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System testing is very time-consuming and costly, especially for complex high-cost

and high-reliability systems. For this reason, the number of failures needed for the de-

velopmental phase of system testing should be relatively small in general. To assess the

reliability growth of a repairable system, the generalized confidence interval and the mod-

ified signed log-likelihood ratio test for the scale parameter of the power-law process are

studied concerning incomplete failure data. Specifically, some recorded failure times in

the early developmental phase of system testing cannot be observed; this circumstance is

essential to establish a warranty period or determine a maintenance phase for repairable

systems.

For the proposed generalized confidence interval, we have found that this method is

not biased estimates which can be seen from the coverage probabilities obtained from this

method being close to the nominal level 0.95 for all levels of γ and β. When the per-

formance of the proposed method and the existing method are compared and validated



regarding average widths, the simulation results show that the proposed method is supe-

rior to another method due to shorter average widths when the predetermined number of

failures is small.

For the proposed modified signed log-likelihood ratio test, we have found that this test

performs well in controlling type I errors for complete failure data, and it has desirable

powers for all parameters configurations even for the small number of failures. For incom-

plete failure data, the proposed modified signed log-likelihood ratio test is preferable to

the signed log-likelihood ratio test in most situations in terms of controlling type I errors.

Moreover, the proposed test also performs well when the missing ratio is up to 30% and

n > 10. In terms of empirical powers, the proposed modified signed log-likelihood ratio

test is superior to another test for most situations.

In conclusion, it is quite clear that the proposed methods, the generalized confidence

interval and the modified signed log-likelihood ratio test, are practically useful to save

business costs and time during the developmental phase of system testing since only small

number of failures is required to test systems, and it yields precise results.

Key words: generalized confidence interval, power-law process, signed log-likelihood ratio
test, substitution method, system reliability, third-order approximation
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CHAPTER 1

INTRODUCTION

1.1 Background and Research Motivation

The theory of reliability is mostly focused on non-repairable systems or devices, and

the investigation of lifetime models is the main emphasis. By definition, a non-repairable

system can fail only once, whereas the distribution of the time when this type of system

fails is provided by various lifetime models, for example the Exponential distribution, the

Log-normal distribution, and the Weibull distribution. In contrast, it is of course possible

for a repairable system to be repaired and returned to normal operation. Therefore, an

entire series of failures must be considered by a model for repairable systems, which must

also have the ability to take into account the aging of the system which results in the

inevitable changes to its reliability. Means of a counting process is frequently used to

model a repairable system. Let N(t) represents the number of failures of a repairable

system in the specific time interval [0, t], thenN(t) is non-negative and integer-valued, and

if t > s, the difference N(t) −N(s) provides the number of failures occurring within the

time interval (s, t]. A second aspect can be expressed by the system’s successive failure

times, T1, T2, ..., Tn. An approach that is often employed to analyze the data of repairable

systems is concerned with parametric assumptions that illustrate significant characteristics

of a system that is modeled. An example of this would be a system that, after each failure,

1



is restored to a condition that is “like new”. Then, that the times between failures are

identically distributed and independent would be a reasonable assumption, which would

correspond to assuming that the system is modeled by a renewal process. A different

type of situation that is commonly encountered with repairable systems involves changes

in the reliability of the system as it ages. For example, during the development stage of

a repairable system, the initial prototypes usually have flaws in the design, and during

the early testing phase, these problems are corrected by changes to the design. If the

development program is succeeding, a tendency for there to be longer times between each

failure is expected. When this happens, systems are referred to be undergoing reliability

growth. On the other hand, in a case where a system is deteriorating and it is given only

minimal repairs when it fails, it would be expected that the time between failures would

become shorter due to the aging of the system (See Figure 1.1).

For a Poisson process with mean function M(t), the number of occurrences in an in-

terval (s, t] is Poisson distributed, N(t) − N(s) ∼ Poisson[M(t) −M(s)]. If M(t) is

also differentiable, then the derivative, say ν(t) = M ′(t), is called the intensity function,

or occurrence rate of failures.

In the modeling of repairable systems, Poisson processes are frequently used. One

characterization of this kind of process is to specify a set of properties or axioms which

describe the probabilistic behavior of N(t). For example, the property of independent

increments which means that the numbers of failures occurring in disjoint time intervals are

essentially stochastically independent. Ross (1983)[37] provides a discussion of a typical

set of axioms that define a Poisson process. Cinlar (1975)[7] discussed an interesting

2



Figure 1.1

Time dot plots (left) and plots of cumulative failure number N(t) against cumulative time
(right) of three different types of systems

3



alternate characterization, which is concerned with the mean function M(t) = E[N(t)].

If M(t) is continuous, the counting process is known as regular. For a regular counting

process to be considered a Poisson process, it must have independent increments and not

have any simultaneous failures. Meanwhile, for a Poisson process with mean function

M(t), the number of occurrences in an interval (s, t] is Poisson distributed, N(t)−N(s) ∼

Poisson[M(t) −M(s)]. When M(t) is differentiable as well, the derivative, say ν(t) =

M ′(t), is called the intensity function, or rate of occurrence of failures.

The Poisson process that is best known is a homogeneous Poisson process (HPP),

which has an intensity function that is constant, such as ν(t) = λ. However, Poisson

processes with nonconstant intensity functions are the focus of most of the recent work

on repairable systems. This type of process is often known as a nonhomogeneous Pois-

son process (NHPP). As could be expected, an NHPP can be used to model systems that

are undergoing either reliability growth or deterioration. In particular, the times between

failures tend to be longer if the intensity function ν(t) is decreasing, and they tend to be

shorter if the intensity function ν(t) is increasing.

The majority of the recent work on modeling and analysis of repairable systems is

based on the assumption of a Power-Law process, which is a special type of NHPP. In the

literature, this process is also known as a Weibull process because it is primarily derived

from the similarity of the intensity function to the hazard function of a Weibull distribution.

Particularly, the form of the intensity function of this process is ν(t) = γβtβ−1, and the

form of the mean value function is M(t) = γtβ .

4



Over the past decades, there are many papers deal with classical inferences of the power

law process for a single system such as point estimation, confidence intervals, and hypoth-

esis testing for unknown parameters of the intensity function, and also goodness-of-fit tests

for the power-law process. Finkelstein (1976)[19] obtained confidence intervals for param-

eters of Weibull process, which is another term for the power law process. Lee and Lee

(1978)[26] investigated the results on statistical inference for the Weibull process which

focused on current system reliability in the failure truncated case. Engelhardt and Bain

(1978)[18] considered statistical analysis of a compound power-law model for repairable

systems. Crow (1982)[11] discussed confidence interval procedures for the Weibull pro-

cess. Kyparisis and Singpurwalla (1985)[25] investigated the current system reliability

based on traditional Bayesian approach. Calabria et al. (1988)[5] examined modified max-

imum likelihood estimators of the expected number of failures in a given time interval and

of the failure intensity and compares their mean squared errors with those MLEs. Guida

et al. (1989)[22] obtained Bayesian point and interval estimates for a non-homogeneous

poisson process with power intensity law. Shaul et al. (1992)[40] reviewed and further

developsed Bayesian inference for a power-law process. Park and Pickering (1997)[31]

considered statistical analysis of a power law model for repair data. Sen (1998)[39] dis-

cussed estimation of current reliability in a Duane-based reliability growth model, and

Qiao and Tsokos (1998)[35] obtained the best efficient estimates of intensity function.

