

Reduced order techniques for sensitivity analysis and design optimization of

aerospace systems

By

Jefferson Carter Parrish

A Dissertation
Submitted to the Faculty of
Mississippi State University

in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

in Computational Engineering
in the Bagley College of Engineering

Mississippi State, Mississippi

May 2014

Copyright by

Jefferson Carter Parrish

2014

Reduced order techniques for sensitivity analysis and design optimization of

aerospace systems

By

Jefferson Carter Parrish

Approved:

Masoud Rais-Rohani
(Major Professor)

J. Mark Janus
(Co-Major Professor)

James C. Newman, III
(Committee Member)

Ioana Banicescu
(Committee Member)

Roger L. King
(Graduate Coordinator)

Jason M. Keith
Interim Dean

Bagley College of Engineering

Name: Jefferson Carter Parrish

Date of Degree: May 16, 2014

Institution: Mississippi State University

Major Field: Computational Engineering

Major Professor: Masoud Rais-Rohani and Mark Janus

Title of Study: Reduced order techniques for sensitivity analysis and design
optimization of aerospace systems

Pages in Study: 183

Candidate for Degree of Doctor of Philosophy

This work proposes a new method for using reduced order models in lieu of high

fidelity analysis during the sensitivity analysis step of gradient based design optimization.

The method offers a reduction in the computational cost of finite difference based

sensitivity analysis in that context.

The method relies on interpolating reduced order models which are based on

proper orthogonal decomposition. The interpolation process is performed using radial

basis functions and Grassmann manifold projection. It does not require additional high

fidelity analyses to interpolate a reduced order model for new points in the design space.

The interpolated models are used specifically for points in the finite difference stencil

during sensitivity analysis.

The proposed method is applied to an airfoil shape optimization (ASO) problem

and a transport wing optimization (TWO) problem. The errors associated with the

reduced order models themselves as well as the gradients calculated from them are

evaluated. The effects of the method on the overall optimization path, computation

times, and function counts are also examined.

The ASO results indicate that the proposed scheme is a viable method for

reducing the computational cost of these optimizations. They also indicate that the

adaptive step is an effective method of improving interpolated gradient accuracy. The

TWO results indicate that the interpolation accuracy can have a strong impact on

optimization search direction.

ACKNOWLEDGEMENTS

I am deeply grateful to my committee and advisors for their continued support

and guidance. I would also like to thank my family and friends for their patience and

understanding during this endeavor. This has been a long path filled with unexpected

turns and obstacles, and without these people, traveling it would not have been possible.

The Bagley College of Engineering and the Center for Advanced Vehicular

Systems have also made this work possible through their extensive support and resources.

I would also like to acknowledge the NASA Mississippi Space Grant Consortium for

their support. Vanderplaats Research and Development was kind enough to provide

guidance and reference for the second test problem in this work, which was especially

appreciated.

Finally, no engineering thesis would be complete without acknowledging the

contributions of the great M. Scott, who has inspired more than one engineer to pursue

their interests in space.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS.. ii

LIST OF TABLES.. vii

LIST OF FIGURES ... viii

LIST OF ACRONYMS ... xi

CHAPTER

I. INTRODUCTION...1

1.1 Background and Related Work..2
1.2 Dissertation Organization ..7

II. METHODOLOGY ..9

2.1 Engineering Design Optimization..9
2.1.1 Finite Difference Based Sensitivity Analysis14

2.2 Computational Analyses ..15
2.2.1 CFD Validation..19

2.3 Design of Experiments...21
2.4 Reduced Order Models ..23

2.4.1 Proper Orthogonal Decomposition ..27
2.4.1.1 Grassmann Manifold Projection ..40

2.4.2 Radial Basis Functions...42
2.4.3 Extended Radial Basis Functions...45

III. ROM INTERPOLATION SCHEME ..48

3.1 IROM Scheme ...48
3.1.1 IROM Algorithm ...51

3.2 Error Metrics..53

IV. TEST PROBLEMS..56

4.1 Airfoil Shape Optimization..56
4.2 Transport Wing Optimization ..59

iii

V. COMPUTATIONAL FRAMEWORK..68

5.1 Implementation ..68
5.2 DOE Construction..72
5.3 Pre-Optimization Testing...72

5.3.1 Truncation Error...72
5.3.2 ROM Error ...73
5.3.3 Interpolation Model ...73

5.3.3.1 Basis Interpolation ROM ...73
5.3.3.2 Bias and Normalization Vectors ..74
5.3.3.3 Snapshot Interpolation ...75
5.3.3.4 IROM Evaluation...75

5.3.4 Global Error ...76
5.3.5 Non-Adaptive Local Error ...76
5.3.6 Adaptive Local Error ...77

5.4 Objective, Constraints and Gradient Evaluation..................................77
5.4.1 ASO Problem...77
5.4.2 TWO Problem ..78

VI. RESULTS AND DISCUSSION..80

6.1 ASO Problem...80
6.1.1 Interpolation Error ...81

6.1.1.1 Global Error ...81
6.1.1.2 Local Error ...82

6.1.2 Optimization Paths...83
6.1.3 Function Calls ..84
6.1.4 CPU and Wallclock Times...85
6.1.5 Discussion ..86

6.2 TWO Problem..88
6.2.1 Interpolation Error ...90

6.2.1.1 Global Error ...90
6.2.1.2 Local Error ...91

6.2.2 Test Point 1 ..92
6.2.2.1 Optimization Paths...92
6.2.2.2 Function Calls ..95

6.2.3 Test Point 2 ..95
6.2.3.1 Optimization Paths...95
6.2.3.2 Function Calls ..98

6.2.4 Test Point 3 ..98
6.2.4.1 Optimization Paths...98
6.2.4.2 Function Calls ..101

6.2.5 Revised Test Point 1 ..101
6.2.5.1 Stepsize Study..101
6.2.5.2 Non-adaptive Local Error ..106
6.2.5.3 Optimization Path ..106

iv

6.2.5.4 Function Counts ...108
6.2.6 CPU and Wallclock Times...109
6.2.7 Discussion ..109

6.2.7.1 Preoptimization error ...109
6.2.7.2 IROM and SQP Implementation..110
6.2.7.3 Test Point 1 ..114
6.2.7.4 Test Point 2 ..115
6.2.7.5 Test Point 3 ..116
6.2.7.6 Test Point 1 (Revised) ..116
6.2.7.7 General Test Point Discussion ...117
6.2.7.8 CPU/Wallclock Time...120

VII. CONCLUSIONS ...121

7.1 Summary..121
7.2 Future Work ...122

REFERENCES ..123

APPENDIX

A. DERIVATION OF ANALYTICAL DERIVATIVE TO RBF-BASED
OBJECTIVE APPROXIMATION ..137

B. POD BASED ROM (MATLAB CODE)...142

B.1 Construction...143
B.2 Evaluation ..145

C. RBF BASED ROM (MATLAB CODE) ...147

C.1 Construction...148
C.2 Evaluation ..155

D. ERBF BASED ROM (MATLAB CODE)...157

D.1 Construction...158
D.2 Evaluation ..164

E. INTERPOLATION METHOD (MATLAB CODE) ...167

F. MATERIAL PROPERTIES FOR STRUCTURAL ANALYSIS178

G. DERIVATION OF EQUIVALENT SOLID PLATE THICKNESS FOR
COMPOSITE SANDWICH PANELS ..180

v

H. REFERENCE WING PARAMETERS FOR TRANSPORT WING
OPTIMIZATION PROBLEM...182

vi

LIST OF TABLES

2.1 Definitions of ERBF Coefficients..45

4.1 TWO Load Distribution Factors ..61

4.2 Example of Thickness Variables for a Wing Section66

6.1 ASO Global Error ..82

6.2 ASO Local Error ..82

6.3 ASO Function Calls ...85

6.4 ASO CPU and Wallclock Times..86

6.5 TWO Global Error for Load Case 1 ..90

6.6 TWO Global Error for Load Case 2 ..91

6.7 TWO Local Error ...91

6.8 TWO Function Calls, Test Point 1...95

6.9 TWO Function Calls, Test Point 2...98

6.10 TWO Function Calls, Test Point 3...101

6.11 TWO Local Error (Revised) ..106

6.12 TWO Function Calls, Test Point 1 (Revised) ..108

6.13 TWO CPU and Wallclock Times ..109

6.14 Comparison of FOM/IROM Range Errors for Incidental Design Points119

F.1 Material Properties for Aluminum 6061..179

F.2 Material Properties for Divinycell F40 ..179

H.1 Reference Wing Parameters...183

vii

LIST OF FIGURES

2.1 Optimization / Analysis System Structure...13

2.2 Simple Aeroelastic System Coupling ..18

2.3 CFD Validation Results (NACA 2412 Lift Coefficient)20

2.4 CFD Validation Results (NACA 2412 Drag Coefficient)21

2.5 Airfoil Surface Pressure Snapshots and Average ..30

2.6 First 12 Mode Shapes of the Pressure System ...31

2.7 Singular Values of the Pressure System ..31

2.8 First 12 Snapshot Reconstructions (All Modes Included)32

2.9 First 12 Snapshot Reconstructions (3 Modes Included)33

2.10 RMS Error for First 12 Snapshots vs. Number of Included Modes.................33

2.11 Example Angle-of-Attack/Surface Pressure System37

2.12 Example Displacement/Forces System..38

2.13 Example Aeroelastic System ...38

2.14 Example Flutter Predictor System ...39

2.15 Radial Basis Function Example ...44

3.1 Illustration of ROM Interpolation Concept..49

3.2 Illustration of ROM Interpolation Procedure...50

4.1 Illustration of Blended Airfoil Shapes ...57

4.2 Full Order Model for ASO Problem ..58

4.3 Reduced Order Model for ASO Problem...59

viii

4.4 Example of Displaced Wing Box Model ...62

4.5 Illustration of wing box structural elements ..63

5.1 ASO Implementation Structure..70

5.2 TWO Implementation Structure ..70

6.1 ASO Optimization Objective History ..83

6.2 ASO Optimization Path ...84

6.3 TWO Global Error ...91

6.4 TWO Optimization Path (3D) , Test Point 1 ...92

6.5 TWO Optimization Path (2D) , Test Point 1 ...93

6.6 TWO Objective and Design Variable History, Test Point 1............................94

6.7 TWO Optimum Wing Planforms, Test Point 1 ...94

6.8 TWO Optimization Path (3D) , Test Point 2 ...96

6.9 TWO Optimization Path (2D) , Test Point 2 ...96

6.10 TWO Design Variable and Objective Histories, Test Point 297

6.11 TWO Optimum Wing Planforms, Test Point 2 ...97

6.12 TWO Optimization Path (3D) , Test Point 3 ...99

6.13 TWO Optimization Path (2D) , Test Point 3 ...99

6.14 TWO Design Variable and Objective Histories, Test Point 3100

6.15 TWO Optimum Wing Planforms, Test Point 3 ...100

6.16 Airfoil Thickness Stepsize Study...102

6.17 Airfoil Thickness Stepsize Study Error ...102

6.18 Aspect Ratio Stepsize Study ..103

6.19 Aspect Ratio Stepsize Study Error...103

6.20 Aspect Ratio Stepsize Study (Additional Points) ..104

6.21 Aspect Ratio Stepsize Study Error (Additional Points)105
ix

6.22 Optimization Path, Test Point 1 (Revised) ..106

6.23 Objective and Design Histories, Test Point 1 (Revised)107

6.24 Gradient History, Test Point 1 (Revised)...107

6.25 Search Direction History, Test Point 1 (Revised)..108

6.26 Aspect Ratio vs. Range, FOM Optimization, Test Point 3............................118

x

LIST OF ACRONYMS

AoA Angle of Attack

ASO Airfoil Shape Optimization

BC Boundary Condition

CAD Computer Aided Design

CFD Computational Fluid Dynamics

CSM Computational Structural Mechanics

DoE Design of Experiments

ERBF Extended Radial Basis Functions

FEA Finite Element Analysis

FEM Finite Element Model

FSI Fluid Structure Interaction

FVM Finite Volume Method

GMP Grassmann Manifold Projection

GSE Global Sensitivity Equations

IROM Interpolated Reduced Order Model

KER k-ε Realizable (Turbulence Model)

MDA/MDO Multidisciplinary Design Analysis / Optimization

MDF Multiple Discipline Feasible

PCA Principle Components Analysis

xi

POD Proper Orthogonal Decomposition

RBF Radial Basis Functions

RNG k-ε Renormalization Group (Turbulence Model)

ROM Reduced Order Model

SA Sensitivity Analysis

SQP Sequential Quadratic Programming

SST k-ω Shear Stress Transport (Turbulence Model)

SVD Singular Value Decomposition

TWO Transport Wing Optimization

xii

INTRODUCTION

In a typical gradient-based optimization, one of the costly steps involves

calculating the gradients of the objective and constraint functions with respect to the

design variables at various points in the design space in search of the optimum design

point. This is typically accomplished by using a finite difference scheme, requiring a

minimum of two function evaluations to calculate an approximate gradient of the

function at each design point. When the objective and constraint functions are based on

the results of expensive high fidelity analyses, this method of gradient calculation for

sensitivity analysis becomes very costly in terms of both time and computer resources.

In this dissertation research, a new methodology is developed to reduce the

computational cost of finite difference-based sensitivity analysis by relying on

interpolation of disciplinary reduced-order models (ROMs) based on proper orthogonal

decomposition (POD). Since the interpolation scheme does not require additional high

fidelity simulations to construct new reduced order models, the cost of evaluating design

sensitivities is significantly reduced. Rather than using the reduced-order models for

general design point evaluation as is typically done in the literature, they are interpolated

only for the sensitivity analysis stencil (i.e., function evaluation at the perturbation point)

while the high fidelity analysis for the design point of interest is retained. This allows the

optimization to utilize more accurate (high fidelity) analyses for each design point along
1

the optimization path while greatly reducing the cost of sensitivity analysis evaluations

by use of interpolated ROMs (IROMs). It also allows the interpolation of ROMs for use

in larger multidisciplinary systems. Further, the particular method described here does

not require additional high fidelity evaluations to construct the interpolated ROMs, thus

greatly reducing the costs associated with their construction and evaluation.

1.1 Background and Related Work

This work draws on several different areas of work in surrogate modeling,

reduced-order modeling, high fidelity engineering analysis, and optimization of complex

systems. Surrogate modeling in particular serves as a useful context for reduced order

modeling.1,2 Methods such as polynomial regression, Kriging, multivariate adaptive

regression splines, radial basis functions, artificial neural networks, and support vector

machines are all common approaches to providing more economic evaluations of a

function.3–16 The effectiveness of these techniques is closely tied to topics such as design

of experiments (DOE), both from general statistics as well as the specific circumstances

of computational experiments, as can be seen in various example applications. 15,17–33

Multidisciplinary analysis and optimization (MDA/MDO), including formal

optimization, coupled system theory, and sensitivity analysis, is also relevant to this

research work. Traditional optimization has a long history, rooted in mathematical

programming, and has well developed tools.34–36 A good overview of MDA/O technique

and problem formulation can be found in Cramer et al.37 and especially Sobieszczanski-

Sobieski and Haft38, among other overviews.39–41 The theory and analysis of coupled

systems forms much of the mathematical underpinning of MDO techniques.42 Problem

2

https://techniques.42

partitioning is also a key concept, especially for hierarchical frameworks.43 Some

examples of MDO applications include aeroelastic optimization,44–46 multilevel wing box

optimization,47 aerostructural optimization,25,48 space structures,49 and others.50–54 There

have been several attempts at providing multidisciplinary problem test suites, which are

also useful as examples; these include efforts by the Hulme and Bloebaum55–58 and

Padula.59 Bandwidth reduction is a common issue with MDO applications, and several

techniques have been suggested for addressing it; this includes intermediate models,1,60

reduced order data sets,61,62 and other approaches.63,64 Another issue is dealing with

blackbox analysis functions.65 Sensitivity analysis for these problems is a well-studied

topic.66–69 MDA and MDO have also benefited from the development of the global

sensitivity equations (GSEs) , which allow determination of global sensitivities using

local derivative information.70–73

MDO strategies such as multiple discipline feasible,52 all-at-once, individual

discipline feasible, collaborative optimization,74 collaborative subspace optimization,75

bi-level integrated system synthesis,76 the collaboration pursuing method,77–80 analytical

target cascading, and others50,81,82 are examples of common MDO schemes into which

this work may be integrated in the future.61 There have been several studies comparing

various frameworks40,53,83–87 and presenting general descriptive schemes for the various

techniques.40,88,89

Process modeling frameworks are closely related to these schemes, being the

practical implementations that ultimately determine how useful the techniques are to end

users.90 Often these frameworks provide the capability to rapidly address multiple design

concepts, which is an important part of real-world design work.91–93 Due to their nature,

3

https://users.90
https://future.61
https://functions.65
https://Padula.59
https://frameworks.43

they are often designed with extensibility and integration with other tools in mind,94 as

the frameworks themselves often become major projects.95 These include frameworks to

address concurrency,96 strongly coupled analysis,45 the development environment,97–101

and other practical coordination aspects that are often overlooked by more theoretical

explorations of MDO.54,102,103 Many such process frameworks have already been

extensively developed and commercialized.104–108

There has been a great deal of application of reduced order techniques as

surrogate models for high-fidelity, computationally expensive analyses.27,76,109–114 Jones

et al in particular present an interesting approach of correlating errors instead of values,

to capture function behavior over function magnitude.65 LeGresley uses POD-based

surrogate models for optimization, while switching back to the full-order models for

sensitive areas of the design space.115,116 Some work involving variants of particular

methods, such as constrained POD, can delve quite deeply into the underlying

mathematics.117–120 Other work focuses on incorporating sensitivity information into the

POD models,121 or expanding the valid parameter space by analyzing the model's

sensitivity to various inputs.122 A more general overview of POD for model reduction

can be found from Volkwein.123 An excellent report on various model reduction

techniques, as well as examples of their applications, can be found in reports by

Newman.124,125

This research work is also concerned with reduced order model interpolation,

especially the elements of radial basis functions, POD-based ROMs, and their potential

role with optimization and sensitivity analysis. Volterra-based ROMs were also

considered, but discarded by comparison with POD-based ROMs during the preliminary

4

https://magnitude.65
https://projects.95

problem work. Most of this investigation was based on Silva's work,126–133 with some

additional reference regarding application of Volterra kernels and their requisite

components.134–136 Although effective when applied appropriately, it was determined that

they were not well suited for the goals of this research.

There has been a moderate amount of prior work specifically on interpolating

ROMs for application to analysis or optimization. Those most relevant to the current

work are highlighted here. Investigation into various POD basis vector interpolation

schemes ultimately resulted in the selection of Grassmann Manifold Projection (GMP) as

the ideal basis interpolation method. Most interpolation approaches for POD tend to be

analytical. Statespace based representations are common for these approaches.137 Lieu et

al proposed a method for interpolating POD subspaces instead of the basis vectors

themselves.138 Naets et al compared several interpolation strategies for structural

optimization, including one operating in the eigenspace of the relevant matrices.139

GMP is a projection applied to POD bases which is then used in concert with a

direct interpolation method. It is explained in excellent detail in the work by Vetrano et

al.140 Amsallem et al apply GMP and splines to POD before projecting the known system

equations onto the interpolated basis.141–144 Degroote et al demonstrate POD

interpolation with GMP and splines, and like this work do not require full order data to

construct the new ROMs; however, it does assume that a statespace representation of the

system of interest is available.145 Using a global POD basis with interpolated coordinates

is also a somewhat common approach,62,139,146,147 and has been applied to determination

of Pareto frontiers for multiobjective problems.119,120 Very closely related is using POD

5

to determine system modes before applying a coordinate interpolation scheme,147 as well

as projecting full order data.148

Each proposed ROM interpolation scheme was examined closely for similarities

to the proposed IROM method, in order to establish the novelty of this work. While each

of the relevant components of this work have been used elsewhere, and similar

interpolation methods have been developed, none found have integrated these methods in

precisely this manner or applied the method strictly to the sensitivity analysis in the

manner proposed in this work.

In their work, Degroote et al.145 utilized POD to produce ROMs that are

interpolated using Grassmann Manifold Projection (GMP) and spline interpolation to

determine bases for new design points, either for analysis or optimization. The ROMs

were constructed by assuming that a state-space representation of the system dynamics is

readily available, and thus the known system matrices are projected onto the interpolated

basis to complete the ROM. In contrast, this work assumes nothing about the system is

known except for a small set of inputs and outputs. ROMs are comprised of a set of basis

vectors and a set of coordinates corresponding to snapshots of the system output. This

work also uses Radial Basis Functions (RBF) as described by Mullur and Messac10 rather

than spline fits. GMP was proposed as a method for POD basis interpolation by

Amsallem et al.141–144 who reported several applications which utilized it for ROM

interpolation. Initially focused on extending the valid analysis space, later work

developed ROMs by projecting the system equations analytically onto the interpolated

POD bases, and more recently by rerunning the fluid analysis code to project the results

onto the new basis. Other works such as that by Naets139 focused on analytical reduction

6

of the governing systems, or more commonly by using a global POD basis and then

interpolating the coefficients. Coelho et al.62,147 applied this approach to examine the

impact of ROMs in Multidisciplinary Design Optimization (MDO), although they did not

iterate the fluid-structural system and commented on the challenges this creates. Xiao et

al.119,120 applied a similar methodology to automotive applications, attempting to

determine the Pareto frontier for that class of problems. None of the cited works

encompass ROM interpolation for black-box systems.

Prior work performed by LeGresley115 is also worth mentioning, as it integrates

POD into the BLISS MDO architecture, primarily for reducing coupling bandwidth and

dealing with the interaction variables. This may prove a useful starting point to

investigate integrating the proposed ROM interpolation scheme with existing MDO

methods in future work. Finally, Vetrano et al.140 compared several POD interpolation

schemes, which contains an excellent overview of the dominant methodology and

concludes that GMP is a powerful approach to that problem.

1.2 Dissertation Organization

This dissertation is structured as follows. Following the introduction in this

chapter, the component methodologies that this research draws on are presented in

CHAPTER II. After presenting the relevant background, the method is developed along

with its component methods. The proposed interpolation method is discussed in

CHAPTER III. It is then applied to an Airfoil Shape Optimization (ASO) and a

Transport Wing Optimization (TWO) test problem to evaluate the method's effectiveness

for more complex optimization problems. The descriptions of the test problems are given

in CHAPTER IV. Although the ASO problem is a single discipline, multipoint problem,
7

it is easy to see that the proposed IROM scheme has natural benefits for a

multidisciplinary analysis. This is demonstrated by the structure of the TWO problem,

which was selected with MDA problems in mind. The computational framework used to

apply the interpolation method to each test problem is described in CHAPTER V. The

results of each problem are presented in CHAPTER VI. There errors associated with the

interpolated ROMs as well as a discussion of the impact on the overall interpolation

procedure are presented. The emphasis for the ASO problem is on demonstrating the

feasibility of the method, while the TWO problem is geared to illustrating its applications

in a multidisciplinary structure. Finally, conclusions are discussed in CHAPTER VII.

8

CHAPTER II

METHODOLOGY

This chapter will detail the component methodologies used for the IROM scheme,

before detailing the scheme itself. A discussion of Sequential Quadratic Programming

(SQP) will first provide some context for this work, by illustrating a common gradient-

based optimization process. Following this, a summary of Computational Fluid

Dynamics (CFD) and Computational Structural Mechanics (CSM) is presented as the

example of high-fidelity analysis used here. An overview of Design of Experiments

(DOE) methodology used for design space sampling follows before a more detailed

discussion of the Reduced Order Models (ROMs) used in this work.

2.1 Engineering Design Optimization

Optimization is a critical part of the design of engineering systems, particularly

the complex systems found in aerospace. While, to some extent, the design of any

aerospace system involves multidisciplinary trades and optimizations, the process has

only been formalized in the last few decades. Particularly, optimization of vehicles

during the preliminary design stage involves multiple high fidelity disciplinary analyses

in a strongly coupled system. Traditional optimization schemes which are derived from

the field of mathematical programming are applicable to these multidisciplinary systems

by operating on the results of multidisciplinary analyses, which account for

9

interdisciplinary interactions during the coupled analysis stage. Multidisciplinary

optimization schemes, by contrast, incorporate these interactions into the optimization

scheme itself.

Optimization of complex aerospace systems tends to be very costly in terms of

time and compute resources, and often in human effort as well. The high fidelity

analyses utilized during the detailed design phase are often resource-limited on their own,

a cost which is compounded both by the numerous analyses required for an optimization

as well as the costs associated with coupling multiple high fidelity analyses together. A

classic example of this is found in high-fidelity aeroelastic optimization, where detailed

fluid and structural simulations must interact to perform a single analysis, and many

analyses are required to perform the optimization. Not only are the individual

simulations resource-expensive, the coupled analysis incurs additional costs due to data

coupling between the simulations, grid deformation, and additional convergence cost of

the coupled system, among other factors. The optimization spaces are also complicated

due to multidisciplinary interaction effects, which are not observed in the systems

individually, a concept familiar to those working with design of experiments (DOE).

A note on terminology is appropriate here: when we are referring to the system as

being “weakly” or “strongly” coupled, we are referring to the strength of the interaction

effects of the multidisciplinary system itself. By way of example, a large heat sink with

cooling fins at low heat flux may demonstrate weak coupling between the thermal

analysis and the structural deformation. A wing near flutter conditions, on the other

hand, would demonstrate strong coupling between aerodynamic and structural analyses.

By contrast, when we refer to the problem as being “loosely” or “tightly” coupled, we are

10

referring to the structure of the integration of the analysis codes. Tightly coupled

generally refers to analyses which are integrated on an analytical or code level, such as

utilizing equations from the field of aeroelasticity. Loosely coupled indicates disparate

analysis modules, such as three separate fluid, structural, and thermal analysis codes

which have their inputs and outputs coordinated for a larger multidisciplinary analysis.

It is worth noting that here we are concerned with high-fidelity, loosely-coupled

multidisciplinary optimizations, where the individual analysis codes are considered

black-box and possibly proprietary, and their direct coupling is not possible. It is often

the case that either the fluid or structural models will be severely simplified to allow for

low-order interactions to be accounted for while incurring minimal additional costs. It is

also common to avoid the additional convergence cost by assuming small deformations,

allowing a fluid solution to be transferred directly to the structural model without

requiring iteration between the two. Both of these practices are effective under

appropriate circumstances for providing some interaction effects at a minimum additional

cost; however we are interested in higher fidelity cases where these simplifications are

unacceptable. It is also common for aerostructural analyses to directly couple the

analytical equations of the individual disciplinary codes or to utilize analytically derived

equations from the field of aeroelasticity, which has been extensively developed on its

own.149 These practices are again appropriate under certain circumstances, but they do

not address the issue of black-box, proprietary codes. More importantly, with the

addition of more disciplinary analyses, the analytical task of coupling the individual

equations quickly becomes impractical. For example, a hypersonic

magnetohydrodynamic aerothermoelastic problem will involve coupling between

11

aerodynamic, structural, thermal, chemical, electromagnetic, and radiation models. The

ability to offload the coupling workload to a computational system, as opposed to human

or human-guided effort, presents obvious benefits.

Our optimization scheme will treat this coupled analysis as a single system, as in

Figure 2.1. Much research has been expended on integrating the interdisciplinary

analysis and coupling into the optimization framework itself, i.e., the field of MDO. This

is a very promising research area and provides an efficient theoretical framework for

exploring more efficient optimization methods of complex coupled systems. However,

for reasons of simplicity, this work will utilize the scheme known as multiple discipline

feasible (MDF) optimization. Essentially, the optimization scheme is identical to the

well-studied single-discipline optimization schemes, where the objective and constraint

functions are concerned only with the result of the multidisciplinary analysis (MDA), and

not with the mechanisms of obtaining it. To the MDF scheme, there is no difference

between single- and multiple-discipline analysis. This allows us to utilize classical

optimization schemes such as the modified methods of feasible directions, SQP, etc.

12

Opt im izat ion
Algorithm

START

Sensit ivity
Analysis

Object ive
and Const raints

Converged?

END

YES

NO

Disciplinary
Analysis

Disciplinary
Analysis

Disciplinary
Analysis

Mult idisciplinary Analysis

Figure 2.1 Optimization / Analysis System Structure

A full multidisciplinary analysis is performed for the design point 𝑋 during each

iteration of the optimization. A set of perturbation points {𝑋 + ∆𝑋} based on the finite

difference stencil is also evaluated for gradient estimation and sensitivity analysis. The

results of the analyses, 𝑌, are utilized as input to the objective and constraint functions, 𝐹

and 𝐺, which are returned to the optimizer in order to evaluate the next design point.

Note that the sensitivity analysis routine computes the sensitivities of the objective and

constraint functions to changes in the design point, 𝑑𝐹⁄𝑑𝑋 and 𝑑𝐺⁄𝑑𝑋.

In this case, the optimization method selected is SQP, a nonlinear optimization

method. Details of SQP are available from a number of resources, and in this work the

13

built-in SQP functionality from MATLAB is utilized.150,151 To summarize, starting from

an arbitrary initial design point, a quadratic subproblem is formulated and solved for

finding a search direction. While the objective function is approximated with a quadratic

function, all the design constraints are linearized using gradient information of the

objective and constraints. Only the first-order derivatives are used, even in the case of

approximating the Hessian of the Lagrange function. A simple line search is performed,

as a second step, using a one-dimensional minimization technique to find the optimum

step size along the search direction to determine the next point along the optimization

path. The two-step procedure is repeated until a local optimum design point is found.

2.1.1 Finite Difference Based Sensitivity Analysis

Sensitivity analysis (SA) is a general term describing the process of determining

the partial derivative of the function with respect to each input at a given point in the

parameter space. In the context of this research, and in optimization in general, it refers

to determining the gradients of the objective and constraint functions with respect to the

design variables. In a full multidisciplinary context, the global sensitivity equations

(GSE) are often applied to determine the full system sensitivity based on the individual

disciplinary derivatives.152 For a set of disciplinary analyses, 𝑓𝑖, with associated outputs,

𝒀𝑖, which may serve as inputs to other analyses, the derivative of all system outputs with

respect to system inputs, 𝑿, can be determined using the derivative information of each

analysis to its inputs. As an example, for a three discipline system:

𝐼 −𝜕𝑓1⁄𝜕𝒀2 −𝜕𝑓1⁄𝜕𝒀3 𝜕𝒀1⁄𝜕𝑋𝑖 𝜕𝑓1⁄𝜕𝑋𝑖
[−𝜕𝑓2⁄𝜕𝒀1 𝑰 −𝜕𝑓2⁄𝜕𝒀3] [𝜕𝒀2⁄𝜕𝑋𝑖] = [𝜕𝑓2⁄𝜕𝑋𝑖] (2.1)
−𝜕𝑓3⁄𝜕𝒀1 −𝜕𝑓3⁄𝜕𝒀2 𝑰 𝜕𝒀3⁄𝜕𝑋𝑖 𝜕𝑓3⁄𝜕𝑋𝑖

14

While information from these disciplinary modules is sometimes available

analytically or as part of the module output, this research assumes that such modules are

black-box functions which do not supply this information. Furthermore, by adopting an

MDF approach, the values and thus the sensitivities of the objective and constraint

functions are dependent on the full MDA analysis; thus, the GSEs are not applied here,

merely the single-function finite difference formula for a given degree of accuracy. In

this research, finite differencing is achieved directly and numerically by varying the

design variables and operating on the objective and constraint outputs. In the cases

described here, the standard forward difference for the first derivative is used. Finite

difference approximations for gradient calculations are well established procedures, and

the reader is referred to the references for further information.67,153

2.2 Computational Analyses

For the optimization structure this work utilizes, there is a coupled

multidisciplinary analysis involving individual high-fidelity codes. In particular, for most

of the intended problem systems, there is a coupling between separate aerodynamic and

structural codes for aeroelastic or aerothermal solutions. In the simplified test case

proposed here, the individual solver is ANSYS Fluent; a combination of Mathworks

MATLAB and various journal/shell scripts will be applied as well. This section gives a

brief overview of CFD and CSM for this work; a more comprehensive description is

available in the literature.154

CFD is primarily concerned with the solution of the Navier-Stokes equations of

fluid dynamics and their related counterparts (such as the Euler equations). These

15

equations model the dynamics of a fluid’s mass, energy, and momentum across a defined

volume of space. The numerical solution to these equations in various formulations and

algorithms has been the subject of decades of work. Computational limitations and

increased problem complexity have served as impetus for the integration of many other

models into CFD solvers, ranging from turbulence models of varying fidelity, to

chemistry and species transport, to accounting for electromagnetic forces in

magnetohydrodynamic flows, to mixed phase flows involving gases, liquids, and solids.

Of prime importance when developing a CFD simulation case is the numerical

grid describing the volume of interest. The geometric properties of this grid have a

strong impact on both the solution’s resolution and its numerical stability and

convergence. There are essentially two approaches to defining that volume of interest:

the finite volume method (FVM), which defines regions which fluid passes through, and

the finite element method (FEM), which utilizes deforming geometric elements.

Mathematically, the FVM can be shown to be a special case of FEM. Most CFD solvers

utilize the finite volume formulation, although many exist which rely on the FEM

approach. This is especially true for solvers that are intended to interface with structural

solvers, which are almost exclusively developed using a finite element formulation.

ANSYS Fluent primarily utilizes finite volume grids. In general, grids and operations

performed on them (such as grid repair, automatic meshing, grid adaptation and

deformation) are a major research area in their own right.

Typically, a case setup for a CFD simulation first involves defining the geometry

and domain of interest and meshing it into an appropriate grid. The boundaries of the

grid are assigned various boundary conditions as the problem and solution models require

16

– an example would be a wall condition, which allows no fluid flow across the boundary,

or a pressure inlet condition, which defines specific conditions that must be maintained

on the boundary. These boundary conditions (BCs) are used to close the set of equations

describing the flow solution. The particular models and solver settings can then be

selected, and various parameters related to the numerics of the solution set appropriately.

