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CHAPTER I

INTRODUCTION

1.1 Motivation

Autonomous driving research efforts have been signifcant for quite some time. The au-

tonomous driving system has many levels where the vehicle can be either partially or fully

automated. An automated vehicle can have multiple abilities. It can identify and localize

objects as well as can do path planning and free space mapping. Some other important

applications are collision avoidance, automated emergency braking, blind spot warning,

adaptive cruise control, lane departure warning, rear cross traffc warning, etc., to name a

few. All of these applications are developed to avoid accidents, minimize damage to the

car if an accident can’t be avoided, and protect against loss of life and valuable property.

These systems must to be highly reliable, operate in real–time, and be robust. To imple-

ment these systems, various sensors such as cameras, Light Detection and Ranging sensors

(LiDARs), radars, ultrasonic sensors, etc. have been used. Among all these sensors, the

LiDAR uses time–of–fight measurements from short laser pulses to accurately estimate

ranges and angles to points in the environment. Since the LiDAR is an active device, it

can perform well under low lighting, different temperatures and fog, rain, etc. weather

scenarios. It is used in various autonomous driving system development due to its unique

advantages.
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1.2 Overview of the problem

This thesis work has been done for a research project funded by a tier one industrial

company where the goal was to establish an autonomous driver assistance system for their

industrial vehicle. The system has been developed to use an eight–beam Quanergy M8

LiDAR on an industrial vehicle to quarantine certain areas with valuable assets. I have

developed a machine–learning classifcation system for object detection based on three-

dimensional (3D) LiDAR. The proposed real–time system operates a LiDAR on an indus-

trial vehicle. I have developed a set of 3D hand–crafted features which will be used in

classifcation. Those features were used with a linear Support Vector Machine (SVM), a

non linear kernel and multiple kernel learning (MKL) classifer. Finally the raw LiDAR

data were used with a 2D CNN deep learning (DL) performance for this classifcation

scenario. At the end results from multiple data collections are analyzed and presented.

Moreover, the feature effectiveness and the pros and cons of the approach are examined.

1.3 Contributions

In this research work, multiple classifers have been implemented for the 3D LiDAR

object detection problem. At frst, the linear Support Vector Machine (SVM) has been

utilized for the hand–crafted features. The SVM performed very well in real–time for a

limited number of features. Examination of the optimal linear features reveals that these

features are not truly linearly separable. The next classifers examined were two nonlinear

SVM machines using multiple kernel learning (MKL). The multiple kernel approach has

the advantage of combining more than one kernel for improved results, which is a diffcult

2



problem, because choosing a specifc kernel for a specifc problem is not trivial. Both the

single kernel and multiple kernel approaches performed better than the SVM as the data

is nonlinear. As deep learning (DL) is a novel research topic for machine learning and

shows phenomenal performance and results for classifcation, it was also implemented.

All the state–of–the–art LiDAR point cloud data are classifed using a convolutional neural

network (CNN). Most of these methods are applied to a thirty–two or sixty–four beam

LiDARs. As an eight–beam Quanergy M8 LiDAR was used for this research, the point

cloud data were not as dense as the other LiDAR datasets thus, making it diffcult to use a

3D CNN. A very basic 2D CNN was used for classifcation with the sparse LiDAR data.

The 2D CNN implementation was successful but it did not outperform the SVM and MKL.

There might be various solutions for this issue among which choosing the right parameters

and tweaking the CNN can be one of the options. This thesis provides a comparison of the

linear SVM, two nonlinear MKL, and CNN methods for the stated problem. In conclusion,

my contributions are as follows:

1. An effcient method to extract features from 3D lidar data using a very sparse eight–
beam LiDAR.

2. A system implemented in real–time that uses a linear SVM for discrimination of
beacons in an industrial setting.

3. Examination of two MKL methods that provide higher accuracy results using a
smaller number of features than the linear SVM.

4. An effcient method of transforming 3D LiDAR point clouds into 2D multi–channel
imagery processed by a CNN.

3



CHAPTER II

BACKGROUND

2.1 Object Detection and Classifcation

One of the greatest (and still unsolved) challenges of computer vision is object de-

tection. The objective of object detection is to identify and localize an object within an

image. There are various methods and approaches which attempt to solve the object de-

tection problem. Conservative model adaptation method in [6] identifes the worst case

of adaptation process for object detection by calculating the maximum cross-entropy er-

ror. The conservative model adaptation then can be transformed into the classic min-max

optimization problem. From there it is easier to fnd the adaptation parameters which

minimize the maximum of the cross–entropy errors of the cover. A binary classifcation

can be done by that adapted object detector. Different researchers have worked on de-

tection for different objects. Pedestrian detection research [10] offers the opportunity to

study diverse approaches of object detection. All these approaches use a sliding window

paradigm. These methods then go through the steps of feature extraction, binary classif-

cation and dense multi–scale scanning of detection windows followed by a non maximum

suppression. There are various detectors that can be applied in this scenario such as Viola

and Jones (VJ), SHAPENET, Pose-Invariant (POSEINV), Histograms of Oriented Gradi-

ents (HOG), Multi-feature (MULTIFIR) and many more [10]. These examples show that
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various detection problems can be approached by a variety of detectors. The appropriate

detector then can be determined by comparing the performances of these detectors. Clas-

sifcation is closely related to detection. It is generally the labelling of an object which

needs to be detected. There are many data classifcation methods described in [27]. The

popular traditional methods are the decision tree, Bayesian networks (BN), Support Vector

Machine (SVM), boosting, bagging, k-nearest neighbor (KNN) classifer etc. [15]. More

modern methods use deep learning, neural networks (NNs), etc., which learn the features

directly from the data instead of developing hand-crafted features. A few of the established

classifcation methods are explored in the next sections.

2.1.1 Decision Tree Classifer

Decision tree classifers have been applied in many diverse areas such as radar signal

classifcation, character recognition, remote sensing, medical diagnosis, expert systems,

speech recognition etc. [36]. It breaks up a complex decision into a combination of sev-

eral more simple decisions. The fnal solution obtained by this method would resemble

the intended and desired solution. One of the main features of decision tree classifer is

the fexibility of using different feature subsets and decision rules at different stages of

classifcation. It also has the capability of trade offs between classifcation accuracy and

time/space effciency. In a tree classifer, a data sample is tested against only certain sub-

sets of classes. It eliminates unnecessary computations of each data sample testing against

all classes compared to other classifers. Decision trees have several shortcomings despite

of performing well on some classifcation problems. Decision trees can have overlapping

5



in case of large number of classes. Thus the number of terminals will be larger than the

number of actual classes. It will eventually increase the search time and memory space

requirements.

2.1.2 Bayesian Network Classifer

In a Naive Bayesian Classifer (NBC) the main assumption indicates that every attribute

i.e., every leaf in the network is independent from the rest of the attributes where the state

of the class is variable [14]. It calculates the correlation between the dependent target

and other independent variables [15]. This classifer is a probabilistic model and it tries

to fnd the probability of a certain class in multiple disjoint events. The NBC is applied

to learning tasks where each instance x is described by a conjunction of attribute values.

The target function f(x) can take on any value from some fnite set V . A set of training

examples of the target function is provided. The learner is asked to predict the target value

for this new instance. It is a representation of the joint distribution over all the variables

represented by nodes in the graph. The Bayesian Network has the possibility of taking into

account prior information about a given problem. An important advantage of Naive Bayes

is that the simple structure lends itself to comprehensible visualizations. It can also handle

incomplete data sets. This classifer is used when there is large amounts of data and the

attributes are independent of each other. It can provide more effcient output.

