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In this study, the effect of a passive trapped-vortex cell on lift to drag (L/D) ratio 

of an FFA-W3-301 airfoil is studied. The upper surface of the airfoil was modified to 

incorporate a cavity defined by seven parameters. The L/D ratio of the airfoil is modeled 

using a radial basis function metamodel. This model is used to find the optimal design 

parameter values that give the highest L/D. The numerical results indicate that the L/D 

ratio is most sensitive to the position on an airfoil’s upper surface at which the cavity 

starts, the position of the end point of the cavity, and the vertical distance of the cavity 

end point relative to the airfoil surface. The L/D ratio can be improved by locating the 

cavity start point at the point of separation for a particular angle of attack. The optimal 

cavity shape (o19_aXX) is also tested for a NACA0024 airfoil. 
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INTRODUCTION 

Thick airfoil section wings are typically used in low speed applications such as 

wind turbine blades because they give higher lift at low angles of attack. Also, these 

airfoils give more structural strength and higher load carrying capacity. However, they 

suffer from the drawback of higher drag and hence lower efficiency. Thick airfoils 

generally experience trailing edge stall where the flow begins to separate from the trailing 

edge first with progressively higher angles of attack.  

Vortex generators are projections mounted on external surface of an airfoil. They 

operate by mixing high-energy freestream flow into the boundary layer. This addition of 

energy into the boundary layer flow causes the fluid to stay attached longer because it has 

more energy to counter the adverse pressure gradient seen on the aft portion of an airfoil 

upper surface. Kline-Fogleman airfoils (USA Patent No. 3706430, 1970) utilize a 

backward facing step on the upper or lower surface (or both surfaces) of the airfoil. Such 

a backward facing step promotes the formation of a trapped vortex behind the step which 

adjusts itself with the flow and theoretically delays separation and/or provides vortex lift. 

The trapped-vortex cell technique has been previously studied experimentally 

(Gregorio & Fraioli, 2008). The spanwise circular cavity, used in those experiments, was 

subjected to both passive and active flow control. The results indicated that for passive 

control, the vortex strength was insufficient to cause flow reattachment. The flow 



 

2 

separated from the starting position of the cavity. At higher angles of attack, the vortex 

was swept downstream by the flow, resulting in vortex shedding. The active control 

configuration was tested with different suction mass flow rates. The results showed that 

with increasing mass flow rate, the strength of the vortex inside the cavity increases and 

causes reattachment of the flow. If sufficient suction were applied, complete reattachment 

was observed. 

Experimental and numerical driven cavity research has typically involved flat 

plate flows with an integral cavity (shear-driven cavity problem). The case here involves 

more than that, in that the cavity is embedded in an adverse pressure gradient. In addition 

to this, unlike the work done by Gregorio and Fraioli (2008), which involved experiments 

on only a single cavity shape, this work is focused on the goal of seeking to determine if 

a passive cavity shape exists which do enhances airfoil performance (ideally at different 

attitudes for the same fixed cavity). Initially, there was a need to identify what general 

geometric parameters would adequately define the configuration; then, in the event that 

an aerodynamic-performance improving passive design was found, what specific 

parameters would yield the best performance. 

The current study investigated a passive trapped-vortex cell on the FFA-W3-301 

wind turbine airfoil to understand its effect on performance. However, unlike the 

experimental study in (Gregorio & Fraioli, 2008), the cavity shape was parameterized in 

order to understand the effect each parameter had on the cavity flowfield and ultimately 

on the airfoil performance. The performance was measured using the lift and drag 

coefficients and the lift to drag ratio (L/D) obtained from CFD simulations. The 

performance metrics were modeled as a function of the cavity shape parameters using the 
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radial basis functions which were trained using the lift and drag data obtained at specific 

training points. The Loci/CHEM (Luke, Tong, Wu, Tang, & Cinnella, 2003) CFD solver 

was used to run simulations for various cavity configurations. The Loci/CHEM solver is 

a Navier-Stokes flow solver for chemically-reacting flows, developed at Mississippi State 

University. 
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NUMERICAL SETUP 

2.1 Grid for the FFA-W3-301 Airfoil 

The FFA-W3-301 airfoil (designed by the Aeronautical Research Institute of 

Sweden) is used as a Vestas wind turbine root section. The airfoil shape is as shown in 

figure 2.1. It has a thickness of nearly 30% of the chord and an open trailing edge of 

about 2% of the chord. 

 

Figure 2.1 The FFA-W3-301 airfoil cross section 

 

To generate a grid for CFD simulations, the non-zero trailing edge of the airfoil 

was closed with a smooth 𝐶2-continuous cubic NURBS curve as shown in figure 2.4. A 

single-cell wide O-type structured grid with an elliptical outer boundary was generated 
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around the airfoil (figure 2.2) using the GUM-B grid generation software (Jiang & 

Remotigue, July 1998), developed at Mississippi State University. Because of the 

changing curvature of the airfoil shape profile, the flow domain had to be split into 

multiple blocks in order to avoid intersecting grid lines. This division also resulted into 

better orthogonality of the grid lines at the airfoil surface compared to the case where 

such division was not performed. The grid had 634750 cells in total and 2550 points on 

the airfoil surface. The airfoil chord length was 0.6 meters. For ease of visualization, the 

following figures 2.2, 2.3, and 2.4 show a coarser grid with same topology as this grid. 

 

Figure 2.2 O-shaped structured grid around the FFA-W3-301 airfoil 
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Figure 2.3 Close up view of the grid around the FFA-W3-301 airfoil 

 

 

Figure 2.4 Close up view of the grid around trailing edge of the FFA-W3-301 airfoil 

 

2.2 Numerical Setup 

For the Loci/CHEM simulation of flow over the FFA-W3-301 airfoil, freestream 

conditions were taken as, Reynold’s number 𝑅𝑒 = 1.6 × 106, pressure 𝑝∞ =
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101325 𝑃𝑎, temperature 𝑇∞ = 15 ℃. The freestream fluid was chosen as single-species 

air with no reactions. Since low speed flow (Mach number 𝑀∞ = 0.114253) was being 

simulated, preconditioning was enabled. The flow over the FFA-W3-301 airfoil was 

solved using RANS model with Menter’s shear stress transport (SST) (Menter, 1994) as 

the turbulence model. Time-accurate integration was performed in order to enable 

accurate simulations should any vortex shedding exist. Wall normal spacing was 

gradually reduced to 0.6 × 10−5 meters. At this wall normal spacing, the y+ graph at 

cells along the airfoil was as shown in figure 2.5. The y+ value was less than 1.0 at each 

cell on the airfoil surface indicating that the wall normal spacing was adequate to resolve 

turbulent boundary layer. The simulation was run for 5000 iterations during which the 

airfoil travels approximately 14.5 chords and the drag and lift values seemed to have 

converged (figure 2.6) indicating that the steady state was reached. Only the 12 degree 

AoA case is shown here for the y+ graph, the drag & lift coefficient graph, and the 

residual graph. Other angles of attack showed similar behavior. 

 

Figure 2.5 The y+ value at each cell on the airfoil surface plotted as a function of the 
distance along chord from leading edge of the airfoil 
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Figure 2.6 Progress of drag and lift coefficient of the FFA-W3-301 airfoil at 12° AoA 
as the simulation proceeds up to 5000 iterations 
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(a) 

 
(b) 

 
(c) 

Figure 2.7 Convergence history of mass, momentum and energy residuals for the flow 
over the FFA-W3-301 airfoil simulation at 12° AoA 

 

2.3 Grid Convergence 

Next, a grid convergence study was performed by coarsening the original grid. 

Three grids were chosen - fine grid (635K cells), medium grid (157K cells), and coarse 

grid (39K cells) - each grid having same wall normal spacing of 0.6 × 10−5 meters but 

progressively coarsened spacing with grid coarsening ratio of 2.0 in each coordinate 
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direction between two consecutive levels. Using the procedure listed in Roache (1997), 

the drag and lift coefficients were checked for asymptotic convergence over the three 

grids for various angles of attack. The results of the grid convergence are as shown in 

table 2.1and table 2.2 for lift coefficient and drag coefficient respectively. The last 

column has values close to one indicating that the values on finer grid were in asymptotic 

range of convergence. 

Table 2.1 Calculations for grid convergence test using lift coefficient as the objective 
function 

AoA Fine 
grid 
CL 

(CL1) 

Medium 
grid 
CL 

(CL2) 

Coarse 
grid 
CL 

(CL3) 

Order 
of 

conv. 
(p) 

CL 
(h=0) 

GCI12 
for CL 

GCI23 
for CL 

Asym 
ptotic 
range 

2 0.4804 0.4823 0.4828 -1.9260 0.4830 -0.00671 -0.00176 1.004 
4 0.7229 0.7252 0.7267 -0.6167 0.7295 -0.01143 -0.00743 1.003 
6 0.9468 0.9497 0.9513 -0.8580 0.9533 -0.00854 -0.0047 1.003 
8 1.1428 1.1464 1.1474 -1.8480 1.1478 -0.00545 -0.00151 1.003 
10 1.2951 1.3001 1.3025 -1.0589 1.3047 -0.00928 -0.00444 1.004 
12 1.3760 1.3855 1.3892 -1.3604 1.3916 -0.01414 -0.00547 1.007 

 

Table 2.2 Calculations for grid convergence test using drag coefficient as the 
objective function 

AoA Fine 
grid 
CD 

(CD1) 

Medium 
grid 
CD 

(CD2) 

Coarse 
grid 
CD 

(CD3) 

Order 
of 

conv. 
(p) 

CD 
(h=0) 

GCI12 
for CD 

GCI23 
for CD 

Asym 
ptotic 
range 

2 0.0191 0.0195 0.0219 2.5850 0.01902 0.005236 0.030769 1.0209 
4 0.0217 0.0221 0.0249 2.8073 0.02163 0.00384 0.026395 1.0184 
6 0.0256 0.0261 0.0295 2.7655 0.02551 0.004209 0.028075 1.0195 
8 0.0309 0.0315 0.0356 2.7726 0.03080 0.004161 0.027891 1.0194 
10 0.0378 0.0385 0.0435 2.8365 0.03769 0.003768 0.026427 1.0185 
12 0.0487 0.0497 0.0557 2.5849 0.0485 0.005133 0.030181 1.0205 
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The point of separation for various angles of attack was determined using the z-

component of the vorticity vector (figure 2.8). For an angle of attack of 8° or less, there is 

no separation. Separation starts somewhere between 8° and 9° angle of attack. The 

distance of the separation point from the airfoil’s leading edge in terms of percentage of 

chord length is listed in table. 2.3 for various angles of attack. 

