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This thesis presents a method for integrating heterogeneous gene/protein datasets at
the functional level based on Gene Ontology term similarity.

Often biologists want to integrate heterogeneous data sets obtain from different biolog-
ical samples. A major challenge in this process is how to link the heterogeneous datasets.
Currently, the most common approach is to link them through common reference database
identifiers which tend to result in small number of matching identifiers. This is due to
lack of standard accession schemes. Due to this problem, biologists may not recognize the
underlying biological phenomena revealed by a combination of the data but by each data
set individually.

We discuss an approach for integrating heterogeneous datasets by computing the sim-
ilarity among them based on the similarity of their GO annotations. Then we group the

genes and/or proteins with similar annotations by applying a hierarchical clustering al-



gorithm. The results demonstrate a more comprehensive understanding of the biological

processes involved.

Key words: Semantic Similarity, Similarity Matrix, Gene Ontology, Hierarchical Clus-
tering, Functional Annotations, Gene Expression, Protein Expression, Proteomics, Tran-
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CHAPTER 1

INTRODUCTION

Computational biology is an interdisciplinary field that applies the techniques of math-
ematics, statistics and computer science to solve biological problems. A major focus of
both biology and computational biology over the past decade has been the development
of different methods for measuring changes in gene expression under different conditions.
Data obtained from different methods often yield different, but complementary informa-
tion. The goal of this thesis is to present a new approach for integrating information from
different techniques and/or experiments about gene and protein expression in a meaningful
way.

The central dogma of molecular biology explains the formation of major molecules in
a living organisms: DNA, RNA and protein. DNA, the genetic information inherited from
generation to generation, is a chain of nucleic acids from a four letter alphabet [16]. Small
sections of the DNA strands (substrings from a computer science point of view) contain
information for making particular proteins and are known as genes. Proteins are macro-
molecules consisting amino acids from a 20 letter alphabet. Proteins perform metabolic
structural, defense and regulatory functions in and out of the cell. The central dogma
describes how DNA is replicated and converted to messenger RNA (mRNA) and protein
through transcription and translation. During replication, double stranded DNA forms
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duplicate copies of itself. During transcription, DNA segments containing genes are tran-
scribed into single stranded RNA (messenger RNA) which also has a four letter alphabet.
RNA strands are then translated into amino acids and form the proteins.

All cells in the body of an organism contain the same set of genes, but not all of these
genes are transcribed and translated into proteins in every cell. A gene is considered to be
expressed when it is actively involved in transcription to produce mRNA, the first step of
protein production. A protein is considered to be expressed when the mRNA is translated.
Therefore, we can assay gene expression at either the mRNA level or the protein level as
shown in the Figure 1.1. Gene expression microarrays are a popular platform for measur-
ing mRNA levels across different biological samples [11]. Microarray technology allows
scientists to have a view of the expression of thousands of genes simultaneously [4]. These
types of studies help scientists identify differentially expressed genes under different con-
ditions and pave the way for identification of response to stimuli, transcriptional pathways,
cell differentiation, disease markers and drug targets in the long term [38].

Our goal is to integrate multiple datasets measuring gene and/or protein expression
to gain an overall picture of the active biological processes under different conditions.
The types of datasets that we want to integrate have several characteristics that makes
this process challenging. Figure 1.2 shows the most common approach of integrating
proteomic and transcriptional data.

A similar approach is used for integrating expression data from different technologies
for the same data type (transcriptome or proteome). The two types of data are linked using

a common reference database such as UniGene [38]. But the process of linking mRNA and
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proteomic data through identifiers often results in a very small number of matches even in
very controlled experiments [38]. There are many ambiguities involved in the process of
connecting DNA probes to the target mRNA. First, the central dogma is not as simple as
shown in Figure 1.1. Apart from replication, transcription and translation, there are many
complex processes such as post transcription regulatory mechanisms and post translation
mechanisms that take place as shown in Figure 1.3. Second, proteomics techniques and
transcriptomic techniques are different and have different biases, sources of noise etc.
There are complications that make the matching process difficult, even when dealing with
a single type of data such as microarray data. When we measure gene expression using
a microarray, there is a possibility of mapping multiple probes to the same gene or the
same probe to different products of the same gene [38]. The situation is even worse for
the heterogeneous datasets we are considering. First, we consider multiple genotypes
of the same species (Zea mays) and there is substantial variation in the gene content of
different genotypes in maize [53]. Second, plant genotypes often significantly differ in
the genes activated in response to different conditions. Third, tissues from field grown
samples where the environmental conditions are not controlled will exhibit a great deal
of variation. Fourth, in some cases, the tissues were collected from different experiments
conducted in different years. Fifth, in some cases we have measurements of expression
from different technologies for the same tissue, and it has been demonstrated that there
can be wide variations in the genes or proteins detected by the technologies. For example,
two common methods of measuring protein expression are 2-d gel electrophoresis [14]
and shotgun proteomics [37, 25]. A number of different studies have shown that the
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overlap in the proteins identified by these two methods is quite low (20-30%) even when
using exactly the same biolgoical sample [41, 9]. Therefore, matching of identifiers across
multiple data sets cannot be applied successfully in many of our experiments.

The main objective of this thesis is to develop a new method to obtain functional sim-
ilarities among heterogeneous protein/gene data sets by constructing functional similarity
matrices and applying a clustering algorithm. For each dataset, we will abstract the differ-
entially regulated genes to the functional level, and analyze the data at this level as shown
in Figure 1.4. During this process, first we assign functional annotations for heterogeneous
gene/protein data sets using available online tools. We then compute the semantic similar-
ities among these genes/proteins based on their functional annotations. Finally we adapt a
hierarchical clustering algorithm to obtain functional clusters of genes/proteins. Resulting

clusters consist of functionally similar groups of genes/proteins in heterogeneous data sets.
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CHAPTER 2

LITERATURE REVIEW

The main objective of this thesis is to develop and implement an effective method for
integrating heterogeneous gene/protein data sets at the functional level. In this chapter we
review background information about proteomics and transcriptomics, current techniques
used to integrate heterogeneous data, and the limitations of current techniques. Section
2.1 describes the most widely used technologies for measuring gene expression at the
transcriptome and proteome levels. Section 2.1.1 discusses methods for linking heteroge-
neous datasets through identifiers and the strengths and weaknesses of these approaches.
Section 2.1.2 describes methods used to correlate protein and microarray data. Because
our method is based on integrating datasets at the functional level using the Gene On-
tology (GO), Section 2.2 presents a description of the GO. The importance of functional
level mapping and available computational tools that use this approach are discussed in
section 2.3. Section 2.4 presents different semantic similarity measures which can be used

to compute similarities among GO terms and genes.

2.1 Transcriptome and proteome technology

Proteomics and transcriptomics are relatively new research tools which help biologists

understand how expressed proteins and genes change in complex biological systems.



Gene expression is currently most often analyzed using microarrays. A microarray is
a chip of an arrayed series of thousands of microscopic spots of short segments of DNA or
RNA called oligonucleotides. These oligonucleotides are designed to bind mRNA, and the
bound oligos transmit a light signal which is detected. A series of needles controlled by
robotic arms are used to deposit these oligonucleoides into the designated locations on the
microarray chip. This resulting grid of oligonucleotides as in Figure 2.1 represents nucleic
acid profiles and can be used to measure the gene expression in terms of messenger RNA
(mRNA) or DNA. Gene microarrays can also be used to examine the global changes in

mRNA throughout different biological settings [11, 27].

Figure 2.1

Example of an approximately 40,000 probe spotted oligo microarray with enlarged inset
to show detail [39]
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Two-dimensional gel-based electrophoresis (2D gel) and shotgun profiling methods
followed by mass spectrometry are widely used to identify the relative abundance of pro-
teins in complex biological samples [14]. Normally, there are two processes involved in
each of these proteomic techniques: separation of proteins in a complex protein mixture
and identification of the proteins. In a typical 2D gel-based approach, the proteins are
separated, visualized and digested into peptides and then identified by mass spectrometry
[38]. As Figure 2.2 shows, in both the 2D gel approach and shotgun approach, the protein
mixture is digested into peptides and the resulting peptides are separated using liquid chro-
motography. When the peptides elute from the chromotagraphy column, they are directly
subjected to mass spectrometry (MS/MS) for sequencing. A database approach is used to
identify the peptides based on tandem mass spectra assigned to each peptide and then used
to identify the proteins. 2D gel methods can be used to identify different protein isoforms,
and this cannot usually be done with shotgun proteomics [38]. Because of the large num-
bers of proteins that can be identified using the shotgun proteomics, this method is rapidly
gaining in popularity over 2D gels. However, both the protein identification techniques
provide complementary information about the biological samples.