It is typically important to verify that the chosen models, settings, grid, and BCs are

appropriate for the problem of interest and are numerically compatible with one another.

For example, it would be inappropriate to utilize the incompressible ideal gas equation

for a supersonic flow. Understanding these various settings, the applicability to particular

problem cases, the idiosyncrasies of arriving at a converged and realistic solution, and

maintaining a balance between fidelity and computational cost comprise a large part of

the “art” of performing CFD.

Computational structural mechanics is, naturally, concerned with the behavior of

structures under loads. These loads may be concentrated or distributed forces, thermal

loads, static or time-varying, and so on. Generally, CSM simulations are mostly

concerned with the deformations and stresses within a structure under a certain set of

loading conditions. They are also often concerned with issues such as fatigue, cracks,

and failure modes, amongst many others. As noted above, CSM simulations typically

rely on a finite element grid to describe the problem of interest. Generally a more

complex structure is modeled using many smaller, simpler elements.

Case setup for CSM generally begins by defining the geometry of the structure of

interest, usually via Computer Aided Design (CAD). Various parts or sections of parts

may then be assigned material types, which is a shorthand way of specifying properties as

17

required for the particular solution. Boundary conditions, usually loads of varying sorts

or restrained degrees of freedom at the support points or friction coefficients (as in sliding

interfaces) may also be specified. Meshing a CSM geometry typically refers to

decomposing the geometry into numerous smaller finite elements. CSD grids tend to be

far more regular than their CFD counterparts, although unstructured meshing elements

are also used. Developing a CSM case typically requires basic CAD skills and an

understanding of the structural analysis of interest (e.g., static, dynamic, buckling), as

well as a grasp of FEM and other assorted terminology and concepts.

Coupling CFD and CSM solvers refers to the passing of relevant information

between the two solvers while maintaining some sense of synchronicity in the solutions

(which may or may not be temporal or algorithmic in nature). The traditional example

case is an aeroelastically deforming wing, a case of fluid-structure interaction (FSI). The

CFD code generates pressures over the surface of the wing as part of the fluid solution.

These pressures are passed to the structural code, which must translate them across the

fluid-structure interface and calculate the deformation of the structure in response to

those loads. These deformations are passed to the fluid code, which updates the

geometry of the wing accordingly. The change in geometry changes the flow solution,

necessitating a recomputation. The basic system can be seen in Figure 2.2.

Aerodynam ic
Solver

St ructural
Solver

U

P

(Displacem ents)

(Pressures)

Figure 2.2 Simple Aeroelastic System Coupling

18

It is clear that when one or both of these solvers is expensive to run, this iterative

coupling (referred to as loose coupling, as described in the optimization section above)

can become very computationally intensive. It is also complicated by whether the

solution is time-independent or transient. There are a variety of other methods, such as

tight coupling (utilizing analytical or code-level coupling of the fluid and structural

equations), various schemes to reduce the required algorithmic synchronicity, or

approximating one of the solvers with a lower fidelity model (such as a reduced fluid

equation set or utilizing structural modes). Some cases may make the assumption that

deformation is very small and does not have a large impact on the fluid solution, in which

case they may solve for a flow solution and then apply those loads to the structure

without iterating. What is clear, however, is that the fluid and structural analyses form a

coupled system that involve coordinated data passing. Given the large number of

problems in aerospace and other fields that must take these interactions into

consideration, it is clear why FSI is another intensive research area.

It is also clear that in an aeroelastic problem, a fluid-structure interface must be

maintained such that the spatial relation of data in the two solvers can be determined.

There is also a need for deformation or remeshing of the fluid geometry. Both of these

are very technically intensive undertakings and represent a nontrivial investment of

effort.

2.2.1 CFD Validation

Validation of the aerodynamics code was performed using ANSYS Fluent to

select the appropriate grid parameters and solver settings. This took the form of a

standard airfoil coefficients study, performed for a NACA 2412 airfoil. Validation was
19

performed on a hybrid structured/unstructured grid with the pressure-based Navier-

Stokes solver and the SST k-ω turbulence model. Results indicated good overall

coefficient agreement, with some discrepancy in predicting the separation point of the

airfoil. This was considered acceptable for the relatively small angles of attack

considered in the ASO problem and the testing purpose of the problem. More

specifically, the agreement between the simulation and experimental reference is good for

the linear portion of the lift coefficient curve, and the max 𝑐𝐿also agrees well with

experiment, although separation is predicted somewhat late. The drag coefficient, usually

somewhat more difficult to predict, also indicates good agreement for the lower angles of

attack. The results from this validation can be seen in Figure 2.3 and Figure 2.4.

-20 -15 -10 -5 0 5 10 15 20
-1.5

-1

-0.5

0

0.5

1

1.5

2

Angle of Attack (deg)

Li
ft

C
oe

ffi
ci

en
t (

c L)

CFD Validation

Exp, Re=1e6
Exp, Re=3.1e6
CFD, Re=3.1e6

Figure 2.3 CFD Validation Results (NACA 2412 Lift Coefficient)

20

-20 -15 -10 -5 0 5 10 15 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Angle of Attack (deg)

D
ra

g
C

oe
ffi

ci
en

t (
c D

)

CFD Validation

Exp, Re=1e6
Exp, Re=3.1e6
CFD, Re=3.1e6

Figure 2.4 CFD Validation Results (NACA 2412 Drag Coefficient)

2.3 Design of Experiments

From its origins in statistics, experimental design has been applied in one form or

another to a wide range of fields, from medical studies to manufacturing process control.

In the present context, design of experiments (DoE) refers to the selection of inputs to a

system of interest, chosen such that the system outputs will yield information on

dynamics and behavior without detailed knowledge of the system itself. These outputs,

or responses, or generally applied to create simplified models of the output space with

regard to the inputs, thus leading to response surface methodologies and surrogate

modeling. Here, we use DoE to refer specifically to the input selection scheme.

The most straightforward example of a DoE scheme would be random sampling.

Given 𝑁 inputs to the system, and a specified domain for those inputs, a set of random

inputs is selected and the system response measured. Alternatively, the minimum and

21

maximum of each parameter could be sampled, or all combinations of such. The latter is

an example of a full factorial design: each input parameter 𝑝𝑖 is allowed to assume 𝑚𝑖

values, resulting in a total of ∏ 𝑚𝑖 possible combinations. This highlights one of the 𝑖

primary properties of an experimental design – the number of sample points required.

Obviously in a high-dimensional context, even restricting each of 𝑁 parameters to two

values will still result in 2N samples. When the evaluation of a sample is expensive, or in

the common engineering case where hundreds or thousands of dimensions may be

considered, full factorial designs quickly accrue unacceptable costs.

These two schemes – one dimension at a time, and full factorial – represent two

extremes of sampling designs. While measuring the response for each dimension

independently provides efficiency in the total number of sample points, it ignores the

possibility that parameters may not be fully independent – in a coupled system, especially

the strongly coupled systems found in engineering, there are effects on the system

response that cannot be accounted for by varying a single dimension at a time. These

effects are only fully accounted for by a full factorial design, which is inherently

expensive. This contrast, between minimizing the number of sample points, while

maximizing the ability of the scheme to capture coupled system effects, is at the heart of

most DoE schemes.

While a full explanation of DoE methodology is beyond the scope of this

document, it is worth mentioning a few common schemes. Normal design of

experiments includes the assumption of independent, randomly distributed errors. This

assumption does not typically apply to computer experiments, which are generally

deterministic and in which errors are usually nonrandom and correlated.18,29 When

22

dealing with very expensive functions such as those found in high-fidelity engineering

analysis, full factorial or even partial factorial designs may be prohibitively time-

consuming. Most scholars agree that the use of space-filling designs are most appropriate

for computer experiments.15 These designs attempt to gain as large a spread in the design

space as possible, subject to other competing goals. Most engineering literature uses

orthogonal arrays, Latin hypercubes, Hamersley sequences or uniform designs.15 Latin

hypercubes have several varieties, including normal, orthogonal, symmetric, and various

combinations. Further, each sampling strategy may be developed to be optimal for the

purpose of providing the most information about the design space.23,32,33 Additionally,

Taguchi methods are popular due to their origins in robust design. The emphasis on low

objective sensitivity to design space perturbations also developed a signal-to-noise

analysis which can be useful for certain applications.31

In this work, generally Latin Hypercubes are used for their good space-filling and

efficiency properties. Designs are selected according to maximin criteria, i.e.

maximizing the minimum distance between sample points.

2.4 Reduced Order Models

A common approach to reducing the computational expense associated with the

complex spaces found in high-fidelity analysis and optimization is utilization of surrogate

models. These are simplified representations of the space of interest, often fit to a

sampling of the data in that space, which are much cheaper to evaluate and operate on

than the original complex space. Like using simplified disciplinary equations, they trade

off fidelity for speed, but since they are to some extent fitted to the actual space of

23

https://applications.31
https://designs.15
https://experiments.15

interest, they are often able to represent the specific space of interest to a higher degree of

accuracy than applying more general simplified equations. Thus, they are more efficient

in their tradeoff of fidelity for reduced cost.

At its simplest, a surrogate model may be nothing more than a simple curve or

polynomial surface fit. More complex models tend to provide better fits to the space of

interest, but at the expense of construction or evaluation costs. These models are

typically applied to replace a space of interest, such as replacing a complex objective

space with a surrogate model that provide smoother gradients and much faster evaluation.

Examples include multiquadratic surfaces, radial basis functions (RBF), kriging, neural

networks, induction based learning, genetic algorithms, splines, and regression fits. The

term surrogate model is often used as a blanket category for these models which replace a

space of interest. Other terms include response surfaces and metamodels, with the

precise definition of each term and its constituent methodologies varying somewhere

from author to author.

In general, surrogate models tend to be very sensitive to the input data they are

provided which describes the space of interest they are intended to approximate. While

details vary from method to method, proper use of design of experiments (DoE) sampling

methodologies is generally a key theme. The robustness of a model’s approximation

surface with respect to its input sample is a common point of comparison between

methods. Additionally, the associated cost of generating the input sample datasets is

usually a driving factor of the selection of a particular method, as these inputs require

evaluation of the expensive high fidelity analysis functions. While some applications of

surrogate models such as control systems are able to perform this initial sample

24

calculation “off-line,” or in a non-time-critical environment, normal analyses and

optimizations are generally desired with minimum turnaround time.

Some surrogate models are applied at the optimization level, approximating

objective or constraint spaces and thus allowing the optimization to skip the full

expensive analyses for some parts of the optimization. This application is typically

associated with the use of trust-region and error-estimation metrics, which are a field unto

themselves.

The other application we are interested in is the utilization of surrogate models to

replace individual analyses during the multidisciplinary analysis stage. For example,

replacing a computational fluid dynamics (CFD) code with a surrogate model

representing the change in surface pressures and temperatures with respect to angle of

attack might be used to speed up the overall coupled multidisciplinary analysis in an

aerothermoelastic simulation. While input samples (in this case, solutions for various

angles of attack) are still required to compute the surrogate model, the number of samples

required may be far less than the number of evaluations otherwise required to converge

the full multidisciplinary system. On the other hand, if the geometry of the case is

changing as during a shape optimization, the surrogate model built for a single design

point is not valid for application to other design points. Thus, we must rebuild the

surrogate model for each individual design point. A variation on this application is to use

the surrogate model until we are close to the converged solution, and then use the high

fidelity code to home in on the final value.

A category of models related to surrogate models is that of reduced order models

(ROM). Both surrogate models and ROMs are sufficiently general in design and

25

application that they may be classified separately, as subsets of one another, identically,

or as close cousins. The difference between them is primarily one of mindset. Surrogate

models are essentially attempting to produce a lower-dimensional surface which

approximates a surface of higher dimensionality based on a set of sample points. It is

very much engrained in a geometrical conceptualization of the approximation and

problem spaces. Reduced order models, however, are focused on producing a model

which recreates the dominant system behaviors while discarding those less important.

Instead of viewing the problem space as a geometrical output space correlated to an input

space, ROMs view the problem space as a black box, input-output system. While

surrogate models think in terms of surfaces, ROMs think in terms of systems. Both

concepts can be applied to describe the same problems, but the differences in their

mindsets can cause some confusion if left unstated.

There are generally two approaches to constructing ROMs. The first is to take the

fundamental system equations for the discipline of interest and analytically reduce them,

usually via system mode shapes (i.e., eigenanalysis) for the problem of interest. This is

common in structural analysis by taking advantage of structures with linear responses and

superimposing individual vibration modes. It is also applicable to aerodynamic systems,

although the responses in aerodynamics tend to be strongly nonlinear. Regardless, this

approach tends to require a great deal of human effort to reduce the analytical equations

for the problem at hand. Further, if one wishes to reduce a system for which the

analytical equations are difficult to couple, as illustrated above, there may not be a

convenient set of equations from which to start the reduction at all.

26

The second approach is to use system identification methods to determine system

mode shapes from sample input-output sets. This has the advantage of operating

numerically, as well as requiring no knowledge of the underlying system equations.

Perhaps the most common of these methods, and the one utilized in this work, is that of

proper orthogonal decomposition. By itself, POD merely identifies the system modes

and the corresponding mode coefficients for each input sample, but these are used to

form the basis of a reduced order model that represents the original system. The

advantages to POD are that it is guaranteed to generate optimal system mode shapes, as

well as automatically ordering and ranking the mode shapes according to their relative

influence on the overall system dynamics. This information is highly convenient for

discarding mode shapes which have very weak contributions, allowing for an efficient

reduction in the model’s dimensionality versus fidelity lost.

2.4.1 Proper Orthogonal Decomposition

The cores of ROMs constructed in this research are based on the proper

orthogonal decomposition (POD). It is what determines the ROM basis vectors. POD is

a numerical procedure analogous to eigensystem analysis for square matrices, which

determines a set of basis vectors, analogous to eigenvectors, of the system modes. These

modes are also weighted by their singular values, analogous to eigenvalues, which

indicate the relative importance of each mode. POD can operate on any rectangular

matrix, but in this context we utilize a technique known as the method of snapshots. A

matrix of system outputs corresponding to various parameter inputs is constructed, a

series of “snapshots” of the system state. This is often used for a system which evolves

in time, hence the snapshot terminology, but is equally applicable to other parameters.
27

The points for the snapshots do not need to follow any particular pattern in

parameter space, as the corresponding input parameter values attached to each snapshot

are retained separately. This snapshot matrix is often centered to an average snapshot

before it is decomposed via POD. The resulting basis vectors are then retained or

truncated based on their relative importance as determined by the corresponding singular

values. It is important to note that the singular values, and the basis vectors, are ordered

by the POD method in decreasing order of importance, and thus retaining the first k

modes corresponds to a k-order approximation to the original system containing the k

most important modes. Hence the term, reduced order basis. Because of the importance

of POD in this work, this section will go into relatively more detail than some of the other

background topics.

Proper Orthogonal Decomposition refers to a matrix decomposition method that is

used to determine an optimal set of orthogonal basis vectors for the matrix. It also

determines the corresponding influence of each basis vector on describing the matrix, and

orders the basis vectors accordingly. This process is also called (with more or less

accuracy) Singular Value Decomposition (SVD), Principle Components Analysis (PCA),

or Karhunen-Loéve Decomposition. Some names imply slightly different intended uses

or additional processing, but they are all generally used for describing a similar

procedure. The basis vectors and singular values produced are analogous to eigenvectors

and eigenvalues for square matrixes, except that the procedure can be applied to

rectangular matrices. The method is applied across a wide variety of fields, notably in

circuit design.

28

The Method of Snapshots is a method used to model the behavior of a system by

building a matrix out of corresponding sets of samples. These sets are often sensors

sampled through time, for example, pressure or temperature sensors measuring a field

which changes in time. These sets are referred to as snapshots of the system. The

snapshot matrix is decomposed into a set of basis vectors using POD, and the snapshots

projected onto the new basis. The system behavior can then be predicted from these

projected coordinates and the basis vectors.

Since the basis vectors are ordered according to their importance in describing the

data, it is common practice to truncate a possibly large set of basis vectors (i.e., many

hundreds or thousands) and retain only the most important vectors, or mode shapes. This

introduces some error into the resulting system behavior, but that error can be estimated

by using the singular values, and thus limited. This is the basis of most POD-based

ROMs.

Before detailing the mathematics of the procedure, it may be illustrative to view

an example of the method. Consider constructing a model representing the pressure over

the surface of an airfoil with respect to angle of attack. A set of snapshots of the pressure

values at 100 nodes over the airfoil surface has been generated for a series of angles of

attack and may be seen in Figure 2.5.

29

Figure 2.5 Airfoil Surface Pressure Snapshots and Average

A matrix is built of each snapshot. SVD is performed on the snapshot matrix, and

the left-hand basis vectors taken as the new orthogonal basis set, or mode shapes. The

first 12 shapes, and the corresponding singular values, can be seen in Figure 2.6 and

Figure 2.7.

30

Figure 2.6 First 12 Mode Shapes of the Pressure System

Figure 2.7 Singular Values of the Pressure System

31

The original snapshots can be projected onto the mode shapes to determine their

coordinates in the new basis. By including all the mode shapes calculated, we can gain

an exact reconstruction of each snapshot, as in Figure 2.8. However, if we truncate more

of the modes, we introduce some error, although we still retain a large degree of

accuracy, as seen in Figure 2.9. The error for the first 12 snapshots versus the number of

modes retained can be seen in Figure 2.10.

Figure 2.8 First 12 Snapshot Reconstructions (All Modes Included)

If we desire a pressure distribution for an intermediate angle of attack, we can

interpolate the snapshot coordinates according to their corresponding angles of attack. A

new pressure profile based on the basis mode shapes can then be reconstructed. We have

32

now created an aerodynamic ROM for determining pressure distribution in response to an

input of angle of attack.

Figure 2.9 First 12 Snapshot Reconstructions (3 Modes Included)

Figure 2.10 RMS Error for First 12 Snapshots vs. Number of Included Modes

33

SVD begins with a real or complex matrix, usually describing some dataset. For

our purposes, we will be working with a real matrix. The procedure then decomposes the

matrix into orthogonal bases in row and column space that are related by scaling factors.

That is, for matrix A:

𝑨 = 𝑼𝜮𝑽−1 (2.2)

If 𝑨 were a square matrix, 𝑼 would correspond to left eigenvectors arranged

columnwise, 𝑽−1to right eigenvectors arranged rowwise, and 𝜮 a diagonal matrix

corresponding to the eigenvalues. For rectangular matrices, the values in 𝜮 are referred

to as singular values (hence the name of the method). The procedure for determining 𝑼,

𝑽, and 𝜮 is fairly straightforward. The following description is drawn largely from a

recorded MIT lecture by Gilbert Strang.155

Since 𝑼 and 𝑽 are orthogonal bases, their inverse and transpose are identical.

Thus we may write the above as:

𝑨 = 𝑼𝜮𝑽𝑇 (2.3)

We can find 𝑽 and 𝜮 by premultiplying by 𝑨𝑇:

𝑨𝑇𝑨 = 𝑽𝜮𝑇𝑼𝑇𝑼𝜮𝑽𝑇 = 𝑽𝜮2𝑽𝑇 (2.4)

Which forms an eigenvalue problem that can be solved in the typical fashion.

The procedure is similar for determining 𝑼. 𝜮 from each calculation (𝑼 and 𝑽) should be

identical, a convenient sanity check. We may then order the basis vectors such that the

singular values proceed in decreasing value. For the purposes of this research, the built

34

in SVD solver available in MATLAB is used, and the basis for the POD method taken to

be 𝑼.

To reduce the dimensionality of the system, we may simply truncate the number

of vectors and singular values to retain or discard however many we desire. Thus, an

order 𝑘 approximation of the system will retain only the first 𝑘 basis vectors and singular

values. This reduced-order basis is at the heart of most POD-based reduced order

models. The truncated order 𝑘 set of basis vectors and singular values is thus denoted 𝑼𝑘

and 𝜮𝑘.

The method of snapshots is a common POD based ROM, and is the method

considered here. First, a series of system “snapshots” with respect to time or some other

indexing factor (such as angle of attack in the example above) is computed. The average

of these snapshots is calculated and subtracted from each individual snapshot, resulting in

a set of vectors representing the deviation of each snapshot from average. These adjusted

snapshot vectors are then composed columnwise into a snapshot matrix, 𝑴.

𝑛 = (1𝑆𝑎𝑣𝑔) ∑𝑖=1 𝑆𝑖 (2.5)
𝑛

𝑴 = [(𝑆1 − 𝑆𝑎𝑣𝑔) … (𝑆𝑛 − 𝑆𝑎𝑣𝑔)] (2.6)

SVD is performed on the snapshot matrix as described above, and truncated if

desired to form an order 𝑘 approximation. For this work, the columnwise basis vectors

(denoted as 𝑼 above) are taken to form the model basis. A check of the mutual

orthogonality of each basis vector can be used as a sanity check at this stage. Each

snapshot is then projected onto the new basis, resulting in a set of coordinates

representing each individual snapshot as a linear combination of the new mode shapes.

35

New snapshots for arbitrary values of the input variable (time, angle of attack, etc.) can

be calculated by interpolating coordinates for the snapshots. For example, if snapshots

are available at 2° and 6° angle of attack, a snapshot at 3.44° could be calculated by

linearly interpolating the new basis coordinates for the 2° and 6° snapshots. That is:

𝑝 = (3.44° − 2°)⁄(6° − 2°) (2.7)

𝐶3.44° = (1 − 𝑝)𝐶2° + (𝑝)𝐶6° (2.8)

where 𝐶𝑖 is the coordinates for a system snapshot at 𝑖° angle of attack, and 𝑝 is a

normalized linear scaling factor. The new coordinates 𝐶3.44° can then be multiplied by

the model basis and added to the snapshot average to determine the reconstructed

snapshot.

𝑆3.44° = 𝑼𝑘𝐶3.44° + 𝑆𝑎𝑣𝑔 (2.9)

The generality of POD based models can make it very easy to become confused

about inputs and outputs to the model system, particular when a portion of a coupled

system which evolves in time is the subject of the model (as the aeroelastic system

modeled here is). It may be helpful to examine a few related systems in order to more

clearly illustrate their inputs and outputs.

For example, in the pressure model given as an example above, the steady-state

pressure over the surface of the airfoil (output) is determined as a function of angle of

attack (input). A few samples of the system state (surface pressures) are taken at a range

of the input value (angles of attack). These sample snapshots are then used to construct a

model and determine the output pressure for any input angle of attack by interpolating

36

https://������3.44

between the system mode shapes identified by the model. Note however that the model

can only be expected to be valid for angles of attack within the range of the original

dataset; this is an important point.

Aerodynam ic
Solver

Surface
Pressures

Angle of
At tack

Figure 2.11 Example Angle-of-Attack/Surface Pressure System

The system considered in this preliminary problem concerns itself with modeling

the aerodynamic forces generated by a physical displacement of the geometry. Thus, the

input to the system is displacement of geometry, whether that is represented as a scalar

(as for the angle of attack in the preliminary problem), a vector of displacements of mesh

nodes (as in the larger 3D research problem), as an analytical description of the

displacement (such as a combination of structural modes), or some other representation.

The key point is that the input to the aerodynamic system is the geometric displacement.

Likewise, the output of that system which is of interest to an aeroelastic problem will be

the aerodynamic forces (and perhaps temperatures) on the surfaces of interest. Here, note

that we do not concern ourselves with the evolution of the system in time, only with the

system describing the response of surface forces to displacements. This type of system

may be used in speeding up an aeroelastic analysis by replacing the aerodynamic solver

with the faster ROM.

37

Aerodynam ic
Solver

Forces
Geom etric

Displacem ent

Figure 2.12 Example Displacement/Forces System

This can be contrasted with a model describing a full aeroelastic system. Here,

the input to the system may be a description of initial displacement, flow conditions,

and/or forces acting on the design of interest. The output of the system will be a time

history of the forces and displacements of the design. Here, our snapshots would take the

form of time histories, sampled at varying values of initial displacements or flow

conditions. This might be used as part of a control system, producing a faster ROM

capable of evaluating the response of a system in realtime.

Aerodynam ic
Solver

Time History of
Displacem ent

and Forces
Init ial

Displacement

Flight
Condit ions

Control
Inputs

Figure 2.13 Example Aeroelastic System

A fourth model may take a design description of external geometry and structure

as input, and determine as output an evaluation of the aeroelastic characteristics of the

system (such as flutter speed). Here our snapshots may be scalar in nature, while our

38

input samples may be very complicated. This type of model may be used to assist in

optimization of a design by providing cheaper evaluations of the impact of design

decisions.

Flut ter
Predict ion

Model

Flut ter Speed
External

Geom etry

Flight
Condit ions

Structural
Model

Figure 2.14 Example Flutter Predictor System

As can be seen in the above examples, it is critical to clearly identify the inputs

and outputs of the system being modeled, and understand the context in which the model

itself will be applied. The potential for confusion and complexity can be easily seen,

especially when one considers that many of the above models could be nested within one

another.

It should be noted that the model construction described above takes an

interpolative approach to predicting output responses to input parameters. Alternatively,

we could use POD to determine a reduced state equation for the system, provided the

system is easily modeled with a state equation. Since we are primarily interested in

dealing with complex, black-boxed multidisciplinary systems, this approach will not be

addressed further here. For more details, please see Antoulas, Sorenson, and Gugorcin

2001.4 Example MATLAB code for build POD-based ROMs is given in APPENDIX B.

39

2.4.1.1 Grassmann Manifold Projection

Interpolation of ROM basis vectors as well as coordinates is a very attractive idea,

as it removes the necessity to calculate a new snapshot matrix for each design point.

Unfortunately, interpolating the basis vectors between ROMs is somewhat more

complicated than in the case of coordinates. Basis vector interpolation is still an active

area of research.118,137,139–143,145,156 It’s useful to note that in this research, we utilize the

same model order and snapshot length globally, which simplifies many of the

interpolation considerations, but does not eliminate some of the fundamental problems.

Basis vectors in our ROMs are right-handed and orthonormal, and preserving these

properties proves to be a major challenge. The issue is compounded by attempting to

interpolate with information from many different ROM models of arbitrary dimension.

The problem is readily apparently from attempting to interpolate an arbitrary

number of basis vectors in three dimensional space; the results from direct interpolation

are not guaranteed to produce a new orthonormal basis, nor even a basis which spans the

original space at all. In three dimensions, specialized approaches have been developed

such as decomposing into Euler angles or projecting into quaternion space. Neither

approach is extensible to an arbitrary number of dimensions. However, quaternion

projection provides a useful analog for the procedure considered here; the original basis

vectors are projected into a different space which allows for straightforward interpolation,

the result of which is then projected back into the original space.

Grassmann Manifold Projection (GMP) is very similar in this concept. A set of

bases is projected into a tangent space which allows for direct interpolation methods, and

then reprojected back to the original basis space. The result is a straightforward and

40

efficient basis interpolation method which preserves the important properties of the bases

for our applications: orthogonality, orthonormality, and span.

The algorithm for GMP used in this work comes primarily from Amsallem and

Farhat 2008.141 For more details on the mathematical background beyond the algorithm

summarized here, the reader is referred to their work.

The setting for the algorithm begins with a set of design points, 𝜆𝑖, for which we

have constructed corresponding sets of reduced order bases, 𝝓𝑖, of order 𝑘 and dimension

𝑁𝑅. We are interested in determining an interpolated basis 𝝓𝑅 at a new design point 𝜆𝑅.

First, we select one of the design points and bases as a reference and origin, 𝜆0 and 𝝓0.

We then develop a projection into the tangent space, 𝜞𝑖, for every other basis as follows:

𝑇 (𝑰 − 𝝓0𝝓0
𝑇)𝝓𝑖(𝝓

𝑇
0𝝓𝑖)

−1 = 𝑼𝑖𝜮𝑖𝑽𝑖 (2.10)

𝑇 𝜞𝑖 = 𝑼𝑖 tan
−1(𝜮𝑖) 𝑽𝑖 (2.11)

We may now interpolate these gamma matrices element-wise based on their

corresponding design points. In our case, we will utilize radial basis functions. The

resulting interpolated matrix, 𝜞𝑅, can be mapped back to the basis space as follows:

𝑇 𝜞𝑅 = 𝑼𝑅𝜮𝑅𝑽𝑅 (2.12)

𝝓𝑅 = 𝝓0𝑽𝑅 cos(𝜮𝑅) + 𝑼𝑅 sin(𝜮𝑅) (2.13)

It is worth noting that the set of bases for a given interpolation is sometimes

restricted to bases that are relatively near to the interpolated point of interest; this is an

effective strategy for Lagrange- or spline-based interpolation schemes. We will not apply

41

this filtering approach here, as the use of RBFs should minimize the impact of distant

bases on the interpolated result.

2.4.2 Radial Basis Functions

In the IROM method, the design of parameter inputs which are sampled for the

snapshot matrix, used to generate the ROM corresponding to each design point, is applied

identically to all points. Thus the same sample range is used for all ROMs. This allows

us to interpolate coordinates vectors between the ROMs. This is accomplished using

radial basis functions.

Radial basis functions, especially extended RBF, are very accurate for any scale

with highly-nonlinear problems.8 They do not require any systematic sampling scheme,

although an appropriate experimental design can increase their accuracy. They operate by

assuming that each sampled point is a basis function and that the value of the function at

any given point is the result of a combination of all these bases, weighted by distance.

Unlike polynomial regression, Kriging, or a variety of other methods, this method does

not develop an intermediate approximation to the surface; it predicts values directly. This

also has the advantage of making evaluations largely inexpensive. RBF are very popular

in the literature.3,8,10

RBF begins with the basic response surface problem, that is, to develop an

approximation �̅� to a set of true and expensive function evaluations 𝐹 corresponding to a

set of 𝑛𝑝 design points 𝑥 ∊ ℝ𝑚 . It does this by weighting a linear combination of radial

functions, which operate on the distance between the data points and the evaluation point

of interest. More explicitly:

42

�̅� = ∑𝑛𝑝 𝜎𝑖𝜑(||𝑥 − 𝑥𝑖||) (2.14)
𝑖=1

The various 𝜎𝑖 are referred to as the RBF coefficients, while 𝜑 is the radial

function. There are several common choices, including:

Quadratic 𝜑𝑄(𝑥) = 𝑥2 + 𝑐2 (2.15)

Inverse Quadratic 𝜑𝐼𝑄(𝑥) = 1/(𝑥2 + 𝑐2) (2.16)

Multiquadratic 𝜑𝑀𝑄(𝑥) = √𝑥^2 + 𝑐^2 (2.17)

Inverse Multiquadratic 𝜑𝐼𝑀𝑄(𝑥) = 1/√𝑥^2 + 𝑐^2 (2.18)

Here, 𝑐 > 0 is an arbitrary parameter. By applying the constraint that the model

must match the true function values at all sample points, we arrive at the set of equations

that can be used to determine the approximation coefficients:

∑
𝑛𝑝 𝜑(||𝑥𝑘 − 𝑥𝑖||) = 𝐹(𝑥𝑘) 𝑘= 1: 𝑛𝑝 (2.19)
𝑖=1 𝜎𝑖

Or, in matrix form:

𝑨𝜎 = 𝐹 (2.20)

𝐴𝑖𝑘 = 𝜑(||𝑥𝑘 − 𝑥𝑖||) (2.21)

This can be solved for 𝜎 in a straightforward manner. Example MATLAB code

providing this functionality is given in APPENDIX C. In this work, the IMQ radial

function is favored. An example of a radial basis function can be seen in Figure X. Here,

random curves are generated representing an aerodynamic coefficient measured across a

two dimensional parameter space – airfoil thickness (T), and angle of attack (AoA). The

43

RBF is then sampled at regular angle of attack intervals and random thickness intervals

and plotted against the snapshot curves.

Figure 2.15 Radial Basis Function Example

A notable derivative method is called extended RBFs (E-RBFs). This method

adds an additional term to the approximation involving the use of non-radial functions.

These nonradial functions as given by Mullur and Messac are a piecewise function with

arbitrary parameters controlling the divisions between the different regions and their

behavior. The combined function is linear on the outer regions and has controllable

nonlinear behavior in the inner regions. The resulting system is underdetermined and has

a family of solutions, however the simple pseudoinverse provides an efficient and least-

norm solution. This allows the imposition of additional constraints such as smoothness

and convexity, which can be useful for gradient based optimizations. The reader is

referred to Mullur and Messac’s work for further details on those aspects.10

44

https://aspects.10

𝝃𝒅
𝒊 𝜱𝑳 𝜱𝑹 𝜱𝜷

𝑖 𝜉𝑑 ≤ −𝛾 𝑖 (−𝑛𝛾𝑛−1)𝜉𝑑 + 𝛾𝑛(1 − 𝑛) 0 𝑖 𝜉𝑑
𝑖 −𝛾 ≤ 𝜉𝑑 ≤ 0

𝑖 0 ≤ 𝜉𝑑 ≤ 𝛾
𝑖 𝛾 ≤ 𝜉𝑑

𝑖)𝑛 (𝜉𝑑
0
0

0
𝑖)𝑛 (𝜉𝑑

𝑖 (𝑛𝛾𝑛−1)𝜉𝑑 + 𝛾𝑛(1 − 𝑛)

𝑖 𝜉𝑑
𝑖 𝜉𝑑
𝑖 𝜉𝑑

2.4.3 Extended Radial Basis Functions

ERBFs were developed by Mullur and Messac10 to incorporate non-radial basis

functions as well as radial basis functions. This increases the overall ROM accuracy

while allowing the ROMs to accurately represent linear portions of a function, a classic

weakness of regular RBF. The tradeoff is that the extra NRBFs introduce many more

unknown coefficients, resulting in an underdetermined set of equations which must be

solved by a constrained linear programming subproblem. If the subproblem fails to find

a feasible solution, the system may be solved by a pseudo inverse procedure, which is

equivalent to the typical RBF solution method. Thus, ERBFs provide at least as much

accuracy as regular RBF, with the capability of improving that accuracy significantly.