Table 2.3 Position of the point of separation in terms of % of chord length from 
leading edge of the FFA-W3-301 airfoil at various angles of attack 

Angle of attack % chord distance of the point of separation 
8 No separation 
9 91.6% 
10 83.3% 
12 66.6% 
14 50.0% 

The % distance to the separation point is approximate 

(a) 
 

 
(b) 

 
Figure 2.8 Z-component of vorticity vector along airfoil surface vs distance from the 

leading edge for the FFA-W3-301 airfoil at various angles of attack 
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(c) 

 
(d) 

 
(e) 

Figure 2.8 (continued) 

Since the flow simulation is 2D, vorticity vector has only the Z-component 

2.4 Comparison of Experimental Results and the Loci/CHEM Solution 

(Fuglsang, Antoniou, Dahl, & Madsen, 1998) contains results of wind tunnel tests 

on the FFA-W3-301 airfoil. A comparison of the pressure coefficient values between the 

Loci/CHEM simulation and the experiments is presented in figure 2.9. These graphs 

show a very close comparison of the Loci/CHEM pressure coefficient with the 

experimental pressure coefficient up to 8° angle of attack. The agreement with the 
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experimental data decreased at higher angles of attack. The lift and drag coefficient 

comparison is presented in figure 2.10. The Loci/CHEM solution gave higher lift and 

lower drag compared to the experiments for angles of attack more than 10°. This is due to 

Loci/CHEM predicting a lower suction peak on the airfoil. A comparison of the point of 

separation at various angles of attack is also necessary. However, the point of separation 

for various angles of attack was not reported by Fuglsang et al. (1998); however, they 

mentioned that separation began to occur at around 11.2° angle of attack. In the 

Loci/CHEM solutions, separation began at around 9° angle of attack. These numerical 

results, though not in exact agreement with the experimental results for separated flows, 

were consistent with the experimental results. 

Moreover, no experimental data was available for the FFA-W3-301 airfoil with 

cavity. Hence, in this study, the metamodel of the performance of the FFA-W3-301 

airfoil with a cavity was built using the numerical results and was compared with the 

numerical results on the unmodified FFA-W3-301 airfoil in order to understand the 

effects of the cavity shape on the airfoil’s performance. Therefore the discrepancy would 

not affect the conclusions of this study. In order to perform this numerical study, 

metamodels that relate cavity shape with the airfoil’s lift and drag coefficient are 

developed. Next chapter discusses the metamodel development process. 



 

14 

 
(a) 

 

 
(b) 

 

 
(c) 

 
(d) 

Figure 2.9 Comparison of experimental pressure coefficient with Loci/CHEM 
simulation pressure coefficient at various angles of attack 
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(a) 

 

 
(b) 

 

 
(c) 

Figure 2.10 Comparison of lift and drag coefficients between the experimental data and 
the Loci/CHEM solution 
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DESIGN AND ANALYSIS OF COMPUTER EXPERIMENTS 

3.1 Metamodeling for Computer Experiments  

Though carefully conducted physical experimentation is a reliable way to 

understand a scientific phenomenon, conducting such experiments may be time 

consuming and expensive. In some cases, it is impossible to conduct such experiments. 

Advancements in computer architectures and numerical modeling have enabled 

investigation of scientific phenomena with ease, accuracy and speed. Hence, computer 

simulations are now being used for such purposes. For example, CFD simulation can be 

performed to determine an airfoil’s lift and drag coefficient with a fairly good accuracy 

without the need to perform wind tunnel tests. However, some numerical schemes used to 

simulate fluid flow are computationally so expensive that it takes several hours to 

determine lift and drag coefficients of a single airfoil design. If aim is to find out an 

airfoil design that maximizes lift, then the long time required for simulations makes it 

difficult to explore all possible airfoil designs and choose most optimum airfoil shape. 

Therefore, a computationally cheap model is required that replaces the original expensive 

simulation, which can be used for evaluation of lift and drag coefficients with reasonable 

accuracy. This substitute model is called a metamodel or a surrogate model. It 

approximates a process for which a simple functional relationship between its inputs and 
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outputs is not known. Exploration of inputs values to the process that yield most optimum 

output becomes faster and efficient with a metamodel. 

A process, 𝒫, can be thought as a black box that takes one or more inputs and 

produces one or more outputs. However, in this thesis, only one response is considered 

for a process. An input parameter to a process is also called an input variable or a factor. 

An output from a process is also called a response or an effect. The process can be 

expressed in function form as 𝑦 = 𝒫(𝑥⃗), where 𝑦 is the response corresponding to the 

values of the inputs specified by the vector 𝑥⃗. The metamodel development for a process 

involves the following steps. 

1) Parameterization: This step involves choosing the input variables, let’s say 𝑥1 

to 𝑥𝑠, that can possibly have impact on the output of the process, 𝒫. It is also 

necessary to choose the range of values for each variable such that it covers 

the space of exploration called the design space, denoted by 𝒟. 

Parameterization and domain selection require some prior knowledge of the 

process or some experimentation. 

2) Choosing a metamodel: This is an important step because different 

metamodels perform differently in terms of training complexity, 

computational complexity and prediction accuracy as well as specific 

requirements for sampling. A metamodel is denoted by ℳ and the response 

from the metamodel is denoted by 𝑦̂ = ℳ(𝑥⃗) corresponding to the vector of 

input variables 𝑥⃗. 

3) Design of Experiment: This step is concerned with choosing points, called 

training points, from the design space, 𝒟, such that the design helps develop 
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as accurate model as possible with smallest sample size. The chosen points are 

also called design points, denoted by 𝒹 = {𝑥⃗𝑖 | 1 ≤ 𝑖 ≤ 𝑛, 𝑥⃗𝑖 ∈ 𝒟} =

[𝑥⃗1, 𝑥⃗2, … , 𝑥⃗𝑛]
𝑇. Each 𝑥⃗𝑖 is a 𝑠-dimensional vector. Therefore, 𝒹 is a matrix of 

dimensions 𝑛 × 𝑠. 

4) Generation of training data set: After an experimental design is obtained, 

actual experiments are conducted for the level set combinations of each point 

in the experimental design and the corresponding response is obtained, 

denoted by 𝑦𝑆 = {𝑦𝑖 | 𝑦𝑖 = 𝒫(𝑥⃗𝑖), 1 ≤ 𝑖 ≤ 𝑛} = [𝑦1, 𝑦2, … , 𝑦𝑛]𝑇. The design 

points along with the obtained responses are called the training data set, 

denoted by 𝒯 = {(𝑦𝑖 , 𝑥⃗𝑖) | 1 ≤ 𝑖 ≤ 𝑛}. 

5) Model building: The next step is to train the chosen metamodel using the 

training data set, 𝒯. It involves finding values of constants in the chosen 

metamodel. 

6) Model validation: The final step is to assess the usefulness and accuracy of the 

trained metamodel using various criteria. If the model is not accurate enough, 

then a different metamodel can be selected and/or more training data points 

can be added to the experimental design. 

For a physical experiment, a change in its outputs can occur because of change in 

one or more inputs or because of random errors introduced while performing 

experiments. In a case like this, statistical model building techniques need to distinguish 

the effect due to random errors from the effect due to change in input variable values. 

The ANOVA (analysis of variance) framework with data collected at points of a factorial 

design is a commonly used methodology for conducting this type of analysis for physical 
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experiments (Box & Draper, 2007). It relies on the techniques such as randomization, 

blocking and replication to yield meaningful interpretations about the coefficients of a 

polynomial model used for approximating the physical process. Unlike a physical 

process, a computer code does not have any source of random errors, that is, for a given 

set of input parameter values, it always produces same output values. Therefore the 

techniques such as randomization, replication and blocking and the ANOVA analysis is 

irrelevant. The inputs to a deterministic computer experiment can be perturbed with 

random errors through the use of random number generators, and the statistical analysis 

can be conducted for such a setup to get meaningful interpretations (Kleijnen, 1986). 

However, (Sacks, Welch, Mitchell, & Wynn, 1989) pointed out that since computer 

experiments inherently don’t have a source of random errors, a different set of analysis 

and model building techniques are more suitable for their analysis. They further showed 

that even though computer experiments are deterministic, their model building can be 

thought as a stochastic process and present a statistical framework for the design and 

analysis of computer experiments based on the Kriging model (Matheron, 1963). Sacks et 

al. stated that a computer experiment can be represented by the model in equation 3.1. It 

has a polynomial model that forms the deterministic part of the formulation. It does not 

give accurate response value. Therefore, the model has an error term 𝑍(𝑥⃗)~𝑁(0, 𝜎2) that 

models the deviation of the observed response from the deterministic part. 

 𝑌(𝑥⃗) = ∑ 𝛽𝑗𝐵𝑗(𝑥⃗)
𝑝
𝑗=1 + 𝑍(𝑥⃗) (3.1) 

This makes the function 𝑌(𝑥⃗) a stochastic process as well. Then, considering the 

observed data 𝑦⃗𝒹 = [𝑦(𝑥⃗1), … , 𝑦(𝑥⃗𝑛)]𝑇 at sites 𝒹 = [𝑥⃗1, … , 𝑥⃗𝑛]𝑇, which can be thought 

as a vector of random variables 𝑌𝒹, the equation 3.2 was obtained for the predictor 
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𝑦̂(𝑥⃗) = 𝑐𝑇𝑌𝒹 at an untried site 𝑥⃗, where 𝑐(𝑥⃗) is a vector of weights. This was done by 

minimizing the mean square error, 𝑀𝑆𝐸[𝑦(𝑥⃗)] = 𝐸[(𝑐𝑇𝑌𝒹 − 𝑌(𝑥⃗))2], of the predictor 

subjected to the constraint of unbiasedness, that is, 𝐸[𝑐𝑇𝑌𝒹] = 𝐸[𝑌(𝑥⃗)]. 

 𝑦̂(𝑥⃗) = ∑ 𝛽̂𝑗𝑓𝑗(𝑥⃗)
𝑝
𝑗=1 + 𝑟𝑇𝑅−1(𝑌𝒹 − ∑ 𝛽̂𝑗𝑓(𝑥)

𝑝
𝑗=1 ) (3.2) 

Here, 𝛽̂𝑗are the generalized least square estimates of the coefficients of the polynomial 

model, 𝑅 = [𝑅(𝑥⃗𝑖 , 𝑥⃗𝑗)] is the matrix of correlations of errors at the design sites, and 𝑟 =

𝑅(𝑥⃗𝑖 , 𝑥⃗) is the vector of correlation between the errors at the design sites and the untried 

site. Thus, the fitted model for a computer experiment is a combination of deterministic 

polynomial model that captures global trends of the response and a random process that 

interpolates the residuals for local correction at the untried site 𝑥⃗. The choice of 

correlation function 𝑅(𝑣⃗, 𝑤⃗⃗⃗) depends on the nature of the responses collected at the 

design sites. Sacks et al. chose 𝑅(𝑣⃗, 𝑤⃗⃗⃗) from a product form of family of functions. They 

further stated that selecting the design for computer experiments is a statistical problem 

of choosing the design points according to a correlation function. Kriging is a type of 

metamodel used for computer experiments. There are a number of other metamodels that 

can be used such as radial basis functions (Powell, 1987), neural networks (Lawrence, 

1994), multivariate adaptive regression splines (MARS) (Friedman, 1991), etc. 

On a broad level, a metamodel falls in one of the two categories – a parametric 

model or a non-parametric model. A parametric model has a fixed functional form. A 

non-parametric model, on the other hand, doesn’t have any such form. Instead, it has a 

function for each data point in the training data set and the final form of the metamodel is 

a combination of these functions. Both types of models have constants that can be tuned 
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to a given data set. The process of training a model involves finding values of these 

constants such that the resulting metamodel fits the training data in the best possible way. 

Most of the metamodels used in practice are linear with the form as in equation 

3.3. 

 𝑦 = ∑ 𝛽𝑖𝐵𝑖(𝑥⃗)
𝑝
𝑖=0  (3.3) 

Here, 𝐵𝑖 are basis functions and 𝛽𝑖 are coefficients or weights. For computer codes, many 

types of models are proposed in literature (Fang, Li, & Sudjianto, 2006) (Mullur & 

Messac, 2005) (Friedman, 1991) (Lawrence, 1994) (Powell, 1987), some of which are 

discussed below. 