2.1.3 Support Vector Machine

The support vector machine (SVM) is a machine learning technique utilized for mul-

tiple group classifcation problems [8]. The general idea of a SVM classifer is to input

6



vectors that are non-linearly mapped to a very high dimensional feature space. In this

feature space a linear decision surface is constructed which ensuring high generalization

ability. The support-vector network was initially been implemented for the restricted cases

where the training data can be separated without errors. Later it has been extended to non-

separable training data. The SVM can be applied for highly complex decision surfaces

in a high (even infnite) dimensional space. This algorithm is often compared to other

techniques such as linear classifers, KNN classifers and NNs.

2.1.3.1 Linear Support Vector Machine (SVM)

In this section, a simple example of linearly separable two-class data is given to explain

the linear SVM [42]. Figure 2.1 shows two linearly separable sets with the separating hy-

perplane shown. Let us consider the binary classifcation case with a set of training patterns

xi, i = 1,....,n. They are assigned to either of the two classes ω1 and ω2, with corresponding

labels yi = ±1. The discriminant function of the SVM is used for classifcation, and is

denoted by

g(x) = ωT x + ω0 (2.1)

where if g(x) < 0 then the object is decided as class +1 or ω1, otherwise, it is decides as

class −1 or ω2.

A separable set of points can be classifed with many (potentially infnite) separating

hyperplanes. The margin is the sum of the distances from the separating hyperplane to the

closest example from class ω1 and the closest example from class ω2. The maximal margin

7



classifer determines the hyperplane for which maximizes the margin. The assumption is

that the larger the margin, the better the generalization error of the linear classifer defned

by the separating hyperplane. A variant of the perceptron rule introduces a margin b > 0 

to seek a solution so that

yi(ω
T xi + ω0) ≥ b (2.2)

Assuming linearly separable data, then the perceptron algorithm provides a solution

for which all points, xi are at a distance greater than or equal to the separating plane.

Therefore, without loss of generality, a value b = 1 may be taken which will defne the

canonical hyperplanes, H1: ωT x + ω0 = +1 and H2: ωTx + ω0 = −1. From here it can be

written

ωT xi + ω0 ≥ +1 for yi = +1 
(2.3)

ωT xi + ω0 ≤ −1 for yi = −1 

Maximizing the margin implies that we seek a solution that minimizes ω subject to the

constraints

C1 : yi(ωT xi + ω0) ≥ 1 i = 1, ..., n (2.4)

A standard approach to optimization problems with equality and inequality constraints

is the Lagrange formalism which leads to the primal form of the objective function, Lp 

given by

8



X∂Lp
n 

= ω − αiyixi = 0 
∂ω 

i=1 

X∂Lp
n 

= − αiyi = 0 
∂ω0 i=1 

X∂Lp
n 

= − αiyi = 0 
∂ω0 i=1 

yi(xi
T ω + ω0) − 1 ≥ 0 

αi ≥ 0 
9

X1 n 

Lp = ωT ω − αi(yi(ω
T xi + ω0) − 1) (2.5)

2 
i=1 

To solve the equation, we differentiate Lp with respect to ω0 and ω and equate to zero. It

yields

nX 
αiyi = 0 (2.6)

i=1 

nX 
ω = αiyixi (2.7)

i=1 

The Kuhn–Tucker conditions provides suffcient and necessary conditions for minimiz-

ing an objective function subject to inequality and equality constraints. In the primal form

of the objective function these conditions are

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)



αi(yi(xi
T ω + ω0) − 1) = 0 (2.13)

The condition 2.13 is known as the Karush-Kuhn-Tucker condition. It implies that for

active constraints αi ≥ 0; otherwise for inactive constraints αi = 0.

Figure 2.1 Linearly separable two-class SVM example.

2.1.3.2 Kernel (Non–Linear) Support Vector Machine (SVM)

The SVM can also be applied to non–linear classifcation problem. The simplest repre-

sentation is the previously mentioned binary classifcation problem [42]. Here the support

vector algorithm can be applied in a transformed feature space, φ(x), for some nonlinear

function φ. The discriminant function can be written as

10



X XX 
LD = 

n 

αi − 
1 n n 

αiαj yiyj φ
T (xi)φ(xj ) 

2 
i=1 i=1 i=1 

g(x) = ωT φ(x) + ω0 (2.14)

where the decision rule is,

ωT φ(x) + ω0 > 0 for yi = +1 
(2.15)

ωT φ(x) + ω0 < 0 for yi = −1 

The dual form of the Lagrangian equation for this case becomes

(2.16)

Here, yi = ±1, i = 1,..., n are class indicator values and αi, i = 1,...., n are Lagrange

multipliers satisfying
nX 

αiyi = 0, 0 ≤ αi ≤ C (2.17)
i=1 

for the regularization parameter, C. Maximizing 2.16 subject to the constraints 2.17 leads

to support vectors identifed by nonzero values of αi. The solution for ω is,

X 
ω = αiyiφ(xi) (2.18)

i∈Sν 

Optimization of LD and the subsequent classifcation of a sample relies only on scalar

products between transformed feature vectors, which can be replaced by a kernel function

K(x, y) = φT (x)φ(y) (2.19)

11



This is called the kernel trick where, because one can avoid computing the transforma-

tion φ(x) explicitly and replace the scalar product with K(x,y) instead. The discriminant

function becomes

X 
g(x) = αiyiK(xi, x) + ω0 (2.20)

i∈Sν 

Some common types of kernels that may be used in an SVM are given in the table 2.1.

Table 2.1 Support vector machine kernels.

Nonlinearity Mathematical form
Simple polynomial T(1 + x y)p 

Polynomial (r + γxT y)p, γ > 0� � 
Gaussian −|x−y|2 

exp 
σ2 

Sigmoid tanh(kxT y − δ) 

Here p, r, γ, σ, δ and k are variable terms that are used for the mathematical expres-

sions.

2.1.3.3 Multiple Kernel Learning (MKL)

Another classifcation technique is the kernel method which is used for pattern recog-

nition problems in machine learning. There is generally no way to predict the best kernel

for a particular problem and thus multiple kernel learning (MKL) is used to learn the ag-

gregation of a set of valid kernels into a single (ideally) superior kernel [31]. Recently it

has been studied that using multiple kernels instead of a single one can improve the over-

all performance [18] depending on the dataset. There has been a signifcant amount of

research on multiple kernel methods. Many researchers have worked toward developing
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an algorithm that can automatically determine which kernels are useful and then combine

them. An effcient and general MKL algorithm has been proposed in this paper [39]. This

approach makes the MKL applicable for large scale problems by iteratively using exist-

ing support vector machine algorithm. Its downside is that this iterative algorithm needs

several iterations before converging towards a reasonable solution.

One MKL approach implements an adaptive 2–norm regularization formulation [34].

Weights on each kernel matrix are included in the standard SVM empirical risk minimiza-

tion problem with a l1 constraint which encourages sparsity. An algorithm is proposed for

solving this problem. It provides an new insight on MKL algorithms based on block 1–

norm regularization. The resulting algorithm converges rapidly and its effciency is good

compared to other MKL algorithms. It is shown that the proposed algorithm [34] gives

equivalent accuracy performance results while selecting more kernels than the available

semi–infnite linear problem (SILP) MKL algorithm. Two MKL formulations are explored

in this paper [31] which focus on aggregation using the Choquet fuzzy integral (FI) with

respect to a fuzzy measure (FM). The p-norm GA MKL (GAMKLp) approach learns an

MKL classifer using a genetic algorithm (GA) and it then generalizes p-norm weight do-

main. These algorithms perform a feature-level aggregation of the kernel matrices and

produces a new feature representation.