It is important to be aware of the technical limitations associated with different plat-
forms for profiling gene expression. For example, one major limitation of microarray
experiments is that they can only detect genes with representative probes on the chip [11].
Mass spectrometry (MS) techniques for identifying proteins also have several limitations
including incompleteness and redundancy of protein sequence databases used for search-
ing MS spectra [38, 14]. In addition, the choice of the database and the search algorithm

11
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can be crucial to the success rates of protein identifications [51, 49, 34]. Extracting quan-
titative information for low density peptides is also a big challenge as high abundance pro-
teins are preferably detected by liquid chromatography-mass spectrometry (LC-MS) [14].
Proper selection of samples is also equally important to generate accurate results. Because
different techniques for measuring gene and protein expression have different strengths
and limitations, reseachers are interested in integrating complementary data sets to achieve

a more complete picture of the complex biological systems they are investigating.
p p p g y y gating

2.1.1 Linking heterogeneous datasets through identifiers

Once the microarray and proteomics experiments are completed, the next step is to
match the genes represented on different microarrays or match the genes with the corre-
sponding proteins identified in the proteomic datasets. Normally, commercial sources of
microarrays such as Affymetrix chips provide a list of sequences spotted in the array along
with GenBank accession number of the target RNA sequence, and brief functional annota-
tion for each probe [38, 11]. In proteomic experiments, each MS/MS spectrum is assigned
to a peptide, and the peptides are assembled to proteins using a variety of protein sequence
databases [38, 14]. The process of integrating different protein and/or transcriptomic data
sets is hindered by use of different accessioning schemes and lack of annotations. Re-
gardless of the platform, biologists have to perform some cross referencing or indexing
in order to know the corresponding protein sequence identifiers. There are several reg-
istered web sites available for cross-referenced annotations such as www.affymetrix.com

for Affymetrix array users [38]. Most typical identifiers refer to databases such as Swis-
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sProt / TTEMBL (SPTR), NCBI, ENSEMBL and UniGene. However, there are several
drawbacks accompanied with the usage of most of these identifiers. For example, al-
though SwissProt (SP) is a very popular choice for spectral database searches as it has
highly curated data, generally it does not contain the complete set of proteins for many
organisms [11]. TTEMBL (TR) is the companion database for SwissProt, which contains
computer-annotated supplements for all the nucleotide translations which are not inte-
grated into SwissProt. Although, TTEMBL provides more extensive coverage, the TR
identifiers are frequently redundant, unannotated and continuously retired and replaced by
SwissProt IDs as the proteins migrate to SP. Most of the gene and protein databases suffer
from the similar kind of problems. Although NCBI has made an attempt to standardize
and reduce the ID redundancy by creating RefSeq (protein) and NM (mRNA) accession
systems, it still suffers from some of the above problems. UniprotKB is another database
which tries to assign a unique ID for transcripts, which makes the situation worse, because
sometimes they pick their own ID [1]. UniGene (www.ncbi.nlm.nih.gov) is a well anno-
tated database which can be used as a common reference in correlating mRNA and protein
data [42]. UniGene is generated from species-specific clusters created based on nucleotide
sequence similarity [38, 11]. Recently, there are a number of tools developed which have
the ability to link the probes from Affymetrix arrays to UniGene identifiers as well as to
connect the RefSeq protein database sequences to UniGene [31, 19].

The drawback of using UniGene is whenever new members are added to the collec-
tion, all the clusters are recalculated. During this process, some members of previous

clusters might move to new clusters and sometimes old cluster IDs are completely re-
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moved [11]. This leads to a problem of having legacy data sets. Therefore it is important
to make sure all UniGene clusters are built in the same date when linking data sets using
Uniene. Ensembl (www.ensemble.org) is also an annotation database which assigns IDs
in an effective manner. Ensembl IDs are assigned to genes/proteins if they can be asso-
ciated with an assembled genome which makes them a more stable, non redundant set of
identifiers [11]. For some instances, BLAST sequence alignment is the most suitable way
to link databases. Species-specific sequences can be downloaded for the relevant sequence
identifiers. Tools such as stand-alone BLAST or utilities like BioEdit [32] can be used to
perform searches referring to one sequence as the query and the other one as the subject.
BLAST results should be interpreted in terms of percent identity, sequence coverage and

e value threshold.

2.1.2 Correlating protein and microarray data

Several methods have been developed to perform integration and comparison studies am-
ong functional proteomics and gene expression data. However, the most fundamental
question is how these different patterns of gene expressions correspond to the protein
abundance in the cellular level [11]. A significant number of correlation studies compar-
ing gene expression and protein expression are reported in the literature. For example,
the study of Gygi et al. [23] reveals the correspondence between gene expression and pro-
tein in yeast by using protein and mRNA quantitation by collecting complementary data
for 156 genes. This experiment has shown a modest positive correlation of mRNA and

protein levels. Another group of researchers, Mootha et al. [36], tried to correlate the ex-
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pression patterns of mitochondrial proteins in mammalian tissues with public microarray
data. They used a simple test for concordance assigning a positive score for similar ex-
pression patterns in tissue for corresponding protein and mRNA expression and found 426
of 569 detected genes were concordant. However, there were several criticisms raised for
this experiment including the reliability of the scoring schema. On the other hand, there is
a bias in the data since the average mRNA abundance of the detectable proteins was found
to be nearly five-fold higher than for other mitochondrial genes. This suggests that only
high abundance gene products strongly correlate [36]. Griffin et al. [22] tried to determine
whether the changes in expression correlate at the protein and transcript levels between
two yeast populations grown in two different carbon sources. They collected complemen-
tary protein and mRNA abundance data for 245 genes during the experiment. Although
the genes linked to carbon metabolism showed some changes in abundance, there were no
relative changes in the protein levels or mRNA levels in similar magnitude.

Researchers have identified a number of reasons for the lack of a direct correlation be-
tween gene expression patterns and corresponding protein levels. One problem is that gene
expression patterns measured using mRNA do not take the influence of translational and
post-translational mechanisms into account [38, 36, 23, 22, 8]. For an example, a recent
study of protein abundance in yeast carried out by Ghaemmaghami et al. [20] reveals that
many essential proteins and transcription factors are present at levels that are not readily
predicted by mRNA levels. But still there are several important factors behind comparing
transcriptome and proteome beyond the traditional correlation analysis which consider the
relative levels of protein and mRNA detected for the same gene. For example, the stud-

16



ies of Greenbaum et al. [21] revealed that there is a considerable similarity between the
transcriptome and proteome in terms of enrichment for specific structural and functional
properties. This sort of comparative analysis is immensely helpful in filling the knowledge
gap between proteomics and transcriptomics technologies. This type of knowledge will
provide biologists with knowledge needed to link gene and protein expression patterns
in different molecular pathways and to determine the suitability for using gene transcript
levels as a substitute for measuring protein activities [11]. The research we present adopts

the approach of integration at the functional level.

2.2 Gene Ontology (GO)

The most widely used method for specifying the function of gene products is the
Gene Ontology, and we use GO annotation to link heterogeneous datasets. The GO was
developed to facilitate integration of functional data into value-added databases. In 1998,
the representatives of Saccharomyces genome database, Drosophila genome database and
Mouse genome database founded the Gene Ontology (GO) Consortium and agreed jointly
to apply the same vocabulary to describe gene functions for every gene in the respec-
tive databases [29]. This project was a novel functional classification system because it
was implemented among cross-species for the first time. The members of GO consor-
tium are responsible for the design, development and implementation of publicly available
databases which consist of expertly-curated functional annotations using the GO. GO is a
hierarchical structure which is implemented as a directed acyclic graph (DAG) and con-

sists of well-defined terms and relationships. GO terms describe three attributes of genes
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and gene products: molecular function, biological process and cellular component. Mem-
bers of GO consortium ensure that the GO functional annotations consist of a controlled
vocabulary. Each annotation is associated with some kind of evidence which provides the
source of the annotation. The most common evidence code for annotations is IEA- inferred
by electronic annotation, which means that GO annotations depend on automated recog-
nition of functional motifs [6]. The GO annotations “Inferred from sequence or structural
similarities”, or ISS is mostly assigned by running BLAST searches. For all the other
evidence codes, annotations are assigned by curators using literature curation. Although
manual curation provides high quality GO annotations, it is a very time consuming task
and currently covers only a very small percentage of available annotations. An alternative
approach to obtain GO annotations is to use computational tools for text mining. Besides
the identification of annotations, these tools can locate their evidence in literature [10]. But
these interactive text mining programs result in very high error rates [43] and assignment
of GO annotations by human curators remains the “gold standard” [10, 13].

GO has become the standard method for describing function because it uses a common
vocabulary to describe the same gene functions across different species. This helps biol-
ogists overcome the difficulty of biological interpretation of large gene lists derived from
high throughput genomic and proteomic studies. Biologists can get their data annotated to
varying levels depending on the completeness of available information in GO [7]. Another
major use of GO is finding under-or over-represented GO terms associated with a dataset
in microarray analysis [17, 5]. This use of the GO has led to many arguments in the lit-
erature because these analyses are not based on the quantitative values on the microarray,
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but rather on counts of GO terms. However, ultimately, researchers use GO as a vital
tool which enables turning data into knowledge. GO annotation has become the standard
for functional annotation, and its usage is growing exponentially [7]. Computer scientists
have made significant contributions to the development of computational tools that assign

and analyze functional annotations and help to track related literature [17, 5, 10, 43, 13].