Gaudoin et al. (2003)[20] discussed goodness-of-fit tests for the power law process, and

Ryan (2003)[38] proposed some flexible families of intensities for the NHPP models and

discussed their Bayes Inference. Zhao and Wang (2005)[48] discussed goodness-of-fit

5



tests for nonhomogeneous Poisson process models. Gaudoin et al. (2006)[21] proposed

asymptotic confidence intervals for the scale parameter of the power law process which

were derived from fisher information and theoretical results by Cocozza-Thivent (1997)[8].

Wang et al. (2013)[43] presented a generalized confidence interval for the scale parameter

of intensity function and also studied the accuracy of the generalized confidence interval

by Monte Carlo simulation.

Although many studies rely on statistical inference for unknown parameters of the

power-law process, most works are established on the basis of complete observations in

which all failure times can be exactly recorded (Verma and Kapur, 2005[42]). In practical

situations, missing data in the power-law process are a common and expected occurrence

because of various reasons, and it may have a significant effect on the conclusions about

unknown parameters. One of the most frequently encountered circumstances for missing

data in the power-law process is that only the cumulative test time and the corresponding

cumulative number of failures are observed while the actual failure times are unknown. The

literature on missing data in the power-law process was reviewed by Yu et al. (2008)[47].

For example, the early work considered the AMSAA model when all ti, i = 1, 2, ..., n

was missing, and this model was reduced to the famous Duane model. After that, Crow

and Basu (1988)[12] investigated another scenario in which irregularities may exist over

some interval of the test period, and this might affect in too few or too many failures being

reported over that interval. In this case, the maximum likelihood estimators (MLEs) of γ

and β were only derived. Then, Yu et al. (2008)[47] considered statistical inference and

prediction analyses based on the classical approach to the Weibull process with incom-
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plete observations, especially incomplete observations in the early developmental phase

of a testing program which could not be observed, while Tian et al. (2011)[41] consid-

ered a Bayesian estimation and prediction for the power-law process in the presence of

left-truncated data.

For the power-law process, the exact test and the exact confidence interval for the shape

parameter, β, is not troublesome to derive, but the exact test and the exact confidence in-

terval for the scale parameter, γ, is not easy to obtain when β is unknown. Asymptotic

distributions, such as the asymptotic normal distribution and the asymptotic chi-square

distribution, are therefore used in many previous studies to make a conclusion about pa-

rameter γ. Nonetheless, the issue raised by this approach is that we need a sufficiently

large sample size (number of failures must be large enough) to produce accurate results.

Therefore, this research aims to solve such this problem by developing a statistical method

that requires only small number of failures to asses the system’s reliability in order to re-

duce time and cost during the developmental phase of system testing and this contributes

to the motivation of this research.

In the next sections, we first provide definitions of key concepts that will be used in this

research. Then, we address some fundamental concepts of reliability and some fundamen-

tal results on homogeneous Poisson process and nonhomogeneous Poisson process. We

also present more details on a particular nonhomogeneous Poisson process, “power-law

process”, which plays an important role in this research. The results that are discussed in

this chapter are basic for the research presented in later chapters.
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1.2 Definitions of Key Concepts

The following definitions used in this research are contextual and are therefore defined

to clarify and eliminate ambiguities.

1.2.1 Repairable System

A repairable system is a system that made up of many components. If one critical

component fails, it will bring down the entire system. After that component is repaired or

replaced, the system can be restored to its state prior to failure. In the case of a repairable

system, after replacement or repairing, it will not place the system back into a like-new

condition because there are many other components still working with various ages.

1.2.2 Failure Truncated Data

Data are stated to be failure truncated when testing stops after a predetermined number

of failures. Suppose that a repairable system is observe till n failures occur (fixed n), so

we observe the ordered failure times t1 < t2 < ... < tn where ti is the time of ith failure.

In this case, the number of failures is fixed and the time when the testing stops is random.

1.2.3 Time Truncated Data

Data are stated to be time truncated when testing stops at a predetermined time t. We

observe a set of failure time t1 < t2 < ... < tn < t. In this case, the time when the testing

stops is fixed and the number of failures N(t) is random.
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1.2.4 Complete Failure Data

In this study, Complete failure data is defined as the data in which all failure times

during the system testing are recorded. That is, for a predetermined number of failure, n,

all failure times t1, t2, ..., tn can be observed (see Figure 1.2).

Figure 1.2

Complete failure data with a predetermined number of failures (n)

1.2.5 Incomplete Failure Data

In this study, Incomplete failure data is defined as the data in which some exact fail-

ure times in the early development phase cannot be observed. That is, we assume that

t1, t2, ..., tr−1 are missing, and the observed failure times are defined as tr, tr+1, ..., tn

[47](see Figure 1.3).
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Figure 1.3

Incomplete failure data with a predetermined number of failures (n)

1.3 Fundamentals of Reliability

The reliability function (or survival function), denoted by R(t), is the probability that a

system will survive beyond time t. Let T denote the failure time since the system was first

started (t = 0). Let N(t) denote the cumulative number of failures from time 0 to time t.

Then the reliability function is defined as

R(t) = P [T > t]

= 1− F (t)

=

∫ ∞
t

f(s)ds, (1.1)

where F (t) and f(t) are the cumulative distribution function (cdf) and the probability

density function (pdf) of T , respectively. Notice that the reliability function decreases in t,

from 1 at t = 0, to 0 at t =∞.
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1.4 Counting Process and Poisson Process

In some problems, we observe the occurrences of some types of events over time. For

example, counting the number of customers who arrive at a supermarket from 9:00AM to

10:00PM, observing the occurrence of getting myocardial infarction during a year, count-

ing the number of waking up during night, etc. In these scenarios, we are dealing with a

counting process. The counting process therefore simply the count of the number of events

that occurs in any specified time interval, and it is denoted N(t), t ≥ 0. In the counting

process, the most commonly used probabilistic models are homogeneous and nonhomoge-

neous Poisson processes.

A counting process N(t) is said to be a Poisson process if

1. The cumulative number of failures at time 0 is 0, N(0) = 0.

2. For a < b ≤ c < d the random variables N(a, b] and N(c, d] are independent. This
property is called independent increment.

3. The intensity function of the Poisson process is defined as:

ν(t) = lim
∆t→0

P [N(t+ ∆t)−N(t) ≥ 1]

∆t
. (1.2)

4. The possibility of simultaneous failures is defined as:

lim
∆t→0

P [N(t+ ∆t)−N(t) ≥ 2]

∆t
= 0. (1.3)

The properties (1) to (4) of the Poisson process imply that

P [N(t) = n] =
1

n!

(∫ n

0

ν(x)dx

)n
exp

(
−
∫ t

0

ν(x)dx

)
(1.4)

(Rigdon and Basu, 2000[36]).
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1.5 Homogeneous Poisson Process

The counting process N(t), t ≥ 0 is said to be a homogeneous Poisson process (HPP)

if the intensity function ν(t) is a constant, that is, ν(t) = λ, γ > 0 and

1. The cumulative number of failures at time 0 is 0, N(0) = 0.

2. The process has independent increments and stationary increments. A point process
has stationary increments if for all k, P [N(t, t+ s] = k] is independent of t.