A decision-level MKL called DeFIMKL is also proposed here [31]. It learns an fuzzy

measure (FM) with respect to the Choquet FI to fuse decisions from individual kernel

classifers. Two additional decision-level methods are explored here [31] based on a least-

squares formulation. In the decision level least-squares MKL (DeLSMKL) they computed
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the weights for decision values from an ensemble of classifers using a closed form ex-

pression. This method expanded using a nonlinear cost function and a GA to compute

the weights in decision-level GA MKL (DeGAMKL). A downside of MKL methods is

the necessity to store multiple kernel matrices. The size of kernels is directly related to

the number of feature vectors in the dataset. Thus, approximating the kernel matrices that

reduce the required number of values to store allows MKL methods to be used for the large

datasets. A leading machine learning MKL method is called MKL group lasso (MKLGL)

[45] which is applied on several benchmark datasets.

To understand this algorithm consider some nonlinear mapping function φ : xi → 

φ(xi) ∈ RK
D , where DK is the dimensionality of the transformed feature vector φ(xi) [31].

Following ref. [31], for brevity, φ(xi) will be denoted as φi. With kernel algorithms, one

does not need to explicitly transform xi, one simply needs to represent the dot product

φ(xi) · φ(xj ) = k(xi, xj ). The kernel function k can take many forms, with the polynomial

k(xi, xj ) = (xi
T xj + 1)p and radial-basis-function (RBF) k(xi, xj ) = exp(σ|xi − xj|2) 

being two of the most well known. Given a set of n feature vectors X , one can thus con-

struct an n × n kernel matrix K = [Kij = k(xi, xj )]n×n. This kernel matrix K represents

all pairwise dot products of the feature vectors in the transformed high-dimensional space

HK - called the Reproducing Kernel Hilbert Space. We will assume that the kernel K is

composed by a weighted combination of precomputed kernel matrices, i.e.,

mX 
K = σkKk (2.21)

k=1 

where there are m kernels and σk is the weight applied to the k-th kernel.
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2.1.4 Deep Learning

In recent years, deep learning (DL) has been widely used in research felds such as

computer vision (CV), speech recognition, natural language processing, radar signal pro-

cessing, etc [4]. The NN is an established section of artifcial intelligence that has been

revived due to algorithmic advancements, high performance computing, big data, etc. In

other classifers the algorithm needs hand-crafted or human-made features where in the DL

method the algorithm learns the features itself and often produce equivalent or better re-

sults. Convolutional Neural Networks (CNNs) have a known grid-like topology [19]. Con-

volutional networks have been tremendously successful and widely implemented in practi-

cal applications. There are many DL approaches that have been used for various problems.

The main four of them are CNN, autoencoder (AE), deep belief networks (DBNs) and

recurrent NN (RNN) [4]. The CNN is the most popular, established and published DL

method among them. The following subsections discuss each of these architectures at a

high level.

2.1.4.1 Convolutional Neural Network (CNN)

A neural network is very loosely inspired by the functionality and structure of a brain

and the visual system. This defnition of a neural network is adapted from the book [1].

“A neural network is a massively parallel distributed processor made up of simple process-

ing units that has a natural propensity for storing experiential knowledge and making it

available for use. It resembles the brain in two respects:
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1. Knowledge is acquired by the network from its environment through a learning pro-
cess.

2. Interneuron connection strengths, known as synaptic weights, are used to store the
acquired knowledge.”

A CNN is constructed of different layers to get the classifcation output. A very basic

structure of CNN classifer is to take the input image, pass it through a series of convo-

lutional, nonlinear, pooling and fully connected layers and typically a softmax classifer

layer at the end [9]. The output can be a single class, multiples classes, and it might also

contain the probability of classes that best describes the image. Designing and tuning dif-

ferent parameters of those layers is the tricky part and it impacts the output. A classic CNN

architecture would look as shown in Figure 2.2.

Figure 2.2 A classic CNN architecture.

The convolution layers learn patterns from the data. The pooling layer keeps only the

maximum convolution responses. It then provides inputs to the following convolutional

layers at a different scale which allows the CNN to learn a hierarchy of flters. A rectifed

linear unit (ReLU) zeros inputs below zero and thus allows only positive inputs through. It

is a simple and effcient function to evaluate and is therefore very popular in DL architec-

tures. The fully connected layers let the CNN learn complicated patterns from their inputs.

The softmax layer is a form of probabilistic classifer.
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2.1.4.2 AutoEncoder (AE)

An AutoEncoder (AE) is primarily used for unsupervised learning of effcient codings

from unlabeled data [4]. It can also be used as a denoising mechanism. Its advantage is

that the codings often reveal useful features from unsupervised data. In an AE, the size of

the adjacent layers is reduced which forces the AE to learn a compact representation of the

data. The AE maps the input through an encoder function f to generate an internal (latent)

representation, or code, h. The AE also has a decoder function, g that maps h to the output

x. There are many applications of auto encoders. In [3], a formal connection between fea-

tures learned by regularized auto–encoders and sparse representation is establishes. They

combined existing AEs and activation functions by bringing them under a unifed frame-

work but also uncovered more general forms of regularizations and fundamental properties

that encourage sparsity in hidden representation. It also yields new insights into AEs and

provides novel tools for analyzing regularization/activation functions that help predicting

whether the resulting AE learns sparse representations.

2.1.4.3 Deep Belief Network (DBN)

A deep belief network (DBN) is a probabilistic graphical model (PGM) which can also

be called a deep neural network. It is a deep or large directed acyclic graph (DAG) [4]

which combines the probability and graph theory. In this network the data can fow both

ways and training can be either bottom-up or top-down.
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2.1.4.4 Recurrent Neural Network (RNN)

Connections between units create a directed cycle in recurrent neural network. It is nor-

mally used on speech and time-series analysis. The RNN has persistence due to its lack of

memory which makes it different than the AE and CNN. An important milestone for RNNs

is the utilization of long short–term memory (LSTM) unit [37] which allows information

to be written in a cell, output from the cell and also store in the cell. It allows the fow

of information which ultimately counteracts the vanishing/exploding gradient problems in

very deep networks.
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CHAPTER III

LIDAR OBJECT CLASSIFICATION USING SUPPORT VECTOR MACHINE (SVM)

3.1 Abstract

The target of this research is to develop a machine-learning classifcation system for

object detection based on three-dimensional (3D) Light Detection and Ranging (LiDAR).

The proposed real-time system operates a LiDAR on an industrial vehicle and provides

a 3D point cloud for spatial sensing. I have developed 3D features which allow a linear

Support Vector Machine (SVM) as well as Multiple Kernel Learning (MKL) to determine

if objects in the LiDARs feld of view are beacons (a passive, highly–refective object

used to mark boundaries in an industrial application) or other objects (e.g. people, build-

ings, equipment, etc.). Results from multiple data collections are analyzed and presented.

Moreover, the feature effectiveness and the pros and cons of the approach are examined.

3.2 Introduction

There has been a signifcant increase in intelligent vehicle research in the automobile

industry over the last century. Intelligent vehicle research has expanded to the point where

human factors are merging with intelligent–vehicle technology to create a new generation

of driver assistance systems that go beyond automated control systems by attempting to

work in harmony with a human operator [29]. ADAS (Advanced Driver Assistance Sys-
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tems) is the set of systems and subsystems on the way to a fully automated highway system

[5]. ADAS is very similar to the automatic pilot in airplanes. ADAS covers many areas,

including blind spot detectors, Adaptive Cruise Control, Autonomous Intelligent Cruise

Control, platoon driving, etc., to name a few. Many of these technologies are either in-

vented and available on the market or ready to be marketed. Some systems are developed

but still under test as a prototype. With the increased popularity of ADAS [16], many

researchers are diverting their interest toward object detection and classifcation using sen-

sors, e.g., cameras, radars, LiDARs, etc. There are some existing methods of driver assis-

tance systems based on computer vision [20]. Exclusively vision–based systems are not

capable enough to perform all driving assistance relevant tasks, especially in bad weather.

