
  

 

 
 

 

 
  

  
 

 
 

  

  

 

Reduced order techniques for sensitivity analysis and design optimization of 

aerospace systems 

By 

Jefferson Carter Parrish 

A Dissertation 
Submitted to the Faculty of 
Mississippi State University 

in Partial Fulfillment of the Requirements 
for the Degree of Doctor of Philosophy 

in Computational Engineering 
in the Bagley College of Engineering 

Mississippi State, Mississippi 

May 2014 



 

 

 
 

 
 

 

Copyright by 

Jefferson Carter Parrish 

2014 



 

 

  

 

 
 

 
 

 
 

 
 

 

 
 

 

 

 

 
  

 

 
 

 

 
 

 
 

____________________________________ 

____________________________________ 

____________________________________ 

____________________________________ 

____________________________________ 

____________________________________ 

Reduced order techniques for sensitivity analysis and design optimization of 

aerospace systems 

By 

Jefferson Carter Parrish 

Approved: 

Masoud Rais-Rohani 
(Major Professor) 

J. Mark Janus 
(Co-Major Professor) 

James C. Newman, III 
(Committee Member) 

Ioana Banicescu 
(Committee Member) 

Roger L. King 
(Graduate Coordinator) 

Jason M. Keith 
Interim Dean 

Bagley College of Engineering 



 

 

 
 

 
 

  
 

 
 

 
 

  
  

 
 

 
 

 

  

 

 

   

  

  

  

 

 

Name: Jefferson Carter Parrish 

Date of Degree: May 16, 2014 

Institution: Mississippi State University 

Major Field: Computational Engineering 

Major Professor: Masoud Rais-Rohani and Mark Janus 

Title of Study: Reduced order techniques for sensitivity analysis and design 
optimization of aerospace systems 

Pages in Study: 183 

Candidate for Degree of Doctor of Philosophy 

This work proposes a new method for using reduced order models in lieu of high 

fidelity analysis during the sensitivity analysis step of gradient based design optimization.  

The method offers a reduction in the computational cost of finite difference based 

sensitivity analysis in that context. 

The method relies on interpolating reduced order models which are based on 

proper orthogonal decomposition.  The interpolation process is performed using radial 

basis functions and Grassmann manifold projection.  It does not require additional high 

fidelity analyses to interpolate a reduced order model for new points in the design space.  

The interpolated models are used specifically for points in the finite difference stencil 

during sensitivity analysis. 

The proposed method is applied to an airfoil shape optimization (ASO) problem 

and a transport wing optimization (TWO) problem.  The errors associated with the 

reduced order models themselves as well as the gradients calculated from them are 

evaluated.  The effects of the method on the overall optimization path, computation 

times, and function counts are also examined. 



 

 

 

  

 

 

 

 

The ASO results indicate that the proposed scheme is a viable method for 

reducing the computational cost of these optimizations.  They also indicate that the 

adaptive step is an effective method of improving interpolated gradient accuracy.  The 

TWO results indicate that the interpolation accuracy can have a strong impact on 

optimization search direction. 
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INTRODUCTION 

In a typical gradient-based optimization, one of the costly steps involves 

calculating the gradients of the objective and constraint functions with respect to the 

design variables at various points in the design space in search of the optimum design 

point.  This is typically accomplished by using a finite difference scheme, requiring a 

minimum  of two function evaluations to calculate an approximate gradient of the 

function at each design point.  When the objective and constraint functions are based on 

the results of expensive high fidelity analyses, this method of gradient calculation for 

sensitivity analysis becomes very costly in terms of both time and computer resources. 

In this dissertation research, a new methodology is developed to reduce the 

computational cost of finite difference-based sensitivity analysis by relying on 

interpolation of disciplinary reduced-order models (ROMs) based on proper orthogonal 

decomposition (POD).  Since the interpolation scheme does not require additional high 

fidelity simulations to construct new reduced order models, the cost of evaluating design 

sensitivities is significantly reduced.  Rather than using the reduced-order models for 

general design point evaluation as is typically done in the literature, they are interpolated 

only for the sensitivity analysis stencil (i.e., function evaluation at the perturbation point) 

while the high fidelity analysis for the design point of interest is retained.  This allows the 

optimization to utilize more accurate (high fidelity) analyses for each design point along 
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the optimization path while greatly reducing the cost of sensitivity analysis evaluations 

by use of interpolated ROMs (IROMs).  It also allows the interpolation of ROMs for use 

in larger multidisciplinary systems.  Further, the particular method described here does 

not require additional high fidelity evaluations to construct the interpolated ROMs, thus 

greatly reducing the costs associated with their construction and evaluation. 

1.1 Background and Related Work 

This work draws on several different areas of work in surrogate modeling, 

reduced-order modeling, high fidelity engineering analysis, and optimization of complex 

systems.  Surrogate modeling in particular serves as a useful context for reduced order 

modeling.1,2  Methods such as polynomial regression, Kriging, multivariate adaptive 

regression splines, radial basis functions, artificial neural networks, and support vector 

machines are all common approaches to providing more economic evaluations of a 

function.3–16  The effectiveness of these techniques is closely tied to topics such as design 

of experiments (DOE), both from general statistics as well as the specific circumstances 

of computational experiments, as can be seen in various example applications. 15,17–33 

Multidisciplinary analysis and optimization (MDA/MDO), including formal 

optimization, coupled system theory, and sensitivity analysis, is also relevant to this 

research work.  Traditional optimization has a long history, rooted in mathematical 

programming, and has well developed tools.34–36 A good overview of MDA/O technique 

and problem formulation can be found in Cramer et al.37 and especially Sobieszczanski-

Sobieski and Haft38, among other overviews.39–41 The theory and analysis of coupled 

systems forms much of the mathematical underpinning of MDO techniques.42 Problem 
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partitioning is also a key concept, especially for hierarchical frameworks.43 Some 

examples of MDO applications include aeroelastic optimization,44–46 multilevel wing box 

optimization,47 aerostructural optimization,25,48 space structures,49 and others.50–54 There 

have been several attempts at providing multidisciplinary problem test suites, which are 

also useful as examples; these include efforts by the Hulme and Bloebaum55–58 and 

Padula.59  Bandwidth reduction is a common issue with MDO applications, and several 

techniques have been suggested for addressing it; this includes intermediate models,1,60 

reduced order data sets,61,62 and other approaches.63,64 Another issue is dealing with 

blackbox analysis functions.65 Sensitivity analysis for these problems is a well-studied 

topic.66–69  MDA and MDO have also benefited from the development of the global 

sensitivity equations (GSEs) , which allow determination of global sensitivities using 

local derivative information.70–73 

MDO strategies such as multiple discipline feasible,52 all-at-once, individual 

discipline feasible, collaborative optimization,74 collaborative subspace optimization,75 

bi-level integrated system synthesis,76 the collaboration pursuing method,77–80 analytical 

target cascading, and others50,81,82 are examples of common MDO schemes into which 

this work may be integrated in the future.61  There have been several studies comparing 

various frameworks40,53,83–87 and presenting general descriptive schemes for the various 

techniques.40,88,89 

Process modeling frameworks are closely related to these schemes, being the 

practical implementations that ultimately determine how useful the techniques are to end 

users.90  Often these frameworks provide the capability to rapidly address multiple design 

concepts, which is an important part of real-world design work.91–93  Due to their nature, 
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they are often designed with extensibility and integration with other tools in mind,94 as 

the frameworks themselves often become major projects.95  These include frameworks to 

address concurrency,96 strongly coupled analysis,45 the development environment,97–101 

and other practical coordination aspects that are often overlooked by more theoretical 

explorations of MDO.54,102,103  Many such process frameworks have already been 

extensively developed and commercialized.104–108 

There has been a great deal of application of reduced order techniques as 

surrogate models for high-fidelity, computationally expensive analyses.27,76,109–114 Jones 

et al in particular present an interesting approach of correlating errors instead of values, 

to capture function behavior over function magnitude.65  LeGresley uses POD-based 

surrogate models for optimization, while switching back to the full-order models for 

sensitive areas of the design space.115,116 Some work involving variants of particular 

methods, such as constrained POD, can delve quite deeply into the underlying 

mathematics.117–120  Other work focuses on incorporating sensitivity information into the 

POD models,121 or expanding the valid parameter space by analyzing the model's 

sensitivity to various inputs.122  A more general overview of POD for model reduction 

can be found from Volkwein.123  An excellent report on various model reduction 

techniques, as well as examples of their applications, can be found in reports by 

Newman.124,125 

This research work is also concerned with reduced order model interpolation, 

especially the elements of radial basis functions, POD-based ROMs, and their potential 

role with optimization and sensitivity analysis.  Volterra-based ROMs were also 

considered, but discarded by comparison with POD-based ROMs during the preliminary 
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problem work.  Most of this investigation was based on Silva's work,126–133 with some 

additional reference regarding application of Volterra kernels and their requisite 

components.134–136  Although effective when applied appropriately, it was determined that 

they were not well suited for the goals of this research. 

There has been a moderate amount of prior work specifically on interpolating 

ROMs for application to analysis or optimization.  Those most relevant to the current 

work are highlighted here. Investigation into various POD basis vector interpolation 

schemes ultimately resulted in the selection of Grassmann Manifold Projection (GMP) as 

the ideal basis interpolation method.  Most interpolation approaches for POD tend to be 

analytical.  Statespace based representations are common for these approaches.137  Lieu et 

al proposed a method for interpolating POD subspaces instead of the basis vectors 

themselves.138  Naets et al compared several interpolation strategies for structural 

optimization, including one operating in the eigenspace of the relevant matrices.139 

GMP is a projection applied to POD bases which is then used in concert with a 

direct interpolation method.  It is explained in excellent detail in the work by Vetrano et 

al.140  Amsallem et al apply GMP and splines to POD before projecting the known system 

equations onto the interpolated basis.141–144  Degroote et al demonstrate POD 

interpolation with GMP and splines, and like this work do not require full order data to 

construct the new ROMs; however, it does assume that a statespace representation of the 

system of interest is available.145 Using a global POD basis with interpolated coordinates 

is also a somewhat common approach,62,139,146,147 and has been applied to determination 

of Pareto frontiers for multiobjective problems.119,120  Very closely related is using POD 
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to determine system modes before  applying a coordinate interpolation scheme,147 as well 

as projecting full order data.148 

Each proposed ROM interpolation scheme was examined closely for similarities 

to the proposed IROM method, in order to establish the novelty of this work.  While each 

of the relevant components of this work have been used elsewhere, and similar 

interpolation methods have been developed, none found have integrated these methods in 

precisely this manner or applied the method strictly to the sensitivity analysis in the 

manner proposed in this work. 

In their work, Degroote et al.145 utilized POD to produce ROMs that are 

interpolated using Grassmann Manifold Projection (GMP) and spline interpolation to 

determine bases for new design points, either for analysis or optimization.  The ROMs 

were constructed by assuming that a state-space representation of the system dynamics is 

readily available, and thus the known system matrices are projected onto the interpolated 

basis to complete the ROM.  In contrast, this work assumes nothing about the system is 

known except for a small set of inputs and outputs.  ROMs are comprised of a set of basis 

vectors and a set of coordinates corresponding to snapshots of the system output.  This 

work also uses Radial Basis Functions (RBF) as described by Mullur and Messac10 rather 

than spline fits. GMP was proposed as a method for POD basis interpolation by 

Amsallem et al.141–144 who reported several applications which utilized it for ROM 

interpolation.  Initially focused on extending the valid analysis space, later work 

developed ROMs by projecting the system equations analytically onto the interpolated 

POD bases, and more recently by rerunning the fluid analysis code to project the results 

onto the new basis. Other works such as that by Naets139 focused on analytical reduction 
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of the governing systems, or more commonly by using a global POD basis and then 

interpolating the coefficients.  Coelho et al.62,147 applied this approach to examine the 

impact of ROMs in Multidisciplinary Design Optimization (MDO), although they did not 

iterate the fluid-structural system and commented on the challenges this creates.  Xiao et 

al.119,120 applied a similar methodology to automotive applications, attempting to 

determine the Pareto frontier for that class of problems.  None of the cited works 

encompass ROM interpolation for black-box systems. 

Prior work performed by LeGresley115 is also worth mentioning, as it integrates 

POD into the BLISS MDO architecture, primarily for reducing coupling bandwidth and 

dealing with the interaction variables.  This may prove a useful starting point to 

investigate integrating the proposed ROM interpolation scheme with existing MDO 

methods in future work.  Finally, Vetrano et al.140 compared several POD interpolation 

schemes, which contains an excellent overview of the dominant methodology and 

concludes that GMP is a powerful approach to that problem. 

1.2 Dissertation Organization 

This dissertation is structured as follows.  Following the introduction in this 

chapter, the component methodologies that this research draws on are presented in 

CHAPTER II.  After presenting the relevant background, the method is developed along 

with its component methods.  The proposed interpolation method is discussed in 

CHAPTER III. It is then applied to an Airfoil Shape Optimization (ASO) and a 

Transport Wing Optimization (TWO) test problem to evaluate the method's effectiveness 

for more complex optimization problems.  The descriptions of the test problems are given 

in CHAPTER IV.  Although the ASO problem is a single discipline, multipoint problem, 
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it is easy to see that the proposed IROM scheme has natural benefits for a 

multidisciplinary analysis.  This is demonstrated by the structure of the TWO problem, 

which was selected with MDA problems in mind. The computational framework used to 

apply the interpolation method to each test problem is described in CHAPTER V.  The 

results of each problem are presented in CHAPTER VI.  There errors associated with the 

interpolated ROMs as well as a discussion of the impact on the overall interpolation 

procedure are presented.  The emphasis for the ASO problem is on demonstrating the 

feasibility of the method, while the TWO problem is geared to illustrating its applications 

in a multidisciplinary structure.  Finally, conclusions are discussed in CHAPTER VII. 
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CHAPTER II 

METHODOLOGY 

This chapter will detail the component methodologies used for the IROM scheme, 

before detailing the scheme itself.  A discussion of Sequential Quadratic Programming 

(SQP) will first provide some context for this work, by illustrating a common gradient-

based optimization process.  Following this, a summary of Computational Fluid 

Dynamics (CFD) and Computational Structural Mechanics (CSM) is presented as the 

example of high-fidelity analysis used here.  An overview of Design of Experiments 

(DOE) methodology used for design space sampling follows before a more detailed 

discussion of the Reduced Order Models (ROMs) used in this work. 

2.1 Engineering Design Optimization 

Optimization is a critical part of the design of engineering systems, particularly 

the complex systems found in aerospace.  While, to some extent, the design of any 

aerospace system involves multidisciplinary trades and optimizations, the process has 

only been formalized in the last few decades.  Particularly, optimization of vehicles 

during the preliminary design stage involves multiple high fidelity disciplinary analyses 

in a strongly coupled system.  Traditional optimization schemes which are derived from 

the field of mathematical programming are applicable to these multidisciplinary systems 

by operating on the results of multidisciplinary analyses, which account for 
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interdisciplinary interactions during the coupled analysis stage.  Multidisciplinary 

optimization schemes, by contrast, incorporate these interactions into the optimization 

scheme itself. 

Optimization of complex aerospace systems tends to be very costly in terms of 

time and compute resources, and often in human effort as well.  The high fidelity 

analyses utilized during the detailed design phase are often resource-limited on their own, 

a cost which is compounded both by the numerous analyses required for an optimization 

as well as the costs associated with coupling multiple high fidelity analyses together.  A 

classic example of this is found in high-fidelity aeroelastic optimization, where detailed 

fluid and structural simulations must interact to perform a single analysis, and many 

analyses are required to perform the optimization.  Not only are the individual 

simulations resource-expensive, the coupled analysis incurs additional costs due to data 

coupling between the simulations, grid deformation, and additional convergence cost of 

the coupled system, among other factors.  The optimization spaces are also complicated 

due to multidisciplinary interaction effects, which are not observed in the systems 

individually, a concept familiar to those working with design of experiments (DOE). 

A note on terminology is appropriate here: when we are referring to the system as 

being “weakly” or “strongly” coupled, we are referring to the strength of the interaction 

effects of the multidisciplinary system itself.  By way of example, a large heat sink with 

cooling fins at low heat flux may demonstrate weak coupling between the thermal 

analysis and the structural deformation.  A wing near flutter conditions, on the other 

hand, would demonstrate strong coupling between aerodynamic and structural analyses.  

By contrast, when we refer to the problem as being “loosely” or “tightly” coupled, we are 
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referring to the structure of the integration of the analysis codes.  Tightly coupled 

generally refers to analyses which are integrated on an analytical or code level, such as 

utilizing equations from the field of aeroelasticity. Loosely coupled indicates disparate 

analysis modules, such as three separate fluid, structural, and thermal analysis codes 

which have their inputs and outputs coordinated for a larger multidisciplinary analysis. 

It is worth noting that here we are concerned with high-fidelity, loosely-coupled 

multidisciplinary optimizations, where the individual analysis codes are considered 

black-box and possibly proprietary, and their direct coupling is not possible.  It is often 

the case that either the fluid or structural models will be severely simplified to allow for 

low-order interactions to be accounted for while incurring minimal additional costs.  It is 

also common to avoid the additional convergence cost by assuming small deformations, 

allowing a fluid solution to be transferred directly to the structural model without 

requiring iteration between the two.  Both of these practices are effective under 

appropriate circumstances for providing some interaction effects at a minimum additional 

cost; however we are interested in higher fidelity cases where these simplifications are 

unacceptable.  It is also common for aerostructural analyses to directly couple the 

analytical equations of the individual disciplinary codes or to utilize analytically derived 

equations from the field of aeroelasticity, which has been extensively developed on its 

own.149  These practices are again appropriate under certain circumstances, but they do 

not address the issue of black-box, proprietary codes.  More importantly, with the 

addition of more disciplinary analyses, the analytical task of coupling the individual 

equations quickly becomes impractical.  For example, a hypersonic 

magnetohydrodynamic aerothermoelastic problem will involve coupling between 
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aerodynamic, structural, thermal, chemical, electromagnetic, and radiation models.  The 

ability to offload the coupling workload to a computational system, as opposed to human 

or human-guided effort, presents obvious benefits. 

Our optimization scheme will treat this coupled analysis as a single system, as in 

Figure 2.1.  Much research has been expended on integrating the interdisciplinary 

analysis and coupling into the optimization framework itself, i.e., the field of MDO.  This 

is a very promising research area and provides an efficient theoretical framework for 

exploring more efficient optimization methods of complex coupled systems.  However, 

for reasons of simplicity, this work will utilize the scheme known as multiple discipline 

feasible (MDF) optimization. Essentially, the optimization scheme is identical to the 

well-studied single-discipline optimization schemes, where the objective and constraint 

functions are concerned only with the result of the multidisciplinary analysis (MDA), and 

not with the mechanisms of obtaining it.  To the MDF scheme, there is no difference 

between single- and multiple-discipline analysis.  This allows us to utilize classical 

optimization schemes such as the modified methods of feasible directions, SQP, etc. 
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Figure 2.1 Optimization / Analysis System Structure 

A full multidisciplinary analysis is performed for the design point 𝑋 during each 

iteration of the optimization.  A set of perturbation points {𝑋 + ∆𝑋} based on the finite 

difference stencil is also evaluated for gradient estimation and sensitivity analysis.  The 

results of the analyses, 𝑌, are utilized as input to the objective and constraint functions, 𝐹 

and 𝐺, which are returned to the optimizer in order to evaluate the next design point.  

Note that the sensitivity analysis routine computes the sensitivities of the objective and 

constraint functions to changes in the design point, 𝑑𝐹⁄𝑑𝑋 and 𝑑𝐺⁄𝑑𝑋. 

In this case, the optimization method selected is SQP, a nonlinear optimization 

method. Details of SQP are available from a number of resources, and in this work the 
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built-in SQP functionality from MATLAB is utilized.150,151  To summarize, starting from 

an arbitrary initial design point, a quadratic subproblem is formulated and solved for 

finding a search direction.  While the objective function is approximated with a quadratic 

function, all the design constraints are linearized using gradient information of the 

objective and constraints.  Only the first-order derivatives are used, even in the case of 

approximating the Hessian of the Lagrange function.  A simple line search is performed, 

as a second step, using a one-dimensional minimization technique to find the optimum 

step size along the search direction to determine the next point along the optimization 

path.  The two-step procedure is repeated until a local optimum design point is found. 

2.1.1 Finite Difference Based Sensitivity Analysis 

Sensitivity analysis (SA) is a general term describing the process of determining 

the partial derivative of the function with respect to each input at a given point in the 

parameter space.  In the context of this research, and in optimization in general, it refers 

to determining the gradients of the objective and constraint functions with respect to the 

design variables.  In a full multidisciplinary context, the global sensitivity equations 

(GSE) are often applied to determine the full system sensitivity based on the individual 

disciplinary derivatives.152  For a set of disciplinary analyses, 𝑓𝑖, with associated outputs, 

𝒀𝑖, which may serve as inputs to other analyses, the derivative of all system outputs with 

respect to system inputs, 𝑿, can be determined using the derivative information of each 

analysis to its inputs.  As an example, for a three discipline system: 

𝐼 −𝜕𝑓1⁄𝜕𝒀2 −𝜕𝑓1⁄𝜕𝒀3 𝜕𝒀1⁄𝜕𝑋𝑖 𝜕𝑓1⁄𝜕𝑋𝑖 
[−𝜕𝑓2⁄𝜕𝒀1 𝑰 −𝜕𝑓2⁄𝜕𝒀3] [𝜕𝒀2⁄𝜕𝑋𝑖] = [𝜕𝑓2⁄𝜕𝑋𝑖] (2.1) 
−𝜕𝑓3⁄𝜕𝒀1 −𝜕𝑓3⁄𝜕𝒀2 𝑰 𝜕𝒀3⁄𝜕𝑋𝑖 𝜕𝑓3⁄𝜕𝑋𝑖 
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While information from these disciplinary modules is sometimes available 

analytically or as part of the module output, this research assumes that such modules are 

black-box functions which do not supply this information.  Furthermore, by adopting an 

MDF approach, the values and thus the sensitivities of the objective and constraint 

functions are dependent on the full MDA analysis; thus, the GSEs are not applied here, 

merely the single-function finite difference formula for a given degree of accuracy.  In 

this research, finite differencing is achieved directly and numerically by varying the 

design variables and operating on the objective and constraint outputs.  In the cases 

described here, the standard forward difference for the first derivative is used.  Finite 

difference approximations for gradient calculations are well established procedures, and 

the reader is referred to the references for further information.67,153 

2.2 Computational Analyses 

For the optimization structure this work utilizes, there is a coupled 

multidisciplinary analysis involving individual high-fidelity codes.  In particular, for most 

of the intended problem systems, there is a coupling between separate aerodynamic and 

structural codes for aeroelastic or aerothermal solutions.  In the simplified test case 

proposed here, the individual solver is ANSYS Fluent; a combination of Mathworks 

MATLAB and various journal/shell scripts will be applied as well.  This section gives a 

brief overview of CFD and CSM for this work; a more comprehensive description is 

available in the literature.154 

CFD is primarily concerned with the solution of the Navier-Stokes equations of 

fluid dynamics and their related counterparts (such as the Euler equations). These 

15 



 

  

   

  

 

   

 

 

  

 

   

  

 

  

equations model the dynamics of a fluid’s mass, energy, and momentum across a defined 

volume of space.  The numerical solution to these equations in various formulations and 

algorithms has been the subject of decades of work.  Computational limitations and 

increased problem complexity have served as impetus for the integration of many other 

models into CFD solvers, ranging from turbulence models of varying fidelity, to 

chemistry and species transport, to accounting for electromagnetic forces in 

magnetohydrodynamic flows, to mixed phase flows involving gases, liquids, and solids. 

Of prime importance when developing a CFD simulation case is the numerical 

grid describing the volume of interest.  The geometric properties of this grid have a 

strong impact on both the solution’s resolution and its numerical stability and 

convergence.  There are essentially two approaches to defining that volume of interest: 

the finite volume method (FVM), which defines regions which fluid passes through, and 

the finite element method (FEM), which utilizes deforming geometric elements.  

Mathematically, the FVM can be shown to be a special case of FEM.  Most CFD solvers 

utilize the finite volume formulation, although many exist which rely on the FEM 

approach.  This is especially true for solvers that are intended to interface with structural 

solvers, which are almost exclusively developed using a finite element formulation.  

ANSYS Fluent primarily utilizes finite volume grids.  In general, grids and operations 

performed on them (such as grid repair, automatic meshing, grid adaptation and 

deformation) are a major research area in their own right. 

Typically, a case setup for a CFD simulation first involves defining the geometry 

and domain of interest and meshing it into an appropriate grid.  The boundaries of the 

grid are assigned various boundary conditions as the problem and solution models require 
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– an example would be a wall condition, which allows no fluid flow across the boundary, 

or a pressure inlet condition, which defines specific conditions that must be maintained 

on the boundary.  These boundary conditions (BCs) are used to close the set of equations 

describing the flow solution.  The particular models and solver settings can then be 

selected, and various parameters related to the numerics of the solution set appropriately.  

It is typically important to verify that the chosen models, settings, grid, and BCs are 

appropriate for the problem of interest and are numerically compatible with one another.  

For example, it would be inappropriate to utilize the incompressible ideal gas equation 

for a supersonic flow.  Understanding these various settings, the applicability to particular 

problem cases, the idiosyncrasies of arriving at a converged and realistic solution, and 

maintaining a balance between fidelity and computational cost comprise a large part of 

the “art” of performing CFD. 

Computational structural mechanics is, naturally, concerned with the behavior of 

structures under loads.  These loads may be concentrated or distributed forces, thermal 

loads, static or time-varying, and so on.  Generally, CSM simulations are mostly 

concerned with the deformations and stresses within a structure under a certain set of 

loading conditions.  They are also often concerned with issues such as fatigue, cracks, 

and failure modes, amongst many others.  As noted above, CSM simulations typically 

rely on a finite element grid to describe the problem of interest.  Generally a more 

complex structure is modeled using many smaller, simpler elements. 

Case setup for CSM generally begins by defining the geometry of the structure of 

interest, usually via Computer Aided Design (CAD).  Various parts or sections of parts 

may then be assigned material types, which is a shorthand way of specifying properties as 
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required for the particular solution.  Boundary conditions, usually loads of varying sorts 

or restrained degrees of freedom at the support points or friction coefficients (as in sliding 

interfaces) may also be specified.  Meshing a CSM geometry typically refers to 

decomposing the geometry into numerous smaller finite elements.  CSD grids tend to be 

far more regular than their CFD counterparts, although unstructured meshing elements 

are also used.  Developing a CSM case typically requires basic CAD skills and an 

understanding of the structural analysis of interest (e.g., static, dynamic, buckling), as 

well as a grasp of FEM and other assorted terminology and concepts. 

Coupling CFD and CSM solvers refers to the passing of relevant information 

between the two solvers while maintaining some sense of synchronicity in the solutions 

(which may or may not be temporal or algorithmic in nature).  The traditional example 

case is an aeroelastically deforming wing, a case of fluid-structure interaction (FSI).  The 

CFD code generates pressures over the surface of the wing as part of the fluid solution.  

These pressures are passed to the structural code, which must translate them across the 

fluid-structure interface and calculate the deformation of the structure in response to 

those loads.  These deformations are passed to the fluid code, which updates the 

geometry of the wing accordingly.  The change in geometry changes the flow solution, 

necessitating a recomputation.  The basic system can be seen in Figure 2.2. 

Aerodynam ic
Solver

St ructural
Solver

U

P

(Displacem ents)

(Pressures)

Figure 2.2 Simple Aeroelastic System Coupling 
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It is clear that when one or both of these solvers is expensive to run, this iterative 

coupling (referred to as loose coupling, as described in the optimization section above) 

can become very computationally intensive.  It is also complicated by whether the 

solution is time-independent or transient.  There are a variety of other methods, such as 

tight coupling (utilizing analytical or code-level coupling of the fluid and structural 

equations), various schemes to reduce the required algorithmic synchronicity, or 

approximating one of the solvers with a lower fidelity model (such as a reduced fluid 

equation set or utilizing structural modes).  Some cases may make the assumption that 

deformation is very small and does not have a large impact on the fluid solution, in which 

case they may solve for a flow solution and then apply those loads to the structure 

without iterating.  What is clear, however, is that the fluid and structural analyses form a 

coupled system that involve coordinated data passing.  Given the large number of 

problems in aerospace and other fields that must take these interactions into 

consideration, it is clear why FSI is another intensive research area. 