3.2 Metamodels 

3.2.1 Polynomial Regression Models 

A linear polynomial model of degree one with single output and s inputs is as 

shown by equation 3.4. For 𝑠 input variables, this model has 𝑝 = 𝑠 + 1 unknowns. 

 𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 +⋯+ 𝛽𝑠𝑥𝑠 (3.4) 

Such a linear polynomial model of degree one is of limited use if the relationship 

between inputs and output is nonlinear. Hence, higher degree polynomial models are 

required. If second-degree bilinear interaction effects are included in the above 

polynomial model, then it has the form shown in equation 3.5. This model has 𝑝 = 𝑠(𝑠 +

1)/2 + 1 unknowns. 

 𝑦 = 𝛽0 + 𝛽1𝑥1 +⋯+ 𝛽𝑠𝑥𝑠 + 𝛽𝑠+1𝑥1𝑥2 +⋯+ 𝛽𝑠(𝑠+1)/2𝑥𝑠−1𝑥𝑠 (3.5) 

If quadratic terms are also included, then the model takes the form as shown in following 

equation. This model has 𝑝 = (𝑠 + 1)(𝑠 + 2)/2 terms. 
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 𝑦 = 𝛽0 + 𝛽1𝑥1 +⋯+ 𝛽𝑠+1𝑥1𝑥2 +⋯+ 𝛽𝑠(𝑠+1)
2

+1
𝑥1
2 +⋯+ 𝛽𝑠(𝑠+3)

2

𝑥𝑠
2 (3.6) 

In general, a polynomial model can be expressed in a form as shown in equation 

3.3. For example, in the case of polynomial model with bilinear interaction effects, the 

basis functions are 𝐵0 = 1, 𝐵1 = 𝑥1, … , 𝐵𝑝 = 𝑥𝑠−1𝑥𝑠. The unknown coefficients in the 

polynomial models can be determined by substituting the training data set 𝒯 =

{(𝑦𝑖 , 𝑥⃗𝑖) | 1 ≤ 𝑖 ≤ 𝑛} in the chosen polynomial model equation. This gives a system of 

equations as shown in equation 3.7. 

 [

𝑦1
𝑦2
⋮
𝑦𝑛

] =

[
 
 
 
 
𝐵0(𝑥⃗1) 𝐵1(𝑥⃗1) … 𝐵𝑝(𝑥⃗1)

𝐵0(𝑥⃗2) 𝐵1(𝑥⃗2) … 𝐵𝑝(𝑥⃗2)

⋮ ⋮ ⋱ ⋮
𝐵0(𝑥⃗𝑛) 𝐵1(𝑥⃗𝑛) 𝐵𝑝(𝑥⃗𝑛)]

 
 
 
 

[

𝛽1
𝛽2
⋮
𝛽𝑝

] → 𝒚 = 𝑩𝜷 (3.7) 

If 𝑛 = 𝑝, the solution can be obtained accurately using 𝜷 = 𝑩−𝟏𝒚 as long as 𝑩 is far 

from singular. If 𝑛 > 𝑝, the system of equations is overdetermined. A unique solution can 

be obtained if some constraint is imposed on their values. For this, a cost function 𝐶(𝜷) 

is considered. Minimization of the cost function gives unique coefficients denoted by 𝛽̂𝑖 

since they give a polynomial model that approximates the relationship between the inputs 

and the output. If the cost function is square of the 𝐿2-norm of residual, that is, 𝐶(𝜷) =

‖𝒚 − 𝑩𝜷‖2, the minimization problem can be stated as shown in equation 3.8. 

 𝜷̂ = min
𝜷∈𝑅𝑝

‖𝒚 − 𝑩𝜷‖2 (3.8) 

This can be solved by taking the derivative of the cost function with respect to each 𝛽𝑖 

and equating each equation to zero. This gives 𝑝 equations in 𝑝 unknowns, which can be 

solved simultaneously to obtain values of 𝛽̂𝑖. This is an ordinary least square (OLS) 

estimation of the coefficients given by equation 3.9. Since the cost function in this case is 
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quadratic and concave upwards, the OLS solution is guaranteed to be at the minima of the 

cost function. 

 𝜷 = (𝑩𝑇𝑩)−1𝑩𝑇𝒚 (3.9) 

The drawback of the OLS estimator is that if 𝑩𝑇𝑩 is far from nearly orthogonal, 

then the OLS estimators are sensitive to errors and tend to give large coefficients. This 

makes the polynomial model useless. One approach to deal with this ill-conditioning is to 

introduce additional information into the equations in the form of a penalty for the 

coefficients. In case of ridge regression (Tikhonov & Arsenin, 1978), the penalty is the 

𝐿2-norm of the coefficient vector. Then the minimization problem can be stated in 

Lagrange multiplier form as shown in equation 3.10. 

 𝜷̂ = min
𝜷∈𝑅𝑝

(
1

2
‖𝒚 − 𝑩𝜷‖2 + 𝜆‖𝜷‖2) (3.10) 

The solution to this minimization problem is given by equation 3.11. 

 𝛽 = (𝑩𝑇𝑩 + 2𝜆𝑰)−1𝑩𝑇𝒚 (3.11) 

The penalty 𝜆 applied to the 𝐿2-norm of the coefficients tends to make a compromise 

between expectation and variance (Hoerl & Kennard, 1970). The choice of λ affects the 

estimators and the prediction accuracy of the generated model. The choice of 𝜆 can be 

made using a procedure called regularization. 

If the penalty function is the 𝐿1-norm of the coefficient vector, then the regression 

is called LASSO (Least Absolute Shrinkage and Selection Operator), first proposed by 

Tibshirani (1996). In this case, the minimization problem is harder to solve analytically 

as the penalty function is not differentiable at zero. Several algorithms are proposed in 

(Tibshirani, 1996) to get a solution to the LASSO estimators. The 𝐿1-norm penalty 
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function tends to make some of the coefficients zero indicating that the associated basis 

functions have a negligible effect on the response and can be neglected. This is similar to 

the subset selection. LASSO combines the benefits of both subset selection and ridge 

regression. 

3.2.2 Radial Basis Function Metamodel (RBF) (Powell, 1987) 

The radial basis function (RBF) (Powell, 1987) metamodel is a scalar-valued 

function formed by linear combination of basis functions called radial functions. Each 

radial function is a function of the Euclidian distance of a point from a certain fixed point 

in space called the center of the radial function. Hence the radial function have the same 

value at all points equidistant from the center of the function. RBFs can be easily 

extended to higher dimensions enabling easy modeling of multivariate functions. The 

form of a radial basis functions metamodel is as shown in equation 3.12. 

 𝑦(𝑥⃗) = ∑ 𝛽𝑘𝜑(‖𝑥⃗ − 𝑥⃗𝑘‖)
𝑛
𝑘=1  (3.12) 

Here, 𝛽𝑘 is scalar coefficient of the kth radial basis function, 𝜑 is chosen radial function, 

𝑥⃗𝑘 is center of the kth radial function, ‖ ‖ is Euclidian norm operator. There are many 

forms of radial basis function kernels as mentioned below: 

Gaussian radial function 

 𝜑(‖𝑥⃗ − 𝑥⃗𝑘‖) = exp (−
‖𝑥⃗−𝑥⃗𝑘‖

𝑟2
) (3.13) 

Multiquadratic radial function 

 𝜑(‖𝑥⃗ − 𝑥⃗𝑘‖) =
√𝑟2+‖𝑥⃗−𝑥⃗𝑘‖

𝑟
 (3.14) 

Inverse multiquadratic radial function 

 𝜑(‖𝑥⃗ − 𝑥⃗𝑘‖) =
𝑟

√𝑟2+‖𝑥⃗−𝑥⃗𝑘‖
 (3.15) 
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Inverse quadratic radial function 

 𝜑(‖𝑥⃗ − 𝑥⃗𝑘‖) =
𝑟2

𝑟2+‖𝑥⃗−𝑥⃗𝑘‖
 (3.16) 

Here, 𝑟 is attenuation factor. The choice of 𝑟 affects the model’s prediction accuracy and 

can be chosen using regularization. 

3.2.3 Choice of Metamodel 

Jin, Chen and Simpson (2000) presented a systematic study about the 

performance of various types of metamodels trained using different types of sample sizes 

for a number of benchmark problems with different characteristics, trained using sparse, 

small and large training data set. The types of metamodels considered in the paper were 

polynomial regression (PR), radial basis functions (RBF), Kriging (KG) and multivariate 

adaptive regression splines (MARS). The accuracy of the trained metamodels was 

measured using mean square error (MSE), relative maximum average error (RMAE), and 

the relative average absolute error (RAAE) using a sufficiently large validation data set. 

They categorized the problem based on the number of variables into large scale (more 

than 10 variables) and small scale (2 or 3 variables). The second type of categorization 

was based on the 𝑅2 value of the second-order polynomial model for the problem. A 

problem was considered high-order, non-linear if 𝑅2 ≥ 0.99 and low-order non-linear 

otherwise. Third type of categorization was smooth behavior or noisy behavior depending 

on whether the response has artificially introduced random error or not. The training data 

set was either a scarce set (3𝑠 training points), a small set (10𝑠 training points), or a large 

set (3(𝑠 + 1)(𝑠 + 2)/2 training points). The accuracy of a metamodeling technique was 

measured using the mean of each of the performance metrics mentioned above, while its 
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robustness was measured using the variance of the accuracy metric. They found that, 

overall, RBF and KG performed better than the other models for all of the test problems 

and any sample size in terms of their accuracy and robustness. The accuracy of the PR 

model decreased significantly as the non-linearity of the problems increased while the 

robustness of PR, RBF and KG decreased as the non-linearity of the problems increased. 

The RBF performed the best under different scales of the problems. Accuracy of MARS 

dropped significantly as sample size decreased. KG lost its accuracy for a noisy response. 

Thus, in their study, the RBF model performed best for high-order, non-linear problems 

with any scale and any sample size. Therefore for the purpose of this study, radial basis 

function metamodels were used. 

3.3 Design of Experiments 

The training data is collected by conducting experiments at carefully chosen 

points in the design space. The process of choosing training data points is called 

designing an experiment. The response surface (polynomial regression) models are 

traditionally trained using factorial designs (Box & Draper, 2007). A factorial design for 

𝑠 variables with 𝑎 levels for each variable is denoted by 𝑎𝑠. If we imagine an 𝑠-

dimensional space, then 𝑎 is the number of uniformly-spaced points in a variable’s range 

along its coordinate axis of the hyperspace. For example, a three-level, full factorial 

design in two variables, 𝑥1 and 𝑥2, is denoted by 32. It has total 32 = 9 training 

points.This design can be used to train a polynomial model with linear, interaction and 

quadratic effects. With a two-level factorial design, only linear and interaction effects can 

be modeled. Thus, as the degree of polynomial model increases, the number of training 

points in the factorial design needs to increase exponentially (𝑎2 in case of two 
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variables).This dramatic increase in the number of training points of a factorial design 

makes them unattractive when either the degree of the polynomial is high or when the 

number of variables is large. 

The Latin hypercube design (LHD) was introduced in (McKay, Beckman, & 

Conover, 2000). It is an effective method for designing experiments for computer codes. 

