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CHAPTER 1

INTRODUCTION

In the area of Algebraic Graph Theory, the class of vertex-transitive graphs has at-

tracted considerable interest due to their symmetry. Over the last ffty years, it is also the

most interesting class of graphs for group theorists. Perhaps the frst person to systemat-

ically study symmetry in graphs was R.M. Foster [14], who is also famous for the Foster

census of cubic symmetric graphs. Cubic symmetric graphs are a very special type of

vertex-transitive graphs, and are rare enough to explicitly list those with a small number of

vertices. Foster started creating the list in 1930, and mathematicians are still working on

extending the census. W.T. Tutte [30], H.S.M. Coxeter [5], and other mathematicians also

focused on the symmetry of graphs, but mostly on such graphs that have extra symmetry

properties. Later the foundation of research on symmetry of vertex-transitive graphs was

strongly laid by both graph theorists such as L. Babai, P.J. Cameron, A. Gardiner, and C.D.

Godsil and group theorists such as D.G. Higman, A.A. Ivanov, C.E. Praeger, P.M. Neu-

mann, C.C. Sims, and R. Weiss. In the study of vertex-transitive graphs, two major felds

of mathematics, namely group theory and graph theory interact with each other, and one

can easily claim that this research area belongs to both of them.
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Knowing all the symmetries of a vertex-transitive graph is an obvious and important

question. There are a variety of techniques to attack this problem, perhaps the most natural

is via permutation group theory (which we will use here). To solve symmetry-related

problems for such graphs, the most tempting way is to determine the full automorphism

group. But calculating automorphism groups of graphs is usually quite diffcult, and is in

fact an NP-complete problem [24]. This has led to considering special classes of vertex-

transitive graphs, perhaps the most well known being Cayley graphs. It is well known that

the left translations (i.e., for any g ∈ G, the mapping gL : G → G defned by gL(x) = gx)

are automorphisms of a Cayley graph, which ensures vertex-transitivity. The converse is

not true, for example Peterson graph is vertex-transitive but not a Cayley graph for any

group.

In recent years, progress towards solving the symmetry problem has begun, usually

focusing on Cayley (di)graphs with particular properties, such as Cayley (di)graphs that are

primitive, quasiprimitive, 1/2-transitive, or arc-transitive; or Cayley (di)graphs of specifc

groups. For example, Praeger and Xu determined the full automorphism groups of graphs

whose automorphism group is primitive of order a product of two distinct primes [29],

while Li and Seress generalized that result to all square-free orders [23].

Subsequently another interesting approach has been to determine the automorphism

groups of graphs those that have quasiprimitive automorphism groups [22,27]. Kovács [18]

and Li [21] classifed (independently) arc-transitive circulants, which provide a clear idea

about the automorphism groups of such types of graphs (see [28]). Graphs that are 1/2-

transitive play another important role in fnding all the symmetries, since the typical way of
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determining whether or not a graph is 1/2-transitive is by checking its “full automorphism

group” (see [29, 37]).

On the other hand, the groups G for which the symmetries of the Cayley (di)graphs of

G have been explicitly determined are Zp [1], Zp 
2 [12], Zp [12,17], Zp ×Zp [9], Zpq [6,17],2 2 

Zp nZq [6], Z3 
p [10], where p, and q are distinct primes. Dobson, and Morris determined the

full automorphism group of a circulant digraph of square-free order [11]. Finally using the

result of Dobson and Morris (along with [21] et al.) Ponomarenko developed a polynomial

time algorithm to compute all the symmetries of circulant (di)graphs [26]. But the approach

of solving this problem for individual groups is very tedious and complicated.

Another approach to the broader problem of understanding symmetry in graphs, and

especially of Cayley graphs of a group G, is to consider what a “typical” or asymptotic

automorphism group is. Usually this is based on the structure of G, and has been of

consistent interest in the last few decades [3, 16, 33]. In this thesis, we examine the typical

automorphism group problem for the Cayley graph of a cyclic group.
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CHAPTER 2

ON THE AUTOMORPHISM GROUPS OF ALMOST ALL CIRCULANT GRAPHS

AND DIGRAPHS

2.1 Introduction

For a fnite group G, defne the Cayley digraph Γ = Γ(G, S) of G with respect to the

connection set S ⊆ G by

• V (Γ) = G,

• E(Γ) = {(g, gs)|g ∈ G, s ∈ S}.

It is easy to observe that G acts on V (Γ) as a regular (see Defnition 8) group of auto-

morphisms of Γ, which is perhaps the most important property of Cayley (di)graphs. An

obvious question one can ask is, when is G isomorphic to Aut(Γ)? In the 1970’s, much

work was done to determine which groups have at least one Graphical Regular Repre-

sentation (GRR) and Digraphical Regular Representation (DRR). A GRR of a group is

an undirected graph Γ whose automorphism group is GL = {gL : g ∈ G}, the left regular

representation of G. A DRR is a digraphical version of GRR. The following problem was

frst raised by Watkins in [32]: for a group G, does there exist at least one Cayley graph Γ 

of G such that Aut(Γ) = G? This problem was settled very quickly, both for GRRs [15]

and DRRs [2].
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While trying to resolve the question of which groups have even one GRR (or DRR), in

that same decade mathematicians speculated [3,16] that almost all (see Defnition 10) Cay-

ley graphs of a large group G are GRRs of G, except when G belonged to known classes

of groups which admitted no GRRs at all. Nowitz showed [25] during the classifcation of

GRRs that a Cayley graph on a generalized dicyclic group cannot be a GRR.

Defnition 1

¯A group G is said to be generalized dicyclic if it is generated by an abelian group A and

an element b ∈/ A such that e =6 b2 ∈ A, b4 = e, and b−1ab = a−1 for all a ∈ A.

There is a superfcial resemblance between generalized dicyclic groups and dihedral groups,

which is a “refection” of an underlying cyclic group in both of them (and ¯ = D2n).G/hb2i ∼ 

Watkins extended Nowitz’s result and formulated the following conjecture [33];

Conjecture 1

There exist an integer N such that if |G| > N , then G is abelian or generalized dicyclic or

admits a GRR.

Before we proceed, we need the following maps which will be used in a number of

places in this dissertation:

Defnition 2

Let ιG : G → G be defned by ιG(g) = g−1 (refection) for every g ∈ G. If G ∼= Zn, we

use ιn instead of ιZn .

Let ρ : Zn → Zn by ρ(i) = i + 1 (mod n). Thus hρi = (Zn)L.

Notice that if G is abelian, except Zk 
2 for k ≥ 1, then ιG is an automorphism of every

Cayley graph Γ(G, S) since S = S−1 . Thus it is not possible for a Cayley graph on an
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abelian group G to be a GRR. Godsil (along with Babai, Imrich, and Lovász) proposed a

modifed form (see [3, 16]) of Watkins’s Conjecture:

Conjecture 2

Let G be a group. Then for almost all subsets S of G, we have Γ(G, S) to be a DRR. If

G is not generalized dicyclic or abelian with exponent greater than 2 then for almost all

inverse closed subsets S of G, we have Γ(G, S) to be a GRR.

Godsil supported his own conjecture with a partial result for p-groups [16].

Theorem 1

Assume that G is a fnite p-group with no homomorphism onto Zp o Zp and which acts

regularly on In. Then the proportion of Cayley digraphs Γ = Γ(G, S) such that Aut(Γ) = 

G is π(G). The corresponding proportion of Cayley graphs is π±(G). As |G| increases,

π(G) tends to 1, and if G is neither generalized dicyclic nor abelian with exponent greater

than two, then π±(G) also tends to 1.

Babai and Godsil [3, Theorem 2.2] later proved these conjectures for nilpotent (and

nonabelian) groups of odd order.

Theorem 2

Let G be a nilpotent non-abelian group of odd order g. Then almost all Cayley graphs of

G have GL as their full automorphism group.

In 1998, Xu [38] introduced the notion of a normal Cayley (di)graph of a group G:

Defnition 3

A Cayley (di)graph Γ of a group G is called normal if GL C Aut(Γ).
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Example 1

All GRRs and DRRs are normal Cayley graphs and digraphs.

Figure 2.1

A normal circulant, Γ(Z7, {1, 2, 5, 6})

Like GRRs and DRRs, one may ask the obvious question, does every fnite group have at

least one normal Cayley (di)graph? A complete answer to that question was given by this

theorem (see [31]).

Theorem 3

1. Every fnite group has at least one normal Cayley digraph;

2. Every fnite group other than Z4 × Z2 and Q8 × Zm 
2 ,m ≥ 0, has at least one normal

Cayley graph.

Xu conjectured [38, Conjecture 1] that almost every Cayley (di)graph is normal. The

precise formulation of Xu’s conjecture was:

7



Conjecture 3 (Conjecture 1, [38])

For any positive integer n, we let Fn denote the class of all groups of order n, and let

# of normal Cayley digraphs of G 
f(n) = minG∈Fn . (2.1)

# of Cayley digraphs of G 

Then lim f(n) = 1.
n→∞ 

He also proposed a similar conjecture for Cayley graphs except G 6= Q8 × Z2 
m . Clearly his

conjecture was weaker than the one proposed by Godsil (Conjecture 2), since if almost all

Cayley (di)graphs of G are GRRs or DRRs, then almost all Cayley (di)graphs of a group

G are trivially normal Cayley (di)graphs of G.