Most researchers are combining different types of sensors like ultrasonic, radar and LiDAR

to extend the range of sensor information available for building a reliable system.

In an industrial environment it is often required to keep certain areas off limits to ve-

hicles for protection of people and valuable assets. Herein, a system is developed to use

an eight–beam Quanergy M8 LiDAR on an industrial vehicle to quarantine certain areas

via beacons that delineate a noentry area. The beacons are made of standard orange traffc

cones with a highly refective vertical pole attached at top. This unique structure of the

beacon makes it easier to classify and detect it among other objects present in the environ-

ment. The LiDAR performs well regardless of lightening condition, temperature or bad

weather such as fog, rain, etc. It can readily detect these beacons but might suffer from

false positives due to other refective surfaces such as worker safety vests or vehicles. All

the classifcation algorithms have been designed and implemented considering the above
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mentioned restrictions. The detection system is applied in real-time scenario on a LiDAR

attached to an industrial vehicle. Next in this chapter different established algorithms that

use linear and non-linear (kernel) classifers are discussed. The proposed method is de-

scribed in detail to explain the construction of the algorithms. The environment for object

detection for this case is unique comparing other regular outdoor environment. The data

that has been used for training and testing the system were collected by some graduate stu-

dents of Electrical and Computer Engineering department at Mississippi State University.

In the fnal section, all the plots and outputs from training and testing the algorithm are

discussed.

3.3 Related work

LiDAR detection offers some advantages as well as some diffculties in classifcation.

The main obstacle is the sparse 3D point cloud which makes it tough to classify and detect

objects reliably. There are several research articles where the LiDAR 3D point cloud data

is processed for classifcation. One approach [26] introduced an improved eigen–feature

analysis of weighted covariance matrices with a Support Vector Machine (SVM) classifer.

They used airborne LiDAR point cloud data for classifcation in urban areas. The target is

to generate reliable eigen–features from a point cloud to improve classifcation accuracy.

Each point in the local point set is assigned a weight to represent the spatial contribution of

the point. Point density has computational effciency and this property has been leveraged

here by introducing point density in the weighting function. It ultimately approximates the

area of surface occupied by a point. Moreover, the geometric median is used instead of
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the sample mean in calculating the covariance matrix. The geometric median and point

weights have been obtained by an iterative solver. The experimental results are based on

the simulated point cloud. The eigen values obtained from their proposed weighted covari-

ance matrix improves classifcation accuracy compared to the eigen values calculated from

the standard covariance matrix. In another approach, the feature vectors are classifed for

each candidate object with respect to a training set of manually labeled object locations

[17]. The authors of this paper experimented with several classifers including a k-nearest

neighbors (NN) classifer with k = 1 and k = 5, random forests, and SVM with penalty

C = 2.5 and 5th order polynomial kernels. One technique [43] uses an environmental

change detection pipeline to perform in real-time on distorted 3D point clouds with slow

acquisition rate in cluttered environments. Points are classifed with a learning-based algo-

rithm which achieves robustness to noisy point clouds and under-sampled reference maps.

This method achieves high classifcation performance despite the low amount of labeled

training data. Most of the available methods on LiDAR data classifcation are implemented

on a high–density (high beam count) LiDAR. We are using eight–beam Quanergy M8 Li-

DAR which collects comparatively scarce point cloud data. So, these methods could not

be successfully implemented in our system with an eight–beam LiDAR.

3.4 Proposed Method

Quanergy’s M8 LiDAR is a compact and rugged sensor which is designed to meet the

demands of the most challenging real–world applications. It has multiple laser beams and

Time–of–Flight (TOF) range measurement to provide 3D point clouds for spatial sensing.
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The sensor functions same under any lighting, temperature and weather condition including

rain, snow and dust. The basic specifcations of the Quanergy M8 LiDAR are given in the

following table.

Table 3.1 Quanergy M8 LiDAR key specifcations.

Item Specifcation
Frame Rate (Update Frequency) 5-20 Hz
Range 1 to 150 m
Azimuth Angular Resolution 0.03 - 0.2 dependent on frame rate

Field of View (FOV)
Azimuth: 360◦ 

Vertical: 20◦ (+3◦ / −17◦)

Data Outputs
Angle, Distance, Intensity,
Beam Number, Synchronized Time Stamps)

Environmental Protection
IP69K - rating for ingress protection
against dust and water)

Operating Wavelength 905 nm
Laser Class Class I (Eye Safety IEC 60825-1)
Nominal Power Consumption 18W @ 24VDC
Startup Sequence 45 seconds
Operating Temperature -20C to +60C (-4F to +140F)

Certifcations and Compliance
FDA, FCC, CE, RoHS, WEEE,
IEC -60079-15, ASTM G154)

3.4.1 Ground Point Removal

The major issue with the ground points is that it creates false positives from the refec-

tions of highly refective paint or other refective objects on the ground. In addition, it can

interfere with feature extraction. There are many examples of ground point removal from

areas with varying ground conditions. Wang et al. [41] addresses a novel ground fltering

method called SLSGF which uses scan line information in LiDAR data for segmenta-

tion. The bright side is that its parameters are insensitive and robust to noise. Separating
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point clouds into ground and non-ground points is a necessary step to generate digital ter-

rain model (DTM) from LiDAR dataset. Another paper [35] proposes a new method for

ground fltering of LiDAR data based on multi–scale analysis of height difference thresh-

old. It utilizes three windows with different sizes in small, average and large to cover the

entire LiDAR point clouds. A height difference threshold then separates point clouds to

ground and non–ground in each local window. The best threshold values for size of win-

dows are determined based on physical characteristics of the ground surface and size of

objects. Another approach [32] relies on Demspter–Shafer Theory to model the occupancy

induced by the LiDAR data in a point cloud and then detect whether the point is dynamic

or static. Since this industrial application has a smooth, fat area for the ground, we em-

ploy a simple vertical threshold to remove ground points. For this particular application

complex ground removal algorithm was not necessary, since it is an industrial application

and the ground is very fat. In this case, a simple vertical threshold was utilized to remove

ground points. Other algorithms, similar to those mentioned above, could be used if the

environment was more complex.

3.4.2 Clustering

In this approach, after ground point removal, the bright (e.g. high-intensity) points are

clustered. The idea is that most surfaces return very low–intensity points, so the beacon,

which has a tall and thin, highly–refective pole, returns many bright points. In this manner,

the clutter is signifcantly reduced except for certain other objects such as people wearing

safety vests with retro-refective markers.
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Algorithm 1: LiDAR bright pixel clustering.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Input: LiDAR point cloud P = {xj , yj, zj , ij , rj } with NP points.

Input: High–intensity threshold: TH .

Input: Cluster distance threshold: � (meters).

Input: Ground Z threshold: TG (meters).

Remove all non–return points (NaN’s).

Remove all points with intensity < TH .

Remove all ground points (Z–values below TG).

Cluster bright points:

for each point Pj in the modifed point cloud do

if The point does not belong to a cluster then

Add point to cluster

Increment the number of clusters: cl ← cl + 1.

Assign the point to cluster cl.

Set the centroid of cluster cl to the point.

Scan through all remanining points and recluster if necessary.

if Distance from point to centroid of cluster cl < � then

Add Pm to cluster cl and recalculate centroid. Recalculate centroid of

cluster cl.

end

end

end
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Partitioning and hierarchical algorithms are two basic types of clustering [22]. From

the paper [11] , partitioning algorithm constructs a partition of a database D of n objects

into a set of k clusters. CLARANS (Clustering Large Applications based on RANdomized

Search) algorithm is introduced in paper [30] which is an improved k-medoid method.