McKay, Beckman and Conover reported that a LHD produces the least sample variance 

compared to random and stratified sampling. A random LHD was constructed by 

dividing the range of each variable in a number of strata and choosing one training point 

randomly from each stratum with equal probability. Thus, the number of training points 

is equal to the number of strata. Unlike factorial design, in a LHD, the number of training 

points is independent of the number of variables. A LHD with 𝑛 training points and 𝑠 

input variables is denoted by 𝐿𝐻𝐷(𝑛, 𝑠). It can be stored in a (𝑛 × 𝑠) matrix with each 

row representing a design point. If instead of choosing randomly from each stratum, the 

design points are chosen at the mid-point of each stratum, then it is called mid-point Latin 

hypercube design, 𝑀𝐿𝐻𝐷(𝑛, 𝑠). The LHD generated this way has uniform distribution 

along each individual variable dimension. However, it may not necessarily have a 

uniform distribution over higher dimensions. A model trained using such a design may 

perform poorly in terms of prediction accuracy in the regions of the hyperspace where 

there are fewer training points. Therefore, good space-filling property is essential for a 

LHD. There are 𝑛!2 possible 𝑀𝐿𝐻𝐷(𝑛, 𝑠) designs and searching the best space-filling 

design is NP-hard problem. Therefore, the best LHD design search can be restricted to a 

special class of LHDs with specific properties. Two such designs are orthogonal column 

Latin hypercube design (OLHD) and symmetric Latin hypercube design (SLHD). An 
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OLHD has zero correlation among the columns of the design matrix, that is, the dot 

product of any two columns is zero. This is useful for building a polynomial model with 

bilinear interaction effects because the coefficients of the bilinear interaction basis 

functions in the model are not correlated with the coefficients of the linear basis 

functions. (Ye, 1998) gave an algebraic algorithm to generate OLHD when the number of 

training points is a power of 2 or power of 2 plus 1. The procedure is as outlined below. 

For a given 𝑚 ≥ 2, this algorithm generates OLHD with 𝑛 = 2𝑚 or 𝑛 = 2𝑚 + 1 training 

points for 2𝑚 − 2 variables. The algorithm constructs the top half (let’s say 𝑻) of the 

OLHD and then reflects it along the center point to produce the bottom half of the design 

matrix. A magnitude matrix (let’s say 𝑴) of the top half is constructed by producing 

permutations of 𝑒 = [1,2, … , 2𝑚−1]𝑇 as follows. 

 𝑴 = [𝑒, 𝑨𝑖𝑒, 𝑨𝑚−1𝑨𝑗𝑒]; 𝑖 = 1,… ,𝑚 − 1; 𝑗 = 1,… ,𝑚 − 2 (3.17) 

Where matrix 𝑨𝑘 is given by following formula. 

 𝑨𝑘 = 𝑰⊗…⊗ 𝑰⏟      
𝑚−1−𝑘

⊗𝑹⊗…⊗𝑹⏟        
𝑘

 (3.18) 

Here, 𝑰 = [1 0
0 1

] and 𝑹 = [0 1
1 0

]. 

A sign matrix (let’s say 𝑺) is generated as follows. 

 𝑆 = [𝟏, 𝑎𝑖 , 𝑎1𝑎𝑗+1]; 𝑖 = 1,… ,𝑚 − 1; 𝑗 = 1,… ,𝑚 − 1 (3.19) 

Here, 

 𝑎𝑘 = 𝑩1⊗𝑩2⊗…⊗𝑩𝑘⊗…⊗𝑩𝑚−1; 𝑘 = 1,… ,𝑚 − 1 (3.20) 

Where, 𝑩𝑘 = 𝑎 = [
−1
1
] and 𝑩𝑖 = 𝟏 = [

1
1
] , 𝑖 ≠ 𝑘 
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The top half of the OLHD is then given by the element-wise product of the 

magnitude and the sign matrix, hence 𝑻 = 𝑴°𝑺. An OLHD with 2𝑚 design points is 

generated by removing the midpoint of the 2𝑚 + 1 design and rescaling. The complete 

design matrix is obtained by reflecting the top part. However, limitations of this 

algorithm include applicability for even number of variables, fixed number of design 

points for a given the number of variables, and no uniformity of the points in the design 

space. The space-filling quality of the OLHD can be improved by generating a number of 

OLHD’s using different starting permutation vectors 𝑒 and choosing the design that 

evaluates as being the best according to the selected optimality criteria (Ye, 1998). 

Other approaches for generating an OLHD are also mentioned in the literature. 

Cioppa & Lucas (2007) extended the approach of Ye (1998) to generate OLHD with 

same number of design points but for a larger number of variables. The magnitude matrix 

in their algorithm is given by, 

 𝑴 = [𝑒, 𝑨𝑖𝑒, 𝑨𝑗𝑨𝑗+1]; 𝑖 = 1,… ,𝑚 − 1; 𝑗 = 1,… ,𝑚 − 2. (3.21) 

This strategy produces a design with 𝑚 + (𝑚 − 1
𝑚

) columns which are orthogonal to 

each other. Further, Cioppa & Lucas (2007)showed that such a design does not have good 

space-filling property and suggested sacrificing strict orthogonality, producing the nearly 

orthogonal Latin hypercube designs (NLHD). They also proposed deleting a few columns 

from the design matrix if the number of variables is not exactly the same as 𝑚+

(
𝑚 − 1
𝑚

) and then inserting new design points to ensure a good space-filling property as 

well as maintaining near orthogonality. The method proposed by (Steinberg & Lin, 2006) 
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consists of rotating a 2𝑘 factorial design, when 𝑘 is power of two (𝑘 = 2𝑚) and 2𝑘 

maximum number of factors. 

These OLHDs suffer from the drawback that the number of runs are fixed, based 

on the number of variables. They also exhibit a poor space-filling property. Morris and 

Mitchell (1995) found that many optimal LHDs possess the symmetry property. They 

used a simulated annealing algorithm to perform a series of perturbations on a randomly 

chosen LHD until a best possible design is obtained according to the entropy criterion. 

Many designs had symmetry structure. Ye, William, and Sudjianto (2000) proposed 

searching for the best design among symmetric Latin hypercube designs. However, 

instead of randomly searching for a SLHD, they suggested using a columnwise-pairwise 

exchange algorithm which reduces search time for optimal SLHD. The algorithm 

involves finding two exchange pairs in a column of the design matrix that result in a 

design that maintains symmetry as well as has better optimality criterion. In any iteration, 

there must be two such pairs in order to maintain symmetry of the design. SLHDs exhibit 

the symmetry property in that any point in the design is reflected through the center of the 

design space of another point in the design. Such a design is also an OLHD. In addition 

to the orthogonal property, these designs can have any number of design points 

independent of the number of variables. The initial SLHD required for the columnwise-

pairwise exchange algorithm can be generated from the definition of SLHD. Ye et al. 

(2000) further found that their algorithm produced consistently better designs than the 

algorithm of Park (1994). However, the simulated annealing algorithm of Morris and 

Mitchell (1995) produced even better designs. Even though the CP algorithm does not 
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produce a true globally optimal design, it is computationally more efficient. Hence, it was 

used to generate the experimental design for this study. 

3.3.1 Optimality Criteria of Experimental Designs 

Many optimality criteria for experimental design were presented in the literature. 

Shanon’s entropy criteria was utilized by Shewry and Wynn (1987) to obtain designs 

with maximum entropy. Entropy is proportional to the amount of information contained 

in the system. The motivation for the entropy criteria comes from the Gaussian process 

model. The model is trained in a way so as to reduce uncertainty in the response obtained 

from the model, which is equivalent to minimizing the posterior entropy. 

The minimax and maximin distance criteria were introduced by Johnson, Moore, 

& Ylvisaker (1990). The minimax criterion tries to minimize the maximum distance 

between any two points in the design. On the other hand, the maximin distance criterion 

selects a design that maximizes minimum distance between any two points in the design. 

These criteria ensure that no point in the design is too far from any other point and 

achieves uniformity in the distribution of points in the design space. The authors also 

showed that choosing a design based on the minimax or maximin criterion is same as 

choosing a design that maximizes the entropy criteria. 

The good design should be such that its points are as uniformly distributed as 

possible in the design domain. The designs with the aim of achieving this uniformity are 

called uniform designs (Fang, Lin, Winker, & Zhang, 2000). Discrepancy of a design is a 

measure of uniformity, which is the amount of deviation from uniform distribution of the 

design points. An optimal design should cover the design space as uniformly as possible 

so as to achieve good prediction accuracy for a trained model (Fang, Lin, Winker, & 
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Zhang, 2000). Hence, a lower discrepancy design has a better space-filling property. If 

𝒹 = [𝑥⃗1, 𝑥⃗2, … , 𝑥⃗𝑛] is a design in the 𝑠-dimensional unit cube design space, 𝐷 = 𝐶𝑠, 

[0, 𝑥⃗) is a rectangle in this design space, and 𝑁(𝒹, [0, 𝑥⃗)) is the number of points in the 

rectangle [0, 𝑥⃗), then the following expression is the discrepancy from the uniform 

distribution at point 𝑥⃗. 

 |
𝑁(𝒹,[0,𝑥⃗))

𝑛
− 𝑉𝑜𝑙([0, 𝑥⃗))| (3.22) 

The average of the 𝐿𝑝 norm of the discrepancy on 𝐶𝑠 is the 𝐿𝑝-discrepancy given 

by expression in equation 3.23 (Hickernell, 1998). 

 𝐷𝑝 = [∫ |
𝑁(𝒹,[0,𝑥⃗))

𝑛
− 𝑉𝑜𝑙([0, 𝑥⃗))|

𝑝

𝐶𝑠
]
1/𝑝

 (3.23) 

The authors stated that the 𝐿𝑝-discrepancy does not guarantee a uniform distribution in 

lower-dimensional space and they suggested three measures of uniformity – symmetric 

𝐿2-discrepancy, centered 𝐿2-discrepancy, and modified 𝐿2-discrepancy. They gave a 

closed form analytical expressions to evaluate each of these. The modified 𝐿2-

discrepancy is an improvement over the 𝐿2-discrepancy in that it measures uniformity on 

lower-dimensional spaces as well. The symmetric 𝐿2-discrepancy measures uniformity of 

design if any coordinate of a design point is reflected through the mid-point of its range. 

The centered 𝐿2-discrepancy is invariant under reflection around a plane passing through 

mid-point if the design space. The expression for 𝐿2-discrepancy is given by equation 

3.24 (Hickernell, 1998). 

 𝐶𝐷2 = (
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One more measure of uniformity, called the wrap-around 𝐿2discrepancy, is 

proposed by Hickernell (1998). It measures uniformity of a design when the rectangle in 

equation 3.22 is no longer anchored around a specific point. Instead, an arbitrary region 

[𝑥⃗1, 𝑥⃗2) is chosen in the design space with wrap-around if either of the points goes 

outside the design space. An analytical expression is given by Hickernell (1998) in 

equation 3.25. 

 𝑊𝐷2 = (
4

3
)
𝑠
+

1

𝑛2
∑ ∏ [

3

2
− |𝑥𝑘𝑖 − 𝑥𝑗𝑖|(1 − |𝑥𝑘𝑖 − 𝑥𝑗𝑖|)]

𝑠
𝑖=1

𝑛
𝑘,𝑗=1  (3.25) 

The discrepancy criteria was used to in this study for optimizing experimental 

design since a uniform distribution of design points seemed more appropriate and also 

because of the discrepancy was easy to implement. 