It is also clear that in an aeroelastic problem, a fluid-structure interface must be 

maintained such that the spatial relation of data in the two solvers can be determined.  

There is also a need for deformation or remeshing of the fluid geometry.  Both of these 

are very technically intensive undertakings and represent a nontrivial investment of 

effort. 

2.2.1 CFD Validation 

Validation of the aerodynamics code was performed using ANSYS Fluent to 

select the appropriate grid parameters and solver settings.  This took the form of a 

standard airfoil coefficients study, performed for a NACA 2412 airfoil.  Validation was 
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performed on a hybrid structured/unstructured grid with the pressure-based Navier-

Stokes solver and the SST k-ω turbulence model.  Results indicated good overall 

coefficient agreement, with some discrepancy in predicting the separation point of the 

airfoil.  This was considered acceptable for the relatively small angles of attack 

considered in the ASO problem and the testing purpose of the problem.  More 

specifically, the agreement between the simulation and experimental reference is good for 

the linear portion of the lift coefficient curve, and the max 𝑐𝐿also agrees well with 

experiment, although separation is predicted somewhat late.  The drag coefficient, usually 

somewhat more difficult to predict, also indicates good agreement for the lower angles of 

attack.  The results from this validation can be seen in Figure 2.3 and Figure 2.4. 
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Figure 2.3 CFD Validation Results (NACA 2412 Lift Coefficient) 
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Figure 2.4 CFD Validation Results (NACA 2412 Drag Coefficient) 

2.3 Design of Experiments 

From its origins in statistics, experimental design has been applied in one form or 

another to a wide range of fields, from medical studies to manufacturing process control.  

In the present context, design of experiments (DoE) refers to the selection of inputs to a 

system of interest, chosen such that the system outputs will yield information on 

dynamics and behavior without detailed knowledge of the system itself.  These outputs, 

or responses, or generally applied to create simplified models of the output space with 

regard to the inputs, thus leading to response surface methodologies and surrogate 

modeling.  Here, we use DoE to refer specifically to the input selection scheme. 

The most straightforward example of a DoE scheme would be random sampling.  

Given 𝑁 inputs to the system, and a specified domain for those inputs, a set of random 

inputs is selected and the system response measured.  Alternatively, the minimum and 
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maximum of each parameter could be sampled, or all combinations of such.  The latter is 

an example of a full factorial design: each input parameter 𝑝𝑖 is allowed to assume 𝑚𝑖 

values, resulting in a total of ∏ 𝑚𝑖 possible combinations.  This highlights one of the 𝑖 

primary properties of an experimental design – the number of sample points required.  

Obviously in a high-dimensional context, even restricting each of 𝑁 parameters to two 

values will still result in 2N samples.  When the evaluation of a sample is expensive, or in 

the common engineering case where hundreds or thousands of dimensions may be 

considered, full factorial designs quickly accrue unacceptable costs. 

These two schemes – one dimension at a time, and full factorial – represent two 

extremes of sampling designs.  While measuring the response for each dimension 

independently provides efficiency in the total number of sample points, it ignores the 

possibility that parameters may not be fully independent – in a coupled system, especially 

the strongly coupled systems found in engineering, there are effects on the system 

response that cannot be accounted for by varying a single dimension at a time.  These 

effects are only fully accounted for by a full factorial design, which is inherently 

expensive.  This contrast, between minimizing the number of sample points, while 

maximizing the ability of the scheme to capture coupled system effects, is at the heart of 

most DoE schemes. 

While a full explanation of DoE methodology is beyond the scope of this 

document, it is worth mentioning a few common schemes.  Normal design of 

experiments includes the assumption of independent, randomly distributed errors. This 

assumption does not typically apply to computer experiments, which are generally 

deterministic and in which errors are usually nonrandom and correlated.18,29  When 
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dealing with very expensive functions such as those found in high-fidelity engineering 

analysis, full factorial or even partial factorial designs may be prohibitively time-

consuming. Most scholars agree that the use of space-filling designs are most appropriate 

for computer experiments.15  These designs attempt to gain as large a spread in the design 

space as possible, subject to other competing goals. Most engineering literature uses 

orthogonal arrays, Latin hypercubes, Hamersley sequences or uniform designs.15 Latin 

hypercubes have several varieties, including normal, orthogonal, symmetric, and various 

combinations. Further, each sampling strategy may be developed to be optimal for the 

purpose of providing the most information about the design space.23,32,33 Additionally, 

Taguchi methods are popular due to their origins in robust design. The emphasis on low 

objective sensitivity to design space perturbations also developed a signal-to-noise 

analysis which can be useful for certain applications.31 

In this work, generally Latin Hypercubes are used for their good space-filling and 

efficiency properties.  Designs are selected according to maximin criteria, i.e. 

maximizing the minimum distance between sample points. 

2.4 Reduced Order Models 

A common approach to reducing the computational expense associated with the 

complex spaces found in high-fidelity analysis and optimization is utilization of surrogate 

models. These are simplified representations of the space of interest, often fit to a 

sampling of the data in that space, which are much cheaper to evaluate and operate on 

than the original complex space.  Like using simplified disciplinary equations, they trade 

off fidelity for speed, but since they are to some extent fitted to the actual space of 
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interest, they are often able to represent the specific space of interest to a higher degree of 

accuracy than applying more general simplified equations.  Thus, they are more efficient 

in their tradeoff of fidelity for reduced cost. 

At its simplest, a surrogate model may be nothing more than a simple curve or 

polynomial surface fit.  More complex models tend to provide better fits to the space of 

interest, but at the expense of construction or evaluation costs.  These models are 

typically applied to replace a space of interest, such as replacing a complex objective 

space with a surrogate model that provide smoother gradients and much faster evaluation.  

Examples include multiquadratic surfaces, radial basis functions (RBF), kriging, neural 

networks, induction based learning, genetic algorithms, splines, and regression fits.  The 

term surrogate model is often used as a blanket category for these models which replace a 

space of interest.  Other terms include response surfaces and metamodels, with the 

precise definition of each term and its constituent methodologies varying somewhere 

from author to author. 

In general, surrogate models tend to be very sensitive to the input data they are 

provided which describes the space of interest they are intended to approximate.  While 

details vary from method to method, proper use of design of experiments (DoE) sampling 

methodologies is generally a key theme.  The robustness of a model’s approximation 

surface with respect to its input sample is a common point of comparison between 

methods. Additionally, the associated cost of generating the input sample datasets is 

usually a driving factor of the selection of a particular method, as these inputs require 

evaluation of the expensive high fidelity analysis functions.  While some applications of 

surrogate models such as control systems are able to perform this initial sample 
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calculation “off-line,” or in a non-time-critical environment, normal analyses and 

optimizations are generally desired with minimum turnaround time. 

Some surrogate models are applied at the optimization level, approximating 

objective or constraint spaces and thus allowing the optimization to skip the full 

expensive analyses for some parts of the optimization.  This application is typically 

associated with the use of trust-region and error-estimation metrics, which are a field unto 

themselves. 

The other application we are interested in is the utilization of surrogate models to 

replace individual analyses during the multidisciplinary analysis stage.  For example, 

replacing a computational fluid dynamics (CFD) code with a surrogate model 

representing the change in surface pressures and temperatures with respect to angle of 

attack might be used to speed up the overall coupled multidisciplinary analysis in an 

aerothermoelastic simulation.  While input samples (in this case, solutions for various 

angles of attack) are still required to compute the surrogate model, the number of samples 

required may be far less than the number of evaluations otherwise required to converge 

the full multidisciplinary system.  On the other hand, if the geometry of the case is 

changing as during a shape optimization, the surrogate model built for a single design 

point is not valid for application to other design points.  Thus, we must rebuild the 

surrogate model for each individual design point.  A variation on this application is to use 

the surrogate model until we are close to the converged solution, and then use the high 

fidelity code to home in on the final value. 

A category of models related to surrogate models is that of reduced order models 

(ROM).  Both surrogate models and ROMs are sufficiently general in design and 
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application that they may be classified separately, as subsets of one another, identically, 

or as close cousins.  The difference between them is primarily one of mindset.  Surrogate 

models are essentially attempting to produce a lower-dimensional surface which 

approximates a surface of higher dimensionality based on a set of sample points.  It is 

very much engrained in a geometrical conceptualization of the approximation and 

problem spaces.  Reduced order models, however, are focused on producing a model 

which recreates the dominant system behaviors while discarding those less important. 

Instead of viewing the problem space as a geometrical output space correlated to an input 

space, ROMs view the problem space as a black box, input-output system.  While 

surrogate models think in terms of surfaces, ROMs think in terms of systems.  Both 

concepts can be applied to describe the same problems, but the differences in their 

mindsets can cause some confusion if left unstated. 

There are generally two approaches to constructing ROMs.  The first is to take the 

fundamental system equations for the discipline of interest and analytically reduce them, 

usually via system mode shapes (i.e., eigenanalysis) for the problem of interest.  This is 

common in structural analysis by taking advantage of structures with linear responses and 

superimposing individual vibration modes.  It is also applicable to aerodynamic systems, 

although the responses in aerodynamics tend to be strongly nonlinear.  Regardless, this 

approach tends to require a great deal of human effort to reduce the analytical equations 

for the problem at hand.  Further, if one wishes to reduce a system for which the 

analytical equations are difficult to couple, as illustrated above, there may not be a 

convenient set of equations from which to start the reduction at all. 
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The second approach is to use system identification methods to determine system 

mode shapes from sample input-output sets.  This has the advantage of operating 

numerically, as well as requiring no knowledge of the underlying system equations.  

Perhaps the most common of these methods, and the one utilized in this work, is that of 

proper orthogonal decomposition. By itself, POD merely identifies the system modes 

and the corresponding mode coefficients for each input sample, but these are used to 

form the basis of a reduced order model that represents the original system.  The 

advantages to POD are that it is guaranteed to generate optimal system mode shapes, as 

well as automatically ordering and ranking the mode shapes according to their relative 

influence on the overall system dynamics.  This information is highly convenient for 

discarding mode shapes which have very weak contributions, allowing for an efficient 

reduction in the model’s dimensionality versus fidelity lost. 

2.4.1 Proper Orthogonal Decomposition 

The cores of ROMs constructed in this research are based on the proper 

orthogonal decomposition (POD).  It is what determines the ROM basis vectors.  POD is 

a numerical procedure analogous to eigensystem analysis for square matrices, which 

determines a set of basis vectors, analogous to eigenvectors, of the system modes.  These 

modes are also weighted by their singular values, analogous to eigenvalues, which 

indicate the relative importance of each mode.  POD can operate on any rectangular 

matrix, but in this context we utilize a technique known as the method of snapshots.  A 

matrix of system outputs corresponding to various parameter inputs is constructed, a 

series of “snapshots” of the system state.  This is often used for a system which evolves 

in time, hence the snapshot terminology, but is equally applicable to other parameters.  
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The points for the snapshots do not need to follow any particular pattern in 

parameter space, as the corresponding input parameter values attached to each snapshot 

are retained separately.  This snapshot matrix is often centered to an average snapshot 

before it is decomposed via POD.  The resulting basis vectors are then retained or 

truncated based on their relative importance as determined by the corresponding singular 

values.  It is important to note that the singular values, and the basis vectors, are ordered 

by the POD method in decreasing order of importance, and thus retaining the first k 

modes corresponds to a k-order approximation to the original system containing the k 

most important modes.  Hence the term, reduced order basis.  Because of the importance 

of POD in this work, this section will go into relatively more detail than some of the other 

background topics. 

Proper Orthogonal Decomposition refers to a matrix decomposition method that is 

used to determine an optimal set of orthogonal basis vectors for the matrix. It also 

determines the corresponding influence of each basis vector on describing the matrix, and 

orders the basis vectors accordingly.  This process is also called (with more or less 

accuracy) Singular Value Decomposition (SVD), Principle Components Analysis (PCA), 

or Karhunen-Loéve Decomposition.  Some names imply slightly different intended uses 

or additional processing, but they are all generally used for describing a similar 

procedure.  The basis vectors and singular values produced are analogous to eigenvectors 

and eigenvalues for square matrixes, except that the procedure can be applied to 

rectangular matrices.  The method is applied across a wide variety of fields, notably in 

circuit design. 
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The Method of Snapshots is a method used to model the behavior of a system by 

building a matrix out of corresponding sets of samples.  These sets are often sensors 

sampled through time, for example, pressure or temperature sensors measuring a field 

which changes in time.  These sets are referred to as snapshots of the system.  The 

snapshot matrix is decomposed into a set of basis vectors using POD, and the snapshots 

projected onto the new basis.  The system behavior can then be predicted from these 

projected coordinates and the basis vectors. 

Since the basis vectors are ordered according to their importance in describing the 

data, it is common practice to truncate a possibly large set of basis vectors (i.e., many 

hundreds or thousands) and retain only the most important vectors, or mode shapes.  This 

introduces some error into the resulting system behavior, but that error can be estimated 

by using the singular values, and thus limited.  This is the basis of most POD-based 

ROMs. 

Before detailing the mathematics of the procedure, it may be illustrative to view 

an example of the method.  Consider constructing a model representing the pressure over 

the surface of an airfoil with respect to angle of attack.  A set of snapshots of the pressure 

values at 100 nodes over the airfoil surface has been generated for a series of angles of 

attack and may be seen in Figure 2.5. 
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Figure 2.5 Airfoil Surface Pressure Snapshots and Average 

A matrix is built of each snapshot.  SVD is performed on the snapshot matrix, and 

the left-hand basis vectors taken as the new orthogonal basis set, or mode shapes.  The 

first 12 shapes, and the corresponding singular values, can be seen in Figure 2.6 and 

Figure 2.7. 
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Figure 2.6 First 12 Mode Shapes of the Pressure System 

Figure 2.7 Singular Values of the Pressure System 
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The original snapshots can be projected onto the mode shapes to determine their 

coordinates in the new basis.  By including all the mode shapes calculated, we can gain 

an exact reconstruction of each snapshot, as in Figure 2.8.  However, if we truncate more 

of the modes, we introduce some error, although we still retain a large degree of 

accuracy, as seen in Figure 2.9.  The error for the first 12 snapshots versus the number of 

modes retained can be seen in Figure 2.10. 

Figure 2.8 First 12 Snapshot Reconstructions (All Modes Included) 

If we desire a pressure distribution for an intermediate angle of attack, we can 

interpolate the snapshot coordinates according to their corresponding angles of attack.  A 

new pressure profile based on the basis mode shapes can then be reconstructed.  We have 
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now created an aerodynamic ROM for determining pressure distribution in response to an 

input of angle of attack. 

Figure 2.9 First 12 Snapshot Reconstructions (3 Modes Included) 

Figure 2.10 RMS Error for First 12 Snapshots vs. Number of Included Modes 
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SVD begins with a real or complex matrix, usually describing some dataset.  For 

our purposes, we will be working with a real matrix.  The procedure then decomposes the 

matrix into orthogonal bases in row and column space that are related by scaling factors.  

That is, for matrix A: 

𝑨 = 𝑼𝜮𝑽−1 (2.2) 

If 𝑨 were a square matrix, 𝑼 would correspond to left eigenvectors arranged 

columnwise, 𝑽−1to right eigenvectors arranged rowwise, and 𝜮 a diagonal matrix 

corresponding to the eigenvalues.  For rectangular matrices, the values in 𝜮 are referred 

to as singular values (hence the name of the method).  The procedure for determining 𝑼, 

𝑽, and 𝜮 is fairly straightforward. The following description is drawn largely from a 

recorded MIT lecture by Gilbert Strang.155 

Since 𝑼 and 𝑽 are orthogonal bases, their inverse and transpose are identical.  

Thus we may write the above as: 

𝑨 = 𝑼𝜮𝑽𝑇 (2.3) 

We can find 𝑽 and 𝜮 by premultiplying by 𝑨𝑇: 

𝑨𝑇𝑨 =  𝑽𝜮𝑇𝑼𝑇𝑼𝜮𝑽𝑇 =  𝑽𝜮2𝑽𝑇 (2.4) 

Which forms an eigenvalue problem that can be solved in the typical fashion.  

The procedure is similar for determining 𝑼. 𝜮 from each calculation (𝑼 and 𝑽) should be 

identical, a convenient sanity check.  We may then order the basis vectors such that the 

singular values proceed in decreasing value.  For the purposes of this research, the built 
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in SVD solver available in MATLAB is used, and the basis for the POD method taken to 

be 𝑼. 

To reduce the dimensionality of the system, we may simply truncate the number 

of vectors and singular values to retain or discard however many we desire.  Thus, an 

order 𝑘 approximation of the system will retain only the first 𝑘 basis vectors and singular 

values.  This reduced-order basis is at the heart of most POD-based reduced order 

models.  The truncated order 𝑘 set of basis vectors and singular values is thus denoted 𝑼𝑘 

and 𝜮𝑘. 

The method of snapshots is a common POD based ROM, and is the method 

considered here.  First, a series of system “snapshots” with respect to time or some other 

indexing factor (such as angle of attack in the example above) is computed.  The average 

of these snapshots is calculated and subtracted from each individual snapshot, resulting in 

a set of vectors representing the deviation of each snapshot from average.  These adjusted 

snapshot vectors are then composed columnwise into a snapshot matrix, 𝑴. 

𝑛 = (1𝑆𝑎𝑣𝑔 ) ∑𝑖=1 𝑆𝑖 (2.5)
𝑛 

𝑴 = [(𝑆1 − 𝑆𝑎𝑣𝑔) … (𝑆𝑛 − 𝑆𝑎𝑣𝑔)] (2.6) 

SVD is performed on the snapshot matrix as described above, and truncated if 

desired to form an order 𝑘 approximation.  For this work, the columnwise basis vectors 

(denoted as 𝑼 above) are taken to form the model basis.  A check of the mutual 

orthogonality of each basis vector can be used as a sanity check at this stage.  Each 

snapshot is then  projected  onto the new basis, resulting in a set of coordinates 

representing each individual snapshot as a linear combination of the new mode shapes.  
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New snapshots for arbitrary values of the input variable (time, angle of attack, etc.) can 

be calculated by interpolating coordinates for the snapshots.  For example, if snapshots 

are available at 2° and 6° angle of attack, a snapshot at 3.44° could be calculated by 

linearly interpolating the new basis coordinates for the 2° and 6° snapshots.  That is: 

𝑝 = (3.44° − 2°)⁄(6° − 2°) (2.7) 

𝐶3.44° = (1 − 𝑝)𝐶2° + (𝑝)𝐶6° (2.8) 

where 𝐶𝑖 is the coordinates for a system snapshot at 𝑖° angle of attack, and 𝑝 is a 

normalized linear scaling factor.  The new coordinates 𝐶3.44° can then be multiplied by 

the model basis and added to the snapshot average to determine the reconstructed 

snapshot. 

𝑆3.44° = 𝑼𝑘𝐶3.44° + 𝑆𝑎𝑣𝑔 (2.9) 

The generality of POD based models can make it very easy to become confused 

about inputs and outputs to the model system, particular when a portion of a coupled 

system which evolves in time is the subject of the model (as the aeroelastic system 

modeled here is).  It may be helpful to examine a few related systems in order to more 

clearly illustrate their inputs and outputs. 

For example, in the pressure model given as an example above, the steady-state 

pressure over the surface of the airfoil (output) is determined as a function of angle of 

attack (input).  A few samples of the system state (surface pressures) are taken at a range 

of the input value (angles of attack).  These sample snapshots are then used to construct a 

model and determine the output pressure for any input angle of attack by interpolating 
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between the system mode shapes identified by the model.  Note however that the model 

can only be expected to be valid for angles of attack within the range of the original 

dataset; this is an important point. 

Aerodynam ic
Solver

Surface
Pressures

Angle of
At tack

Figure 2.11 Example Angle-of-Attack/Surface Pressure System 

The system considered in this preliminary problem concerns itself with modeling 

the aerodynamic forces generated by a physical displacement of the geometry.  Thus, the 

input to the system is displacement of geometry, whether that is represented as a scalar 

(as for the angle of attack in the preliminary problem), a vector of displacements of mesh 

nodes (as in the larger 3D research problem), as an analytical description of the 

displacement (such as a combination of structural modes), or some other representation.  

The key point is that the input to the aerodynamic system is the geometric displacement.  

Likewise, the output of that system which is of interest to an aeroelastic problem will be 

the aerodynamic forces (and perhaps temperatures) on the surfaces of interest.  Here, note 

that we do not concern ourselves with the evolution of the system in time, only with the 

system describing the response of surface forces to displacements.  This type of system 

may be used in speeding up an aeroelastic analysis by replacing the aerodynamic solver 

with the faster ROM. 
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Aerodynam ic
Solver

Forces
Geom etric

Displacem ent

Figure 2.12 Example Displacement/Forces System 

This can be contrasted with a model describing a full aeroelastic system.  Here, 

the input to the system may be a description of initial displacement, flow conditions, 

and/or forces acting on the design of interest.  The output of the system will be a time 

history of the forces and displacements of the design.  Here, our snapshots would take the 

form of time histories, sampled at varying values of initial displacements or flow 

conditions.  This might be used as part of a control system, producing a faster ROM 

capable of evaluating the response of a system in realtime. 

Aerodynam ic
Solver

Time History of
Displacem ent

and Forces
Init ial

Displacement

Flight
Condit ions

Control
Inputs

Figure 2.13 Example Aeroelastic System 

A fourth model may take a design description of external geometry and structure 

as input, and determine as output an evaluation of the aeroelastic characteristics of the 

system (such as flutter speed).  Here our snapshots may be scalar in nature, while our 
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input samples may be very complicated.  This type of model may be used to assist in 

optimization of a design by providing cheaper evaluations of the impact of design 

decisions. 

Flut ter
Predict ion

Model

Flut ter Speed
External

Geom etry

Flight
Condit ions

Structural
Model

Figure 2.14 Example Flutter Predictor System 

As can be seen in the above examples, it is critical to clearly identify the inputs 

and outputs of the system being modeled, and understand the context in which the model 

itself will be applied.  The potential for confusion and complexity can be easily seen, 

especially when one considers that many of the above models could be nested within one 

another. 

It should be noted that the model construction described above takes an 

interpolative approach to predicting output responses to input parameters.  Alternatively, 

we could use POD to determine a reduced state equation for the system, provided the 

system is easily modeled with a state equation.  Since we are primarily interested in 

dealing with complex, black-boxed multidisciplinary systems, this approach will not be 

addressed further here.  For more details, please see Antoulas, Sorenson, and Gugorcin 

2001.4  Example MATLAB code for build POD-based ROMs is given in APPENDIX B. 
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2.4.1.1 Grassmann Manifold Projection 

Interpolation of ROM basis vectors as well as coordinates is a very attractive idea, 

as it removes the necessity to calculate a new snapshot matrix for each design point.  

Unfortunately, interpolating the basis vectors between ROMs is somewhat more 

complicated than in the case of coordinates.  Basis vector interpolation is still an active 

area of research.118,137,139–143,145,156  It’s useful to note that in this research, we utilize the 

same model order and snapshot length globally, which simplifies many of the 

interpolation considerations, but does not eliminate some of the fundamental problems.  

Basis vectors in our ROMs are right-handed and orthonormal, and preserving these 

properties proves to be a major challenge.  The issue is compounded by attempting to 

interpolate with information from many different ROM models of arbitrary dimension. 

The problem is readily apparently from attempting to interpolate an arbitrary 

number of basis vectors in three dimensional space; the results from direct interpolation 

are not guaranteed to produce a new orthonormal basis, nor even a basis which spans the 

original space at all.  In three dimensions, specialized approaches have been developed 

such as decomposing into Euler angles or projecting into quaternion space.  Neither 

approach is extensible to an arbitrary number of dimensions.  However, quaternion 

projection provides a useful analog for the procedure considered here; the original basis 

vectors are projected into a different space which allows for straightforward interpolation, 

the result of which is then projected back into the original space. 

Grassmann Manifold Projection (GMP) is very similar in this concept.  A set of 

bases is projected into a tangent space which allows for direct interpolation methods, and 

then reprojected back to the original basis space.  The result is a straightforward and 
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efficient basis interpolation method which preserves the important properties of the bases 

for our applications: orthogonality, orthonormality, and span. 

The algorithm for GMP used in this work comes primarily from Amsallem and 

Farhat 2008.141  For more details on the mathematical background beyond the algorithm 

summarized here, the reader is referred to their work. 

The setting for the algorithm begins with a set of design points, 𝜆𝑖, for which we 

have constructed corresponding sets of reduced order bases, 𝝓𝑖, of order 𝑘 and dimension 

𝑁𝑅. We are interested in determining an interpolated basis 𝝓𝑅 at a new design point 𝜆𝑅. 

First, we select one of the design points and bases as a reference and origin, 𝜆0 and 𝝓0. 

We then develop a projection into the tangent space, 𝜞𝑖, for every other basis as follows: 

𝑇 (𝑰 − 𝝓0𝝓0
𝑇)𝝓𝑖(𝝓

𝑇
0𝝓𝑖)

−1 = 𝑼𝑖𝜮𝑖𝑽𝑖 (2.10) 

𝑇 𝜞𝑖 = 𝑼𝑖 tan
−1(𝜮𝑖) 𝑽𝑖 (2.11) 

We may now interpolate these gamma matrices element-wise based on their 

corresponding design points.  In our case, we will utilize radial basis functions.  The 

resulting interpolated matrix, 𝜞𝑅, can be mapped back to the basis space as follows: 

𝑇 𝜞𝑅 = 𝑼𝑅𝜮𝑅𝑽𝑅 (2.12) 

𝝓𝑅 = 𝝓0𝑽𝑅 cos(𝜮𝑅) + 𝑼𝑅 sin(𝜮𝑅) (2.13) 

It is worth noting that the set of bases for a given interpolation is sometimes 

restricted to bases that are relatively near to the interpolated point of interest; this is an 

effective strategy for Lagrange- or spline-based interpolation schemes.  We will not apply 
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this filtering approach here, as the use of RBFs should minimize the impact of distant 

bases on the interpolated result. 

2.4.2 Radial Basis Functions 

In the IROM method, the design of parameter inputs which are sampled for the 

snapshot matrix, used to generate the ROM corresponding to each design point, is applied 

identically to all points.  Thus the same sample range is used for all ROMs.  This allows 

us to interpolate coordinates vectors between the ROMs.  This is accomplished using 

radial basis functions. 

Radial basis functions, especially extended RBF, are very accurate for any scale 

with highly-nonlinear problems.8  They do not require any systematic sampling scheme, 

although an appropriate experimental design can increase their accuracy. They operate by 

assuming that each sampled point is a basis function and that the value of the function at 

any given point is the result of a combination of all these bases, weighted by distance. 

Unlike polynomial regression, Kriging, or a variety of other methods, this method does 

not develop an intermediate approximation to the surface; it predicts values directly. This 

also has the advantage of making evaluations largely inexpensive. RBF are very popular 

in the literature.3,8,10 

RBF begins with the basic response surface problem, that is, to develop an 

approximation �̅� to a set of true and expensive function evaluations 𝐹 corresponding to a 

set of 𝑛𝑝 design points 𝑥 ∊ ℝ𝑚 . It does this by weighting a linear combination of radial 

functions, which operate on the distance between the data points and the evaluation point 

of interest.  More explicitly: 
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�̅� = ∑𝑛𝑝 𝜎𝑖𝜑(||𝑥 − 𝑥𝑖||) (2.14) 
𝑖=1 

The various 𝜎𝑖 are referred to as the RBF coefficients, while 𝜑 is the radial 

function.  There are several common choices, including: 

Quadratic 𝜑𝑄(𝑥) = 𝑥2 + 𝑐2 (2.15) 

Inverse Quadratic  𝜑𝐼𝑄(𝑥) = 1/(𝑥2 + 𝑐2) (2.16) 

Multiquadratic  𝜑𝑀𝑄(𝑥) = √𝑥^2 + 𝑐^2 (2.17) 

Inverse Multiquadratic  𝜑𝐼𝑀𝑄(𝑥) = 1/√𝑥^2 + 𝑐^2 (2.18) 

Here, 𝑐 > 0 is an arbitrary parameter.  By applying the constraint that the model 

must match the true function values at all sample points, we arrive at the set of equations 

that can be used to determine the approximation coefficients: 

∑
𝑛𝑝 𝜑(||𝑥𝑘 − 𝑥𝑖||) = 𝐹(𝑥𝑘)  𝑘= 1: 𝑛𝑝 (2.19) 
𝑖=1 𝜎𝑖 

Or, in matrix form: 

𝑨𝜎 = 𝐹 (2.20) 

𝐴𝑖𝑘 =  𝜑(||𝑥𝑘 − 𝑥𝑖||) (2.21) 

This can be solved for 𝜎 in a straightforward manner.  Example MATLAB code 

providing this functionality is given in APPENDIX C.  In this work, the IMQ radial 

function is favored.  An example of a radial basis function can be seen in Figure X.  Here, 

random curves are generated representing an aerodynamic coefficient measured across a 

two dimensional parameter space – airfoil thickness (T), and angle of attack (AoA).  The 
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RBF is then sampled at regular angle of attack intervals and random thickness intervals 

and plotted against the snapshot curves. 