CLARANS is more effective and more effcient than previous k-medoid algorithms. There

are some more clustering algorithms which are developed over time to perform accurately

and effciently. In the paper [11], a clustering algorithm called DBSCAN is introduced. It

relies on a density–based notion of clusters. It requires only one input parameter and with

that it supports the user in determining an appropriate value for it. For our data processing

we have used a modifed DBSCAN clustering algorithm [11] which clusters based on point

cloud density as well as intensity to cluster the bright points, as shown in algorithm 1. The

cluster parameter � was experimentally determined to be 0.5m based on the structure of

the beacon. It was chosen as 0.5m because values larger than that could group two nearby

beacons (or a beacon and another nearby refective object) together into one cluster which

is not desired.

In Equation 1, the distances are estimated using Euclidean distances with only the x 

(front-to-back) and y (left–to–right) coordinates. This algorithm clusters bright LiDAR

points by projecting them down onto the x − y plane. This approach is more computation-

ally effcient than using all three coordinates in the clustering algorithm.
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3.4.3 Feature Extraction

Ground points have been removed before extracting the features. The point intensities

are then compared to an empirically determined threshold. The beacon is designed so that

it provides brighter returns to the LiDAR comparing other traffc cones and random objects.

As noted above, there are also objects in the scene that can have high returns, such as other

industrial vehicles with retro–refective markings, shiny surfaces of the vehicles or workers

wearing safety vests with retro–refective stripes. In order to classify objects as beacons

and non-beacons, hand–crafted features are utilized. Ground removal leaves us with bright

points coming from objects rather than the ground. The points closer in the bright point

cloud are clustered. After clustering the beacons appear as tall, thin objects, whereas all

other objects are either not as tall, or wider. People with refective vest have closer structure

to a beacon, but a beacon is much taller and does not have the horizontal extent that people

do. Features are extracted around the cluster center in a small rectangular volume which

is centered at each object’s centroid. Another feature extraction is done using a larger

rectangular volume which also centers around the object’s centroid. The idea is that the

beacon mainly has points in the inner rectangular area, while other objects will have points

extending in the areas outside of the inner area.

These features include the number of bright points in each region, determining the x, y,

and z extents (e.g. max value minus min value) of the points in each region, etc. Beacons

mainly have larger values in the smaller region, while other objects also have values in the

larger regions. Figure 3.1 shows the detection regions from a top–down view. The centroid
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of the bright regions is shown as the dot in the fgure. The dimensions of the region were

determined by experimental analysis of returns from beacons and non–beacons.

Figure 3.1 LiDAR detection regions (inner and outer) visualized from a top–down view.
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Algorithm 2: LiDAR high–level feature extraction preprocessing.

1

2

3

4

5

6

7

8

9

10

Input: LiDAR point cloud P = {xj , yj, zj , ij , rj }.

Input: Low and high–intensity thresholds: TL and TH .

Input: Ground Z threshold: TG (meters).

Output: Feature vector f.

Remove all non–return points (NaN’s).

Remove ground points: Remove points with Z < TG.

Create threshold point clouds:

Set PHT = ∅ and PLT = ∅.

for each point Pj in the modifed point cloud do

if Point Pj has intensity ≥ TH then

Add Pj to PHT .

if Point Pj has intensity ≥ TL then

Add Pj to PLT .

Extract features f using Algorithm 3.
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Algorithm 3: LiDAR feature extraction.

1

2

3

4

5

6

7

8

Input: LiDAR high–intensity point cloud PHT = {xj , yj , zj , ij , rj }.

Input: LiDAR low–intensity point cloud PLT = {xj , yj , zj , ij , rj }.

Input: Inner region x and y extents: ΔxI and ΔyI (meters).

Input: Outer region x and y extents: ΔxO and ΔyO (meters).

Input: LiDAR height above ground: ZL = 1.4 (meters).

Output: Feature vector f.

Cluster the high–intensity point cloud:

Calculate features:

for each cluster center point c = (xC , yC , zC ) in the point cloud do

Determine points in PHT 

17 from Table 3.2.

Determine points in PHT 

from Table 3.2.

Determine points in PLT 

in inner region using Eq. 3.1 and calc. feature 1,13 and

in the outer region using Eq. 3.2 and calc. feature 4

in the inner region using Eq. 3.1 and calc. features

6,7,9,10,11,14,16 and 18 from Table 3.2.

Determine points in PLT in the outer region using Eq. 3.2 and calc. features

2,3,5,8,12,15,19 and 20 from Table 3.2.

Return f = [f1, f2, f3, · · · , f20].
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The two regions are shown with bounding boxes in Figure 3.1. The idea of using an

inner and an outer analysis region is that a beacon will mostly have bright points located

in the inner analysis region, while other objects, such as humans, other industrial vehicles,

etc., will extend into the outer regions. Equations 3.1 and 3.2 defne whether a LiDAR point

pj with coordinates (xj , yj , zj ) is in the inner region or outer region, respectively, where

the object’s centroid has coordinates (xC , yC , zC ). Reference Figure 3.1 for a top–down

illustration of the inner and outer regions.

Figure3.1 shows an example beacon return with the analysis windows superimposed.

Both the inner and outer analysis regions have x and y coordinates centered at the centroid

location. The inner analysis region has depth (x coordinate) of 0.5 meters, width (y coor-

dinate) of 0.5 meters, and the height includes all points with z coordinate values of -1.18

meters and above. The outer region extends 2.0 meters in both x and y directions and has

the same height restriction as the inner region. These values were determined based on the

dimensions of the beacon and based on the LiDAR height. The parameters ΔxI , ΔyI and

zMIN defne the inner region relative to the centroid coordinates. Similarly, the parameters

ΔxO, ΔyO and zMIN defne the outer region relative to the centroid coordinates.

A point is in the inner region if
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� � � � 
ΔxI ΔxI 

xC − ≤ xj ≤ xC + and 
2 2 � � � � 

ΔyI ΔyI 
yC − ≤ yj ≤ yC + and (3.1)

2 2 

zMIN ≥ zj , 

and a point is in the outer region if

� � � � 
ΔxO ΔxO 

xC − ≤ xj ≤ xC + and 
2 2 � � � � 

ΔyO ΔyO 
yC − ≤ yj ≤ yC + and (3.2)

2 2 

zMIN ≥ zj . 

Table 3.2 describes the extracted features. Herein, extent means the maximum value

minus the minimum value, e.g. Z extent is max {Z} - min {Z}. It is noted that many

features were examined and they each had different abilities to discriminate the beacons

from non–beacons. For the LiDAR, beam 7 is the upper–most beam, beam 6 would be

horizontal (assuming the LiDAR is level with the ground), and beam 0 the closest beam to

the LiDAR. The beam spacing is approximately 3 degrees per beam.
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Table 3.2: Feature Descriptions. HT/LT = High/Low thresh-

old data.

Feat.

#

Data

Subset

Analysis

Region
Description

1 HT Inner Extent of Z in cluster.

2 LT Outer Max of X and Y extents in cluster, beam 7.

3 LT Outer Max of X and Y extents in cluster, beam 5.

4 HT Outer Max{Z in cluster - LiDAR height}.

5 LT Outer Extent of Z in cluster.

6 LT Inner Number of valid points in cluster, beam 7.

7 LT Inner Max of X and Y extents in cluster, beam 6.

8 LT Outer Number of points in cluster, beam 5.

9 LT Inner Extent of X in cluster.

10 LT Inner Number of points in cluster, beam 4.

11 LT Inner Number of points in cluster, beam 5.

12 LT Outer Number of points in cluster, beam 6.

13 HT Inner Number of points in cluster, beam 6.

14 LT Inner Max of X and Y extents, beam 5.

15 LT Outer Pts. in cluster divided by cluster radius, beam 5.

16 LT Inner Extent of X in cluster.

Continued on next page
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Table 3.2 – Continued from previous page

Feat.