2.3 Functional level mappings

Many computational tools have been developed to facilitate interpretation of biolog-
ical data in“batch” mode [4]. Most of these tools provide the user with functional an-
notations for each gene, summarize which genes are associated with specific biological
processes, and rank these processes by over-representation analysis. Some of the tools
which address this issue include, but are not limited to, GoMiner, DAVID, EasyGO, GO-
stat, GeneTools, AgBase [4, 55, 3, 35, 12, 26]. Although these tools are useful, they lack
the ability to mine many-to-many gene-to-term relationships found in functional annota-
tion databases, as well as the ability to condense redundant contents [12]. For example,
individual genes can be associated with several biological terms, and those individual bi-
ological terms can be associated with several genes. Huang et al. [12] developed the
tool DAVID, which uses a novel agglomeration algorithm that can extract this complex
and redundant relationship by taking advantage of exploratory statistical methods. Their
method identifies groups of genes sharing the same biological terms or groups of biolog-
ical terms sharing similar genes and organizes them into biological modules. This is a

powerful method to group functionally related genes and terms into biological modules
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and has several advantages. First, it largely reduces redundant results into a manageable
size while enhancing the understandability by visualizing gene-to-gene, term-to-term and
gene-to-term relationships. Therefore investigators can quickly apply the information in
a module to their study. Second, it is much easier to relate biological modules of interest
to a study than it is to relate hundreds of individual terms. The database for annotation,
visualization and integrated discovery (DAVID) has two implemented tools. One is gene
functional classification tool, and the other one is functional annotation clustering tool, and
both provide a module centric approach for functional analysis of large gene sets. DAVID
is a user friendly, well-documented tool with an easily navigatable interface. DAVID ac-
cepts a range of different gene identifiers. After the user uploads the set of gene identifiers,
DAVID converts those identifiers into its own DAVID identifiers before further processing.
The drawback is sometimes DAVID does not have compatible identifiers for each of the
identifiers uploaded by the user. Therefore the user cannot take maximum advantage of the
functionalities implemented. DAVID displays results in a clear text and graphical formats.
The unique fuzzy heat map visualization provides a clear global view of group-to-group

relationships.

2.4 Computing the similarity of genes based on GO annotation

Researchers try to understand various aspects of relationship between gene function,
gene expression and gene annotation. Most of the genomic studies are driven based on the

assumption that functionally and biologically related genes would have similar expression
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levels and gene ontology (GO) annotation [50]. This thesis focuses on how to explore gene
similarity with respect to the semantic similarity of GO annotations.

Semantic similarity is a concept which describes the closeness of the relationship of
GO terms in the GO hierarchical structure. The inverse of semantic similarity is semantic
distance. There are a number of different methods available to calculate the semantic
similarity among GO terms. One of the early techniques considers the path distances
between GO terms [44]. Computation of the similarity merely considers the minimum
number of edges that need to be traversed from one node to the other. The shorter the
path between two GO terms, the more similar they are. However this edge-based method
is implicitly based on the assumption that all the edges represent uniform distances and
all nodes in the taxonomy are evenly distributed and have similar densities which is not
necesarily true in the GO structure [46].

Instead of defining the similarity based on the structure of the GO, it is also possible
to consider the information contained at the nodes based on the concepts in information
science [2]. The information content of a node can be computed based on the known
probability of each node within a lexical corpus. For example, the lexical corpus for a
given organism is comprised of its GO annotations, and we can compute the probability
of each term within the ontology [33]. When we traverse higher in the GO hierarchy, the
probability increases and those top nodes are less informative. When we traverse deeper in
to the GO hierarchy, the nodes have lower probabilities and therefore higher information
content. This is very apparent because as we move up the GO taxonomy, the nodes are
more general. Once the information content of the nodes are quantified, we can compute
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node-based similarity measures. There are number of methods available to make use of
information content of GO terms in order to compute the similarity between pairs of gene
products including Resnik et al. [45], Jiang et al. [24] , Lin et al. [30].

The method developed by Resnik et al. relies on the notion of the shared information
content of nodes as the basis for the semantic similarity measure. Information content

P(c) of particular node can be computed as the negated log of the likelihood as,

P(c) = —log[p(c)] . (2.1

According to Resnik et al., semantic similarity between two nodes can be defined
as information content of their minimum subsumer. Whenever there is more than one
minimum subsumer, as often happens in the GO due to multiple inheritance, the most
informative subsumer is choosen. Equation (2.2) defines the similarity between two GO

terms,

sim(cy, c2) = —10g [pms(c1, )], (2.2)

where ¢; and ¢, are GO terms, and p,,,s(c1, ¢2), is the probability of minimum subsumer.
We focus on comparing two gene products rather than GO terms as explained above.
Resnik et al., defines similarity between two genes, g; and g», as the maximum similarity

found between any two GO terms and the formula is given as,

sim(g1, g2) = max [sim(cq, ¢2)) (2.3)

where ¢; € A(g1), ca € A(g2), and A(g1) and A(go) are the GO annotations of genes ¢g;

and g, respectively.
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Jiang et al. proposes a similarity measure which is a mixed approach inherited from
an edge-based method and is enhanced by the information content calculation methods.
In addition to the information content, the other factors such as local density, node depth,
and link type are also being considered. The overall edge weight wt for a child node ¢ and
its parent node a is defined as,

wtleva) = (94 (1= 0) g ) (M) How(o(a) ~ o )] Tle.a) - 24

where d(a), denotes the depth of the node a, F(a), the number of edges in the child links
(local density), the average density in the whole hierarchy, — log(p(c)) and — log(p(a))
the information content of nodes ¢ and a, and T'(c, a) the link relation/type factor. v and
(3 are two weighting constants.

The overall distance between two nodes dist (g1, go) is defined as

dist(g1,92) = Z wt(c, a)

¢ € A{path(cy,ca) — MS(c1,c0)} (2.5)

where path(cy, c2), is the set that contains all the nodes in the shortest path from ¢; to cs.
One of the elements in the set is M .S(cq, c2) which denotes the lowest subsumer of ¢; and
co [24].
Lin et al. also defines an information theoretic similarity measure which is applicable
to different domains. When it is applied to GO, the similarity would be defined as:
2log(pms(c1, c2)

sim(91, 92) = {5000e) + log(p(ca)) (0

where ¢; € A(g1), c2 € A(g2).
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There are number of studies available in the literature which investigate the utility
of the above three measures to compare GO semantic similarity and its correlation to
gene expression similarities and protein sequence similarities. Sevilla et al. [S0] computed
the similarities between genes based on the correlation between their expression profiles
(calculating the Pearson correlation coefficient or its absolute value). Then they annotated
the gene products to GO terms and computed semantic similarity using three similarity
measures described above. Finally they analyze the correlation between the expression
similarity of gene products and corresponding semantic similarity. They conclude that the
Resnik semantic similarity clearly outperforms both Jiang’s and Lin’s semantic measures
and suggests that Resnik’s similarity measure is well suited for Gene Ontology.

Wang et al. [54] also evaluated above three different methods of semantic similarity
measures and showed that Resnik’s method is better than other methods in terms of the
correlation with gene sequence similarities and gene expression profiles.

Another study carried out by Lord et al. [33] investigated the three measures to com-
pare semantic similarities of GO and its correlation to protein sequences. They also re-
ported that the Resnik measure may be the most discriminatory while Jiang distance shows

the weakest correlation.
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CHAPTER 3

APPROACH

3.1 Background and hypothesis

Biologists attempt to understand complex biological processes through the analysis of
gene expression at either the mRNA level, protein level, or both. DNA microarray analysis
is used to measure mRNA abundance, and quantitative MS/MS based proteomic analysis
is used to measure protein abundance in biological samples. Since microarray technol-
ogy is technically more advanced, it allows monitoring of RNA expression levels for a
significantly larger number of genes than can be identified in a typical proteomics ex-
periment [38]. Microarrays can also be effectively used for the analysis of alternative
splicing and genome annotation. Often several different gene expression experiments are
conducted over time and there is a need to integrate the data from multiple experiments.
However, there may be changes in the arrays used for the experiments and in the exper-
imental design and so there may not be a straightforward mapping from one dataset to
the other. RNA expression levels alone are not sufficient to understand protein expres-
sion and function because the mRNA levels do not reflect post-transcriptional regulatory
mechanisms such as protein translation, post translational modifications etc. Proteomics
experiments can provide this sort of information. There are two commonly used tech-

nologies for studying protein expression—gel based proteomics and shotgun proteomics.
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Shotgun proteomics experiments will typically detect many more proteins than gel-based
experiments but shotgun proteomics cannot detect isoform differences or be able to dis-
tinguish proteins from large gene families. Therefore, there is often a need to combine
data from multiple gene expression experiments, multiple proteomics experiments, or a
combination.

Currently, the most popular approach to integrate these transcriptional and proteomic
data sets is to cross-reference the data sets through a common ID such as SwissProt,
Trembl, Ensembl etc. This approach is hindered by the lack of a standard accessioning
scheme and lack of relevant annotations. Different protein sequence databases use unique
accessioning schemes. The degrees of sequence annotations also usually do not allow an
easy cross reference between either different protein sequence data bases or protein and
genomic databases. Therefore it is very difficult to obtain a complete set of matching IDs
during the process of linking transcriptomic and proteomic data sets. This problem partic-
ularly troublesome when the organism being studied is not sequenced or has only recently
been sequenced and the structural annotation is quite immature. In addition, researchers
have found only a weak correlation between gene expression measured at the mRNA level
and protein level even under very highly controlled conditions in well-studied organisms
[20] .

This thesis presents a high level approach to solve the problem of dataset integration
by obtaining a set of functional annotations for each of the datasets and mapping from
items in one dataset to items in the other dataset based on GO annotations. The strength

of the relationships between elements in the heterogeneous data sets is determined by the
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gene similarity measured based on similarity of GO annotations. The groups of genes
or proteins with similar functional annotations are obtained by applying a hierarchical
clustering algorithm.

