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This thesis presents a method for integrating heterogeneous gene/protein datasets at

the functional level based on Gene Ontology term similarity.

Often biologists want to integrate heterogeneous data sets obtain from different biolog-

ical samples. A major challenge in this process is how to link the heterogeneous datasets.

Currently, the most common approach is to link them through common reference database

identifiers which tend to result in small number of matching identifiers. This is due to

lack of standard accession schemes. Due to this problem, biologists may not recognize the

underlying biological phenomena revealed by a combination of the data but by each data

set individually.

We discuss an approach for integrating heterogeneous datasets by computing the sim-

ilarity among them based on the similarity of their GO annotations. Then we group the

genes and/or proteins with similar annotations by applying a hierarchical clustering al-



gorithm. The results demonstrate a more comprehensive understanding of the biological

processes involved.

Key words: Semantic Similarity, Similarity Matrix, Gene Ontology, Hierarchical Clus-

tering, Functional Annotations, Gene Expression, Protein Expression, Proteomics, Tran-

scriptomics
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CHAPTER 1

INTRODUCTION

Computational biology is an interdisciplinary field that applies the techniques of math-

ematics, statistics and computer science to solve biological problems. A major focus of

both biology and computational biology over the past decade has been the development

of different methods for measuring changes in gene expression under different conditions.

Data obtained from different methods often yield different, but complementary informa-

tion. The goal of this thesis is to present a new approach for integrating information from

different techniques and/or experiments about gene and protein expression in a meaningful

way.

The central dogma of molecular biology explains the formation of major molecules in

a living organisms: DNA, RNA and protein. DNA, the genetic information inherited from

generation to generation, is a chain of nucleic acids from a four letter alphabet [16]. Small

sections of the DNA strands (substrings from a computer science point of view) contain

information for making particular proteins and are known as genes. Proteins are macro-

molecules consisting amino acids from a 20 letter alphabet. Proteins perform metabolic

structural, defense and regulatory functions in and out of the cell. The central dogma

describes how DNA is replicated and converted to messenger RNA (mRNA) and protein

through transcription and translation. During replication, double stranded DNA forms
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duplicate copies of itself. During transcription, DNA segments containing genes are tran-

scribed into single stranded RNA (messenger RNA) which also has a four letter alphabet.

RNA strands are then translated into amino acids and form the proteins.

All cells in the body of an organism contain the same set of genes, but not all of these

genes are transcribed and translated into proteins in every cell. A gene is considered to be

expressed when it is actively involved in transcription to produce mRNA, the first step of

protein production. A protein is considered to be expressed when the mRNA is translated.

Therefore, we can assay gene expression at either the mRNA level or the protein level as

shown in the Figure 1.1. Gene expression microarrays are a popular platform for measur-

ing mRNA levels across different biological samples [11]. Microarray technology allows

scientists to have a view of the expression of thousands of genes simultaneously [4]. These

types of studies help scientists identify differentially expressed genes under different con-

ditions and pave the way for identification of response to stimuli, transcriptional pathways,

cell differentiation, disease markers and drug targets in the long term [38].

Our goal is to integrate multiple datasets measuring gene and/or protein expression

to gain an overall picture of the active biological processes under different conditions.

The types of datasets that we want to integrate have several characteristics that makes

this process challenging. Figure 1.2 shows the most common approach of integrating

proteomic and transcriptional data.

A similar approach is used for integrating expression data from different technologies

for the same data type (transcriptome or proteome). The two types of data are linked using

a common reference database such as UniGene [38]. But the process of linking mRNA and

2



Figure 1.1

Measuring gene expression
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Figure 1.2

Integration of proteomic and transcriptional data from [38]
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proteomic data through identifiers often results in a very small number of matches even in

very controlled experiments [38]. There are many ambiguities involved in the process of

connecting DNA probes to the target mRNA. First, the central dogma is not as simple as

shown in Figure 1.1. Apart from replication, transcription and translation, there are many

complex processes such as post transcription regulatory mechanisms and post translation

mechanisms that take place as shown in Figure 1.3. Second, proteomics techniques and

transcriptomic techniques are different and have different biases, sources of noise etc.

There are complications that make the matching process difficult, even when dealing with

a single type of data such as microarray data. When we measure gene expression using

a microarray, there is a possibility of mapping multiple probes to the same gene or the

same probe to different products of the same gene [38]. The situation is even worse for

the heterogeneous datasets we are considering. First, we consider multiple genotypes

of the same species (Zea mays) and there is substantial variation in the gene content of

different genotypes in maize [53]. Second, plant genotypes often significantly differ in

the genes activated in response to different conditions. Third, tissues from field grown

samples where the environmental conditions are not controlled will exhibit a great deal

of variation. Fourth, in some cases, the tissues were collected from different experiments

conducted in different years. Fifth, in some cases we have measurements of expression

from different technologies for the same tissue, and it has been demonstrated that there

can be wide variations in the genes or proteins detected by the technologies. For example,

two common methods of measuring protein expression are 2-d gel electrophoresis [14]

and shotgun proteomics [37, 25]. A number of different studies have shown that the
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overlap in the proteins identified by these two methods is quite low (20-30%) even when

using exactly the same biolgoical sample [41, 9]. Therefore, matching of identifiers across

multiple data sets cannot be applied successfully in many of our experiments.

The main objective of this thesis is to develop a new method to obtain functional sim-

ilarities among heterogeneous protein/gene data sets by constructing functional similarity

matrices and applying a clustering algorithm. For each dataset, we will abstract the differ-

entially regulated genes to the functional level, and analyze the data at this level as shown

in Figure 1.4. During this process, first we assign functional annotations for heterogeneous

gene/protein data sets using available online tools. We then compute the semantic similar-

ities among these genes/proteins based on their functional annotations. Finally we adapt a

hierarchical clustering algorithm to obtain functional clusters of genes/proteins. Resulting

clusters consist of functionally similar groups of genes/proteins in heterogeneous data sets.

6



Figure 1.3

The evolution of Crick’s central dogma from 1950s to today [48]

7



Figure 1.4

Approach for integration of proteomic and transcriptional data ( Adapted from [38])

8



CHAPTER 2

LITERATURE REVIEW

The main objective of this thesis is to develop and implement an effective method for

integrating heterogeneous gene/protein data sets at the functional level. In this chapter we

review background information about proteomics and transcriptomics, current techniques

used to integrate heterogeneous data, and the limitations of current techniques. Section

2.1 describes the most widely used technologies for measuring gene expression at the

transcriptome and proteome levels. Section 2.1.1 discusses methods for linking heteroge-

neous datasets through identifiers and the strengths and weaknesses of these approaches.