#

Data

Subset

Analysis

Region
Description

17 HT Inner Number of points in cluster, beam 7.

18 LT Inner Number of points in cluster.

19 LT Outer Number of points in cluster.

20 LT Outer Extent of Z in cluster.

To determine the best features, a simple (but sub–optimal) feature selection process

was performed. Each feature was evaluated on the training set for its ability to distinguish

beacons from non–beacons using a measure of classifer performance, which is a score

from 0 to 1,000, where higher numbers indicate better performance, as shown in eq. 3.3.

TP TN 
score = 500 + 500 (3.3)

TP + FN TN + FP 

where TP , FP , TN and FN refer to the number of true positives, false positives, true neg-

atives and false negatives, respectively [25]. The score increases as TP and TN increase,

and decreases with bad decisions, which cause FP or FN to increase.

After the features are scored, they are sorted by ascending order of score, and concate-

nated one at a time until the level of performance desired is achieved.
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3.4.4 Support Vector Machine (SVM)

The goal always has been to train a linear SVM which can distinguish beacons from

other objects (e.g., humans, cars, buildings etc.). To do this the extracted features from the

LiDAR detections are stored in a vector f . The SVM then computes discriminant function,

which is the dot product of the weight vector and the training features. It then adds a bias

term to allow the hyperplane to move and not have to be anchored to the origin. The SVM

weights are learned by the SVM training, which uses labeled samples and an optimization

routine to fnd the weight set that maximizes the SVM margin. If the discriminant value, d,

is less than zero then SVM results indicate that the LiDAR sensor detected a beacon. Else

the SVM results indicate that the LiDAR did not detect a beacon.

The feature vector is given by

f = [f1, f2, ..., fM ]
T (3.4)

where fk is the k-thfeature, T denotes a matrix transpose, and M is the number of features

(M = 20). The discriminant is calculated as

d = ωT f + b (3.5)

where

ω = [ω1, ω2, ..., ωM ]
T (3.6)
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is the vector of optimal SVM weights and b is the bias term. The weights ωx and bias term

b are derived from the training data. The SVM discriminant function is used to differentiate

beacons from non-beacons. The Matlab toolbox liblinear [12] is used for this processing.

The liblinear toolbox provides the linear SVM optimization code that computes the weight

and bias coeffcients from the training data.

3.4.5 Multiple Kernel Learning (MKL)

There are various algorithms that use kernels to transform the input data to an appropri-

ate and useful space. From the paper [31] it can be assumed that the kernel K is composed

by a weighted combination of pre computed kernel matrices, i.e.,

mX 
K = σkKk (3.7)

k=1 

where there are m kernels and σk is the weight applied to the k-th kernel.

In [45] the authors have presented an effcient algorithm for multiple kernel learning

by showing the combination of MKL and group-lasso regularizer. They calculated the

kernel weights by a closed-form formulation, which therefore leverages the dependency

of previous algorithms on employing complicated or commercial optimization software.

Moreover, in order to improve the accuracy of traditional MKL methods, they generalized

MKL to Lp-MKL that constrains the p-norm (p ≥ 1) to the kernel weights. This algorithm

can be applied to the whole family of Lp-MKL models for all p ≥ 1.
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The second part of the experiments were designed to determine if using a non-linear

SVM (kernel SVM) would produce better results and is there possibility of producing them

with a smaller number of features. Herein, MKL was utilized as the non-linear supervised

classifer. It means that we are using the same features and data processing techniques

with the MKL to classify beacon and non-beacon. MKL has various forms, and in this

work, single-kernel MKL. In single-kernel MKL, Radial Basis Function (RBF) kernels

were utilized and the system optimized the kernel parameter, the RBF standard deviation.

In MKLGL, and MKLGL (MKL with Group Lasso) were utilized, where the weights

and classifcation surface are simultaneously solved by iteratively optimizing a min-max

optimization until convergence. The MKL performs better than the linear SVM because

the features are not quite linearly separable. I used the fuzzy library [2] to get the basic

MKL implementation example which we modifed and applied to this problem.

3.5 Experiments

The dataset utilized herein was collected using a Quanergy M8 LiDAR over the span

of seven months. Training and tuning data was collected at Raspet Research Building II

site and the Mississippi State University Center for Advanced Vehicular Networks (CAVS)

parking lot in Starkville, MS. All the data collection included collecting LiDAR detections

for humans, beacons, buildings, and parking lot objects such as trailers, vehicles, and gas

tanks.
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3.5.1 Beacon

The beacon that has been used for our experiment and data collection is constructed

of a regular orange traffc cone where a long pole is attached at its top. The traffc cone

is orange coloured 28” high with a vertical refective tape affxed. It has a 2” diameter

highly–refective pole extending the beacon to two meters vertically in total. The beacon

is shown in Figure 3.2. The beacon is presented as a series of high intensity values in a

LiDAR scan. It provides a high signal level compared to most background objects. It de-

lineates an area in the industrial complex that is off limits to the vehicle to protect people

and high valued assets.

Figure 3.2 Beacon.

The LiDAR data were collected to train and test our algorithms. These data were

collected over the span of around seven months from July 2017 to January 2018. Most of

38



them were collected in a scenario where one or multiple beacons were present. The beacon

data was collected for both known and random locations. Other than only beacon data,

there were some data collection with only people where they were wearing the refective

vest for some cases and were not wearing them in other cases. The target of the data

collection was to collect enough data for both training and testing so that the algorithms

can be implemented and tested.

3.6 Results and Discussion

The confusion matrix for the SVM, single MKL and MKLGL algorithms are given

in tables below to compare the accuracy of these techniques. All of them perform well

and their accuracy values are close to each other. It clearly indicates that the algorithms

perform well in classifying the beacon. For the SVM algorithm, the training and testing

confusion matrices are shown in tables 3.3 and 3.4, respectively, where the reference data

are in columns, and the classifed data are in rows.

Table 3.3 Training Confusion Matrix for Linear SVM.

Class 1 (Beacon) Class 2 (Non-beacon)

Class 1 (Beacon) 13,158 32

Class 2 (Non-Beacon) 610 14,599

For beacons, the user accuracy is 99.76% and the producer accuracy is 95.57%.

For non–beacons, the user accuracy is 95.99% and the producer accuracy = 99.78%.

The overall accuracy is 97.74 %.
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Table 3.4 Testing Confusion Matrix for Linear SVM.

Class 1 (Beacon) Class 2 (Non-beacon)

Class 1 (Beacon) 5,653 13

Class 2 (Non-Beacon) 302 11,782

For beacons, the user accuracy is 99.77% and the producer accuracy is 94.93%. For

non–beacons, the user accuracy is 97.50% and the producer accuracy is 99.89%. This

shows that the SVM didnt signifcantly overtrain. The overall accuracy is 98.23%. For

the SVM algorithm, the training and testing confusion matrices are shown below, where

reference data are columns, and classifed data are in rows. For the single MKL algorithm,

the training confusion matrix is shown below in Table 3.5, where the reference data are in

columns, and the classifed data are in rows. The overall accuracy is 98.34% for the single

MKL method.

Table 3.5 Training Confusion Matrix MKL Single-kernel SVM.

Class 1 (Beacon) Class 2 (Non-beacon)

Class 1 (Beacon) 3,721 19

Class 2 (Non-Beacon) 134 5,355

For the MKLGL algorithm, the training confusion matrix is shown in Table 3.6, where

the reference data are in columns, and the classifed data are in rows.
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Table 3.6 Training Confusion Matrix for MKLGL.

Class 1 (Beacon) Class 2 (Non-beacon)

Class 1 (Beacon) 3,721 19

Class 2 (Non-Beacon) 8 5,481

The MKLGL overall accuracy is 99.71%. Here, Figure 3.3 shows that for both training

and testing, the overall accuracy (OA) increases after a certain number of features and then

remains approximately the same. The operating point of the system using reduced features

is shown by the circle. This operating points was selected as a trade off in the complexity

in calculating features and in obtaining good performance in real-time. For both the cases,

it reaches an acceptable level of overall accuracy at around twenty features.