Hypothesis: Integration of heterogeneous gene expression datasets by mapping at the
functional level using a hierarchical clustering algorithm can provide additional useful

biological information that cannot be easily obtained by mapping at the identifier level.

3.2 Steps in the approach

Firstly, functional annotations for genes and/or proteins in the two datasets will be ob-
tained and stored in a mapping file containing corresponding gene identifiers and GO
terms along with their evidence codes. The GO Consortium reports associations be-
tween gene products and GO identifiers regularly, and this type of information is available
through a number of websites including AgBase (www.agbase.msstate.edu), EMBL-EBI
(www.ebi.ac.uk), and TAIR (www.arabidopsis.org). We used the GO annotations stored
in a statistical package called GOSim.

Next the similarity between individual GO terms will be computed based on well
known information theoretic similarity measures introduced by Resnik [45] using Equa-
tion (2.2).

This comptutation of GO term similarity requires the information content of each GO
term for the three GO categories: molecular function, biological process and cellular com-
ponent. The information content of GO terms is precomputed using Equation (2.1) and

stored in data files in order to speed up computation of GO term similarity.

27



As the third step, the similarity among the genes in each individual data set and the sim-
ilarity of genes among combined data set is computed based on the similarities of their GO
annotations using the Equation (2.3). We are using GOSim (www.dkfz.de/ mga2/gosim)
for steps 2 and 3 [18].

Figure 3.1 shows an example of two sets of artificial Arabidopsis gene identifiers that
were processed using the three steps above. Table 3.1, Table 3.2, and Table 3.3 display
the gene similarity matrices obtained for data set 1, data set 2 and the combined data set
respectively.

The final step of the implemented method is to apply a hierarchical clustering algo-
rithm to group similar elements into clusters. Hierarchical clustering creates a hierarchy
of clusters which may be represented in a tree structure called a dendrogram. The hierar-
chical clustering algorithm that we used is an agglomerative algorithm. It begins with each
element as a separate cluster and merges them into successively larger clusters based on the
distance measure. The distance measure determines the simlarity of two cluster elements;
in our case the similarity matrix is generated based on the similarity of GO annotations of
each pair of gene products. Figure 3.2, Figure 3.3, and Figure 3.4 show the cluster dendro-
grams obtained by applying the hierarchical clustering algorithm to the similarity matrice
given in Table 3.1, Table 3.2, and Table 3.3 respectively. These clusters provide the map-
pings between the data sets at the functional level. Data set 1 generates two clusters and
Data set 2 generates 3 clusters. The GO annotations for the clusters in both datasets and

combined data set are shown in Table 3.4, Table 3.5 and Table 3.6 respectively.
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257081 _at
257291 at
267050 _at
260643 _at
264266 _at
264873 _at
264929 at
262913 at
267181 at

267627 at

Data zet 1

Figure 3.1

257215 at

266871 _at

260638 _at

264168_at
266130_at
264911 _at
267147 at
263135 _at

257648 _at

Data zet 2

Two data sets consist of Arabidopsis gene identifiers

29



000°1 [SYal [SSAl) 6S1°0 0000 8€Y°0 0000 0000 0000 0000 ¥7L79L9C
€ST0 0001 0001 6550 0000 9¢T0 0000 0000 0000 0000 Y I8IL9C
ST 0 0001 0001 6550 0000 9¢T0 0000 0000 0000 0000 ¥ ¢16C9C
6S1°0 6550 6550 000°1 0000 6510 00070 0000 0000 0000 ¥ 6T679C
0000 00070 0000 0000 000°T 00070 8LS°0 90€0 870 000'T ¥ G/L8%9C
8¢Y'0 9¢C0 9¢T0 6S1°0 0000 000°T 00070 0000 0000 0000 ¥ 99T19C
0000 0000 0000 0000 8LS0 0000 0001 76£°0 €99°0 8LS0  1®SH909C
0000 0000 0000 0000 90¢0 00070 76£°0 000°1 6850 90¢€'0 1 0S0L9C
0000 00070 0000 0000 870 00070 $99°0 6850 0001 8Yt'0  1®I6TLST
0000 00070 0000 0000 000°T 00070 8LS°0 90€£0 8710 000'T ¥ 180LST
e e e e e e e 18- e e
L7919C 181L9C €16C9C 6C6%¥9C SL8Y9T 99¢H9C S#909C 0S0L9C 16CLST 180LST

[ 198 BIRp S1sdopign.y 10§ X1Ijew AJLIR[IWIS QUILD)

['¢ SIqEL

30



000°T ¢eco ¢eco 6S1°0 cL60 0000 €0 0000 00070 0000 1®"8%9.6C
YAl 0001 0001 6550 ¥9C°0 0000 9¢T0 6570 €810 590 1 CEI1E9C
YAl 000°1 000°1 6550 ¥9C°0 0000 9¢T0 65C0 S¢81°0 2S9°0 1’ LP1L9C
6510 65S0 6550 000°T €91°0 0000 6510 00070 00070 0000 ' 116¥9¢C
¢L60 ¥9C0 ¥9C°0 €91°0 0001 000°T [4¥4al) 990 6850 8770 e 0c199¢
00070 0000 0000 00070 000°T 0001 0000 0000 00070 0000 18" 891+9¢C
8¢0 9¢T0 9¢T0 6510 [4Yal) 0000 0001 0000 00070 0000 e 0S0LST
0000 65C0 6570 0000 €99°0 0000 0000 0001 76£°0 8LS0 188¢909¢
00070 ¢81°0 S81°0 0000 6850 0000 0000 76€°0 000°T 90¢€0 e 1.899C
00070 2590 2590 00070 810 0000 0000 8LS°0 90¢°0 000°T 1 CICTLST
18- e 18- e 18- e e e 18- e

8Y9.SC SE€1€9C LyIL9C T116%¥9C 0€199C 89I¥9C 0S0LST 8£909C [1L899C SITLST

7 19s eyep sisdopigo.ay 10} XLIew AJLIR[IWIS QU0

[AICLAP

31



¢sco 6S1°0 0000 8er0 0000 0000 0000 0000 1 819LET
000°1 6560 81C0 9¢C0 65C0 G810 6¢C0 590 e eele9d
000°T 6560 81C0 9¢C0 6570 ¢81°0 6¢C0 590 1 LYILIT
6550 000°T 000°0 651°0 000°0 000°0 000°0 0000 e T16v9¢
9C°0 €910 0001 [4¥40) €990 6850 0001 870 1®©0e199¢
0000 0000 0001 0000 0000 0000 0000 0000 1 891v9¢
9¢C0 6S1°0 000°0 000°T 000°0 000°0 000°0 0000 18 0S0LSC
0000 0000 8LS0 000°0 000°T ¥6£°0 €990 8LS0 18°8£909¢
0000 0000 90¢°0 000°0 76£°0 000°T 6850 90¢0 1 1L899¢
0000 0000 000°T 000°0 8LS0 90¢0 80 000°T 1 CICLST
¢sco 6S1°0 0000 8Er0 0000 0000 0000 0000 1 LT9L9C
000°L 6560 0000 9¢T0 0000 0000 0000 0000 1 I81L9C
000°I 6560 000°0 96C0 000°0 000°0 000°0 0000 1 E1679¢
6550 000°T 000°0 651°0 000°0 000°0 000°0 0000 1 6C6v9¢
0000 0000 000°T 000°0 8LS0 90¢°0 80 0001 1 CL8YIC
9¢T0 6S1°0 0000 0001 0000 0000 0000 0000 1 99¢y9¢
0000 0000 8LS0 0000 0001 ¥6£°0 €990 8LS0 18 6v909¢
000°0 0000 90¢°0 000°0 ¥6£°0 000°T 6850 90¢°0 1®°050L9¢
0000 0000 8¥v'0 000°0 $99°0 6850 000°1 80 ¥ 16CLST
0000 0000 000°T 000°0 8LS0 90¢0 80 000°L Je 180LST
®EI6C9C B 6C6V9C I8 GLBYIC I 99Ch9C 1B S¥909C 1B 0SO0LI9C I8 T6CLST Y8 T80LST

SJoseIep PAUIqUIOD JOJ XLIJBW AJLIB[IWIIS QUQLD)

£'e9lqeL

32



¢L6’0 0000 8¢r0 0000 0000 0000 0001 ¢sTo 1 819LET
y9¢0 0000 9¢C0 65C0 G810 ¢S9°0 ¢sTo 000°L e eele9d
Y9C0 0000 9¢C0 65C°0 G810 ¢S9°0 ¢sTo 000°L 1 LYILIT
€910 0000 651°0 000°0 000°0 000°0 6S1°0 6550 e T16v9¢
0001 0001 [4¥40) €990 6850 80 ¢L6’0 9C°0 1®©0e199¢
0001 000°T 0000 0000 0000 0000 0000 0000 1 891v9¢
[qya 0000 000°T 000°0 000°0 000°0 8¢r0 9¢C0 18 0S0LSC
¢99°0 0000 000°0 000°T ¥6£°0 8LS0 000°0 0000 18°8£909¢
6850 0000 000°0 6£°0 000°T 90¢0 000°0 0000 1 1L899¢
80 0000 000°0 8LS0 90¢°0 000°T 000°0 0000 1 CICLST
¢L6’0 0000 8¢r0 0000 0000 0000 0001 ¢sTo 1 LT9L9C
¥9C°0 0000 9670 0000 0000 0000 ¢sco 000°L 1 I81L9C
y9C0 0000 9¢C0 000°0 000°0 000°0 ¢sTo 000°L 1 E1679¢
€910 0000 651°0 000°0 000°0 000°0 6S1°0 6550 1 6C6v9¢
000°T 000°T 000°0 8LS0 90¢°0 000°T 000°0 0000 1 CL8YIC
[4¥40) 0000 0001 0000 0000 0000 8¢r0 9¢T0 1 99¢y9¢
€990 0000 0000 0001 ¥6£°0 8LS0 0000 0000 18 6v909¢
6850 0000 000°0 ¥6£°0 000°T 90¢°0 000°0 0000 1®°050L9¢
000°I 0000 000°0 $99°0 6850 80 000°0 0000 ¥ 16CLST
8’0 0000 000°0 8LS0 90¢0 000°T 000°0 0000 Je 180LST
¥ 0C199¢ B RIIP9C I 0SOLST I8 8E909C B T1L899C W CITLSC Y8 LT9L9T e [8IL9T