Section 2.1.2 describes methods used to correlate protein and microarray data. Because

our method is based on integrating datasets at the functional level using the Gene On-

tology (GO), Section 2.2 presents a description of the GO. The importance of functional

level mapping and available computational tools that use this approach are discussed in

section 2.3. Section 2.4 presents different semantic similarity measures which can be used

to compute similarities among GO terms and genes.

2.1 Transcriptome and proteome technology

Proteomics and transcriptomics are relatively new research tools which help biologists

understand how expressed proteins and genes change in complex biological systems.
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Gene expression is currently most often analyzed using microarrays. A microarray is

a chip of an arrayed series of thousands of microscopic spots of short segments of DNA or

RNA called oligonucleotides. These oligonucleotides are designed to bind mRNA, and the

bound oligos transmit a light signal which is detected. A series of needles controlled by

robotic arms are used to deposit these oligonucleoides into the designated locations on the

microarray chip. This resulting grid of oligonucleotides as in Figure 2.1 represents nucleic

acid profiles and can be used to measure the gene expression in terms of messenger RNA

(mRNA) or DNA. Gene microarrays can also be used to examine the global changes in

mRNA throughout different biological settings [11, 27].

Figure 2.1

Example of an approximately 40,000 probe spotted oligo microarray with enlarged inset
to show detail [39]

10



Two-dimensional gel-based electrophoresis (2D gel) and shotgun profiling methods

followed by mass spectrometry are widely used to identify the relative abundance of pro-

teins in complex biological samples [14]. Normally, there are two processes involved in

each of these proteomic techniques: separation of proteins in a complex protein mixture

and identification of the proteins. In a typical 2D gel-based approach, the proteins are

separated, visualized and digested into peptides and then identified by mass spectrometry

[38]. As Figure 2.2 shows, in both the 2D gel approach and shotgun approach, the protein

mixture is digested into peptides and the resulting peptides are separated using liquid chro-

motography. When the peptides elute from the chromotagraphy column, they are directly

subjected to mass spectrometry (MS/MS) for sequencing. A database approach is used to

identify the peptides based on tandem mass spectra assigned to each peptide and then used

to identify the proteins. 2D gel methods can be used to identify different protein isoforms,

and this cannot usually be done with shotgun proteomics [38]. Because of the large num-

bers of proteins that can be identified using the shotgun proteomics, this method is rapidly

gaining in popularity over 2D gels. However, both the protein identification techniques

provide complementary information about the biological samples.

It is important to be aware of the technical limitations associated with different plat-

forms for profiling gene expression. For example, one major limitation of microarray

experiments is that they can only detect genes with representative probes on the chip [11].

Mass spectrometry (MS) techniques for identifying proteins also have several limitations

including incompleteness and redundancy of protein sequence databases used for search-

ing MS spectra [38, 14]. In addition, the choice of the database and the search algorithm
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Figure 2.2

Protein identification methods from [38]
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can be crucial to the success rates of protein identifications [51, 49, 34]. Extracting quan-

titative information for low density peptides is also a big challenge as high abundance pro-

teins are preferably detected by liquid chromatography-mass spectrometry (LC-MS) [14].

Proper selection of samples is also equally important to generate accurate results. Because

different techniques for measuring gene and protein expression have different strengths

and limitations, reseachers are interested in integrating complementary data sets to achieve

a more complete picture of the complex biological systems they are investigating.

2.1.1 Linking heterogeneous datasets through identifiers

Once the microarray and proteomics experiments are completed, the next step is to

match the genes represented on different microarrays or match the genes with the corre-

sponding proteins identified in the proteomic datasets. Normally, commercial sources of

microarrays such as Affymetrix chips provide a list of sequences spotted in the array along

with GenBank accession number of the target RNA sequence, and brief functional annota-

tion for each probe [38, 11]. In proteomic experiments, each MS/MS spectrum is assigned

to a peptide, and the peptides are assembled to proteins using a variety of protein sequence

databases [38, 14]. The process of integrating different protein and/or transcriptomic data

sets is hindered by use of different accessioning schemes and lack of annotations. Re-

gardless of the platform, biologists have to perform some cross referencing or indexing

in order to know the corresponding protein sequence identifiers. There are several reg-

istered web sites available for cross-referenced annotations such as www.affymetrix.com

for Affymetrix array users [38]. Most typical identifiers refer to databases such as Swis-

13



sProt / TrEMBL (SPTR), NCBI, ENSEMBL and UniGene. However, there are several

drawbacks accompanied with the usage of most of these identifiers. For example, al-

though SwissProt (SP) is a very popular choice for spectral database searches as it has

highly curated data, generally it does not contain the complete set of proteins for many

organisms [11]. TrEMBL (TR) is the companion database for SwissProt, which contains

computer-annotated supplements for all the nucleotide translations which are not inte-

grated into SwissProt. Although, TrEMBL provides more extensive coverage, the TR

identifiers are frequently redundant, unannotated and continuously retired and replaced by

SwissProt IDs as the proteins migrate to SP. Most of the gene and protein databases suffer

from the similar kind of problems. Although NCBI has made an attempt to standardize

and reduce the ID redundancy by creating RefSeq (protein) and NM (mRNA) accession

systems, it still suffers from some of the above problems. UniprotKB is another database

which tries to assign a unique ID for transcripts, which makes the situation worse, because

sometimes they pick their own ID [1]. UniGene (www.ncbi.nlm.nih.gov) is a well anno-

tated database which can be used as a common reference in correlating mRNA and protein

data [42]. UniGene is generated from species-specific clusters created based on nucleotide

sequence similarity [38, 11]. Recently, there are a number of tools developed which have

the ability to link the probes from Affymetrix arrays to UniGene identifiers as well as to

connect the RefSeq protein database sequences to UniGene [31, 19].

The drawback of using UniGene is whenever new members are added to the collec-

tion, all the clusters are recalculated. During this process, some members of previous

clusters might move to new clusters and sometimes old cluster IDs are completely re-
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moved [11]. This leads to a problem of having legacy data sets. Therefore it is important

to make sure all UniGene clusters are built in the same date when linking data sets using

Uniene. Ensembl (www.ensemble.org) is also an annotation database which assigns IDs

in an effective manner. Ensembl IDs are assigned to genes/proteins if they can be asso-

ciated with an assembled genome which makes them a more stable, non redundant set of

identifiers [11]. For some instances, BLAST sequence alignment is the most suitable way

to link databases. Species-specific sequences can be downloaded for the relevant sequence

identifiers. Tools such as stand-alone BLAST or utilities like BioEdit [32] can be used to

perform searches referring to one sequence as the query and the other one as the subject.