Figure 2.15 Radial Basis Function Example 

A notable derivative method is called extended RBFs (E-RBFs).  This method 

adds an additional term to the approximation involving the use of non-radial functions.  

These nonradial functions as given by Mullur and Messac are a piecewise function with 

arbitrary parameters controlling the divisions between the different regions and their 

behavior.  The combined function is linear on the outer regions and has controllable 

nonlinear behavior in the inner regions.  The resulting system is underdetermined and has 

a family of solutions, however the simple pseudoinverse provides an efficient and least-

norm solution.  This allows the imposition of additional constraints such as smoothness 

and convexity, which can be useful for gradient based optimizations.  The reader is 

referred to Mullur and Messac’s work for further details on those aspects.10 
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2.4.3 Extended Radial Basis Functions 

ERBFs were developed by Mullur and Messac10 to incorporate non-radial basis 

functions as well as radial basis functions.  This increases the overall ROM accuracy 

while allowing the ROMs to accurately represent linear portions of a function, a classic 

weakness of regular RBF.  The tradeoff is that the extra NRBFs introduce many more 

unknown coefficients, resulting in an underdetermined set of equations which must be 

solved by a constrained linear programming subproblem.  If the subproblem fails to find 

a feasible solution, the system may be solved by a pseudo inverse procedure, which is 

equivalent to the typical RBF solution method.  Thus, ERBFs provide at least as much 

accuracy as regular RBF, with the capability of improving that accuracy  significantly.  

For a detailed description, the reader is referred to their work, however we will provide a 

summary overview here for completion.  Example MATLAB code implementing ERBFs 

is available in 0. 

Table 2.1 Definitions of ERBF Coefficients 

ERBF begins with the same inputs as RBF, namely the input points 𝑋, the output 

samples 𝑌, and a radial basis function 𝜑. ERBF also uses two additional parameters, a 

smoothing factor 𝛾, and a nonlinear order factor 𝑛. Using these parameters, the 

approximation to the original system function is given by 
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𝑛𝑝 𝑛𝑝 𝑛𝑥𝑑 𝐿𝑖𝛷𝐿(𝜉𝑑 
𝑅𝑖𝛷𝑅(𝜉𝑑 �̃�(𝑋) = ∑ 𝜎𝑖 𝜑(‖𝑋 − 𝑋𝑖‖) + ∑ ∑ [𝛼𝑑 

𝑖 ) + 𝛼𝑑 
𝑖 ) + 𝛽𝑑𝛷

𝛽(𝜉𝑑
𝑖 )] 

𝑖=1 𝑖=1 𝑑=1 

(2.22) 

where 𝜎, 𝛼𝐿 , 𝛼𝑅, and 𝛽 are the unknown coefficients.  Here, the first term 

represents the normal RBF contribution, while the second term represents the NRBF 

contribution.  The functions 𝛷𝐿 , 𝛷𝑅, and 𝛷𝛽 are defined as in Table 1, where 𝜉𝑖 is 

𝑖 defined as 𝑋 − 𝑋𝑖, that is, 𝜉𝑑 is the difference between 𝑋 and 𝑋𝑖 along dimension 𝑑. To 

construct the set of equations we will solve, we first construct the RBF weighting matrix 

as per regular RBF 

𝐴𝑖𝑗 =  𝜑(‖𝑋𝑗 − 𝑋𝑖‖) (2.23) 

Additionally, we construct a NRBF weighting matrix �̅�. This matrix is 

constructed from rows �̅�𝑘 where the structure of the 𝑘th row is 

̅𝑘 ̅𝐿𝑘 �̅�𝑅𝑘 �̅�𝛽𝑘]𝐵 = [𝐵 (2.24) 

Given 𝜉𝑖𝑗 = 𝑋𝑗 − 𝑋𝑖 , each term in this structure is a row vector given by 

𝑘𝑛𝑝 �̅�∙𝑘 = [𝛷∙𝑘(𝜉1
𝑘1) 𝛷∙𝑘(𝜉2 

𝑘1 ) 𝛷∙𝑘(𝜉1 )] (2.25) 𝑘1) ⋯ 𝛷∙𝑘(𝜉𝑛𝑥𝑑 
𝑘2) ⋯ 𝛷∙𝑘 (𝜉𝑛𝑥𝑑 

∙ ≡ 𝐿, 𝑅, 𝛽 

These two matrices 𝑨 and �̅� are combined into a matrix �̅� = [𝑨 | �̅�] as an 

underdetermined system.  We construct our vector of unknowns as a column vector 

𝑇 𝐿 𝑅 �̅�𝑦𝑑 = [𝜎𝑦𝑑 𝛼𝑦𝑑 𝛼𝑦𝑑 𝛽𝑦𝑑] for each dimension 𝑦𝑑 of the output space, and set it 

equal to the column vector of samples for that dimension, 𝐹𝑦𝑑. This results in the system 

46 



 

    

 

 

     

 
  

    

  

�̅��̅�𝑦𝑑 = 𝐹𝑦𝑑 (2.26) 

This is an underdetermined system that we can solve via a constrained linear 

programming subproblem given by 

min𝑏𝑇�̅�𝑦𝑑 | �̅��̅�𝑦𝑑 = 𝐹𝑦𝑑; �̅�𝑦𝑑 ≥ 0 (2.27) 
�̅�𝑦𝑑 

where 𝑏𝑇 is taken to be a vector of ones.  If no feasible solution is found, we solve 

for �̅�𝑦𝑑 using the pseudo inverse procedure, i.e. �̅�𝑦𝑑 = �̅�\𝐹𝑦𝑑, which will yield a regular 

RBF solution.  Once the vector of unknowns is calculated, we can evaluate a new 

parameter point 𝑃 according to the approximation formula given above. 

47 



 

 

 

  

 

  

 

 

  

  

  

 

 

   

 

  

CHAPTER III 

ROM INTERPOLATION SCHEME 

3.1 IROM Scheme 

Generally, the most computationally expensive component of an optimization is 

the full-order analysis for evaluations of the objective function(s) and design 

constraint(s).  Any reduction in the computational cost of performing this analysis, or the 

number of times it must be performed, has the potential to provide significant speedup 

benefits to the optimization.  This expense is particularly pronounced when considering 

the finite difference stencils. 

In a typical gradient-based optimization, there is a clear analysis step where the 

partial derivatives of objective and constraints are evaluated across a finite difference 

stencil of design points. The strategy adopted in this work is to apply the proposed 

interpolation procedure to the gradient evaluation / sensitivity analysis (SA) step.  That is, 

new ROMs will be interpolated for each of the SA stencil points instead of performing 

FOAs.  This will allow the evaluation at each stencil point to be performed using the less 

expensive interpolated ROMs.  To differentiate interpolated ROMs from those 

constructed using full order data, they will be referred to here as IROMs. Unlike 

previous  interpolation work, this method does not require additional FOAs and operates 

with black box analyses. An illustration of the interpolation process is shown in Figure 

3.1. 
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Figure 3.1 Illustration of ROM Interpolation Concept 

The first part of the scheme is an offline computation.  Before beginning the 

optimization, a database of ROMs is constructed throughout the design space.  To do this, 

first a set of training points is constructed via a DOE design. In this work, Latin 

hypercube designs are generated and selected according to maximin criteria, which 

maximizes the minimum distance between sample points, leading to good space filling 

properties.  At each training point, data from an FOA at that point is used to construct a 

ROM. These will form a reference set of ROMs to be utilized during interpolation. 

The online portion of the scheme occurs during the optimization procedure itself.  

During sensitivity analysis for each design point, the reference ROMs are interpolated to 

create new IROMs associated with each SA stencil point. These are then used to evaluate 

the objective and constraint functions at those points. For the current design point itself, 

an FOA is performed. The results are then used to compute the gradient at the center 

point. 
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Optionally, the FOA data for the center point can be used to construct a new 

ROM for that design point. This ROM can be added to the database of reference ROMs 

and is subsequently available during any ROM interpolation. This is referred to as an 

adaptive step. 

While this may increase accuracy, it also requires updating the interpolation 

model. For a given set of reference ROMs, much of the information required to perform 

the interpolation is independent of the target design point.  This information can be stored 

to save computational time, and is referred to here as the interpolation model.  However, 

when the reference set of ROMs changes, this model must be rebuilt, incurring an 

additional cost each time the reference set is updated. 

The interpolation process itself is based on the component methods discussed 

previously in CHAPTER II.  In this work, the ROMs are based on POD, which means 

that they are primarily represented by a set of basis vectors, 𝑩, a set of coordinates 𝑪 and 

any associated bias and normalization information.  To interpolate between these ROMs, 

their components are interpolated separately. 

Figure 3.2 Illustration of ROM Interpolation Procedure 
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The basis vectors are interpolated using Grassmann manifold projection (GMP), 

using the nearest point as the reference basis.  The snapshot coordinates of each ROM are 

in potentially in terms of a different basis; thus they are first reconstructed into the 

original snapshot space before being interpolated elementwise using RBF. The 

interpolated snapshots are then reprojected onto the new interpolated basis.  Any bias and 

normalization information is also interpolated elementwise using RBF.  This process is 

summarized in Figure 3.2. 

3.1.1 IROM Algorithm 

A more formal specification of the algorithm is given below: 

1. Reference Database Generation 

a. Before the optimization, generate a set of design points 𝑋𝑇, preferably 

spanning the design space in a manner which is optimal by some DOE criteria. 

b. As per standard POD method of snapshot procedure, create a ROM, 𝑅𝑂𝑀𝑖, for 

the analysis to be replaced.  Retain the snapshot coordinates, 𝑪𝑖, and the first 𝑘 

basis vectors, , for each ROM.  Also retain any biasing and normalization 

information.  Thus, the data for a single ROM in the database consists 

of:[𝑋, 𝑪, 𝑩, 𝑌𝑏𝑖𝑎𝑠, 𝑌𝑛𝑜𝑟𝑚, 𝑃𝑏𝑖𝑎𝑠, 𝑃𝑛𝑜𝑟𝑚] 

Store in a database for reference. 

2. ROM Interpolation 
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a. During the optimization, for each point along the optimization path 𝑋, perform 

an FOA.  Optionally, construct a new ROM, 𝑅𝑂𝑀𝑋, and add this ROM to the 

reference database. 

b. For sensitivity analysis, generate a set of design points {𝑋𝐹𝐷} as per the 

desired finite difference scheme. 

c. For each of the points 𝑋𝑅 ∈ {𝑋𝐹𝐷}, interpolate a new ROM, 

𝐼𝑅𝑂𝑀𝑅: 

i. Interpolate the ROM bases using GMP and RBF, choosing the nearest 

ROM as reference. 

ii. Interpolate the bias and normalization information using RBF. 

iii. Reconstruct the snapshots for each reference ROM, interpolate using RBF, 

and then project onto the interpolated basis. 

3. Reduced Order Analysis 

𝑅 𝑅 𝑅 𝑅 a. Using the new IROM data, [𝑋𝑅, 𝑪𝑅, 𝑩𝑹, 𝑌𝑏𝑖𝑎𝑠, 𝑌𝑛𝑜𝑟𝑚, 𝑃𝑏𝑖𝑎𝑠, 𝑃𝑛𝑜𝑟𝑚], perform 

the ROA utilizing the IROM in place of the selected disciplinary analysis 

b. Evaluate the objective and constraint functions for the ROA output, 𝑓(�̃�(𝑋𝑅)) 

and {𝑔𝑖(�̃�(𝑋𝑅))}. 

4. Sensitivity Analysis 

a. Using the resulting evaluations, perform finite difference calculations to 

determine an estimated value of 𝜕𝑓⁄𝜕𝑋 and . Proceed with the 

optimization as per usual. 
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3.2 Error Metrics 

In order to evaluate the error associated with using the IROM scheme in 

optimization, as opposed to the normal FOM optimization, it is useful to quantify several 

different error metrics.  For most of these, the basic error measure will be that of 

Normalized Root Mean Square Deviation (NRMSD).  Normalized Maximum Deviation 

(NMAX) will also provide some useful insight.  Generally, NRMSD will be used to 

quantify the general accuracy while NMAX provides an indicator as to the magnitude of 

outliers.  The specific formulation of these metrics for this work are given as 

(3.1)

(3.2)

Here, 𝑌 is the true value, or in our case the full-order value, and �̃� is the 

approximation. 𝑛𝑝 simply denotes the number of points. 

The first errors to address are specific to the ROMs being used.  POD-based 

ROMs may have a truncated set of basis vectors, which introduces truncation error to 

model outputs.  In this work, the impact of truncation is not addressed, and all POD-

based ROMs retain their full basis vector sets.  Thus, truncation error is expected to be 

zero to machine accuracy; this is verified via NRMSD as a sanity check when 

constructing the initial ROM database. 

Both POD- and RBF-based ROMs have error associated with predicting the 

function values for new input points.  This represents the accuracy the model fit to the 

true function.  These can be evaluated against the true function output with both NRMSD 
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and NMAX.  Generally in this work, a good NRMSD fit is considered the primary 

indicator, and NMAX is considered supplemental information about significant outliers. 

When discussing the error associated with the interpolation procedure itself, it is 

useful to differentiate between global and local accuracy.  Global accuracy refers to the 

ability of the interpolation model to match the full order model throughout the design 

space.  This is a measure of the interpolation model's general fit.  Local accuracy refers to 

the ability of the interpolation model to capture variations of the full-order model in the 

vicinity of a selected point.  This is important when considering the ability of the 

interpolation procedure to properly approximate gradients. 

The global error in this work is estimated after the initial ROM database 

construction by selecting a set of random test points throughout the design space.  For 

each of these points, the results of the FOA and an IROM interpolated to that point are 

compared with NRMSD and NMAX. 

The local error is evaluated in the same manner, on a set of random test points.  

Finite different stencils are generated for each test point, and FOA and IROM evaluations 

performed for each stencil point.  The spectral angle between the computed gradients can 

then be used to measure the local error.  By constructing a ROM for the test point and 

updating the interpolation model, the impact of the adaptive step can also be measured.  

The local error is sometimes referred to here as the spectral error (SPERR).  The formula 

used here scales the spectral angle by 180 degrees, in order to report the error as a 

percentage.  That is, 100% error would be a gradient pointing directly opposite the true 

gradient.  The specific formula used in this work is given as 
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̃ 𝑖 −1 ( 𝑌
𝑖∙𝑌 

𝑆𝑃𝐸𝑅𝑅 = cos ) ⁄𝜋 (3.3)
|𝑌𝑖||�̃� 𝑖| 

Since the work here is concerned primarily with sensitivity analysis, the local 

error is considered the primary indicator of a good interpolation model.  The remaining 

errors provide additional information and insight into the behavior and characteristics of 

the model.  All of these errors can be evaluated after constructing the initial ROM 

database and interpolation model, and provide valuable feedback about the choice of 

DOE design. 

For the effect of the model on the optimization itself, this is primarily considered 

through comparing the objective histories and design point paths between the two 

optimizations.  Since it is expected that the paths will not be exactly the same, evaluating 

the local accuracy at each point along the optimization path would involve either 

maintaining an interpolation model (for the FOM optimization) or evaluating the FOM 

model at each point (for the IROM optimization).  This is not performed in the current 

work due to time limitations and the difficulty it introduces to obtaining accurate timing 

and function count information for the respective methods. 
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CHAPTER IV 

TEST PROBLEMS 

4.1 Airfoil Shape Optimization 

The airfoil shape optimization (ASO) test problem was selected as a simple test 

problem for illustrating the viability of the IROM method and potential speedup.  The 

problem is based loosely on a problem by Vanderplaats and Hicks.157 

The goal of the ASO problem is to maximize the average lift-to-drag ratio of an 

airfoil over several angles of attack.  The airfoil must also meet a minimum lift 

coefficient at all angles of attack and a minimum quarter chord thickness. The flow 

conditins are chosen to represent standard sea-level with a velocity of 50 m/s. 

The design airfoil shape is represented by blending or combining several different 

basis airfoil shapes.  

More specifically, the upper and lower surfaces of four standard NACA airfoils 

are used for the basis weight factors: NACA 2412, NACA 64A215, NACA 65-415, and 

NACA 64-412.  The weight factor given to each particular basis airfoil is treated as a 

design variable that ultimately determines the resultant shape of the design airfoil.  Thus, 

a design point 𝑋 is defined by the magnitude of the weight corresponding to each basis 

airfoil, and is synonymous with a particular airfoil shape.  This results in eight total 

weight factors, four for the upper surfaces, and four for the lower surfaces.  The weight 

factors are allowed to vary from 0.0 to 1.5, with a minimum bound imposed on the sum 
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of weight factors for the upper and lower surfaces.  The lower bound on the sum is to 

avoid excessively flat surfaces.  An illustration of the airfoil shapes and blending them is 

given in Figure 4.1. 

Figure 4.1 Illustration of Blended Airfoil Shapes 

The ASO problem can be more formally specified as a constrained nonlinear 

programming problem expressed as 

1
min 𝐹(𝑌(𝑿)) = − ∑ 𝐿(𝑿, 𝛼𝑗)⁄𝐷(𝑿, 𝛼𝑗)𝛼𝑗 𝑛𝛼 𝑿=[𝑤1⋯𝑤𝑥𝑑] 

𝑚𝑖𝑛 − 𝑐𝐿 ≤ 0 s.t. 𝑔1(𝑌(𝑿)) = 𝑐𝐿 

𝑚𝑖𝑛 − 𝑡(0.25) ≤ 0 𝑔2(𝑌(𝑿)) = 𝑡𝑄𝐶 

𝑚𝑖𝑛 4𝑔3(𝑌(𝑿)) = 𝑤𝑢𝑝𝑝𝑒𝑟 − ∑𝑖=1 𝑤𝑖 ≤ 0 

𝑚𝑖𝑛 8− ∑ 𝑤𝑖 ≤ 0 𝑔4(𝑌(𝑿)) = 𝑤𝑙𝑜𝑤𝑒𝑟 𝑖=5 

𝑚𝑖𝑛 ≤ 𝑤𝑖 ≤ 𝑤𝑖
𝑚𝑎𝑥; 𝑖 = 1, 𝑛𝑥𝑑 𝑤𝑖 (3.1) 
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Here, 𝑿 represents the design variables, i.e. the collection of weight factors 

𝑤1... 𝑤𝑥𝑑. 𝑌(𝑿) indicates the analysis required to determine the lift, 𝐿(𝑿, 𝛼𝑗) and drag, 

𝐷(𝑿, 𝛼𝑗) characteristics for each of 𝑛𝛼 angles of attack.  These responses are used to 

formulate the objective function, 𝐹 as the inverse of the average lift-to-drag ratio.  The 

constraints are formulated to enforce a minimum lift coefficient, a minimum quarter 

chord thickness, bounds on the summed weights for the upper and lower surfaces, and 

side constraints on the values of the weights. 

Figure 4.2 Full Order Model for ASO Problem 

To apply the IROM scheme, it is critical to identify which system the ROMs are 

built to replace.  For the ASO problem, the full order analysis as shown in Figure 4.2 is 

taken to be the aerodynamic solver.  This system takes an input angle of attack and 

produces an output set of airfoil coefficients.  The ROMs are constructed to replace this 

system, taking the same inputs and outputs as shown in Figure 4.3. 
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Figure 4.3 Reduced Order Model for ASO Problem 

The fluid solver used for this problem is ANSYS Fluent, with grids generated 

through ANSYS ICEM-CFD.  The grid is a structured quad grid with a typical C-grid 

topology and approximately fifteen chord lengths between the airfoil and the external 

boundary. The simulation is performed with the pressure-based Navier-Stokes solver and 

the SST k-ω turbulence model, with pressure far field boundary conditions at a Reynolds 

number of approximately 3.1e6.  The overall optimization and analysis automation was 

performed in MATLAB. 

4.2 Transport Wing Optimization 

The second test problem, Transport Wing Optimization (TWO), is taken largely 

from papers by Garcelon et al and Venter and Sobieski.158–160 It is a simplified 

optimization of the airfoil thickness and aspect ratio for a transport aircraft wing similar 

to the early Boeing 767 class.  Venter and Sobieski test a particle swarm optimization 

technique on the problem; in contrast, this work applies the more traditional gradient-

based sequential quadratic programming (SQP) algorithm.  Since the objective space is 

fairly noisy for gradient-based optimization, the starting point in this work is altered to be 

in the vicinity of the gradient-based optimum found in the previous works. This allows a 

comparison of the final optimum points by way of a sanity check on the problem 
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implementation, although it is not expected that they will be exactly the same due to key 

changes in the problem.  These changes include use of different panel materials, slightly 

different load factors, and different buckling equations, among others.  The interpolated 

ROMs are used to replace the finite element analysis in the structural subproblem. 

Whereas the ASO problem was chosen as a proof-of-concept case to explore the 

speedup benefits of the IROM method, the TWO problem was chosen to examine the 

impact of utilizing IROMs within a larger system.  Although the fluid analysis for this 

problem is simplified, the structure of the problem matches well with that of a 

multidisciplinary problem.  

The TWO problem is a structured as a multilevel problem involving a system 

level range optimization of the wing by varying airfoil thickness, t/c, and the overall 

aspect ratio, AR.  The wing reference area, sweep angle, and taper ratio, as well as the 

aircraft properties such as takeoff gross weight (TOGW) and ratio of nonstructural weight 

to gross takeoff weight, are held fixed. 

For each system level design point, the minimum wing box weight is found by 

running a subproblem optimization on thicknesses of the wing spars, ribs, and surface 

panels.  The structural design must meet stress constraints for two load factors, -1.5 g and 

+3.5 g.  These load factors are distributed by a normalized combination of spanwise and 

chordwise loading distributions, shown in Table 4.1, from root to tip and leading to 

trailing nodes, respectively.  The loads are applied on the bottom nodes only.  The 

loading on each node is determined as a combination of its spanwise and chordwise 

location index found as 
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Location 1 2 3 4 5 6 7 8 9 

Span 0.1786 0.1696 0.1518 0.1429 0.1250 0.1071 0.0893 0.0268 0.0089 
Chord 0.1270 0.3175 0.3175 0.1587 0.0794 

 

 

  

 

 

𝛼+𝛽𝑗 
𝐹𝑖𝑗 = 𝑊𝐿 ∙ 𝐷𝑆𝑖 ∙ 𝐷𝐶𝑗 ∙ 𝐴𝑖𝑗 ∙ 𝐿𝐹 ∙ (4.2)

𝛼𝑟𝑒𝑓 

where 𝐹𝑖𝑗 is the force on the node, 𝑊𝐿 is the wing loading, 𝐷𝑆𝑖 and 𝐷𝐶𝑗 are the 

distribution factors for spanwise and chordwise directions, respectively, 𝐴𝑖𝑗 is an area 

associated with each node, 𝐿𝐹 is the current load factor, and the remaining term is a 

linear scaling factor based on the current angle of attack and displacement. 

Table 4.1 TWO Load Distribution Factors 

The previous work also varied the number of internal spars and ribs, which will 

not be performed here.  The spars and ribs are modeled as Al 6061, while the surface 

panels are modeled as aluminum sandwich panels consisting of Al 6061 face sheets with 

Divinycell F40 foam as the core material.  The relevant material properties used for each 

of these can be found in APPENDIX F. 
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Figure 4.4 Example of Displaced Wing Box Model 

Only the wing box and the upper and lower surface panels framed by the spars 

and ribs are modeled; the surface panels of the leading and trailing edges of the wing are 

not modeled.  There is no rib in the root chord, as those nodes are fully constrained.  

There are eight ribs at equal spacing, including the tip rib, which divide the wing box 

spanwise into eight sections.  The three spars are placed at the 25%, 50%, and 75% chord 

positions.  Additionally, triangular "rigid" elements are used to transfer forces from the 

leading and training edges to the wing box; these are RBE3 elements from the Nastran 

analysis program, which do not add stiffness to the model but instead act to distribute 

forces. All other elements are modeled with 2D quadrilateral membrane elements, 

specifically CQUAD4 elements.  The aluminum sandwich material is specified using a 

PCOMP property card, which converts the material internally into an equivalent MAT2 
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structure.  An example of the wing box displaced under loading is given in Figure 4.4, 

with exaggerated displacements. 

For each spanwise region of the wing box framed by ribs, the spars share a single 

thickness design variable, the associated outboard rib has an independent design variable, 

and each surface panel (four total per section) has independent core and total thickness 

design variables.  This creates a total of eighty thickness design variables, ten per wing 

box section.  An illustration of the wing box structural elements for one wing section, 

omitting three of the skin panels, is show in Figure 4.5. 

Figure 4.5 Illustration of wing box structural elements 

The system level problem is a search for the maximum range configuration, 

constrained only by upper and lower bounds on the system level design variables.  The 

structural subproblem is constrained by upper and lower thickness bounds, von Mises 

stress constraints on the aluminum elements, and buckling constraints on the sandwich 
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skin panels.  Additionally, each panel core thickness is constrained to be at least two 

minimum skin thicknesses below the total panel thickness. 

The specification for the system level problem is given as 

𝑇𝑂𝐺𝑀∙𝑔 𝑇𝑂𝐺𝑊 min −𝑅(𝑿) = −𝑐𝑅 ∙ ∙ ln 
𝐷 𝑐𝑛𝑠∙𝑇𝑂𝐺𝑊+𝑤𝑠𝑡𝑟 

over 

s.t. 

(4.3) 

where 𝑅(𝑿) is the simplified Breguet range equation, 𝑐𝑅 is a constant designed to 

normalize the reference wing range to 9260 km (5000 nm), 𝐷 is the wing drag force, 𝑐𝑛𝑠 

is a constant representing nonstructural weight equal to 0.61, and 𝑤𝑠𝑡𝑟 is the weight from 

the structural suboptimization multiplied by a structural overhead factor of 1.3.  The drag 

force D is determined analytically as a function of 𝑿 

𝐷𝑖 = 𝐷𝑟𝑒𝑓𝑐𝑑𝑖𝐴𝑅𝑟𝑒𝑓⁄𝐴𝑅 (4.4) 

𝐷𝑤 = 𝐷𝑟𝑒𝑓𝑐𝑑𝑤 ∙ (𝑡⁄𝑐)⁄(𝑡⁄𝑐) (4.5)
𝑟𝑒𝑓 

𝐷 = 𝐷𝑖 + 𝐷𝑤 + (1 − 𝑐𝑑𝑖 − 𝑐𝑑𝑤) ∗ 𝐷𝑟𝑒𝑓 (4.6) 

where 𝑐𝑑𝑖 and 𝑐𝑑𝑤 are coefficients representing the portion of drag corresponding 

to induced and wave drag, respectively. 
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The structural subproblem is given as: 

min 𝑊𝑜𝑝𝑡 = 𝑊(𝑻) 

over 𝑻 

𝜎1 1s.t. − 1 < 0 
𝜎𝑐𝑟 

𝜏12 1− 1 < 0 
𝜏𝑐𝑟 

2𝜎1 𝜏12+ ( ) − 1 < 0 1 
𝜎𝑐𝑟 𝜏𝑐𝑟 

𝑚𝑖𝑛 1𝑡𝑐𝑜𝑟𝑒 − 𝑡𝑝𝑎𝑛𝑒𝑙 + 2𝑡𝑠𝑘𝑖𝑛 < 0 

𝜎𝑉𝑀 − 𝑀𝑇𝑆 < 0 2 

−𝜎𝑉𝑀 − 𝑀𝐶𝑆 < 0 2 

𝑡𝑖𝑝 𝑈𝑧 − 2.0 < 0 

0.0001 𝑚 ≤ 𝑡𝑠𝑘𝑖𝑛 ≤  0.0035 𝑚 

0.0001 𝑚 ≤ 𝑡𝑐𝑜𝑟𝑒 ≤ 0.0100 𝑚 

0.0050 𝑚 ≤ 𝑡𝑠𝑝𝑎𝑟 ≤  0.1000 𝑚 

0.0005 𝑚 ≤ 𝑡𝑟𝑖𝑏 ≤  0.0250 𝑚 (4.7) 

1 For each sandwich element 

2 For each aluminum element 

where 𝑊(𝑻) is the total mass of the wing box, determined by multiplying each 

element area by the thickness and density of each material layer for that element, and 

summing over all elements.  𝑻 is a vector of eighty elements, ten per wing section, with 

eight corresponding to the total and core thicknesses of the four cover panels, one 

corresponding to the spars in the section, and one corresponding to the outboard rib for 
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that section.  The order of these variables for a single section are show in Table 4.2.  The 

overall vector 𝑻 is simply the concatenation of the variables for all eight sections.  𝑡𝑠𝑘𝑖𝑛 

for each panel is simply the difference 𝑡𝑝𝑎𝑛𝑒𝑙 − 𝑡𝑐𝑜𝑟𝑒. 𝑈𝑧
𝑡𝑖𝑝 is the tip deflection, which is 

constrained to be less than two meters. 