It can be shown that the number of failures in any interval of length s = t2 − t1 has a

Poisson distribution with mean λs, that is

P [N(t2)−N(t1) = n] =
exp(−λs)(λs)n

n!
, 0 ≤ t1 ≤ t2, n = 0, 1, ... (1.5)

The homogeneous Poisson process has the following properties (Rigdon and Basu,

2000[36]):

Property 1. A process is an HPP with constant intensity function λ, if and only if the

times between events are i.i.d. exponential random variables with mean 1/λ.

Property 2. If 0 < T1 < T2 < ... < Tn are the failure times from an HPP, then the

joint pdf of T1, T2, ..., Tn is

f(t1, t2, ..., tn) = λnexp(−λtn), 0 < t1 < t2 < ... < tn. (1.6)

Property 3. The time to the nth failure from a system modeled by an HPP has a gamma

distribution with parameter α = n, β = 1/λ.

Property 4. For an HPP, conditional on N(t) = n, the failure times 0 < T1 < T2 <

... < Tn are distributed as order statistics from the uniform distribution on the interval

(0, t).
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Property 5. The probability of system failure after time t is

R(t) = P [T > t] = P [N(t) = 0] = exp(−λt). (1.7)

1.6 Nonhomogeneous Poisson Process

The nonhomogeneous Poisson process is a Poisson process which the intensity function

is not a constant. A counting process N(t), t ≥ 0 has a nonhomogeneous Poisson process

if

1. The cumulative number of failures at time 0 is 0, N(0) = 0.

2. The process has independent increments.

It can be shown that the number of failures in any interval (t1, t2] has a Poisson distri-

bution with mean
∫ t2

t1

ν(t)dt, that is

P [N(t2)−N(t1) = k] =
1

k!
exp

(
−
∫ t2

t1

ν(t)dt

)(∫ t2

t1

ν(t)dt

)k
. (1.8)

For this research, these occurrences in time will be the failure times of repairable sys-

tems, and the term failures will be used instead of events from now on.

The nonhomogeneous Poisson process has the following properties (Rigdon and Basu,

2000[36]):

Property 1. The joint pdf of the failure time T1, T2, ..., Tn from an NHPP with intensity

function ν(t) is given by

f(t1, t2, ..., tn) =

(
n∏
i=1

ν(ti)

)
exp

(
−
∫ w

0

ν(x)dx

)
, (1.9)

where w is the stopping time: w = tn for the failure truncated case, and w = t for the time

truncated case.
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Property 2. If the failure times of a nonhomogeneous Poisson process are T1 < T2 <

... < Tn then conditioned on Tn = tn, the random variables T1 < T2 < ... < Tn−1

are distributed as n − 1 order statistics from the distribution with cumulative distribution

function

G(y) =



0, y ≤ 0,

m(y)

m(tn)
, 0 < y ≤ tn,

1, y > tn.

(1.10)

Property 3. If a NHPP with intensity function ν(t) is observed until time t, and if the

failure times are T1 < T2 < ... < TN(t) where N(t) is the random number of failures in the

interval (0, t], then conditioned on N(t) = n, the random variables T1 < T2 < ... < Tn are

distributed as n order statistics from the distribution with cdf

G(y) =



0, y ≤ 0,

m(y)

m(t)
, 0 < y ≤ t,

1, y > t.

(1.11)

Property 4. The probability of system failure occurring after time t is known as the

reliability function, R(t). The nonhomogeneous Poisson process assumes that the number
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of failures in any interval (t1, t2] has a Poisson distribution with mean
∫ t2

t1

ν(t)dt. Hence

the reliability function is

R(t) = P [T > t]

= P [N(t) = 0]

=

exp
(
−
∫ t2

t1

ν(t)dt

)(∫ t2

t1

ν(t)dt

)0

0!

= exp
(
−
∫ t2

t1

ν(t)dt

)
= exp[−(λ(t2)− λ(t1))]. (1.12)

1.7 Power-Law Process

The power-law process, which plays a key role in this research, is widely used to study

the reliability or model the reliability growth of repairable systems. Duane (1964)[16] was

the first to study and report that the cumulative number of failures of systems up to time

t, N(t), often have a “power-law” growth pattern. Then, Crow (1974)[10] formulated the

corresponding model as a NHPP having the mean value function is

m(t) = E[N(t)] = γtβ, t ≥ 0, γ, β > 0, (1.13)

and the failure of intensity of the model

ν(t) =
d

dt
m(t) = γβtβ−1, (1.14)

where γ is a scale parameter, and β is a shape parameter. This model, known as the PLP,

and then it has become the most popular parametric intensity in the repairable systems. In
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general, parameter β of this intensity function affects how the system improves or deteri-

orates over time. When β < 1, there is a decrease in the failure intensity, which indicates

reliability growth and that there is improvement in the system; whereas if β > 1, there

is an increase in the failure intensity, which indicates reliability degeneration and that the

failures are becoming increasingly more frequent. Moreover, if β = 1, there is a reduction

of the Power-Law process to a homogeneous Poisson process having a constant failure

intensity γ (see Figure 1.4).

Figure 1.4

Types of system reliability

Therefore, the PLP is a flexible model that can be used to study both reliability growth

and reliability deterioration which are two different, but common situations (Gaudoin et al.

2006[21]). The power law model is also known as the Duane model (Duane, 1964[16]),

Weibull model, and Army Materials System Analysis Activity (AMSAA) model.
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CHAPTER 2

CLASSICAL INFERENCE RESULTS ON THE POWER-LAW PROCESS

In this chapter, we present some traditional inference results on the power-law process

for a single system including point estimation, interval estimation, and hypothesis testing

for parameters of the PLP. The results that are addressed in this chapter are essential and

will be utilized for the research presented afterward. In addition, we also present the inten-

sity function estimation, the mean time between failures estimation, and the goodness of

fit tests.

2.1 Point Estimation of the Scale and Shape Parameter

In this section, we present two point estimation methods for parameter γ and β, the

maximum likelihood estimation and the unbiased estimation. For the maximum likelihood

estimation, it is a standard approach to parameter estimation and inference in statistics

because it has many optimal properties in estimation such as sufficiency, consistency, effi-

ciency, and parameterization invariance. However, it is found that the maximum likelihood

estimates of parameter γ and β are biased estimates. Therefore, the unbiased estimation

which is the adjusted version of this method is also presented.
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2.1.1 Likelihood Function for Failure Times

Using Property 1 of the NHPP in the previous chapter, the joint pdf of the failure times,

T1, T2, ..., Tn, from the NHPP with intensity function ν(t) is given by

f(t1, t2, ..., tn) =

(
n∏
i=1

ν(ti)

)
exp

(
−
∫ w

0

ν(x)dx

)
, (2.1)

where w = tn for the failure truncated case, and w = t for the time truncated case.

For failure truncated case with ν(t) = γβtβ−1, the joint pdf of T1 < T2 < ... < Tn is

satisfying the equation:

f(t1, t2, ..., tn) =

(
n∏
i=1

γβtβ−1
i

)
exp

(
−
∫ tn

0

γβxβ−1dx

)
= (γβ)nexp(−γtβn)

n∏
i=1

tβ−1
i . (2.2)

For time truncated case, the testing stops at a predetermined time t, and we observed

the failure times, t1 < t2 < ... < tN(t) < t. Therefore, the number of failures, N(t), in

time truncated interval (0, t] is a random variable. Using Property 3 of the NHPP in the

previous chapter that conditional on N(t) = n, the failure times t1 < t2 < ... < tn are

distributed as n order statistics from the distribution with cdf:

F (ti) =



0, ti ≤ 0,

m(ti)

m(t)
, 0 < ti ≤ t,

1, ti > t.