BLAST results should be interpreted in terms of percent identity, sequence coverage and

e value threshold.

2.1.2 Correlating protein and microarray data

Several methods have been developed to perform integration and comparison studies am-

ong functional proteomics and gene expression data. However, the most fundamental

question is how these different patterns of gene expressions correspond to the protein

abundance in the cellular level [11]. A significant number of correlation studies compar-

ing gene expression and protein expression are reported in the literature. For example,

the study of Gygi et al. [23] reveals the correspondence between gene expression and pro-

tein in yeast by using protein and mRNA quantitation by collecting complementary data

for 156 genes. This experiment has shown a modest positive correlation of mRNA and

protein levels. Another group of researchers, Mootha et al. [36], tried to correlate the ex-
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pression patterns of mitochondrial proteins in mammalian tissues with public microarray

data. They used a simple test for concordance assigning a positive score for similar ex-

pression patterns in tissue for corresponding protein and mRNA expression and found 426

of 569 detected genes were concordant. However, there were several criticisms raised for

this experiment including the reliability of the scoring schema. On the other hand, there is

a bias in the data since the average mRNA abundance of the detectable proteins was found

to be nearly five-fold higher than for other mitochondrial genes. This suggests that only

high abundance gene products strongly correlate [36]. Griffin et al. [22] tried to determine

whether the changes in expression correlate at the protein and transcript levels between

two yeast populations grown in two different carbon sources. They collected complemen-

tary protein and mRNA abundance data for 245 genes during the experiment. Although

the genes linked to carbon metabolism showed some changes in abundance, there were no

relative changes in the protein levels or mRNA levels in similar magnitude.

Researchers have identified a number of reasons for the lack of a direct correlation be-

tween gene expression patterns and corresponding protein levels. One problem is that gene

expression patterns measured using mRNA do not take the influence of translational and

post-translational mechanisms into account [38, 36, 23, 22, 8]. For an example, a recent

study of protein abundance in yeast carried out by Ghaemmaghami et al. [20] reveals that

many essential proteins and transcription factors are present at levels that are not readily

predicted by mRNA levels. But still there are several important factors behind comparing

transcriptome and proteome beyond the traditional correlation analysis which consider the

relative levels of protein and mRNA detected for the same gene. For example, the stud-
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ies of Greenbaum et al. [21] revealed that there is a considerable similarity between the

transcriptome and proteome in terms of enrichment for specific structural and functional

properties. This sort of comparative analysis is immensely helpful in filling the knowledge

gap between proteomics and transcriptomics technologies. This type of knowledge will

provide biologists with knowledge needed to link gene and protein expression patterns

in different molecular pathways and to determine the suitability for using gene transcript

levels as a substitute for measuring protein activities [11]. The research we present adopts

the approach of integration at the functional level.

2.2 Gene Ontology (GO)

The most widely used method for specifying the function of gene products is the

Gene Ontology, and we use GO annotation to link heterogeneous datasets. The GO was

developed to facilitate integration of functional data into value-added databases. In 1998,

the representatives of Saccharomyces genome database, Drosophila genome database and

Mouse genome database founded the Gene Ontology (GO) Consortium and agreed jointly

to apply the same vocabulary to describe gene functions for every gene in the respec-

tive databases [29]. This project was a novel functional classification system because it

was implemented among cross-species for the first time. The members of GO consor-

tium are responsible for the design, development and implementation of publicly available

databases which consist of expertly-curated functional annotations using the GO. GO is a

hierarchical structure which is implemented as a directed acyclic graph (DAG) and con-

sists of well-defined terms and relationships. GO terms describe three attributes of genes
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and gene products: molecular function, biological process and cellular component. Mem-

bers of GO consortium ensure that the GO functional annotations consist of a controlled

vocabulary. Each annotation is associated with some kind of evidence which provides the

source of the annotation. The most common evidence code for annotations is IEA- inferred

by electronic annotation, which means that GO annotations depend on automated recog-

nition of functional motifs [6]. The GO annotations “Inferred from sequence or structural

similarities”, or ISS is mostly assigned by running BLAST searches. For all the other

evidence codes, annotations are assigned by curators using literature curation. Although

manual curation provides high quality GO annotations, it is a very time consuming task

and currently covers only a very small percentage of available annotations. An alternative

approach to obtain GO annotations is to use computational tools for text mining. Besides

the identification of annotations, these tools can locate their evidence in literature [10]. But

these interactive text mining programs result in very high error rates [43] and assignment

of GO annotations by human curators remains the “gold standard” [10, 13].

GO has become the standard method for describing function because it uses a common

vocabulary to describe the same gene functions across different species. This helps biol-

ogists overcome the difficulty of biological interpretation of large gene lists derived from

high throughput genomic and proteomic studies. Biologists can get their data annotated to

varying levels depending on the completeness of available information in GO [7]. Another

major use of GO is finding under-or over-represented GO terms associated with a dataset

in microarray analysis [17, 5]. This use of the GO has led to many arguments in the lit-

erature because these analyses are not based on the quantitative values on the microarray,
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but rather on counts of GO terms. However, ultimately, researchers use GO as a vital

tool which enables turning data into knowledge. GO annotation has become the standard

for functional annotation, and its usage is growing exponentially [7]. Computer scientists

have made significant contributions to the development of computational tools that assign

and analyze functional annotations and help to track related literature [17, 5, 10, 43, 13].

2.3 Functional level mappings

Many computational tools have been developed to facilitate interpretation of biolog-

ical data in“batch” mode [4]. Most of these tools provide the user with functional an-

notations for each gene, summarize which genes are associated with specific biological

processes, and rank these processes by over-representation analysis. Some of the tools

which address this issue include, but are not limited to, GoMiner, DAVID, EasyGO, GO-

stat, GeneTools, AgBase [4, 55, 3, 35, 12, 26]. Although these tools are useful, they lack

the ability to mine many-to-many gene-to-term relationships found in functional annota-

tion databases, as well as the ability to condense redundant contents [12]. For example,

individual genes can be associated with several biological terms, and those individual bi-

ological terms can be associated with several genes. Huang et al. [12] developed the

tool DAVID, which uses a novel agglomeration algorithm that can extract this complex

and redundant relationship by taking advantage of exploratory statistical methods. Their

method identifies groups of genes sharing the same biological terms or groups of biolog-

ical terms sharing similar genes and organizes them into biological modules. This is a

powerful method to group functionally related genes and terms into biological modules
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and has several advantages. First, it largely reduces redundant results into a manageable

size while enhancing the understandability by visualizing gene-to-gene, term-to-term and

gene-to-term relationships. Therefore investigators can quickly apply the information in

a module to their study. Second, it is much easier to relate biological modules of interest

to a study than it is to relate hundreds of individual terms. The database for annotation,

visualization and integrated discovery (DAVID) has two implemented tools. One is gene

functional classification tool, and the other one is functional annotation clustering tool, and

both provide a module centric approach for functional analysis of large gene sets. DAVID

is a user friendly, well-documented tool with an easily navigatable interface. DAVID ac-

cepts a range of different gene identifiers. After the user uploads the set of gene identifiers,

DAVID converts those identifiers into its own DAVID identifiers before further processing.

