Department of Geosciences at Mississippi State 
University at http://geosciences.msstate.edu/ftpdata/wx/data/. 

Koch’s postulates 

Throughout the two year study, leaves displaying foliar symptoms were collected 

from Swg and Mxg hosts, and fungi identified as graminicolous pathogens were isolated 

for Koch’s postulates.  Twelve fungal isolates were selected, representing eight fungal 

genera.  Of the twelve fungal isolates evaluated, four isolates were determined to be 

pathogenic to Mxg (Fig. 4.7) including B. oryzae, B. sorokiniana, B. victoriae, as well as 

C. navitas.  B. oryzae, B. sorokiniana, and C. navitas have all previously been reported as 
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a pathogen of many grass hosts, including Swg (Crouch et al. 2009; Krupinsky et al. 

2004; Tomaso-Peterson and Balbalian 2010; Vu 2011a; Vu 2011b; Waxman and 

Bergstrom 2011) (Fig. 4.7).  However, B. victoriae has yet to be described as a pathogen 

of either Swg or Mxg.  The symptoms incited by B. oryzae and B. victoriae were quite 

similar in the fact that small brown to red eye spot lesions formed on the leaf surface, 

with little to no chlorosis or necrosis in contrast to those symptoms incited by B. 

sorokiniana or C. navitas.  Both B. sorokiniana and C. navitas incited symptoms on Mxg 

cultivars of chlorosis and necrosis; associated with either an elliptical shaped lesion in 

Colletotrichum evaluations, or areas of brown blighted leaves associated with B. 

sorokiniana.  Nevertheless, all four pathogens created symptoms that had drastic effects 

on foliar material, which could have a significant effect on biomass yield if any of these 

pathogens were able to incite an epidemic in field production situations.   

When conducting Koch’s postulates with Alternaria alternata, Ascochyta hordei, 

Bipolaris cynodontis, B. spicifera, Curvularia lunata, Phoma herbarum, Pithomyces 

chartarum, and Septoria arundinacea, no symptoms developed within the allotted 

incubation period.  Isolates of P. chartarum, previously described as a pathogen of Mxg 

(Ahonsi et al. 2010), were unsuccessful based on the protocol the authors reported.  

Koch’s postulates using P. chartarum were conducted several times without successful 

demonstration of pathogenicity, suggesting that possibly the correct conditions such as 

proper environment, a virulent pathogen, or a susceptible host was not present to incite 

disease. 
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