Table 4.2 Example of Thickness Variables for a Wing Section 

Panel 1 Panel 2 Panel 3 Panel 4 Spars Ribs 

𝑡𝑝𝑎𝑛𝑒𝑙,1 𝑡𝑐𝑜𝑟𝑒,1 𝑡𝑝𝑎𝑛𝑒𝑙,2 𝑡𝑐𝑜𝑟𝑒,2 𝑡𝑝𝑎𝑛𝑒𝑙,3 𝑡𝑐𝑜𝑟𝑒,3 𝑡𝑝𝑎𝑛𝑒𝑙,4 𝑡𝑐𝑜𝑟𝑒,4 𝑡𝑠𝑝𝑎𝑟 𝑡𝑟𝑖𝑏 

The spanwise normal stress 𝜎1, the panel shear stress 𝜏12, and the von Mises 

stresses 𝜎𝑉𝑀 are determined directly by the structural analysis for each element 

(depending on whether it is a sandwich element or an aluminum element).  The other 

variables for the buckling constraints are determined analytically, using the conservative 

assumption of simply supported edges.  For simplification, the average edge loads are 

considered to be uniform loads, and buckling is assumed to be elastic.  Specifically: 

𝑘𝑐𝜋
2 𝐸1 𝑡𝑒𝑞 2 

𝜎𝑐𝑟 = ( ) (4.8)
12(1−𝜈2) 𝑏 

𝑘𝑠𝜋
2 𝐸1 𝑡𝑒𝑞 2 

𝜏𝑐𝑟 = ( ) (4.9)
12(1−𝜈2) 𝑏 

3)1⁄3𝑡𝑒𝑞 = (6𝑡𝐹(𝑡𝑐 + 𝑡𝐹)2 + 2𝑡𝐹 (4.10) 

Here, 𝑘𝑐 and 𝑘𝑠 are compressive and shear buckling coefficients, which are taken 

to be 4.0 and 6.0, respectively.  Although the coefficients are dependent on panel aspect 

ratio, these are the minimum values over the range of aspect ratios considered in this 

work.161 Thus, they represent a conservative simplification for the purposes of this work.  

In the compressive buckling equation, 𝑏 is the length of the loaded panel edge, while in 
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the shear buckling equation, it is the shortest edge. In this work, these edges are the 

same.  The thickness 𝑡𝑒𝑞 is that of an equivalent solid plate with matching bending 

stiffness.  The derivation of this equation is given in APPENDIX G. 

The reference wing parameters are given in APPENDIX H. 
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CHAPTER V 

COMPUTATIONAL FRAMEWORK 

5.1 Implementation 

The IROM method was implemented primarily in MATLAB.  Each test problem's 

optimization was managed within MATLAB, which also acted to coordinate processes 

for any analysis and pre-processing codes.  These codes included ANSYS ICEM-CFD, 

ANSYS Fluent, and MSC Nastran. 

The primary MATLAB code was to be executed on a workstation with multiple 

cores available.  Massively parallel computational clusters were also available and were 

utilized for selected sections of the code, as well as the CFD analysis.  This 

parallelization is noted in the discussion of the results for each test problem. 

The code was structured to allow the optimization problem and analyses to be 

easily altered.  The master execution script (Master File) managed all parameters, initial 

DOE construction setup and pre-optimization error testing, and the primary optimization.  

Separate scripts for the objective and constraint functions were implemented, and were 

responsible for computing gradients when requested.  For the TWO problem, the system 

objective script was responsible for managing the suboptimization, as well as 

interpolating any IROMs for the relevant design points and passing those to the 

suboptimization.  This structure allowed for problem-specific objective and constraint 

formulation. 
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The IROM interpolation model was maintained as a global object, which could be 

updated when necessary.  The interpolation script, which implements the primary IROM 

algorithm, was kept isolated from the problem specific structures.  Diagrams for the 

general structure of the ASO and TWO test problems are shown in Figure 5.1 and Figure 

5.2, respectively. 

Critical data structures such as the testing points and results, the interpolation 

model, databases of FOM results, ROMs, and valid IROMs, and the optimization path, 

are stored as separate files and updated as needed.  This organization provides restart 

capability in the event of unforeseen failures, as well as minimizing any necessary 

recomputation as a result of changes to the problem definitions or structures.  Many 

critical parameters and settings are stored in the master file, to provide ease of 

modification. 

Monitoring of the problems is accomplished via text log files, which are also 

printed to the command window.  These log files are timestamped with both local CPU 

and wallclock information, and key sections of code print unique identifiers and timing 

information to  allow later analysis of function calls and timing information from the log 

file.  MATLAB's built-in diary functionality is also used to capture any messages, which 

appear only in the command window. 
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Figure 5.1 ASO Implementation Structure 
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Figure 5.2 TWO Implementation Structure 
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Several forms of parallelization are utilized.  The local workstation has multiple 

cores available. These are utilized via MATLAB's built in local worker pool capability 

and the parfor structure, which allows easy parallelization of a for loop. Some sections 

of code, such as the evaluation of snapshot ROMs during the interpolation process, are 

manually split into sections and then submitted to the clusters as individual jobs. 

Coordination of these workers is accomplished through input/output files, while the main 

code waits for completion of all jobs.  Finally, analyses may be conducted in coarse- and 

fine-grained parallelism; for example, all angles of attack for the ASO problem are 

evaluated as separate cluster jobs while each job utilizes multiple processors from within 

Fluent. 

Post-processing of the test problem results is also performed in MATLAB, either 

as part of the problem run through analysis of the log files, or as analysis of the output 

data structures. 

Relevant specifics regarding the computational environments for each test 

problem are discussed along with their results in CHAPTER VI.  Although the memory 

and storage requirements for these problems are nontrivial, they are well within 

workstation capabilities. Thus, the remainder of this chapter is concerned with general 

time estimates of the major problem steps.  This analysis may be useful for estimating the 

time investment each step requires during application.  Examples of parallelization are 

included here to illustrate some of the approaches used in this work; however, in general 

there are many different ways to parallelize each of the major processes.  The term ROM 

is used here sometimes to refer to the RBF models, though it should be clear from the 

context whether reference is to RBF- or POD-based ROMs. 
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5.2 DOE Construction 

This step involves generating a DOE design for the initial ROM database.  In this 

work, Latin hypercube design points selected by maximin criteria are used.  Designs for 

both the design variables, 𝑿, and the ROM parameters, 𝑷, are generated.  The full order 

model is evaluated for each design point over each parameter input, and the results are 

used as snapshot sets to create ROMs.  Thus, the resulting time for this step given 𝑁𝑋 

sample design points and 𝑁𝑃 parameter samples is a function of the time for FOM 

evaluations and the time for constructing a POD-based ROM.  These times are generally 

small enough to be measured directly.  This step may also be parallelized by a factor 𝑝. 

Therefore, the total DOE computational time can be determined as 

𝑡𝐷𝑂𝐸 = (𝑁𝑥𝑁𝑝(𝑡𝐹𝑂𝑀 + 𝑡𝑃𝑂𝐷))⁄𝑝 (5.1) 

5.3 Pre-Optimization Testing 

The testing prior to beginning optimization involves estimating the error 

associated with the chosen DOE designs, as well as constructing the initial interpolation 

model. The specific errors are truncation error, ROM error, global error, non-adaptive 

local error, and adaptive local error. 

5.3.1 Truncation Error 

Truncation error is a straightforward evaluation, requiring a negligible time 

investment, and in this work serves primarily as a sanity check.  The time estimate for 

truncation error is calculated as 

𝑡𝑡𝑟𝑢𝑛𝑐 = 𝑁𝑋𝑁𝑠𝑡𝑒𝑣𝑎𝑙𝑃𝑂𝐷 (5.2) 
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where 𝑁𝑋 is the number of design points in the ROM database,  𝑁𝑠 is the number 

of parameter snapshots, and 𝑡𝑒𝑣𝑎𝑙𝑃𝑂𝐷 is a representative time for evaluating a POD-based 

ROM. 

5.3.2 ROM Error 

ROM error is evaluated by selecting a number of random test parameters, for 

which the full order model is evaluated and compared against the ROM output for that 

design point.  This provides an estimate of how well the ROM approximates the full 

order analysis at that particular design point.  The time required to evaluate this error is 

also generally minor, and is found as 

𝑡𝑅𝑂𝑀𝑒𝑟𝑟𝑜𝑟 = 𝑁𝑃𝑁𝑃,𝑡𝑒𝑠𝑡𝑡𝐹𝑂𝑀 + 𝑁𝑝𝑁𝑝,𝑡𝑒𝑠𝑡𝑡𝑒𝑣𝑎𝑙𝑃𝑂𝐷 (5.3) 

5.3.3 Interpolation Model 

The interpolation model must be constructed in order to evaluate the global and 

local errors.  There are three steps to that process which occupy the bulk of the 

interpolation time: (1) constructing and evaluating the basis interpolation ROM, (2) 

constructing and evaluating the ROMs for the bias and normalization vectors, and (3) 

constructing and evaluating the snapshot interpolation. 

5.3.3.1 Basis Interpolation ROM 

The basis interpolation ROM is a single RBF model interpolating each projected 

basis vector across the design space.  That is, for a set of 𝑘-order bases, 𝑁𝑋 vectors of 

length 𝑛𝑝𝑑𝑖𝑚 ∙ 𝑘 are used as samples for a new RBF model, and that model is then 
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evaluated at the target design point.  Here, 𝑛𝑝𝑑𝑖𝑚 represents the dimensionality of the 

snapshots.  Since this work does not truncate the bases, the dimensionality becomes 

.𝑛𝑝𝑑𝑖𝑚 

In this work, the dominant cost of RBF construction is the leave-one-out cross-

validation fitting procedure.  An upper bound parameter, 𝑚𝑎𝑥𝑐𝑟𝑜𝑠𝑠, is available for 

limiting the growth of this procedure.  The cost of performing cross validation is a 

function of the time required to construct an RBF model for a given kernel function, 𝜙, 

and shape parameter, 𝑐. This time varies with the dimensionality of the samples, but is 

generally small enough to be measured directly. The kernel functions and shape 

parameters are also searched over their valid ranges, with 𝑁𝜙 functions and 𝑁𝑐 samples 

considered.  The cross validation may also be locally parallelized.  Thus, the total time to 

construct the basis interpolation RBF model is given by the time required to perform 

cross-validation plus the time to reconstruct the best fit as 

𝑡𝐵𝑎𝑠𝑖𝑠𝑅𝐵𝐹 = (𝑁𝜙𝑁𝑐 min{𝑚𝑎𝑥𝑐𝑟𝑜𝑠𝑠, 𝑁𝑋} 𝑡𝑏𝑢𝑖𝑙𝑑𝑅𝐵𝐹) /𝑝 + 𝑡𝑏𝑢𝑖𝑙𝑑𝑅𝐵𝐹 (5.4) 

The total time for this step is then simply the time to construct and evaluate the 

basis interpolation RBF model given as 

𝑡𝑏𝑎 = 𝑡𝐵𝑎𝑠𝑖𝑠𝑅𝐵𝐹 + 𝑡𝑒𝑣𝑎𝑙𝑅𝐵𝐹 (5.5) 

5.3.3.2 Bias and Normalization Vectors 

The snapshots for the ROMs may be biased and normalized, resulting in a 𝑌𝑏𝑖𝑎𝑠 

vector with 𝑛𝑝𝑑𝑖𝑚 elements, and a scalar 𝑌𝑛𝑜𝑟𝑚. The ROMs are interpolated elementwise 

74 



 

 

 

    

 

  

  

    

 

  

 

 

    

 
  

 

   

  

  

 

with RBF models.  Thus the time to create each ROM, 𝑡𝑅𝐵𝐹, and the time to evaluate 

them, 𝑡𝑒𝑣𝑎𝑙𝑅𝐵𝐹, are used to evaluate the bias and normalization time as 

𝑡𝑏𝑛 = 𝑛𝑝𝑑𝑖𝑚(𝑡𝑅𝐵𝐹 + 𝑡𝑒𝑣𝑎𝑙𝑅𝐵𝐹)/𝑝 (5.6) 

5.3.3.3 Snapshot Interpolation 

The interpolation of the snapshots themselves is also performed elementwise.  

This is generally the most expensive step, involving the construction and evaluation of 

𝑁𝑋 ∙ 𝑁𝑃 RBF models.  The time required can be estimated as 

𝑡𝑠𝑖 = 𝑁𝑋𝑁𝑃(𝑡𝑅𝐵𝐹 + 𝑡𝑒𝑣𝑎𝑙𝑅𝐵𝐹)/𝑝 (5.7) 

5.3.3.4 IROM Evaluation 

The cost of constructing the interpolation model is simply the sum of the previous 

major components found as 

𝑡𝐼𝑅𝑂𝑀 = 𝑡𝑏𝑎 + 𝑡𝑏𝑛 + 𝑡𝑠𝑖 (5.8) 

To evaluate an interpolation model, which does not require an update, most of the 

RBF models are already constructed and stored.  The exception is the basis interpolation 

models, which must be recomputed for each target design point because they are 

dependent on the choice of reference basis.  There is a small additional fixed cost 

representing the other steps of the interpolation function, but this is generally negligible 

compared to the main steps.  Thus, the relevant times for each section, and the total, can 

be estimated as 
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𝑡𝑏𝑎 = 𝑡𝐵𝑎𝑠𝑖𝑠𝑅𝐵𝐹 + 𝑡𝑒𝑣𝑎𝑙𝑅𝐵𝐹 (5.9) 

𝑡𝑒𝑣𝑎𝑙𝑏𝑛 = 𝑛𝑝𝑑𝑖𝑚(𝑡𝑒𝑣𝑎𝑙𝑅𝐵𝐹)/𝑝 (5.10) 

𝑡𝑒𝑣𝑎𝑙𝑠𝑖 = 𝑁𝑋𝑁𝑃(𝑡𝑒𝑣𝑎𝑙𝑅𝐵𝐹)/𝑝 (5.11) 

𝑡𝑒𝑣𝑎𝑙𝐼𝑅𝑂𝑀 = 𝑡𝑏𝑎 + 𝑡𝑒𝑣𝑎𝑙𝑏𝑛 + 𝑡𝑒𝑣𝑎𝑙𝑠𝑖 (5.12) 

5.3.4 Global Error 

The global error is a measure of the interpolation model's general goodness of fit 

for matching the full order analysis throughout the design space.  Thus, a set of 𝑁𝐺  test 

points must be evaluated with the full order model, IROMs interpolated to those target 

points, and then evaluated.  The results are compared at each of the common snapshot 

parameters to avoid influence from ROM error.  This leads to the time estimate as 

𝑡𝐺 = 𝑁𝐺(𝑁𝑃𝑡𝐹𝑂𝑀 + 𝑡𝑒𝑣𝑎𝑙𝐼𝑅𝑂𝑀 + 𝑁𝑃𝑡𝑒𝑣𝑎𝑙𝑃𝑂𝐷) (5.13) 

5.3.5 Non-Adaptive Local Error 

The local error is a measure of the error of the gradient calculation with the full 

order model and the IROMs for the same stencil.  This is performed with the objective 

function for the problem of interest; thus the time estimate for evaluating the objective 

with the full-order and reduced-order models is obviously problem dependent.  In 

general, for 𝑁𝑁𝐿 test points, each of which is of dimensionality 𝑛𝑥𝑑𝑖𝑚, each test point 

must be evaluated with the objective function utilizing the full-order model, another 

evaluation for each stencil point, and IROM interpolations and evaluations for each point 

as well.  In this work, the stencil evaluation may be parallelized.  Note that depending on 
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the finite difference method used, there may be one or two stencil points per dimension, 

represented here as 𝑐𝐹𝐷. Thus the time is generally estimated as 

𝑡𝑁𝐿 = 𝑁𝑁𝐿(𝑡𝑜𝑏𝑗𝐹𝑂𝑀 + 𝑐𝐹𝐷𝑛𝑥𝑑𝑖𝑚(𝑡𝑜𝑏𝑗𝐹𝑂𝑀 + 𝑡𝑒𝑣𝑎𝑙𝐼𝑅𝑂𝑀 + 𝑡𝑜𝑏𝑗𝐼𝑅𝑂𝑀)/𝑝) (5.14) 

5.3.6 Adaptive Local Error 

The adaptive local error is a measure of the error of the gradient calculation as 

well, but it also takes into account the effect of building a ROM for the target design 

point and updating the interpolation model accordingly.  To avoid influence from other 

test points, the reference interpolation model is stored and updated independently for 

each test point; thus, the interpolation model used for each test point consists of the 

reference model plus the ROM for that point only. 

The cost is similar to the non-adaptive local error, with the added cost of 

constructing ROMs and rebuilding the interpolation model for each test point found as 

𝑡𝑜𝑏𝑗𝐹𝑂𝑀 + 𝑡𝑃𝑂𝐷 + 𝑡𝐼𝑅𝑂𝑀 + 
𝑡𝑁𝐿 = 𝑁𝑁𝐿 ( ) (5.15) 

𝑐𝐹𝐷𝑛𝑥𝑑𝑖𝑚(𝑡𝑜𝑏𝑗𝐹𝑂𝑀 + 𝑡𝑒𝑣𝑎𝑙𝐼𝑅𝑂𝑀 + 𝑡𝑜𝑏𝑗𝐼𝑅𝑂𝑀)/𝑝 

5.4 Objective, Constraints and Gradient Evaluation 

5.4.1 ASO Problem 

Evaluating the objective and constraints for the ASO problem involves 

performing 𝑛𝛼 CFD simulations for the full-order case.  If a gradient is requested, 𝑛𝑥𝑑𝑖𝑚 ∙ 

𝑛𝛼 additional simulations must be performed in the full order case, or 𝑛𝑥𝑑𝑖𝑚 IROM 

interpolations followed by 𝑛𝑥𝑑𝑖𝑚 ∙ 𝑛𝛼 POD evaluations of the IROMs.  Note that 
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generally, once a CFD analysis, ROM construction, or IROM interpolation has been 

evaluated, it is stored and does not need to be performed again. 

In this work, the CFD simulations were parallelized in two levels, a coarse-

grained parallelism of 𝑝 = 𝑛𝛼, and a fine-grained parallelism that was used to speed up 

each respective simulation, reducing 𝑡𝐹𝑂𝑀. Generally, the cost of evaluating the 

objectives and constraints was dominated by the cost of performing the full or reduced 

order analysis. 

For the ASO problem, the adaptive step was enabled.  Thus, the time to evaluate 

the objective and constraint functions at the target point is mainly just the cost of 

performing the FOA.  The cost of evaluating the gradients of both is then a function of 

the number of stencil points, the IROM interpolations required, and the times to evaluate 

either the FOM or the IROM at each stencil point.  That is 

𝑡𝐴𝑆𝑂,𝐹𝑂𝑀 = (𝑛𝑥𝑑𝑖𝑚 + 1)(𝑛𝛼𝑡𝐹𝑂𝑀/𝑝) (5.16) 

𝑡𝐴𝑆𝑂,𝐼𝑅𝑂𝑀 = 𝑛𝛼𝑡𝐹𝑂𝑀/𝑝 + 𝑛𝑥𝑑𝑖𝑚(𝑡𝑒𝑣𝑎𝑙𝐼𝑅𝑂𝑀 + 𝑛𝛼𝑡𝑒𝑣𝑎𝑙𝑃𝑂𝐷) + 𝑡𝐼𝑅𝑂𝑀 (5.17) 

5.4.2 TWO Problem 

In the case of the TWO problem, evaluating the system objective depends on 

performing the structural suboptimization.  Although a general estimate of this time can 

be developed through testing, it is not a fixed quantity and varies throughout the overall 

optimization process.  The suboptimization is also the dominant cost of evaluating the 

objective and its gradients. 

For this problem, the objective function was responsible for interpolating the 

IROM models to replace the finite element analysis at each stencil design point.  These 
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models were then passed to the suboptimization script.  Also note that the adaptive step 

was not enabled for this problem.  Thus, given representative suboptimization times for 

the full-order and IROM-based analyses, the system level objective and gradient cost is 

essentially found as 

𝑡𝑆𝑌𝑆,𝐹𝑂𝑀 = (𝑛𝑥𝑑𝑖𝑚 + 1)𝑡𝑆𝑈𝐵,𝐹𝑂𝑀 (5.18) 

𝑡𝑆𝑌𝑆,𝐼𝑅𝑂𝑀 = 𝑡𝑆𝑈𝐵,𝐹𝑂𝑀 + 𝑛𝑥𝑑𝑖𝑚(𝑡𝑒𝑣𝑎𝑙𝐼𝑅𝑂𝑀 + 𝑡𝑆𝑈𝐵,𝐼𝑅𝑂𝑀) (5.19) 

Since the suboptimization objective is a simple analytical expression, and the 

suboptimization constraint function is evaluated simply with the FOM or IROM as 

requested, the expected relation between 𝑡𝑆𝑈𝐵,𝐹𝑂𝑀 and 𝑡𝑆𝑈𝐵,𝐼𝑅𝑂𝑀 is given as 

𝑡𝑒𝑣𝑎𝑙𝑃𝑂𝐷 𝑡𝑆𝑈𝐵,𝐼𝑅𝑂𝑀 = ( ) 𝑡𝑆𝑈𝐵,𝐹𝑂𝑀 (5.20) 
𝑡𝐹𝑂𝑀 
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CHAPTER VI 

RESULTS AND DISCUSSION 

6.1 ASO Problem 

The ASO problem was implemented in MATLAB, utilizing ANSYS ICEM-CFD 

for grid generation and ANSYS Fluent for CFD analysis.  Both the FOM and IROM 

optimizations were performed via SQP under identical computational environments, 

operating on a four-core workstation to manage the optimization and interpolation model; 

two of these cores were used.  A high performance massively parallel system, Raptor, 

was for the CFD simulations.  Each angle of attack was submitted as a separate job to the 

cluster, each of which utilized twelve cores for fine-grained parallelism managed within 

Fluent.  Each optimization started with 0.5 for each weight. 

Latin hypercube experimental designs were generated for the design space (airfoil 

weights).  Since the ROMs did not need to be evaluated at locations other than the 

original snapshot angles of attack, no DOE was needed for the parameter space.  The 

DOE for the design space was selected based on maximin criteria.  A 50-point design and 

a 100-point design were compared prior to optimization to gauge the relative benefit of 

increasing the DOE design size. 

The initial solution and ROM databases were constructed according to the DOE 

designs, an initial interpolation model for the IROMs built, and pre-optimization error 
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testing was performed.  The 50-point DOE design was selected based on the results.  The 

FOM and IROM optimizations were then performed. 

6.1.1 Interpolation Error 

A set of ten random test points was used to evaluate the 50-point DOE design and 

interpolation errors.  The points along with their finite difference stencils were evaluated 

using the FOM.  A sanity check of the truncation error for each ROM yielded a 

maximum NRMSD of 1.4E-12.  Since the ROMs were not utilized at parameters other 

than the snapshots, no ROM error was required.  A stepsize of 0.0005 was selected 

through a stepsize study. IROMs were also interpolated to each test point and its 

associated stencil for use in the non-adaptive local error estimate. 

For the adaptive local error, the reference interpolation model was stored 

separately.  A ROM was then constructed for each test point and used to update the 

interpolation model before interpolating the IROMs for the stencil points.  Each update 

operated strictly with the original interpolation model plus the test point, to avoid the 

influence of other test points.  The 100-point design was also used to evaluate adaptive 

local error in this fashion, to gauge the benefit of a larger DOE design. 

6.1.1.1 Global Error 

The global interpolation error is summarized in Table 6.1.  The maximum 

NRMSD was 0.00827, indicating a good overall fit throughout the design space.  The 

NMAX metric indicates the presence of outliers. 
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Table 6.2 ASO Local Error 

ID 

SPERR (non) 
SPERR (adapt) 
SPERR (100pt) 

1 

60.5% 
9.2% 
4.2% 

2 

61.9% 
11.5% 

7.3% 

3 

54.5% 
9.2% 

10.7% 

4 

55.0% 
12.4% 
10.6% 

5 

41.4% 
4.3% 
7.3% 

6 

66.2% 
9.6% 
7.3% 

7 

51.8% 
7.9% 

10.6% 

8 

52.1% 
19.3% 
13.5% 

9 

37.7% 
14.0% 
15.4% 

10 

47.7% 
10.6% 
13.6% 

 

 

  

  

 

 

 

  

Table 6.1 ASO Global Error 

ID 1 2 3 4 5 6 7 8 9 10 

NRMSD 0.0041 0.0072 0.0003 0.0046 0.0036 0.0024 0.0041 0.0082 0.0082 0.0006 
NMAX 17.35 7.95 217.50 15.34 18.64 28.02 15.25 8.54 9.84 11.01 

6.1.1.2  Local Error  

The non-adaptive and adaptive local errors are summarized in Table 6.2, 

expressed as percentage  spectral angle error.  

In general, the non-adaptive errors were quite large, ranging from 68 - 119 

degrees, or 37.7 - 66.2%.  This reflects the sensitivity of the objective function to errors 

in the aerodynamic coefficients, which were on the order of 1e-3. 

The adaptive local error was also evaluated, for both the 50-point and 100-point 

DOE designs.  In the 50-point case, the local error ranged from 7 - 34 degrees, or 4.3 -

19.3%.  While this error is relatively high, it is also greatly improved over the non-

adaptive case. 

The mean adaptive local error for the 50-point design was 10.8%, while 

increasing the size to 100-points only improved the mean error to 10.0%, while incurring 

substantial additional computation time.  Based on this, the 50-point error was deemed 

sufficient.  It was also of interest to examine how the optimization would perform with a 

small error in the gradient. 
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6.1.2 Optimization Paths 

The optimization paths and objective histories between the FOM and IROM 

optimizations are compared in Figure 6.1 and Figure 6.2.  The FOM run completed in 7 

iterations, while the IROM run completed in 6.  At the end of the last iteration, the 

objective values were -41.49 for the FOM optimization, and -41.42 for the IROM 

optimization.  These represent 24.1% and 23.9% improvement over the original value of -

33.43. 
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Figure 6.1 ASO Optimization Objective History 
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Figure 6.2 ASO Optimization Path 

6.1.3 Function Calls 

One of the ways to evaluate the computational cost of solution procedures for 

different problem (i.e., analysis functions) is to compare the number of function calls.  In 

this case, the primary functions of interest are the number of objective and constraint 

evaluations, the number of FOM evaluations, and the number of IROM interpolations. 

The objective and constraint functions may be requested with or without gradients, and 

the interpolation function may or may not require an update for the adaptive step; the 

number of calls requiring these specific steps is also noted.  Since the number of 

optimization iterations is difficult to predict a priori, the total counts for each 

optimization, as well as the average counts per optimization iteration, are reported in 

Table 6.3. 
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Function Total (FOM) Total (IROM) Avg/It (FOM) Avg/It (IROM) 

Objective 
(w/ Gradient) 

Constraints 
(w/ Gradients) 

Full Order Analysis 
IROM Interpolation 

(w/Model Update) 

154 183 
80 94 
80 94 
80 94 

675 90 
0 720 
0 90 

22.0 (154/7) 30.5 (183/6) 
11.4 (80/7) 15.6 (94/6) 
11.4 (80/7) 15.6 (94/6) 
11.4 (80/7) 15.6 (94/6) 

96.4 (675/7) 15.0 (90/6) 
0.0 120.0 (720/6) 
0.0 15.0 (90/6) 

 

  

 

 

  

 

  

 

  

 

Table 6.3 ASO Function Calls 

6.1.4 CPU and Wallclock Times 

A more explicit metric for computational cost is a direct measure of both CPU 

and wallclock time required by the various optimization components.  For these 

calculations, parallelism must be considered.  For these problems, the FOM evaluated 

each parameter value in an independent simulation, each of which utilized twelve cores 

on a computing cluster.  Stencil points were also evaluated in parallel for the IROM 

optimization, but in serial for the FOM optimization due to license limitations for the 

fluid solver.  When updating the interpolation model, the elements of 𝑌𝑏𝑖𝑎𝑠 and the 

outputs are modeled independently; these models were also constructed in parallel.  