The drawback is sometimes DAVID does not have compatible identifiers for each of the

identifiers uploaded by the user. Therefore the user cannot take maximum advantage of the

functionalities implemented. DAVID displays results in a clear text and graphical formats.

The unique fuzzy heat map visualization provides a clear global view of group-to-group

relationships.

2.4 Computing the similarity of genes based on GO annotation

Researchers try to understand various aspects of relationship between gene function,

gene expression and gene annotation. Most of the genomic studies are driven based on the

assumption that functionally and biologically related genes would have similar expression
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levels and gene ontology (GO) annotation [50]. This thesis focuses on how to explore gene

similarity with respect to the semantic similarity of GO annotations.

Semantic similarity is a concept which describes the closeness of the relationship of

GO terms in the GO hierarchical structure. The inverse of semantic similarity is semantic

distance. There are a number of different methods available to calculate the semantic

similarity among GO terms. One of the early techniques considers the path distances

between GO terms [44]. Computation of the similarity merely considers the minimum

number of edges that need to be traversed from one node to the other. The shorter the

path between two GO terms, the more similar they are. However this edge-based method

is implicitly based on the assumption that all the edges represent uniform distances and

all nodes in the taxonomy are evenly distributed and have similar densities which is not

necesarily true in the GO structure [46].

Instead of defining the similarity based on the structure of the GO, it is also possible

to consider the information contained at the nodes based on the concepts in information

science [2]. The information content of a node can be computed based on the known

probability of each node within a lexical corpus. For example, the lexical corpus for a

given organism is comprised of its GO annotations, and we can compute the probability

of each term within the ontology [33]. When we traverse higher in the GO hierarchy, the

probability increases and those top nodes are less informative. When we traverse deeper in

to the GO hierarchy, the nodes have lower probabilities and therefore higher information

content. This is very apparent because as we move up the GO taxonomy, the nodes are

more general. Once the information content of the nodes are quantified, we can compute
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node-based similarity measures. There are number of methods available to make use of

information content of GO terms in order to compute the similarity between pairs of gene

products including Resnik et al. [45], Jiang et al. [24] , Lin et al. [30].

The method developed by Resnik et al. relies on the notion of the shared information

content of nodes as the basis for the semantic similarity measure. Information content

P (c) of particular node can be computed as the negated log of the likelihood as,

P (c) = − log [p(c)] . (2.1)

According to Resnik et al., semantic similarity between two nodes can be defined

as information content of their minimum subsumer. Whenever there is more than one

minimum subsumer, as often happens in the GO due to multiple inheritance, the most

informative subsumer is choosen. Equation (2.2) defines the similarity between two GO

terms,

sim(c1, c2) = − log [pms(c1, c2)] , (2.2)

where c1 and c2 are GO terms, and pms(c1, c2), is the probability of minimum subsumer.

We focus on comparing two gene products rather than GO terms as explained above.

Resnik et al., defines similarity between two genes, g1 and g2, as the maximum similarity

found between any two GO terms and the formula is given as,

sim(g1, g2) = max [sim(c1, c2)] (2.3)

where c1 ∈ A(g1), c2 ∈ A(g2), and A(g1) and A(g2) are the GO annotations of genes g1

and g2 respectively.
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Jiang et al. proposes a similarity measure which is a mixed approach inherited from

an edge-based method and is enhanced by the information content calculation methods.

In addition to the information content, the other factors such as local density, node depth,

and link type are also being considered. The overall edge weight wt for a child node c and

its parent node a is defined as,

wt(c, a) =

(
β + (1− β)

Ē

E(a)

)(
d(a) + 1

d(a)

)α
[log (p(a))− log (p(c))]T (c, a) (2.4)

where d(a), denotes the depth of the node a, E(a), the number of edges in the child links

(local density), the average density in the whole hierarchy, − log(p(c)) and − log(p(a))

the information content of nodes c and a, and T (c, a) the link relation/type factor. α and

β are two weighting constants.

The overall distance between two nodes dist(g1, g2) is defined as

dist(g1, g2) =
∑

wt(c, a)

c ∈ {path(c1, c2)−MS(c1, c2)} (2.5)

where path(c1, c2), is the set that contains all the nodes in the shortest path from c1 to c2.

One of the elements in the set is MS(c1, c2) which denotes the lowest subsumer of c1 and

c2 [24].

Lin et al. also defines an information theoretic similarity measure which is applicable

to different domains. When it is applied to GO, the similarity would be defined as:

sim(g1, g2) =
2 log(pms(c1, c2)

log(p(c1)) + log(p(c2))
(2.6)

where c1 ∈ A(g1), c2 ∈ A(g2).
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There are number of studies available in the literature which investigate the utility

of the above three measures to compare GO semantic similarity and its correlation to

gene expression similarities and protein sequence similarities. Sevilla et al. [50] computed

the similarities between genes based on the correlation between their expression profiles

(calculating the Pearson correlation coefficient or its absolute value). Then they annotated

the gene products to GO terms and computed semantic similarity using three similarity

measures described above. Finally they analyze the correlation between the expression

similarity of gene products and corresponding semantic similarity. They conclude that the

Resnik semantic similarity clearly outperforms both Jiang’s and Lin’s semantic measures

and suggests that Resnik’s similarity measure is well suited for Gene Ontology.

Wang et al. [54] also evaluated above three different methods of semantic similarity

measures and showed that Resnik’s method is better than other methods in terms of the

correlation with gene sequence similarities and gene expression profiles.

Another study carried out by Lord et al. [33] investigated the three measures to com-

pare semantic similarities of GO and its correlation to protein sequences. They also re-

ported that the Resnik measure may be the most discriminatory while Jiang distance shows

the weakest correlation.
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CHAPTER 3

APPROACH

3.1 Background and hypothesis

Biologists attempt to understand complex biological processes through the analysis of

gene expression at either the mRNA level, protein level, or both. DNA microarray analysis

is used to measure mRNA abundance, and quantitative MS/MS based proteomic analysis

is used to measure protein abundance in biological samples. Since microarray technol-

ogy is technically more advanced, it allows monitoring of RNA expression levels for a

significantly larger number of genes than can be identified in a typical proteomics ex-

periment [38]. Microarrays can also be effectively used for the analysis of alternative

splicing and genome annotation. Often several different gene expression experiments are

conducted over time and there is a need to integrate the data from multiple experiments.