In 2010, Dobson showed that almost every Cayley digraph of an abelian group of

prime-power order is a DRR [7]. In [16], Godsil proved an algebraic result which he

mentions could be used to show that almost every Cayley digraph of an abelian group of

prime-power order is a DRR. Using a different algebraic tool, Dobson [7] proved that every

Cayley digraph of an abelian group is a DRR. With respect to graphs, from the previous dis-

cussion we already know that for abelian groups (and generalized dicyclic groups), instead

of GRRs, we need to consider those Cayley graphs for which the automorphism group is

as small as possible, i.e. GL along with the “refection”. We formulate this phenomenon

into a special class of Cayley (di)graphs.

Defnition 4

We say that a Cayley (di)graph Γ = Γ(G, S) has automorphism group as small as possible

if one of the following holds:

• Γ is a GRR or a DRR; or

8



• G is either abelian or generalized dicyclic, and |Aut(Γ)| = 2|G|.

When G = Zn, we let Small(n) denote the set of all circulant graphs whose automorphism

group is as small as possible, and Small = ∪n∈NSmall(n).

So when G is abelian and Aut(Γ(G, S)) is as small as possible, we have Aut(Γ(G, S)) = 

hGL, ιGi. Clearly ιn normalizes (Zn)L, so every member of Small will be a normal cir-

culant graph. The frst theorem in this dissertation, Theorem 5, shows that almost every

circulant graphs are in Small, and thus are normal. This represents some progress towards

the proof of Xu’s conjecture, and is the frst step in our determination of the structure of the

automorphism group of a generic circulant graph. It is a natural extension of the work of

Babai and Godsil, mentioned above [3, Theorem 2.2]. Dobson showed that almost every

Cayley graph of an abelian group G of prime-power order has automorphism groups as

small as possible (i.e. is in Small(G)). In this dissertation, we consider the asymptotic

behavior of automorphism groups of Cayley graphs of cyclic groups, i.e. of circulants.

We show that a similar fact holds for circulants as well (almost all circulants have auto-

morphism group as small as possible). Dobson also proposed a conjecture [8] that seemed

to be very crucial in terms of calculating the density of normal Cayley (di)graphs more

accurately.

Conjecture 4

Almost every Cayley (di)graph of G whose automorphism group is not as small as possible

is a normal Cayley (di)graph of G.

In the same paper he proved his own conjecture for abelian groups of odd prime-power

order. Here we verify this conjecture for circulants, and show that it fails for circulant
9



digraphs of order n (Theorem 6), where n ≡ 2 (mod 4) has a fxed number of distinct

prime factors. We also point out some “gaps” in the proof of [7, Theorem 3.5], which lead

to additional counterexamples to [7, Conjecture 4.1] for graphs in the case where n = p 

or p2 and p is a safe prime, i.e. p = 2q + 1 where q is prime, or when n is a power of 3

(Theorem 7). Finally, we prove that the conjecture holds for digraphs of order n where n is

odd and not divisible by 9 (Theorem 8). We also show that the conjecture holds for graphs

of order n where n is still odd and not divisible by 9, if we add the extra condition that n 

is not of the form n = p or p2 for p a safe prime (Theorem 9).

Next, we focus on non-normal circulant (di)graphs. A variety of authors (see [11,

13, 19, 20]) have shown that non-normal Cayley (di)graphs are either generalized wreath

products (see Defnition 15) or have automorphism group that of a deleted wreath product

(see Defnition 17). We show that there exist sets of integers S1, S2, and a family of sets

of integers Sc such that almost all non-normal circulant graphs and digraphs whose order

is in S1 have automorphism group that of a deleted wreath product (Theorem 11), almost

all non-normal circulant graphs and digraphs whose order is in S2 are generalized wreath

products (Theorem 12), and neither generalized wreath products nor those graphs whose

automorphism group is that of a deleted wreath product of circulant graphs and digraphs

dominates amongst those whose order is in any Sc (Theorem 10). Regarding the set Sc 

(pairs of primes with fxed distance c), we remark that there are infnitely many pairs of

primes that are less than 70 million units apart [39] (when c = 2 for example, Sc consists

of all products of twin primes).

10



2.2 Preliminaries and tools

We start by stating basic defnitions, and then proceed to known results in the literature

that we will need. We will fnish with results that will be the main tools throughout the rest

of the dissertation.

Defnition 5

An automorphism σ of a graph Γ = (V, E) is a permutation on the vertex set V , such that

uv ∈ E if and only if σ(u)σ(v) ∈ E in Γ. The set of automorphisms of a given graph,

under the composition operation, forms a group, which is called the automorphism group

of the graph. We denote that by Aut(Γ), for any graph Γ.

Defnition 6

Let G be a group acting on a set S. Then G is transitive on S if, given any two elements

α, β ∈ S, there exists σ ∈ G such that σ(α) = β.

Defnition 7

Let G be a group acting on S. Then the stabilizer of any point α ∈ S in G is defned by

Gα = {g ∈ G : αg = α}.

Defnition 8

A group G acting transitively on S is said to act regularly if Gα = 1 for each α ∈ S 

(equivalently only the identity fxes any point in S).

Recall from the beginning of this chapter,

Defnition 9

Let G be a group and S ⊂ G such that 1G 6∈ S. Defne a digraph Γ = Γ(G, S) by

V (Γ) = G and E(Γ) = {(u, v) : v−1u ∈ S}. Such a digraph is a Cayley digraph of

G with connection set S. A Cayley graph of G is defned analogously though we insist
11



that S = S−1 = {s−1 : s ∈ S}. If G = Zn, then a Cayley (di)graph of G is a circulant

(di)graph of order n.

It is straightforward to verify that for g ∈ G, the map gL : G → G by gL(x) = gx is an

automorphism of Γ. Thus GL = {gL : g ∈ G}, the left regular representation of G, is a

subgroup of the automorphism group of Γ, Aut(Γ).

We also specify what we will mean in this dissertation when we say something about

“almost all” graphs in a particular family:

Defnition 10

Let F2 ⊆ F1 be two families of circulant (di)graphs, and Fi(n) (i = 1, 2) be the graphs of

order n ∈ N in Fi. Then by almost all circulant (di)graphs in F1 are in F2, we mean that

|F2(n)|
lim = 1. 

n∈N,n→∞ |F1(n)| 

If in the above we replace N by some set I of infnitely many integers, we say that “almost

all” circulant (di)graphs in F1 of order n, where n ∈ I , are in F2.

Our objective in this dissertation is to determine as far as we can what the automorphism

group of a generic circulant (di)graph should look like, by recursively classifying (or at-

tempting to classify) the automorphism groups of almost all circulant (di)graphs that do

not fall within a previous step’s classifcation.

Defnition 11

Let G be a transitive permutation group with complete block system B. By G/B, we mean

the subgroup of SB induced by the action of G on B, and by fixG(B) the kernel of this

action. Thus G/B = {g/B : g ∈ G} where g/B(B1) = B2 if and only if g(B1) = B2,

B1, B2 ∈ B, and fixG(B) = {g ∈ G : g(B) = B for all B ∈ B}.
12



Let G be a transitive permutation group, B a complete block system of G, and hρi ≤ 

G. Since hρi is transitive and abelian, it is regular [34, Proposition 4.4], and so there

is a subgroup of hρi (namely fixhρi(B)) whose orbits are precisely the blocks of B. It is

therefore not diffcult to show that B consists of the cosets of some (cyclic) subgroup of

Zn.

Defnition 12

A vertex-transitive (di)graph is a (di)graph whose automorphism group acts transitively

on the vertices of the (di)graph.

Defnition 13

The wreath (or lexicographic) product of Γ1 and Γ2, denoted Γ1 o Γ2, is the digraph such

that V (Γ1 o Γ2) = V (Γ1) × V (Γ2) and

E(Γ1 o Γ2) = {((x, x 0), (y, y 0)) : xy ∈ E(Γ1), x 0 , y 0 ∈ V (Γ2) or x = y and x 0 y 0 ∈ E(Γ2)}. 

We remark that the wreath product of a circulant digraph of order m and a circulant digraph

of order n is circulant. Note that what we have just defned as Γ1 o Γ2 is sometimes defned

as Γ2 oΓ1, particularly in the work of Praeger, Li, and others from the University of Western

Australia.

Defnition 14

Let Ω be a set and G ≤ SΩ be transitive. Let G act on Ω× Ω by g(ω1, ω2) = (g(ω1), g(ω2)) 

for every g ∈ G and ω1, ω2 ∈ Ω. We defne the 2-closure of G, denoted G(2), to be the

largest subgroup of SΩ whose orbits on Ω × Ω are the same as G’s. Let O1, . . . , Or be the

orbits of G acting on Ω × Ω. Defne digraphs Γ1, . . . , Γr by V (Γi) = Ω and E(Γi) = Oi.

Each Γi, 1 ≤ i ≤ r, is an orbital digraph of G, and it is straightforward to show that

13



G(2) = ∩i
r 
=1Aut(Γi). A generalized orbital digraph of G is an arc-disjoint union of

orbital digraphs of G. We say G is 2-closed if G(2) = G.

Clearly the automorphism group of a graph or digraph is 2-closed.

The following theorem appears in [21] and is a translation of results that were proven

in [13, 19, 20] using Schur rings, into group theoretic language. We have re-worded part

(1) slightly to clarify the meaning. In the special case of circulant digraphs of square-free

order n, an equivalent result was proven independently in [11].

Theorem 4

Let G ≤ Sn contain hρi. Then one of the following statements holds:

1. There exist G1, . . . , Gr such that G(2) = G1 × . . . × Gr, and for each Gi, either

Gi ∼= Sni , or Gi contains a normal regular cyclic group of order ni. Furthermore,

r ≥ 1, gcd(ni, nj ) = 1 for i 6= j, and n = n1n2 · · · nr.