Finally, RBF cross-validation was performed in parallel with two cores whenever the 

model construction was not within another level of parallelism.  Some times are 

estimated due to inherent variability, such as simulation time, or unpredictable delays, 

such as cluster queue wait time.  These times are summarized in Table 6.4.  Note that 

these are representative times based on the optimization logs; some minor variability is 

expected, and some discrepancy due to the timing of log printouts may exist.  CPU time 

for components utilizing computational clusters are estimated based on the wallclock 
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Component Total CPU Time Parallelism Wallclock Time 
(s) (Coarse / Fine) (s) 

Full Order Analysis 
RBF Construction (3 kernels, 50 pts) 
IROM Interpolation (total, w/ update) 

𝑌𝑏𝑖𝑎𝑠 Models 

�̃� Models 
Stencil Evaluation Only (FOM) 
Stencil Evaluation Only (IROM) 

~8,640 
6 

~5876 

~339 
~4,380 

~69,120 
~1,176 

4 / 12 ~180 
2 ~3 

̃)3 (𝑌𝑏𝑖𝑎𝑠), 12 (𝑌 649 

3 113 
12 365 

1 / 12 ~1140 
8 147 

 

  

 

  

 

 

time and parallelism, since the recorded CPU time is not reflective of the cluster's 

workload. 

To interpret these times, consider total CPU time to be reflective of the cost of the 

operation; wallclock time is then illustrative of real world cost which takes advantage of 

parallelism, to the indicated extent.  Also note that the FOM optimization was running for 

approximately 107.9 hours, while the IROM optimization ran for approximately 71.4 

hours. This results in average wallclock time per iteration of 15.4 hours and 11.9 hours 

for the FOM and IROM optimizations, respectively. 

Table 6.4  ASO CPU and Wallclock Times  

6.1.5 Discussion 

From the optimization runs and the plots in Figure 6.1 and Figure 6.2, it is 

possible to make a few observations.  First, it is clear that the optimization path taken by 

the IROM optimization differs from that taken by the FOM case.  This is likely due to the 

~10% mean error in the interpolated gradient calculations.  The impact of this error, and 

of the alternative path, is expected to be highly problem dependent. For this case, it 

appears from the objective history that the impact is minimal, resulting in approximately 
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the same improvement and convergence rate. Note that since the objective values are the 

results of FOAs, the error lies mainly in the search direction.  

The purpose of dealing with the errors, of course, is the computational advantage. 

Even for the relatively inexpensive CFD analysis used in this problem, the IROM 

optimization achieved a comparable degree of progress in about 67% of the total 

wallclock time of the FOM optimization.  It is also clear from the function counts that far 

fewer FOAs are required for the IROM case, approximately 13.3% (20.7% if including 

the offline DOE calculations).  This is the case even though the average evaluations per 

iteration suggest that the line searches were somewhat longer in the IROM optimization.  

With an expensive FOA, this suggests the potential for significant speedup. 

The CPU times provide further support for this potential, illustrating that the 

IROM update and interpolation costs are moderate with respect to the FOA.  However, it 

should also be noted that the costs of constructing IROMs and updating the interpolation 

model are dependent on the dimensionality of the parameter and snapshot spaces, and 

thus the real world cost would likely be a strong function of the ability to parallelize the 

process.  For an ideal speedup, the choice of reduced system that the IROM will 

interpolate should be made carefully. 

There are a few caveats to note. Like most surrogate model schemes, this scheme 

requires an initial offline computation of an experimental design.  Associated with this 

are DOE size studies, stepsize studies, and initial error estimates to evaluate candidate 

designs.  In some cases this setup could become expensive, and should be considered 

when determining the speedup advantages versus a more standard optimization approach.  
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The sensitivity of the objective and constraint gradient error to the analysis outputs is also 

problem-dependent, and may determine a minimum level of accuracy. 

6.2 TWO Problem 

The TWO problem was also implemented in MATLAB, by modifying the 

analysis and problem portions of the ASO code.  MSC/NASTRAN was used as the 

analysis code that the ROMs replaced.  A 50-point Latin Hypercube design was 

generated for both the design and parameter spaces, selected via maximin criteria.  Due to 

technical challenges, automatic cluster submission was not available for this problem.  

Thus, all test optimizations were performed on local workstations, with equal numbers of 

processors allocated to each job. 

This problem is structured as a two-level multidisciplinary problem, involving 

interaction between a system level problem, with design variables of airfoil thickness and 

wing aspect ratio, and a sublevel problem, with design variables of wall thicknesses for 

the wing structural elements.  The system level problem is responsible for the 

aerodynamic analysis and range calculations, while the sublevel problem is responsible 

for determining the optimal wing weight according to material limits, buckling 

constraints, and tip deflection limits, which must be satisfied under two loading 

conditions equivalent to -1.5g and +3.5g. 

The primary coupling between the problem levels consists of the system level 

𝑡 passing the wing geometric parameters ( ) and 𝐴𝑅 to the sublevel, which determines and 
𝑐 

returns the optimal wing weight, 𝑊𝑜𝑝𝑡. The code is structured to allow iteration between 

the aerodynamic and structural solvers to determine the convergent root angle of attack; 
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however, in this work, this iteration is omitted due to time considerations.  Thus, the 

problem analysis is that of a rigid wing.  The reference implementation also makes this 

change, noting that the actual wing could be built to a jig shape to offset  deformation due 

to aerodynamics. 

The main emphasis for the TWO problem is on examining the IROM scheme's 

capability to operate in a multidisciplinary context.  In that environment, the IROM 

would replace one of the disciplinary analyses involved in a larger multidisciplinary 

analysis.  In this case, the IROM must interact with other analyses as a more traditional 

surrogate, albeit one constructed without relying on additional full-order data.  In the 

TWO problem, this is represented by the suboptimization being performed entirely with 

either with the FOM or the IROM. 

The TWO problem is dominated by the dynamics of the structural 

suboptimization, in terms of accuracy as well as computational cost.  Additionally, the 

suboptimization problem is a highly challenging problem for gradient-based 

optimization, with numerous local minima.  The original reference work uses particle 

swarm optimization for the subproblem, noting difficulties for gradient-based methods. 

The initial test run for the TWO problem used the reference wing as a starting 

point.  Subsequently, and based on the results of each previous test, additional test points 

were selected and examined.  The optimization tolerances, which impact stopping 

conditions based on optimality criteria, changes in the design variables, and violations of 

constraints, were adjusted with each successive test point based on the optimization 

behavior observed.  The data quantity and quality were also improved with each revision 
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ID 1 2 3 4 5 6 7 8 9 10 

NRMSD 0.1650 0.0038 0.2722 0.4372 0.2635 0.0932 0.1807 1.2155 0.0184 0.4376 
NMAX 1.2781 1.2982 1.2815 1.2715 1.2831 1.2689 1.2759 1.2711 1.2938 1.2772 

in order to deepen the investigation into the behavior of the IROM scheme and the 

optimizations. 

6.2.1 Interpolation Error 

A set of ten random test points was used to evaluate DOE design and interpolation 

errors.  The points along with their finite difference stencils were evaluated using the 

FOM.  A sanity check of the truncation error for each ROM yielded a maximum NRMSD 

of 5.0E-16 for the first load case, and 6.0E-16 for the second. 

The error for each ROM was estimated through a set of 10 random test points in 

the parameter (thickness) space.  The mean ROM NRMSD error was 0.09227 for both 

load cases, and the median NRMSD error was 0.0892.  Differences between the load 

cases began in the eighth or ninth decimal place. 

A stepsize of 0.001 was selected through a preliminary stepsize study.  IROMs 

were also interpolated to each test point and its associated stencil for use in the non-

adaptive local error estimate. 

6.2.1.1 Global Error 

The global error estimate is summarized in Table 6.5 for the first load case (-1.5g) 

and Table 6.6 for the second load case (+3.5g).  The values are plotted in Figure 6.3. 

Table 6.5 TWO Global Error for Load Case 1 
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ID 1 2 3 4 5 6 7 8 9 10 
NRMSD 0.1650 0.0038 0.2722 0.4372 0.2635 0.0932 0.1807 1.2155 0.0184 0.4376 
NMAX 1.2781 1.2983 1.2815 1.2715 1.2831 1.2689 1.2759 1.2711 1.2838 1.2772 

 

 

  

  

   

  

 

  

 

 

ID 1 2 3 4 5 6 7 8 9 

SPERR (%) 73.42 34.51 19.08 93.12 19.63 43.09 38.98 70.30 72.30 43.76 

10 

Table 6.6 TWO Global Error for Load Case 2 

There was very little variation between the load cases, with differences occurring 

in the fifth or sixth decimal place.  For both load cases, the mean global error for was 

0.3087, and the median error was 0.2221.  There was also a significant outlier of 1.2155. 

6.2.1.2 Local Error 

The non-adaptive local error is summarized in Table 6.7. The mean spectral error 

was 50.81%, while the median was 43.42% error. Due to limited computational 

resources, the adaptive step was not tested for this problem. 

Table 6.7 TWO Local Error 
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6.2.2 Test Point 1 

The first test optimization began from the reference airfoil, with a airfoil thickness 

of 12.00% and an aspect ratio of 6.8751. 

6.2.2.1 Optimization Paths 

The optimization for the FOM case completed in 2 iterations and the IROM case 

completed in 4 iterations.  The paths (up to 2 iterations) were nearly identical to within 

reporting accuracy.  The path is represented in Figure 6.4 and Figure 6.5. 
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Figure 6.4 TWO Optimization Path (3D) , Test Point 1 
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Figure 6.5 TWO Optimization Path (2D) , Test Point 1 

The design variable histories, and the objective history, in terms of range, are 

shown in Figure 6.6.  The FOM optimum was found at 15% airfoil thickness and an 

aspect ratio of 15.000.  The final range for the FOM optimization was 9,596 km (5,181 

nm), a 3.63% improvement over the original value of 9,260 km (5,000 nm). The IROM 

optimum was found at 8% airfoil thickness and an aspect ratio of 7.3228.  The IROM 

optimum range was 11,358 km (6,133 nm), an improvement of 22.66%. An illustration 

of the wing planforms for the respective optimums is given in Figure 6.7 
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Function Total (FOM) Total (IROM) Avg/Obj (FOM) Avg/Obj (IROM) 

Objective 
(w/ Gradient) 

Suboptimization 
(w/ FOM) 
(w/ IROM) 
Subopt Objective 
Subopt Constraints 

(w/ FOM) 
(w/ IROM) 
(w/ Gradient) 

Full Order Analysis 
IROM Interpolation 

4 14 1.0 1.0 
2 4 0.5 0.3 
8 22 2.0 1.6 
8 14 2.0 1.0 
0 8 0.0 0.6 

36,054 120,754 9,013.5 8,625.3 
970 3,417 242.5 244.1 
970 2,184 242.5 156.0 

0 1,233 0.0 88.1 
970 3,417 242.5 244.1 

36,498 77,166 9,124.5 5,511.9 
0 16 0.0 1.1 

 

  

   

 

   

 

  

6.2.2.2 Function Calls 

The total number of function calls for this optimization are given in Table 6.8. 

Table 6.8 TWO Function Calls, Test Point 1 

6.2.3 Test Point 2 

The second test point was randomly selected with an airfoil thickness of 12.43% 

and  an aspect ratio of 5.0729. 

6.2.3.1 Optimization Paths 

The optimization for the FOM case completed in 3 iterations and the IROM case 

completed in 4 iterations.  The paths (up to 2 iterations) were nearly identical to within 

reporting accuracy.  The path is represented in Figure 6.8 and Figure 6.9. 
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The design variable histories and the objective history, in terms of range, are 

shown in Figure 6.10.  The FOM optimum was found at 8.00% airfoil thickness and an 

aspect ratio of 15.0.  The final range for the FOM optimization was 13,419 km (7,245 

nm), a 44.90% improvement over the reference value of 9,260 km (5,000 nm).  The 
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IROM optimum was found at 10.38% airfoil thickness and an aspect ratio of 8.6260.  The 

IROM optimum range was 11,042 km (5,962 nm), an improvement of 19.24% over the 

reference value. 
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Figure 6.10 TWO Design Variable and Objective Histories, Test Point 2 

Figure 6.11 TWO Optimum Wing Planforms, Test Point 2 
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Function Total (FOM) Total (IROM) Avg/Obj (FOM) Avg/Obj (IROM) 

Objective 
(w/ Gradient) 

Suboptimization 
(w/ FOM) 
(w/ IROM) 
Subopt Objective 
Subopt Constraints 

(w/ FOM) 
(w/ IROM) 
(w/ Gradient) 

Full Order Analysis 
IROM Interpolation 

5 34 1.0 1.0 
3 4 0.6 0.1 

11 42 2.2 1.2 
11 34 2.2 1.0 

0 8 0.0 0.2 
70,019 218,893 14,003.8 6,438.0 

2,042 6,262 408.4 184.1 
2,042 4,880 408.4 143.5 

0 1,382 0.0 40.6 
2,042 6,262 408.4 184.1 

70,852 170,202 14,170.4 5,005.9 
0 16 0.0 0.4 

 

  

 

   

  

  

6.2.3.2 Function Calls 

Table 6.9 TWO Function Calls, Test Point 2 

6.2.4 Test Point 3 

The third test optimization began from a randomly selected test point, with an 

airfoil thickness of 14.7% and an aspect ratio of 9.3391. 

6.2.4.1 Optimization Paths 

The optimization for the FOM case completed in 5 iterations and the IROM case 

completed in 3 iterations.  The path is represented in Figure 6.12 and Figure 6.13. 
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Figure 6.12 TWO Optimization Path (3D) , Test Point 3 
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Figure 6.13 TWO Optimization Path (2D) , Test Point 3 

The design variable and objective histories are shown in Figure 6.14. 

The FOM optimum was found at 8% airfoil thickness and an aspect ratio of 15.0.  

The final range for the FOM optimization was 11,765 km (6,352 nm), a 27.05% 

improvement over the reference value of 9,260 km (5,000 nm). 
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The IROM optimum was found at 8% airfoil thickness and an aspect ratio of 4.0.  

The IROM optimum range was 8,004 km (4,321 nm), a decrease of 13.56% from the 

reference value (and an increase of 5.05% over the starting value of 7,619 km, or 4,113 

nm). 
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Figure 6.14 TWO Design Variable and Objective Histories, Test Point 3 

Figure 6.15 TWO Optimum Wing Planforms, Test Point 3 
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Function Total (FOM) Total (IROM) Avg/Obj (FOM) Avg/Obj (IROM) 

Objective 
(w/ Gradient) 

Suboptimization 
(w/ FOM) 
(w/ IROM) 
Subopt Objective 
Subopt Constraints 

(w/ FOM) 
(w/ IROM) 
(w/ Gradient) 

Full Order Analysis 
IROM Interpolation 

9 5 1.0 1.0 
5 3 0.5 0.6 

19 11 2.1 2.2 
19 5 2.1 1.0 

0 6 0.0 1.2 
10,692 27,191 1,188.0 5,438.2 

261 595 29.0 119.0 
261 139 29.0 27.8 

0 456 0.0 91.2 
261 595 29.0 119.0 

10,824 5,190 1,202.6 1,038.0 
0 12 0.0 2.4 

 

  

 

 

  

   

 

  

  

 

6.2.4.2 Function Calls 

The total number of function calls for this optimization are given in Table 6.10. 

Table 6.10 TWO Function Calls, Test Point 3 

6.2.5 Revised Test Point 1 

Information from the first three test points was used to revise the optimization 

tolerances.  Additionally, a more detailed stepsize study was performed.  The revisions 

were tested at the first test point (the reference wing). 

6.2.5.1 Stepsize Study 

A more detailed stepsize study was conducted at a design point of 8.89% airfoil 

thickness and an aspect ratio of 14.0471.  The resulting partial derivative for the objective 

function with respect to the airfoil thickness can be seen in Figure 6.16, and the absolute 

relative error of the IROM approach in Figure 6.17.  Similarly, the partial derivative for 

the objective function with respect to the aspect ratio can be seen in Figure 6.18, and a 

plot of the absolute relative error in Figure 6.19. 
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Figure 6.16 Airfoil Thickness Stepsize Study 
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Figure 6.17 Airfoil Thickness Stepsize Study Error 
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Figure 6.18 Aspect Ratio Stepsize Study 
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Figure 6.19 Aspect Ratio Stepsize Study Error 
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Four additional points throughout the design space were selected, and smaller 

stepsize studies conducted for the partial derivative with respect to aspect ratio.  The 

partial derivatives can be seen in Figure 6.20 and the errors are shown in Figure 6.21. 
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Figure 6.20 Aspect Ratio Stepsize Study (Additional Points) 
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Figure 6.21 Aspect Ratio Stepsize Study Error (Additional Points) 

As a result of this study, a stepsize of 0.01 was selected for the airfoil thickness 

and 0.1 for the aspect ratio. 
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Table 6.11 TWO Local Error (Revised) 

ID 1 2 3 4 5 6 7 8 9 

SPERR (%) 6.39 97.12 2.34 3.02 1.77 76.10 0.21 3.74 - 0.25 
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6.2.5.2 Non-adaptive Local Error 

The local error points were retested using the new stepsizes.  Test point 9 did not 

complete due to a technical error.  The results are shown in Table 6.11. 

6.2.5.3 Optimization Path 

The optimization path for the revised first test point is shown in Figure 6.22.  The 

objective and design variable histories are show in Figure 6.23.  The FOM reached an 

optimum at 8% airfoil thickness and an aspect ratio of 15, while the IROM reached an 

airfoil thickness of 8% and an aspect ratio of 6.0002.  The FOM optimum had a range of 

13,441 km (7,257 nm), while the IROM optimum had a range of 10,179 k m (5,496 nm). 
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Figure 6.22 Optimization Path, Test Point 1 (Revised) 

106 



 

 

 

  

 

 

 

  

0 2 4 6
-1.35

-1.3

-1.25

-1.2

-1.15

-1.1

-1.05

-1

-0.95

-0.9
x 10

7 Objective History

f

Number of Iterations

 

 

0 2 4 6
0.08

0.1

0.12

0.14

Design Variable History (t/c)

Number of Iterations

(t/
c)

0 2 4 6
5

10

15
Design Variable History AR

Number of Iterations

A
R

FOM
IROM

Figure 6.23 Objective and Design Histories, Test Point 1 (Revised) 

Additionally, for this run information on the gradient histories and the search 

directions was retained.  These histories are shown in Figure 6.24 and Figure 6.25, 

respectively. 
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Figure 6.24 Gradient History, Test Point 1 (Revised) 
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Function Total (FOM) Total (IROM) Avg/Obj (FOM) Avg/Obj (IROM) 

Objective 
(w/ Gradient) 

Suboptimization 
(w/ FOM) 
(w/ IROM) 
Subopt Objective 
Subopt Constraints 

(w/ FOM) 
(w/ IROM) 
(w/ Gradient) 

Full Order Analysis 
IROM Interpolation 

13 
7 

18 
18 

0 
65,914 

1,669 
1,669 

0 
1,669 

66,727 
0 

11 
4 

16 
8 
8 

47,611 
1,222 

568 
654 

1,222 
21,064 

16 

1.00 1.00 
0.53 0.36 
1.38 1.45 
1.38 0.72 
0.00 0.72 

5,070.30 4,328.27 
128.38 111.09 
128.38 51.63 

0.00 59.45 
128.38 111.09 

5,132.84 1,914.90 
0.00 1.45 
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Figure 6.25 Search Direction History, Test Point 1 (Revised) 

6.2.5.4 Function Counts 

The total number of function calls for the revised first test point is given below in 

Table 6.12. 

Table 6.12 TWO Function Calls, Test Point 1 (Revised) 
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6.2.6 CPU and Wallclock Times 

Summaries of the total CPU and wallclock times are given in Table 6.13. 

Table 6.13 TWO CPU and Wallclock Times 

Component Total CPU Time (s) Parallelism Wallclock (s) 

Full Order Analysis ~11 1 ~11.0 
RBF Construction (2 kernels, 50 pts) ~6.80 4 1.7 
Suboptimization (FOM) ~45,440 4 ~11,360.0 
Suboptimization (IROM) ~781 4 ~195.0 
IROM Interpolation (no update) ~6,823 1 2,078.0 

𝑌𝑏𝑖𝑎𝑠 Models ~0 4 ~0.0 

�̃� Models ~6,326 4 1,581.0 

Stencil Evaluation Only (FOM) 24,291 1 24,291.0 
Stencil Evaluation Only (IROM) 7,360 1 7,360.0 

6.2.7 Discussion 

6.2.7.1 Preoptimization error 

The initial error estimation for the 50-point Latin hypercube DOE design 

exhibited moderate to high error.  The global error had a mean of about 30%, and the 

local error closer to 50%. Later examination of the test set indicated that the randomly 

generated points were not well-distributed, favoring the lower aspect ratios.  Due to 

limited computational resources, the adaptive local error could not be explored in a 

reasonable timeframe. 

The revised stepsizes yielded greatly improved local error, with a mean of about 

20%, and a median of 3.02%.  It is also clear that there were outlier points with 

significant error. 
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Based on this information, steps to improve the accuracy such as a new DOE 

design, or incorporation of the adaptive step, would be advised.  However, these steps 

were not taken here due to time limitations. 

6.2.7.2 IROM and SQP Implementation 

Before discussing the test points, it is useful to overview MATLAB's 

implementation of SQP and tolerances.  MATLAB breaks its implementation into three 

main stages: updating the Hessian approximation, solving the direction finding (QP) 

subproblem, and performing a line search.  The tolerances involve an optimality criterion, 

TolFun, change in the design variables, TolX, and violation of the constraints, TolCon. 

The Hessian approximation is maintained as the solver progresses, and updated at 

each iteration.  The general form for this update is 

𝑇 𝑇 𝑞𝑘𝑞𝑘 𝑯𝑘𝑠𝑘𝑠𝑘
𝑇𝑯𝑘 𝑯𝑘+1 = 𝑯𝑘 + − (6.1)

𝑞𝑘
𝑇𝑠𝑘 𝑠𝑘

𝑇𝑯𝑘𝑠𝑘 

where the Hessian approximation 𝑯 at iteration 𝑘 + 1 is based on an update from 

the previous data.  The update parameters are defined as 

𝑠𝑘 = 𝑥𝑘+1 − 𝑥𝑘 (6.2) 

and 

𝑚 𝑚 𝑞𝑘 = [∇𝑓(𝑥𝑘+1) + ∑𝑖=1 𝜆𝑖∇𝑔𝑖(𝑥𝑘+1)] − [∇𝑓(𝑥𝑘) + ∑𝑖=1 𝜆𝑖∇𝑔𝑖(𝑥𝑘)] (6.3) 

For this work, it is useful to be aware that the error in the Hessian approximation 

will be affected by the error in the objective and constraint gradients; more specifically, 
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by the difference in error between iteration points.  For the TWO system-level problem, 

only the objective gradient has error introduced by the IROM method, since the only 

constraints at the system level are the side bounds on the design variables. 

The approximate Hessian and the linearized constraints are used to form a 

quadratic programming subproblem, which is responsible for determining the search 

direction.  This problem has the general form 

1min 𝑞(𝑑) = 𝑑𝑡𝑯𝑑 + 𝑐𝑇𝑑 
2 

over 𝑑 

s.t. 𝐴𝑖𝑑 = 𝑏𝑖 𝑖 = 1:𝑚𝑒𝑞 

𝐴𝑖𝑑 ≤ 𝑏𝑖 𝑖 = (𝑚𝑒𝑞 + 1):𝑚 (6.4) 

That is, find the direction 𝑑 which decreases the objective function while 

satisfying the (linearized) constraints.  This problem is solved using an active set method, 

where feasible QP search directions are defined by the set of active constraints. 

For this work, it is important to note that error in the Hessian approximation with 

naturally affect the results of this QP subproblem.  Additionally, if gradients are used in 

linearizing the constraints, gradient error will affect those as well.  In this work, the 

system constraint gradients (upper and lower bounds) are not affected by the IROM error. 

After a suitable search direction has been found, the SQP algorithm proceeds with 

a line search along that direction.  This search procedure is not seeking to directly 

minimize the objective function, but rather to minimize a merit function.  This function 

adds penalty parameters as multipliers for the constraints.  The form of this merit 

function is 
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𝑚𝑒𝑞 𝑚 𝜑(𝑥) = 𝑓(𝑥) + ∑
𝑖=1 𝑟𝑖𝑔𝑖(𝑥) + ∑𝑖=𝑚𝑒𝑞+1 𝑟𝑖 max{0, 𝑔𝑖(𝑥)} (6.5) 

where the penalty parameter, 𝑟𝑖, is set iteratively as 

(𝑟𝑘)𝑖+𝜆𝑖 𝑟𝑖 = (𝑟𝑘+1)𝑖 = max {𝜆𝑖, 2 
} (6.6)

𝑖 

More importantly, the initial estimate for 𝑟𝑖 is determined as 

‖∇𝑓(𝑥)‖2𝑟𝑖 = (6.7)
‖∇𝑔𝑖(𝑥)‖2 

which shows that gradient error will impact the initial merit estimate, as well as 

subsequent updates to the merit function.  For the TWO system-level problem, the 

constraint gradients are computed directly by MATLAB and are constants; thus the error 

in the initial penalty parameter calculation will be error in the magnitude of the objective 

gradient, scaled by the appropriate factor.  The propagation of this error through the 

iterative updates may explain why the IROM line searches tend to take somewhat longer 

than the FOM line searches. 

MATLAB has several tolerance settings for use with the SQP-based optimizer.  

The primary tolerances of concern here are change in design variables, TolX, the first 

order optimality criterion, TolFun, and the constraint violation tolerance, TolCon. 

TolX is used as a stopping condition; if the magnitude of change in design 

variables is less than TolX, the optimization is stopped.  It also has an effect on the line 

search by determining some of the step sizes used, with larger tolerances allowing for 

larger adjustments in step size. 
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TolFun is used to determine when the optimizer is no longer able to improve the 

design by a meaningful amount.  Instead of relying on the objective function directly, a 

first order optimality criterion (FOOC) rooted in the augmented Lagrangian equation is 

used.  Additionally, in the solver implementation, side bounds, linear, and nonlinear 

constraints are separated.  The result is two criteria which are combined into the FOOC, 

namely 

𝑇 ∇𝑓(𝑥) + 𝐴𝑇𝜆𝑖𝑛,𝑙𝑖𝑛 + 𝐴𝑒𝑞𝜆𝑖𝑛,𝑒𝑞 
‖∇𝑥𝐿(𝑥, 𝜆)‖∞ = ‖ ‖ (6.8)

+ ∑𝜆𝑖𝑛,𝑛𝑜𝑛∇𝑐𝑖(𝑥) + ∑𝜆𝑒𝑞,𝑛𝑜𝑛∇𝑐𝑒𝑞,𝑖(𝑥) 
∞ 

where the subscripts 𝑖𝑛 and 𝑒𝑞 denote variables associated with inequality and 

equality constraints, respectively, and 𝑙𝑖𝑛 and 𝑛𝑜𝑛 denote linear and nonlinear 

constraints, respectively.  The other criterion is given by 

⌈|𝑙𝑖 − 𝑥𝑖|𝜆𝑙𝑜𝑤𝑒𝑟,𝑢⌉, ⌈|𝑥𝑖 − 𝑙𝑖|𝜆𝑢𝑝𝑝𝑒𝑟,𝑖⌉, 
‖⌈𝜆𝑔𝑔(𝑥)⌉‖ = ‖ ‖ (6.9)

∞ ⌈|(𝐴𝑥 − 𝑏)𝑖|𝜆𝑖𝑛,𝑙𝑖𝑛,𝑖⌉, ⌈|𝑐𝑖(𝑥)|𝜆𝑖𝑛,𝑛𝑜𝑛,𝑖⌉ ∞ 

The maximum infinity norm of these criteria forms the combined optimality 

criterion, the FOOC: 

max {‖⌈𝜆𝑔𝑔(𝑥)⌉‖ , ‖∇𝑥𝐿(𝑥, 𝜆)‖∞} (6.10) 
∞ 

For the IROM method, this means that errors in the objective and constraint 

gradients can have a significant impact on the optimality criterion. 
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The constraint violation tolerance, TolCon, is largely a measure of the distance 

between and design point and a constraint before the constraint is considered active or 

violated.  It has an impact both on the main SQP iterations and the QP subproblem. 