In Figure 3.4, the score value reaches optimum value for both training and testing

around twenty features. At frst, the OA was utilized to optimize which features were

selected. This was problematic due to class imbalances and the SVM ended up favoring

one class almost completely. The class score is given by

TP TN 
SCORE = 500 + 500 (3.8)

TP + FN TN + FP 

where TP , TN , FP and FN are the number of true positives, true negatives, false

positive and false negatives, respectively [25]. The score ranges from 0 to 1,000, where

higher numbers are better. It also penalizes for any false positives or false negatives.

Figures 3.5 and 3.6 show the plots for Probability of detection (Pd) and Probability

of false alarm (Pfa) for both training and testing cases. Comparing these two plots with
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the plots from fgures 3.5 and 3.6, we can say that all these plots are showing that for

our particular problem the SVM performs very well with around twenty features. Figure

3.7 shows the probability density functions (PDFs) for the SVM discriminant function for

beacons and non-beacons. The data has good results, but is not linearly separable.

From fgures 3.8 and 3.9, we can see the score plots with respect to the number of

features and the overall accuracies (OA) for the different algorithms, respectively. Here in

both the cases, the single Kernel and MKLGL performs much better than the linear SVM.

Even we can achieve the same effciency with the MKLGL by using only seven features

where in the linear SVM we are using twenty features. It reduces the computational time

in MKL.
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Figure 3.3 Overall accuracy (OA) with respect to number of features.
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Figure 3.4 Score with respect to number of features.
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Figure 3.5 Probability of Detection (Pd) with respect to number of features.
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Figure 3.6 Probability of False Alarm (Pfa) with respect to number of features.
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Figure 3.7 PDF values for beacon and non-beacon for optimal SVM discriminant function
with ten features.
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Figure 3.8 Score with respect to number of features for linear SVM, single Kernel and
MKLGL.
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Figure 3.9 Overall Accuracy with respect to number of features for linear SVM, single
Kernel and MKLGL
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CHAPTER IV

LIDAR OBJECT CLASSIFICATION USING DEEP LEARNING

4.1 Abstract

Deep learning is the up and coming classifcation algorithm that is outperforming other

traditional classifers. The linear SVM as well as non linear single kernel and MKL per-

forms well on three-dimensional (3D) Light Detection and Ranging (LiDAR) data clas-

sifcation. These methods requires hand crafted features to train the algorithms. In this

research work a 2D CNN is implemented to see if it can perform object detection. The

dataset used for this method is similar to the SVM and MKL dataset which gave an ex-

cellent opportunity to compare the SVM, MKL and 2D CNN performance. Moreover the

advantages and disadvantages of CNN has been discussed briefy.

4.2 Introduction

In this chapter a deep learning algorithm is applied for the LiDAR point cloud data.

The specifcations and advantages of the LiDAR data has been described in the previous

chapter. For this chapter the dataset are same as the SVM and MKL methods so that later

the performance of all these classifers can be compared. Next in this chapter different

established algorithms that use deep learning based classifers are discussed. The proposed

method is described in detail to explain the construction of the algorithms. The environ-
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ment for object detection for this case is exactly same as the previous chapter. In the fnal

section, all the plots and outputs from training and testing the algorithm are discussed.

4.3 Related work

Deep learning has recently been studied intensely due to signifcant performance gains

and the ability to learn hierarchical features from the data, without the need for hand-

crafted features [4]. Deep learning discovers the complex structure in large data sets by us-

ing a neural network learning method such as backpropagation, stochastic gradient descent,

etc., to indicate how a machine should change its internal parameters that are used to com-

pute the representation in each layer from the representation in the previous layer [23].The

four mainstream deep learning architectures applied by researchers are the auto encoder

(AE), convolutional neural network (CNN), deep belief networks(DBNs)and recurrent NN

(RNN).The CNN is the most popular and most published branch of deep learning. A 3D

deep learning can be applied for effcient and robust landmark detection in volumetric data

[46]. Separable flter decomposition and network sparsifcation are two technologies which

have been proposed to speed up the detection using neural networks. Deeply learned image

features trained on amulti-resolution image pyramid are used to improve detection robust-

ness. Finally the boosting technology incorporates deeply learned hierarchical features as

well as Haar wavelet features to further improve the detection accuracy.

There has been signifcant work on shape descriptors for voxel representations and point

cloud representation recently. Other shape descriptors include the light feld descriptor,

heat kernel signatures, and spherical harmonic representation [21]. Most deep learning
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based 3D object classifcation problem involves two steps namely, deciding a data repre-

sentation to be used for the 3D object and training a CNN on that representation of the

object. VoxNet is a 3D CNN architecture for effcient and accurate object detection from

LiDAR and RGBD (Red, Green and Blue plus Distance) point clouds. The effect of vari-

ous design choices on its performance is studied [28]. Most up to date methods either use

voxel representation or a set of multiple 2D projections of the polygon mesh from several

camera positions. A good example of deep learning for volumetric shapes is the Princeton

ModelNet dataset which has proposed a volumetric representation of the 3D model and a

3D Volumetric CNN for classifcation [44]. A typical 3D representation of a map can be

presented by a voxel space in Cartesian coordinates with resolution specifed according to

context and to memory requirements [13]. In the paper an illustration of the voxel space in

spherical coordinates is introduced and then the resolution is derived by the properties of

the LiDAR. Deep Sliding Shapes is a 3D ConvNet formulation that takes a 3D volumetric

scene from a RGB-D image as input and outputs 3D object bounding boxes [38]. The frst

3D Region Proposal Network (RPN) learns objectness from geometric shapes and then

frst joint Object Recognition Network (ORN) extracts geometric features in 3D and color

features in 2D. A unique way of demonstration is recognizing 3D shapes from a collection

of their rendered views on 2D images is utilized in [40]. In this technique, a novel CNN

architecture combines information from the multiple views of a 3D shape into a single and

compact shape descriptor offering better recognition performance. High quality diverse set

of 3D object proposals can be generated in the context of autonomous driving [7]. These

proposals are 3D and represented as cuboids due to the importance of 3D reasoning. A
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stereo image pair is considered as input and the depth is computed by the state-of-the-art

depth system. Further, this depth is used to conduct all reasoning. All these methods have

been implemented and have shown promising results. Despite their better performances,

they can not be implemented for our particular problem. The primary reason is that in

most of the cases they are using very dense point cloud datasets which often have dense

points similar to pixels in images. This property of their data makes it easier to implement

complex 3D CNNs and get good results. Also they often have various number of classes to

be defned and for that a complex CNN architecture is a good option. For our sparse point

cloud dataset collected from an eight-beam LiDAR, a basic 2D CNN architecture seems

feasible consider we only have two classes (beacon and non–beacon) to identify.

4.4 Proposed Method

This sections discusses the proposed method, including data processing, ground point

removal, and the 2D CNN architecture.

4.4.1 LiDAR Data description

The Quanergy M8 LiDAR collects three dimensional point cloud data with fve differ-

ent information. The point cloud data consists of x, y, z coordinates; intensity and lastly

the beam number or ring number. Intensity is a value ranging from 0 to 255, but it typically

varies from 0 to about 20–30. The lower intensity values are collected from objects that has

low refection. Similarly, the higher intensity values are from highly refective objects and

in our case these are from the beacon, people wearing the refective vest and vehicles with

shiny surface. The LiDAR is mounted level to the ground on the industrial vehicle. The
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ffth data is the beam number or ring number. It indicates which beam has hit the object.

The fgure 4.1 shows the eight beam projection of the LiDAR on the beacon.