(2.3)
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Therefore, the pdf of ti, f(ti), can be obtained as

f(ti) = F ′(ti)

=
d

dti

[
m(ti)

m(t)

]
=

ν(ti)

γtβ

=
γβtβ−1

i

γtβ

=
βtβ−1

i

tβ
(2.4)

if 0 ≤ ti ≤ t, and zero otherwise. Given N(t) = n, the conditional density function of the

failure times T1, T2, ..., Tn is then defined as:

f(t1, t2, ..., tn|n) = n!
n∏
i=1

βtβ−1
i

tβ

= n!

(
β

tβ

)n n∏
i=1

tβ−1
i (2.5)

if 0 ≤ t1 < t2 < ... < tn ≤ t, and zero otherwise. Since the random variable N(t) has

a Poisson distribution with mean γtβ , then the joint density of T1, T2, ..., Tn and N(t) as

following:

f(t1, t2, ..., tn, n) = f(t1, t2, ..., tn|n)f(n)

= n!

(
β

tβ

)n n∏
i=1

tβ−1
i

[
exp(−γtβ)(γtβ)n

n!

]
= (γβ)nexp(−γtβ)

n∏
i=1

tβ−1
i . (2.6)

Notice that for time truncated case, it is possible that there is no failure occurs before

time t (n = 0). In this case, the joint density of T1, T2, ..., Tn and N(t) is reduced to

f(t1, t2, ..., tn, n) = exp(−γtβ), (2.7)
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and we will not consider this case in this study since there is of no inferential interest.

Therefore, the likelihood functions for failure and time truncated case can be written as

L(γ, β) = f(t1, t2, ..., tn, n) = (γβ)nexp(−γwβ)
n∏
i=1

tβ−1
i , (2.8)

where w = tn for the failure truncated case, and w = t for the time truncated case.

2.1.2 Maximum Likelihood Estimations of the Scale and Shape Parameter

Given the likelihood function as shown in Equation 2.8, the logarithm of the likelihood

function can be expressed as

ln L(γ, β) = nln γ + nln β − γwβ + (β − 1)
n∑
i=1

ln ti, (2.9)

where w = tn for the failure truncated case, and w = t for the time truncated case.

The maximum likelihood estimates (MLEs) for parameter γ and β can be obtained by

equating the first partial derivatives (with respect to γ and β) of Equation 2.9 to zero and

solving the resulting system. In other words, we can solve for γ = γ̂ and β = β̂ in the

system

∂lnL(γ, β)

∂γ
=

n

γ
− wβ = 0, (2.10)

∂lnL(γ, β)

∂β
=

n

β
− γwβlnw +

n∑
i=1

lnti = 0. (2.11)

Thus, the maximum likelihood estimators of γ and β can be obtained as

γ̂ =
n

wβ̂
, (2.12)

and

β̂ =
n

nlnw −
n∑
i=1

ln(ti)

, (2.13)
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respectively, where w = tn for the failure truncated case, and w = t for the time truncated

case.

Theorem 1

Suppose that the failure times T1, T2, ...., Tn from the PLP with intensity function ν(t) =

γβtβ−1 are observed, and γ̂ and β̂ are the MLEs of γ and β, respectively. Then:

(i) U = 2nβ/β̂ has a chi-square distribution with 2(n − d) degrees of freedom, where

d = 1 for failure truncated case, and d = 0 for the time truncated case;

(ii) V = 2γT βn has a chi-square distribution with 2n degrees of freedom;

(iii) U and V are independent.

Lemma 1

Let X be a has a chi-square distribution with n degrees of freedom, then

E(Xk) =
2kΓ

(n
2

+ k
)

Γ
(n

2

) , (2.14)

where k is an integer and
n

2
+ k > 0.

Using Theorem 1 and Lemma 1, we can now show that β̂ is a biased estimator of β,

and its expectation and variance are defined as:

E(β̂) =
nβ

(n− d− 1)
, (2.15)

and

V ar(β̂) =
n2β2

(n− d− 1)2(n− d− 2)
, (2.16)

respectively.
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Proof: By Theorem 1 and Lemma 1, we have

β̂ =
2nβ

U

E(β̂) = 2nβE

(
1

U

)
= 2nβE(U−1)

= 2nβ

2−1Γ

(
2n− 2d

2
− 1

)
Γ

(
2n− 2d

2

)


=
nβ

(n− d− 1)
.

We also have

β̂2 =

(
2nβ

U

)2

E(β̂2) = 4n2β2E

(
1

U2

)
= 4n2β2E(U−2)

= 4n2β2

2−2Γ

(
2n− 2d

2
− 2

)
Γ

(
2n− 2d

2

)


=
n2β2

(n− d− 1)(n− d− 2)
.

Therefore, the variance of β̂ can be obtained as

V ar(β̂) = E(β̂2)− [E(β̂)]2

=
n2β2

(n− d− 1)(n− d− 2)
−
[

nβ

(n− d− 1)

]2

=
n2β2

(n− d− 1)2(n− d− 2)
.
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2.1.3 Unbiased Estimation of the Shape Parameter

Since the MLE of β is biased estimate, we can adjust β̂ to unbiased estimate, and it is

defined as

β̃ =

(
n− d− 1

n

)
β̂, (2.17)

where d = 1 for failure truncated case, and d = 0 for the time truncated case.

Thus, the expectation and variance of β̃ are

E(β̃) = β, (2.18)

and

V ar(β̃) =
β2

(n− d− 2)
, (2.19)

respectively.

Proof: E(β̃) and V ar(β̃) can easily be shown using the property of expectation and vari-

ance as follows:

E(β̃) = E

[(
n− d− 1

n

)
β̂

]
=

(
n− d− 1

n

)
E(β̂)

=

(
n− d− 1

n

)[
nβ

(n− d− 1)

]
= β,

V ar(β̃) = V ar

[(
n− d− 1

n

)
β̂

]
=

(
n− d− 1

n

)2

V ar(β̂)

=

(
n− d− 1

n

)2(
n2β2

(n− d− 1)2(n− d− 2)

)
=

β2

(n− d− 2)
.
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2.2 Interval Estimation and Hypothesis Test of the Shape Parameter

To construct an exact confidence interval of β, we use the result that 2nβ/β̂ ∼ χ2
2(n−d),

where d = 1 for failure truncated case, and d = 0 for the time truncated case. Then, the

exact (1− α)100% confidence interval for β is

β̂χ2
1−α/2(2n− 2d)

2n
≤ β ≤

β̂χ2
α/2(2n− 2d)

2n
, (2.20)

where α is the significance level.

The result that 2nβ/β̂ ∼ χ2
2(n−d) can also be used to perform a test for

H0 : β = β0 versus H1 : β 6= β0. (2.21)

Then, the test statistic for testing the hypotheses in (2.21) is

χ2 =
2nβ0

β̂
, (2.22)

and the null hypothesis is rejected at the level of α if χ2 < χ2
1−α/2(2n − 2d) or χ2 >

χ2
α/2(2n− 2d).