From this it is clear that, as expected, the main impact the IROM scheme has on 

the SQP scheme is due to the introduction of error into the gradient calculations.  This is 

particularly evident in the Hessian update and constraint linearizations (forming the basis 

of the QP subproblem, and hence search direction determination), the line search merit 

function, and the first order optimality criterion. 

6.2.7.3 Test Point 1 

The first optimization was performed starting from the reference wing 

configuration.  The FOM and IROM exhibit significantly different paths after the first 

two iterations, with the FOM reaching a stopping condition at a corner of the design 

space and the IROM continuing on.  The FOM stoppage is largely due to the impact of 

convergence tolerances, which were overly tight (1e-6) for this problem. 

The IROM takes a different path due to high gradient error at the corner point, 

which impacts the search direction as well as the convergence metrics used in MATLAB.  

At the first two iterations, the finite difference stencils are identical.  This allows the 

comparison of both the computed range (objective function) at those stencil points as 

well as the gradients.  The range error at the initial point is 2.80% and 0.71% for each 

stencil point, respectively.  This results in a local error of 13.77%.  However, at the 

corner point, the range errors are 14.89% and 14.68%, resulting in a local error of 

86.58%.  Although the IROM ends up finding a better optimum than the FOM solution, it 

is largely chance for this case. 
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As previously mentioned, the convergence tolerances were tight for this case, at 

1e-6 for all tolerances; this resulted in an excessive number of objective constraints 

during the line search, as well as affecting the stopping conditions for the optimization.  

The subsequent test points each loosened the tolerances until an adequate balance was 

determined. 

The FOM optimization for this point was then rerun with the looser tolerances.  In 

this case, the FOM optimization finds an optimum at 8% airfoil thickness and an aspect 

ratio of 15.0. 

Although it was not a primary objective for this test problem, the function counts 

for this case do indicate a significant reduction in the number of calls to the full order 

analysis. 

6.2.7.4 Test Point 2 

The second test point was selected at random, and ended up somewhat close to 

the reference wing.  It also implemented somewhat looser tolerances, with most 

constraints set to 1e-4 and the constraint tolerance (TolCon) for the suboptimization 

problem set to 1e-6.  The function counts indicate that there is still an excessive number 

of evaluations during the line search, suggesting the system-level design point tolerance 

(TolX) could be loosened. 

The FOM optimization for this point finds a similar optimum to the first test point 

with looser tolerances, ending at an airfoil thickness of 8% and an aspect ratio of 15.0. 

The IROM path again follows the FOM path accurately from the initial point, although it 

then diverges to an optimum with similar aspect ratio and greater airfoil thickness than 
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that found in the first optimization.  A significant reduction in the number of full order 

analysis calls is also shown. 

6.2.7.5 Test Point 3 

The third test point was another randomly selected starting point.  The tolerances 

were again loosened, to 1e-3 for most and 1e-4 for the suboptimization constraints 

(TolCon).  The FOM optimization again finds 8% airfoil thickness and an aspect ratio of 

15.0 to be the optimum.  For this point, the IROM exhibits a gradient error at the starting 

point of 16.47%, leading to an incorrect search direction.  A slight decrease in the number 

of full order analysis calls is also observed. 

For the third test point, higher quality data was collected about the system and 

sublevel optimizations.  Comparing the gradients and search directions for the system 

problem, it appears that even with the interpolation model error, the partial derivative 

𝑡 with respect to ( ) is generally correct; however, the partial derivative with respect to 𝐴𝑅 
𝑐 

is often not. This is probably due to the choice of stepsize, which was selected as 0.001 

for both variables.  This is equivalent to a change of 0.1% airfoil thickness, but only 

0.001 in aspect ratio.  This change in 𝐴𝑅 is probably too small to escape the local noise 

introduced by the interpolation error.  A larger stepsize for 𝐴𝑅, such as 0.01 or even 0.1, 

may provide better global trend information.  This motivated the more detailed stepsize 

study and revision of the first test point. 

6.2.7.6 Test Point 1 (Revised) 

The stepsize study indicates that the previous stepsize of 0.001 for both variables 

yielded a high degree of inaccuracy.  It can also be seen from the detailed views of the 
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objective function's partial derivative with respect to aspect ratio that the function is quite 

noisy.  Although the IROM and FOM derivatives do have a region of relative 

convergence, this noise makes a good match quite difficult. 

The revised stepsizes and optimization tolerances seem to have greatly improved 

the results for the first test problem.  From the optimization path, as well as the gradient 

and search direction histories, it is clear that the IROM approximates the FOM path.  

However, it then terminates prematurely at a low aspect ratio, while the FOM 

optimization continues to the corner of the design space.  This likely indicates that the 

optimization tolerances require further adjustment. 

6.2.7.7 General Test Point Discussion 

In retrospect, the FOM optimums of 8% airfoil thickness and an aspect ratio of 

15.0 is not overly surprising.  Looking at the problem formulation, there is little benefit to 

𝑡 having a larger ( ). It only adds weight and drag penalties, and the structural model is 
𝑐 

likely too simplistic to accurately capture the impact of airfoil thickness on structural 

loading.  Furthermore, the airfoil sampled in this problem is a simple NACA 0012 scaled 

in thickness, and the wing is held fixed at a very low angle of attack (1.5 deg).  A 

minimum volume constraint, a higher fidelity finite element model, or a different airfoil 

(such as one with camber) may improve this aspect of the problem. 

Based on the FOM paths, especially comparing aspect ratio and range for the third 

test point, there is an indication that the aspect ratio may be converging to a point beyond 

the upper bound of 15.0. This is shown in Figure 6.26.  Given the numerous 

simplifications in this problem, especially as weights and buckling analysis are 
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concerned, this seems likely.  Although this high aspect ratio is probably not the real-

world optimum for a wing of this type, it may reflect the optimum for the very simplified 

problem formulation used here.  To test this, an additional FOM run with the upper 

bound on aspect ratio raised to 20 was performed.  From the results in Figure 6.26, the 

problem does indeed trend toward an optimum at an aspect ratio of approximately 19.  

The IROM could not be compared, since extending the valid design space would entail 

extending the DOE design and rebuilding the interpolation model. 
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Figure 6.26 Aspect Ratio vs. Range, FOM Optimization, Test Point 3 

There are only a few test points during the optimizations where the IROM 

capability to serve as a surrogate is directly evaluated, namely where the FOM and IROM 

optimizations evaluate gradients at the same design points.  The local error test points 
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also provide information about this capability.  The error in range (objective function) for 

these points is a convenient metric, as it relies on the suboptimization for that point using 

the FOM or IROM models.  These are summarized in Table 6.14.  In general, the 

accuracy is fairly good, with a mean of 6.86% and a median of 4.65%.  Although higher 

accuracy is desirable for the gradient calculations, this data illustrates that the IROM can 

serve as a viable surrogate model for part of a larger multidisciplinary system. 

Table 6.14 Comparison of FOM/IROM Range Errors for Incidental Design Points 

(𝑡⁄𝑐) 𝐴𝑅 𝑅𝐹𝑂𝑀 (m) 𝑅𝐼𝑅𝑂𝑀 (m) Abs. Rel Error 

0.1210 6.8571 9,327,408 9,066,227 2.8% 
0.1200 6.8581 9,164,899 9,099,163 0.7% 
0.1510 15.0000 9,319,601 7,931,061 14.8% 
0.1500 15.0010 9,353,585 7,980,037 14.6% 
0.1253 5.0729 8,468,909 8,321,133 1.7% 
0.1243 5.0739 8,494,590 8,344,325 1.7% 
0.1480 9.3391 7,606,027 6,932,099 8.8% 
0.1470 9.3401 7,619,787 7,245,046 4.9% 
0.1470 5.7337 7,885,270 7,395,990 6.2% 
0.1370 5.8337 7,363,334 7,590,154 3.0% 
0.1534 14.6765 8,817,037 7,225,864 18.0% 

0.1434 14.7765 8,822,910 7,746,912 12.1% 
0.0989 14.5288 10,231,697 10,413,650 1.7% 
0.0889 14.6288 11,897,543 11,067,975 6.9% 
0.1539 9.3391 7,162,996 7,722,964 7.8% 
0.1439 9.4391 7,308,198 8,061,679 10.3% 
0.1343 12.8031 9,261,435 8,337,830 9.9% 
0.1243 12.9031 8,963,434 8,867,045 1.0% 
0.0968 5.5607 9,161,980 8,844,721 3.4% 
0.0868 5.6607 9,520,005 9,256,519 2.7% 
0.1095 8.6394 9,727,857 9,417,382 3.1% 
0.0995 8.7394 10,131,166 9,829,401 2.9% 
0.1283 14.0731 7,456,930 8,564,667 14.8% 

0.1183 14.1731 10,425,793 8,740,012 16.1% 
0.1575 14.5544 7,550,696 7,217,357 4.4% 
0.1475 14.6544 8,894,204 8,526,536 4.1% 
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6.2.7.8 CPU/Wallclock Time 

Although the TWO problem was not intended to demonstrate computational 

speedup, representative times were still measured for the first test point run.   It is clear 

that the suboptimization time using an IROM is significantly faster than using the FOM. 

The stencil evaluation indicates significant speedup for the evaluation itself, due 

to the decreased suboptimization time; however, in this case, there are four IROM 

interpolations per system objective gradient evaluations (two load cases times two design 

variables).  Each of these interpolations involves approximately 20,000 RBF models; thus 

the CPU time for evaluating the objective gradient with IROM models is actually greater 

than the FOM models for this problem, approximately 35,000 seconds for the IROM as 

opposed to approximately 24,000 seconds for the FOM.  However, it is important to note 

that the base finite element analysis takes approximately 12 seconds of CPU time in this 

problem; it is easy to see that with a more expensive analysis, the IROM speedup benefit 

would improve significantly. 
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CHAPTER VII 

CONCLUSIONS 

7.1 Summary 

A new method was developed for using reduced order models in lieu of high 

fidelity analysis during the sensitivity analysis step. A combination of proper orthogonal 

decomposition and radial basis functions was used to develop ROMs. Optimization with 

the full-order and interpolated reduced-order models was performed on airfoil shape 

optimization and transport wing optimization test problems.  The errors associated with 

the ROMs themselves as well as the gradients calculated from them were also compared.  

The effects of each approach on the overall optimization paths and function counts were 

also examined. 

The ASO results illustrated that the proposed interpolation scheme is a viable 

candidate for significantly reducing the computational cost of performing optimization 

with expensive analyses.  It also revealed several challenges and caveats involved with 

applying the interpolation scheme. 

The TWO results indicate that the IROM is capable of fitting into a 

multidisciplinary analysis structure as a more traditional surrogate model.  It also 

indicates that accuracy remains a highly problem-dependent challenge. 
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7.2 Future Work 

There is a great deal of future work which can be performed.  For example, 

investigating the impact of the interpolation process on the ROM approximation accuracy 

would be useful for further investigating the replacement an analysis in a MDO context.  

The impact of reduced basis sets in the POD models is also a subject for future 

investigation.  Given the natural benefits of this research work for MDO problems, 

integrating the method into MDO frameworks may also be a productive research path. 
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    𝑦(1𝑗) 𝑛𝑝 (1𝑗)
𝜑(1𝑗)(𝑟

(1𝑗) 
= ∑ 𝜎 𝑖 (𝑋)) 

𝑖=1 𝑖  

The objective to the ASO problem is given as: 

1 𝑛𝛼 𝑗 𝑗 
F(X⃑⃑) = 

𝑛𝛼
∑𝑗=1 𝑐𝐿⁄𝑐𝐷 (A.1) 

Note that 𝑐𝐿
𝑗 and 𝑐𝐷

𝑗  are results from a complex analysis, 𝒀(𝑋), covering 𝑗 = 1: 𝑛𝛼 

angles of attack.  We store the analysis results in a matrix, 𝒀, such that each column 

represents results for an angle of attack, and the rows correspond to 𝑐𝐿, 𝑐𝐷and 𝑐𝑀. That 

is: 

𝑐𝐿
1 𝑐𝐿

2 ⋯ 𝑐𝐿
𝑛𝛼 

1 2 𝑛𝛼 𝒀 = [𝑐𝐷 𝑐𝐷 ⋯ 𝑐𝐷 ] (A.2) 
1 2 𝑛𝛼 𝑐𝑀 𝑐𝑀 ⋯ 𝑐𝑀 

𝑗 This is just to say that we can refer to 𝑐𝐿
𝑗 as element 𝑦(1𝑗) and 𝑐𝐷 as element 𝑦(2𝑗). 

This will avoid confusion between the aerodynamic coefficients and the RBF shape 

parameter 𝑐, as well as reflecting a more general formulation.  Thus we can write the 

objective as: 

1⃑⃑ 𝑛𝛼 𝑦(1𝑗) 𝑦(2𝑗) F(X) = ∑ ⁄ (A.3) 𝑗=1 𝑛𝛼 

To approximate F, we use RBF models to approximate each element of 𝒀, thus: 

1 𝑛𝛼 ̃(1𝑗) ̃(2𝑗) F̃(X⃑⃑) = ∑ 𝑦 ⁄𝑦 (A.4) 𝑗=1 𝑛𝛼 

The approximation for 𝑦(1𝑗), and similarly for 𝑦(2𝑗), is given as: 

(A.5) 
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  ̃(1𝑗)𝛿𝑦

𝛿𝑋𝑑 
= 

(1𝑗) 
𝑛𝑝 (1𝑗) 𝛿𝜑(1𝑗) 𝛿𝑟𝑖 ∑ 𝜎
𝑖=1 𝑖 𝛿𝑟 𝛿𝑋𝑑 

   ̃(1𝑗)𝛿𝑦

𝛿𝑋𝑑 
= 𝛿 𝑛𝑝 (1𝑗)

𝜑(1𝑗)(𝑟
(1𝑗)∑ 𝜎 (𝑋)) 

𝛿𝑋𝑑 𝑖=1 𝑖 𝑖 
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− ∑𝑗=1 𝑛𝛼 𝛿𝑋𝑑 (�̃�(2𝑗)(�⃑� )) 
+ ̃(2𝑗) ̃(1𝑗)(𝑋𝛿𝑦 𝑦 ⃑ )

( )
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𝜑𝐹𝐿𝐼𝑁(𝑟) ≡ 𝑐𝑟 

φ(1𝑗) ∈ { 𝜑𝑀𝑄(𝑟) ≡ √1 + 𝑐𝑟2 

𝜑𝐼𝑀𝑄(𝑟) ≡ 1⁄√1 + 𝑐𝑟2 

 

     

    

  

  

 

  

 

  

 

  

 

Here, 𝜎(1𝑗) are the model coefficients, and 𝑛𝑝 is the number of sample points used 𝑖 

(1𝑗) to construct the model, which in this case is identical for all the ROMs.  𝜑(1𝑗) and 𝑟𝑖 

are given by: 

(A.6) 

2(1𝑗) 𝑚 𝑖 )𝑟𝑖 (𝑋) = √∑ (𝑋𝑘 − 𝑋𝑘 (A.7) 𝑘=1 

𝑖 𝑖 Where 𝑚 = dim(𝑋). We will let 𝜉𝑘 denote 𝑋𝑘 − 𝑋𝑘 for simplicity of notation.  

We can derive (4) with respect to 𝑋𝑑 as: 

(A.8) 

Which, by the product rule: 

(A.9) 

The first partial is given by: 

(A.10) 

Which by the chain rule gives: 

(A.11) 

̃(2𝑗)

The second partial, 𝛿𝑦
, is given similarly to (10).  The latter partial is 

𝛿𝑋𝑑 

straightforward, given by: 
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𝑖 1 𝑛𝑝 (1𝑗) 𝛿𝜑(1𝑗) 𝜉𝑑 ( )∑ [𝜎𝑖 ( )( )] + 
(�̃�(2𝑗)(�⃑� )) 𝑖=1 𝛿𝑟 2𝑚 𝑖 )√∑̃ 𝑘=1(𝜉𝑘 

= − ∑𝑛𝛼 𝛿𝐹 1 
𝑗=1 𝛿𝑋𝑑 𝑛𝛼 

̃(1𝑗)(𝑋 𝛿𝜑(2𝑗) 𝑖 𝑦 ⃑ ) 𝑛𝑝 (2𝑗) 𝜉𝑑( )∑ [𝜎 ( )( )] 
(�̃�(2𝑗)(�⃑� ))2 𝑖=1 𝑖 𝛿𝑟 2

√∑𝑚 𝑖 )[ 𝑘=1(𝜉𝑘 ] 
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𝛿𝑟 
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𝑖 2 2𝛿𝑟𝑖 𝛿 𝑚 𝑖 ) 𝑖 ) 𝜉𝑑 = √∑ (𝜉𝑘 + (𝜉𝑑 = (A.12) 𝑘=1 𝛿𝑋𝑑 𝛿𝑋𝑑 2 2𝑘≠𝑑 𝑚 𝑖 ) 𝑖 )√∑𝑘=1(𝜉𝑘 + (𝜉𝑑 
𝑘≠𝑑 

Where we are separating the terms held constant during the partial derivation for 

clarity.  The first partial of the right hand side of (10) may take different forms depending 

on which kernel function was selected as the best fit for the particular ROM, and this may 

not match between different elements of 𝒀. For each included kernel function, the 

relevant partials are given by: 

(A.13) 

(A.14) 

(A.15) 

Putting this all together, the overall sensitivity is given by: 

(A.16) 
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This analytical derivative is evaluated for the ASO problem by using the 

following MATLAB code: 

% Analytical Derivative for ASO Objective using IROM models 

function [dF] = drbf(IROM,X) 

load param.mat Param 

dF = zeros(1,size(IROM.ROMC(1,1).ROM.X,2)); 

for d=1:size(IROM.ROMC(1,1).ROM.X,2) %m

 sns = 0;

 for j=1:size(IROM.ROMC,2) %ns

 snp = 0;

        y1ja = eval_rom(IROM.ROMC(1,j).ROM,X);

 y2ja = eval_rom(IROM.ROMC(2,j).ROM,X);

 c1j = IROM.ROMC(1,j).ROM.c;

 c2j = IROM.ROMC(2,j).ROM.c;

 for i=1:size(IROM.ROMC(1,j).ROM.X,1) %np

 s1ji = IROM.ROMC(1,j).ROM.sig(i);

            s2ji = IROM.ROMC(2,j).ROM.sig(i);

            r1 = norm(X-IROM.ROMC(1,j).ROM.X(i,:),2);

            r2 = norm(X-IROM.ROMC(2,j).ROM.X(i,:),2);

            rd1 = X(d)-IROM.ROMC(1,j).ROM.X(i,d);

            rd2 = X(d)-IROM.ROMC(2,j).ROM.X(i,d);

 % Adjust dphi/dr for the ROM-specific kernel

 if(strcmp(IROM.ROMC(1,j).ROM.phiname, 'FLIN')==1)

 d1 = c1j;

 elseif(strcmp(IROM.ROMC(1,j).ROM.phiname, 'MQ')==1)

 d1 = (c1j*r1)/sqrt(1+c1j*r1*r1);

 elseif(strcmp(IROM.ROMC(1,j).ROM.phiname, 'IMQ')==1)

                d1 = (-c1j*r1)/((1+c1j*r1*r1)^1.5);

 else

 error('ROM(1,%d) kernel function is not recognized',j);

 end

            if(strcmp(IROM.ROMC(2,j).ROM.phiname, 'FLIN')==1)

 d2 = c2j;

 elseif(strcmp(IROM.ROMC(2,j).ROM.phiname, 'MQ')==1)

 d2 = (c2j*r2)/sqrt(1+c2j*r2*r2);

 elseif(strcmp(IROM.ROMC(2,j).ROM.phiname, 'IMQ')==1)

                d2 = (-c2j*r2)/((1+c2j*r2*r2)^1.5);

 else

                error('ROM(2,%d) kernel function is not recognized',j);

 end

 xd1 = X(d)*ones(size(IROM.ROMC(1,j).ROM.X,1),1);

 xd2 = X(d)*ones(size(IROM.ROMC(2,j).ROM.X,1),1);

           d3 = rd1/sqrt(dot(xd1-IROM.ROMC(1,j).ROM.X(:,d),xd1-

IROM.ROMC(1,j).ROM.X(:,d)));

            d4 = rd2/sqrt(dot(xd2-IROM.ROMC(2,j).ROM.X(:,d),xd2-

IROM.ROMC(2,j).ROM.X(:,d)));

            snp = snp + (1/y2ja)*(s1ji)*(d1)*(d3) + (-

y1ja/(y2ja*y2ja))*(s2ji)*(d2)*(d4);

 end %i

 sns = sns + snp;

 end %j

    dF(d) = (-1/size(IROM.ROMC,2))*sns; 

end %d 
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B.1 Construction 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%% 

% Construct a POD-based ROM object 

% Jeff Parrish 

% Mississipi State University 

% 

% Standard POD formulation with options for biasing and normalizing 

inputs 

% of the system of interest.  Outputs are always normalized. Flags are 

0 or 1. 

% 

% Inputs: 

% X is row-ordered parameter vectors of snapshots 

% Y is column-ordered snapshots 

% k is the POD model order 

% P is the global parameter structure, optionally passed as a direct 

copy 

% 

% Outputs: 

% ROM is a structure with the following fields: 

% ROM.type - Text field denoting ROM type, 'POD' for this 

% ROM.X - Parameters (possibly biased/normalized) 

% ROM.basis - Basis vectors (columnwise, k cols) 

% ROM.C - Coordinates of snapshots, snapshot i in row i, 

basis vector j in col j 

% ROM.k - Model Order (as constructed, not requested) 

% ROM.RBF - RBF ROM for interpolating coordinates by 

parameter 

% ROM.xbias - X-bias vector, if any 

% ROM.xscale - X-scaling term, if any 

% ROM.ybias - Y-bias vector, if any 

% ROM.yscale - Y-scaling term, if any 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%% 

function [ROM] = build_pod(X,Y,k,P) 

global Param; 

if(nargin == 4)

 Param = P; 

end 

% Check for problems 

if(size(X,1) ~= size(Y,2))

 error('build_pod(): Row count of X must match column count of Y.') 

end 

% vprint(sprintf(' 

build_pod(X[%dx%d],Y[%d,%d],%d)',size(X),size(Y),k)); 

% Peform Biasing/Normalization 

% Note that biasing is performed prior to normalization 

% Thus to reconstruct a value, first scale and then add the bias 

% Bias/Norm Defaults: 
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xbias=zeros(1,size(X,2)); 

xscale=1; 

ybias=zeros(size(Y,1),1); 

yscale=1; 

% Bias: 

if(Param.podinbias == 1)

 xbias = mean(X); % mean of each column (dim) of X, as 

row vector -> average coordinate vector 

for i=1:size(X,1) % bias each parameter row to center on 

xbias average

        X(i,:) = X(i,:)-xbias;

 end 

end 

% Normalize: 

if(Param.podinnorm == 1)

 xscale = norm(X(1,:),2); % Find scale

 for i=2:size(X,1)

 if(norm(X(i,:),2) > xscale)

 xscale = norm(X(i,:),2);

 end

 end

 for i=1:size(X,1) % Scale each parameter

 X(i,:) = X(i,:)/xscale;

 end 

end 

% Bias/Normalized Snapshots 

if(Param.podoutbias == 1)

 ybias = mean(Y,2); % mean of each row (dim) of Y, as 

column vector -> average snapshot vector

 for i=1:size(Y,2) % bias each snapshot column to center 

on ybias average

        Y(:,i) = Y(:,i)-ybias;

 end 

end 

if(Param.podoutnorm == 1)

 yscale = norm(Y(:,1),2); % Find scale

 for i=2:size(Y,2)

 if(norm(Y(:,i),2) > yscale)

 yscale = norm(Y(:,i),2);

 end

 end

 for i=1:size(Y,2) % Scale each snapshot

 Y(:,i) = Y(:,i)/yscale;

 end 

end 

% Perform SVD 

[U,S,V] = svd(Y); 

% Basis Vectors 

if(k<=0)

 mk = size(U,2); 

else

 mk = min(k,size(U,2)); 

end 
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if(mk<k)

 warning('build_pod(): Requested model order k=%d is greater than 

maximum model dimensionality %d; reducing model order.',k,mk); 

end 

basis = U(:,1:mk); 

% Normalize the basis vectors 

for i=1:mk

 basis(:,i) = basis(:,i)/norm(basis(:,i),2); 

end 

% Project snapshots onto basis vectors, get coordinates 

for si=1:size(Y,2)

 for bi=1:mk

 C(si,bi) = dot(basis(:,bi), Y(:,si)');

 end 

end 

size(C); 

% Construct RBF model for parameter/coordinate interpolation 

ERBF = build_rbf(X, C'); 

% Pack ROM 

ROM.type = 'POD'; 

ROM.X = X; 

ROM.basis = basis; 

ROM.C = C; 

ROM.k = mk; 

ROM.RBF = ERBF; 

ROM.xbias = xbias; 

ROM.xscale = xscale; 

ROM.ybias = ybias; 

ROM.yscale = yscale; 

end 

B.2 Evaluation 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%% 

% Evaluate POD-based ROM 

% Jeff Parrish 

% Mississipi State University 

% 

% Evaluates ROMs constructed with build_pod(). X is a row-wise 

ordering of 

% evaluation points; to evaluate multiple points, place one parameter 

% vector per row. 

% 

% Inputs: 

% ROM - ROM Model built with build_pod(); 

% X - Parameter vectors to evaluate, row ordered. Multiple rows will 

be 

% evaluated separately. That is, X is [nsamp x ndim]. 
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% P - Global Parameter structure, optionally passed as direct copy 

% 

% Outputs: 

% Y - ROM Outputs, column wise - col Y_i corresponds to row X_i 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%% 

function [Y] = eval_pod(ROM,X,P) 

global Param; 

if(nargin == 3 && isempty(Param))

 Param = P; 

end 

% Check for problems 

if(strcmp(ROM.type,'POD') ~= 1)

    error('eval_pod(): ROM is not a standard POD-based model.') 

end 

% vprint(sprintf(' eval_pod(ROM,X[%d,%d]))',size(X))); 

% If ROM biased/normalized parameters, do the same to the new X 

Xset = X; 

for i=1:size(X,1)

 if(Param.podinbias)

        Xset(i,:) = X(i,:)-ROM.xbias;

 end

 if(Param.podinnorm)

 Xset(i,:) = X(i,:)/ROM.xscale;

 end 

end 

Y = zeros(length(ROM.ybias),size(X,1)); 

for i=1:size(X,1) 

% For each new evaluation point

 % Construct (possibly) biased/normalized output vector

 Xbn = Xset(i,:);

    Ybn = zeros(length(ROM.ybias),1);

 Cbn = eval_rom(ROM.RBF,Xbn); 

% Interpolate coordinates, store as row vector

 % Unbias/unnormalize 

Y(:,i) = ROM.basis*Cbn; 

% If ROM biased/normalized parameters, do the same to the new X 

if(Param.podoutnorm) 

Y(:,i) = Y(:,i)*ROM.yscale; 

end 

if(Param.podoutbias) 

Y(:,i) = Y(:,i)+ROM.ybias; 

end 

end 

end 
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  RBF BASED ROM (MATLAB CODE) 
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C.1 Construction 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%% 

% Construct a RBF-based ROM object 

% Jeff Parrish 

% Mississipi State University 

% 

% Standard RBF formulation with options for biasing and normalizing 

inputs 

% and outputs of the system of interest. Flags are 0 or 1. 