(penuruod) sjaseiep pauIquIod J0J XLijew A)JLIR[IWIS QUdD)

£'e9lqeL

33



0001 ¢sTo ¢sTo 651°0 1 819LST
¢sTo 000°T 000°T 6550 e eele9c
¢sTo 000°T 000°I 6550 ¥ Ly1L9T
651°0 6550 6550 000°1 e T16v9¢
¢L6’0 ¥9C°0 ¥9C°0 €910 1®°0e199¢
0000 0000 0000 0000 1©"891+9¢
8eY'0 9¢C0 9¢C0 6S1°0 1°0S0LST
000°0 6570 65C0 000°0 1"8¢909¢
000°0 G810 G810 000°0 1 1L899¢
000°0 890 590 000°0 ¥ CICLST
0001 ¢sTo ¢sTo 6S1°0 ¥ L79L9C
¢sco 0001 0001 6550 ¥ I81L9C
¢sTo 000°T 000°T 6550 ¥ E€1679C
651°0 6550 6550 000°T e 6C619¢
000°0 81T0 81T0 000°0 1 CL8Y9C
8¢r'0 9670 9¢T0 6S1°0 1 99¢r9¢
0000 6570 6570 000°0 ¥ 61909¢
000°0 G810 G810 000°0 1©°050L9¢
000°0 6¢C0 6¢C0 000°0 ¥ 16CLST
000°0 ¢59°0 ¢59°0 000°0 ¥ 180LST
JBYILST I CEIE9C Ve Ly1L9C Ve [16V9C

(penuruod) sjaseiep pauIquIod J0J XLijew A)JLIR[IWIS QUdD)

£'e9lqeL

34



This small example demonstrates our method for constructing clusters from combined
gene/protein expression data sets. Similarity measures between the proteins/genes in the
two sets will be computed based on their functional annotations, and these will be used
to establish similar clusters and thereby identify corresponding functional groups in the

datasets.
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Table 3.4

GO annotations for the two clusters in Arabidopsis dataset 1

Data set 1
Cluster 1 Cluster 2
ID GO ID GO term ID GO ID GO term
267050_at GO:0003723 RNA 264929 _at  GO:0004033 aldo-keto
binding reductase
activity
257081_at  GO:0005515 Protein 262913_at  GO:0016491 oxido-
binding reductase
activity
264875_at  GO:0005515 Protein 267181_at  GO:0016491 oxido-
binding reductase
activity
257291 _at  GO:0003677 DNA 264266_at  GO:0004722 protein
binding serine/
threonine
phosphatase
activity
260645_at  GO:0005488 binding 267627 at  GO:0008026 ATP-
dependent
helicase
activity
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Table 3.5

GO annotations for the three clusters in Arabidopsis dataset 2

Data set 2
Cluster 1 Cluster 2
ID GO ID GO term ID GO ID GO term
264168 at GO:0030528 transcription 257215_at  GO:0005515 Protein
regulator binding
activity
266130_at GO:0003677 DNA 267147_at  GO:0016491 oxido-
binding reductase
activity
263135_at  GO:0016491 oxido-
reductase
activity
266871 _at  GO:0003723 RNA
binding
260638_at  GO:0005488 binding
Cluster 3
ID GO ID GO term

264911_at  GO:0004033 aldo-keto reductase activity

257050_at  GO:0004722 protein serine/threonine
phosphatase activity

257648 at GO:0008026 ATP-dependent helicase activity
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Table 3.6

GO annotations for the two clusters in Arabidopsis combined datasets

Data set combined

Cluster 1 Cluster 2
ID GO ID GO term ID GO ID GO term
267050_at GO:0003723 RNA 264929 _at  GO:0004033 aldo-keto
binding reductase
activity
266871_at  GO:0003723 RNA 264911_at  GO:0004033 aldo-keto
binding reductase
activity
257215_at  GO:0005515 Protein 263135_at  GO:0016491 oxido-
binding reductase
activity
257081_at  GO:0005515 Protein 267147_at  GO:0016491 oxido-
binding reductase
activity
264875_at  GO:0005515 Protein 262913_at  GO:0016491 oxido-
binding reductase
activity
257291_at  GO:0003677 DNA 267181_at  GO:0016491 oxido-
binding reductase
activity
266130_at GO:0003677 DNA 264266_at  GO:0004722 protein
binding serine/
threonine
phosphatase
activity
260645_at  GO:0005488 binding 257050_at  GO:0004722 protein
serine/
threonine
phosphatase
activity
260638 _at  GO:0005488 binding 267627 at  GO:0008026 ATP-
dependent
helicase
activity
257648_at  GO:0008026 ATP-
dependent
helicase
activity

40



—— 17201+97

[
0l

I
80

I
90

I I
¥0 o

breH

|
00

1T8K0/62
/29102
1BT050.5¢C
1B 99719
18192
1ETE16Z9C
1ELYLL9T
JETSEIEeT
171 1LBFOT
1€ 6Z6FOT
1e78£9007
1761002
1081992
17162462
176/8%07
1®7180.52
®G61ZI5T
17128907

187050492

Figure 3.4

Cluster dendrogram for the combined Arabidopsis data set
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CHAPTER 4

RESULTS AND EVALUATION

In Chapter 3 we described a new approach that we have developed for integrating mul-
tiple gene expression datasets. In this chapter we describe experiments we have designed
and conducted to test the following hypothesis:

Integration of heterogeneous gene expression datasets by mapping at the functional
level using a hierarchical clustering algorithm can provide additional useful biological

information that cannot be easily obtained by mapping at the identifier level.

4.1 Experiments

We demonstrate our method by applying it to two different biological problems— pro-
tein expression during de-differentiation in Arabidopsis and gene expression in different
corn lines upon infection by a fungus. In each case, we have two datasets available. We
were unable to obtain gene expression and protein expression data for the same biolog-
ical experiment. Instead, we use two proteomic data sets and two gene expression data
sets. The same approach can also be applied to combine a gene expression data set with a

protein expression data set.
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4.1.1 Arabidopsis Experiment

Dr. Zhohua Peng provided us with two proteomics datasets from Arabidopsis. Analysis of
these two datasets has been previously published [9]. The proteomics datasets represent
up regulated proteins from a de-differentiation experiment in Arabidopsis where protein
identification was done using two different technologies: shotgun proteomics and 2D gel
electrophoresis. Cell de-differentiation is a process of switching the cell fate. During this
process, cells undergo genome reprogramming to regain the competency of cell devision
and organ regeneration [9]. These proteins were chosen as an input to our experiment due
to their availability and the author’s familiarity with their data formats. Initially there were
193 Arabidopsis up regulated proteins identified by shotgun proteomics and 26 proteins
up regulated identified by the 2DE gel approach. We mapped those proteins to Arabidop-
sis Affymetrix probe identifiers for input to the GOSim statistical package(www.dk{z.de/
mga2/gosim). After the mapping, we obtained 95 differentially expressed proteins identi-
fied by shotgun proteomics and 20 differentially expressed proteins identified by 2DE gels.
Of these proteins, only one protein was identified by both techniques. Therefore, little in-
formation for integration of the data sets is obtained by matching identifiers. From this
particular experiment, biologists try to understand the reasons for recognizing different
set of proteins using two different protein identification techniques in the same biological
sample.

GO annotations for molecular function and biological process stored in GOSim were
used to annotate these two different Arabidopsis sets of differentially expressed proteins.

We produced clusters based on the gene similarity of three different datasets: a set of pro-
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teins identified by shotgun proteomics, and a set identified by 2DE gels, and the combined
set. Protein similarity matrices were then computed using GOSim for each data set alone
as well as for the combined data set.

Finally, each of the individual similarity matrices and the combined similarity ma-
trix were used as input to the clustering algorithm. The hierarchical clustering algo-
rithm we used is an agglomerative algorithm that builds the hierarchy from the individ-
ual elements by progressively merging clusters. We chose the complete linkage clus-
tering method. Complete linkage computes the distance between two clusters as the
maximum distance between any pair of elements in the clusters. The clustering den-
drograms generated based on the similarity of GO molecular function annotation sim-
ilarity are shown in Supp_Gel_up_-mf_Arab.pdf, Supp_Shotgun_up_mf_Arab.pdf and Su-

pp_Combined up_mf_Arab.pdf (http://agbase.msstate.edu/Education/clt183_SuppFiles.pdf).