However, there may be changes in the arrays used for the experiments and in the exper-

imental design and so there may not be a straightforward mapping from one dataset to

the other. RNA expression levels alone are not sufficient to understand protein expres-

sion and function because the mRNA levels do not reflect post-transcriptional regulatory

mechanisms such as protein translation, post translational modifications etc. Proteomics

experiments can provide this sort of information. There are two commonly used tech-

nologies for studying protein expression–gel based proteomics and shotgun proteomics.
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Shotgun proteomics experiments will typically detect many more proteins than gel-based

experiments but shotgun proteomics cannot detect isoform differences or be able to dis-

tinguish proteins from large gene families. Therefore, there is often a need to combine

data from multiple gene expression experiments, multiple proteomics experiments, or a

combination.

Currently, the most popular approach to integrate these transcriptional and proteomic

data sets is to cross-reference the data sets through a common ID such as SwissProt,

Trembl, Ensembl etc. This approach is hindered by the lack of a standard accessioning

scheme and lack of relevant annotations. Different protein sequence databases use unique

accessioning schemes. The degrees of sequence annotations also usually do not allow an

easy cross reference between either different protein sequence data bases or protein and

genomic databases. Therefore it is very difficult to obtain a complete set of matching IDs

during the process of linking transcriptomic and proteomic data sets. This problem partic-

ularly troublesome when the organism being studied is not sequenced or has only recently

been sequenced and the structural annotation is quite immature. In addition, researchers

have found only a weak correlation between gene expression measured at the mRNA level

and protein level even under very highly controlled conditions in well-studied organisms

[20] .

This thesis presents a high level approach to solve the problem of dataset integration

by obtaining a set of functional annotations for each of the datasets and mapping from

items in one dataset to items in the other dataset based on GO annotations. The strength

of the relationships between elements in the heterogeneous data sets is determined by the
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gene similarity measured based on similarity of GO annotations. The groups of genes

or proteins with similar functional annotations are obtained by applying a hierarchical

clustering algorithm.

Hypothesis: Integration of heterogeneous gene expression datasets by mapping at the

functional level using a hierarchical clustering algorithm can provide additional useful

biological information that cannot be easily obtained by mapping at the identifier level.

3.2 Steps in the approach

Firstly, functional annotations for genes and/or proteins in the two datasets will be ob-

tained and stored in a mapping file containing corresponding gene identifiers and GO

terms along with their evidence codes. The GO Consortium reports associations be-

tween gene products and GO identifiers regularly, and this type of information is available

through a number of websites including AgBase (www.agbase.msstate.edu), EMBL-EBI

(www.ebi.ac.uk), and TAIR (www.arabidopsis.org). We used the GO annotations stored

in a statistical package called GOSim.

Next the similarity between individual GO terms will be computed based on well

known information theoretic similarity measures introduced by Resnik [45] using Equa-

tion (2.2).

This comptutation of GO term similarity requires the information content of each GO

term for the three GO categories: molecular function, biological process and cellular com-

ponent. The information content of GO terms is precomputed using Equation (2.1) and

stored in data files in order to speed up computation of GO term similarity.
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As the third step, the similarity among the genes in each individual data set and the sim-

ilarity of genes among combined data set is computed based on the similarities of their GO

annotations using the Equation (2.3). We are using GOSim (www.dkfz.de/ mga2/gosim)

for steps 2 and 3 [18].

Figure 3.1 shows an example of two sets of artificial Arabidopsis gene identifiers that

were processed using the three steps above. Table 3.1, Table 3.2, and Table 3.3 display

the gene similarity matrices obtained for data set 1, data set 2 and the combined data set

respectively.

The final step of the implemented method is to apply a hierarchical clustering algo-

rithm to group similar elements into clusters. Hierarchical clustering creates a hierarchy

of clusters which may be represented in a tree structure called a dendrogram. The hierar-

chical clustering algorithm that we used is an agglomerative algorithm. It begins with each

element as a separate cluster and merges them into successively larger clusters based on the

distance measure. The distance measure determines the simlarity of two cluster elements;

in our case the similarity matrix is generated based on the similarity of GO annotations of

each pair of gene products. Figure 3.2, Figure 3.3, and Figure 3.4 show the cluster dendro-

grams obtained by applying the hierarchical clustering algorithm to the similarity matrice

given in Table 3.1, Table 3.2, and Table 3.3 respectively. These clusters provide the map-

pings between the data sets at the functional level. Data set 1 generates two clusters and

Data set 2 generates 3 clusters. The GO annotations for the clusters in both datasets and

combined data set are shown in Table 3.4, Table 3.5 and Table 3.6 respectively.
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Figure 3.1

Two data sets consist of Arabidopsis gene identifiers
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This small example demonstrates our method for constructing clusters from combined

gene/protein expression data sets. Similarity measures between the proteins/genes in the

two sets will be computed based on their functional annotations, and these will be used

to establish similar clusters and thereby identify corresponding functional groups in the

datasets.
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Figure 3.2

Cluster dendrogram for the Arabidopsis Data set 1
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Figure 3.3

Cluster dendrogram for the Arabidopsis Data set 2
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Table 3.4

GO annotations for the two clusters in Arabidopsis dataset 1

Data set 1
Cluster 1 Cluster 2

ID GO ID GO term ID GO ID GO term
267050 at GO:0003723 RNA 264929 at GO:0004033 aldo-keto

binding reductase
activity

257081 at GO:0005515 Protein 262913 at GO:0016491 oxido-
binding reductase

activity

264875 at GO:0005515 Protein 267181 at GO:0016491 oxido-
binding reductase

activity

257291 at GO:0003677 DNA 264266 at GO:0004722 protein
binding serine/

threonine
phosphatase
activity

260645 at GO:0005488 binding 267627 at GO:0008026 ATP–
dependent
helicase
activity
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Table 3.5

GO annotations for the three clusters in Arabidopsis dataset 2

Data set 2
Cluster 1 Cluster 2

ID GO ID GO term ID GO ID GO term
264168 at GO:0030528 transcription 257215 at GO:0005515 Protein

regulator binding
activity

266130 at GO:0003677 DNA 267147 at GO:0016491 oxido-
binding reductase

activity
263135 at GO:0016491 oxido-

reductase
activity

266871 at GO:0003723 RNA
binding

260638 at GO:0005488 binding
Cluster 3

ID GO ID GO term
264911 at GO:0004033 aldo-keto reductase activity

257050 at GO:0004722 protein serine/threonine
phosphatase activity

257648 at GO:0008026 ATP–dependent helicase activity
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Table 3.6