2. G has a normal subgroup M whose orbits form the complete block system B of G 

such that each connected generalized orbital digraph contains a subdigraph Γ which

¯is an orbital digraph of G and has the form Γ = (Γ/B) o Kb, where b = |M ∩ hρi|.

Defnition 15

A circulant digraph Γ(Zn, S) is said to be a (K, H)-generalized wreath circulant di-

graph (or just a generalized wreath circulant digraph) if there exist groups H , K with

1 < K ≤ H ≤ Zn such that S \ H is a union of cosets of K.

The name generalized wreath is chosen for these digraphs as if K = H , then Γ is in

fact a wreath product. We now wish to investigate the relationship between generalized
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wreath circulant digraphs and the preceding result. We shall have need of the following

result.

Lemma 1

Let Γ be a disconnected generalized orbital digraph of a transitive group G. Then the

components of Γ form a complete block system B of G.

Proof: As the blocks of G(2) are identical to the blocks of G [35, Theorem 4.11] ( [35] is

contained in the more accessible [36]), we need to show that the set of components B of

Γ is a complete block system of G(2). This is almost immediate as G(2) = ∩i
r 
=1Aut(Γi),

where Γ1, · · · are all of the orbital digraphs of G. Assume that Γ = ∪s Γi, for some, Γr i=1 

s ≤ r. Then ∩s
i=1Aut(Γi) ≤ Aut(Γ), so that B is a complete block system of ∩s

i=1Aut(Γi).

Also, G ≤ G(2) = ∩r
i=1Aut(Γi) ≤ ∩i

s 
=1Aut(Γi). Thus B is a complete block system of

G(2) as B is a complete block system of ∩s
i=1Aut(Γi).

We will require the following partial order on complete block systems.

Defnition 16

We say that B � C if for every B ∈ B there exists C ∈ C with B ⊆ C. That is, each block

of C is a union of blocks of B. For g ∈ StabG(C), C ∈ C, we denote by g|C the permutation

defned by g|C (x) = g(x) if x ∈ C and g|C (x) = x otherwise. For H ≤ StabG(C), we

write H|C = {g|C : C ∈ C}.

Our main tool in examining generalized wreath circulants will be the following result.

Lemma 2

Let G be 2-closed with a normal subgroup M and a regular subgroup hρi. Let B be the

complete block system of G formed by the orbits of M , and suppose that each connected
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generalized orbital digraph contains a subdigraph Γ which is an orbital digraph of G and

¯has the form Γ = (Γ/B) o Kb, where b = |M ∩ hρi|. Then there exists a complete block

system C � B of G such that fixG(2) (B)|C ≤ G(2) for every C ∈ C.

Proof: Observe that we may choose M = fixG(B), in which case |M ∩ hρi| = |B|, where

B ∈ B, so that b is the size of a block of B. First suppose that if B, B0 ∈ B, B 6= B0 , then

any orbital digraph Γ0 that contains some edge of the form xy~ with x ∈ B, y ∈ B0 has every

edge of the form xy~ , with x ∈ B, y ∈ B0 . It is then easy to see that every orbital digraph

Γ of G can be written as a wreath product Γ0 = Γ1 o Γ2, where Γ1 is a circulant digraph of

order n/b and Γ2 is a circulant digraph of order b. Then G/B o fixG(B)|B ≤ Aut(Γ0) for

every orbital digraph Γ0 , and so G/B o (fixG(B)|B ) ≤ G(2). Then result then follows with

C = B. (Note that G is 2-closed, so G(2) = G.)

Denote the orbital digraph that contains the edge xy~ by Γxy. We may now assume that

there exists some B, B0 ∈ B, B 6= B0 , and x ∈ B, y ∈ B0 such that Γxy does not have

every edge of the form x~0y0, with x0 ∈ B and y0 ∈ B0 . Note then that no Γx0y with x0 ∈ B0 

and y0 ∈ B0 has every directed edge from B to B0 . Let X be the set of all Γxy such that

if x ∈ B1 ∈ B and y ∈ B2 ∈ B, B1 6= B2 then Γxy does not have every edge from B1 to

B2. Let Γ̂ be the generalized orbital digraph whose edges consist of all edges from every

orbital digraph in X , as well as every directed edge contained within a block of B. Then no

¯orbital digraph that is a subgraph of Γ̂ can be written as a connected wreath product Γ0 o Kb 

for some Γ0, and so by hypothesis, Γ̂ must be disconnected.

By Lemma 1, the components of Γ̂ form a complete block system C � B of G. (To

see that C � B, note that Γ̂ contains every edge from B to B0 , so B is in a connected
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component of Γ̂. Since G is transitive, C � B.) Let Γ1, Γ2, . . . , Γr be the orbital digraphs

ˆof G, and assume that ∪s
i=1Γi = Γ. If 1 ≤ i ≤ s, then (G(2)/C) o (fixG(2) (C)|C ) ≤ Aut(Γi) 

as G(2) ≤ Aut(Γi), Γi is disconnected, and each component is contained in a block of C.

Thus fixG(2) (B)|C ≤ Aut(Γi) for every 1 ≤ i ≤ s. If s + 1 ≤ i ≤ r, then if B, B0 ∈ B,

B =6 B0 and xy~ ∈ E(Γi) for some x ∈ B, y ∈ B0 , then xy~ ∈ E(Γi) for every x ∈ B and

y ∈ B0 . Also observe that as the subgraph of Γ̂ induced by B is Kb, the subgraph of Γi 

¯ ¯induced by G is Kb. We conclude that Γi = Γi/B o Kb, and so Aut(Γi/B) o Sb ≤ Aut(Γi).

Then fixG(2) (B)|B ≤ Aut(Γi) for every B ∈ B. As B � C, fixG(2) (B)|C ≤ Aut(Γi) for

every 1 ≤ i ≤ r and as G(2) = ∩i
r 
=1Aut(Γi), fixG(2) (B)|C ≤ G(2) for every C ∈ C.

Lemma 3

Let Γ be a circulant digraph of order n. Then Γ is a (K, H)-generalized wreath circulant

digraph if and only if there exists G ≤ Aut(Γ) such that G contains a regular cyclic

subgroup, and fixG(2) (B)|C ≤ G(2) for every C ∈ C, where B � C are formed by the orbits

of K and H , respectively.

Proof: Suppose frst that G ≤ Aut(Γ) with ρ ∈ G, and there exist complete block systems

B � C of G such that fixG(2) (B)|C ≤ G(2) ≤ Aut(Γ) for every C ∈ C. Since ρ ∈ G, the

action of fixG(2) (B)|C is transitive on every B ⊆ C, so between any two blocks B1, B2 ∈ B 

that are not contained in a block of C, we have that there is either every edge from B1 to

B2 or no edges from B1 to B2. Let B be formed by the orbits of K ≤ hρi. Then for every

edge xy~ whose endpoints are not both contained within a block of C, (y − x)+ K ⊂ S. Let

C be formed by the orbits of H ≤ hρi. Then S \ H is a union of cosets of K as required.
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Conversely, if Γ is a (K, H)-generalized wreath circulant, then ρm|C ∈ Aut(Γ) for

every C ∈ C, where m = [Zn : K]. Let G ≤ Aut(Γ) be maximal that admits both B and

C as complete block systems; clearly ρ ∈ G. Also, since G(2) has the same block systems

as G and G(2) ≤ Aut(Γ), G(2) = G. Now, if g ∈ fixG(B), then g|C ∈ Aut(Γ) as well. But

this implies that g|C ∈ G.

Combining Lemma 2 and Lemma 3, and recalling that the full automorphism group of

a (di)graph is always 2-closed, we have the following result.

Corollary 1

Let Γ be a circulant digraph whose automorphism group G = Aut(Γ) satisfes Theorem

4(2). Then Γ is a generalized wreath circulant digraph.

We now wish to count the number of generalized wreath circulant digraphs.

Lemma 4

The total number of generalized wreath circulant digraphs of order n is at most

X � X � 
2n/p−1 2(n−n/p)/q (2.2)

p|n q|(n/p) 

where p and q are prime.

Proof: Let Γ be a (K, H)-generalized wreath circulant digraph of order n. By Lemma 3,

there exists G ≤ Aut(Γ) that admits B and C such that ρ ∈ G, and fixG(2) (B)|C ≤ Aut(Γ) 

for every C ∈ C, where B is formed by the orbits of K and C is formed by the orbits of H .

Let B consist of m blocks of size k. Then ρm|C ∈ Aut(Γ) for every C ∈ C. Choose q|k to

be prime, and let G0 ≤ Aut(Γ) be the largest subgroup of Aut(Γ) that admits a complete

block system D consisting of n/q blocks of size q. Note then that ρn/q|C ∈ G0 for every
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C ∈ C. Let p be a prime divisor of the number of blocks of C, and E the complete block

system of hρi consisting of p blocks of size n/p. Then C � E and ρn/q|E ∈ G0 for every

E ∈ E . Thus every (K, H)-generalized wreath circulant digraph is a (Lq,Mp)-generalized

wreath circulant digraph, where Lq has prime order q where q divides |K| and Mp has

order n/p where p divides n/|H|. Note that there is a unique subgroup of Zn of prime

order q for each q|n, and that Mp is also the unique subgroup of Zn of order n/p.