In practical situation, it is useful to test H0 : β = 1 versus H1 : β 6= 1 to see if the PLP

reduces to the HPP. Alternative test can also be stated as H1 : β < 1 to see if the system is

improving or H1 : β > 1 to see if the system is deteriorating.
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2.3 Interval Estimation and Hypothesis Test for the Scale Parameter when the Shape
Parameter is Known

To construct an exact confidence interval for γ when β is known, we use the result that

2γT βn ∼ χ2
2n. Then, the exact (1 − α)100% confidence interval for γ when β is known is

defined as

χ2
1−α/2(2n)

2T βn
≤ γ ≤

χ2
α/2(2n)

2T βn
, (2.23)

where α is the significance level.

The result that 2γT βn ∼ χ2
2n can also be used to perform a test for

H0 : γ = γ0 versus H1 : γ 6= γ0. (2.24)

Then, the test statistic for testing the hypotheses in (2.24) is

χ2 = 2γ0T
β
n , (2.25)

and the null hypothesis is rejected at the level of α if χ2 < χ2
1−α/2(2n) or χ2 > χ2

α/2(2n).

2.4 Interval Estimation for the Scale Parameter when the Shape Parameter is Un-
known

For the PLP, an exact confidence interval for parameter γ is not problematic to derive

when β is known, but it cannot be obtained when β is unknown. In 2006, the asymp-

totic confidence intervals for this scenario with failure truncated case were first proposed

by Gaudoin et al. (2006)[21] using theoretical results by Cocozza-Thivent(1997)[8] and

Fisher information matrix. Then, Wang et al. (2013)[43] proposed the confidence inter-

val for γ using the generalized pivotal quantity. Details of these methods are shown as

following:
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2.4.1 Asymptotic Confidence Interval Derived from Finklestein’s Formulation

Let ν(t) = (t/η)β and η̂n = γ̂
−1/β̂n
n be the MLE of η where η = γ−1/β . Finklestein

(1976)[19] showed that 2(η̂n/η)βnβ/β̂n = (2/γ)T βn has the χ2
2n distribution. The following

asymptotic properties of η̂n have been studied by Cocozza-Thivent(1997)[8]:

η̂n
as−−−→ η, (2.26)

β̂n

√
n

lnn
ln
η̂n
η

d−−→ N(0, 1). (2.27)

Then, (2.27) can be written as:

β̂n

√
n

lnn

[
− 1

β̂n
lnγ̂n +

1

β
lnγ
]

=

√
n

lnn
ln
γ

γ̂n
−
√
n

lnn

(
1− β̂n

β

)
lnγ d−−→ N(0, 1). (2.28)

Based on the asymptotic property of β̂n that β̂n
as−−−→ β, Gaudoin et al. (2006)[21] obtain

the following result
√
n

lnn
ln
γ

γ̂n

d−−→ N(0, 1), (2.29)

and the (1− α)100% confidence interval for γ with positive bounds can be obtained as

γ̂ exp
(
−zα/2

lnn√
n

)
≤ γ ≤ γ̂ exp

(
zα/2

lnn√
n

)
, (2.30)

where zα/2 is the 100(α/2)th percentile of the standard normal distribution.

2.4.2 Asymptotic Confidence Interval Derived from Fisher Information Matrix

The problem raised by the confidence interval in (2.30) is that this interval is very wide

for some values of γ. Therefore, Gaudoin et al. (2006)[21] propose another asymptotic-

based confidence interval using the following Fisher information matrix:

In =


−E

[
∂2lnL
∂γ2

]
−E

[
∂2lnL
∂γ∂β

]
−E

[
∂2lnL
∂γ∂β

]
−E

[
∂2lnL
∂β2

]
 . (2.31)
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The likelihood function is given by Equation (2.8), then the information matrix can be

obtained as

In =


n

γ2
E
[
(lnTn)T βn

]
E
[
(lnTn)T βn

] n

β2
+ γE

[
(lnTn)2T βn

]
 . (2.32)

Gaudoin et al. (2006)[21] show the following asymptotic result:

√√√√√ n

1 +

(
ln
n

γ̂n

)2 ln
γ̂n
γ

d−−→ N(0, 1), (2.33)

and the (1− α)100% confidence interval for γ is then obtained as

γ̂ exp

−zα/2√
n

√
1 +

(
ln
n

γ̂n

)2
 ≤ γ ≤ γ̂ exp

zα/2√
n

√
1 +

(
ln
n

γ̂n

)2
 . (2.34)

2.4.3 Generalized Confidence Interval

The generalized pivotal quantity for γ can be obtained using Theorem 1. Wang et

al. (2013)[43] substitute β̂U/2n for β in the expression for γ and obtain the following

generalized pivotal quantity for γ:

W =
V

2t
U/(2τ)
n

=
γT βn

t

β(

n−1∑
i=1

ln(Tn/Ti)/τ

n

, (2.35)

where τ =
n−1∑
i=1

ln(tn/ti), and t = (t1, t2, ..., tn) be the observed values of T = (T1, T2, ..., Tn).

As noted in Wang et al. (2013)[43], W is said to be a generalized pivotal quantity since

its distribution is free from unknown parameters and Wobs = W (t; t, γ, β) = γ does not
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depend on the nuisance parameter β. Therefore, the (1 − α)100% generalized confidence

interval for γ is given by

Wα/2 ≤ γ ≤ W1−α/2, (2.36)

where Wα/2 and W1−α/2 denote the (α/2)th and (1− α/2)th percentile of the distribution

of W .

2.5 Estimation of Intensity Function

The simplest way to estimate the intensity function of the PLP is using the maximum

likelihood estimates of γ and β. Then, the estimate of ν(t) is defined as

ν̂(t) = γ̂β̂wβ̂−1 =

(
n

wβ̂

)
β̂wβ̂−1 =

nβ̂

w
, (2.37)

where w = tn for the failure truncated case, and w = t for the time truncated case.

2.6 Estimation of Mean Time Between Failure

Mean time between failure (MTBF) refers to the average time that a system or product

work without failure, and it is defined as

MTBF =
1

ν(t)
. (2.38)

Similar to the estimation of intensity function, the estimate mean time between failure can

be obtained as

̂MTBF =
1

ν̂(t)
, (2.39)

where ν̂(t) is defined as (2.37).
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2.7 Goodness of Fit Test

In practice, we cannot assume that the failure times of the repairable systems under

study always follow the power-law process. We have to test this hypothesis by statistical

means. One well known method is to use the Cramér Von Mises goodness statistics.

Suppose that we want to test the following hypotheses:

H0 : The failure times do not follow a NHPP with intensity function ν(t) = γβtβ−1

and β = β0,

H1 : The failure times follow a NHPP with intensity function ν(t) = γβtβ−1 and

β = β0.

To comput the Cramér Von Mises statistic,W 2
N , we use theN transformed failure times

which is defined as:

t∗iq =
tiq
wq
, i = 1, 2, ..., Nq, q = 1, 2, ..., k, (2.40)

where tiq is the failure times from system, N = N1 + N2 + ... + Nq, and w = tn for

the failure truncated case and w = t for the time truncated case. Then, we treat the N

t∗iq ’s as one group and order them in ascending order. These ordered values are called

Z1, Z2, ..., ZN . That is, Z1 is the smallest t∗iq , and ZN is the largest t∗iq . Therefore, the

Cramér Von Mises statistic is given by

W 2
N =

1

12N
+

N∑
j=1

(
Zβ0
j −

2j − 1

2N

)2

. (2.41)

The asymptotic significance points for the Cramér Von Mises goodness statistic when

H1 is true can be found in Anderson and Darling (1952)[1]. However, these points are used

only when N is moderate large.
29



In general, we will not have a fixed value of parameter β, β0, in mind. Thus, we are

usually interested to test the following hypotheses:

H0 : The failure times do not follow a NHPP with intensity function ν(t) = γβtβ−1, β

unspecified,

H2 : The failure times follow a NHPP with intensity function ν(t) = γβtβ−1, β un-

specified.