Figure 4.1 Quanergy M8 LiDAR beam spacing visualization and beam numbering. The
LiDAR is the small box on the left and the beacon is placed on the right in front of the

LiDAR.

4.4.2 Data Processing

In this paper [24], Velodyne 64E LiDAR range scans have been projected as 2D maps

similar to the depthmap of RGBD data. The projection is done using the following equa-

tions given in [24]

θ = atan2(y, x) 

z 
φ = arcsin(p ) 

(x2 + y2 + z2) (4.1)

r = [θ/Δθ] 

c = [φ/Δφ] 

Here P = (x, y, z)T is a 3D point and (r, c) is the 2D map position of its projection. θ 

and φ indicates the azimuth and elevation angle when observing the point. Δθ and Δφ are

the average horizontal and vertical angle resolution between consecutive beam emitters,
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respectively. This method is very similar to our LiDAR data processing for each dimension

of the point cloud data. Each point cloud data has fve different information stored in it.

Based on this data, a fve-dimensional image was created. The image is eight pixels tall

(based on the LiDAR having eight beams), and 127 pixels wide. The image channels

are depth, intensity, x, y, and z. Again, ground points and removed and a density-based

clustering was performed and the center of the image corresponds to the points closest to

the centroid of each cluster.

4.4.3 Ground Point Removal and Clustering

The ground point removal and clustering has been done for the processed point cloud

data too. Both the ground point removal and clustering was done using the same method

described in the previous chapter.

4.4.4 2D CNN architecture

The DL architecture is given in Table 4.1. In that table, CO = Convolution layer, PL =

Max Pooling, BN = Batch Normalization, FC = Fully Connected, DR = Dropout, and SM

= Softmax. It is noted that several architectures were examined, and this one produced the

best results.

The DL network contained the following layers, as shown in Table 4.1. The training

parameters are as follows: Batch size 1, 024; learning rate 0.002; momentum 0.90. The

Stochastic Gradient Descent method was used for training.
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4.5 Experiments

We have colleced a set of data for training and testing our algorithm. The same dataset

as the SVM and MKL have been used in case which gave the opportunity to compared

the performance of all the classifers for one particular detection problem. All the data

collection description has been briefy discussed in the previous chapter.

4.6 Results and discussion

The confusion matrices for the 2D CNN algorithm are given in tables 4.2 and 4.3

to show the accuracy of this technique. Here the reference data are in columns and the

classifed data are in rows.

The overall accuracy for DL CNN training is 99.76% and testing is 94.44%. It indi-

cates that the algorithm perform well in classifying the beacon. The CNN architecture was

designed keeping in mind the dataset type and detection problem. There had been some

testing with the algorithm to fnd the suitable architecture that can perform well. It was

observed that when the DL was trained longer, the testing OA decreased, indicating over-

training. This is one major factor that should be consider while implementing the deep

learning methods. One of the major characteristics of DL is that its performance can not

be predicted before implementing it. This is one of the reasons that the DL did not out-

perform the linear SVM and non–linear kernels. Also, Matlab 2017 version was used to

run the experiment which allows only three channels for input image data. Fusing more

channels in the data might improve the results. There is another idea which might help

to improve the classifcation results. Also, a hybrid system can be designed which will
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have a combination of some extracted features and the DL technique. This idea is worth

exploring for future cases. Finally, perhaps the DL system could be modifed by adding

more non–linearities into the system (e.g. radial basis functions, sigmoids, etc.), providing

a more robust and more non–linear decision boundary, since the problem appears to be

non-linearly separable.
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Table 4.1 Deep Learning CNN Setup.

Layer Contents Parameters

Input Image input [8 × 127 × 3] 

1 CO 20 [1 × 1] Stride [1 × 1] 

2 PL [2 × 2] stride: [1 × 1] 

3 CO 5 [1 × 5] Stride [1 × 1] 

4 PL [2 × 2] Stride [1 × 1] 

5 CO 5 [3 × 3] Stride [1 × 1] 

6 PL [2 × 2] Stride [1 × 1] 

7 BN -

8 FC 20 neurons

9 FC 100 neurons

10 DR 50%

11 FC 200 neurons

12 FC 100 neurons

13 FC 2 neurons

14 BN -

15 SM 2 outputs

Output Classifer .
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Table 4.2 Confusion Matrix for training data using DL CNN.

Class 1 (Beacon) Class 2 (Non-beacon)

Class 1 (Beacon) 7,814 15

Class 2 (Non-beacon) 15 4,858

Table 4.3 Confusion Matrix for testing data using DL CNN.

Class 1 (Beacon) Class 2 (Non-beacon)

Class 1 (Beacon) 2,005 206

Class 2 (Non-beacon) 152 4,070
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CHAPTER V

CONCLUSION

5.1 Contribution

The target of this research work was to explore the possibilities of various linear and

non-linear classifer implementation for our beacon detection case. Some promising re-

sults and a good comparison of different methods were achieved for the beacon detection

case. Quanergy M8 LiDAR collects very sparse point cloud data as it has only eight beams

compared to other higher beam counts LiDAR. Another challenge was implementing our

system in real-time scenario. Though considering high number of hand crafted features

performs better with linear and non-linear classifers, it increases computational complex-

ity and slight latency in real-time beacon detection. The SVM weights of individual fea-

tures were calculated and the overall accuracy curve was plotted with respect to feature

numbers. The optimal twenty features for SVM was chosen as it showed almost the simi-

lar accuracy as all the features combined. Despite of these drawbacks, all of the methods

performed well and showed high effciency. The linear SVM showed overall accuracy of

97.74% and 98.23% for training and testing data respectively. The MKL technique reached

similar high effciency even though with only seven hand crafted features. The DL imple-

mentation was the trickiest part of this research due to the complex structure and higher

computation time. Most of the state-of-the-art DL methods for LiDAR point cloud data
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are 3D CNN. Among them VoxNet [28], 3D shapenets [44], and Pointnet [33] methods

were studied to implement on our problem. The data processing and initial algorithms

were implemented with our collected data. The implementations were not successful as

the neural network structures of these methods were too much complicated to apply for the

sparse dataset for this problem. Also, these methods need really dense point cloud data for

object detection. In most of the examples, their point cloud data was really dense that the

object shape was clearly evident. They are suitable for multiple class detection cases where

beacon detection is technically a binary classifcation problem with only beacon and non

beacon outputs. Finally, their high computation time is unfeasible for a real time scenario.

In the end, a basic 2D CNN was applied for this case. As the CNN has really simple struc-

ture, it was suitable for the sparse data and classifcation problem. Some signal processing

was done on the point cloud data before inputting them to the CNN. At the end, it showed

training overall accuracy 99.76% and testing overall accuracy 94.44%. There is scope of

overtraining which ultimately reduces the overall accuracy.

5.2 Future work

There are many possible methods and scope of improvement for this object detection

problem. Many of the possibilities were explored and their possible outcomes were noted

while doing this research. There are many scope of improvement in this research that I

would like to mention in this concluding note. The beacon detection system can be made

more robust and effcient for real time implementation. This research can be expanded to

multiple object i.e., people, vehicles etc. detection in one environment. The result will be
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a good example to study the competence of different classifers. Due to the data structure

and time constraints, 3D CNN methods could not be implemented. There is scope of

investigation whether the 3D CNNs will perform better if they are modifed for the eight

beam LiDAR data. The modifcation might be complicated and require much time and

tuning to achieve the suitable neural network architecture. With the increasing demand and

popularity of Advanced Driver Assistance System (ADAS), it can be predicted that these

research possibilities will be explored in near future. As the 2D CNN did not out peform

the SVM and MKL, then there might be a possibility of a hybrid algorithm implementation.

In that system a few of the hand crafted features and the 2D CNN can be combined which

might ultimately improve the overall accuracy.
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