For a detailed description, the reader is referred to their work, however we will provide a

summary overview here for completion. Example MATLAB code implementing ERBFs

is available in 0.

Table 2.1 Definitions of ERBF Coefficients

ERBF begins with the same inputs as RBF, namely the input points 𝑋, the output

samples 𝑌, and a radial basis function 𝜑. ERBF also uses two additional parameters, a

smoothing factor 𝛾, and a nonlinear order factor 𝑛. Using these parameters, the

approximation to the original system function is given by

45

𝑛𝑝 𝑛𝑝 𝑛𝑥𝑑 𝐿𝑖𝛷𝐿(𝜉𝑑
𝑅𝑖𝛷𝑅(𝜉𝑑 �̃�(𝑋) = ∑ 𝜎𝑖 𝜑(‖𝑋 − 𝑋𝑖‖) + ∑ ∑ [𝛼𝑑

𝑖) + 𝛼𝑑
𝑖) + 𝛽𝑑𝛷

𝛽(𝜉𝑑
𝑖)]

𝑖=1 𝑖=1 𝑑=1

(2.22)

where 𝜎, 𝛼𝐿 , 𝛼𝑅, and 𝛽 are the unknown coefficients. Here, the first term

represents the normal RBF contribution, while the second term represents the NRBF

contribution. The functions 𝛷𝐿 , 𝛷𝑅, and 𝛷𝛽 are defined as in Table 1, where 𝜉𝑖 is

𝑖 defined as 𝑋 − 𝑋𝑖, that is, 𝜉𝑑 is the difference between 𝑋 and 𝑋𝑖 along dimension 𝑑. To

construct the set of equations we will solve, we first construct the RBF weighting matrix

as per regular RBF

𝐴𝑖𝑗 = 𝜑(‖𝑋𝑗 − 𝑋𝑖‖) (2.23)

Additionally, we construct a NRBF weighting matrix �̅�. This matrix is

constructed from rows �̅�𝑘 where the structure of the 𝑘th row is

̅𝑘 ̅𝐿𝑘 �̅�𝑅𝑘 �̅�𝛽𝑘]𝐵 = [𝐵 (2.24)

Given 𝜉𝑖𝑗 = 𝑋𝑗 − 𝑋𝑖 , each term in this structure is a row vector given by

𝑘𝑛𝑝 �̅�∙𝑘 = [𝛷∙𝑘(𝜉1
𝑘1) 𝛷∙𝑘(𝜉2

𝑘1) 𝛷∙𝑘(𝜉1)] (2.25) 𝑘1) ⋯ 𝛷∙𝑘(𝜉𝑛𝑥𝑑
𝑘2) ⋯ 𝛷∙𝑘 (𝜉𝑛𝑥𝑑

∙ ≡ 𝐿, 𝑅, 𝛽

These two matrices 𝑨 and �̅� are combined into a matrix �̅� = [𝑨 | �̅�] as an

underdetermined system. We construct our vector of unknowns as a column vector

𝑇 𝐿 𝑅 �̅�𝑦𝑑 = [𝜎𝑦𝑑 𝛼𝑦𝑑 𝛼𝑦𝑑 𝛽𝑦𝑑] for each dimension 𝑦𝑑 of the output space, and set it

equal to the column vector of samples for that dimension, 𝐹𝑦𝑑. This results in the system

46

�̅��̅�𝑦𝑑 = 𝐹𝑦𝑑 (2.26)

This is an underdetermined system that we can solve via a constrained linear

programming subproblem given by

min𝑏𝑇�̅�𝑦𝑑 | �̅��̅�𝑦𝑑 = 𝐹𝑦𝑑; �̅�𝑦𝑑 ≥ 0 (2.27)
�̅�𝑦𝑑

where 𝑏𝑇 is taken to be a vector of ones. If no feasible solution is found, we solve

for �̅�𝑦𝑑 using the pseudo inverse procedure, i.e. �̅�𝑦𝑑 = �̅�\𝐹𝑦𝑑, which will yield a regular

RBF solution. Once the vector of unknowns is calculated, we can evaluate a new

parameter point 𝑃 according to the approximation formula given above.

47

CHAPTER III

ROM INTERPOLATION SCHEME

3.1 IROM Scheme

Generally, the most computationally expensive component of an optimization is

the full-order analysis for evaluations of the objective function(s) and design

constraint(s). Any reduction in the computational cost of performing this analysis, or the

number of times it must be performed, has the potential to provide significant speedup

benefits to the optimization. This expense is particularly pronounced when considering

the finite difference stencils.

In a typical gradient-based optimization, there is a clear analysis step where the

partial derivatives of objective and constraints are evaluated across a finite difference

stencil of design points. The strategy adopted in this work is to apply the proposed

interpolation procedure to the gradient evaluation / sensitivity analysis (SA) step. That is,

new ROMs will be interpolated for each of the SA stencil points instead of performing

FOAs. This will allow the evaluation at each stencil point to be performed using the less

expensive interpolated ROMs. To differentiate interpolated ROMs from those

constructed using full order data, they will be referred to here as IROMs. Unlike

previous interpolation work, this method does not require additional FOAs and operates

with black box analyses. An illustration of the interpolation process is shown in Figure

3.1.
48

Figure 3.1 Illustration of ROM Interpolation Concept

The first part of the scheme is an offline computation. Before beginning the

optimization, a database of ROMs is constructed throughout the design space. To do this,

first a set of training points is constructed via a DOE design. In this work, Latin

hypercube designs are generated and selected according to maximin criteria, which

maximizes the minimum distance between sample points, leading to good space filling

properties. At each training point, data from an FOA at that point is used to construct a

ROM. These will form a reference set of ROMs to be utilized during interpolation.

The online portion of the scheme occurs during the optimization procedure itself.

During sensitivity analysis for each design point, the reference ROMs are interpolated to

create new IROMs associated with each SA stencil point. These are then used to evaluate

the objective and constraint functions at those points. For the current design point itself,

an FOA is performed. The results are then used to compute the gradient at the center

point.

49

Optionally, the FOA data for the center point can be used to construct a new

ROM for that design point. This ROM can be added to the database of reference ROMs

and is subsequently available during any ROM interpolation. This is referred to as an

adaptive step.

While this may increase accuracy, it also requires updating the interpolation

model. For a given set of reference ROMs, much of the information required to perform

the interpolation is independent of the target design point. This information can be stored

to save computational time, and is referred to here as the interpolation model. However,

when the reference set of ROMs changes, this model must be rebuilt, incurring an

additional cost each time the reference set is updated.

The interpolation process itself is based on the component methods discussed

previously in CHAPTER II. In this work, the ROMs are based on POD, which means

that they are primarily represented by a set of basis vectors, 𝑩, a set of coordinates 𝑪 and

any associated bias and normalization information. To interpolate between these ROMs,

their components are interpolated separately.

Figure 3.2 Illustration of ROM Interpolation Procedure

50

The basis vectors are interpolated using Grassmann manifold projection (GMP),

using the nearest point as the reference basis. The snapshot coordinates of each ROM are

in potentially in terms of a different basis; thus they are first reconstructed into the

original snapshot space before being interpolated elementwise using RBF. The

interpolated snapshots are then reprojected onto the new interpolated basis. Any bias and

normalization information is also interpolated elementwise using RBF. This process is

summarized in Figure 3.2.

3.1.1 IROM Algorithm

A more formal specification of the algorithm is given below:

1. Reference Database Generation

a. Before the optimization, generate a set of design points 𝑋𝑇, preferably

spanning the design space in a manner which is optimal by some DOE criteria.

b. As per standard POD method of snapshot procedure, create a ROM, 𝑅𝑂𝑀𝑖, for

the analysis to be replaced. Retain the snapshot coordinates, 𝑪𝑖, and the first 𝑘

basis vectors, , for each ROM. Also retain any biasing and normalization

information. Thus, the data for a single ROM in the database consists

of:[𝑋, 𝑪, 𝑩, 𝑌𝑏𝑖𝑎𝑠, 𝑌𝑛𝑜𝑟𝑚, 𝑃𝑏𝑖𝑎𝑠, 𝑃𝑛𝑜𝑟𝑚]

Store in a database for reference.

2. ROM Interpolation

51

a. During the optimization, for each point along the optimization path 𝑋, perform

an FOA. Optionally, construct a new ROM, 𝑅𝑂𝑀𝑋, and add this ROM to the

reference database.

b. For sensitivity analysis, generate a set of design points {𝑋𝐹𝐷} as per the

desired finite difference scheme.

c. For each of the points 𝑋𝑅 ∈ {𝑋𝐹𝐷}, interpolate a new ROM,

𝐼𝑅𝑂𝑀𝑅:

i. Interpolate the ROM bases using GMP and RBF, choosing the nearest

ROM as reference.

ii. Interpolate the bias and normalization information using RBF.

iii. Reconstruct the snapshots for each reference ROM, interpolate using RBF,

and then project onto the interpolated basis.

3. Reduced Order Analysis

𝑅 𝑅 𝑅 𝑅 a. Using the new IROM data, [𝑋𝑅, 𝑪𝑅, 𝑩𝑹, 𝑌𝑏𝑖𝑎𝑠, 𝑌𝑛𝑜𝑟𝑚, 𝑃𝑏𝑖𝑎𝑠, 𝑃𝑛𝑜𝑟𝑚], perform

the ROA utilizing the IROM in place of the selected disciplinary analysis

b. Evaluate the objective and constraint functions for the ROA output, 𝑓(�̃�(𝑋𝑅))

and {𝑔𝑖(�̃�(𝑋𝑅))}.

4. Sensitivity Analysis

a. Using the resulting evaluations, perform finite difference calculations to

determine an estimated value of 𝜕𝑓⁄𝜕𝑋 and . Proceed with the

optimization as per usual.

52

̃ 𝑖‖
2 2𝑁𝑅𝑀𝑆𝐷 = √∑ ‖𝑌𝑖 − 𝑌 ⁄ ∑ ‖𝑌𝑖‖2 𝑖 𝑖 2

̃𝑖‖max{‖𝑌𝑖−𝑌 }
𝑁𝑀𝐴𝑋 = 𝑖 2

2
√1⁄𝑛𝑝 ∑𝑖‖𝑌

𝑖−�̃�𝑖‖
2

3.2 Error Metrics

In order to evaluate the error associated with using the IROM scheme in

optimization, as opposed to the normal FOM optimization, it is useful to quantify several

different error metrics. For most of these, the basic error measure will be that of

Normalized Root Mean Square Deviation (NRMSD). Normalized Maximum Deviation

(NMAX) will also provide some useful insight. Generally, NRMSD will be used to

quantify the general accuracy while NMAX provides an indicator as to the magnitude of

outliers. The specific formulation of these metrics for this work are given as

(3.1)

(3.2)

Here, 𝑌 is the true value, or in our case the full-order value, and �̃� is the

approximation. 𝑛𝑝 simply denotes the number of points.

The first errors to address are specific to the ROMs being used. POD-based

ROMs may have a truncated set of basis vectors, which introduces truncation error to

model outputs. In this work, the impact of truncation is not addressed, and all POD-

based ROMs retain their full basis vector sets. Thus, truncation error is expected to be

zero to machine accuracy; this is verified via NRMSD as a sanity check when

constructing the initial ROM database.

Both POD- and RBF-based ROMs have error associated with predicting the

function values for new input points. This represents the accuracy the model fit to the

true function. These can be evaluated against the true function output with both NRMSD
53

and NMAX. Generally in this work, a good NRMSD fit is considered the primary

indicator, and NMAX is considered supplemental information about significant outliers.

When discussing the error associated with the interpolation procedure itself, it is

useful to differentiate between global and local accuracy. Global accuracy refers to the

ability of the interpolation model to match the full order model throughout the design

space. This is a measure of the interpolation model's general fit. Local accuracy refers to

the ability of the interpolation model to capture variations of the full-order model in the

vicinity of a selected point. This is important when considering the ability of the

interpolation procedure to properly approximate gradients.

The global error in this work is estimated after the initial ROM database

construction by selecting a set of random test points throughout the design space. For

each of these points, the results of the FOA and an IROM interpolated to that point are

compared with NRMSD and NMAX.

The local error is evaluated in the same manner, on a set of random test points.

Finite different stencils are generated for each test point, and FOA and IROM evaluations

performed for each stencil point. The spectral angle between the computed gradients can

then be used to measure the local error. By constructing a ROM for the test point and

updating the interpolation model, the impact of the adaptive step can also be measured.

The local error is sometimes referred to here as the spectral error (SPERR). The formula

used here scales the spectral angle by 180 degrees, in order to report the error as a

percentage. That is, 100% error would be a gradient pointing directly opposite the true

gradient. The specific formula used in this work is given as

54

̃ 𝑖 −1 (𝑌
𝑖∙𝑌

𝑆𝑃𝐸𝑅𝑅 = cos) ⁄𝜋 (3.3)
|𝑌𝑖||�̃� 𝑖|

Since the work here is concerned primarily with sensitivity analysis, the local

error is considered the primary indicator of a good interpolation model. The remaining

errors provide additional information and insight into the behavior and characteristics of

the model. All of these errors can be evaluated after constructing the initial ROM

database and interpolation model, and provide valuable feedback about the choice of

DOE design.

For the effect of the model on the optimization itself, this is primarily considered

through comparing the objective histories and design point paths between the two

optimizations. Since it is expected that the paths will not be exactly the same, evaluating

the local accuracy at each point along the optimization path would involve either

maintaining an interpolation model (for the FOM optimization) or evaluating the FOM

model at each point (for the IROM optimization). This is not performed in the current

work due to time limitations and the difficulty it introduces to obtaining accurate timing

and function count information for the respective methods.

55

CHAPTER IV

TEST PROBLEMS

4.1 Airfoil Shape Optimization

The airfoil shape optimization (ASO) test problem was selected as a simple test

problem for illustrating the viability of the IROM method and potential speedup. The

problem is based loosely on a problem by Vanderplaats and Hicks.157

The goal of the ASO problem is to maximize the average lift-to-drag ratio of an

airfoil over several angles of attack. The airfoil must also meet a minimum lift

coefficient at all angles of attack and a minimum quarter chord thickness. The flow

conditins are chosen to represent standard sea-level with a velocity of 50 m/s.

The design airfoil shape is represented by blending or combining several different

basis airfoil shapes.

More specifically, the upper and lower surfaces of four standard NACA airfoils

are used for the basis weight factors: NACA 2412, NACA 64A215, NACA 65-415, and

NACA 64-412. The weight factor given to each particular basis airfoil is treated as a

design variable that ultimately determines the resultant shape of the design airfoil. Thus,

a design point 𝑋 is defined by the magnitude of the weight corresponding to each basis

airfoil, and is synonymous with a particular airfoil shape. This results in eight total

weight factors, four for the upper surfaces, and four for the lower surfaces. The weight

factors are allowed to vary from 0.0 to 1.5, with a minimum bound imposed on the sum
56

of weight factors for the upper and lower surfaces. The lower bound on the sum is to

avoid excessively flat surfaces. An illustration of the airfoil shapes and blending them is

given in Figure 4.1.

Figure 4.1 Illustration of Blended Airfoil Shapes

The ASO problem can be more formally specified as a constrained nonlinear

programming problem expressed as

1
min 𝐹(𝑌(𝑿)) = − ∑ 𝐿(𝑿, 𝛼𝑗)⁄𝐷(𝑿, 𝛼𝑗)𝛼𝑗 𝑛𝛼 𝑿=[𝑤1⋯𝑤𝑥𝑑]

𝑚𝑖𝑛 − 𝑐𝐿 ≤ 0 s.t. 𝑔1(𝑌(𝑿)) = 𝑐𝐿

𝑚𝑖𝑛 − 𝑡(0.25) ≤ 0 𝑔2(𝑌(𝑿)) = 𝑡𝑄𝐶

𝑚𝑖𝑛 4𝑔3(𝑌(𝑿)) = 𝑤𝑢𝑝𝑝𝑒𝑟 − ∑𝑖=1 𝑤𝑖 ≤ 0

𝑚𝑖𝑛 8− ∑ 𝑤𝑖 ≤ 0 𝑔4(𝑌(𝑿)) = 𝑤𝑙𝑜𝑤𝑒𝑟 𝑖=5

𝑚𝑖𝑛 ≤ 𝑤𝑖 ≤ 𝑤𝑖
𝑚𝑎𝑥; 𝑖 = 1, 𝑛𝑥𝑑 𝑤𝑖 (3.1)

57

Here, 𝑿 represents the design variables, i.e. the collection of weight factors

𝑤1... 𝑤𝑥𝑑. 𝑌(𝑿) indicates the analysis required to determine the lift, 𝐿(𝑿, 𝛼𝑗) and drag,

𝐷(𝑿, 𝛼𝑗) characteristics for each of 𝑛𝛼 angles of attack. These responses are used to

formulate the objective function, 𝐹 as the inverse of the average lift-to-drag ratio. The

constraints are formulated to enforce a minimum lift coefficient, a minimum quarter

chord thickness, bounds on the summed weights for the upper and lower surfaces, and

side constraints on the values of the weights.

Figure 4.2 Full Order Model for ASO Problem

To apply the IROM scheme, it is critical to identify which system the ROMs are

built to replace. For the ASO problem, the full order analysis as shown in Figure 4.2 is

taken to be the aerodynamic solver. This system takes an input angle of attack and

produces an output set of airfoil coefficients. The ROMs are constructed to replace this

system, taking the same inputs and outputs as shown in Figure 4.3.

58

Figure 4.3 Reduced Order Model for ASO Problem

The fluid solver used for this problem is ANSYS Fluent, with grids generated

through ANSYS ICEM-CFD. The grid is a structured quad grid with a typical C-grid

topology and approximately fifteen chord lengths between the airfoil and the external

boundary. The simulation is performed with the pressure-based Navier-Stokes solver and

the SST k-ω turbulence model, with pressure far field boundary conditions at a Reynolds

number of approximately 3.1e6. The overall optimization and analysis automation was

performed in MATLAB.

4.2 Transport Wing Optimization

The second test problem, Transport Wing Optimization (TWO), is taken largely

from papers by Garcelon et al and Venter and Sobieski.158–160 It is a simplified

optimization of the airfoil thickness and aspect ratio for a transport aircraft wing similar

to the early Boeing 767 class. Venter and Sobieski test a particle swarm optimization

technique on the problem; in contrast, this work applies the more traditional gradient-

based sequential quadratic programming (SQP) algorithm. Since the objective space is

fairly noisy for gradient-based optimization, the starting point in this work is altered to be

in the vicinity of the gradient-based optimum found in the previous works. This allows a

comparison of the final optimum points by way of a sanity check on the problem

59

implementation, although it is not expected that they will be exactly the same due to key

changes in the problem. These changes include use of different panel materials, slightly

different load factors, and different buckling equations, among others. The interpolated

ROMs are used to replace the finite element analysis in the structural subproblem.

Whereas the ASO problem was chosen as a proof-of-concept case to explore the

speedup benefits of the IROM method, the TWO problem was chosen to examine the

impact of utilizing IROMs within a larger system. Although the fluid analysis for this

problem is simplified, the structure of the problem matches well with that of a

multidisciplinary problem.

The TWO problem is a structured as a multilevel problem involving a system

level range optimization of the wing by varying airfoil thickness, t/c, and the overall

aspect ratio, AR. The wing reference area, sweep angle, and taper ratio, as well as the

aircraft properties such as takeoff gross weight (TOGW) and ratio of nonstructural weight

to gross takeoff weight, are held fixed.

For each system level design point, the minimum wing box weight is found by

running a subproblem optimization on thicknesses of the wing spars, ribs, and surface

panels. The structural design must meet stress constraints for two load factors, -1.5 g and

+3.5 g. These load factors are distributed by a normalized combination of spanwise and

chordwise loading distributions, shown in Table 4.1, from root to tip and leading to

trailing nodes, respectively. The loads are applied on the bottom nodes only. The

loading on each node is determined as a combination of its spanwise and chordwise

location index found as

60

Location 1 2 3 4 5 6 7 8 9

Span 0.1786 0.1696 0.1518 0.1429 0.1250 0.1071 0.0893 0.0268 0.0089
Chord 0.1270 0.3175 0.3175 0.1587 0.0794

𝛼+𝛽𝑗
𝐹𝑖𝑗 = 𝑊𝐿 ∙ 𝐷𝑆𝑖 ∙ 𝐷𝐶𝑗 ∙ 𝐴𝑖𝑗 ∙ 𝐿𝐹 ∙ (4.2)

𝛼𝑟𝑒𝑓

where 𝐹𝑖𝑗 is the force on the node, 𝑊𝐿 is the wing loading, 𝐷𝑆𝑖 and 𝐷𝐶𝑗 are the

distribution factors for spanwise and chordwise directions, respectively, 𝐴𝑖𝑗 is an area

associated with each node, 𝐿𝐹 is the current load factor, and the remaining term is a

linear scaling factor based on the current angle of attack and displacement.

Table 4.1 TWO Load Distribution Factors

The previous work also varied the number of internal spars and ribs, which will

not be performed here. The spars and ribs are modeled as Al 6061, while the surface

panels are modeled as aluminum sandwich panels consisting of Al 6061 face sheets with

Divinycell F40 foam as the core material. The relevant material properties used for each

of these can be found in APPENDIX F.

61

Figure 4.4 Example of Displaced Wing Box Model

Only the wing box and the upper and lower surface panels framed by the spars

and ribs are modeled; the surface panels of the leading and trailing edges of the wing are

not modeled. There is no rib in the root chord, as those nodes are fully constrained.

There are eight ribs at equal spacing, including the tip rib, which divide the wing box

spanwise into eight sections. The three spars are placed at the 25%, 50%, and 75% chord

positions. Additionally, triangular "rigid" elements are used to transfer forces from the

leading and training edges to the wing box; these are RBE3 elements from the Nastran

analysis program, which do not add stiffness to the model but instead act to distribute

forces. All other elements are modeled with 2D quadrilateral membrane elements,

specifically CQUAD4 elements. The aluminum sandwich material is specified using a

PCOMP property card, which converts the material internally into an equivalent MAT2
62

structure. An example of the wing box displaced under loading is given in Figure 4.4,

with exaggerated displacements.

For each spanwise region of the wing box framed by ribs, the spars share a single

thickness design variable, the associated outboard rib has an independent design variable,

and each surface panel (four total per section) has independent core and total thickness

design variables. This creates a total of eighty thickness design variables, ten per wing

box section. An illustration of the wing box structural elements for one wing section,

omitting three of the skin panels, is show in Figure 4.5.

Figure 4.5 Illustration of wing box structural elements

The system level problem is a search for the maximum range configuration,

constrained only by upper and lower bounds on the system level design variables. The

structural subproblem is constrained by upper and lower thickness bounds, von Mises

stress constraints on the aluminum elements, and buckling constraints on the sandwich
63

𝑡
𝑿 = [

𝑐
𝐴𝑅]

0.08 ≤ 𝑡
≤ 0.15

𝑐

4 ≤ 𝐴𝑅 ≤ 15

skin panels. Additionally, each panel core thickness is constrained to be at least two

minimum skin thicknesses below the total panel thickness.

The specification for the system level problem is given as

𝑇𝑂𝐺𝑀∙𝑔 𝑇𝑂𝐺𝑊 min −𝑅(𝑿) = −𝑐𝑅 ∙ ∙ ln
𝐷 𝑐𝑛𝑠∙𝑇𝑂𝐺𝑊+𝑤𝑠𝑡𝑟

over

s.t.

(4.3)

where 𝑅(𝑿) is the simplified Breguet range equation, 𝑐𝑅 is a constant designed to

normalize the reference wing range to 9260 km (5000 nm), 𝐷 is the wing drag force, 𝑐𝑛𝑠

is a constant representing nonstructural weight equal to 0.61, and 𝑤𝑠𝑡𝑟 is the weight from

the structural suboptimization multiplied by a structural overhead factor of 1.3. The drag

force D is determined analytically as a function of 𝑿

𝐷𝑖 = 𝐷𝑟𝑒𝑓𝑐𝑑𝑖𝐴𝑅𝑟𝑒𝑓⁄𝐴𝑅 (4.4)

𝐷𝑤 = 𝐷𝑟𝑒𝑓𝑐𝑑𝑤 ∙ (𝑡⁄𝑐)⁄(𝑡⁄𝑐) (4.5)
𝑟𝑒𝑓

𝐷 = 𝐷𝑖 + 𝐷𝑤 + (1 − 𝑐𝑑𝑖 − 𝑐𝑑𝑤) ∗ 𝐷𝑟𝑒𝑓 (4.6)

where 𝑐𝑑𝑖 and 𝑐𝑑𝑤 are coefficients representing the portion of drag corresponding

to induced and wave drag, respectively.

64

The structural subproblem is given as:

min 𝑊𝑜𝑝𝑡 = 𝑊(𝑻)

over 𝑻

𝜎1 1s.t. − 1 < 0
𝜎𝑐𝑟

𝜏12 1− 1 < 0
𝜏𝑐𝑟

2𝜎1 𝜏12+ () − 1 < 0 1
𝜎𝑐𝑟 𝜏𝑐𝑟

𝑚𝑖𝑛 1𝑡𝑐𝑜𝑟𝑒 − 𝑡𝑝𝑎𝑛𝑒𝑙 + 2𝑡𝑠𝑘𝑖𝑛 < 0

𝜎𝑉𝑀 − 𝑀𝑇𝑆 < 0 2

−𝜎𝑉𝑀 − 𝑀𝐶𝑆 < 0 2

𝑡𝑖𝑝 𝑈𝑧 − 2.0 < 0

0.0001 𝑚 ≤ 𝑡𝑠𝑘𝑖𝑛 ≤ 0.0035 𝑚

0.0001 𝑚 ≤ 𝑡𝑐𝑜𝑟𝑒 ≤ 0.0100 𝑚

0.0050 𝑚 ≤ 𝑡𝑠𝑝𝑎𝑟 ≤ 0.1000 𝑚

0.0005 𝑚 ≤ 𝑡𝑟𝑖𝑏 ≤ 0.0250 𝑚 (4.7)

1 For each sandwich element

2 For each aluminum element

where 𝑊(𝑻) is the total mass of the wing box, determined by multiplying each

element area by the thickness and density of each material layer for that element, and

summing over all elements. 𝑻 is a vector of eighty elements, ten per wing section, with

eight corresponding to the total and core thicknesses of the four cover panels, one

corresponding to the spars in the section, and one corresponding to the outboard rib for
65

that section. The order of these variables for a single section are show in Table 4.2. The

overall vector 𝑻 is simply the concatenation of the variables for all eight sections. 𝑡𝑠𝑘𝑖𝑛

for each panel is simply the difference 𝑡𝑝𝑎𝑛𝑒𝑙 − 𝑡𝑐𝑜𝑟𝑒. 𝑈𝑧
𝑡𝑖𝑝 is the tip deflection, which is

constrained to be less than two meters.

Table 4.2 Example of Thickness Variables for a Wing Section

Panel 1 Panel 2 Panel 3 Panel 4 Spars Ribs

𝑡𝑝𝑎𝑛𝑒𝑙,1 𝑡𝑐𝑜𝑟𝑒,1 𝑡𝑝𝑎𝑛𝑒𝑙,2 𝑡𝑐𝑜𝑟𝑒,2 𝑡𝑝𝑎𝑛𝑒𝑙,3 𝑡𝑐𝑜𝑟𝑒,3 𝑡𝑝𝑎𝑛𝑒𝑙,4 𝑡𝑐𝑜𝑟𝑒,4 𝑡𝑠𝑝𝑎𝑟 𝑡𝑟𝑖𝑏

The spanwise normal stress 𝜎1, the panel shear stress 𝜏12, and the von Mises

stresses 𝜎𝑉𝑀 are determined directly by the structural analysis for each element

(depending on whether it is a sandwich element or an aluminum element). The other

variables for the buckling constraints are determined analytically, using the conservative

assumption of simply supported edges. For simplification, the average edge loads are

considered to be uniform loads, and buckling is assumed to be elastic. Specifically:

𝑘𝑐𝜋
2 𝐸1 𝑡𝑒𝑞 2

𝜎𝑐𝑟 = () (4.8)
12(1−𝜈2) 𝑏

𝑘𝑠𝜋
2 𝐸1 𝑡𝑒𝑞 2

𝜏𝑐𝑟 = () (4.9)
12(1−𝜈2) 𝑏

3)1⁄3𝑡𝑒𝑞 = (6𝑡𝐹(𝑡𝑐 + 𝑡𝐹)2 + 2𝑡𝐹 (4.10)

Here, 𝑘𝑐 and 𝑘𝑠 are compressive and shear buckling coefficients, which are taken

to be 4.0 and 6.0, respectively. Although the coefficients are dependent on panel aspect

ratio, these are the minimum values over the range of aspect ratios considered in this

work.161 Thus, they represent a conservative simplification for the purposes of this work.

In the compressive buckling equation, 𝑏 is the length of the loaded panel edge, while in
66

the shear buckling equation, it is the shortest edge. In this work, these edges are the

same. The thickness 𝑡𝑒𝑞 is that of an equivalent solid plate with matching bending

stiffness. The derivation of this equation is given in APPENDIX G.

The reference wing parameters are given in APPENDIX H.

67

CHAPTER V

COMPUTATIONAL FRAMEWORK

5.1 Implementation

The IROM method was implemented primarily in MATLAB. Each test problem's

optimization was managed within MATLAB, which also acted to coordinate processes

for any analysis and pre-processing codes. These codes included ANSYS ICEM-CFD,

ANSYS Fluent, and MSC Nastran.

The primary MATLAB code was to be executed on a workstation with multiple

cores available. Massively parallel computational clusters were also available and were

utilized for selected sections of the code, as well as the CFD analysis. This

parallelization is noted in the discussion of the results for each test problem.

The code was structured to allow the optimization problem and analyses to be

easily altered. The master execution script (Master File) managed all parameters, initial

DOE construction setup and pre-optimization error testing, and the primary optimization.

Separate scripts for the objective and constraint functions were implemented, and were

responsible for computing gradients when requested. For the TWO problem, the system

objective script was responsible for managing the suboptimization, as well as

interpolating any IROMs for the relevant design points and passing those to the

suboptimization. This structure allowed for problem-specific objective and constraint

formulation.
68

The IROM interpolation model was maintained as a global object, which could be

updated when necessary. The interpolation script, which implements the primary IROM

algorithm, was kept isolated from the problem specific structures. Diagrams for the

general structure of the ASO and TWO test problems are shown in Figure 5.1 and Figure

5.2, respectively.

Critical data structures such as the testing points and results, the interpolation

model, databases of FOM results, ROMs, and valid IROMs, and the optimization path,

are stored as separate files and updated as needed. This organization provides restart

capability in the event of unforeseen failures, as well as minimizing any necessary

recomputation as a result of changes to the problem definitions or structures. Many

critical parameters and settings are stored in the master file, to provide ease of

modification.

Monitoring of the problems is accomplished via text log files, which are also

printed to the command window. These log files are timestamped with both local CPU

and wallclock information, and key sections of code print unique identifiers and timing

information to allow later analysis of function calls and timing information from the log

file. MATLAB's built-in diary functionality is also used to capture any messages, which

appear only in the command window.

69

Master File

Opt im izat ion

Object ive

Const raints IROM
Interpolat ion/

Evaluat ion

DOE Const ruct ion

Pre-Opt im izat ion
Error Test ing

Full Order
Analysis

Figure 5.1 ASO Implementation Structure

Master File

System
Opt im izat ion

System
Object ive

IROM
Interpolat ion

DOE Const ruct ion

Pre-Opt im izat ion
Error Test ing

Subproblem
Opt im izat ion

Subproblem
Object ive

Subproblem
Const raints

IROM
Evaluat ion

Full Order
Analysis

Figure 5.2 TWO Implementation Structure

70

Several forms of parallelization are utilized. The local workstation has multiple

cores available. These are utilized via MATLAB's built in local worker pool capability

and the parfor structure, which allows easy parallelization of a for loop. Some sections

of code, such as the evaluation of snapshot ROMs during the interpolation process, are

manually split into sections and then submitted to the clusters as individual jobs.

Coordination of these workers is accomplished through input/output files, while the main

code waits for completion of all jobs. Finally, analyses may be conducted in coarse- and

fine-grained parallelism; for example, all angles of attack for the ASO problem are

evaluated as separate cluster jobs while each job utilizes multiple processors from within

Fluent.

Post-processing of the test problem results is also performed in MATLAB, either

as part of the problem run through analysis of the log files, or as analysis of the output

data structures.

Relevant specifics regarding the computational environments for each test

problem are discussed along with their results in CHAPTER VI. Although the memory

and storage requirements for these problems are nontrivial, they are well within

workstation capabilities. Thus, the remainder of this chapter is concerned with general

time estimates of the major problem steps. This analysis may be useful for estimating the

time investment each step requires during application. Examples of parallelization are

included here to illustrate some of the approaches used in this work; however, in general

there are many different ways to parallelize each of the major processes. The term ROM

is used here sometimes to refer to the RBF models, though it should be clear from the

context whether reference is to RBF- or POD-based ROMs.

71

5.2 DOE Construction

This step involves generating a DOE design for the initial ROM database. In this

work, Latin hypercube design points selected by maximin criteria are used. Designs for

both the design variables, 𝑿, and the ROM parameters, 𝑷, are generated. The full order

model is evaluated for each design point over each parameter input, and the results are

used as snapshot sets to create ROMs. Thus, the resulting time for this step given 𝑁𝑋

sample design points and 𝑁𝑃 parameter samples is a function of the time for FOM

evaluations and the time for constructing a POD-based ROM. These times are generally

small enough to be measured directly. This step may also be parallelized by a factor 𝑝.

Therefore, the total DOE computational time can be determined as

𝑡𝐷𝑂𝐸 = (𝑁𝑥𝑁𝑝(𝑡𝐹𝑂𝑀 + 𝑡𝑃𝑂𝐷))⁄𝑝 (5.1)

5.3 Pre-Optimization Testing

The testing prior to beginning optimization involves estimating the error

associated with the chosen DOE designs, as well as constructing the initial interpolation

model. The specific errors are truncation error, ROM error, global error, non-adaptive

local error, and adaptive local error.