As |Lq| = q, we use the defnition of an (Lq,Mp)-generalized wreath circulant digraph

to conclude that S \ Mp is a union of some subset of the (n − n/p)/q cosets of Lq that are

not in Mp. Thus there are 2(n−n/p)/q possible choices for the elements of S not in Mp. As

there are at most 2n/p−1 choices for the elements of S contained in Mp, there are at most

2n/p−1 2(n−n/p)/q· = 2n/p+n/q−n/(pq)−1 choices for S. Summing over every possible choice

of q and then p, we see that the number of generalized wreath digraphs is bounded above

by X � X � 
2n/p−1 2(n−n/p)/q . 

p|n q|(n/p) 

We will denote the set of all circulant digraphs of order n whose automorphism groups

are of generalized wreath type by GW(n). The corresponding set of all circulant graphs

will be denoted by GWG(n). Note that no term in the previous summation given in Lemma

4 is larger than 2n/p+n/q−n/(pq)−1 , where q is the smallest prime divisor of n and p is the

smallest prime divisor of n/q. As the number of prime divisors of n is at most log2 n, we

have the following result.
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Corollary 2

|GW(n)| ≤ (log22 n)2
n/p+n/q−n/pq−1 , where q is the smallest prime divisor of n and p is

the smallest prime divisor of n/q.

Using the fact that there are at most two elements that are self-inverse in Zn (namely 0 

and n/2 if n is even, and 0 6∈ S), and at most one coset of Zn/Lq that is self-inverse and

not in Mp (as Zn/Lq is cyclic), and the fact that (p + q − 1)/pq ≤ 3/4, a similar argument

shows that:

Corollary 3

|GWG(n)| ≤ (log22 n)2
n(p+q−1)/(2pq)+1/2 ≤ (log22 n)2

3n/8+1/2 , where q is the smallest

prime dividing n, and p is the smallest prime dividing n/q.

We now consider circulant (di)graphs Γ for which Aut(Γ) satisfes Theorem 4 (1), and

use the notation of that result. If no Gi =∼ Sni with ni ≥ 4, then Aut(Γ) contains a normal

regular cyclic group and Γ is a normal circulant digraph. Otherwise, we have the following

defnition.

Defnition 17

A circulant (di)graph Γ(Zn, S) is of deleted wreath type if there exists some m > 1 such

that:

• m | n;

• gcd(m, n/m) = 1; and

• if H = hn/mi is the unique subgroup of order m in G, then S ∩ H ∈ {∅, H \ {0}},

and for every g ∈ hmi \ {0}, S ∩ (g + H) ∈ {∅, {g}, (g + H) \ {g}, g + H}. (Notice
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that because gcd(m, n/m) = 1, the group hmi contains precisely one representative

of each coset of H in G.)

A circulant digraph is said to be of strictly deleted wreath type if it is of deleted wreath

type and is not a generalized wreath circulant.

There are deleted wreath type circulants which are not of strictly deleted wreath type.

For an example of this, consider a circulant digraph on pqm vertices where m ≥ 4 and p, q 

and m are relatively prime, whose connection set is S = (hpqi \ {0}) ∪ (m + hmqi). This

digraph is an (H, K)-generalized wreath circulant for H = hqi and K = hmqi. It is also

of deleted wreath type with H = hpqi, since S ∩ H = H \ {0}, while for g ∈ hmi \ {0},

we have S ∩ (g + H) = {g} if g ∈ m + hmqi and S ∩ (g + H) = ∅ otherwise.

Defnition 18

For a positive integer m, and a digraph Γ, we denote by mΓ the digraph consisting of m 

¯vertex-disjoint copies of Γ. The digraph Γ o Km − mΓ is a deleted wreath product. Thus

¯this digraph is the digraph whose vertex set is the vertex set of Γ o Km and whose edge set

¯is the edge set of Γ o Km with the edges of mΓ removed.

The name deleted wreath type is chosen as these digraphs have automorphism groups

that are isomorphic to the automorphism groups of deleted wreath products.

Lemma 5

Let Γ = Γ(Zn, S), and let m ≥ 4 be a divisor of n such that gcd(m, n/m) = 1. Then

Γ is of deleted wreath type with m being the divisor of n that satisfes the conditions of

that defnition, if and only if Aut(Γ) contains a subgroup isomorphic to H × Sm with the

canonical action, for some 2-closed group H with Zn/m ≤ H ≤ Sn/m.
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Proof: In this proof for a given m satisfying n = km and gcd(m, k) = 1, it will be

convenient to consider Zn = Zk ×Zm in the obvious fashion. For i ∈ Zk, set Bi = {(i, j) : 

j ∈ Zm}.

First, suppose Γ is of deleted wreath type with m ≥ 4 being the divisor of n that

satisfes the conditions of that defnition, and n = mk. Using Zn = Zk × Zm, we see

that for every i ∈ Zk \ {0}, we have S ∩ Bi ∈ {∅, {(i, 0)}, Bi \ {(i, 0)}, Bi}. Also,

S ∩ B0 ∈ {∅, B0 \ {(0, 0)}}. Let B = {Bi : i ∈ Zk} and let G ≤ Aut(Γ) be maximal such

that G admits B as a complete block system. Let H ≤ Sk be the projection of G onto the

frst coordinate. Since Zk × Zm ∼= hρi ≤ G, clearly Zk ≤ H .

We claim that H × Sm ≤ Aut(Γ). Let ((i1, j1), (i2, j2)) ∈ E(Γ), and (h, g) ∈ H × Sm.

Suppose frst that i1 = i2. We have S ∩ B0 ∈ {∅, B0 \ {(0, 0)}}, and i1 = i2 forces

S ∩ B0 6= ∅. Hence Γ[Bi] is complete, so clearly ((h(i1), g(j1)), (h(i2), g(j2))) ∈ E(Γ),

as h(i2) = h(i1). Now suppose i1 =6 i2. So h(i1) 6= h(i2). Let i = i2 − i1 and let

i0 = h(i2) − h(i1), with 1 ≤ i, i0 ≤ k − 1. By the defnition of H , there is some g ∈ G that

takes Bi1 to Bh(i1) and Bi2 to Bh(i2). Hence the number of arcs in Γ from Bi1 to Bi2 , which

is |S ∩ Bi|, must be the same as the number of arcs from Bh(i1) to Bh(i2), which is |S ∩ Bi0 |.

Since 1 ≤ i, i0 ≤ k−1 and (i1, j1), (i2, j2) ∈ E(Γ), |S ∩Bi| = |S ∩Bi0 | must be 1,m−1 or

m. Since m ≥ 4 > 2, the integers 1,m − 1 and m are all distinct, so S ∩ Bi and S ∩ Bi0 are

uniquely determined by their cardinality. If |S ∩Bi| = 1, then S ∩Bi = {(i, 0)} so j2 = j1.

Hence g(j1) = g(j2), and since S ∩Bi0 = {(i0 , 0)}, the arc ((h(i1), g(j1)), (h(i2), g(j2))) is

in Γ. Similarly, if the cardinality is m − 1, then S ∩ Bi = {Bi \{(i, 0)}} so j2 =6 j1. Hence

g(j1) 6= g(j2), and since S ∩ Bi0 = {Bi0 \ {(i0 , 0)}}, the arc ((h(i1), g(j1)), (h(i2), g(j2))) 
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is in Γ. Finally, if the cardinality is m, then S ∩ Bi = Bi, and S ∩ Bi0 = Bi0 , so the arc

((h(i1), g(j1)), (h(i2), g(j2))) is in Γ. Thus H × Sm ≤ Aut(Γ).

By [35, Theorem 4.11], we have that (H ×Sm)
(2) admits B as H × Sm ≤ Aut(Γ) does.

Finally, by [4, Theorem 5.1], Aut(Γ) ≥ (H × Sm)
(2) ≥ H(2) × Sm. As H is the projection

of G onto the frst coordinate, we conclude that H(2) = H and H is 2-closed.

Conversely, assume that Aut(Γ) contains a subgroup isomorphic to H × Sm with

the canonical action, for some 2-closed group H with Zn/m ≤ H ≤ Sn/m. Clearly

Stab1×Sm (0, 0) is transitive on Bi \ {(i, 0)}, and so the orbits of Stab1×Sm (0, 0) on Bi 

are {(i, 0)} and Bi \{(i, 0)}. Also 1 × Sm ≤ H × Sm ≤ Aut(Γ) implies Stab1×Sm (0, 0) ≤ 

StabH×Sm (0, 0) ≤ StabAut(Γ)(0, 0). Thus each S ∩ Bi is a union of some (possibly none)

of these two orbits. Hence the only possibilities for each S ∩ Bi are ∅, {(i, 0)}, Bi \{(i, 0)} 

and Bi if 1 ≤ i ≤ k − 1; and since 0 6∈ S, S ∩ B0 is either ∅ or B0 \ {(0, 0)}.

We remark that the above lemma shows that a deleted wreath product type circulant

digraph is not a normal circulant digraph when m ≥ 4.

The following result is an easy consequence of Lemma 5 together with the fact that

the 2-closure of a direct product is the direct product of the 2-closures of the factors [4,

Theorem 5.1].

Corollary 4

A non-normal circulant (di)graph whose automorphism group satisfes Theorem 4(1) is of

deleted wreath type with m ≥ 4.
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Corollary 5

There are at most 2n/m+1 graphs Γ and at most 22n/m digraphs Γ that contain K × Sm for

any choice of K that is 2-closed and has Zn/m ≤ K ≤ Sn/m, where m ≥ 4. Equivalently,

there are at most 22n/m digraphs of deleted wreath type, and at most 2n/m+1 graphs of

deleted wreath type, for any fxed m ≥ 4 with m | n and gcd(m, n/m) = 1.