If hypothesis H1 is accepted, γ and β are then estimated from the observed failure

times.

To test the hypotheses above, the modified version of W 2
N statistic, C2

N , is used, and

it does not have the same distribution, even asymptotically, as the W 2
N statistic. Darling

(1955)[13] showed that C2
N is parameter-free when the proper estimate of β is used for any

sample size N . Moreover, the distribution of C2
N converges approximately to a distribution

with mean 0.09259 and variance 0.00435 as N →∞ when H2 is true.

Using β̃ as the proper estimate for β, then the modified statistic is given by

C2
N =

1

12N
+

N∑
j=1

(
Z β̃
j −

2j − 1

2N

)2

, (2.42)

where

β̃ =
N − 1∑k

q=1

∑Nq
i=1 ln

(
wq
tiq

) . (2.43)

The critical values of the C2
N statistic have been determined at the U.S. Army Material

Systems Analysis Activity from Monte Carlo simulation, using 15,000 samples for each

N . The various critical values of the C2
N are shown in Table 2.1 (Crow, 1974)[10]. If the

statistic C2
N is greater than the selected critical value, then the hypothesis H2 is rejected. It
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means the failure times for k systems follow a NHPP with intensity function ν(t) = γβtβ−1

at the designated significance level.
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Table 2.1

Critical Values of C2
N

N
Level of significance

N
Level of significance

0.20 0.15 0.10 0.05 0.01 0.20 0.15 0.10 0.05 0.01
3 0.121 0.135 0.154 0.183 0.231 32 0.127 0.145 0.169 0.214 0.330
4 0.121 0.136 0.156 0.195 0.278 33 0.127 0.144 0.169 0.215 0.337
5 0.123 0.138 0.160 0.202 0.305 34 0.126 0.143 0.171 0.213 0.334
6 0.123 0.139 0.163 0.206 0.315 35 0.127 0.144 0.170 0.215 0.326
7 0.124 0.141 0.166 0.207 0.305 36 0.126 0.144 0.169 0.213 0.331
8 0.124 0.141 0.165 0.209 0.312 37 0.127 0.145 0.170 0.215 0.339
9 0.124 0.141 0.167 0.212 0.324 38 0.127 0.145 0.170 0.217 0.331
10 0.124 0.142 0.169 0.213 0.321 39 0.127 0.145 0.173 0.218 0.334
11 0.124 0.142 0.166 0.216 0.324 40 0.128 0.146 0.172 0.220 0.335
12 0.125 0.143 0.170 0.213 0.323 41 0.128 0.146 0.173 0.218 0.335
13 0.126 0.143 0.168 0.218 0.337 42 0.128 0.146 0.172 0.217 0.333
14 0.126 0.142 0.169 0.213 0.331 43 0.127 0.146 0.172 0.217 0.334
15 0.125 0.144 0.169 0.215 0.335 44 0.128 0.147 0.173 0.218 0.341
16 0.125 0.143 0.169 0.214 0.329 45 0.128 0.146 0.172 0.217 0.342
17 0.126 0.143 0.169 0.216 0.334 46 0.129 0.146 0.172 0.216 0.346
18 0.126 0.143 0.170 0.216 0.339 47 0.128 0.147 0.173 0.216 0.343
19 0.126 0.143 0.169 0.214 0.336 48 0.128 0.145 0.172 0.219 0.343
20 0.127 0.145 0.169 0.217 0.342 49 0.127 0.145 0.171 0.218 0.335
21 0.126 0.145 0.170 0.216 0.332 50 0.127 0.145 0.172 0.219 0.345
22 0.126 0.144 0.171 0.216 0.337 51 0.128 0.146 0.173 0.220 0.344
23 0.127 0.144 0.169 0.217 0.343 52 0.127 0.146 0.172 0.216 0.346
24 0.126 0.143 0.169 0.216 0.339 53 0.127 0.146 0.172 0.218 0.348
25 0.127 0.145 0.170 0.216 0.342 54 0.127 0.146 0.172 0.219 0.351
26 0.127 0.145 0.171 0.215 0.333 55 0.127 0.145 0.173 0.219 0.356
27 0.127 0.144 0.170 0.215 0.335 56 0.127 0.145 0.172 0.221 0.355
28 0.127 0.145 0.170 0.218 0.334 57 0.127 0.145 0.171 0.218 0.352
29 0.127 0.146 0.171 0.217 0.334 58 0.127 0.145 0.171 0.321 0.353
30 0.127 0.145 0.172 0.218 0.328 59 0.128 0.146 0.171 0.222 0.350
31 0.127 0.145 0.170 0.215 0.328 60 0.127 0.146 0.172 0.219 0.352

32



CHAPTER 3

PROPOSED GENERALIZED CONFIDENCE INTERVAL FOR THE SCALE

PARAMETER OF THE POWER-LAW PROCESS WITH INCOMPLETE FAILURE

DATA

In this chapter, we present details of the proposed generalized confidence interval

(PGCI) for the scale parameter of the PLP with incomplete failure data in case of failure

truncated. Then, we compare the proposed method with the existing confidence interval

given in Yu et al. (2008)[47] to determine which method is better to assess the system relia-

bility during the developmental phase when number of failures is small and some recorded

failure times in the early developmental phase cannot be observed.

3.1 Introduction

In practical situations, incomplete failure data are a common and expected occurrence

during the developmental phase of system testing. Various types of incompleteness can and

do occur in the aspect of missing positions for the failure data. One of the most frequently

encountered scenarios concerns missing position located in the early developmental phase

of system testing. This type of missing pattern can be caused by many reasons. For ex-

ample, a new data-recording engineer may not have the expertise to determine the exact

failure times during the early stage of the development process due to lack of experience.
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Another example to which this situation can be extended is that an investigation with the

objective to forecast building maintenance requirements at a military base. It is discovered

that many records of past maintenance activities are available, but in some cases the early

data has been lost. In this study, we will consider the situation in which missing data occur

in the early developmental phase of system testing. That is, we assume that t1, t2, ..., tr−1

(1 ≤ r < n) are missing failure times and the observed failure times are tr, tr+1, ..., tn.

3.2 Maximum Likelihood Estimates for Parameters of the Power-Law Process with
Missing Data

The concept of maximum likelihood estimation (MLE) of parameters with missing

data was first proposed by Dempster et al. in 1977 (Dempster et al., 1977)[14]. Complete

observations g(Yobs, Ymiss|γ, β) are related to the missing data specification f(Yobs|γ, β)

by

f(Yobs|γ, β) =

∫
g(Yobs, Ymiss|γ, β)dYmiss. (3.1)

Here, we assume that the failure process follows the PLP with intensity function

ν(t) = γβtβ−1, (3.2)

where γ > 0 and β > 0 are a scale and shape parameter, respectively. Therefore, the MLEs

of parameters γ and β of the PLP can be obtained by determining values of γ and β which

maximize f(Yobs|γ, β) given an observed observations.