5.3.1 Truncation Error

Truncation error is a straightforward evaluation, requiring a negligible time

investment, and in this work serves primarily as a sanity check. The time estimate for

truncation error is calculated as

𝑡𝑡𝑟𝑢𝑛𝑐 = 𝑁𝑋𝑁𝑠𝑡𝑒𝑣𝑎𝑙𝑃𝑂𝐷 (5.2)
72

where 𝑁𝑋 is the number of design points in the ROM database, 𝑁𝑠 is the number

of parameter snapshots, and 𝑡𝑒𝑣𝑎𝑙𝑃𝑂𝐷 is a representative time for evaluating a POD-based

ROM.

5.3.2 ROM Error

ROM error is evaluated by selecting a number of random test parameters, for

which the full order model is evaluated and compared against the ROM output for that

design point. This provides an estimate of how well the ROM approximates the full

order analysis at that particular design point. The time required to evaluate this error is

also generally minor, and is found as

𝑡𝑅𝑂𝑀𝑒𝑟𝑟𝑜𝑟 = 𝑁𝑃𝑁𝑃,𝑡𝑒𝑠𝑡𝑡𝐹𝑂𝑀 + 𝑁𝑝𝑁𝑝,𝑡𝑒𝑠𝑡𝑡𝑒𝑣𝑎𝑙𝑃𝑂𝐷 (5.3)

5.3.3 Interpolation Model

The interpolation model must be constructed in order to evaluate the global and

local errors. There are three steps to that process which occupy the bulk of the

interpolation time: (1) constructing and evaluating the basis interpolation ROM, (2)

constructing and evaluating the ROMs for the bias and normalization vectors, and (3)

constructing and evaluating the snapshot interpolation.

5.3.3.1 Basis Interpolation ROM

The basis interpolation ROM is a single RBF model interpolating each projected

basis vector across the design space. That is, for a set of 𝑘-order bases, 𝑁𝑋 vectors of

length 𝑛𝑝𝑑𝑖𝑚 ∙ 𝑘 are used as samples for a new RBF model, and that model is then

73

2

evaluated at the target design point. Here, 𝑛𝑝𝑑𝑖𝑚 represents the dimensionality of the

snapshots. Since this work does not truncate the bases, the dimensionality becomes

.𝑛𝑝𝑑𝑖𝑚

In this work, the dominant cost of RBF construction is the leave-one-out cross-

validation fitting procedure. An upper bound parameter, 𝑚𝑎𝑥𝑐𝑟𝑜𝑠𝑠, is available for

limiting the growth of this procedure. The cost of performing cross validation is a

function of the time required to construct an RBF model for a given kernel function, 𝜙,

and shape parameter, 𝑐. This time varies with the dimensionality of the samples, but is

generally small enough to be measured directly. The kernel functions and shape

parameters are also searched over their valid ranges, with 𝑁𝜙 functions and 𝑁𝑐 samples

considered. The cross validation may also be locally parallelized. Thus, the total time to

construct the basis interpolation RBF model is given by the time required to perform

cross-validation plus the time to reconstruct the best fit as

𝑡𝐵𝑎𝑠𝑖𝑠𝑅𝐵𝐹 = (𝑁𝜙𝑁𝑐 min{𝑚𝑎𝑥𝑐𝑟𝑜𝑠𝑠, 𝑁𝑋} 𝑡𝑏𝑢𝑖𝑙𝑑𝑅𝐵𝐹) /𝑝 + 𝑡𝑏𝑢𝑖𝑙𝑑𝑅𝐵𝐹 (5.4)

The total time for this step is then simply the time to construct and evaluate the

basis interpolation RBF model given as

𝑡𝑏𝑎 = 𝑡𝐵𝑎𝑠𝑖𝑠𝑅𝐵𝐹 + 𝑡𝑒𝑣𝑎𝑙𝑅𝐵𝐹 (5.5)

5.3.3.2 Bias and Normalization Vectors

The snapshots for the ROMs may be biased and normalized, resulting in a 𝑌𝑏𝑖𝑎𝑠

vector with 𝑛𝑝𝑑𝑖𝑚 elements, and a scalar 𝑌𝑛𝑜𝑟𝑚. The ROMs are interpolated elementwise

74

with RBF models. Thus the time to create each ROM, 𝑡𝑅𝐵𝐹, and the time to evaluate

them, 𝑡𝑒𝑣𝑎𝑙𝑅𝐵𝐹, are used to evaluate the bias and normalization time as

𝑡𝑏𝑛 = 𝑛𝑝𝑑𝑖𝑚(𝑡𝑅𝐵𝐹 + 𝑡𝑒𝑣𝑎𝑙𝑅𝐵𝐹)/𝑝 (5.6)

5.3.3.3 Snapshot Interpolation

The interpolation of the snapshots themselves is also performed elementwise.

This is generally the most expensive step, involving the construction and evaluation of

𝑁𝑋 ∙ 𝑁𝑃 RBF models. The time required can be estimated as

𝑡𝑠𝑖 = 𝑁𝑋𝑁𝑃(𝑡𝑅𝐵𝐹 + 𝑡𝑒𝑣𝑎𝑙𝑅𝐵𝐹)/𝑝 (5.7)

5.3.3.4 IROM Evaluation

The cost of constructing the interpolation model is simply the sum of the previous

major components found as

𝑡𝐼𝑅𝑂𝑀 = 𝑡𝑏𝑎 + 𝑡𝑏𝑛 + 𝑡𝑠𝑖 (5.8)

To evaluate an interpolation model, which does not require an update, most of the

RBF models are already constructed and stored. The exception is the basis interpolation

models, which must be recomputed for each target design point because they are

dependent on the choice of reference basis. There is a small additional fixed cost

representing the other steps of the interpolation function, but this is generally negligible

compared to the main steps. Thus, the relevant times for each section, and the total, can

be estimated as

75

𝑡𝑏𝑎 = 𝑡𝐵𝑎𝑠𝑖𝑠𝑅𝐵𝐹 + 𝑡𝑒𝑣𝑎𝑙𝑅𝐵𝐹 (5.9)

𝑡𝑒𝑣𝑎𝑙𝑏𝑛 = 𝑛𝑝𝑑𝑖𝑚(𝑡𝑒𝑣𝑎𝑙𝑅𝐵𝐹)/𝑝 (5.10)

𝑡𝑒𝑣𝑎𝑙𝑠𝑖 = 𝑁𝑋𝑁𝑃(𝑡𝑒𝑣𝑎𝑙𝑅𝐵𝐹)/𝑝 (5.11)

𝑡𝑒𝑣𝑎𝑙𝐼𝑅𝑂𝑀 = 𝑡𝑏𝑎 + 𝑡𝑒𝑣𝑎𝑙𝑏𝑛 + 𝑡𝑒𝑣𝑎𝑙𝑠𝑖 (5.12)

5.3.4 Global Error

The global error is a measure of the interpolation model's general goodness of fit

for matching the full order analysis throughout the design space. Thus, a set of 𝑁𝐺 test

points must be evaluated with the full order model, IROMs interpolated to those target

points, and then evaluated. The results are compared at each of the common snapshot

parameters to avoid influence from ROM error. This leads to the time estimate as

𝑡𝐺 = 𝑁𝐺(𝑁𝑃𝑡𝐹𝑂𝑀 + 𝑡𝑒𝑣𝑎𝑙𝐼𝑅𝑂𝑀 + 𝑁𝑃𝑡𝑒𝑣𝑎𝑙𝑃𝑂𝐷) (5.13)

5.3.5 Non-Adaptive Local Error

The local error is a measure of the error of the gradient calculation with the full

order model and the IROMs for the same stencil. This is performed with the objective

function for the problem of interest; thus the time estimate for evaluating the objective

with the full-order and reduced-order models is obviously problem dependent. In

general, for 𝑁𝑁𝐿 test points, each of which is of dimensionality 𝑛𝑥𝑑𝑖𝑚, each test point

must be evaluated with the objective function utilizing the full-order model, another

evaluation for each stencil point, and IROM interpolations and evaluations for each point

as well. In this work, the stencil evaluation may be parallelized. Note that depending on

76

the finite difference method used, there may be one or two stencil points per dimension,

represented here as 𝑐𝐹𝐷. Thus the time is generally estimated as

𝑡𝑁𝐿 = 𝑁𝑁𝐿(𝑡𝑜𝑏𝑗𝐹𝑂𝑀 + 𝑐𝐹𝐷𝑛𝑥𝑑𝑖𝑚(𝑡𝑜𝑏𝑗𝐹𝑂𝑀 + 𝑡𝑒𝑣𝑎𝑙𝐼𝑅𝑂𝑀 + 𝑡𝑜𝑏𝑗𝐼𝑅𝑂𝑀)/𝑝) (5.14)

5.3.6 Adaptive Local Error

The adaptive local error is a measure of the error of the gradient calculation as

well, but it also takes into account the effect of building a ROM for the target design

point and updating the interpolation model accordingly. To avoid influence from other

test points, the reference interpolation model is stored and updated independently for

each test point; thus, the interpolation model used for each test point consists of the

reference model plus the ROM for that point only.

The cost is similar to the non-adaptive local error, with the added cost of

constructing ROMs and rebuilding the interpolation model for each test point found as

𝑡𝑜𝑏𝑗𝐹𝑂𝑀 + 𝑡𝑃𝑂𝐷 + 𝑡𝐼𝑅𝑂𝑀 +
𝑡𝑁𝐿 = 𝑁𝑁𝐿 () (5.15)

𝑐𝐹𝐷𝑛𝑥𝑑𝑖𝑚(𝑡𝑜𝑏𝑗𝐹𝑂𝑀 + 𝑡𝑒𝑣𝑎𝑙𝐼𝑅𝑂𝑀 + 𝑡𝑜𝑏𝑗𝐼𝑅𝑂𝑀)/𝑝

5.4 Objective, Constraints and Gradient Evaluation

5.4.1 ASO Problem

Evaluating the objective and constraints for the ASO problem involves

performing 𝑛𝛼 CFD simulations for the full-order case. If a gradient is requested, 𝑛𝑥𝑑𝑖𝑚 ∙

𝑛𝛼 additional simulations must be performed in the full order case, or 𝑛𝑥𝑑𝑖𝑚 IROM

interpolations followed by 𝑛𝑥𝑑𝑖𝑚 ∙ 𝑛𝛼 POD evaluations of the IROMs. Note that

77

generally, once a CFD analysis, ROM construction, or IROM interpolation has been

evaluated, it is stored and does not need to be performed again.

In this work, the CFD simulations were parallelized in two levels, a coarse-

grained parallelism of 𝑝 = 𝑛𝛼, and a fine-grained parallelism that was used to speed up

each respective simulation, reducing 𝑡𝐹𝑂𝑀. Generally, the cost of evaluating the

objectives and constraints was dominated by the cost of performing the full or reduced

order analysis.

For the ASO problem, the adaptive step was enabled. Thus, the time to evaluate

the objective and constraint functions at the target point is mainly just the cost of

performing the FOA. The cost of evaluating the gradients of both is then a function of

the number of stencil points, the IROM interpolations required, and the times to evaluate

either the FOM or the IROM at each stencil point. That is

𝑡𝐴𝑆𝑂,𝐹𝑂𝑀 = (𝑛𝑥𝑑𝑖𝑚 + 1)(𝑛𝛼𝑡𝐹𝑂𝑀/𝑝) (5.16)

𝑡𝐴𝑆𝑂,𝐼𝑅𝑂𝑀 = 𝑛𝛼𝑡𝐹𝑂𝑀/𝑝 + 𝑛𝑥𝑑𝑖𝑚(𝑡𝑒𝑣𝑎𝑙𝐼𝑅𝑂𝑀 + 𝑛𝛼𝑡𝑒𝑣𝑎𝑙𝑃𝑂𝐷) + 𝑡𝐼𝑅𝑂𝑀 (5.17)

5.4.2 TWO Problem

In the case of the TWO problem, evaluating the system objective depends on

performing the structural suboptimization. Although a general estimate of this time can

be developed through testing, it is not a fixed quantity and varies throughout the overall

optimization process. The suboptimization is also the dominant cost of evaluating the

objective and its gradients.

For this problem, the objective function was responsible for interpolating the

IROM models to replace the finite element analysis at each stencil design point. These
78

models were then passed to the suboptimization script. Also note that the adaptive step

was not enabled for this problem. Thus, given representative suboptimization times for

the full-order and IROM-based analyses, the system level objective and gradient cost is

essentially found as

𝑡𝑆𝑌𝑆,𝐹𝑂𝑀 = (𝑛𝑥𝑑𝑖𝑚 + 1)𝑡𝑆𝑈𝐵,𝐹𝑂𝑀 (5.18)

𝑡𝑆𝑌𝑆,𝐼𝑅𝑂𝑀 = 𝑡𝑆𝑈𝐵,𝐹𝑂𝑀 + 𝑛𝑥𝑑𝑖𝑚(𝑡𝑒𝑣𝑎𝑙𝐼𝑅𝑂𝑀 + 𝑡𝑆𝑈𝐵,𝐼𝑅𝑂𝑀) (5.19)

Since the suboptimization objective is a simple analytical expression, and the

suboptimization constraint function is evaluated simply with the FOM or IROM as

requested, the expected relation between 𝑡𝑆𝑈𝐵,𝐹𝑂𝑀 and 𝑡𝑆𝑈𝐵,𝐼𝑅𝑂𝑀 is given as

𝑡𝑒𝑣𝑎𝑙𝑃𝑂𝐷 𝑡𝑆𝑈𝐵,𝐼𝑅𝑂𝑀 = () 𝑡𝑆𝑈𝐵,𝐹𝑂𝑀 (5.20)
𝑡𝐹𝑂𝑀

79

CHAPTER VI

RESULTS AND DISCUSSION

6.1 ASO Problem

The ASO problem was implemented in MATLAB, utilizing ANSYS ICEM-CFD

for grid generation and ANSYS Fluent for CFD analysis. Both the FOM and IROM

optimizations were performed via SQP under identical computational environments,

operating on a four-core workstation to manage the optimization and interpolation model;

two of these cores were used. A high performance massively parallel system, Raptor,

was for the CFD simulations. Each angle of attack was submitted as a separate job to the

cluster, each of which utilized twelve cores for fine-grained parallelism managed within

Fluent. Each optimization started with 0.5 for each weight.

Latin hypercube experimental designs were generated for the design space (airfoil

weights). Since the ROMs did not need to be evaluated at locations other than the

original snapshot angles of attack, no DOE was needed for the parameter space. The

DOE for the design space was selected based on maximin criteria. A 50-point design and

a 100-point design were compared prior to optimization to gauge the relative benefit of

increasing the DOE design size.

The initial solution and ROM databases were constructed according to the DOE

designs, an initial interpolation model for the IROMs built, and pre-optimization error

80

testing was performed. The 50-point DOE design was selected based on the results. The

FOM and IROM optimizations were then performed.

6.1.1 Interpolation Error

A set of ten random test points was used to evaluate the 50-point DOE design and

interpolation errors. The points along with their finite difference stencils were evaluated

using the FOM. A sanity check of the truncation error for each ROM yielded a

maximum NRMSD of 1.4E-12. Since the ROMs were not utilized at parameters other

than the snapshots, no ROM error was required. A stepsize of 0.0005 was selected

through a stepsize study. IROMs were also interpolated to each test point and its

associated stencil for use in the non-adaptive local error estimate.

For the adaptive local error, the reference interpolation model was stored

separately. A ROM was then constructed for each test point and used to update the

interpolation model before interpolating the IROMs for the stencil points. Each update

operated strictly with the original interpolation model plus the test point, to avoid the

influence of other test points. The 100-point design was also used to evaluate adaptive

local error in this fashion, to gauge the benefit of a larger DOE design.

6.1.1.1 Global Error

The global interpolation error is summarized in Table 6.1. The maximum

NRMSD was 0.00827, indicating a good overall fit throughout the design space. The

NMAX metric indicates the presence of outliers.

81

Table 6.2 ASO Local Error

ID

SPERR (non)
SPERR (adapt)
SPERR (100pt)

1

60.5%
9.2%
4.2%

2

61.9%
11.5%

7.3%

3

54.5%
9.2%

10.7%

4

55.0%
12.4%
10.6%

5

41.4%
4.3%
7.3%

6

66.2%
9.6%
7.3%

7

51.8%
7.9%

10.6%

8

52.1%
19.3%
13.5%

9

37.7%
14.0%
15.4%

10

47.7%
10.6%
13.6%

Table 6.1 ASO Global Error

ID 1 2 3 4 5 6 7 8 9 10

NRMSD 0.0041 0.0072 0.0003 0.0046 0.0036 0.0024 0.0041 0.0082 0.0082 0.0006
NMAX 17.35 7.95 217.50 15.34 18.64 28.02 15.25 8.54 9.84 11.01

6.1.1.2 Local Error

The non-adaptive and adaptive local errors are summarized in Table 6.2,

expressed as percentage spectral angle error.

In general, the non-adaptive errors were quite large, ranging from 68 - 119

degrees, or 37.7 - 66.2%. This reflects the sensitivity of the objective function to errors

in the aerodynamic coefficients, which were on the order of 1e-3.

The adaptive local error was also evaluated, for both the 50-point and 100-point

DOE designs. In the 50-point case, the local error ranged from 7 - 34 degrees, or 4.3 -

19.3%. While this error is relatively high, it is also greatly improved over the non-

adaptive case.

The mean adaptive local error for the 50-point design was 10.8%, while

increasing the size to 100-points only improved the mean error to 10.0%, while incurring

substantial additional computation time. Based on this, the 50-point error was deemed

sufficient. It was also of interest to examine how the optimization would perform with a

small error in the gradient.

82

6.1.2 Optimization Paths

The optimization paths and objective histories between the FOM and IROM

optimizations are compared in Figure 6.1 and Figure 6.2. The FOM run completed in 7

iterations, while the IROM run completed in 6. At the end of the last iteration, the

objective values were -41.49 for the FOM optimization, and -41.42 for the IROM

optimization. These represent 24.1% and 23.9% improvement over the original value of -

33.43.

1 2 3 4 5 6 7
-42

-40

-38

-36

-34

-32

Iterations

A
ve

ra
ge

 L
/D

Objective History

FOM
IROM

Figure 6.1 ASO Optimization Objective History

83

2 4 6
0

0.5

1
W

ei
gh

t
X

1

Iter
2 4 6

0

0.5

1

X
2

Iter
2 4 6

0

0.5

1

X
3

Iter
2 4 6

0

0.5

1

X
4

Iter

2 4 6
0

0.5

1

W
ei

gh
t

X
5

Iter
2 4 6

0

0.5

1

X
6

Iter
2 4 6

0

0.5

1

X
7

Iter
2 4 6

0

0.5

1

Iter

X
8

FOM
IROM

Figure 6.2 ASO Optimization Path

6.1.3 Function Calls

One of the ways to evaluate the computational cost of solution procedures for

different problem (i.e., analysis functions) is to compare the number of function calls. In

this case, the primary functions of interest are the number of objective and constraint

evaluations, the number of FOM evaluations, and the number of IROM interpolations.

The objective and constraint functions may be requested with or without gradients, and

the interpolation function may or may not require an update for the adaptive step; the

number of calls requiring these specific steps is also noted. Since the number of

optimization iterations is difficult to predict a priori, the total counts for each

optimization, as well as the average counts per optimization iteration, are reported in

Table 6.3.

84

Function Total (FOM) Total (IROM) Avg/It (FOM) Avg/It (IROM)

Objective
(w/ Gradient)

Constraints
(w/ Gradients)

Full Order Analysis
IROM Interpolation

(w/Model Update)

154 183
80 94
80 94
80 94

675 90
0 720
0 90

22.0 (154/7) 30.5 (183/6)
11.4 (80/7) 15.6 (94/6)
11.4 (80/7) 15.6 (94/6)
11.4 (80/7) 15.6 (94/6)

96.4 (675/7) 15.0 (90/6)
0.0 120.0 (720/6)
0.0 15.0 (90/6)

Table 6.3 ASO Function Calls

6.1.4 CPU and Wallclock Times

A more explicit metric for computational cost is a direct measure of both CPU

and wallclock time required by the various optimization components. For these

calculations, parallelism must be considered. For these problems, the FOM evaluated

each parameter value in an independent simulation, each of which utilized twelve cores

on a computing cluster. Stencil points were also evaluated in parallel for the IROM

optimization, but in serial for the FOM optimization due to license limitations for the

fluid solver. When updating the interpolation model, the elements of 𝑌𝑏𝑖𝑎𝑠 and the

outputs are modeled independently; these models were also constructed in parallel.

Finally, RBF cross-validation was performed in parallel with two cores whenever the

model construction was not within another level of parallelism. Some times are

estimated due to inherent variability, such as simulation time, or unpredictable delays,

such as cluster queue wait time. These times are summarized in Table 6.4. Note that

these are representative times based on the optimization logs; some minor variability is

expected, and some discrepancy due to the timing of log printouts may exist. CPU time

for components utilizing computational clusters are estimated based on the wallclock

85

Component Total CPU Time Parallelism Wallclock Time
(s) (Coarse / Fine) (s)

Full Order Analysis
RBF Construction (3 kernels, 50 pts)
IROM Interpolation (total, w/ update)

𝑌𝑏𝑖𝑎𝑠 Models

�̃� Models
Stencil Evaluation Only (FOM)
Stencil Evaluation Only (IROM)

~8,640
6

~5876

~339
~4,380

~69,120
~1,176

4 / 12 ~180
2 ~3

̃)3 (𝑌𝑏𝑖𝑎𝑠), 12 (𝑌 649

3 113
12 365

1 / 12 ~1140
8 147

time and parallelism, since the recorded CPU time is not reflective of the cluster's

workload.

To interpret these times, consider total CPU time to be reflective of the cost of the

operation; wallclock time is then illustrative of real world cost which takes advantage of

parallelism, to the indicated extent. Also note that the FOM optimization was running for

approximately 107.9 hours, while the IROM optimization ran for approximately 71.4

hours. This results in average wallclock time per iteration of 15.4 hours and 11.9 hours

for the FOM and IROM optimizations, respectively.

Table 6.4 ASO CPU and Wallclock Times

6.1.5 Discussion

From the optimization runs and the plots in Figure 6.1 and Figure 6.2, it is

possible to make a few observations. First, it is clear that the optimization path taken by

the IROM optimization differs from that taken by the FOM case. This is likely due to the

~10% mean error in the interpolated gradient calculations. The impact of this error, and

of the alternative path, is expected to be highly problem dependent. For this case, it

appears from the objective history that the impact is minimal, resulting in approximately

86

the same improvement and convergence rate. Note that since the objective values are the

results of FOAs, the error lies mainly in the search direction.

The purpose of dealing with the errors, of course, is the computational advantage.

Even for the relatively inexpensive CFD analysis used in this problem, the IROM

optimization achieved a comparable degree of progress in about 67% of the total

wallclock time of the FOM optimization. It is also clear from the function counts that far

fewer FOAs are required for the IROM case, approximately 13.3% (20.7% if including

the offline DOE calculations). This is the case even though the average evaluations per

iteration suggest that the line searches were somewhat longer in the IROM optimization.

With an expensive FOA, this suggests the potential for significant speedup.

The CPU times provide further support for this potential, illustrating that the

IROM update and interpolation costs are moderate with respect to the FOA. However, it

should also be noted that the costs of constructing IROMs and updating the interpolation

model are dependent on the dimensionality of the parameter and snapshot spaces, and

thus the real world cost would likely be a strong function of the ability to parallelize the

process. For an ideal speedup, the choice of reduced system that the IROM will

interpolate should be made carefully.

There are a few caveats to note. Like most surrogate model schemes, this scheme

requires an initial offline computation of an experimental design. Associated with this

are DOE size studies, stepsize studies, and initial error estimates to evaluate candidate

designs. In some cases this setup could become expensive, and should be considered

when determining the speedup advantages versus a more standard optimization approach.

87

The sensitivity of the objective and constraint gradient error to the analysis outputs is also

problem-dependent, and may determine a minimum level of accuracy.

6.2 TWO Problem

The TWO problem was also implemented in MATLAB, by modifying the

analysis and problem portions of the ASO code. MSC/NASTRAN was used as the

analysis code that the ROMs replaced. A 50-point Latin Hypercube design was

generated for both the design and parameter spaces, selected via maximin criteria. Due to

technical challenges, automatic cluster submission was not available for this problem.

Thus, all test optimizations were performed on local workstations, with equal numbers of

processors allocated to each job.

This problem is structured as a two-level multidisciplinary problem, involving

interaction between a system level problem, with design variables of airfoil thickness and

wing aspect ratio, and a sublevel problem, with design variables of wall thicknesses for

the wing structural elements. The system level problem is responsible for the

aerodynamic analysis and range calculations, while the sublevel problem is responsible

for determining the optimal wing weight according to material limits, buckling

constraints, and tip deflection limits, which must be satisfied under two loading

conditions equivalent to -1.5g and +3.5g.

The primary coupling between the problem levels consists of the system level

𝑡 passing the wing geometric parameters () and 𝐴𝑅 to the sublevel, which determines and
𝑐

returns the optimal wing weight, 𝑊𝑜𝑝𝑡. The code is structured to allow iteration between

the aerodynamic and structural solvers to determine the convergent root angle of attack;

88

however, in this work, this iteration is omitted due to time considerations. Thus, the

problem analysis is that of a rigid wing. The reference implementation also makes this

change, noting that the actual wing could be built to a jig shape to offset deformation due

to aerodynamics.

The main emphasis for the TWO problem is on examining the IROM scheme's

capability to operate in a multidisciplinary context. In that environment, the IROM

would replace one of the disciplinary analyses involved in a larger multidisciplinary

analysis. In this case, the IROM must interact with other analyses as a more traditional

surrogate, albeit one constructed without relying on additional full-order data. In the

TWO problem, this is represented by the suboptimization being performed entirely with

either with the FOM or the IROM.

The TWO problem is dominated by the dynamics of the structural

suboptimization, in terms of accuracy as well as computational cost. Additionally, the

suboptimization problem is a highly challenging problem for gradient-based

optimization, with numerous local minima. The original reference work uses particle

swarm optimization for the subproblem, noting difficulties for gradient-based methods.

The initial test run for the TWO problem used the reference wing as a starting

point. Subsequently, and based on the results of each previous test, additional test points

were selected and examined. The optimization tolerances, which impact stopping

conditions based on optimality criteria, changes in the design variables, and violations of

constraints, were adjusted with each successive test point based on the optimization

behavior observed. The data quantity and quality were also improved with each revision

89

ID 1 2 3 4 5 6 7 8 9 10

NRMSD 0.1650 0.0038 0.2722 0.4372 0.2635 0.0932 0.1807 1.2155 0.0184 0.4376
NMAX 1.2781 1.2982 1.2815 1.2715 1.2831 1.2689 1.2759 1.2711 1.2938 1.2772

in order to deepen the investigation into the behavior of the IROM scheme and the

optimizations.

6.2.1 Interpolation Error

A set of ten random test points was used to evaluate DOE design and interpolation

errors. The points along with their finite difference stencils were evaluated using the

FOM. A sanity check of the truncation error for each ROM yielded a maximum NRMSD

of 5.0E-16 for the first load case, and 6.0E-16 for the second.

The error for each ROM was estimated through a set of 10 random test points in

the parameter (thickness) space. The mean ROM NRMSD error was 0.09227 for both

load cases, and the median NRMSD error was 0.0892. Differences between the load

cases began in the eighth or ninth decimal place.

A stepsize of 0.001 was selected through a preliminary stepsize study. IROMs

were also interpolated to each test point and its associated stencil for use in the non-

adaptive local error estimate.

6.2.1.1 Global Error

The global error estimate is summarized in Table 6.5 for the first load case (-1.5g)

and Table 6.6 for the second load case (+3.5g). The values are plotted in Figure 6.3.

Table 6.5 TWO Global Error for Load Case 1

90

N
R

M
SD

 E
rr

o
r

1.4

1.2

1

0.8

0.6

0.4

0.2

0

0 2 4 6 8 10

Test Point

Figure 6.3 TWO Global Error

ID 1 2 3 4 5 6 7 8 9 10
NRMSD 0.1650 0.0038 0.2722 0.4372 0.2635 0.0932 0.1807 1.2155 0.0184 0.4376
NMAX 1.2781 1.2983 1.2815 1.2715 1.2831 1.2689 1.2759 1.2711 1.2838 1.2772

ID 1 2 3 4 5 6 7 8 9

SPERR (%) 73.42 34.51 19.08 93.12 19.63 43.09 38.98 70.30 72.30 43.76

10

Table 6.6 TWO Global Error for Load Case 2

There was very little variation between the load cases, with differences occurring

in the fifth or sixth decimal place. For both load cases, the mean global error for was

0.3087, and the median error was 0.2221. There was also a significant outlier of 1.2155.

6.2.1.2 Local Error

The non-adaptive local error is summarized in Table 6.7. The mean spectral error

was 50.81%, while the median was 43.42% error. Due to limited computational

resources, the adaptive step was not tested for this problem.

Table 6.7 TWO Local Error

91

6.2.2 Test Point 1

The first test optimization began from the reference airfoil, with a airfoil thickness

of 12.00% and an aspect ratio of 6.8751.

6.2.2.1 Optimization Paths

The optimization for the FOM case completed in 2 iterations and the IROM case

completed in 4 iterations. The paths (up to 2 iterations) were nearly identical to within

reporting accuracy. The path is represented in Figure 6.4 and Figure 6.5.

0.08
0.1

0.12
0.14

5

10

15

8.5

9

9.5

10

10.5

x 10
6

Airfoil Thickness (t/c)

Optimization Path

Aspect Ratio (AR)

R
an

ge
 (m

)

FOM
IROM

Figure 6.4 TWO Optimization Path (3D) , Test Point 1

92

0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15
4

5

6

7

8

9

10

11

12

13

14

15

Airfoil Thickness (t/c)

A
sp

ec
t R

at
io

 (A
R

)

Optimization Path

FOM
IROM

Figure 6.5 TWO Optimization Path (2D) , Test Point 1

The design variable histories, and the objective history, in terms of range, are

shown in Figure 6.6. The FOM optimum was found at 15% airfoil thickness and an

aspect ratio of 15.000. The final range for the FOM optimization was 9,596 km (5,181

nm), a 3.63% improvement over the original value of 9,260 km (5,000 nm). The IROM

optimum was found at 8% airfoil thickness and an aspect ratio of 7.3228. The IROM

optimum range was 11,358 km (6,133 nm), an improvement of 22.66%. An illustration

of the wing planforms for the respective optimums is given in Figure 6.7

93

1 1.5 2 2.5 3 3.5 4
0.9

0.95

1

1.05

1.1

1.15
x 10

7 Objective History

Number of Iterations

R
an

ge
 (m

)

FOM
IROM

1 1.5 2 2.5 3 3.5 4
0.08

0.1

0.12

0.14

0.16
Design Variable Histories

X
1: A

irf
oi

l T
hi

ck
ne

ss

1 1.5 2 2.5 3 3.5 4
5

10

15

X
2: A

sp
ec

t R
at

io
Number of Iterations

FOM
IROM

Figure 6.6 TWO Objective and Design Variable History, Test Point 1

0

2

4

6

8

10

0 10 20 30 40 50 60

Span (m)

Comparison of Optimal Wing Planforms

C
ho

rd
 (m

)

FOM
IROM

Figure 6.7 TWO Optimum Wing Planforms, Test Point 1

94

Function Total (FOM) Total (IROM) Avg/Obj (FOM) Avg/Obj (IROM)

Objective
(w/ Gradient)

Suboptimization
(w/ FOM)
(w/ IROM)
Subopt Objective
Subopt Constraints

(w/ FOM)
(w/ IROM)
(w/ Gradient)

Full Order Analysis
IROM Interpolation

4 14 1.0 1.0
2 4 0.5 0.3
8 22 2.0 1.6
8 14 2.0 1.0
0 8 0.0 0.6

36,054 120,754 9,013.5 8,625.3
970 3,417 242.5 244.1
970 2,184 242.5 156.0

0 1,233 0.0 88.1
970 3,417 242.5 244.1

36,498 77,166 9,124.5 5,511.9
0 16 0.0 1.1

6.2.2.2 Function Calls

The total number of function calls for this optimization are given in Table 6.8.

Table 6.8 TWO Function Calls, Test Point 1

6.2.3 Test Point 2

The second test point was randomly selected with an airfoil thickness of 12.43%

and an aspect ratio of 5.0729.

6.2.3.1 Optimization Paths

The optimization for the FOM case completed in 3 iterations and the IROM case

completed in 4 iterations. The paths (up to 2 iterations) were nearly identical to within

reporting accuracy. The path is represented in Figure 6.8 and Figure 6.9.

95

0.08
0.1

0.12
0.14

0.16

5

10

15
0.8

1

1.2

1.4

x 10
7

 1 1

t/c

3D Path

AR

R
an

ge
 (m

)

Figure 6.8 TWO Optimization Path (3D) , Test Point 2

0.08 0.1 0.12 0.14 0.16
4

5

6

7

8

9

10

11

12

13

14

15

 1 1

t/c

A
R

t/c vs AR

Figure 6.9 TWO Optimization Path (2D) , Test Point 2

The design variable histories and the objective history, in terms of range, are

shown in Figure 6.10. The FOM optimum was found at 8.00% airfoil thickness and an

aspect ratio of 15.0. The final range for the FOM optimization was 13,419 km (7,245

nm), a 44.90% improvement over the reference value of 9,260 km (5,000 nm). The
96

IROM optimum was found at 10.38% airfoil thickness and an aspect ratio of 8.6260. The

IROM optimum range was 11,042 km (5,962 nm), an improvement of 19.24% over the

reference value.