GO annotations for the two clusters in Arabidopsis combined datasets

Data set combined
Cluster 1 Cluster 2

ID GO ID GO term ID GO ID GO term
267050 at GO:0003723 RNA 264929 at GO:0004033 aldo-keto

binding reductase
activity

266871 at GO:0003723 RNA 264911 at GO:0004033 aldo-keto
binding reductase

activity
257215 at GO:0005515 Protein 263135 at GO:0016491 oxido-

binding reductase
activity

257081 at GO:0005515 Protein 267147 at GO:0016491 oxido-
binding reductase

activity
264875 at GO:0005515 Protein 262913 at GO:0016491 oxido-

binding reductase
activity

257291 at GO:0003677 DNA 267181 at GO:0016491 oxido-
binding reductase

activity
266130 at GO:0003677 DNA 264266 at GO:0004722 protein

binding serine/
threonine
phosphatase
activity

260645 at GO:0005488 binding 257050 at GO:0004722 protein
serine/
threonine
phosphatase
activity

260638 at GO:0005488 binding 267627 at GO:0008026 ATP–
dependent
helicase
activity

257648 at GO:0008026 ATP–
dependent
helicase
activity

40



Figure 3.4

Cluster dendrogram for the combined Arabidopsis data set
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CHAPTER 4

RESULTS AND EVALUATION

In Chapter 3 we described a new approach that we have developed for integrating mul-

tiple gene expression datasets. In this chapter we describe experiments we have designed

and conducted to test the following hypothesis:

Integration of heterogeneous gene expression datasets by mapping at the functional

level using a hierarchical clustering algorithm can provide additional useful biological

information that cannot be easily obtained by mapping at the identifier level.

4.1 Experiments

We demonstrate our method by applying it to two different biological problems– pro-

tein expression during de-differentiation in Arabidopsis and gene expression in different

corn lines upon infection by a fungus. In each case, we have two datasets available. We

were unable to obtain gene expression and protein expression data for the same biolog-

ical experiment. Instead, we use two proteomic data sets and two gene expression data

sets. The same approach can also be applied to combine a gene expression data set with a

protein expression data set.
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4.1.1 Arabidopsis Experiment

Dr. Zhohua Peng provided us with two proteomics datasets from Arabidopsis. Analysis of

these two datasets has been previously published [9]. The proteomics datasets represent

up regulated proteins from a de-differentiation experiment in Arabidopsis where protein

identification was done using two different technologies: shotgun proteomics and 2D gel

electrophoresis. Cell de-differentiation is a process of switching the cell fate. During this

process, cells undergo genome reprogramming to regain the competency of cell devision

and organ regeneration [9]. These proteins were chosen as an input to our experiment due

to their availability and the author’s familiarity with their data formats. Initially there were

193 Arabidopsis up regulated proteins identified by shotgun proteomics and 26 proteins

up regulated identified by the 2DE gel approach. We mapped those proteins to Arabidop-

sis Affymetrix probe identifiers for input to the GOSim statistical package(www.dkfz.de/

mga2/gosim). After the mapping, we obtained 95 differentially expressed proteins identi-

fied by shotgun proteomics and 20 differentially expressed proteins identified by 2DE gels.

Of these proteins, only one protein was identified by both techniques. Therefore, little in-

formation for integration of the data sets is obtained by matching identifiers. From this

particular experiment, biologists try to understand the reasons for recognizing different

set of proteins using two different protein identification techniques in the same biological

sample.

GO annotations for molecular function and biological process stored in GOSim were

used to annotate these two different Arabidopsis sets of differentially expressed proteins.

We produced clusters based on the gene similarity of three different datasets: a set of pro-
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teins identified by shotgun proteomics, and a set identified by 2DE gels, and the combined

set. Protein similarity matrices were then computed using GOSim for each data set alone

as well as for the combined data set.

Finally, each of the individual similarity matrices and the combined similarity ma-

trix were used as input to the clustering algorithm. The hierarchical clustering algo-

rithm we used is an agglomerative algorithm that builds the hierarchy from the individ-

ual elements by progressively merging clusters. We chose the complete linkage clus-

tering method. Complete linkage computes the distance between two clusters as the

maximum distance between any pair of elements in the clusters. The clustering den-

drograms generated based on the similarity of GO molecular function annotation sim-

ilarity are shown in Supp Gel up mf Arab.pdf, Supp Shotgun up mf Arab.pdf and Su-

pp Combined up mf Arab.pdf (http://agbase.msstate.edu/Education/clt183 SuppFiles.pdf).

4.1.2 Maize Experiment

In our second experiment, we tested our hypothesis with two differentially expressed

gene expression data sets from corn. In each set, the genes expressed in one maize line

(Mp313E) were compared to the genes expressed in another maize line (Va35) when both

were inoculated with the fungus Aspergillus flavus. Mp313E is considered to be resis-

tant to infection by Aspergillus while Va35 is considered to be susceptible. Two Maize

Unigene 1-1.05 arrays from the University of Arizona (www.maizearray.org) were used to

evaluate differential expression. The first dataset using the MGDP Zea Mays Unigene 1-

1-05 maize microarray-GEO accession GPL6092 was conducted from a field experiment
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in 2003 when samples were collected 2 days post infection. The second dataset using

Maize Oligonucleotide Array version 4 was conducted from a field experiment in 2004

when samples were collected 4 days post infection. It is important to note that the first

array has about 5000 probes while the second array contains about 32000 probes. The

microarray for the 2-day post infection experiment contains a subset of the sequences on

the array used for the 4-day post infection experiment. Analysis of the microarray for

the 2-day post infection maize experiment resulted in 129 upregulated ESTs((Expressed

Sequence Tag)) for Mp313E compared to VA35, and analysis of the microarray for the

4-day post infection corn experiment resulted in 234 upregulated ESTs. Then we obtained

nucleotide sequences for those ESTs from www.ncbi.nlm.nih.gov and ran the BLAST al-

gorithm on these EST sequences against Arabidopsis Affymetrix sequences in order to get

the matching Arabidopsis probe identifiers to use as input to GOSim. BLAST resulted

in 82 matching Arabidopsis probe IDs for the 2-day data and 203 Arabidopsis matching

probe IDs for the 4-day data.

We then obtained biological process GO annotations for the Affymetrix probes and

generated gene similarity matrices using GOSim for each of the individual data sets and

for the combined data set created by combining the 2-day and 4-day data.

Then the gene similarity matrices were used as inputs for the clustering algorithm.