Suppose t1, t2, ..., tr−1 are missing, then the observed data are defined as Yobs = tr, tr+1,

..., tn for the failure-truncated case. To obtain the joint probability density function (pdf)
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of the observed data, we integrate the joint probability density function of complete obser-

vations (t1, t2, ..., tn):

f(t1, t2, ..., tn) = (γβ)nexp(−γtβn)
n∏
i=1

tβ−1
i , 0 < t1 < t2 < ... < tn, (3.3)

with respect to ti, i = 1, 2, ..., r − 1 using two following identities:

∫
D(m;a,b)

dt1dt2...dtm =
(b− a)m

m!
, (3.4)

and ∫
D(m;a,b)

dF (t1)dF (t2)...dF (tm) =
(F (b)− F (a))m

m!
, (3.5)

where m is any positive integer, a and b are any real numbers such that a < b, F (t) is any

increasing and differentiable function, and D(m; a, b) = (t1, t2, ..., tm)T , a < t1 < t2 <

... < tm < b (Yu et al. 2008[47]).

Let F (t) = tβ/β, a = 0, b = tr, and m = r− 1, we then obtain the likelihood function

of Yobs = tr, tr+1, ..., tn using (3.4) and (3.5) as follows:

L(γ, β) = f(tr, ..., tn) =
γnβn+1−rexp(−γtβn)

(r − 1)!
t(r−1)β
r

n∏
i=r

tβ−1
i , 0 < tr < tr+1 < ... < tn,

(3.6)

and the log-likelihood function is

lnL(γ, β) = nlnγ+(n+1−r)lnβ−γtβn+(r−1)βlntr+(β−1)
n∑
i=r

lnti−ln(r−1)!. (3.7)

By maximizing lnL(γ, β) as defined in (3.7), the MLEs of γ and β are found to be

γ̂ =
n

tβ̂n
, (3.8)
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and

β̂ =
n− r + 1

n−1∑
i=r+1

ln
(
tn
ti

)
+ rln

(
tn
tr

) , (3.9)

respectively.

Theorem 2

Let U = 2(n − r + 1)β/β̂ and V = 2γT βn then U ∼ χ2
(2n−2r), V ∼ χ2

(2n), and they are

mutually independent.

Proof: Using the transformation, we first let

yi = γtβi , (3.10)

where i = 1, 2, ..., n, then yi become successive failure times from a homogeneous Pois-

son process (HPP) with a unit intensity function. The property of HPP indicates that the

sequence of inter-arrival times, which is denoted by yi − yi−1, i = 1, 2, ..., n, are i.i.d.

standard exponential random variables, where y0 = 0. Therefore,

Yn =
n∑
i=1

(yi − yi−1) ∼ Γ(n, 1), (3.11)

and the moment generating function (mgf) of Yn is defined as follows:

MYn(t) = E[etYn ] =

(
1

1− t

)n
, (3.12)

where t < 1 (Casella and Berger, 2001[6]).

36



Let V = 2Yn. Then, the moment generating function of V can be obtained as

MV (t) = E[etV ]

= E[e2tYn ]

=

(
1

1− 2t

)n
, (3.13)

where t <
1

2
. Thus, V = 2Yn has a chi-square distribution with 2n degrees of freedom.

For the distribution of U , we have

U =
2(n− r + 1)β

β̂
= 2β

[
n−1∑
i=r+1

ln
(
tn
ti

)
+ rln

(
tn
tr

)]
. (3.14)

Let zi = ln
(

yn
yn+r−1−i

)
, i = r, r + 1, ..., n− 1, and yi is defined in (3.7). We have

Z =
n−2∑
i=r

zi + rzn−1 ∼ Γ(n− r, 1), (3.15)

and the MGF of Z is defined as follows:

MZ(t) = E[etZ ] =

(
1

1− t

)n−r
, (3.16)

where t < 1.

As a result, we get

U = 2

[
n−1∑
i=r+1

ln
(
yn
yi

)
+ rln

(
yn
yr

)]
= 2Z ∼ χ2

(2n−2r). (3.17)

Theorem 3

If the MLE of β, β̂, is defined as (3.9), then β̂ is a biased estimator of β and its expectation

and variance are defined as:

E(β̂) =
(n− r + 1)β

(n− r − 1)
, (3.18)
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and

V ar(β̂) =
(n− r + 1)2β2

(n− r − 1)2(n− r − 2)
, (3.19)

respectively.

Proof: By Theorem 2 and Lemma 1 (in Chapter 2), we have

β̂ =
2(n− r + 1)β

U

E(β̂) = 2(n− r + 1)βE

(
1

U

)
= 2(n− r + 1)βE(U−1)

= 2(n− r + 1)β

2−1Γ

(
2n− 2r

2
− 1

)
Γ

(
2n− 2r

2

)


=
(n− r + 1)β

(n− r − 1)
.

We also have

β̂2 =

[
2(n− r + 1)β

U

]2

E(β̂2) = 4(n− r + 1)2β2E

(
1

U2

)
= 4(n− r + 1)2β2E(U−2)

= 4(n− r + 1)2β2

2−2Γ

(
2n− 2r

2
− 2

)
Γ

(
2n− 2r

2

)


=
(n− r + 1)2β2

(n− r − 1)(n− r − 2)
.
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Therefore, the variance of β̂ can be obtained as

V ar(β̂) = E(β̂2)− [E(β̂)]2

=
(n− r + 1)2β2

(n− r − 1)(n− r − 2)
−
[

(n− r + 1)β

(n− r − 1)

]2

=
(n− r + 1)2β2

(n− r − 1)2(n− r − 2)
.

3.3 Unbiased Estimate for the Shape Parameter of the Power-Law Process with
Missing Data

Since the MLE of β is biased estimate, we can adjust β̂ to unbiased estimate, and it is

defined as

β̃ =

(
n− r − 1

n− r + 1

)
β̂. (3.20)

Thus, the expectation and variance of β̃ are

E(β̃) = β, (3.21)

and

V ar(β̃) =
β2

(n− r − 2)
, (3.22)

respectively.

3.4 Generalized Confidence Intervals

Consider a population represented by an observable random variable X . Let X =

(X1, X2, ..., Xn) be a random sample from the population. Suppose the distribution of

X is known except for a vector of parameters ζ = (θ, δ), where θ is a parameter of interest
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and δ is a vector of nuisance parameters. Generally, θ could be a vector of parameters, but

we first assume that there is only one parameter of interest and we are interested to find

a confidence interval for θ based on observed values of X. The problem is to construct

generalized confidence intervals of the form [A(x), B(x)] ⊂ Θ, where A(x) and B(x) are

functions of the observed data x (Weerahandi, 2004[45]).

In the classical approach, we find two functions of the observed random vector, A(X)

and B(X), such that

Pr[A(X) ≤ θ ≤ B(X)] = 1− α (3.23)

is satisfied, where 1 − α is the desired confidence level. If it is possible to find A(X)

and B(X) that do not depend on unknown parameters, then we compute a = A(x) and

b = B(x) using the observed value x and call [a, b] a 100(1 − α)% confidence interval.

The nominal values of 1− α typically used in many situations are 0.9, 0.95, and 0.99. For

example, if 1 − α = 0.95, then the interval [a, b] is called a 95% confidence interval. The

interval obtained in this manner has the property that, in repeated sampling, the interval

will contain the true value of parameter θ 100(1-α)% of the times.