3.4 Prediction Accuracy and Regularization 

The mean square error of a trained metamodel with respect to training data is 

always a minimum since the model is developed by minimizing the cost function, which 

is defined as the sum of squares of the residuals with respect to the training data. 

However, this measure of the mean square error is not of much value in determining the 

usefulness of the model for predicting a response at an untried site. In order to determine 

prediction accuracy, usually, another set of points and their corresponding responses are 

required. This data set is called the test data. Let {𝑦1, … 𝑦𝑚} be the observed response 

values with mean 𝑦̅𝑀 for test data points {𝑥⃗1, … , 𝑥⃗𝑚}, {𝑦̂1, … , 𝑦̂𝑚} be the predicted 

response values obtained from the trained metamodel at the test points. Then, the 

following measures of prediction accuracy can be obtained for the metamodel with 

respect to the test data (Jin, Chen, & Simpson, 2000). 
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Mean square error 

 𝑀𝑆𝐸 =
1

𝑚
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑚
𝑖=1  (3.26) 

Coefficient of determination 

 𝑅2 = 1 −
𝑀𝑆𝐸

𝜎2
 (3.27) 

Relative average absolute error (RAAE) 

 𝑅𝐴𝐴𝐸 =
1

𝑚

∑ |𝑦𝑖−𝑦̂𝑖|
𝑚
𝑖=1

𝜎
 (3.28) 

Relative maximum absolute error (RMAE) 

 𝑅𝑀𝐴𝐸 =
max(|𝑦𝑖−𝑦̂𝑖|;𝑖=1,…,𝑚)

𝜎
 (3.29) 

Here, 𝜎2 is variance of the observed response, 𝜎2 = 1

𝑚
∑ (𝑦𝑖 − 𝑦̅)

2𝑚
𝑖=1 . 

These measures of prediction accuracy of a model are relative to the chosen test 

data. Lower values of 𝑀𝑆𝐸, 𝑅𝐴𝐴𝐸, and 𝑅𝑀𝐴𝐸 imply better model prediction accuracy. 

A value of 𝑅2closer to 1 indicates that the model fits the test data closely indicating good 

prediction accuracy. However, for these statistics to be a true measure of the prediction 

accuracy, there should be a sufficiently large number of test points and they should be 

true representatives of the design space and the problem being modeled. In some cases 

(like the one studied in this thesis), the experiments are expensive and/or time consuming 

to conduct, thereby making it impossible to obtain a sufficiently large test data set. In 

such a case, the training data itself can be used to train the model as well as to test the 

model using a procedure called cross validation (Fang, Li, & Sudjianto, 2006). In order to 

calculate the cross validation score, the data is split into two sets – the training data set 

and the test data set. The training data set is used to train the model and the test data set is 
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used to measure its prediction accuracy. Since the amount of data used for training the 

model is reduced, the model becomes less accurate. However, in such a case, the test data 

set can be used to estimate the prediction error, and in the final stage, all of the data can 

be used as training data to obtain the final model. In this scheme, the prediction error is 

subjected to which portion of the data is held out for testing. To avoid this bias, K-fold 

prediction measures can be calculated (Fang, Li, & Sudjianto, 2006). In this scheme, the 

data is partitioned in K groups of equal size {𝐷𝑖; 𝑖 = 1,… , 𝐾}. Data set 𝐷𝑖 is held out for 

determining the prediction error and the remaining data sets are used to train the model. 

This involves training and testing the model K times. The average of the K prediction 

measures is taken as a measure of the model’s prediction accuracy. The final model is 

built using all of the data. The mean square error calculated using the K-folds is called K-

fold cross validation (equation 3.30). 

 𝐶𝑉𝐾 =
1

𝐾
∑ (

1

𝑁𝑖
∑ (𝑦𝑗 − (𝑦̂−𝐷𝑖)𝑗

)
2

𝑗∈𝐷𝑖 )𝐾
𝑖=1  (3.30) 

Here, (𝑦−𝐷𝑖)𝑗 is the predicted response at point 𝑥⃗𝑗 ∈ 𝐷𝑖, obtained from a metamodel 

trained by excluding the 𝐷𝑖 part of the data set, 𝑦𝑗 is the observed response at 𝑥⃗𝑗 and 𝑁𝑖 is 

the number of points in the part 𝐷𝑖 of the data set. If each fold of the data set contains 

only one point, then the cross validation score is called leave-one-out cross-validation. 

 𝐶𝑉 =
1

𝑛
∑ (𝑦𝑖 − 𝑦̂−𝑖)

2𝑛
𝑖=1  (3.31) 

Here, 𝑦̂𝑖 is the predicted response at ith data point given by the metamodel trained by 

excluding the ith data point. 

As discussed in section 3.2.1, the polynomial models trained using ridge 

regression have a parameter 𝜆 to penalize the estimators that achieve a tradeoff between 
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expectation and variance. In LASSO, it controls the threshold for including or excluding 

a basis function in the model. For the radial basis functions discussed in section 3.2.2, the 

attenuation factor, 𝑟, controls the spread of each basis function’s region of influence. The 

choice of these constants, called regularization parameters 𝜆, affects the prediction 

accuracy of the developed metamodel. An optimum 𝜆 can be chosen using a procedure 

called regularization such that it maximizes the prediction accuracy measured by any of 

the metrics described earlier. Since the metamodel depends on the regularization 

parameter 𝜆, the metric of prediction accuracy, such as the cross validation score, is also a 

function of 𝜆. If cross-validation is chosen as the prediction error metric, then this 

minimization problem can be stated as follows. 

 𝜆̂ = min
𝜆
𝐶𝑉(𝜆) (3.32) 

This minimization problem can be solved using an optimization algorithms such 

as simulated annealing. However, Fang et al. (2006) suggested a heuristic based 

approach. In this approach, a range is selected for 𝜆 and a uniform grid is created in this 

range. The cross-validation score is evaluated for the chosen model by varying 𝜆 from the 

smallest value to the largest value. If the optimal 𝜆 lies in the chosen range, then as 𝜆 

varies from the smallest to the largest value, the cross-validation score decreases, reaches 

a minimum at a particular 𝜆, and then increases again. If the minimum is not found in the 

chosen range, then a different range of 𝜆 is chosen and the procedure is repeated. The 

value of 𝜆 at which cross-validation score reaches minimum, is selected as the optimal 

regularization parameter. Final metamodel should be developed using all of the data and 

the optimal 𝜆̂. 
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In this study, the leave one out cross validation score was used as a heuristic for 

the heuristic-based regularization parameter selection of Fang et al. (2006) to train a 

metamodel. 
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OPTIMIZATION OF THE FFA-W3-301 AIRFOIL WITH CAVITY USING 

METAMODELS 

This chapter explains various aspects of the metamodel development process 

discussed in chapter III for the problem of optimization of a cavity shape for FFA-W3-

301 airfoil. 

4.1 Parameterization for the Shape of Cavity on FFA-W3-301 Airfoil 

I conducted a preliminary investigation of flow over the NACA0012 airfoil with a 

backward facing step on the upper surface (like the Kline-Fogleman airfoils) and a 

positive angle of attack indicated. Results indicated that the vortices forming in the step 

were swept away by the flow. This resulted in continuous vortex shedding, which was 

detrimental to the airfoil performance. So, in order to promote the formation of a stable 

vortex, an upwardly concave NURBS curve was used to define the shape of the cavity 

and a separate NURBS curve was used to define the aft portion of the airfoil. The cavity 

curve requires a start point, an end point, a tangent vector at each of these locations, and a 

weight for each tangent that determines the extent to which the curve is stretched in the 

direction of the tangent. The rear portion of the airfoil including the cavity and the cavity 

design parameters is shown in figure 4.1. The curves 𝐶1 and 𝐶2 redefine the upper surface 

of the airfoil. Though the start point of 𝐶1 lies on the airfoil surface, its end point does not 

if a non-zero offset 𝑥7 is used. Because of this, a separate NURBS curve was used for the 
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aft portion of the airfoil. The parameters and their description are given in table 4.1. Only 

parameters 𝑥1 to 𝑥7 were varied for this study while parameters 𝑥8 to 𝑥11 were held 

constant. The parameters 𝑥1 and 𝑥6 determine the start and end positions of the cavity, 

respectively. Changing these parameters changes the location and length of the cavity. 

Varying these parameters will give insight into the effect of position and length of the 

cavity on the airfoil performance. The parameters 𝑥3 and 𝑥5 determine the front and back 

depth of the cavity and parameters 𝑥4 and 𝑥2 affect the direction of fluid flow into and 

out of the cavity at its ends. Together, parameters 𝑥1 to 𝑥6 determine the cavity’s 

position, length, and depth. The parameter 𝑥7 is the amount by which the end of the 

cavity is lifted above the original airfoil surface. A larger 𝑥7 causes the cavity to protrude 

more into the flow thereby trapping more energy in to the vortex inside the cavity at the 

same time possibly causing the flow separate earlier on the aft position of the airfoil. The 

parameters 𝑥1 to 𝑥7 form a seven-dimensional design space. Initial simulations using 

randomly chosen cavity parameters indicated that the cavity should be in the aft portion 

of the airfoil upper surface. Hence the range of each parameter value was chosen as 

shown in table 4.2. The values of parameters 𝑥1, 𝑥3, 𝑥5, 𝑥6, and 𝑥7 are in fractions of the 

chord length while the angles 𝑥2 and 𝑥4 are in degrees. 
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Figure 4.1 The cavity design parameters 

 

Table 4.1 Description of parameters for the cavity design 

Parameter Description 
𝑥1 Distance of start point of curve 𝐶1 from leading edge of the airfoil along 

its chord 
𝑥2 Angle made by start vector of curve 𝐶1 with negative x axis in degrees 
𝑥3 Scale factor for start vector of curve 𝐶1 
𝑥4 Angle made by end vector of curve 𝐶1 with positive x axis in degrees 
𝑥5 Scale factor for end vector of curve 𝐶1 
𝑥6 Distance of end point of curve 𝐶1 from leading edge of the airfoil along 

its chord 
𝑥7 Vertical distance of end point of curve 𝐶1 from the point on original 

airfoil curve at distance 𝑥6 from leading edge of the airfoil 
𝑥8 Angle made by start vector of curve 𝐶2 with positive x axis 
𝑥9 Scale factor for start vector of curve 𝐶2 
𝑥10 Angle made by end vector of curve 𝐶2 with negative x axis 
𝑥11 Scale factor for end vector of curve 𝐶2 
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Table 4.2 Range of experimental design domain for FFA-W3-301 cavity parameters 

Parameter Start End 
𝑥1 0.5 0.6 
𝑥2 22.5 67.5 
𝑥3 0.05 0.1 
𝑥4 22.5 67.5 
𝑥5 0.05 0.1 
𝑥6 0.65 0.75 
𝑥7 0.0 0.02 

 

4.1.2 Software for Design of Airfoil Profile with Cavity 

To generate the profile of an airfoil with a cavity based on the parameterization 

described above, a MATLAB code with a graphical user interface was developed that 

takes as inputs a xy file that defines the original airfoil profile, the cavity parameter 

values and other parameters for controlling the NURBS curve generation. Figure 4.2 

shows the user interface of the application. Clicking on the “Read” button opens a dialog 

box that allows selection of the xy data file for the airfoil profile. This file must have two 

columns, the first column for the x coordinate and the second column for the y coordinate 

of the points that define original airfoil shape. The coordinates in this file must start from 

the trailing edge on lower surface of the airfoil section, wrap around the airfoil profile 

from the leading edge and end at the trailing edge on upper surface of the airfoil.  