Thus the resulting clusters are based on the functional similarity of genes. The dendro-

grams resulting from the clustering algorithm for the combined data set is as in Supp-

Combined up bp Maize.pdf (http://agbase.msstate.edu/Education/clt183 SuppFiles.pdf).
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4.2 Results and Analysis

In this section we discuss the results of applying our method to the Arabidopsis and

Corn data sets. The clustering results were analyzed by our biology collaborators.

4.2.1 Arabidopsis Results Analysis

Dr. Zhaohua Peng from the Department of Biochemistry and Molecular Biology provided

us with the Arabidopsis datasets and assisted us with the analysis. We produced the clus-

ters based on highly expressed proteins identified using two different protein identification

techniques, shotgun proteomics and 2D gel electrophoresis, in an Arabidopsis cell dedif-

ferentiation experiment. We generated the clusters for the gel data set and proteomics data

set alone as well as for the union of the two data sets. All clusters were generated based

on the Gene Ontology Molecular Function.

The 2DE gel data had substantially fewer proteins. The resulting dendrogram for the

gel data alone has four small, tight clusters as in Table 4.1. Mainly those clusters are

formed based on the similarities of GO terms such as protein binding, nucleotide bind-

ing, and enzyme activities. The clusters in supplementary file Supp gel up mf Clusters-

Arab.pdf (http://agbase.msstate.edu/Education/clt183 SuppFiles.pdf) has all set of gel cl-

usters and those are labeled based on their position in the combined dendogram. The gel

dendrorgam generated by the hierarchical algorithm is in Supp Gel up mf dendro Arab.p-

df (http://agbase.msstate.edu/Education/clt183 SuppFiles.pdf).

The dendrogram generated for the shotgun data alone has several clusters as in the

Table 4.2. The largest cluster consist of 28 proteins (cluster 5) and formed based on the
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similarity of the GO term-structural constituent of ribosome. There are 3 little, very dis-

tinct clusters (cluster 1-3) formed based on the similarity of the GO terms such as nutrient

reservoir activity, electron carrier activity and hydrogen ion transporting ATP synthase

activity as shown in the Table 4.2. There are also some tight clusters from cluster 9-11

formed based on the GO term similarity of ATP binding, protein binding and calmod-

ulin binding. All shotgun clusters generated based on Molecular Function GO annota-

tion similarity are listed in the supplementary file Supp shotgun up mf Clusters Arab.pdf

(http://agbase.msstate.edu/Education/clt183 SuppFiles.pdf). Those clusters are labeled ba-

sed on their position in the shotgun dendogram in the supplementary file Supp Shotgun-

up mf dendro Arab.pdf (http://agbase.msstate.edu/Education/clt183 SuppFiles.pdf).

The dendrogram for the combined data set maintains the same overall structure of

clusters as in the dendrogram for the shotgun data set alone. This is probably due to

the higher number of proteins identified by shotgun method compare to 2DE gel method.

There are several clusters in the combined dendrogram which are exclusively formed of

shotgun proteins as shown in supplementary file Supp Combine up mf Clusters Arab.pdf

(http://agbase.msstate.edu/Education/clt183 SuppFiles.pdf). For example, as in Table 4.3,

clusters consist of tubulin proteins (cluster 4) and dehydrogenase family proteins (cluster

13) are not uniquely identified by 2DE gel. They all identified only by shotgun proteomics.

One reason for having a small number of proteins identified by 2DE gel is due to a de-

cision made by biologists during their dedifferentiation experiment. Although initially

there were lots of differentially expressed proteins identified by 2DE gel, most of them

were discarded because they are mixtures of multiple proteins. Therefore, the number of

51
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differentially expressed proteins identified using the 2DE gel approach was small. Mean-

while, shotgun method identified a lot more proteins overall. Cluster 5 as in Table 4.3 is a

large cluster which contains ribosomal proteins and all of them are identified by shotgun

proteomics except one. The only gel protein in cluster 5 is an expressed protein, and it

was not included in a cluster in the dendrogram generated only for gel data. But in the

combined dendrogram, it was clustered with other ribosomal proteins. This is one good

example of the advantage of combining the data sets. Once the data sets are combined,

they form bigger, more meaningful clusters which reveal more useful biological infor-

mation. The dendrogram generated for the combined data set is in the supplementary file

Supp Combined up mf dendro Arab.pdf (http://agbase.msstate.edu/Education/clt183 Su-

ppFiles.pdf).

Most of the proteins found in small, highly associated clusters in 2DE gel dendrogram

remained together in the combined dendrogram. Some of them are mixed with the proteins

identified by shotgun proteomics in a reasonable way to form bigger, meaningful clusters

in the combined dendrogram. For example, cluster 9 as in Table 4.3 in the combined den-

drogram was formed based on GO terms such as protein binding and calmodulin binding.

This is a mixture of both gel and shotgun proteins, but predominantly gel proteins. These

types of binding proteins are highly abundant in the cell and have many close gene family

members. High sequence similarity among these proteins makes the shotgun identifica-

tion inaccurate due to common peptides of multiple proteins. Therefore 2DE gel had the

advantage of identifying these type of binding proteins. Combined cluster 10 as in Ta-

ble 4.3 is also an example for a mixture of proteins identified by each technique. It mostly
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consists of heat shock proteins which are stress related proteins. The reason for having a

lot of heat shock proteins could be the stress in the plant cells during the process of cell

dedifferentition as it was induced by high levels of hormones, which exceeded the growth‘

inhibition concentration. At the same time, the tissues were excised from the plants to

induce dedifferentiation, which was also a stress. Alternatively, a large number of proteins

are synthesized during cell dedifferentiation, the heat shock proteins may be involved in

protein folding. We can derive more biological information from the combined clusters

rather than looking at the clusters in individual dendrograms for each data set.

Cluster 11 as in Table 4.3 is also another prominent cluster containing mixture of

proteins. That cluster is formed based on the GO terms related to enzymic activity, and it

also consists of proteins identified by both identification techniques.

There are few distinct clusters formed in the combined dendrogram which are not

present in either of the individual dendrograms such as for the GO term chlorophyll bind-

ing. These new information help biologists to explore more aspects about the biological

system.

4.2.2 Corn Results Analysis

The results of clustering the maize datasets have been analyzed by our collaborators. Both

clusters based on the Gene Ontology Molecular Function and on Biological Process were

generated. Those based on Biological Process proved to be most useful to the biologists

for analysis. The USDA Corn Host Plant Resistance Laboratory developed the resistant

maize line Mp313E and they also generated the gene expression data used in our study.
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We produced clusters based on the genes that are significantly more highly expressed in

the resistant line Mp313E compared to the susceptible line Va35 upon inoculation with

Aspergillus flavus at a 2-day and a 4-day time point. Many genes known to be involved in

response to stress were found in the up-regulated set.