1 1.5 2 2.5 3 3.5 4
0.8

0.9

1

1.1

1.2

1.3

1.4
x 10

7 Range (m) History

Number of Iterations

R
an

ge
 (m

)

1 1.5 2 2.5 3 3.5 4
0.05

0.1

0.15

0.2
t/c History

t/c

Number of Iterations

1 1.5 2 2.5 3 3.5 4
5

10

15
AR History

A
R

Number of Iterations

Figure 6.10 TWO Design Variable and Objective Histories, Test Point 2

Figure 6.11 TWO Optimum Wing Planforms, Test Point 2

97

Function Total (FOM) Total (IROM) Avg/Obj (FOM) Avg/Obj (IROM)

Objective
(w/ Gradient)

Suboptimization
(w/ FOM)
(w/ IROM)
Subopt Objective
Subopt Constraints

(w/ FOM)
(w/ IROM)
(w/ Gradient)

Full Order Analysis
IROM Interpolation

5 34 1.0 1.0
3 4 0.6 0.1

11 42 2.2 1.2
11 34 2.2 1.0

0 8 0.0 0.2
70,019 218,893 14,003.8 6,438.0

2,042 6,262 408.4 184.1
2,042 4,880 408.4 143.5

0 1,382 0.0 40.6
2,042 6,262 408.4 184.1

70,852 170,202 14,170.4 5,005.9
0 16 0.0 0.4

6.2.3.2 Function Calls

Table 6.9 TWO Function Calls, Test Point 2

6.2.4 Test Point 3

The third test optimization began from a randomly selected test point, with an

airfoil thickness of 14.7% and an aspect ratio of 9.3391.

6.2.4.1 Optimization Paths

The optimization for the FOM case completed in 5 iterations and the IROM case

completed in 3 iterations. The path is represented in Figure 6.12 and Figure 6.13.

98

0.08
0.1

0.12
0.14

0.16

5

10

15
0.6

0.8

1

1.2

1.4

x 10
7

 1 1

t/c

3D Path

AR

 5

R
an

ge
 (m

)

Figure 6.12 TWO Optimization Path (3D) , Test Point 3

0.08 0.1 0.12 0.14 0.16
4

5

6

7

8

9

10

11

12

13

14

15

 1

 5

 1

t/c

A
R

t/c vs AR

Figure 6.13 TWO Optimization Path (2D) , Test Point 3

The design variable and objective histories are shown in Figure 6.14.

The FOM optimum was found at 8% airfoil thickness and an aspect ratio of 15.0.

The final range for the FOM optimization was 11,765 km (6,352 nm), a 27.05%

improvement over the reference value of 9,260 km (5,000 nm).

99

The IROM optimum was found at 8% airfoil thickness and an aspect ratio of 4.0.

The IROM optimum range was 8,004 km (4,321 nm), a decrease of 13.56% from the

reference value (and an increase of 5.05% over the starting value of 7,619 km, or 4,113

nm).

1 2 3 4 5
0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25
x 10

7 Range (m) History

Number of Iterations

R
an

ge
 (m

)

1 2 3 4 5
0.05

0.1

0.15

0.2
t/c History

t/c
Number of Iterations

1 2 3 4 5
0

5

10

15
AR History

A
R

Number of Iterations

Figure 6.14 TWO Design Variable and Objective Histories, Test Point 3

Figure 6.15 TWO Optimum Wing Planforms, Test Point 3

100

Function Total (FOM) Total (IROM) Avg/Obj (FOM) Avg/Obj (IROM)

Objective
(w/ Gradient)

Suboptimization
(w/ FOM)
(w/ IROM)
Subopt Objective
Subopt Constraints

(w/ FOM)
(w/ IROM)
(w/ Gradient)

Full Order Analysis
IROM Interpolation

9 5 1.0 1.0
5 3 0.5 0.6

19 11 2.1 2.2
19 5 2.1 1.0

0 6 0.0 1.2
10,692 27,191 1,188.0 5,438.2

261 595 29.0 119.0
261 139 29.0 27.8

0 456 0.0 91.2
261 595 29.0 119.0

10,824 5,190 1,202.6 1,038.0
0 12 0.0 2.4

6.2.4.2 Function Calls

The total number of function calls for this optimization are given in Table 6.10.

Table 6.10 TWO Function Calls, Test Point 3

6.2.5 Revised Test Point 1

Information from the first three test points was used to revise the optimization

tolerances. Additionally, a more detailed stepsize study was performed. The revisions

were tested at the first test point (the reference wing).

6.2.5.1 Stepsize Study

A more detailed stepsize study was conducted at a design point of 8.89% airfoil

thickness and an aspect ratio of 14.0471. The resulting partial derivative for the objective

function with respect to the airfoil thickness can be seen in Figure 6.16, and the absolute

relative error of the IROM approach in Figure 6.17. Similarly, the partial derivative for

the objective function with respect to the aspect ratio can be seen in Figure 6.18, and a

plot of the absolute relative error in Figure 6.19.

101

10
-4

10
-3

10
-2

10
-1

10
0

10
7

10
8

10
9

10
10

df/dx
1
 vs Stepsize, X = (0.0889, 14.0471)

Stepsize

df
/d

x 1

FOM
IROM

Figure 6.16 Airfoil Thickness Stepsize Study

10
-4

10
-3

10
-2

10
-1

10
0

10
-3

10
-2

10
-1

10
0

10
1

10
2

Abs. Rel. Error of df/dx
1
 vs Stepsize, X = (0.0889, 14.0471)

Stepsize

A
bs

. R
el

. E
rro

r

Abs. Rel. Error
10% Error

Figure 6.17 Airfoil Thickness Stepsize Study Error

102

10
-5

10
0

-1

0

1

2

3

4

5
x 10

10

Stepsize

df
/d

x 2

df/dx
2
 vs. Stepsize

10
-2

10
-1

10
0

-1

0

1

2

3

4

5
x 10

7

df
/d

x 2

Stepsize

df/dx
2
 vs. Stepsize (close-up)

FOM
IROM

Figure 6.18 Aspect Ratio Stepsize Study

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
-2

10
-1

10
0

10
1

10
2

10
3

Abs. Rel. Error of df/dx
2
 vs. Stepsize

A
bs

. R
el

. E
rro

r

Stepsize

Abs. Rel. Error
10% Error

Figure 6.19 Aspect Ratio Stepsize Study Error

103

Four additional points throughout the design space were selected, and smaller

stepsize studies conducted for the partial derivative with respect to aspect ratio. The

partial derivatives can be seen in Figure 6.20 and the errors are shown in Figure 6.21.

10
-2

10
-1

0
2
4
6
8

x 10
7 df/dx

2
 vs. Stepsize, X = (0.1282, 12.2300)

df
/d

x 2

10
-2

10
-1

-2

0

2

4

x 10
7

df
/d

x 2

df/dx
2
 vs. Stepsize, X = (0.0994, 10.0200)

10
-2

10
-1

0

2

4
x 10

7

df
/d

x 2

df/dx
2
 vs. Stepsize, X = (0.1326, 6.8060)

10
-2

10
-1

0

2

4
x 10

7

Stepsize

df
/d

x 2

df/dx
2
 vs. Stepsize, X = (0.901, 54970)

FOM
IROM

Figure 6.20 Aspect Ratio Stepsize Study (Additional Points)

104

10
-4

10
-3

10
-2

10
-1

10
0

10
-5

10
0

10
5 df2 error, X=[0.128212.23]

A
bs

. R
el

. E
rro

r

10
-4

10
-3

10
-2

10
-1

10
0

10
-2

10
0

10
2

df2 error, X=[0.099410.02]

A
bs

. R
el

. E
rro

r

10
-4

10
-3

10
-2

10
-1

10
0

10
-2

10
0

10
2 df2 error, X=[0.13266.806]

A
bs

. R
el

. E
rro

r

10
-4

10
-3

10
-2

10
-1

10
0

10
-5

10
0

10
5 df2 error, X=[.0901 5.497]

Stepsize

A
bs

. R
el

. E
rro

r

Abs. Rel. Error
10% Error

Figure 6.21 Aspect Ratio Stepsize Study Error (Additional Points)

As a result of this study, a stepsize of 0.01 was selected for the airfoil thickness

and 0.1 for the aspect ratio.

105

Table 6.11 TWO Local Error (Revised)

ID 1 2 3 4 5 6 7 8 9

SPERR (%) 6.39 97.12 2.34 3.02 1.77 76.10 0.21 3.74 - 0.25

10

6.2.5.2 Non-adaptive Local Error

The local error points were retested using the new stepsizes. Test point 9 did not

complete due to a technical error. The results are shown in Table 6.11.

6.2.5.3 Optimization Path

The optimization path for the revised first test point is shown in Figure 6.22. The

objective and design variable histories are show in Figure 6.23. The FOM reached an

optimum at 8% airfoil thickness and an aspect ratio of 15, while the IROM reached an

airfoil thickness of 8% and an aspect ratio of 6.0002. The FOM optimum had a range of

13,441 km (7,257 nm), while the IROM optimum had a range of 10,179 k m (5,496 nm).

0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15
4

6

8

10

12

14

Optimization Path

(t/c)

A
R

FOM
IROM

Figure 6.22 Optimization Path, Test Point 1 (Revised)

106

0 2 4 6
-1.35

-1.3

-1.25

-1.2

-1.15

-1.1

-1.05

-1

-0.95

-0.9
x 10

7 Objective History

f

Number of Iterations

0 2 4 6
0.08

0.1

0.12

0.14

Design Variable History (t/c)

Number of Iterations

(t/
c)

0 2 4 6
5

10

15
Design Variable History AR

Number of Iterations

A
R

FOM
IROM

Figure 6.23 Objective and Design Histories, Test Point 1 (Revised)

Additionally, for this run information on the gradient histories and the search

directions was retained. These histories are shown in Figure 6.24 and Figure 6.25,

respectively.

0 1 2 3 4 5 6
0

200

400

Gradient History, df/dx
1

Number of Iterations

df
/d

x 1

0 1 2 3 4 5 6
-50

0

50

Gradient History, df/dx
2

Number of Iterations

df
/d

x 2

FOM
IROM

Figure 6.24 Gradient History, Test Point 1 (Revised)

107

Function Total (FOM) Total (IROM) Avg/Obj (FOM) Avg/Obj (IROM)

Objective
(w/ Gradient)

Suboptimization
(w/ FOM)
(w/ IROM)
Subopt Objective
Subopt Constraints

(w/ FOM)
(w/ IROM)
(w/ Gradient)

Full Order Analysis
IROM Interpolation

13
7

18
18

0
65,914

1,669
1,669

0
1,669

66,727
0

11
4

16
8
8

47,611
1,222

568
654

1,222
21,064

16

1.00 1.00
0.53 0.36
1.38 1.45
1.38 0.72
0.00 0.72

5,070.30 4,328.27
128.38 111.09
128.38 51.63

0.00 59.45
128.38 111.09

5,132.84 1,914.90
0.00 1.45

0 1 2 3 4 5 6
-0.04

-0.02

0

Search Direction History, df/dx
1

Number of Iterations

df
/d

x 1

0 1 2 3 4 5 6
-5

0

5

Search Direction History, df/dx
2

Number of Iterations

df
/d

x 2

FOM
IROM

Figure 6.25 Search Direction History, Test Point 1 (Revised)

6.2.5.4 Function Counts

The total number of function calls for the revised first test point is given below in

Table 6.12.

Table 6.12 TWO Function Calls, Test Point 1 (Revised)

108

https://1,914.90
https://5,132.84
https://4,328.27
https://5,070.30

6.2.6 CPU and Wallclock Times

Summaries of the total CPU and wallclock times are given in Table 6.13.

Table 6.13 TWO CPU and Wallclock Times

Component Total CPU Time (s) Parallelism Wallclock (s)

Full Order Analysis ~11 1 ~11.0
RBF Construction (2 kernels, 50 pts) ~6.80 4 1.7
Suboptimization (FOM) ~45,440 4 ~11,360.0
Suboptimization (IROM) ~781 4 ~195.0
IROM Interpolation (no update) ~6,823 1 2,078.0

𝑌𝑏𝑖𝑎𝑠 Models ~0 4 ~0.0

�̃� Models ~6,326 4 1,581.0

Stencil Evaluation Only (FOM) 24,291 1 24,291.0
Stencil Evaluation Only (IROM) 7,360 1 7,360.0

6.2.7 Discussion

6.2.7.1 Preoptimization error

The initial error estimation for the 50-point Latin hypercube DOE design

exhibited moderate to high error. The global error had a mean of about 30%, and the

local error closer to 50%. Later examination of the test set indicated that the randomly

generated points were not well-distributed, favoring the lower aspect ratios. Due to

limited computational resources, the adaptive local error could not be explored in a

reasonable timeframe.

The revised stepsizes yielded greatly improved local error, with a mean of about

20%, and a median of 3.02%. It is also clear that there were outlier points with

significant error.

109

Based on this information, steps to improve the accuracy such as a new DOE

design, or incorporation of the adaptive step, would be advised. However, these steps

were not taken here due to time limitations.

6.2.7.2 IROM and SQP Implementation

Before discussing the test points, it is useful to overview MATLAB's

implementation of SQP and tolerances. MATLAB breaks its implementation into three

main stages: updating the Hessian approximation, solving the direction finding (QP)

subproblem, and performing a line search. The tolerances involve an optimality criterion,

TolFun, change in the design variables, TolX, and violation of the constraints, TolCon.

The Hessian approximation is maintained as the solver progresses, and updated at

each iteration. The general form for this update is

𝑇 𝑇 𝑞𝑘𝑞𝑘 𝑯𝑘𝑠𝑘𝑠𝑘
𝑇𝑯𝑘 𝑯𝑘+1 = 𝑯𝑘 + − (6.1)

𝑞𝑘
𝑇𝑠𝑘 𝑠𝑘

𝑇𝑯𝑘𝑠𝑘

where the Hessian approximation 𝑯 at iteration 𝑘 + 1 is based on an update from

the previous data. The update parameters are defined as

𝑠𝑘 = 𝑥𝑘+1 − 𝑥𝑘 (6.2)

and

𝑚 𝑚 𝑞𝑘 = [∇𝑓(𝑥𝑘+1) + ∑𝑖=1 𝜆𝑖∇𝑔𝑖(𝑥𝑘+1)] − [∇𝑓(𝑥𝑘) + ∑𝑖=1 𝜆𝑖∇𝑔𝑖(𝑥𝑘)] (6.3)

For this work, it is useful to be aware that the error in the Hessian approximation

will be affected by the error in the objective and constraint gradients; more specifically,

110

by the difference in error between iteration points. For the TWO system-level problem,

only the objective gradient has error introduced by the IROM method, since the only

constraints at the system level are the side bounds on the design variables.

The approximate Hessian and the linearized constraints are used to form a

quadratic programming subproblem, which is responsible for determining the search

direction. This problem has the general form

1min 𝑞(𝑑) = 𝑑𝑡𝑯𝑑 + 𝑐𝑇𝑑
2

over 𝑑

s.t. 𝐴𝑖𝑑 = 𝑏𝑖 𝑖 = 1:𝑚𝑒𝑞

𝐴𝑖𝑑 ≤ 𝑏𝑖 𝑖 = (𝑚𝑒𝑞 + 1):𝑚 (6.4)

That is, find the direction 𝑑 which decreases the objective function while

satisfying the (linearized) constraints. This problem is solved using an active set method,

where feasible QP search directions are defined by the set of active constraints.

For this work, it is important to note that error in the Hessian approximation with

naturally affect the results of this QP subproblem. Additionally, if gradients are used in

linearizing the constraints, gradient error will affect those as well. In this work, the

system constraint gradients (upper and lower bounds) are not affected by the IROM error.

After a suitable search direction has been found, the SQP algorithm proceeds with

a line search along that direction. This search procedure is not seeking to directly

minimize the objective function, but rather to minimize a merit function. This function

adds penalty parameters as multipliers for the constraints. The form of this merit

function is
111

𝑚𝑒𝑞 𝑚 𝜑(𝑥) = 𝑓(𝑥) + ∑
𝑖=1 𝑟𝑖𝑔𝑖(𝑥) + ∑𝑖=𝑚𝑒𝑞+1 𝑟𝑖 max{0, 𝑔𝑖(𝑥)} (6.5)

where the penalty parameter, 𝑟𝑖, is set iteratively as

(𝑟𝑘)𝑖+𝜆𝑖 𝑟𝑖 = (𝑟𝑘+1)𝑖 = max {𝜆𝑖, 2
} (6.6)

𝑖

More importantly, the initial estimate for 𝑟𝑖 is determined as

‖∇𝑓(𝑥)‖2𝑟𝑖 = (6.7)
‖∇𝑔𝑖(𝑥)‖2

which shows that gradient error will impact the initial merit estimate, as well as

subsequent updates to the merit function. For the TWO system-level problem, the

constraint gradients are computed directly by MATLAB and are constants; thus the error

in the initial penalty parameter calculation will be error in the magnitude of the objective

gradient, scaled by the appropriate factor. The propagation of this error through the

iterative updates may explain why the IROM line searches tend to take somewhat longer

than the FOM line searches.

MATLAB has several tolerance settings for use with the SQP-based optimizer.

The primary tolerances of concern here are change in design variables, TolX, the first

order optimality criterion, TolFun, and the constraint violation tolerance, TolCon.

TolX is used as a stopping condition; if the magnitude of change in design

variables is less than TolX, the optimization is stopped. It also has an effect on the line

search by determining some of the step sizes used, with larger tolerances allowing for

larger adjustments in step size.

112

TolFun is used to determine when the optimizer is no longer able to improve the

design by a meaningful amount. Instead of relying on the objective function directly, a

first order optimality criterion (FOOC) rooted in the augmented Lagrangian equation is

used. Additionally, in the solver implementation, side bounds, linear, and nonlinear

constraints are separated. The result is two criteria which are combined into the FOOC,

namely

𝑇 ∇𝑓(𝑥) + 𝐴𝑇𝜆𝑖𝑛,𝑙𝑖𝑛 + 𝐴𝑒𝑞𝜆𝑖𝑛,𝑒𝑞
‖∇𝑥𝐿(𝑥, 𝜆)‖∞ = ‖ ‖ (6.8)

+ ∑𝜆𝑖𝑛,𝑛𝑜𝑛∇𝑐𝑖(𝑥) + ∑𝜆𝑒𝑞,𝑛𝑜𝑛∇𝑐𝑒𝑞,𝑖(𝑥)
∞

where the subscripts 𝑖𝑛 and 𝑒𝑞 denote variables associated with inequality and

equality constraints, respectively, and 𝑙𝑖𝑛 and 𝑛𝑜𝑛 denote linear and nonlinear

constraints, respectively. The other criterion is given by

⌈|𝑙𝑖 − 𝑥𝑖|𝜆𝑙𝑜𝑤𝑒𝑟,𝑢⌉, ⌈|𝑥𝑖 − 𝑙𝑖|𝜆𝑢𝑝𝑝𝑒𝑟,𝑖⌉,
‖⌈𝜆𝑔𝑔(𝑥)⌉‖ = ‖ ‖ (6.9)

∞ ⌈|(𝐴𝑥 − 𝑏)𝑖|𝜆𝑖𝑛,𝑙𝑖𝑛,𝑖⌉, ⌈|𝑐𝑖(𝑥)|𝜆𝑖𝑛,𝑛𝑜𝑛,𝑖⌉ ∞

The maximum infinity norm of these criteria forms the combined optimality

criterion, the FOOC:

max {‖⌈𝜆𝑔𝑔(𝑥)⌉‖ , ‖∇𝑥𝐿(𝑥, 𝜆)‖∞} (6.10)
∞

For the IROM method, this means that errors in the objective and constraint

gradients can have a significant impact on the optimality criterion.

113

The constraint violation tolerance, TolCon, is largely a measure of the distance

between and design point and a constraint before the constraint is considered active or

violated. It has an impact both on the main SQP iterations and the QP subproblem.

From this it is clear that, as expected, the main impact the IROM scheme has on

the SQP scheme is due to the introduction of error into the gradient calculations. This is

particularly evident in the Hessian update and constraint linearizations (forming the basis

of the QP subproblem, and hence search direction determination), the line search merit

function, and the first order optimality criterion.

6.2.7.3 Test Point 1

The first optimization was performed starting from the reference wing

configuration. The FOM and IROM exhibit significantly different paths after the first

two iterations, with the FOM reaching a stopping condition at a corner of the design

space and the IROM continuing on. The FOM stoppage is largely due to the impact of

convergence tolerances, which were overly tight (1e-6) for this problem.

The IROM takes a different path due to high gradient error at the corner point,

which impacts the search direction as well as the convergence metrics used in MATLAB.

At the first two iterations, the finite difference stencils are identical. This allows the

comparison of both the computed range (objective function) at those stencil points as

well as the gradients. The range error at the initial point is 2.80% and 0.71% for each

stencil point, respectively. This results in a local error of 13.77%. However, at the

corner point, the range errors are 14.89% and 14.68%, resulting in a local error of

86.58%. Although the IROM ends up finding a better optimum than the FOM solution, it

is largely chance for this case.
114

As previously mentioned, the convergence tolerances were tight for this case, at

1e-6 for all tolerances; this resulted in an excessive number of objective constraints

during the line search, as well as affecting the stopping conditions for the optimization.

The subsequent test points each loosened the tolerances until an adequate balance was

determined.

The FOM optimization for this point was then rerun with the looser tolerances. In

this case, the FOM optimization finds an optimum at 8% airfoil thickness and an aspect

ratio of 15.0.

Although it was not a primary objective for this test problem, the function counts

for this case do indicate a significant reduction in the number of calls to the full order

analysis.

6.2.7.4 Test Point 2

The second test point was selected at random, and ended up somewhat close to

the reference wing. It also implemented somewhat looser tolerances, with most

constraints set to 1e-4 and the constraint tolerance (TolCon) for the suboptimization

problem set to 1e-6. The function counts indicate that there is still an excessive number

of evaluations during the line search, suggesting the system-level design point tolerance

(TolX) could be loosened.

The FOM optimization for this point finds a similar optimum to the first test point

with looser tolerances, ending at an airfoil thickness of 8% and an aspect ratio of 15.0.

The IROM path again follows the FOM path accurately from the initial point, although it

then diverges to an optimum with similar aspect ratio and greater airfoil thickness than

115

that found in the first optimization. A significant reduction in the number of full order

analysis calls is also shown.

6.2.7.5 Test Point 3

The third test point was another randomly selected starting point. The tolerances

were again loosened, to 1e-3 for most and 1e-4 for the suboptimization constraints

(TolCon). The FOM optimization again finds 8% airfoil thickness and an aspect ratio of

15.0 to be the optimum. For this point, the IROM exhibits a gradient error at the starting

point of 16.47%, leading to an incorrect search direction. A slight decrease in the number

of full order analysis calls is also observed.

For the third test point, higher quality data was collected about the system and

sublevel optimizations. Comparing the gradients and search directions for the system

problem, it appears that even with the interpolation model error, the partial derivative

𝑡 with respect to () is generally correct; however, the partial derivative with respect to 𝐴𝑅
𝑐

is often not. This is probably due to the choice of stepsize, which was selected as 0.001

for both variables. This is equivalent to a change of 0.1% airfoil thickness, but only

0.001 in aspect ratio. This change in 𝐴𝑅 is probably too small to escape the local noise

introduced by the interpolation error. A larger stepsize for 𝐴𝑅, such as 0.01 or even 0.1,

may provide better global trend information. This motivated the more detailed stepsize

study and revision of the first test point.

6.2.7.6 Test Point 1 (Revised)

The stepsize study indicates that the previous stepsize of 0.001 for both variables

yielded a high degree of inaccuracy. It can also be seen from the detailed views of the

116

objective function's partial derivative with respect to aspect ratio that the function is quite

noisy. Although the IROM and FOM derivatives do have a region of relative

convergence, this noise makes a good match quite difficult.

The revised stepsizes and optimization tolerances seem to have greatly improved

the results for the first test problem. From the optimization path, as well as the gradient

and search direction histories, it is clear that the IROM approximates the FOM path.

However, it then terminates prematurely at a low aspect ratio, while the FOM

optimization continues to the corner of the design space. This likely indicates that the

optimization tolerances require further adjustment.

6.2.7.7 General Test Point Discussion

In retrospect, the FOM optimums of 8% airfoil thickness and an aspect ratio of

15.0 is not overly surprising. Looking at the problem formulation, there is little benefit to

𝑡 having a larger (). It only adds weight and drag penalties, and the structural model is
𝑐

likely too simplistic to accurately capture the impact of airfoil thickness on structural

loading. Furthermore, the airfoil sampled in this problem is a simple NACA 0012 scaled

in thickness, and the wing is held fixed at a very low angle of attack (1.5 deg). A

minimum volume constraint, a higher fidelity finite element model, or a different airfoil

(such as one with camber) may improve this aspect of the problem.

Based on the FOM paths, especially comparing aspect ratio and range for the third

test point, there is an indication that the aspect ratio may be converging to a point beyond

the upper bound of 15.0. This is shown in Figure 6.26. Given the numerous

simplifications in this problem, especially as weights and buckling analysis are

117

concerned, this seems likely. Although this high aspect ratio is probably not the real-

world optimum for a wing of this type, it may reflect the optimum for the very simplified

problem formulation used here. To test this, an additional FOM run with the upper

bound on aspect ratio raised to 20 was performed. From the results in Figure 6.26, the

problem does indeed trend toward an optimum at an aspect ratio of approximately 19.

The IROM could not be compared, since extending the valid design space would entail

extending the DOE design and rebuilding the interpolation model.

5 10 15 20
0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35
x 10

7

AR

R
an

ge
 (m

)

AR vs Range

Figure 6.26 Aspect Ratio vs. Range, FOM Optimization, Test Point 3

There are only a few test points during the optimizations where the IROM

capability to serve as a surrogate is directly evaluated, namely where the FOM and IROM

optimizations evaluate gradients at the same design points. The local error test points

118

also provide information about this capability. The error in range (objective function) for

these points is a convenient metric, as it relies on the suboptimization for that point using

the FOM or IROM models. These are summarized in Table 6.14. In general, the

accuracy is fairly good, with a mean of 6.86% and a median of 4.65%. Although higher

accuracy is desirable for the gradient calculations, this data illustrates that the IROM can

serve as a viable surrogate model for part of a larger multidisciplinary system.

Table 6.14 Comparison of FOM/IROM Range Errors for Incidental Design Points

(𝑡⁄𝑐) 𝐴𝑅 𝑅𝐹𝑂𝑀 (m) 𝑅𝐼𝑅𝑂𝑀 (m) Abs. Rel Error

0.1210 6.8571 9,327,408 9,066,227 2.8%
0.1200 6.8581 9,164,899 9,099,163 0.7%
0.1510 15.0000 9,319,601 7,931,061 14.8%
0.1500 15.0010 9,353,585 7,980,037 14.6%
0.1253 5.0729 8,468,909 8,321,133 1.7%
0.1243 5.0739 8,494,590 8,344,325 1.7%
0.1480 9.3391 7,606,027 6,932,099 8.8%
0.1470 9.3401 7,619,787 7,245,046 4.9%
0.1470 5.7337 7,885,270 7,395,990 6.2%
0.1370 5.8337 7,363,334 7,590,154 3.0%
0.1534 14.6765 8,817,037 7,225,864 18.0%

0.1434 14.7765 8,822,910 7,746,912 12.1%
0.0989 14.5288 10,231,697 10,413,650 1.7%
0.0889 14.6288 11,897,543 11,067,975 6.9%
0.1539 9.3391 7,162,996 7,722,964 7.8%
0.1439 9.4391 7,308,198 8,061,679 10.3%
0.1343 12.8031 9,261,435 8,337,830 9.9%
0.1243 12.9031 8,963,434 8,867,045 1.0%
0.0968 5.5607 9,161,980 8,844,721 3.4%
0.0868 5.6607 9,520,005 9,256,519 2.7%
0.1095 8.6394 9,727,857 9,417,382 3.1%
0.0995 8.7394 10,131,166 9,829,401 2.9%
0.1283 14.0731 7,456,930 8,564,667 14.8%

0.1183 14.1731 10,425,793 8,740,012 16.1%
0.1575 14.5544 7,550,696 7,217,357 4.4%
0.1475 14.6544 8,894,204 8,526,536 4.1%

119

6.2.7.8 CPU/Wallclock Time

Although the TWO problem was not intended to demonstrate computational

speedup, representative times were still measured for the first test point run. It is clear

that the suboptimization time using an IROM is significantly faster than using the FOM.

The stencil evaluation indicates significant speedup for the evaluation itself, due

to the decreased suboptimization time; however, in this case, there are four IROM

interpolations per system objective gradient evaluations (two load cases times two design

variables). Each of these interpolations involves approximately 20,000 RBF models; thus

the CPU time for evaluating the objective gradient with IROM models is actually greater

than the FOM models for this problem, approximately 35,000 seconds for the IROM as

opposed to approximately 24,000 seconds for the FOM. However, it is important to note

that the base finite element analysis takes approximately 12 seconds of CPU time in this

problem; it is easy to see that with a more expensive analysis, the IROM speedup benefit

would improve significantly.

120

CHAPTER VII

CONCLUSIONS

7.1 Summary

A new method was developed for using reduced order models in lieu of high

fidelity analysis during the sensitivity analysis step. A combination of proper orthogonal

decomposition and radial basis functions was used to develop ROMs. Optimization with

the full-order and interpolated reduced-order models was performed on airfoil shape

optimization and transport wing optimization test problems. The errors associated with

the ROMs themselves as well as the gradients calculated from them were also compared.

The effects of each approach on the overall optimization paths and function counts were

also examined.

The ASO results illustrated that the proposed interpolation scheme is a viable

candidate for significantly reducing the computational cost of performing optimization

with expensive analyses. It also revealed several challenges and caveats involved with

applying the interpolation scheme.

The TWO results indicate that the IROM is capable of fitting into a

multidisciplinary analysis structure as a more traditional surrogate model. It also

indicates that accuracy remains a highly problem-dependent challenge.

121

7.2 Future Work

There is a great deal of future work which can be performed. For example,

investigating the impact of the interpolation process on the ROM approximation accuracy

would be useful for further investigating the replacement an analysis in a MDO context.

The impact of reduced basis sets in the POD models is also a subject for future

investigation. Given the natural benefits of this research work for MDO problems,

integrating the method into MDO frameworks may also be a productive research path.

122

REFERENCES

1 Jamshid A. Samareh, and Kumar G. Bhatia, “A Unified Approach to Modeling
Multidisciplinary Interactions,” 2000.

2 Dowell, E. H., Hall, K. C., Thomas, J. P., Kielb, R. E., Spiker, M. A., Li, A., and
Denegri, C. M., “Reduced order models in unsteady aerodynamic models,
aeroelasticity and molecular dynamics,” Proceedings of the 26th ICAS Congress,
Anchorage, Alaska, USA, 2008.

3 Acar, E., and Rais-Rohani, M., “Ensemble of metamodels with optimized weight
factors,” Structural and Multidisciplinary Optimization, vol. 37, Feb. 2008, pp.
279–294.

4 Antoulas, A. C., Sorensen, D. C., and Gugercin, S., “A survey of model reduction
methods for large-scale systems,” Structured matrices in mathematics, computer
science, and engineering: proceedings of an AMS-IMS-SIAM joint summer
research conference, University of Colorado, Boulder, June 27-July 1, 1999,
2001, p. 193.

5 Burges, C. J. C., “A Tutorial on Support Vector Machines for Pattern
Recognition,” Data Mining and Knowledge Discovery, vol. 2, 1998, pp. 121–167.

6 Friedman, J. H., “Multivariate Adaptive Regression Splines,” The Annals of
Statistics, vol. 19, Mar. 1991, pp. 1–67.

7 Giunta, A. A., Swiler, L. P., Brown, S. L., Eldred, M. S., Richards, M. D., and
Cyr, E. C., “The Surfpack Software Library for Surrogate Modeling of Sparse
Irregularly Spaced Multidimensional Data,” Portsmouth, Virginia: 2006.

8 Jin, R., Chen, W., and Simpson, T. W., “Comparative studies of metamodelling
techniques under multiple modelling criteria,” Structural and Multidisciplinary
Optimization, vol. 23, 2001, pp. 1–13.

9 Jones, D. R., “A Taxonomy of Global Optimization Methods Based on Response
Surfaces,” Journal of Global Optimization, vol. 21, 2001, pp. 345–383.

10 Mullur, A. A., and Messac, A., “Extended radial basis functions: more flexible
and effective metamodeling,” AIAA Journal, vol. 43, Jun. 2005, pp. 1306–1315.

123

11 Rumelhart, D. E., Widrow, B., and Lehr, M. A., “The Basic Ideas in Neural
Networks,” Communications of the ACM, vol. 37, Mar. 1994, pp. 86–92.

12 Qian, Z., Seepersad, C. C., Joseph, V. R., Allen, J. K., and Wu, C. F. J., “Building
Surrogate Models Based on Detailed and Approximate Simulations,” Journal of
Mechanical Design, vol. 128, Jul. 2006, pp. 668–697.

13 Richard, R. E., Rule, J. A., and Clark, R. L., “Genetic Spatial Optimization of
Active Elements on an Aeroelastic Delta Wing,” Journal of Vibration and
Acoustics, vol. 123, 2001, p. 466.

14 Simpson, T. W., Peplinski, J. D., Koch, P. N., and Allen, J. K., “Metamodels for
Computer-based Engineering Design: Survey and recommendations,”
Engineering with Computers, vol. 17, 2001, pp. 129–150.

15 Wang, G. G., and Shan, S., “Review of Metamodeling Techniques in Support of
Engineering Design Optimization,” Journal of Mechanical Design, vol. 129, Apr.
2007, pp. 370–380.

16 Zhou, Z., Ong, Y. S., Nair, P. B., Keane, A. J., and Lum, K. Y., “Combining
Global and Local Surrogate Models to Accelerate Evolutionary Optimization,”
2005.

17 Alexandrov, N. M., Lewis, R. M., Gumbert, C. R., Green, L. L., and Newman, P.
A., Optimization with Variable-fidelity Models Applied to Wing Design, 1999.