Proof: A consequence of Lemma 5 is that there are 2 · 4n/m−1 < 4n/m = 22n/m digraphs Γ 

of order n such that K × Sm ≤ Aut(Γ) for m ≥ 4. Note that a digraph Γ with Aut(Γ) = 

K × Sm, m ≥ 3, is a graph if and only if K contains the map ιn/m. Then ιn/m(g + H) = 

(−g)+H where H = hn/mi, and so if n/m is odd, there are at most 4n/(2m) = 2n/m graphs

Γ that contain K × Sm for any choice of K that is 2-closed and has Zn/m ≤ K ≤ Sn/m.

Even if n/m is even, only one nontrivial coset of hn/mi is fxed by ιn/m, so there are at

most 2 · 4 · 4(n/m−2)/2 = 2n/m+1 graphs Γ that contain K × Sm for any choice of K that is

2-closed and has Zn/m ≤ K ≤ Sn/m.

2.3 Normal Circulants

In this section our main focus is on determining whether or not almost all circulants

that do not have automorphism groups as small as possible are normal circulants, as con-

jectured by Dobson [7, Conjecture 1]. We begin by showing that almost every circulant

graph of order n has automorphism group as small as possible. We remark that Babai and

Godsil [3, Theorem 5.3] have shown this to be true for Cayley graphs on abelian groups of

order n, where n ≡ 3 (mod 4).
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We require some additional notation that will be used through the remainder of this

dissertation.

Defnition 19

Let ACG(n) be the set of all circulant graphs of order n.

Also throughout this dissertation, for a ∈ Zn 
∗ , we defne ā : Zn → Zn by ā(i) = ai. As

previously defned, if a = −1 then we denote ā by ιn.

Theorem 5

For almost every circulant graph Γ, Aut(Γ) is as small as possible. More precisely,

|Small(n)|
lim = 1. (2.3)
n→∞ |ACG(n)| 

Proof: We frst count the number of circulant graphs of order n not in Small(n). By

2 n · 23n/8+1/2Corollary 3, there are at most log2 generalized wreath circulant graphs of

order n.

Now assume Γ 6∈ GWG(n)∪Small(n). By Corollary 1, Aut(Γ) satisfes Theorem 4(1).

Either Aut(Γ) normalizes hρi or Gi = Sni for some ni ≥ 4 (using the notation of Theo-

rem 4(1)). We will fnd an automorphism α of Zn such that α ∈ Aut(Γ) \ hιni. Obviously,

if hρi / Aut(Γ), then since Γ 6∈ Small(n), such an α exists. If Gi = Sni and ni ≥ 4, then

Gi contains a nontrivial automorphism b̄ of Zni . Regard Zn as Zn/ni ×Zni in the usual way.

If ni ≥ 7 then we may choose b =6 ±1, and α = (1, b). We may assume n is arbitrarily

large, so if 4 ≤ ni < 7 we may assume n/ni ≥ 3, and let α = (−1, 1). Thus there exists

α ∈ Aut(Zn) ∩ Aut(Γ) but not in hιni.

Now observe that ιn has at most two fxed points, and so has at most (n − 2)/2 + 2 

orbits. Let α ∈ Aut(Zn) be such that α 6∈ hιni. Observe that we may divide the orbits of
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hιn, αi into three types: singleton orbits, orbits of length 2, and orbits of length greater than

2. As hιni has at most 2 singleton orbits, hιn, αi has at most two singleton orbits, namely

0 and n/2. If x =6 0, n/2, then x is contained in an orbit of hιni of length 2. If such an x 

is contained in an orbit of hιn, αi of length 2, then setting α = ā, a ∈ Z∗ 
n, we have that

{x, −x} = {ax, −ax}, in which case either x = ax and x is a fxed point of α, or x = −ax 

and x is a fxed point of ιnα. If x = ax set β = α and if x = −ax, set β = ιnα. Then

hιn, αi = hιn, βi, and x is a fxed point of β. It is easy to see that the set of fxed points of

β, say H(β), forms a subgroup of Zn, and so |H(β)| ≤ n/2. Thus hιn, αi has at at most

(n/2 − 1)/2 orbits of length two, and so at most (n/2 − 1)/2 + 2 orbits of length one or

two. Every remaining orbit of hιn, αi is a union of orbits of hιni of size 2, and so every

remaining orbit of hιn, αi has length at least 4. Clearly, the number of orbits of hιn, αi is

maximized if it has 2 orbits of length 1, (n/2 − 1)/2 orbits of length 2, and the remainder

have length greater than 2. In this case, there will be at most (n/2 − 1)/4 = n/8 − 1/4 

orbits of length greater than 2. We conclude that there are at most 3n/8 + 5/4 orbits of

hιn, αi, and as S must be a union of orbits of hιn, αi not including {0}, there are at most

23n/8+1/4 such circulant graphs for each α ∈ Aut(Zn), α 6∈ hιni. As there are at most n 

(actually ϕ(n) of course) automorphisms of Zn, there are at most n · 23n/8+1/4 circulant

graphs that contain an automorphism of Zn other than ιn.

√ 
2 n · 23n/8+1/2We have shown that there are at most n · 23n/8+1/4 + log2 < 2(n + 

log22 n)2
3n/8 circulant graphs of order n that are not in Small(n). As there are 2(n−2)/2+1 = 

2n/2 circulant graphs of order n if n is even and 2(n−1)/2 circulant graphs of order n if n is

odd,
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√ 
|Small(n)| 2(n + log22 n)2

3n/8 
lim ≥ 1 − lim = 1. 

2(n−1)/2n→∞ |ACG(n)| n→∞ 

The above theorem clearly shows that almost all circulant graphs are normal. In 2010,

the second author proposed the following conjecture for Cayley (di)graphs (not necessarily

circulant) whose automorphism group is not as small as possible [7, Conjecture 1].

Conjecture 5

Almost every Cayley (di)graph whose automorphism group is not as small as possible is a

normal Cayley (di)graph.

It is diffcult to determine the automorphism group of a (di)graph, so the main way to

obtain examples of vertex-transitive graphs is to construct them. An obvious construction

is that of a Cayley (di)graph, and the conjecture of Imrich, Lovász, Babai, and Godsil

says that when performing this construction, additional automorphisms are almost never

obtained. The obvious way of constructing a Cayley (di)graph of G that does not have

automorphism group as small as possible is to choose an automorphism α of G and make

the connection set a union of orbits of α. The above conjecture in some sense says that

this construction almost never yields additional automorphisms other than the ones given

by the construction.

Throughout the remainder of this dissertation, all circulant digraphs of order n whose

automorphism groups are of deleted wreath, and strictly deleted wreath types will be de-

noted by DW(n), and SDW(n) respectively. The corresponding set of all graphs whose

automorphism groups are of deleted wreath type will be denoted by DWG(n). If we wish
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to consider a subset of one of these sets with a restriction on m, we indicate this in a

subscript, as for example DW(n)m≥4. Also, the sets of all digraphs that are circulants,

DRR circulants, normal circulants, and non-normal circulants of order n will be denoted

as ACD(n), DRR(n), Nor(n) and NonNor(n), respectively. The corresponding sets of all

graphs that are circulants, normal circulants, and nonnormal circulants, will be denoted by

ACG(n), NorG(n), and NonNorG(n), respectively.

The following lemma will prove useful in determining how many circulant (di)graphs

are not normal.

Lemma 6

A circulant digraph Γ of composite order n that is a (K, H)-generalized wreath circulant

digraph is not normal if n is not divisible by 4.

Proof: We will show that if a (K, H)-generalized wreath circulant is normal, then 4 | n. We

may assume without loss of generality that K is of prime order p. Let B be the complete

block system of hρi formed by the orbits of hρmi, where |H| = n/m. Then ρn/p|B ∈ 

Aut(Γ) for every B ∈ B. Set G = hρ, ρn/p|B : B ∈ Bi, and let C be the complete block

system of G formed by the orbits of hρn/pi, so that fixG(C) = hρn/p|B : B ∈ Bi, and has

order pn/m. Then C is also a complete block system of N(n), where N(n) = {x → ax+b : 

a1 a2 ara ∈ Z∗ , b ∈ Zn}. Let n = p p · · · p be the prime power decomposition of n. Asn 1 2 r 

N(n) = Πr
i=1N(p ai i ), we see that a Sylow p-subgroup of fixN(n)(C) is a Sylow p-subgroup

× N(pa), where p = pj and a = aj for some j. Let E be the complete blockof 1Sn/pa 

system of N(pa) consisting of blocks of size p. Then a Sylow p-subgroup of fixN(pa)(E) 

has order at most p2 as a Sylow p-subgroup of N(pa) is metacyclic. If Γ ∈ Nor(n), then
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hρi/G since G ≤ Aut(Γ), so G ≤ N(n). This implies that a Sylow p-subgroup of fixG(C) 

2 n/m 2has order at most p , and so p ≤ p . Since H > 1 we have n > m, so this forces

n = 2m, and B consists of 2 blocks. Finally, let δ = ρn/p|B , where B ∈ B with 0 ∈ B. If

Γ ∈ Nor(n), then γ = ρ−1δ−1ρδ ∈ hρi, and straightforward computations will show that

γ(i) = i + n/p if i is even, while γ(i) = i − n/p if i is odd. As γ ∈ hρi, we must have that

n/p ≡ −n/p (mod n), and so 2n/p ≡ 0 (mod n). This then implies that p = 2 and

so 4|n as required.

We frst show that Conjecture 5 is false for circulant digraphs of order n, where n ≡ 2 

(mod 4) has a fxed number of distinct prime factors.