The biologists found the combined clustering to be very informative in conveying the

biological processes at work in the resistant line upon infection. We provide a short sum-

mary of their analysis of selected clusters. The clusters in supplementary file Supp Com-

bine up bp Clusters Maize.pdf (http://agbase.msstate.edu/Education/clt183 SuppFiles.p-

df) has all the set of Maize clusters and those are labeled based on their position in the com-

bined dendogram. The combined dendrorgam generated by the hierarchical algorithm is

in Supp Combined up bp dendro Maize.pdf (http://agbase.msstate.edu/Education/clt183

SuppFiles.pdf). Cluster 6 as in Table 4.4 contains four genes (one from the 2-day set and

three from the 4-day set) that are involved in cell signaling. It is clear from this cluster and

from several others that cells in the resistant infected plants are actively signaling other

cells. Cluster 7 as in Table 4.4 contains only one gene, and we have typically ignored one-

gene clusters. However, this gene was up-regulated in both the 2-day and 4-day datasets.

The gene in this cluster is involved in autophagy, the process by which the cell breaks

down its own components for reuse [32]. Autophagy is also known to play a protective

role against infection by causing cell death at the infection site, preventing its spread into

uninfected tissue [40]. Cluster 8 as in Table 4.4 has two genes from the 4-day dataset that

both contribute to vacuole organization and acidification. An acidic pH in the vacuole is

essential for protease activity (breaking down proteins) and protease activity is critical for
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disease resistance [52]. Fungal infection leads to acidification of the vacuole and activa-

tion of protease enzyme activity [47]. Cluster 9 as in Table 4.4 is a mixture of genes from

the 2-d and 4-d datasets that are involved in microtubule formation. Microtubes play key

roles in intracellular transport, cell wall synthesis and in the adaptive response of plants to

pathogen infection [28]. Cluster 10 as in Table 4.4 is a group of genes from both the 2-day

and 4-day datasets involved in response to auxin stimulus. Auxin is a hormone produced

by both plants and some fungi including Aspergillus flavus [15]. Therefore, it seems

likely that these genes are activated in corn in response to auxin produced by the fungi.

One of the genes specifically represses auxin-induced gene expression. Clusters 11 and

12 as in Table 4.4 are involved in regulation of stomatal movement. The openings on leaf

surfaces used for gas exchange are called stomata. These provide an easy point of entry

for an invading fungus and the maize plant may be reacting to the infection by closing the

stomata. Many of the other clusters involve genes that have been implicated in previous

research in providing defense mechanisms for plants. Thus, by combining the two datasets

at the functional level, the biologists are able to gain a more comprehensive view of the

biological processes that are activated in the resistant maize line upon inoculation with the

fungus.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

This chapter summarizes the findings of the results obtained by integrating heteroge-

neous data sets at the functional level using a hierarchical algorithm. Directions of future

research are also discussed in terms of possible enhancements and additional experiments

that can be performed.

5.1 Summary of Results

We developed a method to integrate heterogeneous data sets by mapping at the func-

tional level using a hierarchical clustering algorithm. In our method, Gene Ontology anno-

tations are obtained for each dataset and the datasets are combined. The distance between

all genes/proteins in the combined set is computed based on their GO similiarity. GO sim-

ilarity is computed using an information theoretic approach described by Resnik [45] and

implemented in the GOSim package (www.dkfz.de/ mga2/gosim). These similarity values

are used to construct a distance matrix that is used as input for a hierarchical clustering

algorithm. We have used complete link clustering. The resulting clusters represent groups

of genes/proteins that are similar at the functional level.

We tested our method using two experiments: one experiment used two corn gene

expression data sets and the other used two Arabidopsis proteomic data sets. Results
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produced by both experiments confirm that our method of integrating heterogeneous data

sets provides additional biological information which cannot be obtained by mapping at

the identifier level.

In both the experiments, we generated the clusters for each individual data set as well

as for the union of the data sets by merging each of the two individual data sets.

Most of the proteins or genes which did not belong to any of the clusters in clusters

generated from individual datasets, grouped into meaningful clusters in the combined data

set. This provides the biologists with additional information for exploring the biological

systems they are studying. The biologists analyzing the results found clusters generated

from the Biolgoical Process hierarchy to be more useful than those generated from Molec-

ular Function hierarchy.

The Arabidopsis dataset combined proteins from two types of proteomics experiments

based on the same biological samples–2D gels and shotgun proteomics. According to

the biologist’s analysis, the combined clusters integrate information about the abundant

proteins identified by 2D-gel electrophoresis with those identified by the more sensitive

shotgun proteomics approach. The combined clusters provide a more comprehensive view

of the processes that are up-regulated during cell dedifferentiation in Arabidopsis.

The maize experiment combined two gene expression datasets that used samples from

different growing seasons and were based on two different arrays. The corn genitists

also confirm that the combined clusters of two gene expression dataset reveal additional

information than can be obtained by either individual dataset.
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5.2 Future Research

One aspect of the proposal was not implemented in the current work: modeling of

many to many correspondences between genes/proteins in the similarity matrix using a

weighted bipartite graph. A bipartite graph is an undirected graph where the vertices are

partitioned into two disjoint sets and edges only connect vertices from different sets. To

integrate two datasets, the genes/proteins from each dataset becomes a vertex set and edges

between the vertices are weighted by the gene similarity computed. Afterwards, functional

co-clusters can be obtained by applying graph partitioning technique such as minimum

cut algorithm to the bipartite graph. This will be an alternative method to the current one,

which is supposed to result similar genes or proteins in groups at the functional level. We

can compare the results of each method and use the best for biological analysis.

We used an R package GOSim to calculate semantic similarity among heterogeneous

data sets. The only plant identifiers currently supported by GOSim are Arabidopsis Affy-

metrix probes. Therefore we had to map both our maize EST sequences and Arabidopsis

protein identifiers to Arabidopsisprobe ids to calculate similarities among Arabidopsis data

sets. We plan to develop a custom interface to GOSim which enables the user to upload the

GO annotations for any preferred species. This will make our method easier for biologists

to use and will also provide more accurate results.

Finally, we would like to demonstrate that our method can be effectively used to inte-

grate proteomic and transcriptomic data sets from the same or similar biological datasets.

Dr.Olga Pechanova has protein expression data from cob tissue from the the same line of
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corn (Mp313E) infected with Aspergillus and when this data becomes available, we will

integrate it with the gene expression we already have in hand.

We plan to publish two papers from this work. The first will be submitted to a bioin-

formatics journal and will describe the new method. The second will be a detailed analysis

of the clustering results for the Maize data and will be submitted to a biological journal.
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