18 Booker, A. J., “Design and Analysis of Computer Experiments,” AIAA Journal,
1998, pp. 118–128.

19 Davis H. Crawford, Investigation of the flow over a spiked-nose hemisphere-
cylinder at a mach number of 6.8, 1959.

20 Culler, A. J., and McNamara, J. J., “Impact of Fluid-Thermal-Structural Coupling
on Response Prediction of Hypersonic Skin Panels,” AIAA Journal, vol. 49, Nov.
2011, pp. 2393–2406.

21 Deveikis, W. D., and Sawyer, J. W., NASA TN D-6281, National Aeronautics and
Space Administration, 1971.

22 Jack P. C. Kleijnen, “An overview of the design and analysis of simulation
experiments for sensitivity analysis,” European Journal of Operational Research,
2004.

23 Leary, S., Bhaskar, A., and Keane, A., “Optimal orthogonal-array-based latin
hypercubes,” Journal of Applied Statistics, vol. 30, 2003, pp. 585–598.

124

24 Liu, F., Cai, J., Zhu, Y., Tsai, H. M., and Wong, A. S. F., “Calculation of wing
flutter by a coupled fluid-structure method,” Journal of Aircraft, vol. 38, 2001,
pp. 334–342.

25 Joaquim R. R. A. Martins, Juan J. Alonso, and James J. Reuther, “Complete
configuration aero-structural optimization using a couple sensitivity analysis
method,” Proceedings of the 9th AIAA/ISSMO Symposium on Multidisciplinary
Analysis and Optimization, Atlanta, GA, USA: AIAA, 2002.

26 Mullur, A. A., and Messac, A., “Metamodeling using extended radial basis
functions: a comparative approach,” Engineering with Computers, vol. 21, 2006,
pp. 203–217.

27 Olds, J. R., “Multidisciplinary Design Techniques Applies to Conceptual
Aerospace Vehicle Design,” Dissertation, North Carolina State University, 1993.

28 Ong, Y. S., “Evolutionary Optimization of Computationally Expensive Problems
via Surrogate Modeling,” AIAA Journal, vol. 41, 2003, pp. 687–696.

29 Sacks, J., Welch, W. J., Mitchell, T. J., and Wynn, H. P., “Design and Analysis of
Computer Experiments,” Statistical Science, vol. 4, Nov. 1989, pp. 409–423.

30 Srivastava, A., Hacker, K., Lewis, K., and Simpson, T. W., “A method for using
legacy data for metamodel-based design of large-scale systems,” Structural and
Multidisciplinary Optimization, vol. 28, 2004, pp. 146–155.

31 Stanley, D. O., Unal, R., and Joyner, C. R., “Application of Taguchi Methods to
Propulsion System Optimization for SSTO Vehicles,” Journal of Spacecraft and
Rockets, vol. 29, Aug. 1992, pp. 453–459.

32 Tang, B., “Orthogonal Array-Based Latin Hypercubes,” Journal of the American
Statistical Association, vol. 88, Dec. 1993, pp. 1392– 1397.

33 Ye, K. Q., Li, W., and Adjianto, A., “Algorithmic construction of optimal
symmetric Latin Hypercube Designs,” Journal of Statistical Planning and
Inferences, vol. 90, 2000, pp. 145–159.

34 VisualDOC, Novi, MI, USA.: Vanderplaats Research & Development, Inc, 2013.

35 Matlab Optimization Toolbox, Natick, MA, USA: MathWorks, 2013.

36 A.R. Parkinson, and R.J. Balling, “The OptdesX design optimization software,”
Structural Multidisciplinary Optimization, vol. 23, 2002, pp. 127–139.

37 Cramer, E. J., Dennis Jr, J. E., Frank, P. D., Lewis, R. M., and Shubin, G. R.,
“Problem formulation for multidisciplinary optimization,” 1993.

125

38 Sobieszczanski-Sobieski, J., and Haft, R. T., “Multidisciplinary aerospace design
optimization: survey of recent developments,” Structural Optimization, vol. 14,
1997, pp. 1–23.

39 Jeremy Agte, Olivier de Weck, Jaroslaw Sobieszczanski-Sobieski, Paul Arendsen,
Alan Morris, and Martin Spieck, “MDO: assessment and direction for
advancement - an opinion of one international group,” Structural
Multidisciplinary Optimization, vol. 40, 2010, pp. 17–33.

40 Philippe Depince, Benoit Guedas, and Jerome Picard, “Multidisciplinary and
multiobjective optimization: comparison of several methods,” 7th World
Congress on Structural and Multidisciplinary Optimization, Seoul, Republic of
Korea: 2007.

41 Thomas A Zang, and Lawrence L. Green, “Multidisciplinary design optimization
techniques: implications and opportunities for fluid dynamics research,”
Proceedings of the 30th AIAA Fluid Dynamics Conference, Norfolk, VA, USA:
AIAA, 1999.

42 Terrance C. Wagner, and Panos Y. Papalambros, “A general framework for
decomposition analysis in optimal design,” DE, vol. 65-2, 1993.

43 Nestor Michelena, and Panos Papalambros, “A hypergraph framework for optimal
model-based decomposition of design problems,” Computational Optimization
and Applications, vol. 8, Sep. 1997, pp. 173–196.

44 R. Ganguli, “Optimum design of a helicopter rotor for low vibration using
aeroelastic analysis and response surface methods,” Journal of Sound and
Vibration, vol. 58, 2002, pp. 327–344.

45 Nikbay, M., Öncü, L., and Aysan, A., “Multidisciplinary Code Coupling for
Analysis and Optimization of Aeroelastic Systems,” Journal of Aircraft, vol. 46,
Nov. 2009, pp. 1938–1944.

46 Massimiliano Zingales, and Isaac Elishakoff, “Hybrid Aeroelastic Optimization
and Antioptimization,” AIAA journal, vol. 39, Jan. 2001, pp. 161–175.

47 Gasbarri, P., Chiwiacowsky, L. D., and de Campos Velho, H. F., “A hybrid
multilevel approach for aeroelastic optimization of composite wing-box,”
Structural and Multidisciplinary Optimization, vol. 39, 2009, pp. 607–624.

48 Martins, J., Alonso, J. J., and Reuther, J. J., “High-fidelity aerostructural design
optimization of a supersonic business jet,” Journal of Aircraft, vol. 41, 2004, pp.
523–530.

126

49 Sharon L Padula, Benjamin B James, Philip C Graves, and Stanley E Woodard,
Multidisciplinary optimization of controlled space structures with global
sensitivity equations, Hampton, VA, USA: NASA Langley Research Center,
1991.

50 Gumbert, C. R., Hou, G. J. W., and Newman, P. A., “Simultaneous aerodynamic
analysis and design optimization (SAADO) for a 3-D flexible wing,” AIAA Paper,
vol. 1107, 2001, p. 2001.

51 Bartholomew, P., “The Role of MDO Within Aerospace Design and Progress
Towards an MDO Capability,” AIAA Journal.

52 J.J. Korte, R.P. Weston, and T.A. Zang, “Multidisciplinary optimization methods
for preliminary design.”

53 H.C. Ajmera, P.M. Mujumdar, and K. Sudhakar, “MDO architectures for coupled
aerodynamic and structural optimization of a flexible wing,” Proceedings of the
45th AIAA/ASME/ASCE/ARS/ASC Structures, Structural Dynamics & Materials
Conference, Palm Springs, CA, USA: AIAA, 2004.

54 John K. Lytle, “The Numerical Propulsion System Simulation: A
Multidisciplinary Design System for Aerospace Vehicles,” Proceedings of the
14th International Symposium on Air Breathing Engines, Florence, Italy: NASA,
1999.

55 K.F. Hulme, and C.L. Bloebaum, “Development of CASCADE: a
multidisciplinary design test simulator,” AIAA, 1996.

56 Kevin F. Hulme, “Development of CASCADE - A Test Simulator for Modelling
Multidisciplinary Design Optimization Problems in Distributed Computing
Environments,” Masters Thesis, State University of New York at Buffalo, 1996.

57 K.F. Hulme, and C.L. Bloebaum, “Development of a simulation-based framework
for exploting new tools and techniques in multidisciplinary design optimization,”
1999.

58 Kevin F. Hulme, “The design of a simulation-based framework for the
development of solution approaches in multidisciplinary design optimization,”
Doctoral Thesis, State University of New York at Buffalo, 2000.

59 Sharon L. Padula, Natalia Alexandrov, and Lawrence L. Green, “MDO test suite
at NASA Langley research center,” Proceedings of the 6th AIAA/NASA/ISSMO
Symposium on Multidisciplinary Analysis and Optimization, Bellevue, WA, USA:
AIAA, 1996.

127

60 S. Parashar, K. English, and C.L. Bloebaum, “Data transmission in
multidisciplinary design optimization using a platform-independent data
structure,” Proceedings of the 42nd AIAA Aerospace Sciences Meeting and
Exhibit, Reno, NV, USA: AIAA, 2004.

61 Patrick A LeGresley, and Juan J Alonso, “Improving the performance of design
decomposition methods with POD,” Aug. 2004.

62 Rajan Filomeno Coelho, Piotr Breitkopf, and Catherine Knopf-Lenoir, “Model
reduction for multidisciplinary optimization - application to a 2D wing,”
Structural and Multidisciplinary Optimization, vol. 37, Apr. 2008, pp. 29–48.

63 G. Agrawal, S. Parashar, K.W. English, and C.L. Bloebaum, “Web-based
visualization framework for decision-making in multidisciplinary design
optimization,” ASME Journal of Computing and Information Science in
Engineering.

64 Arun N. Nambiar, “Data exchange in multi-disciplinary optimization
frameworks,” Masters of Science, Ohio University, 2004.

65 Donald R. Jones, Matthias Schonlau, and William J. Welch, “Efficient Global
Optimization of Expensive Black-Box Functions,” Journal of Global
Optimization, vol. 13, 1998, pp. 455–492.

66 J. Olds, “System Sensitivity Analysis Applied to the Conceptual Design of a
Dual-Fuel Rocket SSTO,” Proceedings of the 5th AIAA/NASA/USAF/ISSMO
Symposium on Multidisciplinary Analysis and Optimization, Panama City, FL,
USA: AIAA, 1994.

67 Joaquim R. R. A. Martins, “Sensitivity Analysis,” Multidisciplinary Design
Optimization.

68 J.L. Rogers, and C.L. Bloebaum, “Ordering design tasks based on coupling
strengths,” Proceedings of the Fifth AIAA/NASA/USAF/ISSMO Symposium on
Multidisciplinary Analysis and Optimization, Panama City, Florida, USA: AIAA,
1994.

69 James C. Newman III, Arthur C. Taylor lil, Richard W. Barnwell, Perry A.
Newman, and Gene J.-W. Hou, “Overview of Sensitivity Analysis and Shape
Optimization for Complex Aerodynamic Configurations,” Journal of Aircraft,
vol. 36, Jan. 1999, pp. 87–96.

70 Malone, B., and Mason, W. H., “Multidisciplinary Optimization in Aircraft
Design Using Analytic Technology Models,” Journal of Aircraft, vol. 32, Apr.
1995, pp. 431–438.

128

71 Maute, K., Nikbay, M., and Farhat, C., “Coupled analytical sensitivity analysis
and optimization of three-dimensional nonlinear aeroelastic systems,” AIAA
journal, vol. 39, 2001, pp. 2051–2061.

72 Pradeep Raj, “Aircraft design in the 21st century: implications for design
methods,” Nov. 1998.

73 Sulaiman F. Alyaqout, Panos Y. Papalambros, and A. Galip Ulsoy,
“Quantification and use of system coupling in decomposed design optimization
problems,” Proceedings of IMECE2005, Orlando, Florida, USA: ASME, 2005.

74 I. Kroo, “Distributed multidisciplinary design and collaborative optimization,”
Nov. 2004.

75 Tappeta, R. V., Nagendra, S., and Renaud, J. E., “A multidisciplinary design
optimization approach for high temperature aircraft engine components,”
Structural and Multidisciplinary Optimization, vol. 18, Oct. 1999, pp. 134–145.

76 Srinivas Kodiyalam, and Jaroslaw Sobieszczanski-Sobieski, “Bi-Level Integrated
System Synthesis with Response Surfaces,” Proceedings of the 40th
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials
Conference, St. Louis, MO, USA: AIAA, 1999.

77 Dapeng Wang, G. Gary Wang, and Greg F. Naterer, “Collaboration pursuing
method for MDO problems,” Proceedings of the 1st AIAA Multidisciplinary
Design Optimization Specialist Conference, Austin, TX, USA: AIAA, 2005.

78 Dapeng Wang, G. Gary Wang, and Greg F. Naterer, “Advancement of a
Collaboration Pursuing Method (CPM),” Proceedings of the 44th AIAA
Aerospace Sciences Meeting and Exhibit, Renu, NV, USA: AIAA, 2006.

79 Dapeng Wang, G. Gary Wang, and Greg. F. Naterer, “Collaboration Pursuing
Method for Multidisciplinary Design Optimization Problems,” AIAA Journal, vol.
45, May 2007.

80 Dapeng Wang, G. Gary Wang, and Greg F. Naterer, “Extended Collaboration
Pursuing Method for Solving Larger Multidisciplinary Design Optimization
Problems,” AIAA Journal, vol. 45, Jun. 2007.

81 Xiaoyu Gu, and John E. Renaud, “Implicit uncertainty propogation for robust
collaborative optimization,” Proceedigs of DETC’01, Pittsburgh, PA, USA:
ASME, 2001.

82 Harrison M. Kim, Wei Chan, and Margaret M. Wiecek, “Lagrangian
Coordination for Enhancing the Convergence of Analytical Target Cascading,”
AIAA Journal, vol. 44, Oct. 2006, pp. 2197–2207.

129

83 N.M. Alexandrov, and S. Kodiyalam, “Initial Results of an MDO Method
Evaluation Study,” Proceedings of the Seventh AIAA/USAF/NASA/ISSMO
Symposium on Multidisciplinary Analysis and Optimization, St. Louis, MO, USA:
AIAA, 1998.

84 Natalia M. Alexandrov, and Robert Michael Lewis, Comparative properties of
collaborative optimization and other approaches to MDO, ICASE, 1999.

85 Kamran Behdinan, Ruben E. Perez, and Hugh T. Liu, “Multidisciplinary design
optimization of aerospace systems,” Proceedings of the 10th AIAA/ISSMO
Multidisciplinary Analysis and Optimization Conference, Albany, NY, USA:
AIAA, 2004.

86 Srinivas Kodiyalam, Evaluation of Methods for Multidisciplinary Design
Optimization (MDO), Phase I, NASA, 1998.

87 Srinivas Kodiyalam, and Charles Yuan, Evaluation of Methods for
Multidisciplinary Design Optimization (MDO), Part II, NASA, 2000.

88 R.J. Balling, and J. Sobieszczanski-Sobieski, Optimization of coupled systems: a
critical overview of approaches, 1994.

89 Nathan Tedford, “Comparison of MDO Architectures within a Universal
Framework,” Masters of Applied Science, University of Toronto, 2006.

90 Andrea Salas, “Framework Activities at NASA LaRC under the HPCC Program,”
Aug. 1998.

91 Krammer, J., Sensburg, O., Vilsmeier, J., and Berchtold, G., “Concurrent
Engineering in Design of Aircraft Structures,” Journal of Aircraft, vol. 32, Apr.
1995.

92 Srinivas Kodiyalam, and Jaroslaw Sobieszczanski-Sobieski, “Multidisciplinary
design optimization - some formal methods, framework requirements, and
application to vehicle design,” International Journal of Vehicle Design, vol. 25,
2001, pp. 3–32.

93 H.G. Hoenlinger, J. Krammer, and M. Stettner, “MDO technology needs in
aeroelastic structural design,” Proceedings of the 7th AIAA/USAF/NASA/ISSMO
Symposium on Multidisciplinary Analysis and Optimization, St. Louis, MO, USA:
AIAA, 1998.

94 Masoud Rais-Rohani, A Framework for Preliminary Design of Aircraft Structures
Based on Process Information, Starkville, MS, USA: Mississippi State
University, 1998.

130

95 James C. Townsend, Andrea O. Salas, and M. Patricia Schuler, Configuration
Management of an Optimization Application in a Research Environment,
Hampton, VA, USA: NASA Langley Research Center, 1999.

96 Chapman, B., Mehrotra, P., Rosendale, J. V., and Zima, H., A Software
Architecture for Multidisciplinary Applications: Integrating Task and Data
Parallelism, 1994.

97 Vogels, M. E. S., Arendsen, P., Krol, R. J., Laban, M., and Pruis, G. W., From a
mono-disciplinary to a multi-disciplinary approach in aerospace: as seen from
information and communication technology perspective, Nationaal Lucht- en
Ruimtevaartlaboratorium (National Aerospace Laboratory), 1998.

98 Raj Sistla, Gus Dovi, and Phillip Su, “A Distributed, Heterogenous Computing
Environment for Multidisciplinary Design & Analysis of Aerospace Vehicles,”
Oct. 1999.

99 J.C. Townsend, J.A. Samareh, R.P. Weston, and W.E. Zorumski, Integration of a
CAD System Into an MDO Framework, Hampton, VA, USA: NASA Langley
Research Center, 1998.

100 R.P. Weston, J.C. Townsend, T.M. Eidson, and R.L. Gates, “A Distributed
Computing Environment for Multidisciplinary Design,” 1994.

101 E.H. Winer, M.K. Abdul-Jalil, and C.L. Bloebaum, “Development of a
geographic independent virtual design environment for large-scale design,” AIAA,
1998.

102 Stephen T. LeDoux, William W. Herling, Gasper J. Fatta, and Robert R. Ratcliff,
“MDOPT - A Multidisciplinary Design Optimization System Using Higher Order
Analysis Codes,” Proceedings of the 10th AIAA/ISSMO Multidisciplinary
Analysis and Optimization Conference, Albany, NY, USA: 2004.

103 S.L. Padula, J.J. Korte, H.J. Dunn, and A.O. Salas, Multidisciplinary Optimization
Branch Experience Using iSIGHT Software, Hampton, VA, USA: NASA Langley
Research Center, 1999.

104 Phoenix Integration, “Phoenix Integration - ModelCenter 9.0 - General,” Phoenix
Integration - ModelCenter 9.0 - General Available: http://www.phoenix-
int.com/software/phx_modelcenter.php.

105 SIMULIA, “SIMULIA > Products > iSIGHT,” SIMULIA > Products > iSIGHT
Available: http://www.simulia.com/products/isight.html.

106 “Esteco - Leader in engineering design optimization software, process integration
and multidisciplinary optimization with modeFRONTIER” Available:
http://www.esteco.com/.

131

http://www.esteco.com
http://www.simulia.com/products/isight.html
https://int.com/software/phx_modelcenter.php
http://www.phoenix

107 Altair, “Altair HyperStudy - Optimization of Design Performance & Robustness,”
Altair Available: http://www.altairhyperworks.com/Product,10,HyperStudy.aspx.

108 Sigma Technology, “‘Sigma Technology’. Novel Optimization Strategy - IOSO,”
“Sigma Technology”. Novel Optimization Strategy - IOSO Available:
http://www.iosotech.com/.

109 Audet, C., “A surrogate-model-based method for contrained optimization,” Long
Beach, CA: 2000.

110 Booker, A. J., Jr., J. E. D., Frank, P. ., Serafini, D. B., Torezon, V., and Trosset,
M. W., “A rigorous framework for optimization of expensive functions by
surrogates,” Structural Optimization, vol. 17, 1999, pp. 1–13.

111 J. Olds, “The suitability of selected multidisciplinary design and optimization
techniques to conceptual aerospace vehicle design,” Proceedings of the 4th
AIAA/USAF/NASA/OAI Symposium on Multidisciplinary Analysis and
Optimization, Cleveland, OH: AIAA, 1992.

112 Simpson, T. W., Mauery, T. M., Korte, J. J., and Mistree, F., “Comparison of
response surface and kriging models for multidisciplinary design optimization,”
AIAA paper 98, vol. 4758, 1998.

113 Tenne, Y., and Armfield, S. W., “A framework for memetic optimization using
variable global and local surrogate models,” Soft Computing, vol. 13, 2009, pp.
781–793.

114 Berkooz, G., Holmes, P., and Lumley, J. L., “The proper orthogonal
decomposition in the analysis of turbulent flows,” Annual review of fluid
mechanics, vol. 25, 1993, pp. 539–575.

115 LeGresley, “Application of proper orthogonal decomposition (POD) to design
decomposition methods.,” Dissertation, Stanford University, 2005.

116 LeGresley, P. A., and Alonso, J. J., “Investigation of non-linear projection for
POD based reduced order models for aerodynamics,” AIAA paper, vol. 926, 2001,
p. 2001.

117 Or, A. C., Speyer, J. L., and Kim, J., “Reduced Balancing Transformations for
Large Nonnormal State-Space Systems,” Journal of Guidance, Control, and
Dynamics, vol. 35, Jan. 2012, pp. 129–137.

118 Chaturantabut, and Sorensen, Discrete empirical interpolation for nonlinear
model reduction, Rice University, 2009.

132

http://www.iosotech.com
http://www.altairhyperworks.com/Product,10,HyperStudy.aspx

119 Manyu Xiao, Piotr Breitkopf, Rajan Filomeno Coelho, Catherine Knopf-Lenoir,
Maryan Sidorkiewicz, and Pierre Villon, “Model reduction by CPOD and
Kriging,” Structural and Multidisciplinary Optimization, vol. 41, Oct. 2009, pp.
555–574.

120 Xiao, M., Breitkopf, P., Filomeno Coelho, R., Knopf-Lenoir, C., and Villon, P.,
“Enhanced POD projection basis with application to shape optimization of car
engine intake port,” Structural and Multidisciplinary Optimization, vol. 46, Jan.
2012, pp. 129–136.

121 Carlberg, K., and Farhat, C., “A low-cost, goal-oriented ‘compact proper
orthogonal decomposition’basis for model reduction of static systems,”
International Journal for Numerical Methods in Engineering, vol. 86, 2011, pp.
381–402.

122 Hay, A., Borggaard, J., Akhtar, I., and Pelletier, D., “Reduced-order models for
parameter dependent geometries based on shape sensitivity analysis,” Journal of
Computational Physics, vol. 229, Feb. 2010, pp. 1327–1352.

123 S. Volkwein, “Model reduction using proper orthogonal decomposition.”

124 Newman, A. J., “Model reduction via the Karhunen-Loeve expansion Part I: An
exposition,” 1996.

125 Newman, A. J., “Model reduction via the Karhunen-Loeve expansion Part II:
Some elementary examples,” 1996.

126 Silva, “Application of nonlinear systems theory to transsonic unsteady
aerodynamic responses,” Journal of Aircraft, vol. 30, 1993, pp. 660–668.

127 Silva, “Extension of a nonlinear systems theory to general-frequency unsteady
transonic aerodynamic responses,” La Jolla, CA, USA: 1993.

128 Silva, “Discrete-time linear and nonlinear aerodynamic impulse responses for
efficient CFD analyses,” Dissertation, 1997.

129 Silva, W. A., Identification of linear and nonlinear aerodynamic impulse
responses using digital filter techniques, Citeseer, 1997.

130 Walter A. Silva, “Reduced order models based on linear and nonlinear
aerodynamic impulse responses,” Proceedings of the AIAA/ASE/ASCE/AHS/ASC
40th Structures, Structural Dynamics, and Materials Conference, St. Louis, MO,
USA: AIAA, 1999, p. 12.

131 Silva, W. A., and Bartels, R. E., “Development of reduced-order models for
aeroelastic analysis and flutter prediction using the CFL3Dv6. 0 code,” Journal of
fluids and structures, vol. 19, 2004, pp. 729–745.

133

132 Walter A. Silva, “Recent Enhancements to the Development of CFD-Based
Aeroelastic Reduced-Order Models,” Proceedings of the 48th
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials
Conference, Honolulu, Hawaii: AIAA, 2007.

133 Silva, W. A., “Simultaneous Excitation of Multiple-Input/Multiple-Output CFD-
Based Unsteady Aerodynamic Systems,” Journal of Aircraft, vol. 45, Jul. 2008,
pp. 1267–1274.

134 Falkowski, B. J., and Sasao, T., “Unified algorithm to generate Walsh functions in
four different orderings and its programmable hardware implementations,” IEE
Proceedings - Vision, Image, and Signal Processing, vol. 152, 2005, p. 819.

135 Adam Jirasek, and Russell M. Cummings, “Application of Volterra functions to
X-31 aircraft model motion,” San Antonio, TX, USA: 2009.

136 J. Leo Van Hemmen, Werner M. Kistler, and Erik G. F. Thomas, “Calculation of
Volterra kernels for solutions of nonlinear differential equations,” Society for
Industrial and Applied Mathematics, vol. 61, 2000, pp. 1–21.

137 Vandendorpe, A., “Model reduction of linear systems, an interpolation point of
view,” PhD thesis, 2004.

138 Lieu, T., Farhat, C., and Lesoinne, M., “Reduced-order fluid/structure modeling
of a complete aircraft configuration,” Computer Methods in Applied Mechanics
and Engineering, vol. 195, Aug. 2006, pp. 5730–5742.

139 Naets, F., Heirman, G., and Desmet, W., “Reduced-order-model interpolation for
use in global modal parameterization,” Proceedings of the International
Conference on Noise and Vibration Engineering, ISMA 2010, 2010, pp. 3021–
3032.

140 Fabio Vetrano, Christophe Le Garrec, Guy D.Mortchelewicz, and Roger Ohayon,
“Assessment of dtrategies for interpolating POD based reduced order model and
application to aeroelasticity,” vol. 2, 2012, pp. 85–104.

141 David Amsallem, and Charbel Farhat, “An interpolation method for adapting
reduced-order models and application to aeroelasticity,” AIAA Journal, vol. 46,
Jul. 2008, pp. 1803–1813.

142 Amsallem, D., Farhat, C., Cortial, J., and Carlberg, K. T., “A class of high-order
and multivariate interpolation methods for adapting recuded-order models to
continuous parameter changes,” Venice, Italy: 2008.

134

143 Amsallem, D., Cortial, J., Carlberg, K., and Farhat, C., “A method for
interpolating on manifolds structural dynamics reduced-order models,”
International Journal for Numerical Methods in Engineering, vol. 80, 2009, pp.
1241–1258.

144 Amsallem, D., Cortial, J., and Farhat, C., “Towards real-time computational-fluid-
dynamics-based aeroelastic computations using a database of reduced-order
information.,” AIAA Journal, vol. 48, 2010, pp. 2029–2037.

145 Joris Degroote, Jan Vierendeels, and Karen Willcox, “Interpolation among
reduced-order matrices to obtain parameterized models for design, optimization
and probabilistic analysis,” International Journal for Numerical Methods in
Fluids, vol. 63, 2010, pp. 207–230.

146 Michael Mifsud, “Reduced-order modelling for high-speed aerial weapon
aerodynamics,” Doctoral Thesis, Cranfield University, 2008.

147 Rajan Filomeno Coelho, Piotr Breitkopf, Catherine Knopf-Lenoir, and Pierre
Villon, “Bi-level model reduction for coupled problems,” Structural and
Multidisciplinary Optimization, vol. 39, Nov. 2008, pp. 401–418.

148 Weickum, G., Eldred, M. S., and Maute, K., “A multi-point reduced-order
modeling approach of transient structural dynamics with application to robust
design optimization,” Structural and Multidisciplinary Optimization, vol. 38, Sep.
2008, pp. 599–611.

149 Dewey H Hodges, and G. Alvin Pierce, Introduction to Structural Dynamics and
Aeroelasticity, 32 Avenue of the Americas, New York, NY 10013-2473, USA:
Cambridge University Press, 2002.

150 Raphael T. Haftka, and Zafer Gurdal, Elements of Structural Optimization,
Kluwer Academic Publishers, 1992.

151 Garret N. Vanderplaats, Multidiscipline Design Optimization, Vanderplaats
Research and Development, Inc, 2007.

152 Sobieszczanski-Sobieski, J., “Sensitivity of Complex, Internally Coupled
Systems,” AIAA Journal, vol. 28, Jan. 1990, pp. 153–160.

153 Richard L. Burden, and J. Douglas Faires, Numerical Analysis, Thomson
Brooks/Cole, 2005.

154 Charles Hirsch, Numerical Computation of Internal and External Flows:
Fundamentals of Computational Fluid Dynamics, Butterworth-Heinemann,
Elsevier, 2007.

135

155 Gilbert Strang, “MIT OpenCourseWare | Mathematics | 18.06 Linear Algebra,
Spring 2010 | Video Lectures | Lecture 29: Singular value decomposition,” 1999.

156 Lieu, “Adaption of reduced order models for applications in aeroelasticity,”
Dissertation, University of Colorodo at Boulder, 2004.

157 Garret N. Vanderplaats, and Raymond M. Hicks, “Numerical airfoil optimization
using a reduced number of design coordinates,” Jul. 1976.

158 John Garcelon, Vladimir Balabanov, and Jaroslaw Sobieski, “Multidisciplinary
optimization of a transport aircraft wing using visualDOC,” 40th Structures,
Structural Dynamics, and Materials Conference and Exhibit, American Institute
of Aeronautics and Astronautics, 1999.

159 Gerhard Venter, and Jaroslaw Sobieszczanski-Sobieski, “Multidisciplinary
Optimization of a Transport Aircraft Wing Using Particle Swarm Optimization,”
9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization,
American Institute of Aeronautics and Astronautics, 2002.

160 Venter, G., and Sobieszczanski-Sobieski, J., “Parallel Particle Swarm
Optimization Algorithm Accelerated by Asynchronous Evaluations,” Journal of
Aerospace Computing, Information, and Communication, vol. 3, Mar. 2006, pp.
123–137.

161 E. F. Bruhn, Analysis and Design of Flight Vehicle Structures, 9135 N. Meridian
Street, Suite B6, Indianapolis, IN 40260: S.R. Jacobs and Associates, Inc., 1973.

136

 DERIVATION OF ANALYTICAL DERIVATIVE TO RBF-BASED OBJECTIVE

APPROXIMATION

137

 𝑦(1𝑗) 𝑛𝑝 (1𝑗)
𝜑(1𝑗)(𝑟

(1𝑗)
= ∑ 𝜎 𝑖 (𝑋))

𝑖=1 𝑖

The objective to the ASO problem is given as:

1 𝑛𝛼 𝑗 𝑗
F(X⃑⃑) =

𝑛𝛼
∑𝑗=1 𝑐𝐿⁄𝑐𝐷 (A.1)

Note that 𝑐𝐿
𝑗 and 𝑐𝐷

𝑗 are results from a complex analysis, 𝒀(𝑋), covering 𝑗 = 1: 𝑛𝛼

angles of attack. We store the analysis results in a matrix, 𝒀, such that each column

represents results for an angle of attack, and the rows correspond to 𝑐𝐿, 𝑐𝐷and 𝑐𝑀. That

is:

𝑐𝐿
1 𝑐𝐿

2 ⋯ 𝑐𝐿
𝑛𝛼

1 2 𝑛𝛼 𝒀 = [𝑐𝐷 𝑐𝐷 ⋯ 𝑐𝐷] (A.2)
1 2 𝑛𝛼 𝑐𝑀 𝑐𝑀 ⋯ 𝑐𝑀

𝑗 This is just to say that we can refer to 𝑐𝐿
𝑗 as element 𝑦(1𝑗) and 𝑐𝐷 as element 𝑦(2𝑗).

This will avoid confusion between the aerodynamic coefficients and the RBF shape

parameter 𝑐, as well as reflecting a more general formulation. Thus we can write the

objective as:

1⃑⃑ 𝑛𝛼 𝑦(1𝑗) 𝑦(2𝑗) F(X) = ∑ ⁄ (A.3) 𝑗=1 𝑛𝛼

To approximate F, we use RBF models to approximate each element of 𝒀, thus:

1 𝑛𝛼 ̃(1𝑗) ̃(2𝑗) F̃(X⃑⃑) = ∑ 𝑦 ⁄𝑦 (A.4) 𝑗=1 𝑛𝛼

The approximation for 𝑦(1𝑗), and similarly for 𝑦(2𝑗), is given as:

(A.5)

138

 ̃(1𝑗)𝛿𝑦

𝛿𝑋𝑑
=

(1𝑗)
𝑛𝑝 (1𝑗) 𝛿𝜑(1𝑗) 𝛿𝑟𝑖 ∑ 𝜎
𝑖=1 𝑖 𝛿𝑟 𝛿𝑋𝑑

 ̃(1𝑗)𝛿𝑦

𝛿𝑋𝑑
= 𝛿 𝑛𝑝 (1𝑗)

𝜑(1𝑗)(𝑟
(1𝑗)∑ 𝜎 (𝑋))

𝛿𝑋𝑑 𝑖=1 𝑖 𝑖

 𝛿�̃�

𝛿𝑋𝑑
= ̃(1𝑗)1 𝑛𝛼 𝛿𝑦 1

− ∑𝑗=1 𝑛𝛼 𝛿𝑋𝑑 (�̃�(2𝑗)(�⃑�))
+ ̃(2𝑗) ̃(1𝑗)(𝑋𝛿𝑦 𝑦 ⃑)

()
𝛿𝑋𝑑 (�̃�(2𝑗)(�⃑�))2

 𝛿�̃�

𝛿𝑋𝑑
= 𝛿 1 𝑛𝛼 ̃(1𝑗)(𝑋) ∙ ̃(2𝑗)(𝑋))−1][− ∑ 𝑦 (𝑦𝑗=1 𝛿𝑋𝑑 𝑛𝛼

𝜑𝐹𝐿𝐼𝑁(𝑟) ≡ 𝑐𝑟

φ(1𝑗) ∈ { 𝜑𝑀𝑄(𝑟) ≡ √1 + 𝑐𝑟2

𝜑𝐼𝑀𝑄(𝑟) ≡ 1⁄√1 + 𝑐𝑟2

Here, 𝜎(1𝑗) are the model coefficients, and 𝑛𝑝 is the number of sample points used 𝑖

(1𝑗) to construct the model, which in this case is identical for all the ROMs. 𝜑(1𝑗) and 𝑟𝑖

are given by:

(A.6)

2(1𝑗) 𝑚 𝑖)𝑟𝑖 (𝑋) = √∑ (𝑋𝑘 − 𝑋𝑘 (A.7) 𝑘=1

𝑖 𝑖 Where 𝑚 = dim(𝑋). We will let 𝜉𝑘 denote 𝑋𝑘 − 𝑋𝑘 for simplicity of notation.