First, the software calculates the original airfoil shape by generating a 𝐶2-

continuous NURBS curve that passes through the points read from the airfoil definition 

file. The NURBS curve generation is controlled using settings specified in the 

“Parameterization”, “Boundary Conditions”, “np” (number of points), “tol” (tolerance), 

and “iter” (iterations) boxes. Once the NURBS curve is generated, the NURBS curve is 
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trimmed at the point on upper surface of the airfoil at distance “Start Pos” from leading 

edge of the airfoil until the trailing point on the upper airfoil surface. Then, two 𝐶2-

continuous NURBS curves 𝐶1 and 𝐶2 are generated using the cavity parameters as 

mentioned above. The values of these cavity parameters should be specified in the text 

boxes next to the parameter names in the “Cubic Curve” box on the GUI. The resulting 

airfoil profile with the cavity is then displayed on the user interface. The control points 

for the cubic curve of the cavity can be made visible by selecting the toggle button “Show 

control points” at the bottom of the user interface. The resulting airfoil shape with the 

three NURBS curve can be saved in the .NC file format (Jiang & Remotigue, July 1998) 

by clicking the “Write” button and specifying file name in the save dialog box. The .NC 

file can be directly read into GUM-B for grid generation purpose. 
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Figure 4.2 The MATLAB user interface of the application for generating airfoil 
profile with cavity 

 

Since the grid is a structured grid, the grid in the cavity requires a domain 

decomposition as shown in figure 4.3. This avoids cells with large cell to face angles 

making the CFD simulations more accurate. The grid shown in the figure is coarse for 

visualization purpose. However, for actual simulations, the grid in the cavity was much 

more refined. The grid surrounding the airfoil is modified accordingly. 
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Figure 4.3 Structured grid in the cavity 

 

4.2 Design of Experiment for the Cavity Parameterization 

For generating the experimental design, a MATLAB program was developed 

which can generate OLHD or SLHS with centered 𝐿2-discrepancy as the optimality 

criteria. The graphical user interface of the software is as shown in figure 4.4. To 

generate a design, click on the “Experiment” menu and then “New” menu item. This 

opens a dialog box as shown in figure 4.4. Select the required type of design - “SLHD” or 

“OCLHD”. Then specify the number of iterations. These are the number of Latin 

hypercube designs searched for best possible design. For OLHD, the number of design 

points are fixed depending on the number of design variables. On the other hand, for 

SLHD, the number of design points should be specified in the field “n”. The factors and 
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their ranges are specified in the dialog box. On clicking the “Ok” button, the software 

starts the process of generation of optimal design and chooses the best possible design 

among all the explored designs. The software internally uses the columnwise-pairwise 

exchange algorithm (Ye, William, & Sudjianto, 2000) for optimization of LHDs. The 

optimal design, along with its centered discrepancy, is displayed in the main window. 

The software also allows saving the generated design and opening an existing design 

generated by this software. If a design is already opened, it can be extended by keeping 

the original design points and adding more design points such that the type of design 

(SLHS or OLHD) remains same. This can be achieved by using the “Extend” menu item 

under the “Experiment” menu. This feature is useful in a situation when training data has 

already been collected for a design but was found to be too scarce to produce sufficiently 

accurate information to train a metamodel. Generating a new design with more points 

will waste the effort already spent in gathering training data on the earlier design unless 

the new design adds points while maintaining the training points in the original 

experimental design. This extension should be done in a way such that the structural 

property of the original design remains intact. The centered discrepancy code was 

verified using LHDs with the known value of centered discrepancy mentioned in (Fang, 

Li, & Sudjianto, 2006). For modeling the performance of the FFA-W3-301 airfoil cavity, 

a 67 point symmetric Latin hypercube design was constructed in the design space of the 

seven design variables listed in table 4.2. The design points are listed in table B.1. 
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Figure 4.4 Graphical user interface of application for generating SLHD and OLHD 

 

4.3 Software for Building Metamodels 

A C++ code was developed for generating a regularized metamodel from a given 

experiment and training data set. Input to the program is an XML file containing training 

data and specifications of metamodels to train. The program trains specified metamodels 

and writes the trained model parameters into a file. The code has an API that allows 

reading a saved metamodel. Once it is read and loaded into memory, the response as well 

as the gradient of the metamodel at any point in the design space can be obtained. So, a 

model is generated once and reused later in the optimization routines. The gradient of the 

modeled response at a point is useful in driving optimization routines, which is necessary 

to find the optimal cavity shape as explained in later section. 
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It is important to validate the program by using it to model some toy functions. 

For this purpose, two functions were considered. The details of the numerical 

experiments are given in appendix A. 

4.4 Development of Metamodel of the Performance of the FFA-W3-301 Airfoil 
with Cavity 

In this study, performance of the FFA-W3-301 airfoil with a cavity was measured 

by its lift coefficient (𝐶𝑙), drag coefficient (𝐶𝑑) and the ratio of the two coefficients (𝐶𝑙/

𝐶𝑑) at 12°. The 12° angle of attack was chosen because, at this angle (and higher angles), 

the original airfoil showed a large separated region that resulted in stall and the objective 

of this study was to determine a passive cavity configuration that alleviates this problem. 

The experimental design of 67 points was used to generate 67 airfoil profiles of the FFA-

W3-301 airfoil with a cavity. Each of these airfoil shapes was used to generate a 

structured grid as discussed earlier and Loci/CHEM simulations were performed to 

obtain 𝐶𝑙 and 𝐶𝑑 as response values for the computer experiments. Since the amount of 

effort in collecting the lift and drag coefficients data for each cavity configuration was 

large, a small test data set of 10 points was generated. Though this test data set was not 

sufficient enough to give an accurate estimate of the prediction accuracy of the 

metamodels, it was used to get a rough estimation of the prediction accuracy. The 

performance metrics of the metamodels (as discussed in section 3.4 of chapter III) with 

reference to this test data are listed in table 4.3 and 4.4. 
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Table 4.3 Test statistics for the radial basis function metamodels developed for the 
lift coefficient of the FFA-W3-301 airfoil with cavity 

Type of RBF 
Metamodel 

CV Score 
× 𝟏𝟎−𝟒 

MSE 
× 𝟏𝟎−𝟒 

𝑹𝟐 RAAE RMAE 

Gaussian 3.470847 5.24253 0.916088 0.243886 0.457296 
Multiquadratic 3.491105 4.40783 0.929448 0.235904 0.430594 
Inverse 
Multiquadratic 

3.406817 4.57445 0.926781 0.236947 0.423978 

Inverse 
Quadratic 

3.394605 4.64829 0.925600 0.237544 0.422998 

 

Table 4.4 Test statistics for the radial basis function metamodels developed for the 
drag coefficient of the FFA-W3-301 airfoil with cavity 

Type of RBF 
Metamodel 

CV Score 
× 𝟏𝟎−𝟕 

MSE 
× 𝟏𝟎−𝟔 

𝑹𝟐 RAAE RMAE 

Gaussian 6.173603 2.38449 0.925052 0.228254 0.431922 
Multiquadratic 7.295857 2.44354 0.923197 0.232886 0.437017 
Inverse 
Multiquadratic 

6.896605 2.36219 0.925754 0.22927 0.420819 

Inverse 
Quadratic 

6.775923 2.35108 0.926103 0.228686 0.416803 

 

The 𝑅2, RAAE and RMAE values for the lift and drag coefficient data indicate 

that the drag and lift coefficients predicted by the models can have errors as large as 

~45% of the standard deviation in observed response values. Though this is a large error 

for the lift and drag coefficients of an airfoil, it should be kept in mind that the use of 

these metamodels is to enable design space exploration for finding an optimum 

configuration. As long as a metamodel captures the general shape of the response surface, 

the errors in the predicted response given by the metamodel should not interfere with the 

conclusions of this work. 
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The purpose of this study is to examine the design space of the cavity shape 

parameters to find a cavity configuration that gives maximum lift and minimal drag. 

Therefore the objective function formulation should include both the lift and drag 

coefficient. However, only the lift coefficient is considered for the optimization reported 

here. 

4.5 Response Surface of Lift Coefficient 

The design space of the cavity shape parameters is seven dimensional. It is hard to 

visualize a response surface that is more than 2 dimensional. Therefore attention was 

focused on the dominant parameters. A linear polynomial model was developed for the 

lift coefficient using ordinary least square regression. The model had 𝑅2 = 0.744424. 

Even though the model was a very rough approximation of the true response, its 

standardized regression coefficients gave insight into the parameters that had a significant 

effect on the response. It was found from this model that the airfoil performance is most 

sensitive to 𝑥1, 𝑥6, and 𝑥7, that is, the start and end positions of the cavity, and amount by 

which the end of the cavity protrudes into the flow. The multiquadratic radial basis 

function metamodel was used to plot lift coefficient against 𝑥1 for various values of 𝑥6 

and 𝑥7 keeping other design parameter values at the midpoint of their domain. The plots 

are shown in figure 4.5. These plots indicate that for low values of 𝑥7, the lift coefficient 

increases if 𝑥1 increases and 𝑥6 decreases. That is, if the cavity length becomes smaller, 

the lift coefficient increases. However, for higher values of 𝑥7, increasing both 𝑥1 and 𝑥6 

increases lift coefficient. This shows that there is a possibility of improving lift by 

moving the cavity rearwards on the airfoil upper surface and increasing 𝑥7. 
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(a) 𝑥7 = 0.0 

 
(b) 𝑥7 = 0.008571 

 
(c) 𝑥7 = 0.017143 

 
(d) 𝑥7 = 0.2 

Figure 4.5 Plot of response surface of the multiquadratic metamodel of lift coefficient 
of the FFA-W3-301 airfoil with cavity at 12° AoA.  

Each plot is lift coefficient vs 𝑥1 graph for a fixed value of 𝑥7. 
 

4.6 Optimization of the Cavity Shape and Incremental Model Improvement for 
12° Angle of Attack 

The drag and lift coefficient radial basis function metamodels for 12°AoA have 

𝑅2 more than 90% indicating that the models have moderate accuracy. Improving the 

global accuracy of the models requires adding more training points in the design domain. 
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Since the process of collecting response values is time consuming, an incremental 

approach was used in this study. For the initial model, its optimum point was found using 

an optimization algorithm. The airfoil with the cavity was designed for this optimum 

point and then simulated using Loci/CHEM to compute the lift and drag data for the 

configuration. It was compared with the values given by the model. If the error was large, 

that optimal point was used to augment the design matrix and to build a new improved 

model. These steps were repeated until the lift and drag coefficient values given by the 

model and the simulation matched. 

In this study, the multiquadratic radial basis function model was used to perform 

the incremental optimization cycles. For optimization, the Matlab optimization toolbox 

with the trust-region reflective algorithm was used. The optimized cavity that gave 

highest lift to drag ratio for FFA-W3-301 airfoil at 12° angle of attack is defined by 

parameter values listed in table 4.5. This cavity was designated as o19. The FFA-W3-301 

airfoil with the o19 cavity is shown in figure 4.6. 