% 

% Inputs: 

% X is row-ordered parameter vectors of snapshots 

% Y is column-ordered snapshots 

% P - Global Parameter structure, optionally passed as direct copy 

% 

% Outputs: 

% ROM is a structure with the following fields: 

% ROM.type - Text field denoting ROM type, 'RBF' for this 

% ROM.sig - Weighting Matrix 

% ROM.X - Parameters (possibly biased/normalized) 

% ROM.phi - RBF 

% ROM.xbias - X-bias vector, if any 

% ROM.xscale - X-scaling term, if any 

% ROM.ybias - Y-bias vector, if any 

% ROM.yscale - Y-scaling term, if any 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%% 

function [ROM] = build_rbf(X,Y,P) 

global Param; 

if(nargin == 3)

 Param = P; 

end 

% tic 

% vprint(sprintf(' 

builf_rbf(X[%dx%d],Y[%d,%d]))',size(X),size(Y))); 

useparfor=0; 

% Check for problems 

if(size(X,1) ~= size(Y,2))

 error('build_rbf(): Row count of X must match column count of Y.') 

end 

% Peform Biasing/Normalization 

% Note that biasing is performed prior to normalization 

% Thus to reconstruct a value, first scale and then add the bias 

% Bias/Norm Defaults: 

% if(matlabpool('size') <= 1) 

% vprint(sprintf('\t\tRBF: Bias/Norm...')); 

% end 

xbias=zeros(1,size(X,2)); 

xscale=1; 
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ybias=zeros(size(Y,1),1); 

yscale=1; 

% Bias: 

if(Param.rbfinbias == 1)

 xbias = mean(X); % mean of each column (dim) of X, as 

row vector -> average coordinate vector 

for i=1:size(X,1) % bias each parameter row to center on 

xbias average

        X(i,:) = X(i,:)-xbias;

 end 

end 

if(Param.rbfoutbias == 1)

 ybias = mean(Y,2); % mean of each row (dim) of Y, as 

column vector -> averaege snapshot vector

 for i=1:size(Y,2) % bias each snapshot column to center 

on ybias average

        Y(:,i) = Y(:,i)-ybias;

 end 

end 

% Normalize: 

if(Param.rbfinnorm == 1)

 xscale = norm(X(1,:),2); % Find scale

 for i=2:size(X,1)

 if(norm(X(i,:),2) > xscale)

 xscale = norm(X(i,:),2);

 end

 end

 for i=1:size(X,1) % Scale each parameter

 X(i,:) = X(i,:)/xscale;

 end 

end 

if(Param.rbfoutnorm == 1)

 yscale = norm(Y(:,1),2); % Find scale

 for i=2:size(Y,2)

 if(norm(Y(:,i),2) > yscale)

 yscale = norm(Y(:,i),2);

 end

 end

 for i=1:size(Y,2) % Scale each snapshot

 Y(:,i) = Y(:,i)/yscale;

 end 

end 

% Search kernel functions for best fit 

bestphi = Param.phirbf(1).phi; 

bestc = Param.rbf_crng(1); 

besterr = 10; 

Prm = Param; 

if(size(X,1) > Param.rbfmaxcross)

 cvi(:,1) = randperm(size(X,1));

 cvi(Param.erbfmaxcross+1:end) = []; 

else

 cvi = 1:size(X,1); 

end 

err = ones(length(cvi),1)*10000; 
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for p = 1:length(Param.phirbf)

 phi = Param.phirbf(p).phi;

    % Search c-calues to fit the model

 for c = Param.rbf_crng

 % Perform cross validation to gauge model fit 

% if(matlabpool('size')<=1) 

% vprint(sprintf('RBF: Performing Cross Validation for phi 

%d/%d and c=%0.4f (max %0.4f)',p,length(Param.phirbf),c, 

Param.rbf_crng(end))); 

% vprint(sprintf('RBF: Cross Validation will be performed 

for %d samples',length(cvi))); 

% end

 ROMcv.type = 'RBF';

        ROMcv.sig = zeros(size(X,1)-1,size(Y,2));  % nsamp x ydim

 ROMcv.c = 0;

        ROMcv.X = zeros(size(X)-[1 1]);

 ROMcv.phi = phi;

 ROMcv.xbias=zeros(1,size(X,2));

 ROMcv.xscale=1;

 ROMcv.ybias=zeros(size(Y,1),1);

 ROMcv.yscale=1; 

err = 10000*ones(length(cvi));

 rbfib = Param.rbfinbias;

 rbfin = Param.rbfinnorm;

 rbfob = Param.rbfoutbias;

 rbfon = Param.rbfoutnorm;

 nw = matlabpool('size');

 if(useparfor)

 top=tic;

 parfor op = 1:length(cvi)

 Rcv = ROMcv; 

% if(nw<=1) 

% fprintf(1,'.'); 

% end

 warning('off','all');

 opi = cvi(op);

                % Omit the opi-th point

 Xcv = X;

 Xcv(opi,:) = [];

 Ycv = Y;

 Ycv(:,opi) = [];

 % bias and scaling will change depending on omitted 

points!

 % Bias:

 if(rbfib == 1) 

Rcv.xbias = mean(Xcv); % mean of each 

column (dim) of X, as row vector -> average coordinate vector 

for i=1:size(Xcv,1) % bias each parameter 

row to center on xbias average 

Xcv(i,:) = Xcv(i,:)-Rcv.xbias; 

end

 end

 if(rbfob == 1) 

Rcv.ybias = mean(Ycv,2); % mean of each 

row (dim) of Y, as column vector -> averaege snapshot vector 
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for i=1:size(Ycv,2) % bias each snapshot 

column to center on ybias average 

Ycv(:,i) = Ycv(:,i)-Rcv.ybias; 

end

 end

 % Normalize:

 if(rbfin == 1) 

Rcv.xscale = norm(Xcv(1,:),2); % 

Find scale 

for i=2:size(Xcv,1) 

if(norm(Xcv(i,:),2) > Rcv.xscale) 

Rcv.xscale = norm(Xcv(i,:),2);

 end 

end 

for i=1:size(Xcv,1) % Scale 

each parameter 

Xcv(i,:) = Xcv(i,:)/Rcv.xscale; 

end

 end

 if(rbfon == 1) 

Rcv.yscale = norm(Ycv(:,1),2); % 

Find scale 

for i=2:size(Ycv,2) 

if(norm(Ycv(:,i),2) > Rcv.yscale) 

Rcv.yscale = norm(Ycv(:,i),2); 

end 

end 

for i=1:size(Ycv,2) % Scale each 

snapshot 

Ycv(:,i) = Ycv(:,i)/Rcv.yscale; 

end

 end

 % Build distance weighting matrix

 A = zeros(size(Xcv,1));

 for i=1:size(Xcv,1) 

for j=(i):size(Xcv,1) 

A(i,j) = phi(norm(Xcv(j,:)-Xcv(i,:)), c); 

A(j,i) = A(i,j); 

end

 end

 % Solve for weighting coefficients

                % Using mldivide (\) for solving A*sig = Y using 

pseudoinverse

                sig = A\(Ycv');

 % Pack for testing

 Rcv.sig = sig;

 Rcv.c = c;

 Rcv.X = Xcv;

 % Evaluate at omitted point

 yop = eval_rbf(Rcv, X(opi,:), Prm);

 if(max(isnan(yop)) >= 1) 

error('RBF: (parfor) yop contains NAN values. 

Cannot continue.')

 end

 % Record error 
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 err(op) = nrmsd(Y(:,op), yop);

 end % op

 ttop = toc(top); 

% if(matlabpool('size')<=1) 

% fprintf(1,'\n'); 

% vprint(sprintf('RBF: Cross Validation took %0.8f 

seconds',ttop)); 

% end

 else

 top=tic;

 Rcv = ROMcv;

 Afull = zeros(size(X,1));

            A = zeros(size(X,1)-1);

 for i=1:size(X,1)

 for j=(i):size(X,1) 

Afull(i,j) = phi(norm(X(j,:)-X(i,:)), c); 

Afull(j,i) = Afull(i,j);

 end

 end

 for op = 1:length(cvi) 

% tic 

% if(nw<=1) 

% fprintf(1,'.'); 

% end

 warning('off','all'); 

% fprintf(1,'(1)'); toc, tic

 opi = cvi(op); 

% fprintf(1,'(2)'); toc, tic

                % Omit the opi-th point

 Xcv = X;

 Xcv(opi,:) = [];

 Ycv = Y;

 Ycv(:,opi) = []; 

% fprintf(1,'(3)'); toc, tic

 % bias and scaling will change depending on omitted 

points!

 % Bias:

 if(rbfib == 1) 

Rcv.xbias = mean(Xcv); % mean of each 

column (dim) of X, as row vector -> average coordinate vector 

for i=1:size(Xcv,1) % bias each parameter 

row to center on xbias average 

Xcv(i,:) = Xcv(i,:)-Rcv.xbias; 

end

 end 

% fprintf(1,'(4)'); toc, tic

 if(rbfob == 1) 

Rcv.ybias = mean(Ycv,2); % mean of each 

row (dim) of Y, as column vector -> averaege snapshot vector 

for i=1:size(Ycv,2) % bias each snapshot 

column to center on ybias average

   Ycv(:,i) = Ycv(:,i)-Rcv.ybias; 

end

 end 

% fprintf(1,'(5)'); toc, tic 
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Find scale 

% 

each parameter 

% 

Find scale 

% 

snapshot 

% 

% 

% 

% 

% 

% 

% 

% 

% 

pseudoinverse 

% 

% 

% Normalize:

 if(rbfin == 1) 

Rcv.xscale = norm(Xcv(1,:),2); % 

for i=2:size(Xcv,1) 

if(norm(Xcv(i,:),2) > Rcv.xscale) 

Rcv.xscale = norm(Xcv(i,:),2); 

end 

end 

fprintf(1,'(6)'); toc, tic 

for i=1:size(Xcv,1) % Scale 

Xcv(i,:) = Xcv(i,:)/Rcv.xscale; 

end

 end 

fprintf(1,'(7)'); toc, tic

                if(rbfon == 1) 

Rcv.yscale = norm(Ycv(:,1),2); % 

for i=2:size(Ycv,2) 

if(norm(Ycv(:,i),2) > Rcv.yscale) 

Rcv.yscale = norm(Ycv(:,i),2); 

end 

end 

fprintf(1,'(8)'); toc, tic 

for i=1:size(Ycv,2) % Scale each 

Ycv(:,i) = Ycv(:,i)/Rcv.yscale; 

end

 end 

fprintf(1,'(9)'); toc, tic

 % Build distance weighting matrix 

A = zeros(size(Xcv,1)); 

for i=1:size(Xcv,1) 

for j=(i):size(Xcv,1)

         A(i,j) = phi(norm(Xcv(j,:)-Xcv(i,:)), c); 

A(j,i) = A(i,j); 

end 

end

 A = Afull;

 A(opi,:) = [];

 A(:,opi) = []; 

fprintf(1,'(10)'); toc, tic

 % Solve for weighting coefficients

                % Using mldivide (\) for solving A*sig = Y using 

                sig = A\(Ycv'); 

fprintf(1,'(11)'); toc, tic

 % Pack for testing

 Rcv.sig = sig;

 Rcv.c = c;

 Rcv.X = Xcv; 

fprintf(1,'(12)'); toc, tic

 % Evaluate at omitted point

 yop = eval_rbf(Rcv, X(opi,:), Prm); 
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% fprintf(1,'(13)'); toc, tic 

% if(max(isnan(yop)) >= 1) 

% error('RBF: (parfor) yop contains NAN values. 

Cannot continue.') 

% end 

% fprintf(1,'(13)'); toc, tic

                % Record error

 err(op) = nrmsd(Y(:,op), yop); 

% fprintf(1,'(14)'); toc, tic

 end % op

 ttop = toc(top); 

% if(matlabpool('size')<=1) 

% fprintf(1,'\n'); 

% vprint(sprintf('RBF: Cross Validation took %0.8f 

seconds',ttop)); 

% end

 end % useparfor

 % If better average error, save new best fit

 if(mean(abs(err)) < besterr)

 besterr = mean(err);

 bestphi = phi;

 bestc = c;

 end

 end % c 

end % p 

% Build final fitted ROM 

% if(matlabpool('size')<=1) 

% vprint(sprintf('RBF: Building Selected ROM')); 

% end 

% Build distance weighting matrix 

A = eye(size(X,1)); 

for i=1:size(X,1)

 for j=(i):size(X,1)

        A(i,j) = bestphi(norm(X(j,:)-X(i,:)), bestc);

 A(j,i) = A(i,j);

 end 

end 

% Solve for weighting coefficients 

% Using mldivide (\) for solving A*sig = Y using pseudoinverse 

sig = A\(Y'); 

% sig = inv(A)*(Y'); 

% Pack ROM 

% if(matlabpool('size')<=1) 

% vprint(sprintf('RBF: Packing')); 

% end 

ROM.type = 'RBF'; 

ROM.sig = sig; 

ROM.c = bestc; 

ROM.X = X; 

ROM.phi = bestphi; 

ROM.xbias = xbias; 

ROM.xscale = xscale; 

ROM.ybias = ybias; 
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ROM.yscale = yscale; 

ROM.err = besterr; 

% toc 

% vprint(sprintf( '\n')); % DEBUG 

end 

C.2 Evaluation 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%% 

% Evaluate RBF-based ROM 

% Jeff Parrish 

% Mississipi State University 

% 

% Evaluate a ROM constructed with build_rbf(). 

% 

% Inputs: 

% ROM - ROM Model build with build_rbf(); 

% X - Parameter vectors to evaluate, row ordered. Multiple rows will 

be 

% evaluated separately. That is, X is [nsamp x ndim]. 

% P - Global Parameter structure, optionally passed as direct copy 

% 

% Outputs: 

% Y - ROM Outputs, column wise - col Y_i corresponds to row X_i 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%% 

function [Y] = eval_rbf(ROM,X,P) 

global Param; 

if(nargin>2 && isempty(Param))

 Param = P; 

end 

% vprint(sprintf(' eval_rbf(ROM,X[%d,%d]))',size(X))); 

% Check for problems 

if(strcmp(ROM.type,'RBF') ~= 1)

    error('eval_rbf(): ROM is not a standard RBF-based model.') 

end 

% If ROM biased/normalized parameters, do the same to the new X 

for i=1:size(X,1)

 if(Param.rbfinbias)

        X(i,:) = X(i,:)-ROM.xbias;

 end

 if(Param.rbfinnorm)

 X(i,:) = X(i,:)/ROM.xscale;

 end 

end 

% Construct (possibly) biased/normalized output vector 

Y = zeros(length(ROM.ybias),size(X,1)); 

for i=1:size(X,1) 

Ybn = zeros(1,length(ROM.ybias)); 
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 Xbn = X(i,:);

 for p=1:size(ROM.X,1)

        pr = ROM.phi(norm(Xbn-ROM.X(p,:),2), ROM.c);

 Ybn = Ybn + (ROM.sig(p,:) * pr); 

% For multidimensional Y, use rows of sigma -> the # cols of sigma 

equal the # cols of Y

 end 

Y(:,i) = Ybn'; 

% If ROM biased/normalized parameters, do the same to the new X 

if(Param.rbfoutnorm) 

Y(:,i) = Y(:,i)*ROM.yscale; 

end 

if(Param.rbfoutbias) 

Y(:,i) = Y(:,i)+ROM.ybias; 

end 

end 

end 
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157 



 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

  

  

  

  

  

  

  

  

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D.1 Construction 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%% 

% Construct a ERBF-based ROM object 

% Jeff Parrish 

% Mississipi State University 

% 

% Extended RBF formulation with options for biasing and normalizing 

inputs 

% and outputs of the system of interest. Flags are 0 or 1. 

% Based on the ERBF formulation proposed by Messac et al. 

% 

% Inputs: 

% X is row-ordered parameter vectors of snapshots 

% Y is column-ordered snapshots 

% P - Global Parameter structure, optionally passed as direct copy 

% 

% Outputs: 

% ROM is a structure with the following fields: 

% ROM.type - Text field denoting ROM type, 'RBF' for this 

% ROM.sig - Weighting Matrix 

% ROM.X - Parameters (possibly biased/normalized) 

% ROM.phi - RBF 

% ROM.gamma - Smoothness Parameter 

% ROM.n - Nonlinear NRBF Order 

% ROM.xbias - X-bias vector, if any 

% ROM.xscale - X-scaling term, if any 

% ROM.ybias - Y-bias vector, if any 

% ROM.yscale - Y-scaling term, if any 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%% 

function [ROM] = build_erbf(X,Y,P) 

global Param; 

if(nargin == 3)

 Param = P; 

end 

tic 

% vprint(sprintf(' 

build_erbf(X[%dx%d],Y[%d,%d]))',size(X),size(Y))); 

% Check for problems 

if(size(X,1) ~= size(Y,2))

 error('build_erbf(): Row count of X must match column count of Y.') 

end 

% %If X is one-dimensional, use linear RBF 

% if(size(X,2) == 1) 

% phi = @(r)(r); 

% end 

% Peform Biasing/Normalization 

% Note that biasing is performed prior to normalization 

% Thus to reconstruct a value, first scale and then add the bias 
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% Bias/Norm Defaults: 

xbias=zeros(1,size(X,2)); 

xscale=1; 

ybias=zeros(size(Y,1),1); 

yscale=1; 

% Bias: 

if(Param.erbfinbias == 1)

 xbias = mean(X); % mean of each column (dim) of X, as 

row vector -> average coordinate vector 

for i=1:size(X,1) % bias each parameter row to center on 

xbias average

        X(i,:) = X(i,:)-xbias;

 end 

end 

if(Param.erbfoutbias == 1)

 ybias = mean(Y,2); % mean of each row (dim) of Y, as 

column vector -> averaege snapshot vector

 for i=1:size(Y,2) % bias each snapshot column to center 

on ybias average

        Y(:,i) = Y(:,i)-ybias;

 end 

end 

% Normalize: 

if(Param.erbfinnorm == 1)

 xscale = norm(X(1,:),2); % Find scale

 for i=2:size(X,1)

 if(norm(X(i,:),2) > xscale)

 xscale = norm(X(i,:),2);

 end

 end

 for i=1:size(X,1) % Scale each parameter

 X(i,:) = X(i,:)/xscale;

 end 

end 

if(Param.erbfoutnorm == 1)

 yscale = norm(Y(:,1),2); % Find scale

 for i=2:size(Y,2)

 if(norm(Y(:,i),2) > yscale)

 yscale = norm(Y(:,i),2);

 end

 end

 for i=1:size(Y,2) % Scale each snapshot

 Y(:,i) = Y(:,i)/yscale;

 end 

end 

% Search kernel functions for best fit 

vprint(sprintf('\t\tFitting ERBF Rom: ')); 

bestphi = Param.phirbf(1).phi; 

bestc = Param.rbf_crng(1); 

bestgamma = Param.erbf_grng(1); 

bestn = Param.erbf_nrng(1); 

besterr = 10; 

Prm=Param; 
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if(size(X,1) > Param.erbfmaxcross)

 cvi(:,1) = randperm(size(X,1));

 cvi(Param.erbfmaxcross+1:end) = []; 

else

 cvi = 1:size(X,1); 

end 

err = ones(length(cvi),1)*10000; 

for ph = 1:length(Param.phirbf)

 phi = Param.phirbf(ph).phi;

    % Search n-values to fit the model

 for n = Param.erbf_nrng

        % Search gamma-values to fit the model

 for gamma = Param.erbf_grng

            % Search c-values to fit the model

 for c = Param.rbf_crng

 vprint(sprintf('_')); % DEBUG

 err = [];

                % Perform cross validation to gauge model fit

 parfor op = 1:length(cvi) 

vprint(sprintf('.')); % DEBUG 

opi = cvi(op); 

ROMcv = []; 

% Omit the op-th point 

Xcv = X; 

Xcv(opi,:) = []; 

Ycv = Y; 

Ycv(:,opi) = []; 

% Build distance weighting matrix 

A = eye(size(Xcv,1)); 

for i=1:size(Xcv,1) 

for j=i:size(Xcv,1) 

A(i,j) = phi(norm(Xcv(j,:)-Xcv(i,:)),c); 

A(j,i) = A(i,j); 

end 

end 

% Build NRBF Coefficient Matrix 

m = size(Xcv,2); 

np = size(Xcv,1); 

B = zeros(np, 3*m*np); 

BL = zeros(1, m*np); 

BR = zeros(1, m*np); 

BB = zeros(1, m*np); 

for r=1:np 

% Per Row of B 

for p=1:np 

% Per Sample Point 

for d=1:m 

% Per Dimensiona of Parameter Space 

% Difference in dimension d between 

point r and point p 

dx = Xcv(r,d)-Xcv(p,d); 

% Set phi_ functions based on 

dimensional distance 

if(dx <= -gamma)                                                

% Region I 

160 



 

 

                                    

 

                                     

                                     

                                

 

                                     

                                     

                                     

                                

 

                                     

                                     

                                     

                                

 

                                     

                                    

 

                                     

                                 

                                

 

                                 

                                 

                                 

                             

                         

                         

                         

                     

                     

                     

                     

                     

                     

                     

                     

                     

                     

                     

                    

 

                     

                                                                   

 

                        

 

                                                              

 

                        

 

                        

 

                         

phiL = (-n*gamma^(n-1))*dx + (1-

n)*gamma^n; 

phiR = 0; 

phiB = dx; 

elseif(dx > -gamma && dx <= 0)                                  

% Region II 

phiL = dx^n; 

phiR = 0; 

phiB = dx; 

elseif(dx > 0 && dx <= gamma) 

% Region III 

phiL = 0; 

phiR = dx^n; 

phiB = dx; 

else 

% Region IV 

phiL = 0; 

phiR = (n*gamma^(n-1))*dx + (1-

n)*gamma^n; 

phiB = dx; 

end 

% Set in appropriate index of BL, BR, 

BB 

BL((p-1)*m+d) = phiL; 

BR((p-1)*m+d) = phiR; 

BB((p-1)*m+d) = phiB; 

end 

end 

% Concatenate into row Br 

B(r,:) = [BL BR BB]; 

end 

% Build Combined System Matrix 

% Note that Abar is [np] x [np + 3*xdim*np] 

Abar = [A B]; 

% Solve Linear Programming Subproblem 

% (b assumed to be vector of ones, so omitted here 

% min (over lpx): b*lpx 

% st: Abar*lpx = F 

% lpx_i >= 0 

lpx = ones(np+3*m*np, size(Ycv,1)); 

F = Ycv'; 

options = optimset('Display', 'off', 'UseParallel', 

'always', 'MaxIter', 200); 

% Constrained LP Subproblems 

for yd = 1:size(Ycv,1) 

% For each y dimension 

b = ones(size(lpx(:,yd))); 

% System multiplier is just ones 

Fi = F(:,yd); 

% System output samples for dimension d 

[lpx(:,yd), fval, exitflag] = linprog(b, [], 

[], Abar, Fi, zeros(size(lpx,1),1), [], [], options); 

% If no feasible solution is found, use the 

pseudoinverse method 

if(exitflag ~= 1) 
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%warning('build_erbf(): LP Subproblem did 

not find a feasible solution. Defaulting to pseudoinverse method.'); 

lpx(:,yd) = Abar\Fi; 

end 

end 

% Split coefficients into component vectors 

% Note that each vector has pointwise components in 

rows, and y-dimension 

% components along columns 

sig = lpx(1:np, :); 

alpL = lpx((np+1):((m+1)*np), :); 

alpR = lpx(((m+1)*np+1):((2*m+1)*np), :); 

beta = lpx(((2*m+1)*np+1):((3*m+1)*np), :); 

% Pack ROM 

ROMcv.type = 'ERBF'; 

ROMcv.sig = sig; 

ROMcv.alpL = alpL; 

ROMcv.alpR = alpR; 

ROMcv.beta = beta; 

ROMcv.X = Xcv; 

ROMcv.phi = phi; 

ROMcv.gamma = gamma; 

ROMcv.n = n; 

ROMcv.c = c; 

ROMcv.xbias = xbias; 

ROMcv.xscale = xscale; 

ROMcv.ybias = ybias; 

ROMcv.yscale = yscale; 

% Evaluate at omitted point 

yop = eval_erbf(ROMcv, X(opi,:), Prm); 

% Record error 

err(op) = nrmsd(Y(:,opi), yop);

 end % op

 % If better average error, save new best fit

 if(mean(abs(err)) < besterr) 

besterr = mean(err); 

bestphi = phi; 

bestc = c; 

bestgamma = gamma; 

bestn = n;

 end

 end % c

 end % gamma

 end % n 

end % ph 

% Build ROM 

phi = bestphi; 

c = bestc; 

n = bestn; 

gamma = bestgamma; 

% Build distance weighting matrix 

A = eye(size(X,1)); 

for i=1:size(X,1)

 for j=i:size(X,1) 
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        A(i,j) = phi(norm(X(j,:)-X(i,:)),c);

 A(j,i) = A(i,j);

 end 

end 

% Build NRBF Coefficient Matrix 

m = size(X,2); 

np = size(X,1); 

B = zeros(np, 3*m*np); 

BL = zeros(1, m*np); 

BR = zeros(1, m*np); 

BB = zeros(1, m*np); 

for r=1:np % 

Per Row of B

 for p=1:np % 

Per Sample Point

 for d=1:m % 

Per Dimensiona of Parameter Space

 % Difference in dimension d between point r and point p

            dx = X(r,d)-X(p,d);

 % Set phi_ functions based on dimensional distance

 if(dx <= -gamma)                                                

% Region I

                phiL = (-n*gamma^(n-1))*dx + (1-n)*gamma^n;

 phiR = 0;

 phiB = dx;

 elseif(dx > -gamma && dx <= 0)                 

% Region II

 phiL = dx^n;

 phiR = 0;

 phiB = dx;

 elseif(dx > 0 && dx <= gamma) 

% Region III

 phiL = 0;

 phiR = dx^n;

 phiB = dx;

 else 

% Region IV

 phiL = 0;

                phiR = (n*gamma^(n-1))*dx + (1-n)*gamma^n;

 phiB = dx;

 end

 % Set in appropriate index of BL, BR, BB

            BL((p-1)*m+d) = phiL;

            BR((p-1)*m+d) = phiR;

            BB((p-1)*m+d) = phiB;

 end

 end

 % Concatenate into row Br

 B(r,:) = [BL BR BB]; 

end 

% Build Combined System Matrix 

% Note that Abar is [np] x [np + 3*xdim*np] 

Abar = [A B]; 

% Solve Linear Programming Subproblem 

% (b assumed to be vector of ones, so omitted here 
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% min (over lpx): b*lpx 

% st: Abar*lpx = F 

% lpx_i >= 0 

lpx = ones(np+3*m*np, size(Y,1)); 

F = Y'; 

options = optimset('Display', 'off'); 

% Constrained LP Subproblems 

for yd = 1:size(Y,1) 

% For each y dimension

 b = ones(size(lpx(:,yd))); 

% System multiplier is just ones

 Fi = F(:,yd); 

% System output samples for dimension d

 [lpx(:,yd), fval, exitflag] = linprog(b, [], [], Abar, Fi, 

zeros(size(lpx,1),1), [], [], options);

    % If no feasible solution is found, use the pseudoinverse method

 if(exitflag ~= 1)

 %warning('build_erbf(): LP Subproblem did not find a feasible 

solution. Defaulting to pseudoinverse method.');

        lpx(:,yd) = Abar\Fi;

 end 

end 

% Split coefficients into component vectors 

% Note that each vector has pointwise components in rows, and y-

dimension 

% components along columns 

sig = lpx(1:np, :); 

alpL = lpx((np+1):((m+1)*np), :); 

alpR = lpx(((m+1)*np+1):((2*m+1)*np), :); 

beta = lpx(((2*m+1)*np+1):((3*m+1)*np), :); 

% Pack ROM 

ROM.type = 'ERBF'; 

ROM.sig = sig; 

ROM.alpL = alpL; 

ROM.alpR = alpR; 

ROM.beta = beta; 

ROM.X = X; 

ROM.phi = phi; 

ROM.gamma = gamma; 

ROM.n = n; 

ROM.c = c; 

ROM.xbias = xbias; 

ROM.xscale = xscale; 

ROM.ybias = ybias; 

ROM.yscale = yscale; 

ROM.err = besterr; 

toc 

vprint(sprintf( '\n')); % DEBUG 

D.2 Evaluation 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%% 

% Evaluate ERBF-based ROM 
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% Jeff Parrish 

% Mississipi State University 

% 

% Inputs: 

% ROM - ROM Model build with build_erbf(); 

% X - Parameter vectors to evaluate, row ordered. Multiple rows will 

be evaluated separately. 