4.1.2 Maize Experiment

In our second experiment, we tested our hypothesis with two differentially expressed
gene expression data sets from corn. In each set, the genes expressed in one maize line
(Mp313E) were compared to the genes expressed in another maize line (Va35) when both
were inoculated with the fungus Aspergillus flavus. Mp313E is considered to be resis-
tant to infection by Aspergillus while Va35 is considered to be susceptible. Two Maize
Unigene 1-1.05 arrays from the University of Arizona (www.maizearray.org) were used to
evaluate differential expression. The first dataset using the MGDP Zea Mays Unigene 1-

1-05 maize microarray-GEO accession GPL6092 was conducted from a field experiment
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in 2003 when samples were collected 2 days post infection. The second dataset using
Maize Oligonucleotide Array version 4 was conducted from a field experiment in 2004
when samples were collected 4 days post infection. It is important to note that the first
array has about 5000 probes while the second array contains about 32000 probes. The
microarray for the 2-day post infection experiment contains a subset of the sequences on
the array used for the 4-day post infection experiment. Analysis of the microarray for
the 2-day post infection maize experiment resulted in 129 upregulated ESTs((Expressed
Sequence Tag)) for Mp313E compared to VA35, and analysis of the microarray for the
4-day post infection corn experiment resulted in 234 upregulated ESTs. Then we obtained
nucleotide sequences for those ESTs from www.ncbi.nlm.nih.gov and ran the BLAST al-
gorithm on these EST sequences against Arabidopsis Affymetrix sequences in order to get
the matching Arabidopsis probe identifiers to use as input to GOSim. BLAST resulted
in 82 matching Arabidopsis probe IDs for the 2-day data and 203 Arabidopsis matching
probe IDs for the 4-day data.

We then obtained biological process GO annotations for the Affymetrix probes and
generated gene similarity matrices using GOSim for each of the individual data sets and
for the combined data set created by combining the 2-day and 4-day data.

Then the gene similarity matrices were used as inputs for the clustering algorithm.
Thus the resulting clusters are based on the functional similarity of genes. The dendro-
grams resulting from the clustering algorithm for the combined data set is as in Supp-

_Combined_up_bp_Maize.pdf (http://agbase.msstate.edu/Education/clt183_SuppFiles.pdf).
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4.2 Results and Analysis

In this section we discuss the results of applying our method to the Arabidopsis and

Corn data sets. The clustering results were analyzed by our biology collaborators.

4.2.1 Arabidopsis Results Analysis

Dr. Zhaohua Peng from the Department of Biochemistry and Molecular Biology provided
us with the Arabidopsis datasets and assisted us with the analysis. We produced the clus-
ters based on highly expressed proteins identified using two different protein identification
techniques, shotgun proteomics and 2D gel electrophoresis, in an Arabidopsis cell dedif-
ferentiation experiment. We generated the clusters for the gel data set and proteomics data
set alone as well as for the union of the two data sets. All clusters were generated based
on the Gene Ontology Molecular Function.

The 2DE gel data had substantially fewer proteins. The resulting dendrogram for the
gel data alone has four small, tight clusters as in Table 4.1. Mainly those clusters are
formed based on the similarities of GO terms such as protein binding, nucleotide bind-
ing, and enzyme activities. The clusters in supplementary file Supp_gel_up_mf_Clusters-
_Arab.pdf (http://agbase.msstate.edu/Education/clt183_SuppFiles.pdf) has all set of gel cl-
usters and those are labeled based on their position in the combined dendogram. The gel
dendrorgam generated by the hierarchical algorithm is in Supp_Gel _up_mf_dendro_Arab.p-
df (http://agbase.msstate.edu/Education/clt183_SuppFiles.pdf).

The dendrogram generated for the shotgun data alone has several clusters as in the

Table 4.2. The largest cluster consist of 28 proteins (cluster 5) and formed based on the
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similarity of the GO term-structural constituent of ribosome. There are 3 little, very dis-
tinct clusters (cluster 1-3) formed based on the similarity of the GO terms such as nutrient
reservoir activity, electron carrier activity and hydrogen ion transporting ATP synthase
activity as shown in the Table 4.2. There are also some tight clusters from cluster 9-11
formed based on the GO term similarity of ATP binding, protein binding and calmod-
ulin binding. All shotgun clusters generated based on Molecular Function GO annota-
tion similarity are listed in the supplementary file Supp_shotgun_up_mf_Clusters_Arab.pdf
(http://agbase.msstate.edu/Education/clt183_SuppFiles.pdf). Those clusters are labeled ba-
sed on their position in the shotgun dendogram in the supplementary file Supp_Shotgun-
_up_mf_dendro_Arab.pdf (http://agbase.msstate.edu/Education/clt183_SuppFiles.pdf).

The dendrogram for the combined data set maintains the same overall structure of
clusters as in the dendrogram for the shotgun data set alone. This is probably due to
the higher number of proteins identified by shotgun method compare to 2DE gel method.
There are several clusters in the combined dendrogram which are exclusively formed of
shotgun proteins as shown in supplementary file Supp_Combine_up_mf_Clusters_Arab.pdf
(http://agbase.msstate.edu/Education/clt183_SuppFiles.pdf). For example, as in Table 4.3,
clusters consist of tubulin proteins (cluster 4) and dehydrogenase family proteins (cluster
13) are not uniquely identified by 2DE gel. They all identified only by shotgun proteomics.
One reason for having a small number of proteins identified by 2DE gel is due to a de-
cision made by biologists during their dedifferentiation experiment. Although initially
there were lots of differentially expressed proteins identified by 2DE gel, most of them
were discarded because they are mixtures of multiple proteins. Therefore, the number of

51



WISTUBYOAW [BUONBIOI

¢d 1INNdNS ‘A)1ATIOR OSRIIUAS
HSVHINAS d1v Suniodsuen
dLV IVIONDVA uor ua3oIpAY  £€69%00:0D S 1®78667ST  01S8EOVIV
WISTUBYOSUW [eUONB)OT
19 LINN9NS ‘KITATOR OSBYIUAS
dSVHLINAS d1v Suniodsuen
dIV ¥IVIONDVA uor ua3oIpAy - £€69%00:0D S 1S $8979C 0€09LDTIV
€ 13Isn[)
Surpuiq uor 1oddod  £0$5000:0D
(z11 uryoxd
uoneId[oy/aredar KyAanoe
-oSewep-YNQ) ¢111dd oI UONIR[  $S06000:0D S 12798866 OVE0TOTIV
Kyanoe
(€ NIXOQaIIA) €AALV IoLIIed UONIR[  $S06000:0D S 1®°6¥959C  01SLTOTIV
7 Isnp)
KyAnoe
(VNIIEAID D) 1VID TOAIOSAI JUALNNU  GE/GH00:0D S ®°7806¥C  OTIVYOSIV
K)1Anoe
(T NIIFAIDNAD) TN TOAIOSAI JUALNNU  GE/GH00:0D S 1®7660S9C  08SE0DTIV
Kanoe
(€ NIIFAIDNAD) €NAD TOAIRSAIJUALNNU  GE/GH00:0D SO ®7L9LEGT  0TSSTOVIV
I 1)snp)
[°8
UoNEdYNUIPY UId)oI] WRLOD dI09  undjoys rqoid  (Ismo]

1oseIep undjoys sisdopign.ay 10§ s19)sN[D)

Tt 2lqeL

52



(dz11dd) TI'T QWOSOqLI JO
u1e)0xd [EUIOSOQL §09  JUSMDSUOD [BIMONNS  6¢/€000:0D S JE8E6IST OEYESDELY
urajoxd Apruey ¢ QwosOqLI JO
GEHO.HQ [elaosOoqlI  Juannsuo?d ferndonys ¢/ €000:0H S 18°€796ST  OIE10DOVIV
(ELV1 AALLDFAAA owosoqLI Jo
OAMLIINE) €LY TN JULMINSUOd [eIMONDS  G¢/€000:0D S WIEIE9T  0£98LDTLY
(OSISdY) SIS QWIOSOqLI JO
uI3101d [EWOSOQL SO JUSMNSUOD [BIMINNS  CE/E000:0D S 18°€88GHT  00S60DSLV
(As1Sd¥) SIS QWIOSOqLI JO
uroo1d [eWOSOqII SO  JUOMNSUOD [BINONDS  GE/€000:0D S 1°7988CHT  01S60DSIV
(SIS NIALOYd ouwI0S0qLI JO
TVYINOSOEIID) SISdY  WUmnsuod [emdnns — 6e/¢000:00 S 18°,99€9C  OLTYODLLY
(d7dd¥) 7d ureroxd JWOSOqLI JO
[EWOSOQLI JIPIOR §()9  IUSMNSUOD [RINONNS  G€/€000:0D S 1©796799C O0ILLTOTIV
(SHAVAT LSYIA ouwI0S0q1I JO
QAINIOd) Tdd  ULMDSUOD [eIdNNS  GE/£000:0D S 1°€0TY9C  08LTTOILY
(a81Sd¥) 81S QUWIOSOqLI JO
u12jo1d [eWOSOqL SOp  JUIMNSUOD [RIMINNS - GELE000:0D S WLL6SST 0E0VEDTLY
(NIA.LO¥d TVINOSO4Td awosoqL Jo
81S) D8ISd¥  IUAMNSUOD [RIMONDS  GE/E000:0D S 1°000SST  00860DF.LV
(T PoAIdSUOD JO1seq QWIOSOqLI JO
15821q) [DEELY IULMISUOD [eIMONDS  CE/¢000-0D S 18 Y627ST  0106VDELV
< J1I)snNy))
98
uoneIyHUIP] U014 WRLOY  dI0H  undoys raqeid (I smaog