Theorem 6

e1 e2Let n = 2p1 p2 · · · per 
r , where each pi is a distinct odd prime and r is fxed. Then

|NonNor(n)| 1 
lim ≥ . (2.4)

n→∞,r fixed |Nor(n)\DRR(n)| 2(2r − 1) 

Proof: By Lemma 6, we have |NonNor(n)| ≥ |GW(n)|. We claim that |GW(n)| ≥ 

2n/2+n/(2p)−1 , where 1 =6 p is the smallest divisor of n/2. To see this, we construct this

number of distinct generalized wreath circulant digraphs of order n, as follows: B will be

the block system formed by the orbits (cosets) of hn/2i, and C the block system formed

by the orbits (cosets) of hpi. Since there are n/p elements in each block of C, there are

2n/p−1 choices for S ∩ C0, where C0 is the block of C that contains 0. Since there are

n/2 − n/(2p) orbits (cosets) of hn/2i that are not in C0, there are 2n/2−n/(2p) choices for

S − C0 that create a generalized circulant digraph with this choice of B and C. These
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2n/p+n/2−n/(2p)−1 2n/2+n/(2p)−1= generalized circulant digraphs are all distinct (though

not necessarily nonisomorphic), so |GW(n)| ≥ 2n/2+n/(2p)−1 as claimed.

Let S(n) be the set of all circulant digraphs of order n whose automorphism group

contains a nontrivial automorphism of Zn. Clearly then |S(n)| ≥ |Nor(n)\DRR(n)|. We

now seek an upper bound on |S(n)|. Observe that for any circulant digraph Γ, if there

exists an nontrivial automorphism α ∈ Aut(Γ) ∩ Aut(Zn), then we may choose such an α 

of prime order.

Let 1 =6 a ∈ Z∗ 
n have prime order `. We frst consider the case that ā has a fxed point

i 6= 0. Then ai ≡ i (mod n), so (a − 1)i ≡ 0 (mod n). Since a =6 1, we must have

gcd(i, n) = m > 1, which clearly implies i ∈ hmi. Since a ∈ Z∗ 
n, a = sn/m + 1 for

some 0 < s < m must be a unit, i.e., gcd(n, sn/m + 1) = 1. Note that m > 2, since if

m = 2 then s = 1, but gcd(n, n/2 + 1) ≥ 2 since n/2 is odd. Now, ā fxes n/m points

{0, m, · · · , (n/m − 1)m}, and since |ā| = ` is prime, every non-singleton orbit of ā has

length `. So ā has n(1 − 1/m)/` orbits of length `, and n/m + n/` − n/(m`) orbits in

total. We will separate the cases ` = 2 and ` = 3 to make the proof easier. If ` = 2 

then 1/m + 1/` − 1/(m`) = 1/2 + 1/(2m) ≤ (p + 1)/(2p) since m ≥ p (p is still

the smallest nontrivial divisor of n/2), so if |ā| = 2, then α has at most (p + 1)n/(2p) 

orbits. If ` = 3 then 1/m + 1/` − 1/(m`) = 1/3 + 2/(3m) ≤ (p + 2)/(3p) since

m ≥ p, so if |ā| = 3, then ā has at most (p + 2)n/(3p) orbits. Finally, if ` ≥ 5 then

1/m + 1/` − 1/(m`) ≤ (m + 4)/(5m) ≤ 7/15 since m ≥ 3, so if |ā| ≥ 5 then ā has at

most 7n/15 orbits.
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Finally, notice that if ā fxes only 0, it will have 1 fxed point and n − 1 points that are

not fxed. If |ā| = 2 then its orbits are all of length 1 or 2, and since n − 1 is odd, it cannot

be partitioned into orbits of length 2. So an element of order 2 must have some fxed point

other than 0. Hence if ā fxes only 0, it must have order at least 3, so each non-singleton

orbit must have length at least 3. Hence ā has at most b(n − 1)/3c < n/3 orbits other than

{0}.

We now split the set of all elements of Z∗ 
n that have prime order into disjoint subsets: U 

(consisting of all elements of order 2 that have fxed points); V (consisting of all elements

of order 3 that have fxed points); W (consisting of all elements of order 5 or greater that

have fxed points) and X (consisting of all elements that have no fxed points other than 0).

Notice that Zn 
∗ = Z∗ × . . . × Z p 

∗ and each Z∗ is cyclic, so contains a unique element ofe1 er eip r p1 i 

order 2. Any element of order 2 in Z∗ 
n must be a product of elements of order 1 or 2 from

the Z∗ 
pi 

, at least one of which must have order 2. So there are 2r − 1 elements of order 2 in

Z∗ 
n. Also, there are at most n elements of any other order in Z∗ 

n. Thus,

X X X X 
2(p+1)n/(2p) 2(p+2)n/(3p) 27n/15 2n/3|S(n)| ≤ + + + 

ā∈U ā∈V ā∈W ā∈X 

≤ (2r − 1)2(p+1)n/(2p) + n(2(p+2)n/(3p) + 27n/15 + 2n/3). 

Now,

2n/2+n/(2p)−1|NonNor(n)| 1 
lim ≥ lim = . 

n→∞,r fixed |Nor(n)\DRR(n)| n→∞,r fixed |S(n)| 2(2r − 1) 

A safe prime is a prime number p = 2q + 1, where q is also prime.
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We now show that it is not true that almost all circulant graphs of order p or p2, where p 

is a safe prime, or of order 3k, are normal. This shows that [7, Theorem 3.5] is not correct.

We provide a correct statement of [7, Theorem 3.5] as well as point out explicitly where

“gaps” occur in the proof. As a consequence, much of the following result is essentially the

same as the proof of [7, Theorem 3.5]. The entire argument is included for completeness.

Theorem 7

Let X = {p, p2 : p is a safe prime} ∪ {3k : k ∈ N}, T the set of all powers of odd primes,

and R = T \ X . Then

|NonNorG(n)|
lim = 0. (2.5)

n∈R,n→∞ |ACG(n) \ Small(n)| 

Additionally, if n ∈ X , then more than one ffth of all elements of ACG(n) \ Small(n) are

in NonNorG(n).

Proof: Let n = pk ∈ T , where p is an odd prime, Γ = Γ(Zn, S).

First suppose that k = 1. The statement about X is vacuously true for p = 3 and

easy to verify for p = 5, so we assume p > 5. If p = 2q + 1 is a safe prime, then Z∗ 
p is

cyclic of order 2q ≥ 6, so every element of Z∗ 
p has order 2, q, or 2q. Since ιp ∈ Aut(Γ), if

Γ ∈/ Small(p) is normal then ā ∈ Aut(Γ) for a ∈ Z∗ 
p of order q or 2q. Since q > 2, the orbit

of length q that contains 1 in Z∗ 
p does not contain −1, so the orbits of hα, ιpi have length

¯1 (the orbit of 0) and 2q = p − 1 (everything else). So Γ = Kp or Kp and Aut(Γ) = Sp 

contradicting Γ being normal. Hence ACG(p) \ Small(p) ⊆ NonNorG(p). (The proof

of [7, Theorem 3.5] overlooks this case.)

Now if p is not a safe prime, then we can write (p−1)/2 = rs where 1 < r ≤ s < (p− 

1)/2. As Z∗ 
p is cyclic of order p − 1, there is a ∈ Z∗ 

p with |a| = 2r. Then ā has s + 1 orbits
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(the cosets of hai in Z∗ 
p, together with 0). Since |a| is even, −1 ∈ hai. If S is a union of

these orbits, Γ is a graph, and since |a| > 2, Γ ∈/ Small(p). Hence |ACG(p) \ Small(p)| ≥ 
√ 

(p−1)/22s ≥ 2 . Meanwhile, if Aut(Γ) <6 AGL(1, p) then Aut(Γ) = Sp by [1], and
√ 

¯Γ = Kp or Kp. So |NonNor(p)| = 2 and clearly 2/(2 (p−1)/2) → 0 as p → ∞.

Now let k ≥ 2. Throughout the rest of this proof, let a = pk−1 + 1. We show that

ā ∈ Aut(Γ) if and only if Γ ∈ NonNor(n). Using the binomial theorem, it is easy to see

that |ā| = p. Furthermore, ā fxes every element of hpi, and fxes setwise every coset of

hpk−1i. Since |ā| = p and ā does not fx any element of any coset of hpk−1i that is not in hpi,

the orbits of ā on each coset of hpk−1i that is not in hpi have length p. Thus if ā ∈ Aut(Γ),

then Γ is a (hpk−1i, hpi)-generalized wreath circulant digraph, and in fact by Lemma 6,

Γ ∈ NonNor(n). Conversely, if Γ ∈ NonNor(n), then by Theorem 4, Aut(Γ) either falls

into category (1) with a single factor in the direct product (since n = pk does not permit

coprime factors) and since Γ ∈ NonNor(n), Γ is complete (or empty), or category (2) so

¯by Corollary 1, Γ ∈ GW(n). Since Kn, Kn ∈ GW(n), Γ ∈ GW(n). It is straightforward

to verify using the defnition of a generalized wreath circulant, that ā ∈ Aut(Γ).