We can derive (4) with respect to 𝑋𝑑 as:

(A.8)

Which, by the product rule:

(A.9)

The first partial is given by:

(A.10)

Which by the chain rule gives:

(A.11)

̃(2𝑗)

The second partial, 𝛿𝑦
, is given similarly to (10). The latter partial is

𝛿𝑋𝑑

straightforward, given by:

139

𝑖 1 𝑛𝑝 (1𝑗) 𝛿𝜑(1𝑗) 𝜉𝑑 ()∑ [𝜎𝑖 ()()] +
(�̃�(2𝑗)(�⃑�)) 𝑖=1 𝛿𝑟 2𝑚 𝑖)√∑̃ 𝑘=1(𝜉𝑘

= − ∑𝑛𝛼 𝛿𝐹 1
𝑗=1 𝛿𝑋𝑑 𝑛𝛼

̃(1𝑗)(𝑋 𝛿𝜑(2𝑗) 𝑖 𝑦 ⃑) 𝑛𝑝 (2𝑗) 𝜉𝑑()∑ [𝜎 ()()]
(�̃�(2𝑗)(�⃑�))2 𝑖=1 𝑖 𝛿𝑟 2

√∑𝑚 𝑖)[𝑘=1(𝜉𝑘]

𝛿𝜑𝐹𝐿𝐼𝑁 = 𝑐
𝛿𝑟

𝛿𝜑𝑀𝑄 𝑐𝑟
=

𝛿𝑟 √1+𝑐𝑟2

𝛿𝜑𝐼𝑀𝑄 𝑐𝑟 = −
𝛿𝑟 (1+𝑐𝑟2)3⁄2

𝑖 2 2𝛿𝑟𝑖 𝛿 𝑚 𝑖) 𝑖) 𝜉𝑑 = √∑ (𝜉𝑘 + (𝜉𝑑 = (A.12) 𝑘=1 𝛿𝑋𝑑 𝛿𝑋𝑑 2 2𝑘≠𝑑 𝑚 𝑖) 𝑖)√∑𝑘=1(𝜉𝑘 + (𝜉𝑑
𝑘≠𝑑

Where we are separating the terms held constant during the partial derivation for

clarity. The first partial of the right hand side of (10) may take different forms depending

on which kernel function was selected as the best fit for the particular ROM, and this may

not match between different elements of 𝒀. For each included kernel function, the

relevant partials are given by:

(A.13)

(A.14)

(A.15)

Putting this all together, the overall sensitivity is given by:

(A.16)

140

This analytical derivative is evaluated for the ASO problem by using the

following MATLAB code:

% Analytical Derivative for ASO Objective using IROM models

function [dF] = drbf(IROM,X)

load param.mat Param

dF = zeros(1,size(IROM.ROMC(1,1).ROM.X,2));

for d=1:size(IROM.ROMC(1,1).ROM.X,2) %m

 sns = 0;

 for j=1:size(IROM.ROMC,2) %ns

 snp = 0;

 y1ja = eval_rom(IROM.ROMC(1,j).ROM,X);

 y2ja = eval_rom(IROM.ROMC(2,j).ROM,X);

 c1j = IROM.ROMC(1,j).ROM.c;

 c2j = IROM.ROMC(2,j).ROM.c;

 for i=1:size(IROM.ROMC(1,j).ROM.X,1) %np

 s1ji = IROM.ROMC(1,j).ROM.sig(i);

 s2ji = IROM.ROMC(2,j).ROM.sig(i);

 r1 = norm(X-IROM.ROMC(1,j).ROM.X(i,:),2);

 r2 = norm(X-IROM.ROMC(2,j).ROM.X(i,:),2);

 rd1 = X(d)-IROM.ROMC(1,j).ROM.X(i,d);

 rd2 = X(d)-IROM.ROMC(2,j).ROM.X(i,d);

 % Adjust dphi/dr for the ROM-specific kernel

 if(strcmp(IROM.ROMC(1,j).ROM.phiname, 'FLIN')==1)

 d1 = c1j;

 elseif(strcmp(IROM.ROMC(1,j).ROM.phiname, 'MQ')==1)

 d1 = (c1j*r1)/sqrt(1+c1j*r1*r1);

 elseif(strcmp(IROM.ROMC(1,j).ROM.phiname, 'IMQ')==1)

 d1 = (-c1j*r1)/((1+c1j*r1*r1)^1.5);

 else

 error('ROM(1,%d) kernel function is not recognized',j);

 end

 if(strcmp(IROM.ROMC(2,j).ROM.phiname, 'FLIN')==1)

 d2 = c2j;

 elseif(strcmp(IROM.ROMC(2,j).ROM.phiname, 'MQ')==1)

 d2 = (c2j*r2)/sqrt(1+c2j*r2*r2);

 elseif(strcmp(IROM.ROMC(2,j).ROM.phiname, 'IMQ')==1)

 d2 = (-c2j*r2)/((1+c2j*r2*r2)^1.5);

 else

 error('ROM(2,%d) kernel function is not recognized',j);

 end

 xd1 = X(d)*ones(size(IROM.ROMC(1,j).ROM.X,1),1);

 xd2 = X(d)*ones(size(IROM.ROMC(2,j).ROM.X,1),1);

 d3 = rd1/sqrt(dot(xd1-IROM.ROMC(1,j).ROM.X(:,d),xd1-

IROM.ROMC(1,j).ROM.X(:,d)));

 d4 = rd2/sqrt(dot(xd2-IROM.ROMC(2,j).ROM.X(:,d),xd2-

IROM.ROMC(2,j).ROM.X(:,d)));

 snp = snp + (1/y2ja)*(s1ji)*(d1)*(d3) + (-

y1ja/(y2ja*y2ja))*(s2ji)*(d2)*(d4);

 end %i

 sns = sns + snp;

 end %j

 dF(d) = (-1/size(IROM.ROMC,2))*sns;

end %d

141

 POD BASED ROM (MATLAB CODE)

142

B.1 Construction

%%%

%%%%

% Construct a POD-based ROM object

% Jeff Parrish

% Mississipi State University

%

% Standard POD formulation with options for biasing and normalizing

inputs

% of the system of interest. Outputs are always normalized. Flags are

0 or 1.

%

% Inputs:

% X is row-ordered parameter vectors of snapshots

% Y is column-ordered snapshots

% k is the POD model order

% P is the global parameter structure, optionally passed as a direct

copy

%

% Outputs:

% ROM is a structure with the following fields:

% ROM.type - Text field denoting ROM type, 'POD' for this

% ROM.X - Parameters (possibly biased/normalized)

% ROM.basis - Basis vectors (columnwise, k cols)

% ROM.C - Coordinates of snapshots, snapshot i in row i,

basis vector j in col j

% ROM.k - Model Order (as constructed, not requested)

% ROM.RBF - RBF ROM for interpolating coordinates by

parameter

% ROM.xbias - X-bias vector, if any

% ROM.xscale - X-scaling term, if any

% ROM.ybias - Y-bias vector, if any

% ROM.yscale - Y-scaling term, if any

%%%

%%%%

function [ROM] = build_pod(X,Y,k,P)

global Param;

if(nargin == 4)

 Param = P;

end

% Check for problems

if(size(X,1) ~= size(Y,2))

 error('build_pod(): Row count of X must match column count of Y.')

end

% vprint(sprintf('

build_pod(X[%dx%d],Y[%d,%d],%d)',size(X),size(Y),k));

% Peform Biasing/Normalization

% Note that biasing is performed prior to normalization

% Thus to reconstruct a value, first scale and then add the bias

% Bias/Norm Defaults:

143

xbias=zeros(1,size(X,2));

xscale=1;

ybias=zeros(size(Y,1),1);

yscale=1;

% Bias:

if(Param.podinbias == 1)

 xbias = mean(X); % mean of each column (dim) of X, as

row vector -> average coordinate vector

for i=1:size(X,1) % bias each parameter row to center on

xbias average

 X(i,:) = X(i,:)-xbias;

 end

end

% Normalize:

if(Param.podinnorm == 1)

 xscale = norm(X(1,:),2); % Find scale

 for i=2:size(X,1)

 if(norm(X(i,:),2) > xscale)

 xscale = norm(X(i,:),2);

 end

 end

 for i=1:size(X,1) % Scale each parameter

 X(i,:) = X(i,:)/xscale;

 end

end

% Bias/Normalized Snapshots

if(Param.podoutbias == 1)

 ybias = mean(Y,2); % mean of each row (dim) of Y, as

column vector -> average snapshot vector

 for i=1:size(Y,2) % bias each snapshot column to center

on ybias average

 Y(:,i) = Y(:,i)-ybias;

 end

end

if(Param.podoutnorm == 1)

 yscale = norm(Y(:,1),2); % Find scale

 for i=2:size(Y,2)

 if(norm(Y(:,i),2) > yscale)

 yscale = norm(Y(:,i),2);

 end

 end

 for i=1:size(Y,2) % Scale each snapshot

 Y(:,i) = Y(:,i)/yscale;

 end

end

% Perform SVD

[U,S,V] = svd(Y);

% Basis Vectors

if(k<=0)

 mk = size(U,2);

else

 mk = min(k,size(U,2));

end

144

if(mk<k)

 warning('build_pod(): Requested model order k=%d is greater than

maximum model dimensionality %d; reducing model order.',k,mk);

end

basis = U(:,1:mk);

% Normalize the basis vectors

for i=1:mk

 basis(:,i) = basis(:,i)/norm(basis(:,i),2);

end

% Project snapshots onto basis vectors, get coordinates

for si=1:size(Y,2)

 for bi=1:mk

 C(si,bi) = dot(basis(:,bi), Y(:,si)');

 end

end

size(C);

% Construct RBF model for parameter/coordinate interpolation

ERBF = build_rbf(X, C');

% Pack ROM

ROM.type = 'POD';

ROM.X = X;

ROM.basis = basis;

ROM.C = C;

ROM.k = mk;

ROM.RBF = ERBF;

ROM.xbias = xbias;

ROM.xscale = xscale;

ROM.ybias = ybias;

ROM.yscale = yscale;

end

B.2 Evaluation

%%%

%%%%

% Evaluate POD-based ROM

% Jeff Parrish

% Mississipi State University

%

% Evaluates ROMs constructed with build_pod(). X is a row-wise

ordering of

% evaluation points; to evaluate multiple points, place one parameter

% vector per row.

%

% Inputs:

% ROM - ROM Model built with build_pod();

% X - Parameter vectors to evaluate, row ordered. Multiple rows will

be

% evaluated separately. That is, X is [nsamp x ndim].

145

% P - Global Parameter structure, optionally passed as direct copy

%

% Outputs:

% Y - ROM Outputs, column wise - col Y_i corresponds to row X_i

%%%

%%%%

function [Y] = eval_pod(ROM,X,P)

global Param;

if(nargin == 3 && isempty(Param))

 Param = P;

end

% Check for problems

if(strcmp(ROM.type,'POD') ~= 1)

 error('eval_pod(): ROM is not a standard POD-based model.')

end

% vprint(sprintf(' eval_pod(ROM,X[%d,%d]))',size(X)));

% If ROM biased/normalized parameters, do the same to the new X

Xset = X;

for i=1:size(X,1)

 if(Param.podinbias)

 Xset(i,:) = X(i,:)-ROM.xbias;

 end

 if(Param.podinnorm)

 Xset(i,:) = X(i,:)/ROM.xscale;

 end

end

Y = zeros(length(ROM.ybias),size(X,1));

for i=1:size(X,1)

% For each new evaluation point

 % Construct (possibly) biased/normalized output vector

 Xbn = Xset(i,:);

 Ybn = zeros(length(ROM.ybias),1);

 Cbn = eval_rom(ROM.RBF,Xbn);

% Interpolate coordinates, store as row vector

 % Unbias/unnormalize

Y(:,i) = ROM.basis*Cbn;

% If ROM biased/normalized parameters, do the same to the new X

if(Param.podoutnorm)

Y(:,i) = Y(:,i)*ROM.yscale;

end

if(Param.podoutbias)

Y(:,i) = Y(:,i)+ROM.ybias;

end

end

end

146

 RBF BASED ROM (MATLAB CODE)

147

C.1 Construction

%%%

%%%%

% Construct a RBF-based ROM object

% Jeff Parrish

% Mississipi State University

%

% Standard RBF formulation with options for biasing and normalizing

inputs

% and outputs of the system of interest. Flags are 0 or 1.

%

% Inputs:

% X is row-ordered parameter vectors of snapshots

% Y is column-ordered snapshots

% P - Global Parameter structure, optionally passed as direct copy

%

% Outputs:

% ROM is a structure with the following fields:

% ROM.type - Text field denoting ROM type, 'RBF' for this

% ROM.sig - Weighting Matrix

% ROM.X - Parameters (possibly biased/normalized)

% ROM.phi - RBF

% ROM.xbias - X-bias vector, if any

% ROM.xscale - X-scaling term, if any

% ROM.ybias - Y-bias vector, if any

% ROM.yscale - Y-scaling term, if any

%%%

%%%%

function [ROM] = build_rbf(X,Y,P)

global Param;

if(nargin == 3)

 Param = P;

end

% tic

% vprint(sprintf('

builf_rbf(X[%dx%d],Y[%d,%d]))',size(X),size(Y)));

useparfor=0;

% Check for problems

if(size(X,1) ~= size(Y,2))

 error('build_rbf(): Row count of X must match column count of Y.')

end

% Peform Biasing/Normalization

% Note that biasing is performed prior to normalization

% Thus to reconstruct a value, first scale and then add the bias

% Bias/Norm Defaults:

% if(matlabpool('size') <= 1)

% vprint(sprintf('\t\tRBF: Bias/Norm...'));

% end

xbias=zeros(1,size(X,2));

xscale=1;

148

ybias=zeros(size(Y,1),1);

yscale=1;

% Bias:

if(Param.rbfinbias == 1)

 xbias = mean(X); % mean of each column (dim) of X, as

row vector -> average coordinate vector

for i=1:size(X,1) % bias each parameter row to center on

xbias average

 X(i,:) = X(i,:)-xbias;

 end

end

if(Param.rbfoutbias == 1)

 ybias = mean(Y,2); % mean of each row (dim) of Y, as

column vector -> averaege snapshot vector

 for i=1:size(Y,2) % bias each snapshot column to center

on ybias average

 Y(:,i) = Y(:,i)-ybias;

 end

end

% Normalize:

if(Param.rbfinnorm == 1)

 xscale = norm(X(1,:),2); % Find scale

 for i=2:size(X,1)

 if(norm(X(i,:),2) > xscale)

 xscale = norm(X(i,:),2);

 end

 end

 for i=1:size(X,1) % Scale each parameter

 X(i,:) = X(i,:)/xscale;

 end

end

if(Param.rbfoutnorm == 1)

 yscale = norm(Y(:,1),2); % Find scale

 for i=2:size(Y,2)

 if(norm(Y(:,i),2) > yscale)

 yscale = norm(Y(:,i),2);

 end

 end

 for i=1:size(Y,2) % Scale each snapshot

 Y(:,i) = Y(:,i)/yscale;

 end

end

% Search kernel functions for best fit

bestphi = Param.phirbf(1).phi;

bestc = Param.rbf_crng(1);

besterr = 10;

Prm = Param;

if(size(X,1) > Param.rbfmaxcross)

 cvi(:,1) = randperm(size(X,1));

 cvi(Param.erbfmaxcross+1:end) = [];

else

 cvi = 1:size(X,1);

end

err = ones(length(cvi),1)*10000;

149

for p = 1:length(Param.phirbf)

 phi = Param.phirbf(p).phi;

 % Search c-calues to fit the model

 for c = Param.rbf_crng

 % Perform cross validation to gauge model fit

% if(matlabpool('size')<=1)

% vprint(sprintf('RBF: Performing Cross Validation for phi

%d/%d and c=%0.4f (max %0.4f)',p,length(Param.phirbf),c,

Param.rbf_crng(end)));

% vprint(sprintf('RBF: Cross Validation will be performed

for %d samples',length(cvi)));

% end

 ROMcv.type = 'RBF';

 ROMcv.sig = zeros(size(X,1)-1,size(Y,2)); % nsamp x ydim

 ROMcv.c = 0;

 ROMcv.X = zeros(size(X)-[1 1]);

 ROMcv.phi = phi;

 ROMcv.xbias=zeros(1,size(X,2));

 ROMcv.xscale=1;

 ROMcv.ybias=zeros(size(Y,1),1);

 ROMcv.yscale=1;

err = 10000*ones(length(cvi));

 rbfib = Param.rbfinbias;

 rbfin = Param.rbfinnorm;

 rbfob = Param.rbfoutbias;

 rbfon = Param.rbfoutnorm;

 nw = matlabpool('size');

 if(useparfor)

 top=tic;

 parfor op = 1:length(cvi)

 Rcv = ROMcv;

% if(nw<=1)

% fprintf(1,'.');

% end

 warning('off','all');

 opi = cvi(op);

 % Omit the opi-th point

 Xcv = X;

 Xcv(opi,:) = [];

 Ycv = Y;

 Ycv(:,opi) = [];

 % bias and scaling will change depending on omitted

points!

 % Bias:

 if(rbfib == 1)

Rcv.xbias = mean(Xcv); % mean of each

column (dim) of X, as row vector -> average coordinate vector

for i=1:size(Xcv,1) % bias each parameter

row to center on xbias average

Xcv(i,:) = Xcv(i,:)-Rcv.xbias;

end

 end

 if(rbfob == 1)

Rcv.ybias = mean(Ycv,2); % mean of each

row (dim) of Y, as column vector -> averaege snapshot vector

150

for i=1:size(Ycv,2) % bias each snapshot

column to center on ybias average

Ycv(:,i) = Ycv(:,i)-Rcv.ybias;

end

 end

 % Normalize:

 if(rbfin == 1)

Rcv.xscale = norm(Xcv(1,:),2); %

Find scale

for i=2:size(Xcv,1)

if(norm(Xcv(i,:),2) > Rcv.xscale)

Rcv.xscale = norm(Xcv(i,:),2);

 end

end

for i=1:size(Xcv,1) % Scale

each parameter

Xcv(i,:) = Xcv(i,:)/Rcv.xscale;

end

 end

 if(rbfon == 1)

Rcv.yscale = norm(Ycv(:,1),2); %

Find scale

for i=2:size(Ycv,2)

if(norm(Ycv(:,i),2) > Rcv.yscale)

Rcv.yscale = norm(Ycv(:,i),2);

end

end

for i=1:size(Ycv,2) % Scale each

snapshot

Ycv(:,i) = Ycv(:,i)/Rcv.yscale;

end

 end

 % Build distance weighting matrix

 A = zeros(size(Xcv,1));

 for i=1:size(Xcv,1)

for j=(i):size(Xcv,1)

A(i,j) = phi(norm(Xcv(j,:)-Xcv(i,:)), c);

A(j,i) = A(i,j);

end

 end

 % Solve for weighting coefficients

 % Using mldivide (\) for solving A*sig = Y using

pseudoinverse

 sig = A\(Ycv');

 % Pack for testing

 Rcv.sig = sig;

 Rcv.c = c;

 Rcv.X = Xcv;

 % Evaluate at omitted point

 yop = eval_rbf(Rcv, X(opi,:), Prm);

 if(max(isnan(yop)) >= 1)

error('RBF: (parfor) yop contains NAN values.

Cannot continue.')

 end

 % Record error

151

 err(op) = nrmsd(Y(:,op), yop);

 end % op

 ttop = toc(top);

% if(matlabpool('size')<=1)

% fprintf(1,'\n');

% vprint(sprintf('RBF: Cross Validation took %0.8f

seconds',ttop));

% end

 else

 top=tic;

 Rcv = ROMcv;

 Afull = zeros(size(X,1));

 A = zeros(size(X,1)-1);

 for i=1:size(X,1)

 for j=(i):size(X,1)

Afull(i,j) = phi(norm(X(j,:)-X(i,:)), c);

Afull(j,i) = Afull(i,j);

 end

 end

 for op = 1:length(cvi)

% tic

% if(nw<=1)

% fprintf(1,'.');

% end

 warning('off','all');

% fprintf(1,'(1)'); toc, tic

 opi = cvi(op);

% fprintf(1,'(2)'); toc, tic

 % Omit the opi-th point

 Xcv = X;

 Xcv(opi,:) = [];

 Ycv = Y;

 Ycv(:,opi) = [];

% fprintf(1,'(3)'); toc, tic

 % bias and scaling will change depending on omitted

points!

 % Bias:

 if(rbfib == 1)

Rcv.xbias = mean(Xcv); % mean of each

column (dim) of X, as row vector -> average coordinate vector

for i=1:size(Xcv,1) % bias each parameter

row to center on xbias average

Xcv(i,:) = Xcv(i,:)-Rcv.xbias;

end

 end

% fprintf(1,'(4)'); toc, tic

 if(rbfob == 1)

Rcv.ybias = mean(Ycv,2); % mean of each

row (dim) of Y, as column vector -> averaege snapshot vector

for i=1:size(Ycv,2) % bias each snapshot

column to center on ybias average

 Ycv(:,i) = Ycv(:,i)-Rcv.ybias;

end

 end

% fprintf(1,'(5)'); toc, tic

152

Find scale

%

each parameter

%

Find scale

%

snapshot

%

%

%

%

%

%

%

%

%

pseudoinverse

%

%

% Normalize:

 if(rbfin == 1)

Rcv.xscale = norm(Xcv(1,:),2); %

for i=2:size(Xcv,1)

if(norm(Xcv(i,:),2) > Rcv.xscale)

Rcv.xscale = norm(Xcv(i,:),2);

end

end

fprintf(1,'(6)'); toc, tic

for i=1:size(Xcv,1) % Scale

Xcv(i,:) = Xcv(i,:)/Rcv.xscale;

end

 end

fprintf(1,'(7)'); toc, tic

 if(rbfon == 1)

Rcv.yscale = norm(Ycv(:,1),2); %

for i=2:size(Ycv,2)

if(norm(Ycv(:,i),2) > Rcv.yscale)

Rcv.yscale = norm(Ycv(:,i),2);

end

end

fprintf(1,'(8)'); toc, tic

for i=1:size(Ycv,2) % Scale each

Ycv(:,i) = Ycv(:,i)/Rcv.yscale;

end

 end

fprintf(1,'(9)'); toc, tic

 % Build distance weighting matrix

A = zeros(size(Xcv,1));

for i=1:size(Xcv,1)

for j=(i):size(Xcv,1)

 A(i,j) = phi(norm(Xcv(j,:)-Xcv(i,:)), c);

A(j,i) = A(i,j);

end

end

 A = Afull;

 A(opi,:) = [];

 A(:,opi) = [];

fprintf(1,'(10)'); toc, tic

 % Solve for weighting coefficients

 % Using mldivide (\) for solving A*sig = Y using

 sig = A\(Ycv');

fprintf(1,'(11)'); toc, tic

 % Pack for testing

 Rcv.sig = sig;

 Rcv.c = c;

 Rcv.X = Xcv;

fprintf(1,'(12)'); toc, tic

 % Evaluate at omitted point

 yop = eval_rbf(Rcv, X(opi,:), Prm);

153

% fprintf(1,'(13)'); toc, tic

% if(max(isnan(yop)) >= 1)

% error('RBF: (parfor) yop contains NAN values.

Cannot continue.')

% end

% fprintf(1,'(13)'); toc, tic

 % Record error

 err(op) = nrmsd(Y(:,op), yop);

% fprintf(1,'(14)'); toc, tic

 end % op

 ttop = toc(top);

% if(matlabpool('size')<=1)

% fprintf(1,'\n');

% vprint(sprintf('RBF: Cross Validation took %0.8f

seconds',ttop));

% end

 end % useparfor

 % If better average error, save new best fit

 if(mean(abs(err)) < besterr)

 besterr = mean(err);

 bestphi = phi;

 bestc = c;

 end

 end % c

end % p

% Build final fitted ROM

% if(matlabpool('size')<=1)

% vprint(sprintf('RBF: Building Selected ROM'));

% end

% Build distance weighting matrix

A = eye(size(X,1));

for i=1:size(X,1)

 for j=(i):size(X,1)

 A(i,j) = bestphi(norm(X(j,:)-X(i,:)), bestc);

 A(j,i) = A(i,j);

 end

end

% Solve for weighting coefficients

% Using mldivide (\) for solving A*sig = Y using pseudoinverse

sig = A\(Y');

% sig = inv(A)*(Y');

% Pack ROM

% if(matlabpool('size')<=1)

% vprint(sprintf('RBF: Packing'));

% end

ROM.type = 'RBF';

ROM.sig = sig;

ROM.c = bestc;

ROM.X = X;

ROM.phi = bestphi;

ROM.xbias = xbias;

ROM.xscale = xscale;

ROM.ybias = ybias;

154

ROM.yscale = yscale;

ROM.err = besterr;

% toc

% vprint(sprintf('\n')); % DEBUG

end

C.2 Evaluation

%%%

%%%%

% Evaluate RBF-based ROM

% Jeff Parrish

% Mississipi State University

%

% Evaluate a ROM constructed with build_rbf().

%

% Inputs:

% ROM - ROM Model build with build_rbf();

% X - Parameter vectors to evaluate, row ordered. Multiple rows will

be

% evaluated separately. That is, X is [nsamp x ndim].

% P - Global Parameter structure, optionally passed as direct copy

%

% Outputs:

% Y - ROM Outputs, column wise - col Y_i corresponds to row X_i

%%%

%%%%

function [Y] = eval_rbf(ROM,X,P)

global Param;

if(nargin>2 && isempty(Param))

 Param = P;

end

% vprint(sprintf(' eval_rbf(ROM,X[%d,%d]))',size(X)));

% Check for problems

if(strcmp(ROM.type,'RBF') ~= 1)

 error('eval_rbf(): ROM is not a standard RBF-based model.')

end

% If ROM biased/normalized parameters, do the same to the new X

for i=1:size(X,1)

 if(Param.rbfinbias)

 X(i,:) = X(i,:)-ROM.xbias;

 end

 if(Param.rbfinnorm)

 X(i,:) = X(i,:)/ROM.xscale;

 end

end

% Construct (possibly) biased/normalized output vector

Y = zeros(length(ROM.ybias),size(X,1));

for i=1:size(X,1)

Ybn = zeros(1,length(ROM.ybias));

155

 Xbn = X(i,:);

 for p=1:size(ROM.X,1)

 pr = ROM.phi(norm(Xbn-ROM.X(p,:),2), ROM.c);

 Ybn = Ybn + (ROM.sig(p,:) * pr);

% For multidimensional Y, use rows of sigma -> the # cols of sigma

equal the # cols of Y

 end

Y(:,i) = Ybn';

% If ROM biased/normalized parameters, do the same to the new X

if(Param.rbfoutnorm)

Y(:,i) = Y(:,i)*ROM.yscale;

end

if(Param.rbfoutbias)

Y(:,i) = Y(:,i)+ROM.ybias;

end

end

end

156

 ERBF BASED ROM (MATLAB CODE)

157

D.1 Construction

%%%

%%%%

% Construct a ERBF-based ROM object

% Jeff Parrish

% Mississipi State University

%

% Extended RBF formulation with options for biasing and normalizing

inputs

% and outputs of the system of interest. Flags are 0 or 1.

% Based on the ERBF formulation proposed by Messac et al.

%

% Inputs:

% X is row-ordered parameter vectors of snapshots

% Y is column-ordered snapshots

% P - Global Parameter structure, optionally passed as direct copy

%

% Outputs:

% ROM is a structure with the following fields:

% ROM.type - Text field denoting ROM type, 'RBF' for this

% ROM.sig - Weighting Matrix

% ROM.X - Parameters (possibly biased/normalized)

% ROM.phi - RBF

% ROM.gamma - Smoothness Parameter

% ROM.n - Nonlinear NRBF Order

% ROM.xbias - X-bias vector, if any

% ROM.xscale - X-scaling term, if any

% ROM.ybias - Y-bias vector, if any

% ROM.yscale - Y-scaling term, if any

%%%

%%%%

function [ROM] = build_erbf(X,Y,P)

global Param;

if(nargin == 3)

 Param = P;

end

tic

% vprint(sprintf('

build_erbf(X[%dx%d],Y[%d,%d]))',size(X),size(Y)));

% Check for problems

if(size(X,1) ~= size(Y,2))

 error('build_erbf(): Row count of X must match column count of Y.')

end

% %If X is one-dimensional, use linear RBF

% if(size(X,2) == 1)

% phi = @(r)(r);

% end

% Peform Biasing/Normalization

% Note that biasing is performed prior to normalization

% Thus to reconstruct a value, first scale and then add the bias

158

% Bias/Norm Defaults:

xbias=zeros(1,size(X,2));

xscale=1;

ybias=zeros(size(Y,1),1);

yscale=1;

% Bias:

if(Param.erbfinbias == 1)

 xbias = mean(X); % mean of each column (dim) of X, as

row vector -> average coordinate vector

for i=1:size(X,1) % bias each parameter row to center on

xbias average

 X(i,:) = X(i,:)-xbias;

 end

end

if(Param.erbfoutbias == 1)

 ybias = mean(Y,2); % mean of each row (dim) of Y, as

column vector -> averaege snapshot vector

 for i=1:size(Y,2) % bias each snapshot column to center

on ybias average

 Y(:,i) = Y(:,i)-ybias;

 end

end

% Normalize:

if(Param.erbfinnorm == 1)

 xscale = norm(X(1,:),2); % Find scale

 for i=2:size(X,1)

 if(norm(X(i,:),2) > xscale)

 xscale = norm(X(i,:),2);

 end

 end

 for i=1:size(X,1) % Scale each parameter

 X(i,:) = X(i,:)/xscale;

 end

end

if(Param.erbfoutnorm == 1)

 yscale = norm(Y(:,1),2); % Find scale

 for i=2:size(Y,2)

 if(norm(Y(:,i),2) > yscale)

 yscale = norm(Y(:,i),2);

 end

 end

 for i=1:size(Y,2) % Scale each snapshot

 Y(:,i) = Y(:,i)/yscale;

 end

end

% Search kernel functions for best fit

vprint(sprintf('\t\tFitting ERBF Rom: '));

bestphi = Param.phirbf(1).phi;

bestc = Param.rbf_crng(1);

bestgamma = Param.erbf_grng(1);

bestn = Param.erbf_nrng(1);

besterr = 10;

Prm=Param;

159

if(size(X,1) > Param.erbfmaxcross)

 cvi(:,1) = randperm(size(X,1));

 cvi(Param.erbfmaxcross+1:end) = [];

else

 cvi = 1:size(X,1);

end

err = ones(length(cvi),1)*10000;

for ph = 1:length(Param.phirbf)

 phi = Param.phirbf(ph).phi;

 % Search n-values to fit the model

 for n = Param.erbf_nrng

 % Search gamma-values to fit the model

 for gamma = Param.erbf_grng

 % Search c-values to fit the model

 for c = Param.rbf_crng

 vprint(sprintf('_')); % DEBUG

 err = [];

 % Perform cross validation to gauge model fit

 parfor op = 1:length(cvi)

vprint(sprintf('.')); % DEBUG

opi = cvi(op);

ROMcv = [];

% Omit the op-th point

Xcv = X;

Xcv(opi,:) = [];

Ycv = Y;

Ycv(:,opi) = [];

% Build distance weighting matrix

A = eye(size(Xcv,1));

for i=1:size(Xcv,1)

for j=i:size(Xcv,1)

A(i,j) = phi(norm(Xcv(j,:)-Xcv(i,:)),c);

A(j,i) = A(i,j);

end

end

% Build NRBF Coefficient Matrix

m = size(Xcv,2);

np = size(Xcv,1);

B = zeros(np, 3*m*np);

BL = zeros(1, m*np);

BR = zeros(1, m*np);

BB = zeros(1, m*np);

for r=1:np

% Per Row of B

for p=1:np

% Per Sample Point

for d=1:m

% Per Dimensiona of Parameter Space

% Difference in dimension d between

point r and point p

dx = Xcv(r,d)-Xcv(p,d);

% Set phi_ functions based on

dimensional distance

if(dx <= -gamma)

% Region I

160

phiL = (-n*gamma^(n-1))*dx + (1-

n)*gamma^n;

phiR = 0;

phiB = dx;

elseif(dx > -gamma && dx <= 0)

% Region II

phiL = dx^n;

phiR = 0;

phiB = dx;

elseif(dx > 0 && dx <= gamma)

% Region III

phiL = 0;

phiR = dx^n;

phiB = dx;

else

% Region IV

phiL = 0;

phiR = (n*gamma^(n-1))*dx + (1-

n)*gamma^n;

phiB = dx;

end

% Set in appropriate index of BL, BR,

BB

BL((p-1)*m+d) = phiL;

BR((p-1)*m+d) = phiR;

BB((p-1)*m+d) = phiB;

end

end

% Concatenate into row Br

B(r,:) = [BL BR BB];

end

% Build Combined System Matrix

% Note that Abar is [np] x [np + 3*xdim*np]

Abar = [A B];

% Solve Linear Programming Subproblem

% (b assumed to be vector of ones, so omitted here

% min (over lpx): b*lpx

% st: Abar*lpx = F

% lpx_i >= 0

lpx = ones(np+3*m*np, size(Ycv,1));

F = Ycv';

options = optimset('Display', 'off', 'UseParallel',

'always', 'MaxIter', 200);

% Constrained LP Subproblems

for yd = 1:size(Ycv,1)