(panunuod) jasejep ungjoys s1sdopigp.y 10§ SIS

Tt 2lqeL

53



(@061d¥) 61 awosoqLI Jo

urojoId [ewosoqur §O9  JUAMIISUOD [RINIONNS €/ €000:0D S 1 0864ST  0SYOTIOPIV
(VEIS NIALOdd QuWI0SOqLI JO

X OAMIIND) OTOSINA  IUaMIISU0d [eImonns ¢/ £000:0D S ®°0b0ST  09€0IDSIY
(VEIS NIHLOUd QUIOSOqLI JO

TVYINOSOEITY) VEISJYULY  USmIsuod [eimonns  ¢e/€000:0D S 1©°90.SS7  00100OVIV
(VEIS NIALOdd awosoqL Jo

TVINOSOLIY) VEISAYLY Iusmnsuod [ermonns ¢/ £000:0D S 1©°90.SS7  00100DV.LV
(781 HALLDHAAA QuWI0SOqLI JO

OAddINA) $SICHINA  IUamINSU0d [eInonns — ¢¢/¢000:09 S ® 611192 0SESLOTIV
(dcT1d¥d) ¢-¢T1 QwosoqLI Jo

urajoxd [ewosoqur §O9  JUIANINSUOD [eIMONIS  S¢/€000:0D S ®ZI16SZ  09SSOOEIV
(VOT1d¥) 971 QuWOSOqLI JO

urajoid [ewosoqrr §)9  IUAMNSUOD [RINONNS  S€/.€000:0D S W GETIST  0166FDCLV
(VZI1d¥d) TI'1 QUWIOSOqLI JO

urd)oid [ewosoqur §O9  JUANIIISUOD [BINIONDS  CELE000:0D S T CHPSOT  061LEDTIV
QT TI'1 awosoqLI Jo

urd)od [Bwosoqur §O9  JUAMIISUOD [eIMdNNS  S€/€000:0D S W P8SIYT  0L909DSIV
(V¥1Sd¥d) ¥1S owosoqI Jo

ESO& [ewrosoqrr SO  WAMINISUOd [eIn}dnds  ¢¢/€000-:0D S 17987697 0919€DTILV
(dr1Sd¥d) ¥IS QWOSOqLI JO

urajoxd [ewosoqur SO JUANINSUOD [eIMdNNS  S¢/€000:0D S 1®6£76SC  OISTIDELY

98
uonesynuapy uLjold wrRy, 09 aroo ungjoySs raqord I Smo|

(panunuod) jasejep ungjoys s1sdopigp.y 10§ SIS

¢V 2IqBL

54



(g9171 uraroxd QWI0SOqLI JO
[BWOSOqLY) O Td¥ JUIMINSUOD [EIMdNNS  GE/£000:0D S WeSL19PST 0ELSIOVIV
(I 1d¥d) 1171 owosoqLI Jo
EBQ& [ewiosoqLI SO9  IUAMIISUOD [eIMonns  G¢/€000:0D S 1°°ZSSTST 00L8SDELV
Qw0soqII JO
juomnsuod feanonns ¢/ ¢000:0HD
3utpuiq (n)A1ed  9978000:0D
($1 ursroxd SUWIOSOqLI JO
[ewosoqu) 14y UAMNSU0d [eIonns  S¢/£000:0D S 180197 0ZSLODTLY
(V8Sd¥) 8S awosoqI Jo
urajo1d [ewosoqII SO JUANINSUOD [BINONNS  G€/£000:0D S ®°8909%7  06Z0TOSIV
QeI1dd) €11 QWIOSOqLI JO
urjord [EWOSOQU §09 JUAMNSUOD [eIMonns  ¢€L€000:0D S 1e°€8TTST  0968YDELV
98
uonedynuaIp| upjo.Id wy, 09 ar oo ungjoys I 9qoid (] Smoo]

(panunuod) jasejep ungjoys s1sdopigp.y 10§ SIS

¢V 2IqBL

55



urajoxd 3ururejuod

-(4d.L) yeadax

apndedootnena) Sutpuiq - 88%5000:0D S ®GLTYST  0L9TTOVIV
(7-18dSH)
y-18 uraoxd

AO0ys Jeay 3uIpuiq IV +#2SS000:0D S 'S Ep08yC  0009SDSLIV

3uIpulq 41V $2$S000:0D
(1 oseury areydsoydip AJ1ADOR oseury

apisoa[onu) [dAN ¥eydsoydip apisodponu  0SSH000:0D S 1®°6805SC  0CE60DVIV
q0. urajoxd

Yooys 1eay) 40LdSH 3uIpuiq IV #2SS000:0D S 1©8e8I9C  0L09IDIILV
0L urayoad

}o0ys 1e3y) 0LdSH 3uIpuiq IV $2SS000:0D S ¥ 6pc9cc  08SCIDELV
1 urojoxd

Surpuiq [eurwny Suipuiq IV +#2SS000:0D S 1®S7966SYC  OVS8TDHSIV
urajoxd ey ()L 21eU309

o0ys Jeay 3utpuiq IV #2SS000:0D S ®1660SC  06vC0DSIV

3uIpulq dIV - $2$S000:0D

urajoxd ey ()L @1eU300

3ooys 1Y) 1-0LDSH Suipuiq IV #2SS000:0D S 1®°6660SC  00SCODSIV

6 19ISN[)
[98
uonesynuapy uoid WL.RL 0D arod ungjoys [ r3qoid dr smoy

(panunuod) jasejep ungjoys s1sdopigp.y 10§ SIS

Tt 2lqeL

56



Surpuiq 41V +2SS000:0D
surpuiq dIV  #2SS000:0D
Surpuiq dIV  +#2SS000:0D
aaneind ‘asejonpal
91eqI09seOIpATYapouow SuIpuiq IV #2SS000:0D S 1®6TE09C OV6E9DILV
[T 19sn[)
Surpurq urajord - G165000:0D
HATT-TVSL Surpuiq urelord - G165000:0D S B°86LLST  0S6STDELV
urojoxd Apruuej
1eador uLkyue Surpuiq uraloxd - ¢166000:0D S ®°L0879C  OVLIIDILLY
Surpuiq 41D $TSS000:0D
Aranoe osed D +26£000:0D
Surpuiq 41O  $TSS000:0D
(1 urayoad
Iegponu Surpurq-4.1.0
pare[aI-sey) [-NVYI Surpuiq urjoxd - G165000:0D S 1©STECIore  0100CDSIV
Surpuiq urnpowyed  91$5000:09
K1Anoe ased IV
Suniodsuen-wnioed  88€S000:0D
aseq LV+geD / eaneind ‘adAy-
oueiquiow ewseld ‘ased v Kanoe ased 1V
Suniodsuen-wmnofed  Suniodsuen-wnidfed  88¢5000:00 S ®6191SC 0LELSDELV
01 JdIsn)
98
uonesynuapy uLjold P O ar oo ungjoys  dI29oid 1 smoy

(panunuod) jasejep ungjoys s1sdopigp.y 10§ SIS

¢V 2IqBL

57



(#-18dSH) #-18 ureroxd

O0yS Jeay Surpurq 41V +2$S000:0D S 1S ¢v081YC  00096OCIV
Surpuiq IV $2SS000:0D
(T 9seury aeydsoydip
oprsod[onu) [YJAN Aanoe aseury aeydsoydip aprsosponu  (0SSH000:0D S 1®°680S6SC  0CE60DVILV
(g0L urajoxd
ooys 1eay) g0LdSH Surpuiq IV +2$S000:0D S 1878¢R819C  0€09IDIIV
(0L uryoxd
Jooys 1eay) 0LdSH Surpuiq 41V +2SS000:0D S 1 CHc9CC  08CCIDCLV
(1d9) (1-drg) 1 urar01d
Surpuiq [eurwny Surpuiq 41V +2SS000:0D S 18°S79C6CTC  OPS8TOCLV
(2-0LdSH) (¢-0LOSH)
zudoid ey 0L
91BUZ00 YO0ys 183y Surpuiq 41V +2SS000:0D S 1 $660SC  06VC0DCLV
Surpuiq JIV  $2SS000:0D
oxd e (L 91rU309
Yooys 1edy) 1-0LISH Surpuiq 41V +2$S000:0D S 18°C660SC  00STODCLV
98
uonedynuoapy uoId WIR_Y, OD dar oo ungjoys (I 9390id ]I sSmo]

¢V 2IqBL

(panunuod) jasejep ungjoys s1sdopigp.y 10§ SIS

58



differentially expressed proteins identified using the 2DE gel approach was small. Mean-
while, shotgun method identified a lot more proteins overall. Cluster 5 as in Table 4.3 is a
large cluster which contains ribosomal proteins and all of them are identified by shotgun
proteomics except one. The only gel protein in cluster 5 is an expressed protein, and it
was not included in a cluster in the dendrogram generated only for gel data. But in the
combined dendrogram, it was clustered with other ribosomal proteins. This is one good
example of the advantage of combining the data sets. Once the data sets are combined,
they form bigger, more meaningful clusters which reveal more useful biological infor-
mation. The dendrogram generated for the combined data set is in the supplementary file
Supp_Combined_up_mf_dendro_Arab.pdf (http://agbase.msstate.edu/Education/clt183_Su-
ppFiles.pdf).