Now suppose p = 3. We have Z∗ 
3k is cyclic of order 2 · 3k−1 . For Γ ∈ Nor(3k) \ 

Small(3k), there exists −1 =6 b ∈ Z
3 
∗ 
k with b̄ ∈ Aut(Γ). If |b| is divisible by 3, then

since Z∗ 
3k is cyclic and a generates the unique subgroup of order 3, we have ā ∈ hb̄i, so

ā ∈ Aut(Γ). Hence Γ ∈ NonNor(3k). But the only divisor of 2 · 3k−1 not divisible by

3 is 2, and so b = −1. This shows that if Γ ∈ NorG(3k) then Γ ∈ Small(3k). Thus

ACG(3k) \ Small(3k) ⊆ NonNorG(3k).
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Now we calculate |NonNorG(n)|. As noted above, if Γ ∈ NonNorG(n) then ā ∈ 

Aut(Γ), and the orbits of ā all have length 1 or length p. Now since multiplication is

k k kcommutative, ι permutes the orbits of hāi, and since |ā| = p is odd, ι 6∈ hāi, so ι willp p p 

exchange pairs of orbits of hāi, except the orbit {0}. Consequently, h¯ k i will have onea, ιp 

orbit of length 1 ({0}); (pk−1 − 1)/2 orbits of length 2 (whose union is hpi \ {0}); and

(pk − pk−1)/(2p) orbits of length 2p (everything else). So h¯ pk i has exactly pk−1 − (1 + a, ι 

pk−2)/2 orbits other than {0}. Since we have shown that Γ ∈ NonNor(pk) if and only if

k−1−(1+pk−2)/2h¯ k i ≤ Aut(Γ), |NonNor(pk)| = 2p .a, ιp 

Now we fnd a lower bound for |ACG(n) \ Small(n)| when n ∈ R and k > 2. Since p 

is an odd prime, Z∗ 
p is cyclic of order (p − 1)pk−1 . Let b ∈ Z∗ 

p have order p − 1. Note thatk k 

ιpk ∈ hb̄i since b has even order, and b̄ =6 ιpk since p > 3 (the proof of [7, Theorem 3.5]

koverlooks the fact that b̄ = ιp when p = 3). Clearly, b̄ fxes 0, and since the order of b̄ is

p−1, every other orbit of b̄ has length at most p−1, so b̄ has at least (pk −1)/(p−1) orbits

kother than {0}. Thus there are at least 2(pk−1)/(p−1) circulant graphs of order p whose

automorphism group contains b̄, and |ACG(pk) \ Small(pk)| ≥ 21+(pk −1)/(p−1), p > 3.

Note that as k ≥ 2, (pk − 1)/(p − 1) =6 1. Then

k−1−(1+pk−2)/2|NonNorG(pk)| 2p 1 
lim ≤ lim = lim .Pk−3 

pk→∞ |ACG(pk) \ Small(pk)| pk→∞ 2(pk−1)/(p−1) pk→∞ 2(3p
k−2+1)/2+ i=0 p

i 

Thus as k ≥ 3, the result follows. (The proof of [7, Theorem 3.5] concludes the above

limit is 1 in all cases – hence the gap in that theorem when k = 2.)

For the remainder of the proof we suppose that k = 2 and p > 3. Substituting k = 2 

into our formula for |NonNorG(n)|, we conclude that |NonNorG(p2)| = 2p−1 .
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If p = 2q + 1 is a safe prime, q prime, then hāi is the unique subgroup of order p 

in Z∗ 
p2 , so any subgroup of Z∗ 

p2 that contains −1 but does not contain a = p + 1, must

have even order not a multiple of p. Since Z∗ 
p2 is cyclic of order p(p − 1) = 2pq, the

group C of order 2q is the only such subgroup. Then if Γ ∈ Nor(p2) \ Small(p2), then

Aut(Γ) = C · (Zp2 )L. Now, C fxes 0 and since C has order 2q and is cyclic, the other

orbits of C all have length precisely 2q (it is not hard to show that the only elements of

Z∗ 
p2 that fx anything but 0 are 1 and the elements of order p; this forces the orbit lengths

of C to be the order of C), so there are (p2 − 1)/2q = 1 + p orbits of C other than

{0}, and hence fewer than 21+p graphs in Nor(p2) are not in Small(p2) (the “fewer than”

is due to the fact that some of these graphs are not normal, for example Kp2 ). Hence

NonNor(p2)/(ACG(p2) \ Small(p2)) ≥ 2p−1/(2p−1 + 2p+1) = 1/5.

Suppose now that p is not a safe prime. Then there exists b ∈ Z∗ 
p of order p − 1. Since2 

p is not a safe prime, there exists 1 < r ≤ s < (p−1)/2 such that rs = (p−1)/2. As every

non-singleton orbit of hb̄i has length p − 1 (as shown for the orbits of C in the preceding

paragraph), every nonsingleton orbit of hb̄si has length (p − 1)/s. Then b̄s has s(p + 1) 

orbits not including {0} and since |bs| = 2r > 2, b̄s =6 ιp2 . We conclude that there are

at least 2s(p+1) graphs of order p2 in ACG(p2) \ Small(p2). As there are 2p−1 non-normalp
circulant graphs of order p2 and s ≥ (p − 1)/2,

|NonNorG(p2)| 2p−1 
lim ≤ lim = 0. 

2s(p+1)p2→∞ |ACG(p2) \ Small(p2)| p→∞ 
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We now verify that Conjecture 5 does hold for circulant digraphs of order n, and also

for circulant graphs of order n, for large families of integers. Note that, using Corollaries

1 and 4, we have for any n, |NonNor(n)| ≤ |DW(n)m≥4| + |GW(n)|.

Theorem 8

Let n be any odd integer such that 9 - n. Then almost all circulant digraphs of order n that

are not DRRs are normal circulant digraphs.

Proof: A lower bound for |ACD(n) \ DRR(n)| is the number of circulant graphs of order

n, which is 2(n−1)/2 . We frst fnd an upper bound for |DW(n)m≥4|. As n is odd, we have

2n/m ≤ 2n/5. Also, n is an upper bound on the number of nontrivial divisors of n. ByP 
22n/m ≤ n · 22n/5Corollary 5, |DW(n)m≥4| ≤ m|n,m≥4 .

By Corollary 2, we have |GW(n)| ≤ log22 n · 2n/p+n/q−n/(pq)−1, where q is the smallest

prime divisor of n and p is the smallest prime divisor of n/q. Since n is odd we have q ≥ 3,

and since 9 - n we have p ≥ 5. If q ≥ 5 then 1/p + 1/q − 1/(pq) < 1/p + 1/q ≤ 2/5,

while if q = 3 then 1/p + 1/q − 1/(pq) = 2/(3p) + 1/3 ≤ 7/15, so we always have

1/p + 1/q − 1/(pq) ≤ 7/15. Note that if 9|n then p = q = 3, and this inequality is not

true. Then

|NonNor(n)| n · 22n/5 + log22 n · 27n/15 
lim ≤ lim = 0. 

2(n−1)/2n→∞ |ACD(n) \ DRR(n)| n→∞ 
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Theorem 9

Let n be any odd integer such that 9 - n, and n is not a safe prime or the square of a safe

prime. Then almost all circulant graphs of order n that do not have automorphism group

as small as possible are normal circulant graphs.

Proof: We need to show that

|NonNorG(n)|
lim = 0, 

n→∞,n6∈T |ACG(n) \ Small(n)| 

where T = {p, p2 : p is a safe prime} ∪ {n : 9 | n} ∪ {n : 2 | n}. This is true if n 

is a prime power by Theorem 7, so we assume there is a proper divisor m of n such that

gcd(m, n/m) = 1. We also assume that n/m > m, and regard Zn as Zn/m × Zm in the

natural way.

We begin by fnding a lower bound for |ACG(n) \ Small(n)|. Let Γ ∈ ACG(n) such

that ā ∈ Aut(Γ) where a = (1, −1). Obviously ā ∈/ hρ, ιni, so Γ 6∈ Small(n). It is

straightforward to check that the orbits of h¯ i ≤ Aut(Γ) are {(0, 0)}, {(i, 0), (−i, 0)},a, ιn 

{(0, j), (0, −j)}, and {(i, j), (−i, j), (i, −j), (−i, −j)}, where i ∈ Zn/m \ {0} and j ∈ 

Zm \ {0}. We conclude that h¯ i hasa, ιn 

n/m − 1 m − 1 n − n/m − m + 1 n + n/m + m + 1 n 
1 + + + = > 

2 2 4 4 4 

orbits. Hence |ACG(n)\Small(n)| ≥ 2n/4 . Recall (by Corollaries 1 and 4) |NonNorG(n)|P 
2n/m+1≤ |DWG(n)m≥4| + |GWG(n)|. By Corollary 5, |DWG(n)m≥4| ≤ m|n,m≥4 .P 

2n/m+1 ≤ n2n/5+1Since n is odd, m is odd, so m ≥ 5, so n/m ≤ n/5, and . Bym|n,m≥4 

Corollary 3, |GWG(n)| ≤ (log22 n)2
n(p+q−1)/(2pq)+1/2 , where p is the smallest divisor of n 
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and q is the smallest divisor of n/p. As in the proof of Theorem 8, it is straightforward to

show that since n is odd and not divisible by 9, (p + q − 1)/(pq) ≤ 7/15. Hence

|NonNorG(n)| n2n/5+1 + (log22 n)2
7n/30+1/2 

lim ≤ lim = 0. 
n→∞,n6∈S |ACG(n) \ Small(n)| n→∞,n6∈S 2n/4 

2.4 Non-normal Circulants

By Theorem 4, a circulant (di)graph that is not normal is generalized wreath or deleted

wreath type. For each of these classes, we will now consider whether or not almost all non-

normal circulant (di)graphs lie within this class. The short answer is “No” and is given by

the following result.