% P - Global Parameter structure, optionally passed as direct copy 

% 

% Outputs: 

% Y - ROM Outputs, column wise - col Y_i corresponds to input 

parameter X_i 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%% 

function [Y] = eval_erbf(ROM,X,P) 

global Param; 

if(nargin>2)

 Param = P; 

end 

% vprint(sprintf(' eval_erbf(ROM,X[%d,%d]))',size(X))); 

% Check for problems 

if(strcmp(ROM.type,'ERBF') ~= 1)

    error('eval_erbf(): ROM is not a standard ERBF-based model.') 

end 

% If ROM biased/normalized parameters, do the same to the new X 

for i=1:size(X,1)

 if(Param.erbfinbias)

        X(i,:) = X(i,:)-ROM.xbias;

 end

 if(Param.erbfinnorm)

 X(i,:) = X(i,:)/ROM.xscale;

 end 

end 

% Model parts 

np = size(ROM.X,1); 

m = size(ROM.X,2); 

sig = ROM.sig; 

alpL = ROM.alpL; 

alpR = ROM.alpR; 

beta = ROM.beta; 

phi = ROM.phi; 

% Construct (possibly) biased/normalized output vector 

Y = zeros(length(ROM.ybias),size(X,1)); 

for xi=1:size(X,1) % For each 

evaluation point

 Xi = X(xi,:); % Current 

Evaluation Point

 for yd = 1:size(ROM.ybias,1) % For each 

output dimension 
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 for p=1:np % For each 

sample point (from original model)

            dx = Xi-ROM.X(p,:);  % Get 

difference vector, evaluation point from sample point

 for xd=1:m % For each x 

dimension, determine nrbf contribution; want as rows to add to y-dim

                % Build vectors of phi_ along x-dim, for this sample 

point

 if(dx(xd) <= -ROM.gamma)                                                

% Region I 

phiL(1,xd) = (-ROM.n*ROM.gamma^(ROM.n-1))*dx(xd) + 

(1-ROM.n)*ROM.gamma^ROM.n; 

phiR(1,xd) = 0; 

phiB(1,xd) = dx(xd);

 elseif(dx(xd) > -ROM.gamma && dx(xd) <= 0)                                  

% Region II 

phiL(1,xd) = dx(xd)^ROM.n; 

phiR(1,xd) = 0; 

phiB(1,xd) = dx(xd);

                elseif(dx(xd) > 0 && dx(xd) <= ROM.gamma)                                   

% Region III 

phiL(1,xd) = 0; 

phiR(1,xd) = dx(xd)^ROM.n; 

phiB(1,xd) = dx(xd);

 else 

% Region IV 

phiL(1,xd) = 0; 

phiR(1,xd) = (ROM.n*ROM.gamma^(ROM.n-1))*dx(xd) + 

(1-ROM.n)*ROM.gamma^ROM.n; 

phiB(1,xd) = dx(xd);

 end

 end % xd

 % Build vectors of alpha_ and beta, for this sample point, 

for this y-dimension

            alpLp = alpL(((p-1)*m+1):(p*m), yd);

            alpRp = alpR(((p-1)*m+1):(p*m), yd);

            betap = beta(((p-1)*m+1):(p*m), yd);

            % Sum radial and nonradial contributions for this sample 

point

 dot1 = dot(alpLp,phiL);

 dot2 = dot(alpRp,phiR);

 dot3 = dot(betap,phiB);

 Y(yd,xi) = Y(yd,xi) + (sig(p,yd)*ROM.phi(norm(dx,2),ROM.c)) 

+ dot1 + dot2 + dot3;

 % If ROM biased/normalized parameters, do the same to the 

new Y 

if(Param.erbfoutnorm)

 Y(:,xi) = Y(:,xi)*ROM.yscale;

 end 

if(Param.erbfoutbias)

 Y(:,xi) = Y(:,xi)+ROM.ybias;

 end 

end % p 

end % yd 

end % xi 

end 
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 INTERPOLATION METHOD (MATLAB CODE) 
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----

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%% 

% Interpolate a ROM object, sanpshots elementwise 

% Jeff Parrish 

% Mississipi State University 

% 

% Interpolate a ROM model's elements directly. Interpolation uses 

Grassman 

% Manifold Projection for matrices to ensure preservation of 

orthonormal 

% properties, and standard Radial Basis Functions for direct 

interpolation 

% of scalars or vectors. (Note that GMP vectorizes the projected 

matrices 

% for direct element-wise interpolation via RBF, and then reconstructs 

the 

% interpolated matrix for reprojection back into basis space.) 

% 

% Currently, ROMs based on POD and RBF are supported.  Extended RBFs 

may be 

% incorporated in the future. 

% 

% Inputs: 

% X - Row vector coresponding to a single design point 

% 

% POD-Based ROMs: 

% ROM is a structure with the following fields: 

% ROM.type - Text field denoting ROM type, 'POD' for this 

% ROM.X - Parameters (possibly biased/normalized) 

% ROM.basis - Basis vectors (columnwise, k cols) 

% ROM.C - Coordinates of snapshots, snapshot i in row i, 

basis vector j in col j 

% ROM.k - Model Order (as constructed, not requested) 

% ROM.RBF - RBF ROM for interpolating coordinates by 

parameter 

% ROM.xbias - X-bias vector, if any 

% ROM.xscale - X-scaling term, if any 

% ROM.ybias - Y-bias vector, if any 

% ROM.yscale - Y-scaling term, if any 

% 

% RBF-Based ROMs: 

% ROM is a structure with the following fields: 

% ROM.type - Text field denoting ROM type, 'RBF' for this 

% ROM.sig - Weighting Matrix 

% ROM.X - Parameters (possibly biased/normalized) 

% ROM.phi - RBF 

% ROM.xbias - X-bias vector, if any 

% ROM.xscale - X-scaling term, if any 

% ROM.ybias - Y-bias vector, if any 

% ROM.yscale - Y-scaling term, if any 

%----------------------------------------------------------------------

function [I TR B0 CV] = interprom(X, rdb, prm, irm, irmdb, useclust) 

global romdb; 

global Param; 
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global irom; 

global iromdb; 

if(nargin >= 2)

 RDB = rdb; 

else

 RDB = romdb; 

end 

if(nargin >= 3)

 Prm = prm; 

else

 Prm = Param; 

end 

if(nargin >= 4)

 irom = irm; 

end 

if(nargin >= 5)

 iromdb = irmdb; 

end 

if(nargin >= 6)

 usecluster = useclust; % use cluster for snapshot roms; 0 or 

nworkers per Y-col (irom update) 

else

 usecluster=0; 

end 

IRM = irom; 

heal_irom = 0; % Heal flag for any missing ROMs 

debug=1; % DEBUG! Obviously. 

clust = 'raptor'; 

nodes = 1; 

wallhours = 1; 

useparfor=1; % Use parfor loops or not 

if(debug)

    vprint(sprintf('\t\t050 interprom(%0.4f %0.4f %0.4f %0.4f %0.4f 

%0.4f %0.4f %0.4f)',X)); 

end 

% Compile list of X-coords in romdb for comparison to IROM model. 

% Update model if different. 

XR = zeros(length(RDB), size(RDB(1).X,2)); 

for i=1:length(RDB)

 XR(i,:) = RDB(i).X; 

end 

if(isequal(size(irom.X),size(XR)))

 if(isequal(irom.X, XR))

 update_irom = 0;

 else

 update_irom = 1;

 if(debug)

            vprint(sprintf('\t\t\t055 Updating IROM...'));

 end

        vprint('EQUAL SIZE, NONEQUAL VALUE');

 vprint(sprintf('>>> [%0.4f %0.4f], [%0.4f %0.4f], [%0.4f 

%0.4f], [%0.4f %0.4f], [%0.4f %0.4f]', irom.X));

 vprint(sprintf('>>> [%0.4f %0.4f], [%0.4f %0.4f], 

[%0.4f %0.4f], [%0.4f %0.4f], [%0.4f %0.4f]', XR)); 
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 % Clear temporary interpolated ROM storage

 iromdb(:) = [];

 end 

else

 vprint('NONEQUAL SIZE');

 vprint(sprintf('irom.X[%d, %d]: ',size(irom.X)))

    vprint(sprintf('\n[%0.4f %0.4f], [%0.4f %0.4f], [%0.4f %0.4f], 

[%0.4f %0.4f], [%0.4f %0.4f]', irom.X));

 vprint(sprintf('XR[%d, %d]: ',size(XR)))

 vprint(sprintf('[%0.4f, %0.4f, %0.4f, %0.4f, %0.4f, %0.4f, %0.4f, 

%0.4f]', XR));

    vprint(sprintf('\n[%0.4f %0.4f], [%0.4f %0.4f], [%0.4f %0.4f], 

[%0.4f %0.4f], [%0.4f %0.4f]', XR));

 update_irom = 1;

 iromdb(:) = [];

 if(debug)

        vprint(sprintf('\t\t\t055 Updating IROM...'));

 end 

end 

% Search for existing interpolated ROM in iromdb; if it matches, return 

it. 

% Otherwise build as usual and add new ROM to iromdb. 

if(checkdb(X,iromdb))

 vprint(sprintf(' Found a current IROM for X.\b'));

 R = getdb(X,iromdb);

 I = R.ROM;

 TR = [];

 B0 = [];

 CV = [];

 return; 

end 

% Select a reference basis from the database - in this case, the 

nearest point 

vprint(' Selecting reference basis...'); 

k = RDB(1).ROM.k; 

d = norm(X-RDB(1).X,2); 

di = 1; 

for i=2:length(RDB)

    if(norm(X-RDB(i).X,2) < d)

        d = norm(X-RDB(i).X,2);

 di = i;

 end 

end 

% Set Reference Data 

X0 = RDB(di).X; 

B0 = RDB(di).ROM.basis(:,1:Prm.k); 

C0 = RDB(di).ROM.C; 

GMP1 = eye(size(B0,1)) - B0*B0'; 

% Project ROM bases into tangent space 

vprint(' Projecting ROMs into tangent manifold...'); 
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for i=length(RDB):-1:1  % Preallocate backwards! Faster for list, 

still have to iterate: can't preallocate all fields simultaneously

 GMP(i).T = zeros(size(B0)); 

end 

for i=1:length(RDB)

 if (i==di)

 continue

 end

 Mgmp = GMP1 * RDB(i).ROM.basis(:,1:Prm.k) * inv(B0' * 

RDB(i).ROM.basis(:,1:Prm.k)); %#ok<MINV>

 [Ui,Si,Vit] = svd(Mgmp,0);

 GMP(i).T = Ui*atan(Si)*Vit; 

end 

% Gather info for RBF interps 

vprint(' Gathering RBF interpolation info...'); 

Xset = XR; 

% [nsamp x xdim] 

Mset = zeros(size(GMP(1).T,1)*size(GMP(1).T,2), length(RDB)); 

% [Tn*Tm x nsamp] 

Mr = size(GMP(1).T,1); 

if(update_irom)

 % xbset = zeros(length(RDB(1).ROM.xbias), length(RDB)); 

% [_dim x nsamp]

 % xnset = zeros(length(RDB(1).ROM.xscale), length(RDB)); 

% ...

    ybset = zeros(length(RDB(1).ROM.ybias), length(RDB));

 ynset = zeros(length(RDB(1).ROM.yscale), length(RDB)); 

end 

for i=1:length(RDB)

 Mset(:,i) = vectorize(GMP(i).T);

 if(update_irom)

 % xbset(:,i) = RDB(i).ROM.xbias; 

% Note we are storing these as column vectors, as expected for the 

system output for RBF interpolation

 % xnset(:,i) = RDB(i).ROM.xscale;

 ybset(:,i) = RDB(i).ROM.ybias;

 ynset(:,i) = RDB(i).ROM.yscale;

 end 

end 

% Interpolate matrices elementwise using Radial Basis Functions 

vprint(' Building Projected Basis ROMs...'); 

vprint(sprintf(' Building basis interpolation ROMs (%d 

total)...',length(RDB(1).ROM.ybias))); 

RBFM = build_rbf(Xset, Mset, Prm); 

for i=length(RDB(1).ROM.ybias):-1:1

 RBFyb(i).ROM = []; 

end 

if(update_irom) 

vprint(' (Update IROM) Updating Y-Bias and Y-Norm ROMs...');

 % RBFxb = build_erbf(Xset, xbset);

 % RBFxn = build_erbf(Xset, xnset);

 L = length(RDB(1).ROM.ybias); 
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 if(usecluster) % ad hoc parallelism for speeding up this update 

silliness

 ndiv = usecluster;

 Lrng = [ 1:max(floor(L/ndiv),1):L (L+1) ];

 save one.mat L ndiv Lrng Xset ybset Param update_irom -v7;

 % Sub

        for j=1:length(Lrng)-1

 if(exist(sprintf('%s/irom_one_%d.mat',pwd,j),'file') == 2)

 vprint(sprintf('Sub: irom_one_%d.mat already exists, 

skipping...',j));

 continue

 end

            filename = sprintf('buildirom_one_%d.scr',j);

            jobname = sprintf('irom_one-%d\n',j);

 cmd = sprintf('matlab -nodisplay -r "buildirom_one(%d); 

quit"\n',j);

 makeparjob(filename, jobname, clust, nodes, wallhours, 

cmd);

 cmd = sprintf('qsub -q @raptor.hpc.msstate.edu -d %s %s', 

pwd, filename);

 system(cmd);

 vprint(sprintf('Submitted buildirom_one_%d.scr',j));

 pause(0.1); % Give the queue a breather!

 end

 % Wait

 for i=1:L

            RBFyb(i).ROM = [];

 end

        for j=1:length(Lrng)-1

 vprint(sprintf('Wait: Waiting on 

%s/irom_one_%d.mat',pwd,j));

 while(exist(sprintf('%s/irom_one_%d.mat',pwd,j),'file') == 

0)

 end

 end

 % Load

        for k=1:length(Lrng)-1

 vprint(sprintf('Load: Waiting on 

%s/irom_one_%d.mat',pwd,k));

 while(exist(sprintf('%s/irom_one_%d.mat',pwd,k),'file') == 

0)

 end

 cmd = sprintf('grep \"COMPLETE\" buildirom_one-%d-

log.txt',k);

 running = 1;

 while(running ~= 0)

 running = system(cmd);

 pause(1);

 end

 load(sprintf('irom_one_%d.mat',k),'RBFyb_tmp');

 for j=1:length(RBFyb_tmp)

 if(~isempty(RBFyb_tmp(j).ROM)) 

RBFyb(j).ROM = RBFyb_tmp(j).ROM;

 end

 end 
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 end

 elseif(useparfor) % not using cluster parallelism

 nw = Prm.nworkers;

        lyb = length(RDB(1).ROM.ybias);

 parfor i=1:length(RDB(1).ROM.ybias)

 if(nw <= 1)

 vprint(sprintf(' (Update IROM) Building Y-Bias 

ROM(%d)/(%d)...',i,lyb));

 end

 RBFyb(i).ROM = build_rbf(Xset, ybset(i,:), Prm);

        end

 else

 for i=1:length(RDB(1).ROM.ybias)

 vprint(sprintf(' (Update IROM) Building Y-Bias 

ROM(%d)/(%d)...',i,length(RDB(1).ROM.ybias)));

 RBFyb(i).ROM = build_rbf(Xset, ybset(i,:), Prm);

 end

 end

 vprint(' (Update IROM) Building Y-Norm ROM...');

 RBFyn = build_rbf(Xset, ynset, Prm); 

else

 vprint(' Using existing Y-Bias and Y-Norm ROMs...');

 % RBFxb = irom.ROMxb;

 % RBFxn = irom.ROMxn;

    for i=1:length(RDB(1).ROM.ybias)

 RBFyb(i).ROM = irom.ROMyb(i).ROM;

 end

 RBFyn = irom.ROMyn; 

end 

% Evaluate basis interpolation ROM 

vprint(' Evaluating interpolated basis...'); 

TR = matrixize(eval_rom(RBFM, X, Prm), Mr); 

% xbR = eval_rom(RBFxb, X, Prm)';                                              

% Convert these back to row vectors 

% xnR = eval_rom(RBFxn, X, Prm)'; 

ybR = zeros(length(RDB(1).ROM.ybias),1); 

for i=1:length(RDB(1).ROM.ybias)

 ybR(i,1) = eval_rom(RBFyb(i).ROM, X, Prm)'; 

end 

ynR = eval_rom(RBFyn, X, Prm)'; 

% Project interpolated basis from manifold back into basis space 

vprint(' Reprojecting new basis into basis space...'); 

[UR,SR,VRt] = svd(TR,0); 

BR = B0*VRt'*diag(cos(diag(SR))) + UR*diag(sin(diag(SR))); 

% Normalize the basis vectors 

% TODO - Review this step (necessary? impact?) 

for i=1:min(Prm.k,size(BR,2))

 BR(:,i) = BR(:,i)/norm(BR(:,i),2); 

end 

% Collect snapshots 

vprint(' Collecting Snapshots for interpolation...'); 

173 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

V = zeros([length(RDB), length(RDB(1).ROM.ybias), size(Prm.P,1)]); 

for r=1:length(RDB)

 V(r,:,:) = eval_rom(RDB(r).ROM,Prm.P, Prm); 

end 

% Elementwise snapshot interpolation 

vprint(sprintf(' Interpolating snapshots elementwise (%d x %d = %d 

total)...',size(V,2),size(V,3),size(V,2)*size(V,3))) 

for k=size(V,3):-1:1

    for j=size(V,2):-1:1

 CRBF(j,k).ROM = [];

 end 

end 

CV = zeros(size(V,2), size(V,3)); 

% for j=1:size(V,2) % Healing 

% for k=1:size(V,3) 

% CRBF(j,k).ROM = I.ROMC(j,k).ROM; 

% end 

% end 

if(usecluster) % ad hoc parallelism for speeding up this update 

nonsense

 ndiv = usecluster;

 L = size(V,2); % Rows of Y

 Lrng=[];

 Lrng = [1:max(floor(L/ndiv),1):L (L+1)];

 save two.mat L Lrng ndiv CRBF irom X Xset V Param update_irom -v7;

 % Sub

 for k=1:size(V,3) % Cols of Y

        for j=1:length(Lrng)-1 % Row-groups

            if(exist(sprintf('%s/irom_two_%d-%d.mat',pwd,k,j),'file') 

== 2)

                vprint(sprintf('Sub: irom_two_%d-%d.mat already exists, 

skipping...',k,j));

 continue

 end

 filename = sprintf('buildirom_two_%d_%d.scr',k,j);

            jobname = sprintf('irom_two-%d-%d\n',k,j);

            cmd = sprintf('matlab -nodisplay -r "buildirom_two(%d,%d); 

quit"\n',j,k);

 makeparjob(filename, jobname, clust, nodes, wallhours, 

cmd);

 cmd = sprintf('qsub -q @raptor.hpc.msstate.edu -d %s %s', 

pwd, filename);

 system(cmd);

 pause(0.1);

 end

 end

 % Wait

 for k=1:size(V,3)

        for kk=1:length(Lrng)-1

            vprint(sprintf('Wait: Waiting on %s/irom_two_%d-

%d.mat...',pwd,k,kk));

            while(exist(sprintf('%s/irom_two_%d-

%d.mat',pwd,k,kk),'file') == 0) 
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 end

 end

 end

 % Load

 for k=1:size(V,3)

        for i=L:-1:1

 CRBF(i,k).ROM = [];

 CV(i,k) = 0;

 end

        for kk=1:length(Lrng)-1

 % Wait for each file in turn

            vprint(sprintf('Load: Waiting on %s/irom_two_%d-

%d.mat...',pwd,k,kk));

            while(exist(sprintf('%s/irom_two_%d-

%d.mat',pwd,k,kk),'file') == 0)

 end

 cmd = sprintf('grep \"COMPLETE\" buildirom_two-%d-%d-

log.txt',k,kk);

 running = 1;

 while(running ~= 0)

 running = system(cmd);

 pause(1);

 end

            load(sprintf('irom_two_%d-

%d.mat',k,kk),'CRBF_tmp','CV_tmp');

 for j=1:length(CRBF_tmp)

 if(~isempty(CRBF_tmp(j).ROM)) 

CRBF(j,k).ROM = CRBF_tmp(j).ROM; 

CV(j,k) = CV_tmp(j);

 end

 end

 end

 end 

else % Not using cluster parallelism

 for k=1:size(V,3) % Cols of Y

 % vprint(sprintf('snapshot col %d',k));

 IRM = irom;

 if(useparfor)

 if(update_irom || isempty(IRM.ROMC(j,k).ROM))

 vprint(sprintf(' Building Y-Norm ROMs(-

,%d)/(%d,%d)...',j,k,size(V,2),size(V,3)));

 end

 parfor j=1:size(V,2) % Rows of Y

 if(update_irom || isempty(IRM.ROMC(j,k).ROM)) 

CRBF(j,k).ROM = build_rbf(Xset, V(:,j,k)', Prm);

 else 

CRBF(j,k).ROM = IRM.ROMC(j,k).ROM;

 end

 % vprint(sprintf('j=%d',j));

 CV(j,k) = eval_rom(CRBF(j,k).ROM,X,Prm);

 end

 else

            for j=1:size(V,2) % Rows of Y

 if(update_irom || isempty(IRM.ROMC(j,k).ROM)) 
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vprint(sprintf(' Building Y-Norm 

ROM(%d,%d)/(%d,%d)...',j,k,size(V,2),size(V,3))); 

CRBF(j,k).ROM = build_rbf(Xset, V(:,j,k)', Prm);

 else 

CRBF(j,k).ROM = IRM.ROMC(j,k).ROM;

 end

 % vprint(sprintf('j=%d',j));

 CV(j,k) = eval_rom(CRBF(j,k).ROM,X,Prm);

 end

 end

 end 

end 

% for j=1:size(V,2) % Healing 

% for k=1:size(V,3) 

% I.ROMC(j,k).ROM = CRBF(j,k).ROM; 

% end 

% end 

% irom = I; 

% Bias/Normalize Projected Snapshots 

% if(Prm.podoutbias) 

% for s=1:size(CV,2) 

% CV(:,s) = (CV(:,s)-ybR'); 

% end 

% end 

% if(Prm.podoutnorm) 

% for s=1:size(CV,2) 

% CV(:,s) = CV(:,s)/ynR; 

% end 

% end 

% Project onto basis 

CR = zeros(size(Prm.P,1), size(BR,2)); 

vprint(' Projecting onto new basis...'); 

for s=1:size(Prm.P,1)

 for b=1:size(BR,2)

        CR(s,b) = dot((CV(:,s)-ybR)/ynR, BR(:,b));

 % err = 0.000001*rand(size(ybR));

 % CR(s,b) = dot(((Y(:,s)+err)-ybR)/ynR, BR(:,b));

    end 

end 

% Build RBF model for parameter interpolation 

vprint(' Building new coordinate interpolation ROM...'); 

P = Prm.P; 

xbias = RDB(1).ROM.xbias; % Bias: 

if(Prm.podinbias == 1)

 for i=1:size(P,1) % bias each parameter row to center on 

xbias average

        P(i,:) = P(i,:)-xbias;

 end 

end 

xscale = RDB(1).ROM.xscale; % Normalize: 

if(Prm.podinnorm == 1)

 for i=1:size(P,1) % Scale each parameter 
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 P(i,:) = P(i,:)/xscale;

 end 

end 

RBFM = build_rbf(P,CR', Prm); 

% Pack neatly {type,X,basis,C,k,RBF,xbias,xscale,ybias,yscale} 

vprint(' Packing new ROM...'); 

I.type = 'POD'; 

I.X = P; 

I.basis = BR; 

I.C = CR; 

I.k = Prm.k; 

I.RBF = RBFM; 

I.xbias = RDB(1).ROM.xbias; % No need to interpolate input 

adjustments, all ROMs use same inputs 

I.xscale = RDB(1).ROM.xscale; 

I.ybias(1:size(RDB(1).ROM.ybias,1),1) = ybR(:); 

I.yscale = ynR; 

% Update IROM if needed 

if(update_irom)

 vprint(' (Update IROM) Committing update changes...');

 irom.X = XR;

 for j=1:length(RDB(1).ROM.ybias)

 irom.ROMyb(j).ROM = RBFyb(j).ROM;

 end

 irom.ROMyb = RBFyb;

 irom.ROMyn = RBFyn;

 for j=1:size(V,2) % Rows of Y

 for k=1:size(V,3) % Cols of Y

 irom.ROMC(j,k).ROM = CRBF(j,k).ROM;

 end

 end

 vprint(' Saving IROM...');

    save('irom.mat', 'irom', '-v7'); 

end 

% Add interpolated ROM to iromdb 

vprint(' Adding IROM to database...'); 

iromdb(end+1).X = X; 

iromdb(end).ROM = I; 

% vprint(' Saving IROMDB...'); 

% save('iromdb.mat', 'iromdb'); 

end 
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 MATERIAL PROPERTIES FOR STRUCTURAL ANALYSIS 
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Table F.1 Material Properties for Aluminum 6061 

Property Symbol Value Units 
Density 𝜌 2700.0 𝑘𝑔 𝑚3⁄ 
Elastic Modulus 𝐸 68.9475729 E+9 𝑃𝑎 
Shear Modulus 𝐺 25.993235 E+9 𝑃𝑎 
Poisson's Ratio 𝜈 0.33 − 
Compressive Allowable 344.737865 E+6 𝑃𝑎 𝑀𝐶𝑆 
Tensile Allowable 172.368932 E+6 𝑃𝑎 𝑀𝑇𝑆 

Table F.2 Material Properties for Divinycell F40 

Property Symbol Value Units 
Density 𝜌 40 𝑘𝑔 ⁄𝑚3 

Elastic Modulus 𝐸1 68.950 E+3 𝑃𝑎 
𝐸2 68.950 E+3 𝑃𝑎 

Shear Modulus 𝐺13 8.5 E+6 𝑃𝑎 
𝐺23 8.5 E+6 𝑃𝑎 

Poisson's Ratio 𝜈 0 − 
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DERIVATION OF EQUIVALENT SOLID PLATE THICKNESS FOR COMPOSITE 

SANDWICH PANELS 
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   𝐸𝑡𝑒𝑞
3 𝐸𝑡𝐹ℎ2 𝐸𝑡𝐹

3 
= + 

12(1−𝜈2) 2(1−𝜈2) 6(1−𝜈2)  

 
  

    

In order to simplify the buckling analysis for the TWO problem, each aluminum 

sandwich panel was approximated as a solid plate of equivalent thickness.  This 

procedure was drawn from the literature.158–160  The derivation for that relation is shown 

here, based on Bruhn.161 

For the TWO problem, the chief parameter which must be matched between the 

composite and solid plates is that of bending stiffness.  For a solid plate, this is given as 

𝐸𝑡3 
𝐷 = (G.1) 

12(1−𝜈2) 

where 𝐸 is the modulus of elasticity, 𝑡 is the plate thickness, and 𝜈 is Poisson's 

ratio.  For a composite sandwich plate with equal face sheet thicknesses of arbitrary value 

3𝐸′𝑡𝐹ℎ2 𝐸′𝑡𝐹 𝐷 = + (G.2) 
2(1−𝜈2) 6(1−𝜈2) 

where 𝐸′ is the effective modulus of elasticity, 𝑡𝐹 is the face thickness, and ℎ is 

the distance between the face sheet centroids.  For a symmetric sandwich plate, ℎ = 𝑡 − 

𝑡𝐹, where 𝑡𝐹 is the thickness of one face sheet. It is also assumed for this problem that 

the effective modulus of elasticity equals the normal modulus. 

Thus, to compute the equivalent solid plate thickness, 𝑡𝑒𝑞 for a composite 

sandwich plate with the same bending thickness, we can equate the two formulae 

(G.3) 

Solving, the equivalent solid plate thickness is given as 

1 
𝑡𝑒𝑞 = (6𝑡𝐹(𝑡 − 𝑡𝐹)2 + 2𝑡𝐹

3) ⁄3 (G.4) 
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REFERENCE WING PARAMETERS FOR TRANSPORT WING OPTIMIZATION 

PROBLEM 
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Table H.1 Reference Wing Parameters 

Property Symbol 
Span 𝑏𝑟𝑒𝑓 
Root Chord 𝑐𝑟𝑒𝑓 
Aspect Ratio 𝐴𝑅𝑟𝑒𝑓 

𝑐𝑡 )Taper Ratio 𝑇𝑅𝑟𝑒𝑓, (
𝑐𝑟 𝑟𝑒𝑓 

Sweep 𝑝𝑟𝑒𝑓 
𝑡 

Airfoil Thickness Ratio ( )
𝑐 𝑟𝑒𝑓 

Wing Area 𝑆𝑟𝑒𝑓 
Drag Force 𝐷𝑟𝑒𝑓 
Takeoff Gross Mass 𝑇𝑂𝐺𝑀 
Range 𝑅 

Value 
36.576 
7.620 
6.8571 
0.4 
7.62 / 36.576 

0.12 

195.096 
177,928.965 
136,078 
9.260 E+6 

Units 
𝑚 
𝑚 
− 
− 
− 

− 

𝑚2 

𝑁 
𝑘𝑔 
𝑚 
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