Table 4.5 The o19 cavity parameter values 

Parameter Value 
𝑥1 0.657382 
𝑥2 55.955368 
𝑥3 0.089359 
𝑥4 46.588125 
𝑥5 0.095150 
𝑥6 0.764157 
𝑥7 0.016272 
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Figure 4.6 The FFA-W3-301 airfoil with the o19 cavity 

 

Table 4.6 Lift and drag coefficients for FFA-W3-301 and FFA-W3-301 with the o19 
cavity for 10°, 12°, and 14° AoA 

AoA Performance metric FFA-W3-301 FFA-W3-301 with o19 cavity 
 
10° 

𝐶𝑙 1.294889 1.256315 
𝐶𝑑 0.0378466 0.0395740 
𝐶𝑙/𝐶𝑑 34.2141 31.7460 

 
12° 

𝐶𝑙 1.376509 1.410069 
𝐶𝑑 0.0487612 0.0473990 
𝐶𝑙/𝐶𝑑 28.2296 29.7489 

 
14° 

𝐶𝑙 1.353612 1.404948 
𝐶𝑑 0.0723395 0.0645478 
𝐶𝑙/𝐶𝑑 18.7120 21.7660 

 

The FFA-W3-301 airfoil and the modified FFA-W3-301 airfoil with the o19 

cavity has lift and drag coefficients as listed in table 4.6. The pressure coefficient and the 

wall shear stress magnitude graph comparisons are presented in figure 4.7. 
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(a) 12° AoA 

 
(b) 12° AoA 

 
(c) 10° AoA 

 
(d) 10° AoA 

 
(e) 14° AoA 

 
(f) 14 ° AoA 

Figure 4.7 Graphs comparing pressure coefficient (Cp) and wall-shear stress 
magnitude between FFA-W3-301 and FFA-W3-301 with the o19 cavity at 
various angles of attack. 
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(a) 12° AoA 

 
(b) 10° AoA 

Figure 4.8 Streamlines of flow over the FFA-W3-301 airfoil with the o19 cavity at 
various angles of attack 
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(c) 14° AoA 

Figure 4.8 (continued) 

 

The pressure coefficient graph for a 12° angle of attack shows that for the airfoil 

with the o19 cavity, there is a small “suction” inside the cavity. Also the wall-shear stress 

magnitude graph shows that the flow stays attached until 0.81 of chord after the cavity 

ends at 0.764157 of chord. Because of this partial reattachment, the o19 cavity 

configuration produces a higher lift to drag ratio. 

The same cavity was tested for 10° and 14° angles of attack. For the 10° AoA, 

shown in figures 4.7c, 4.7d and 4.8b, the cavity started upstream of the point of 

separation (~0.845) on the unmodified FFA-W3-301 airfoil. This resulted in a higher 

suction-side pressure and hence a lower lift. However, it can be seen from the wall-shear 

stress magnitude graph that the flow stays attached for a greater distance downstream of 
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the cavity. For the 14° AoA, shown in figures 4.7e, 4.7f and 4.8c, the cavity starts after 

the unmodified airfoil’s point of separation and is seen to be completely in the separated 

region. But it results in a higher lift to drag ratio due to a lower suction-side pressure and 

better pressure recovery after the cavity. The flat pressure coefficient graph inside the 

cavity and in the aft region shows that the flow is separated. The wall-shear stress 

magnitude graph shows that there is no reattachment of the flow. 

4.7 The o19 Cavity at Point of Separation 

In the 12° AoA case, the o19 cavity starts at the point of separation. However, it 

does not start at the point of separation in the case of 10° and 14 ° AoA. Hence, a new 

class of cavity was used to test the airfoil performance under different angles of attack. 

This class of cavity was based on the o19 cavity parameter values, except the 𝑥1 

parameter value was set to the x-coordinate of point of separation for each particular 

angle of attack and 𝑥6 was adjusted such that the cavity length, (𝑥6 − 𝑥1), stayed the 

same as the o19 cavity. Such a cavity was named, o19_aXX, where the suffix aXX 

indicates the angle of attack for which the cavity was “designed”. For example, the 

o19_a14 cavity for the FFA-W3-301 airfoil has the same parameter values as the o19 

cavity except 𝑥1 was set to the x-coordinate if the point of separation from the leading 

edge of the airfoil for 14° AoA and 𝑥6 was adjusted accordingly to keep the same cavity 

length. The o19_a14 cavity was tested for 14° AoA. The results are as shown in table 4.7 

and figure 4.9.The wall-shear stress magnitude graph shows partial reattachment similar 

to the FFA-W3-301 with the o19 cavity for the 12° AoA case. Also the lift to drag ratio 

was higher than the fixed position o19 cavity at 14° AoA. Figure 4.10 shows the FFA-

W3-301 airfoil with the o19_a14 cavity. 
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Table 4.7 Lift and drag coefficients for the FFA-W3-301 airfoil and the FFA-W3-301 
with the o19_a14 cavity for 14° AoA 

AoA Performance metric FFA-W3-301 FFA-W3-301 with o19_a14 cavity 
 
14° 

𝐶𝑙 1.353612 1.417695 
𝐶𝑑 0.0723395 0.0637078 
𝐶𝑙/𝐶𝑑 18.7120 22.2531 

 

 
(a) 

 
(b) 

Figure 4.9 Graphs comparing pressure coefficient (Cp) and wall-shear stress 
magnitude of the FFA-W3-301 airfoil with those of the FFA-W3-301 
airfoil with the o19_a14 cavity at 14° AoA 
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Figure 4.10 The FFA-W3-301 cavity with the o19_a14 cavity 

 

 

Figure 4.11 Streamlines of flow over the FFA-W3-301 airfoil with the o19_a14 cavity 
at 14° AoA 

 



 

59 

4.8 Testing of the o19_aXX Cavity on NACA0024 Airfoil 

An NACA0024 airfoil was used to test the o19_aXX cavity at 12° and 14° AoA. 

Loci/CHEM simulations were performed on the NACA0024 airfoil. At 12° AoA, the 

point of separation was located at a distance of around 78% of the chord. By placing the 

o19 cavity at this location, NACA0024 airfoil with the o19_a12 cavity was obtained 

(figure 4.13(a)). For 14° AoA, the point of separation was at around 68% of the chord. 

Therefore, the o19_a14 cavity configuration was obtained by placing the o19 cavity at 

68% of the chord on the airfoil’s upper surface (figure 4.13(b)). These modified airfoils 

were tested for 12° and 14° AoA, respectively. Improvement in the lift to drag ratio was 

around 3% at 12° AoA and 6% at 14° AoA. Since the NACA0024 airfoil is a thinner 

airfoil compared to the FFA-W3-301 airfoil, the separation occurred at a larger chord 

distance compared to the FFA-W3-301 airfoil if they both are subjected to the same angle 

of attack. An interesting observation is that, for the case of flow over the FFA-W3-301 

airfoil at 12° AoA, flow separation occurred at around 66% of the chord. In case of flow 

over the NAC0024 airfoil at 14° AoA, flow separation occurred at around 68% of chord. 

In terms of the length of the separated region, both these cases are similar. Further, the 

AoA adaptive o19 cavity in these two cases showed similar percentage improvement in 

L/D. Therefore, it seems that the percentage improvement in the L/D ratio of a stalled 

airfoil is proportional to the length of the separated region. This is probably the reason 

that the improvement in case of the NACA0024 airfoil was not as good as the FFA-W3-

301 airfoil at 12° AoA. Improvement in the lift and drag coefficient for both the 12° and 

14° AoA case is shown in table 4.8 and 4.9. Figure 4.12 shows comparison of the 

pressure coefficient between the NACA0024 airfoil and the NACA0024 airfoil with the 
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o19_a14 cavity at 14° AoA. This graph shows similarity to the case of the FFA-W3-301 

airfoils with the o19_aXX cavity in that, the trapped-vortex cell produced slight suction 

inside the cavity. Also the lower pressure was achieved on the suction side of the airfoil, 

thus producing higher lift. 

Table 4.8 Lift and drag coefficients for the NACA0024 and the NACA0024 with the 
o19_a12 cavity at 12° AoA 

AoA Performance metric NACA0024 NACA0024 with o19_a12 cavity 
 
12° 

𝐶𝑙 0.960850 0.981623 
𝐶𝑑 0.0298366 0.0291782 
𝐶𝑙/𝐶𝑑 32.2037 33.6423 

 

Table 4.9 Lift and drag coefficients for the NACA0024 and the NACA0024 with the 
o19_a14 cavity at 14° AoA 

AoA Performance metric NACA0024 NACA0024 with o19_a14 cavity 
 
14° 

𝐶𝑙 1.067603 1.095226 
𝐶𝑑 0.0379768 0.0368712 
𝐶𝑙/𝐶𝑑 28.1119 29.7041 

 

 

Figure 4.12 Comparison between pressure coefficient of the NACA0024 airfoil and the 
NACA0024 airfoil with the o19_a14 cavity at 14° AoA 
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(a) NACA0024 airfoil with the o19_a12 cavity 

 
(b) NACA0024 airfoil with the o19_a14 cavity 

Figure 4.13 Profile of the NACA0024 airfoil with the o19_a12 and the o19_a14 
cavities 
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CONCLUSION 

In conclusion, although no modified airfoil configuration incorporating a passive 

trapped-vortex cavity was found to increase L/D for all airfoil attitudes, the findings of 

this effort have clearly shown that cavity shape does appear to affect whether or not a 

passive cavity has a beneficial effect. Specifically the parameters 𝑥1, 𝑥6, and 𝑥7 were 

found to have the largest impact. In this work, an optimization of these parmeters has led 

to a cavity design referred to as cavity o19 which yields a 5% improvement in L/D 

(notably by increasing lift and decreasing drag) for FFA-W3-301 airfoil at 12° AoA. 

Unfortunately the fixed cavity design which enhanced performance at 12°, hurt 

aerodynamic performance at lower angles of attack. This dilemma led to the development 

of an AoA adaptive cavity (based on the o19 design) which also proved to enhance 

aerodynamic performance when located at the AoA-specific point of separation. For the 

FFA-W3-301 airfoil at 14° AoA, this yielded 19% improvement in L/D. To determine 

whether the results were extendable to other airfoil geometries, tests run on a NACA0024 

airfoil also showed enhanced performance with the AoA adaptive cavity. However, 

extensive study with different types of airfoils is required to determine applicability of 

the cavity to enhance performance. 
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METAMODEL DEVELOPMENT ON TOY FUNCTIONS  
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In order to validate the program that was used to build metamodels, two toy 

functions were considered. Polynomial models up to degree six and radial basis functions 

with Gaussian, multiquadratic, inverse multiquadratic, and quadratic kernels were trained 

and the performance metrics of the models were calculated using a sufficiently large test 

data set for each of these functions. 

A.1 First Toy Function 

First toy function is a univariate function. It has the form shown in equation A.1 

and its graph is shown in figure A.1. The function has moderate fluctuations over most of 

the domain while the region between 1.0 and 2.0 of the domain shows larger fluctuations. 

 𝑓(𝑥) = sin(𝑥2) cos(𝑥2) + sin(2𝑥2) cos(2𝑥2) − 𝑥1.2 + 3; 𝑥 ∈ [0,2] (A.1) 

 

Figure A.1 Graph of function with equation no. A.1 

 

The training data set consisted of 10 uniformly-spaced points in the domain [0, 2]. 