% For each y dimension

b = ones(size(lpx(:,yd)));

% System multiplier is just ones

Fi = F(:,yd);

% System output samples for dimension d

[lpx(:,yd), fval, exitflag] = linprog(b, [],

[], Abar, Fi, zeros(size(lpx,1),1), [], [], options);

% If no feasible solution is found, use the

pseudoinverse method

if(exitflag ~= 1)

161

%warning('build_erbf(): LP Subproblem did

not find a feasible solution. Defaulting to pseudoinverse method.');

lpx(:,yd) = Abar\Fi;

end

end

% Split coefficients into component vectors

% Note that each vector has pointwise components in

rows, and y-dimension

% components along columns

sig = lpx(1:np, :);

alpL = lpx((np+1):((m+1)*np), :);

alpR = lpx(((m+1)*np+1):((2*m+1)*np), :);

beta = lpx(((2*m+1)*np+1):((3*m+1)*np), :);

% Pack ROM

ROMcv.type = 'ERBF';

ROMcv.sig = sig;

ROMcv.alpL = alpL;

ROMcv.alpR = alpR;

ROMcv.beta = beta;

ROMcv.X = Xcv;

ROMcv.phi = phi;

ROMcv.gamma = gamma;

ROMcv.n = n;

ROMcv.c = c;

ROMcv.xbias = xbias;

ROMcv.xscale = xscale;

ROMcv.ybias = ybias;

ROMcv.yscale = yscale;

% Evaluate at omitted point

yop = eval_erbf(ROMcv, X(opi,:), Prm);

% Record error

err(op) = nrmsd(Y(:,opi), yop);

 end % op

 % If better average error, save new best fit

 if(mean(abs(err)) < besterr)

besterr = mean(err);

bestphi = phi;

bestc = c;

bestgamma = gamma;

bestn = n;

 end

 end % c

 end % gamma

 end % n

end % ph

% Build ROM

phi = bestphi;

c = bestc;

n = bestn;

gamma = bestgamma;

% Build distance weighting matrix

A = eye(size(X,1));

for i=1:size(X,1)

 for j=i:size(X,1)

162

 A(i,j) = phi(norm(X(j,:)-X(i,:)),c);

 A(j,i) = A(i,j);

 end

end

% Build NRBF Coefficient Matrix

m = size(X,2);

np = size(X,1);

B = zeros(np, 3*m*np);

BL = zeros(1, m*np);

BR = zeros(1, m*np);

BB = zeros(1, m*np);

for r=1:np %

Per Row of B

 for p=1:np %

Per Sample Point

 for d=1:m %

Per Dimensiona of Parameter Space

 % Difference in dimension d between point r and point p

 dx = X(r,d)-X(p,d);

 % Set phi_ functions based on dimensional distance

 if(dx <= -gamma)

% Region I

 phiL = (-n*gamma^(n-1))*dx + (1-n)*gamma^n;

 phiR = 0;

 phiB = dx;

 elseif(dx > -gamma && dx <= 0)

% Region II

 phiL = dx^n;

 phiR = 0;

 phiB = dx;

 elseif(dx > 0 && dx <= gamma)

% Region III

 phiL = 0;

 phiR = dx^n;

 phiB = dx;

 else

% Region IV

 phiL = 0;

 phiR = (n*gamma^(n-1))*dx + (1-n)*gamma^n;

 phiB = dx;

 end

 % Set in appropriate index of BL, BR, BB

 BL((p-1)*m+d) = phiL;

 BR((p-1)*m+d) = phiR;

 BB((p-1)*m+d) = phiB;

 end

 end

 % Concatenate into row Br

 B(r,:) = [BL BR BB];

end

% Build Combined System Matrix

% Note that Abar is [np] x [np + 3*xdim*np]

Abar = [A B];

% Solve Linear Programming Subproblem

% (b assumed to be vector of ones, so omitted here

163

% min (over lpx): b*lpx

% st: Abar*lpx = F

% lpx_i >= 0

lpx = ones(np+3*m*np, size(Y,1));

F = Y';

options = optimset('Display', 'off');

% Constrained LP Subproblems

for yd = 1:size(Y,1)

% For each y dimension

 b = ones(size(lpx(:,yd)));

% System multiplier is just ones

 Fi = F(:,yd);

% System output samples for dimension d

 [lpx(:,yd), fval, exitflag] = linprog(b, [], [], Abar, Fi,

zeros(size(lpx,1),1), [], [], options);

 % If no feasible solution is found, use the pseudoinverse method

 if(exitflag ~= 1)

 %warning('build_erbf(): LP Subproblem did not find a feasible

solution. Defaulting to pseudoinverse method.');

 lpx(:,yd) = Abar\Fi;

 end

end

% Split coefficients into component vectors

% Note that each vector has pointwise components in rows, and y-

dimension

% components along columns

sig = lpx(1:np, :);

alpL = lpx((np+1):((m+1)*np), :);

alpR = lpx(((m+1)*np+1):((2*m+1)*np), :);

beta = lpx(((2*m+1)*np+1):((3*m+1)*np), :);

% Pack ROM

ROM.type = 'ERBF';

ROM.sig = sig;

ROM.alpL = alpL;

ROM.alpR = alpR;

ROM.beta = beta;

ROM.X = X;

ROM.phi = phi;

ROM.gamma = gamma;

ROM.n = n;

ROM.c = c;

ROM.xbias = xbias;

ROM.xscale = xscale;

ROM.ybias = ybias;

ROM.yscale = yscale;

ROM.err = besterr;

toc

vprint(sprintf('\n')); % DEBUG

D.2 Evaluation

%%%

%%%%

% Evaluate ERBF-based ROM

164

% Jeff Parrish

% Mississipi State University

%

% Inputs:

% ROM - ROM Model build with build_erbf();

% X - Parameter vectors to evaluate, row ordered. Multiple rows will

be evaluated separately.

% P - Global Parameter structure, optionally passed as direct copy

%

% Outputs:

% Y - ROM Outputs, column wise - col Y_i corresponds to input

parameter X_i

%%%

%%%%

function [Y] = eval_erbf(ROM,X,P)

global Param;

if(nargin>2)

 Param = P;

end

% vprint(sprintf(' eval_erbf(ROM,X[%d,%d]))',size(X)));

% Check for problems

if(strcmp(ROM.type,'ERBF') ~= 1)

 error('eval_erbf(): ROM is not a standard ERBF-based model.')

end

% If ROM biased/normalized parameters, do the same to the new X

for i=1:size(X,1)

 if(Param.erbfinbias)

 X(i,:) = X(i,:)-ROM.xbias;

 end

 if(Param.erbfinnorm)

 X(i,:) = X(i,:)/ROM.xscale;

 end

end

% Model parts

np = size(ROM.X,1);

m = size(ROM.X,2);

sig = ROM.sig;

alpL = ROM.alpL;

alpR = ROM.alpR;

beta = ROM.beta;

phi = ROM.phi;

% Construct (possibly) biased/normalized output vector

Y = zeros(length(ROM.ybias),size(X,1));

for xi=1:size(X,1) % For each

evaluation point

 Xi = X(xi,:); % Current

Evaluation Point

 for yd = 1:size(ROM.ybias,1) % For each

output dimension

165

 for p=1:np % For each

sample point (from original model)

 dx = Xi-ROM.X(p,:); % Get

difference vector, evaluation point from sample point

 for xd=1:m % For each x

dimension, determine nrbf contribution; want as rows to add to y-dim

 % Build vectors of phi_ along x-dim, for this sample

point

 if(dx(xd) <= -ROM.gamma)

% Region I

phiL(1,xd) = (-ROM.n*ROM.gamma^(ROM.n-1))*dx(xd) +

(1-ROM.n)*ROM.gamma^ROM.n;

phiR(1,xd) = 0;

phiB(1,xd) = dx(xd);

 elseif(dx(xd) > -ROM.gamma && dx(xd) <= 0)

% Region II

phiL(1,xd) = dx(xd)^ROM.n;

phiR(1,xd) = 0;

phiB(1,xd) = dx(xd);

 elseif(dx(xd) > 0 && dx(xd) <= ROM.gamma)

% Region III

phiL(1,xd) = 0;

phiR(1,xd) = dx(xd)^ROM.n;

phiB(1,xd) = dx(xd);

 else

% Region IV

phiL(1,xd) = 0;

phiR(1,xd) = (ROM.n*ROM.gamma^(ROM.n-1))*dx(xd) +

(1-ROM.n)*ROM.gamma^ROM.n;

phiB(1,xd) = dx(xd);

 end

 end % xd

 % Build vectors of alpha_ and beta, for this sample point,

for this y-dimension

 alpLp = alpL(((p-1)*m+1):(p*m), yd);

 alpRp = alpR(((p-1)*m+1):(p*m), yd);

 betap = beta(((p-1)*m+1):(p*m), yd);

 % Sum radial and nonradial contributions for this sample

point

 dot1 = dot(alpLp,phiL);

 dot2 = dot(alpRp,phiR);

 dot3 = dot(betap,phiB);

 Y(yd,xi) = Y(yd,xi) + (sig(p,yd)*ROM.phi(norm(dx,2),ROM.c))

+ dot1 + dot2 + dot3;

 % If ROM biased/normalized parameters, do the same to the

new Y

if(Param.erbfoutnorm)

 Y(:,xi) = Y(:,xi)*ROM.yscale;

 end

if(Param.erbfoutbias)

 Y(:,xi) = Y(:,xi)+ROM.ybias;

 end

end % p

end % yd

end % xi

end

166

 INTERPOLATION METHOD (MATLAB CODE)

167

%%%

%%%%

% Interpolate a ROM object, sanpshots elementwise

% Jeff Parrish

% Mississipi State University

%

% Interpolate a ROM model's elements directly. Interpolation uses

Grassman

% Manifold Projection for matrices to ensure preservation of

orthonormal

% properties, and standard Radial Basis Functions for direct

interpolation

% of scalars or vectors. (Note that GMP vectorizes the projected

matrices

% for direct element-wise interpolation via RBF, and then reconstructs

the

% interpolated matrix for reprojection back into basis space.)

%

% Currently, ROMs based on POD and RBF are supported. Extended RBFs

may be

% incorporated in the future.

%

% Inputs:

% X - Row vector coresponding to a single design point

%

% POD-Based ROMs:

% ROM is a structure with the following fields:

% ROM.type - Text field denoting ROM type, 'POD' for this

% ROM.X - Parameters (possibly biased/normalized)

% ROM.basis - Basis vectors (columnwise, k cols)

% ROM.C - Coordinates of snapshots, snapshot i in row i,

basis vector j in col j

% ROM.k - Model Order (as constructed, not requested)

% ROM.RBF - RBF ROM for interpolating coordinates by

parameter

% ROM.xbias - X-bias vector, if any

% ROM.xscale - X-scaling term, if any

% ROM.ybias - Y-bias vector, if any

% ROM.yscale - Y-scaling term, if any

%

% RBF-Based ROMs:

% ROM is a structure with the following fields:

% ROM.type - Text field denoting ROM type, 'RBF' for this

% ROM.sig - Weighting Matrix

% ROM.X - Parameters (possibly biased/normalized)

% ROM.phi - RBF

% ROM.xbias - X-bias vector, if any

% ROM.xscale - X-scaling term, if any

% ROM.ybias - Y-bias vector, if any

% ROM.yscale - Y-scaling term, if any

%--

function [I TR B0 CV] = interprom(X, rdb, prm, irm, irmdb, useclust)

global romdb;

global Param;

168

global irom;

global iromdb;

if(nargin >= 2)

 RDB = rdb;

else

 RDB = romdb;

end

if(nargin >= 3)

 Prm = prm;

else

 Prm = Param;

end

if(nargin >= 4)

 irom = irm;

end

if(nargin >= 5)

 iromdb = irmdb;

end

if(nargin >= 6)

 usecluster = useclust; % use cluster for snapshot roms; 0 or

nworkers per Y-col (irom update)

else

 usecluster=0;

end

IRM = irom;

heal_irom = 0; % Heal flag for any missing ROMs

debug=1; % DEBUG! Obviously.

clust = 'raptor';

nodes = 1;

wallhours = 1;

useparfor=1; % Use parfor loops or not

if(debug)

 vprint(sprintf('\t\t050 interprom(%0.4f %0.4f %0.4f %0.4f %0.4f

%0.4f %0.4f %0.4f)',X));

end

% Compile list of X-coords in romdb for comparison to IROM model.

% Update model if different.

XR = zeros(length(RDB), size(RDB(1).X,2));

for i=1:length(RDB)

 XR(i,:) = RDB(i).X;

end

if(isequal(size(irom.X),size(XR)))

 if(isequal(irom.X, XR))

 update_irom = 0;

 else

 update_irom = 1;

 if(debug)

 vprint(sprintf('\t\t\t055 Updating IROM...'));

 end

 vprint('EQUAL SIZE, NONEQUAL VALUE');

 vprint(sprintf('>>> [%0.4f %0.4f], [%0.4f %0.4f], [%0.4f

%0.4f], [%0.4f %0.4f], [%0.4f %0.4f]', irom.X));

 vprint(sprintf('>>> [%0.4f %0.4f], [%0.4f %0.4f],

[%0.4f %0.4f], [%0.4f %0.4f], [%0.4f %0.4f]', XR));

169

https://interprom(%0.4f

 % Clear temporary interpolated ROM storage

 iromdb(:) = [];

 end

else

 vprint('NONEQUAL SIZE');

 vprint(sprintf('irom.X[%d, %d]: ',size(irom.X)))

 vprint(sprintf('\n[%0.4f %0.4f], [%0.4f %0.4f], [%0.4f %0.4f],

[%0.4f %0.4f], [%0.4f %0.4f]', irom.X));

 vprint(sprintf('XR[%d, %d]: ',size(XR)))

 vprint(sprintf('[%0.4f, %0.4f, %0.4f, %0.4f, %0.4f, %0.4f, %0.4f,

%0.4f]', XR));

 vprint(sprintf('\n[%0.4f %0.4f], [%0.4f %0.4f], [%0.4f %0.4f],

[%0.4f %0.4f], [%0.4f %0.4f]', XR));

 update_irom = 1;

 iromdb(:) = [];

 if(debug)

 vprint(sprintf('\t\t\t055 Updating IROM...'));

 end

end

% Search for existing interpolated ROM in iromdb; if it matches, return

it.

% Otherwise build as usual and add new ROM to iromdb.

if(checkdb(X,iromdb))

 vprint(sprintf(' Found a current IROM for X.\b'));

 R = getdb(X,iromdb);

 I = R.ROM;

 TR = [];

 B0 = [];

 CV = [];

 return;

end

% Select a reference basis from the database - in this case, the

nearest point

vprint(' Selecting reference basis...');

k = RDB(1).ROM.k;

d = norm(X-RDB(1).X,2);

di = 1;

for i=2:length(RDB)

 if(norm(X-RDB(i).X,2) < d)

 d = norm(X-RDB(i).X,2);

 di = i;

 end

end

% Set Reference Data

X0 = RDB(di).X;

B0 = RDB(di).ROM.basis(:,1:Prm.k);

C0 = RDB(di).ROM.C;

GMP1 = eye(size(B0,1)) - B0*B0';

% Project ROM bases into tangent space

vprint(' Projecting ROMs into tangent manifold...');

170

https://vprint(sprintf('\n[%0.4f
https://vprint(sprintf('[%0.4f
https://vprint(sprintf('\n[%0.4f

for i=length(RDB):-1:1 % Preallocate backwards! Faster for list,

still have to iterate: can't preallocate all fields simultaneously

 GMP(i).T = zeros(size(B0));

end

for i=1:length(RDB)

 if (i==di)

 continue

 end

 Mgmp = GMP1 * RDB(i).ROM.basis(:,1:Prm.k) * inv(B0' *

RDB(i).ROM.basis(:,1:Prm.k)); %#ok<MINV>

 [Ui,Si,Vit] = svd(Mgmp,0);

 GMP(i).T = Ui*atan(Si)*Vit;

end

% Gather info for RBF interps

vprint(' Gathering RBF interpolation info...');

Xset = XR;

% [nsamp x xdim]

Mset = zeros(size(GMP(1).T,1)*size(GMP(1).T,2), length(RDB));

% [Tn*Tm x nsamp]

Mr = size(GMP(1).T,1);

if(update_irom)

 % xbset = zeros(length(RDB(1).ROM.xbias), length(RDB));

% [_dim x nsamp]

 % xnset = zeros(length(RDB(1).ROM.xscale), length(RDB));

% ...

 ybset = zeros(length(RDB(1).ROM.ybias), length(RDB));

 ynset = zeros(length(RDB(1).ROM.yscale), length(RDB));

end

for i=1:length(RDB)

 Mset(:,i) = vectorize(GMP(i).T);

 if(update_irom)

 % xbset(:,i) = RDB(i).ROM.xbias;

% Note we are storing these as column vectors, as expected for the

system output for RBF interpolation

 % xnset(:,i) = RDB(i).ROM.xscale;

 ybset(:,i) = RDB(i).ROM.ybias;

 ynset(:,i) = RDB(i).ROM.yscale;

 end

end

% Interpolate matrices elementwise using Radial Basis Functions

vprint(' Building Projected Basis ROMs...');

vprint(sprintf(' Building basis interpolation ROMs (%d

total)...',length(RDB(1).ROM.ybias)));

RBFM = build_rbf(Xset, Mset, Prm);

for i=length(RDB(1).ROM.ybias):-1:1

 RBFyb(i).ROM = [];

end

if(update_irom)

vprint(' (Update IROM) Updating Y-Bias and Y-Norm ROMs...');

 % RBFxb = build_erbf(Xset, xbset);

 % RBFxn = build_erbf(Xset, xnset);

 L = length(RDB(1).ROM.ybias);

171

 if(usecluster) % ad hoc parallelism for speeding up this update

silliness

 ndiv = usecluster;

 Lrng = [1:max(floor(L/ndiv),1):L (L+1)];

 save one.mat L ndiv Lrng Xset ybset Param update_irom -v7;

 % Sub

 for j=1:length(Lrng)-1

 if(exist(sprintf('%s/irom_one_%d.mat',pwd,j),'file') == 2)

 vprint(sprintf('Sub: irom_one_%d.mat already exists,

skipping...',j));

 continue

 end

 filename = sprintf('buildirom_one_%d.scr',j);

 jobname = sprintf('irom_one-%d\n',j);

 cmd = sprintf('matlab -nodisplay -r "buildirom_one(%d);

quit"\n',j);

 makeparjob(filename, jobname, clust, nodes, wallhours,

cmd);

 cmd = sprintf('qsub -q @raptor.hpc.msstate.edu -d %s %s',

pwd, filename);

 system(cmd);

 vprint(sprintf('Submitted buildirom_one_%d.scr',j));

 pause(0.1); % Give the queue a breather!

 end

 % Wait

 for i=1:L

 RBFyb(i).ROM = [];

 end

 for j=1:length(Lrng)-1

 vprint(sprintf('Wait: Waiting on

%s/irom_one_%d.mat',pwd,j));

 while(exist(sprintf('%s/irom_one_%d.mat',pwd,j),'file') ==

0)

 end

 end

 % Load

 for k=1:length(Lrng)-1

 vprint(sprintf('Load: Waiting on

%s/irom_one_%d.mat',pwd,k));

 while(exist(sprintf('%s/irom_one_%d.mat',pwd,k),'file') ==

0)

 end

 cmd = sprintf('grep \"COMPLETE\" buildirom_one-%d-

log.txt',k);

 running = 1;

 while(running ~= 0)

 running = system(cmd);

 pause(1);

 end

 load(sprintf('irom_one_%d.mat',k),'RBFyb_tmp');

 for j=1:length(RBFyb_tmp)

 if(~isempty(RBFyb_tmp(j).ROM))

RBFyb(j).ROM = RBFyb_tmp(j).ROM;

 end

 end

172

https://raptor.hpc.msstate.edu

 end

 elseif(useparfor) % not using cluster parallelism

 nw = Prm.nworkers;

 lyb = length(RDB(1).ROM.ybias);

 parfor i=1:length(RDB(1).ROM.ybias)

 if(nw <= 1)

 vprint(sprintf(' (Update IROM) Building Y-Bias

ROM(%d)/(%d)...',i,lyb));

 end

 RBFyb(i).ROM = build_rbf(Xset, ybset(i,:), Prm);

 end

 else

 for i=1:length(RDB(1).ROM.ybias)

 vprint(sprintf(' (Update IROM) Building Y-Bias

ROM(%d)/(%d)...',i,length(RDB(1).ROM.ybias)));

 RBFyb(i).ROM = build_rbf(Xset, ybset(i,:), Prm);

 end

 end

 vprint(' (Update IROM) Building Y-Norm ROM...');

 RBFyn = build_rbf(Xset, ynset, Prm);

else

 vprint(' Using existing Y-Bias and Y-Norm ROMs...');

 % RBFxb = irom.ROMxb;

 % RBFxn = irom.ROMxn;

 for i=1:length(RDB(1).ROM.ybias)

 RBFyb(i).ROM = irom.ROMyb(i).ROM;

 end

 RBFyn = irom.ROMyn;

end

% Evaluate basis interpolation ROM

vprint(' Evaluating interpolated basis...');

TR = matrixize(eval_rom(RBFM, X, Prm), Mr);

% xbR = eval_rom(RBFxb, X, Prm)';

% Convert these back to row vectors

% xnR = eval_rom(RBFxn, X, Prm)';

ybR = zeros(length(RDB(1).ROM.ybias),1);

for i=1:length(RDB(1).ROM.ybias)

 ybR(i,1) = eval_rom(RBFyb(i).ROM, X, Prm)';

end

ynR = eval_rom(RBFyn, X, Prm)';

% Project interpolated basis from manifold back into basis space

vprint(' Reprojecting new basis into basis space...');

[UR,SR,VRt] = svd(TR,0);

BR = B0*VRt'*diag(cos(diag(SR))) + UR*diag(sin(diag(SR)));

% Normalize the basis vectors

% TODO - Review this step (necessary? impact?)

for i=1:min(Prm.k,size(BR,2))

 BR(:,i) = BR(:,i)/norm(BR(:,i),2);

end

% Collect snapshots

vprint(' Collecting Snapshots for interpolation...');

173

V = zeros([length(RDB), length(RDB(1).ROM.ybias), size(Prm.P,1)]);

for r=1:length(RDB)

 V(r,:,:) = eval_rom(RDB(r).ROM,Prm.P, Prm);

end

% Elementwise snapshot interpolation

vprint(sprintf(' Interpolating snapshots elementwise (%d x %d = %d

total)...',size(V,2),size(V,3),size(V,2)*size(V,3)))

for k=size(V,3):-1:1

 for j=size(V,2):-1:1

 CRBF(j,k).ROM = [];

 end

end

CV = zeros(size(V,2), size(V,3));

% for j=1:size(V,2) % Healing

% for k=1:size(V,3)

% CRBF(j,k).ROM = I.ROMC(j,k).ROM;

% end

% end

if(usecluster) % ad hoc parallelism for speeding up this update

nonsense

 ndiv = usecluster;

 L = size(V,2); % Rows of Y

 Lrng=[];

 Lrng = [1:max(floor(L/ndiv),1):L (L+1)];

 save two.mat L Lrng ndiv CRBF irom X Xset V Param update_irom -v7;

 % Sub

 for k=1:size(V,3) % Cols of Y

 for j=1:length(Lrng)-1 % Row-groups

 if(exist(sprintf('%s/irom_two_%d-%d.mat',pwd,k,j),'file')

== 2)

 vprint(sprintf('Sub: irom_two_%d-%d.mat already exists,

skipping...',k,j));

 continue

 end

 filename = sprintf('buildirom_two_%d_%d.scr',k,j);

 jobname = sprintf('irom_two-%d-%d\n',k,j);

 cmd = sprintf('matlab -nodisplay -r "buildirom_two(%d,%d);

quit"\n',j,k);

 makeparjob(filename, jobname, clust, nodes, wallhours,

cmd);

 cmd = sprintf('qsub -q @raptor.hpc.msstate.edu -d %s %s',

pwd, filename);

 system(cmd);

 pause(0.1);

 end

 end

 % Wait

 for k=1:size(V,3)

 for kk=1:length(Lrng)-1

 vprint(sprintf('Wait: Waiting on %s/irom_two_%d-

%d.mat...',pwd,k,kk));

 while(exist(sprintf('%s/irom_two_%d-

%d.mat',pwd,k,kk),'file') == 0)

174

https://raptor.hpc.msstate.edu

 end

 end

 end

 % Load

 for k=1:size(V,3)

 for i=L:-1:1

 CRBF(i,k).ROM = [];

 CV(i,k) = 0;

 end

 for kk=1:length(Lrng)-1

 % Wait for each file in turn

 vprint(sprintf('Load: Waiting on %s/irom_two_%d-

%d.mat...',pwd,k,kk));

 while(exist(sprintf('%s/irom_two_%d-

%d.mat',pwd,k,kk),'file') == 0)

 end

 cmd = sprintf('grep \"COMPLETE\" buildirom_two-%d-%d-

log.txt',k,kk);

 running = 1;

 while(running ~= 0)

 running = system(cmd);

 pause(1);

 end

 load(sprintf('irom_two_%d-

%d.mat',k,kk),'CRBF_tmp','CV_tmp');

 for j=1:length(CRBF_tmp)

 if(~isempty(CRBF_tmp(j).ROM))

CRBF(j,k).ROM = CRBF_tmp(j).ROM;

CV(j,k) = CV_tmp(j);

 end

 end

 end

 end

else % Not using cluster parallelism

 for k=1:size(V,3) % Cols of Y

 % vprint(sprintf('snapshot col %d',k));

 IRM = irom;

 if(useparfor)

 if(update_irom || isempty(IRM.ROMC(j,k).ROM))

 vprint(sprintf(' Building Y-Norm ROMs(-

,%d)/(%d,%d)...',j,k,size(V,2),size(V,3)));

 end

 parfor j=1:size(V,2) % Rows of Y

 if(update_irom || isempty(IRM.ROMC(j,k).ROM))

CRBF(j,k).ROM = build_rbf(Xset, V(:,j,k)', Prm);

 else

CRBF(j,k).ROM = IRM.ROMC(j,k).ROM;

 end

 % vprint(sprintf('j=%d',j));

 CV(j,k) = eval_rom(CRBF(j,k).ROM,X,Prm);

 end

 else

 for j=1:size(V,2) % Rows of Y

 if(update_irom || isempty(IRM.ROMC(j,k).ROM))

175

vprint(sprintf(' Building Y-Norm

ROM(%d,%d)/(%d,%d)...',j,k,size(V,2),size(V,3)));

CRBF(j,k).ROM = build_rbf(Xset, V(:,j,k)', Prm);

 else

CRBF(j,k).ROM = IRM.ROMC(j,k).ROM;

 end

 % vprint(sprintf('j=%d',j));

 CV(j,k) = eval_rom(CRBF(j,k).ROM,X,Prm);

 end

 end

 end

end

% for j=1:size(V,2) % Healing

% for k=1:size(V,3)

% I.ROMC(j,k).ROM = CRBF(j,k).ROM;

% end

% end

% irom = I;

% Bias/Normalize Projected Snapshots

% if(Prm.podoutbias)

% for s=1:size(CV,2)

% CV(:,s) = (CV(:,s)-ybR');

% end

% end

% if(Prm.podoutnorm)

% for s=1:size(CV,2)

% CV(:,s) = CV(:,s)/ynR;

% end

% end

% Project onto basis

CR = zeros(size(Prm.P,1), size(BR,2));

vprint(' Projecting onto new basis...');

for s=1:size(Prm.P,1)

 for b=1:size(BR,2)

 CR(s,b) = dot((CV(:,s)-ybR)/ynR, BR(:,b));

 % err = 0.000001*rand(size(ybR));

 % CR(s,b) = dot(((Y(:,s)+err)-ybR)/ynR, BR(:,b));

 end

end

% Build RBF model for parameter interpolation

vprint(' Building new coordinate interpolation ROM...');

P = Prm.P;

xbias = RDB(1).ROM.xbias; % Bias:

if(Prm.podinbias == 1)

 for i=1:size(P,1) % bias each parameter row to center on

xbias average

 P(i,:) = P(i,:)-xbias;

 end

end

xscale = RDB(1).ROM.xscale; % Normalize:

if(Prm.podinnorm == 1)

 for i=1:size(P,1) % Scale each parameter

176

 P(i,:) = P(i,:)/xscale;

 end

end

RBFM = build_rbf(P,CR', Prm);

% Pack neatly {type,X,basis,C,k,RBF,xbias,xscale,ybias,yscale}

vprint(' Packing new ROM...');

I.type = 'POD';

I.X = P;

I.basis = BR;

I.C = CR;

I.k = Prm.k;

I.RBF = RBFM;

I.xbias = RDB(1).ROM.xbias; % No need to interpolate input

adjustments, all ROMs use same inputs

I.xscale = RDB(1).ROM.xscale;

I.ybias(1:size(RDB(1).ROM.ybias,1),1) = ybR(:);

I.yscale = ynR;

% Update IROM if needed

if(update_irom)

 vprint(' (Update IROM) Committing update changes...');

 irom.X = XR;

 for j=1:length(RDB(1).ROM.ybias)

 irom.ROMyb(j).ROM = RBFyb(j).ROM;

 end

 irom.ROMyb = RBFyb;

 irom.ROMyn = RBFyn;

 for j=1:size(V,2) % Rows of Y

 for k=1:size(V,3) % Cols of Y

 irom.ROMC(j,k).ROM = CRBF(j,k).ROM;

 end

 end

 vprint(' Saving IROM...');

 save('irom.mat', 'irom', '-v7');

end

% Add interpolated ROM to iromdb

vprint(' Adding IROM to database...');

iromdb(end+1).X = X;

iromdb(end).ROM = I;

% vprint(' Saving IROMDB...');

% save('iromdb.mat', 'iromdb');

end

177

 MATERIAL PROPERTIES FOR STRUCTURAL ANALYSIS

178

Table F.1 Material Properties for Aluminum 6061

Property Symbol Value Units
Density 𝜌 2700.0 𝑘𝑔 𝑚3⁄
Elastic Modulus 𝐸 68.9475729 E+9 𝑃𝑎
Shear Modulus 𝐺 25.993235 E+9 𝑃𝑎
Poisson's Ratio 𝜈 0.33 −
Compressive Allowable 344.737865 E+6 𝑃𝑎 𝑀𝐶𝑆
Tensile Allowable 172.368932 E+6 𝑃𝑎 𝑀𝑇𝑆

Table F.2 Material Properties for Divinycell F40

Property Symbol Value Units
Density 𝜌 40 𝑘𝑔 ⁄𝑚3

Elastic Modulus 𝐸1 68.950 E+3 𝑃𝑎
𝐸2 68.950 E+3 𝑃𝑎

Shear Modulus 𝐺13 8.5 E+6 𝑃𝑎
𝐺23 8.5 E+6 𝑃𝑎

Poisson's Ratio 𝜈 0 −

179

DERIVATION OF EQUIVALENT SOLID PLATE THICKNESS FOR COMPOSITE

SANDWICH PANELS

180

 𝐸𝑡𝑒𝑞
3 𝐸𝑡𝐹ℎ2 𝐸𝑡𝐹

3
= +

12(1−𝜈2) 2(1−𝜈2) 6(1−𝜈2)

In order to simplify the buckling analysis for the TWO problem, each aluminum

sandwich panel was approximated as a solid plate of equivalent thickness. This

procedure was drawn from the literature.158–160 The derivation for that relation is shown

here, based on Bruhn.161

For the TWO problem, the chief parameter which must be matched between the

composite and solid plates is that of bending stiffness. For a solid plate, this is given as

𝐸𝑡3
𝐷 = (G.1)

12(1−𝜈2)

where 𝐸 is the modulus of elasticity, 𝑡 is the plate thickness, and 𝜈 is Poisson's

ratio. For a composite sandwich plate with equal face sheet thicknesses of arbitrary value

3𝐸′𝑡𝐹ℎ2 𝐸′𝑡𝐹 𝐷 = + (G.2)
2(1−𝜈2) 6(1−𝜈2)

where 𝐸′ is the effective modulus of elasticity, 𝑡𝐹 is the face thickness, and ℎ is

the distance between the face sheet centroids. For a symmetric sandwich plate, ℎ = 𝑡 −

𝑡𝐹, where 𝑡𝐹 is the thickness of one face sheet. It is also assumed for this problem that

the effective modulus of elasticity equals the normal modulus.

Thus, to compute the equivalent solid plate thickness, 𝑡𝑒𝑞 for a composite

sandwich plate with the same bending thickness, we can equate the two formulae

(G.3)

Solving, the equivalent solid plate thickness is given as

1
𝑡𝑒𝑞 = (6𝑡𝐹(𝑡 − 𝑡𝐹)2 + 2𝑡𝐹

3) ⁄3 (G.4)

181

REFERENCE WING PARAMETERS FOR TRANSPORT WING OPTIMIZATION

PROBLEM

182

Table H.1 Reference Wing Parameters

Property Symbol
Span 𝑏𝑟𝑒𝑓
Root Chord 𝑐𝑟𝑒𝑓
Aspect Ratio 𝐴𝑅𝑟𝑒𝑓

𝑐𝑡)Taper Ratio 𝑇𝑅𝑟𝑒𝑓, (
𝑐𝑟 𝑟𝑒𝑓

Sweep 𝑝𝑟𝑒𝑓
𝑡

Airfoil Thickness Ratio ()
𝑐 𝑟𝑒𝑓

Wing Area 𝑆𝑟𝑒𝑓
Drag Force 𝐷𝑟𝑒𝑓
Takeoff Gross Mass 𝑇𝑂𝐺𝑀
Range 𝑅

Value
36.576
7.620
6.8571
0.4
7.62 / 36.576

0.12

195.096
177,928.965
136,078
9.260 E+6

Units
𝑚
𝑚
−
−
−

−

𝑚2

𝑁
𝑘𝑔
𝑚

183