Theorem 10

Let Γ be a circulant digraph of order pq, where p and q are primes and p, q ≥ 5. Then

1. if q 6= p then

2p+q−1 − 2|GW(pq)| 
= ,

|SDW(pq)| 22p−1 + 22q−1 − 2p − 2q − 2 

2. if p is fxed, then limq→∞ |GW(pq)|/|SDW(pq)| = 0,

3. if q = p + c for some constant c ≥ 2, then limp→∞, |GW(pq)|/|SDW(pq)| = 

2c/(1 + 22c) 

4. if q = p then all non-normal circulants are generalized wreath products.

Proof: Note that for Γ ∈ SDW(pq) we have m ∈ {p, q} so m ≥ 5 and Γ ∈ NonNor(n).
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(1): We require exact counts of |GW(pq)| and of |SDW(pq)|. First, when n = pq a

generalized wreath product will actually be a wreath product. For a wreath product digraph

with p blocks of size q, there are q−1 possible elements of S ∩hpi, and p−1 choices for the

cosets of hpi to be in S. Hence there are 2p+q−2 wreath product circulant digraphs with p 

blocks of size q. Similarly, there are 2q+p−2 wreath product circulant digraphs with q blocks

of size p. The only digraphs that have both of these properties are Kpq and its complement,

each of which has been counted twice, so |GW(pq)| = 2 · 2p+q−2 − 2 = 2p+q−1 − 2.

Now we count strictly deleted wreath products. As mentioned in the frst sentence of

the proof of Corollary 5, there are precisely 2 · 4p−1 digraphs whose automorphism group

contains K × Sq, and 2 · 4q−1 digraphs whose automorphism group contains K 0 × Sp.

Of the frst set, 2 · 2p−1 are wreath products (those in which S ∩ (rq + hpi) is chosen

from {∅, rq + hpi}, for every 1 ≤ r ≤ p − 1). Similarly, of the second set, 2 · 2q−1 are

wreath products (those in which S ∩ (rp + hqi) is chosen from {∅, rp + hqi}, for every

1 ≤ r ≤ q − 1). Finally, notice that if a digraph is counted in both the frst and second sets

then its automorphism group must contain Sq × Sp. Consequently, the number of elements

in S ∩ (rp + hqi) is constant over r, as is the number of elements in S ∩ (rq + hpi). Since

we have already eliminated wreath products from our count, the frst number must be 1 

or p − 1, and the second must be 1 or q − 1. Furthermore, if the frst number is 1 then

we have p ∈ S but p + q 6∈ S, so the second cannot be q − 1 (and the same holds if

we exchange p and q), so there are only 2 choices for such digraphs: that in which all

of the values are 1, which is Kp�Kq (where � represents the cartesian product), and its
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complement, in which all of the values are p − 1 or q − 1. Summing up, we see that

|SDW(pq)| = 2 · 4p−1 + 2 · 4q−1 − 2 · 2p−1 − 2 · 2q−1 − 2. The result follows.

(2): This follows from (1) by letting q tend to infnity.

(3): Substituting q = p + c into (1) and letting p tend to infnity, we have

2c−1 − 21−2p|GW(pq)|
lim = lim . 
p→∞ |SDW(pq)| p→∞ 2−1 + 22c−1 − 2−p − 2c−p − 21−2p 

Deleting the terms that tend to zero, we are left with

2c−1 2c 
lim = , 
p→∞ 2−1 + 22c−1 1 + 22c 

as claimed.

(4): By Theorem 4, if Γ ∈ NonNor(p2) then Aut(Γ) must either fall into category (1)

or category (2). If it falls into category (1) then since n = p2 and the ni are coprime there

can only be a single factor in the direct product, and since Γ ∈ NonNor(n), the factor must

be Sp2 , so Γ ∈ {Kp2 , K̄ 
p2 } ⊆ GW(p2). If it falls into category (2) then by Corollary 1,

Γ ∈ GW(p2).

Notice that if we choose a constant c ≥ 2 and defne Tc = {pq : q = p + c} where

p and q are prime, then as a consequence of Theorem 10(3), since 0 < 2c/(1 + 22c) < 

∞, neither generalized wreath circulant digraphs nor strictly deleted circulant digraphs

dominates in Tc. A very recent article [39] announced that Zhang proved that the union of

the frst 70, 000, 000 Tc is infnite, and hence that there must be an infnite set amongst them.

Essentially, we have shown that if n = pq is a product of two primes, then generalized

wreath products dominate amongst circulant digraphs of order n if p = q (in fact there

40



are no others); neither family dominates if p and q are “close” to each other, and strictly

deleted wreath products dominate if one prime is much larger than the other.

We now give two infnite sets N1 and N2 of integers, each integer in both sets being

divisible by three distinct primes. In N1, almost all non-normal circulant digraphs are

of strictly deleted wreath type (and N1 includes all of the square-free integers that are

not divisible by 2 or 3). Meanwhile in N2, almost all non-normal circulant digraphs are

generalized wreath circulant digraphs.

Theorem 11

Let N1 = {n ∈ N| n is the product of at least three primes and q2 - n where q ≥ 5 is the

smallest prime divisor of n}. Then,

|SDW(n)|
lim = 1. (2.6)

n∈N1,n→∞ |NonNor(n)| 

Proof: By Corollaries 1 and 4, NonNor(n) ⊆ GW(n)∪SDW(n)m≥4, and by the defnition

of SDW(n), these sets are disjoint. Since q ≥ 5 we also have m ≥ 5 for any proper divisor

m of n, so SDW(n) = SDW(n)m≥4. Hence |NonNor(n)| = |GW(n)| + |SDW(n)|. We

|GW(n)|will show that limn→∞ = 0, which implies the result.|NonNor(n)| 

The frst sentence of the proof of Corollary 5 notes that for a proper divisor m of n,

the number of digraphs Γ with H × Sm ≤ Aut(Γ) for some 2-closed group H ≤ Sn/m 

is precisely 2 · 4n/m−1 . The maximum number of times that a specifc circulant digraphX 
2 · 4n/m−1Γ can be counted in , is the number of divisors of n, d(n) ≤ n. Thus

m|nX X 
|DW(n)| ≥ 2 · 4n/m−1/n, and so by Lemma 5, |NonNor(n)| ≥ 2 · 4n/m−1/n. By

m|n m|n 
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Corollary 2, we have that |GW(n)| ≤ (log22 n)2
n/p+n/q−n/(pq)−1 , where q is the smallest

prime divisor of n and p is the smallest prime divisor of n/q. Then

|GW(n)| (log22 n)2
n/p+n/q−n/(pq)−1 

lim ≤ lim P 
n→∞ |NonNor(n)| n→∞ 

m|n 2 · 4n/m−1/n 

2 n)2
n/(q+2)+n/q(log2 

< lim 
4 · 4n/q−1/nn→∞ 

n log22 n 
= lim . 

22n/(q(q+2))n→∞ 

2/3 2Since q(q + 2) < n as q is the smallest prime factor of n, q - n, and n has at least 3

1/3 |GW(n)|prime factors, we have n/(q(q + 2)) > n , so limn→∞ = 0.|NonNor(n)| 

Theorem 12

For any natural number n, let pn be the smallest prime divisor of n, and qn the smallest

prime divisor of n such that qn =6 pn and q2 - n. Let N2 = {n ∈ N : pn ≥ 5, p2 | n, n hasn n 

at least 3 distinct prime divisors, and qn > 2pn}. Then

|GW(n)|
lim = 1. (2.7)

n∈N2,n→∞ |NonNor(n)| 

Proof: Let p = pn. First notice that there are 2p−1+n/p−1 circulant digraphs that are wreath

products Γ1 o Γ2 where Γ1 has order n/p and Γ2 has order p: 2p−1 choices for S ∩ hn/pi 

and 2n/p−1 choices for which cosets of hn/pi are in S. All of these digraphs are distinct,

so since by Lemma 6 these are all non-normal, we have |NonNor(n)| ≥ 2p+n/p−2 .

By Corollary 5, for a proper divisor m ≥ pn > 4 of n, the number of digraphs of

deleted wreath type is at most 4n/m. Thus |DW(n)| ≤ 
X 

4n/m. Let
Qt p ai 

i=1 
m|n,gcd(m,n/m=1) 

be the prime decomposition of n, and let p ak = min {p ai }. Clearly 4n/(pk
ak ) is the largestk i

1≤i≤t 

term in this sum, and there are at most d(n) (the number of divisors of n) terms in this sum.

k )Thus |DW(n)| ≤ d(n) · 4n/(p ak .
42
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Observe that if ak ≥ 2, then p ak 
k ≥ 5p > 2p since p ≥ 5 is the smallest divisor of n.

Also, if ak = 1, then by hypothesis pk ≥ qn > 2p. Hence p ak 
k − 2p ≥ 1 since both are

integers. Now,

|DW(n)| d(n) · 4n/(pk 
ak ) 

lim ≤ lim 
2p+n/p−2n→∞ |NonNor(n)| n→∞ 

4n 
< lim ak ak n→∞ 2p+n·(p −2p)/(pp )k k 

4n ≤ lim ak . n→∞ 2p+n/(pp )k 

Since n has at least 3 distinct prime divisors, there is some j such that pj =6 p, pk. Now

aj ak aj ak ajp > p by our choice of k, and p ≥ pj > p, so since n/(pp ) ≥ p , we havej k j k j 

ak ak ak 2/3 ak 1/3(n/(pp ))2 ≥ pp . Hence pp ≤ n , so n/(pp ) ≥ n . So the above limit is at mostk k k k 

4n 
lim = 0.

1/3 
n→∞ 2p+n 
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