All of the metamodels were trained using this set. A separate test data set of 50 points 
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was used to determine the prediction accuracy of the models using the metrics discussed 

in section 3.4. The performance metrics for the models are shown in figure A.2. A 

graphical comparison of the metamodels with the original function is presented in figure 

A.3. Comparison of the cross validation scores didn't give any definitive comparison of 

the relative performance of each model. Comparison of the R2, RAAE, and RMAE 

values of all of the models indicated that the radial basis function models have much 

better prediction accuracy compared to the polynomial models. Among the polynomial 

models, the second degree polynomial models showed moderate accuracy. With an 

increase in the degree of the polynomial, more accurate models were obtained. The 

algorithm used to train the model also affected their accuracy. Polynomial models trained 

with the OLS and ridge regression showed better accuracy compared to the LASSO 

regression in this case. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure A.2 Comparison of test metrics of the metamodels developed for the first toy 
function given by equation. A.1. 
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(a) 2nd degree polynomial – OLS 

 
(b) 2nd degree polynomial – ridge 

 
(c) 2nd degree polynomial – LASSO 

 
(d) 3rd degree polynomial – OLS 

 
(e) 3rd degree polynomial – ridge 

 
(f) 3rd degree polynomial – LASSO 

Figure A.3 Graphical comparison of toy function 1 (equation A.1) and its metamodels 
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(g) 4th degree polynomial – OLS 

 
(h) 4th degree polynomial – ridge 

 
(i) 4th degree polynomial – LASSO 

 
(j) 5th degree polynomial – OLS 

 
(k) 5th degree polynomial – ridge 

 
(l) 5th degree polynomial – LASSO 

Figure A.3 (continued) 
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(m) 6th degree polynomial – OLS 

 
(n) 6th degree polynomial – ridge 

 
(o) 6th degree polynomial – LASSO 

 
(p) RBF – Gaussian 

 
(q) RBF – Inverse Multiquadratic 

 
(r) RBF – Multiquadratic 

Figure A.3 (continued) 
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(s) RBF – Inverse Quadratic 

Figure A.3 (continued) 

 

A.2 Second Toy Function 

The second toy function is a bivariate function of the form given by equation A.2. 

The domain of the function is 𝑥1, 𝑥2 ∈ [0.5,3.5]. 

 𝑓(𝑥1, 𝑥2) = 2 + 4𝑥1 + 4𝑥2 − 𝑥1
2 − 𝑥2

2 + 2 sin(2𝑥1) sin(2𝑥2) (A.2) 

 The graph of this function is as shown in figure A.4. The function was modeled 

using a symmetric Latin hypercube design of 20 points generated using the columnwise-

pairwise exchange algorithm (Ye, William, & Sudjianto, 2000) to achieve the lowest 

discrepancy among the explored designs. The trained metamodels were tested against a 

100 point test data set with a symmetric Latin hypercube structure that fills the design 

space as uniformly as possible. The test metrics are shown in figure A.5. The surface 

plots of the metamodels are shown in figure A.6. 
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Figure A.4 Surface plot of the second toy function given by equation A.2  

 

 
(a) 

 
(b) 

Figure A.5 Comparison of test metrics of the metamodels developed for the second toy 
function given by equation A.2 
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(c) 

 
(d) 

 
(e) 

Figure A.5 (continued) 

 



 

76 

 
(a) 2nd degree polynomial – OLS 

 
(b) 2nd degree polynomial – Ridge 

 
(c) 2nd degree polynomial – LASSO 

 
(d) 3rd degree polynomial – OLS 

 
(e) 3rd degree polynomial – Ridge 

 
(f) 3rd degree polynomial – LASSO 

Figure A.6 Plots of the metamodels developed for the second toy function given by 
equation A.2. 
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(g) 4th degree polynomial – OLS 

 
(h) 4th degree polynomial – Ridge 

 
(i) 4th degree polynomial – LASSO 

 
(j) 5th degree polynomial – OLS 

 
(k) 5th degree polynomial – Ridge 

 
(l) 5th degree polynomial – LASSO 

Figure A.6 (continued) 
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(m) 6th degree polynomial – OLS 

 
(n) 6th degree polynomial – Ridge 

 
(o) 6th degree polynomial – LASSO 

 
(p) RBF – Gaussian 

 
(q) RBF – Inverse Multiquadratic 

 
(r) RBF – Multiquadratic 

Figure A.6 (continued) 
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(s) RBF – Inverse quadratic 

Figure A.6 (continued) 

 

The cross validation scores, 𝑅2, RAAE, and RMAE indicated that the the radial 

basis functions had much better accuracy compared to the polynomial models. Among 

the polynomial models, the 4th-degree polynomial models trained with the OLS 

regression showed better accuracy compared to the other polynomial models. 
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EXPERIMENTAL DESIGN FOR THE FFA-W3-301 AIRFOIL CAVITY SHAPE 

OPTIMIZATION  
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The design points used to train the metamodels of performance of the FFA-W3-

301 airfoil with cavity are listed in table B.1. It is a symmetric Latin hypercube design 

optimized by performing columnwise-pairwise exchange algorithm with centered 

discrepancy as the optimization objective in order to achieve better space-filling property. 

Table B.1 Experimental design for training metamodels of performance of the FFA-
W3-301 airfoil with cavity 

No. 𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓 𝒙𝟔 𝒙𝟕 
1 0.5485 38.8636 0.0773 42.9545 0.0788 0.7500 0.0000 
2 0.5924 42.2727 0.0932 43.6364 0.0992 0.7242 0.0179 
3 0.5636 64.7727 0.0970 45.6818 0.0576 0.6652 0.0170 
4 0.5530 23.1818 0.0795 40.9091 0.0674 0.6545 0.0155 
5 0.5667 48.4091 0.0758 62.0455 0.0970 0.7470 0.0133 
6 0.5773 61.3636 0.0629 25.9091 0.0841 0.6667 0.0173 
7 0.5606 37.5000 0.0606 40.2273 0.0955 0.6803 0.0194 
8 0.5258 62.7273 0.0811 38.1818 0.0553 0.6970 0.0136 
9 0.5576 22.5000 0.0985 66.1364 0.0879 0.7045 0.0073 
10 0.5288 54.5455 0.0538 31.3636 0.0689 0.6636 0.0070 
11 0.5121 60.6818 0.0621 56.5909 0.0682 0.7318 0.0164 
12 0.5833 65.4545 0.0780 55.9091 0.0705 0.6818 3.0303e-04 
13 0.5697 47.0455 0.0667 22.5000 0.0985 0.7015 0.0012 
14 0.5348 53.1818 0.0583 61.3636 0.0962 0.6939 0.0142 
15 0.5788 30.6818 0.0545 53.8636 0.0742 0.7258 0.0176 
16 0.5591 34.0909 0.0523 24.5455 0.0780 0.6879 0.0124 
17 0.5455 56.5909 0.0652 34.7727 0.0500 0.7439 0.0091 
18 0.5864 25.9091 0.0674 66.8182 0.0523 0.6697 0.0106 
19 0.5242 66.1364 0.0682 51.1364 0.0909 0.6864 0.0061 
20 0.5894 50.4545 0.0841 32.7273 0.0614 0.7424 0.0015 
21 0.5152 34.7727 0.0697 41.5909 0.0606 0.7227 0.0055 
22 0.5045 57.2727 0.0902 42.2727 0.0735 0.6909 0.0167 
23 0.5182 45.6818 0.0500 64.7727 0.0833 0.6712 0.0121 
24 0.5439 43.6364 0.0614 27.2727 0.0902 0.7212 0.0039 
25 0.5970 63.4091 0.0924 60.6818 0.0773 0.7379 0.0097 
26 0.5682 49.0909 0.0765 30.0000 0.0644 0.6848 0.0118 
27 0.5061 49.7727 0.0788 59.3182 0.0803 0.7076 0.0042 
28 0.5985 51.8182 0.0947 39.5455 0.0871 0.6515 0.0112 
29 0.5727 57.9545 0.0636 63.4091 0.0652 0.6591 0.0018 
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Table B.1 (continued) 

No. 𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓 𝒙𝟔 𝒙𝟕 
30 0.5621 30.0000 0.0644 35.4545 0.0583 0.7394 0.0148 
31 0.5091 27.9545 0.0939 52.5000 0.0636 0.6833 0.0115 
32 0.5803 58.6364 0.0508 53.1818 0.0568 0.7273 0.0191 
33 0.6000 36.1364 0.0591 57.9545 0.0561 0.6894 0.0048 
34 0.5500 45.0000 0.0750 45.0000 0.0750 0.7000 0.0100 
35 0.5000 53.8636 0.0909 32.0455 0.0939 0.7106 0.0152 
36 0.5197 31.3636 0.0992 36.8182 0.0932 0.6727 9.0909e-04 
37 0.5909 62.0455 0.0561 37.5000 0.0864 0.7167 0.0085 
38 0.5379 60.0000 0.0856 54.5455 0.0917 0.6606 0.0052 
39 0.5273 32.0455 0.0864 26.5909 0.0848 0.7409 0.0182 
40 0.5015 38.1818 0.0553 50.4545 0.0629 0.7485 0.0088 
41 0.5939 40.2273 0.0712 30.6818 0.0697 0.6924 0.0158 
42 0.5318 40.9091 0.0735 60.0000 0.0856 0.7152 0.0082 
43 0.5030 26.5909 0.0576 29.3182 0.0727 0.6621 0.0103 
44 0.5561 46.3636 0.0886 62.7273 0.0598 0.6788 0.0161 
45 0.5818 44.3182 0.1000 25.2273 0.0667 0.7288 0.0079 
46 0.5955 32.7273 0.0598 47.7273 0.0765 0.7091 0.0033 
47 0.5848 55.2273 0.0803 48.4091 0.0894 0.6773 0.0145 
48 0.5106 39.5455 0.0659 57.2727 0.0886 0.6576 0.0185 
49 0.5758 23.8636 0.0818 38.8636 0.0591 0.7136 0.0139 
50 0.5136 64.0909 0.0826 23.1818 0.0977 0.7303 0.0094 
51 0.5545 33.4091 0.0848 55.2273 0.1000 0.6561 0.0109 
52 0.5409 55.9091 0.0977 65.4545 0.0720 0.7121 0.0076 
53 0.5212 59.3182 0.0955 36.1364 0.0758 0.6742 0.0024 
54 0.5652 36.8182 0.0917 28.6364 0.0538 0.7061 0.0058 
55 0.5303 42.9545 0.0833 67.5000 0.0515 0.6985 0.0188 
56 0.5167 24.5455 0.0720 34.0909 0.0795 0.7182 0.0197 
57 0.5879 29.3182 0.0879 33.4091 0.0818 0.6682 0.0036 
58 0.5712 35.4545 0.0962 58.6364 0.0811 0.7364 0.0130 
59 0.5424 67.5000 0.0515 23.8636 0.0621 0.6955 0.0127 
60 0.5742 27.2727 0.0689 51.8182 0.0947 0.7030 0.0064 
61 0.5394 52.5000 0.0894 49.7727 0.0545 0.7197 6.06E-04 
62 0.5227 28.6364 0.0871 64.0909 0.0659 0.7333 0.0027 
63 0.5333 41.5909 0.0742 27.9545 0.0530 0.6530 0.0067 
64 0.5470 66.8182 0.0705 49.0909 0.0826 0.7455 0.0045 
65 0.5364 25.2273 0.0530 44.3182 0.0924 0.7348 0.0030 
66 0.5076 47.7273 0.0568 46.3636 0.0508 0.6758 0.0021 
67 0.5515 51.1364 0.0727 47.0455 0.0712 0.6500 0.0200 
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