Most of the proteins found in small, highly associated clusters in 2DE gel dendrogram
remained together in the combined dendrogram. Some of them are mixed with the proteins
identified by shotgun proteomics in a reasonable way to form bigger, meaningful clusters
in the combined dendrogram. For example, cluster 9 as in Table 4.3 in the combined den-
drogram was formed based on GO terms such as protein binding and calmodulin binding.
This is a mixture of both gel and shotgun proteins, but predominantly gel proteins. These
types of binding proteins are highly abundant in the cell and have many close gene family
members. High sequence similarity among these proteins makes the shotgun identifica-
tion inaccurate due to common peptides of multiple proteins. Therefore 2DE gel had the
advantage of identifying these type of binding proteins. Combined cluster 10 as in Ta-

ble 4.3 is also an example for a mixture of proteins identified by each technique. It mostly
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consists of heat shock proteins which are stress related proteins. The reason for having a
lot of heat shock proteins could be the stress in the plant cells during the process of cell
dedifferentition as it was induced by high levels of hormones, which exceeded the growth*
inhibition concentration. At the same time, the tissues were excised from the plants to
induce dedifferentiation, which was also a stress. Alternatively, a large number of proteins
are synthesized during cell dedifferentiation, the heat shock proteins may be involved in
protein folding. We can derive more biological information from the combined clusters
rather than looking at the clusters in individual dendrograms for each data set.

Cluster 11 as in Table 4.3 is also another prominent cluster containing mixture of
proteins. That cluster is formed based on the GO terms related to enzymic activity, and it
also consists of proteins identified by both identification techniques.

There are few distinct clusters formed in the combined dendrogram which are not
present in either of the individual dendrograms such as for the GO term chlorophyll bind-
ing. These new information help biologists to explore more aspects about the biological

system.

4.2.2 Corn Results Analysis

The results of clustering the maize datasets have been analyzed by our collaborators. Both
clusters based on the Gene Ontology Molecular Function and on Biological Process were
generated. Those based on Biological Process proved to be most useful to the biologists
for analysis. The USDA Corn Host Plant Resistance Laboratory developed the resistant

maize line Mp313E and they also generated the gene expression data used in our study.
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We produced clusters based on the genes that are significantly more highly expressed in
the resistant line Mp313E compared to the susceptible line Va35 upon inoculation with
Aspergillus flavus at a 2-day and a 4-day time point. Many genes known to be involved in
response to stress were found in the up-regulated set.

The biologists found the combined clustering to be very informative in conveying the
biological processes at work in the resistant line upon infection. We provide a short sum-
mary of their analysis of selected clusters. The clusters in supplementary file Supp_Com-
bine_up_bp_Clusters_Maize.pdf (http://agbase.msstate.edu/Education/clt183_SuppFiles.p-
df) has all the set of Maize clusters and those are labeled based on their position in the com-
bined dendogram. The combined dendrorgam generated by the hierarchical algorithm is
in Supp_Combined_up_bp_dendro_Maize.pdf (http://agbase.msstate.edu/Education/clt183
_SuppFiles.pdf). Cluster 6 as in Table 4.4 contains four genes (one from the 2-day set and
three from the 4-day set) that are involved in cell signaling. It is clear from this cluster and
from several others that cells in the resistant infected plants are actively signaling other
cells. Cluster 7 as in Table 4.4 contains only one gene, and we have typically ignored one-
gene clusters. However, this gene was up-regulated in both the 2-day and 4-day datasets.
The gene in this cluster is involved in autophagy, the process by which the cell breaks
down its own components for reuse [32]. Autophagy is also known to play a protective
role against infection by causing cell death at the infection site, preventing its spread into
uninfected tissue [40]. Cluster 8 as in Table 4.4 has two genes from the 4-day dataset that
both contribute to vacuole organization and acidification. An acidic pH in the vacuole is
essential for protease activity (breaking down proteins) and protease activity is critical for
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disease resistance [52]. Fungal infection leads to acidification of the vacuole and activa-
tion of protease enzyme activity [47]. Cluster 9 as in Table 4.4 is a mixture of genes from
the 2-d and 4-d datasets that are involved in microtubule formation. Microtubes play key
roles in intracellular transport, cell wall synthesis and in the adaptive response of plants to
pathogen infection [28]. Cluster 10 as in Table 4.4 is a group of genes from both the 2-day
and 4-day datasets involved in response to auxin stimulus. Auxin is a hormone produced
by both plants and some fungi including Aspergillus flavus [15]. Therefore, it seems
likely that these genes are activated in corn in response to auxin produced by the fungi.
One of the genes specifically represses auxin-induced gene expression. Clusters 11 and
12 as in Table 4.4 are involved in regulation of stomatal movement. The openings on leaf
surfaces used for gas exchange are called stomata. These provide an easy point of entry
for an invading fungus and the maize plant may be reacting to the infection by closing the
stomata. Many of the other clusters involve genes that have been implicated in previous
research in providing defense mechanisms for plants. Thus, by combining the two datasets
at the functional level, the biologists are able to gain a more comprehensive view of the
biological processes that are activated in the resistant maize line upon inoculation with the

fungus.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

This chapter summarizes the findings of the results obtained by integrating heteroge-
neous data sets at the functional level using a hierarchical algorithm. Directions of future
research are also discussed in terms of possible enhancements and additional experiments

that can be performed.

5.1 Summary of Results

We developed a method to integrate heterogeneous data sets by mapping at the func-
tional level using a hierarchical clustering algorithm. In our method, Gene Ontology anno-
tations are obtained for each dataset and the datasets are combined. The distance between
all genes/proteins in the combined set is computed based on their GO similiarity. GO sim-
ilarity is computed using an information theoretic approach described by Resnik [45] and
implemented in the GOSim package (www.dkfz.de/ mga2/gosim). These similarity values
are used to construct a distance matrix that is used as input for a hierarchical clustering
algorithm. We have used complete link clustering. The resulting clusters represent groups
of genes/proteins that are similar at the functional level.

We tested our method using two experiments: one experiment used two corn gene

expression data sets and the other used two Arabidopsis proteomic data sets. Results
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produced by both experiments confirm that our method of integrating heterogeneous data
sets provides additional biological information which cannot be obtained by mapping at
the identifier level.

In both the experiments, we generated the clusters for each individual data set as well
as for the union of the data sets by merging each of the two individual data sets.

Most of the proteins or genes which did not belong to any of the clusters in clusters
generated from individual datasets, grouped into meaningful clusters in the combined data
set. This provides the biologists with additional information for exploring the biological
systems they are studying. The biologists analyzing the results found clusters generated
from the Biolgoical Process hierarchy to be more useful than those generated from Molec-
ular Function hierarchy.

The Arabidopsis dataset combined proteins from two types of proteomics experiments
based on the same biological samples—2D gels and shotgun proteomics. According to
the biologist’s analysis, the combined clusters integrate information about the abundant
proteins identified by 2D-gel electrophoresis with those identified by the more sensitive
shotgun proteomics approach. The combined clusters provide a more comprehensive view
of the processes that are up-regulated during cell dedifferentiation in Arabidopsis.

The maize experiment combined two gene expression datasets that used samples from
different growing seasons and were based on two different arrays. The corn genitists
also confirm that the combined clusters of two gene expression dataset reveal additional

information than can be obtained by either individual dataset.
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5.2 Future Research

One aspect of the proposal was not implemented in the current work: modeling of
many to many correspondences between genes/proteins in the similarity matrix using a
weighted bipartite graph. A bipartite graph is an undirected graph where the vertices are
partitioned into two disjoint sets and edges only connect vertices from different sets. To
integrate two datasets, the genes/proteins from each dataset becomes a vertex set and edges
between the vertices are weighted by the gene similarity computed. Afterwards, functional
co-clusters can be obtained by applying graph partitioning technique such as minimum
cut algorithm to the bipartite graph. This will be an alternative method to the current one,
which is supposed to result similar genes or proteins in groups at the functional level. We
can compare the results of each method and use the best for biological analysis.

We used an R package GOSim to calculate semantic similarity among heterogeneous
data sets. The only plant identifiers currently supported by GOSim are Arabidopsis Affy-
metrix probes. Therefore we had to map both our maize EST sequences and Arabidopsis
protein identifiers to Arabidopsisprobe ids to calculate similarities among Arabidopsis data
sets. We plan to develop a custom interface to GOSim which enables the user to upload the
GO annotations for any preferred species. This will make our method easier for biologists
to use and will also provide more accurate results.

Finally, we would like to demonstrate that our method can be effectively used to inte-
grate proteomic and transcriptomic data sets from the same or similar biological datasets.

Dr.Olga Pechanova has protein expression data from cob tissue from the the same line of
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corn (Mp313E) infected with Aspergillus and when this data becomes available, we will
integrate it with the gene expression we already have in hand.

We plan to publish two papers from this work. The first will be submitted to a bioin-
formatics journal and will describe the new method. The second will be a detailed analysis

of the clustering results for the Maize data and will be submitted to a biological journal.
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