3.4.1 Definition of Generalized Pivotal Quantity

In many situations, it is not easy or impossible to find A(X) and B(X) satisfying (3.23)

for all possible values of the nuisance parameters. Weerahandi (1993)[44] showed how

this can be achieved by making probability statements relative to the observed sample, but

without having to treat unknown parameters as random variables. More specifically, we

allow two functions, A() and B(), to depend on the observable random vector X and the
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observed data x both. The construction of regions can be facilitated by generalizing the

classical definition of pivotal quantity.

Definition 1 (Pivotal quantity)

A random variable Q(X, θ) = Q(X1, X2, ..., Xn, θ) is a pivotal quantity (or pivot) if the

distribution of Q(X, θ) is independent of all parameters (Casella and Berger, 2001[6]).

Definition 2 (Generalized pivotal quantity)

A random variable of the form R = R(X; x, ζ), a function of X, x, ζ, is said to be a

generalized pivotal quantity if it has the following two properties:

(i) The probability distribution of R does not depend on unknown parameters.

(ii) The observed pivotal quantity, defined as robs = R(x; x, ζ), does not depend on the

nuisance parameter, δ.

Property (i) is defined to allow us to write probability statements leading to confidence

regions that can be assessed regardless of the values of unknown parameters. Property (ii)

is defined to guarantee that probability statements based on a generalized pivotal quantity

will lead to confidence regions without knowing the values of nuisance parameters.

Suppose we have constructed a generalized pivotal R = R(X; x, ζ) for a parameter of

interest, and we want to construct a confidence region at the confidence level 1− α. Then,

a subset C1−α of the sample space of R is defined such that

Pr(R ∈ C1−α) = 1− α. (3.24)

The region defined by 3.24 also specifies a subset C(x; θ) of the original sample space

satisfying the equation

Pr(X ∈ C(x; θ)) = 1− α. (3.25)
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This region depends not only on 1 − α and θ, but also on the observed data x. If R is a

continuous random variable, then C1−α can be found (Weerahandi, 1993[44]).

3.4.2 Substitution Method

This method requires that there is a set of observed statistics with unknown distributions

that are equal in number to the number of unknown parameters, (δ1, δ2, ..., δk). Consider

a set of observed statistics (X1, X2, ..., Xk) with the observed values (x1, x2, ..., xk). It

is assumed that through a set of random variables having distributions free of unknown

parameters, the statistics are related to the unknown parameters. In many applications, this

would be a set of sufficient statistics with known distributions that can be transformed into

distributions free of unknown parameters.

Let V = (V1, V2, ..., Vk) be a set of random variables with distributions free of un-

known parameters, and it is assumed that the joint distribution of the random vector V is

known. To find generalized pivotal quantities, the substitution method is carried out in the

following steps:

Step 1. Express the parameter of interest, θ, in terms of the sufficient statistics (X1, X2,

..., Xk) and the random variables (V1, V2, ..., Vk).

Step 2. Define a potential generalized pivotal quantity, sayR, by replacing the statistics

(X1, X2, ..., Xk) by their observed values x = (x1, x2, ..., xk) and argue that the distribution

of R is free of unknown parameters.
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Step 3. Rewrite (V1, V2, ..., Vk) terms appearing in R in terms of X and δ and show

that when X = x, the observed values of the quantity R(x; x, δ) does not depend on the

nuisance parameters, where X = (X1, X2, ..., Xk) and δ = (δ1, δ2, ..., δk).

3.5 Proposed Generalized Confidence Interval for the Scale Parameter of the Power-
Law Process

The generalized confidence interval for the scale parameter γ of the PLP for complete

failure data has been proposed by Wang et al. (2013)[43]. In this study, we will derive the

generalized confidence interval for γ with incomplete failure data ([?]).

From Theorem 3, we use the result that U = 2(n − r + 1)β/β̂ and V = 2γT βn has a

chi-square distribution with degree of freedom 2(nr) and 2n, respectively. Here, γ is the

parameter of interest, and β is the nuisance parameter. Using the substitution method to

obtain the generalized pivotal quantity for γ, We first rewrite the result from Theorem 3 as

follows:

β =
β̂U

2(n− r + 1)
, (3.26)

γ =
V

2T βn
. (3.27)

Then, we substitute β̂U/2(n− r + 1) for β in the expression for γ as:

γ =
V

2T
U/(2τ)
n

, (3.28)

where τ =
n−1∑
i=r+1

ln
(
tn
ti

)
+ rln

(
tn
tr

)
.

Using Step 2 of the substitution method, we replace the statistics Tn by its observed

values tn and define the following generalized pivotal quantity

W = W (T; t, γ, β) =
V

2t
U/(2τ)
n

. (3.29)
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We shall now show that the distribution of W is free of unknown parameters.

Theorem 4

Suppose the generalized pivotal quantity W is defined as Equation (3.29), then the cumu-

lative distribution function of W is given by

FW (w) = 1−
∫ ∞

0

g(u)e−y
n−1∑
j=0

yj

j!
du, (3.30)

where y = wt
U/(2τ)
n , τ =

n−1∑
i=r+1

log

(
tn
ti

)
+ rlog

(
tn
tr

)
, and g(u) is the probability density

function (pdf) of χ2
(2n−2r) and g(u) =

1

Γ(n− r)2n−r
u(n−r)−1e−u/2.

Proof: To find the cumulative distribution function of W , we use the definition of the

cumulative distribution function which is given by

FW (w) = P (W ≤ w). (3.31)

Substituting
V

2t
U/(2τ)
n

for W in Equation (3.31), it yields

FW (w) = P (
V

2t
U/(2τ)
n

≤ w)

= P (V ≤ 2wtU/(2τ)
n ). (3.32)

Notice that the distributions of U and V are known, so P (V ≤ 2wt
U/(2τ)
n ) can be

obtained using the conditioning on U = u as follows:

FW (w) =

∫ ∞
0

P (V ≤ 2wtU/(2τ)
n |U = u)g(u)du. (3.33)

Let y = wt
U/(2τ)
n , then we get

FW (w) =

∫ ∞
0

P (V ≤ 2y|U = u)g(u)du. (3.34)
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Recall the cumulative distribution function of χ2
(2n−2r), and let F (y) be the cumulative

distribution function of χ2
(2n) and F (y) is defined as

F (y) = 1− e−y/2
n−1∑
j=0

(y/2)j

j!
, y > 0 (3.35)

(Casella and Berger, 2001). Therefore, Equation (3.34) can be written as

FW (w) =

∫ ∞
0

F (2y)g(u)du

=

∫ ∞
0

(
1− e−(2y)/2

n−1∑
j=0

((2y)/2)j

j!

)
g(u)du,

and the cumulative distribution function of W is then given by

FW (w) = 1−
∫ ∞

0

g(u)e−y
n−1∑
j=0

yj

j!
du. (3.36)

It is clearly that the distribution of W is free of unknown parameters; it depends only

on the degree of freedom of a chi-square distribution.

Next, we rewrite the random variable U and V appearing in W in terms of T =

(Tr, Tr+1, ..., Tn) and β as follows:

W =
V

2t
U/(2τ)
n

=
2γT βn

2t
[2(n−r+1)β/β̂]/(2τ)
n

=
γT βn

t
β[
∑n−1
i=r+1 ln(Tn/Ti)+rln(Tn/Tr)]/τ

n

, (3.37)
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where τ =
n−1∑
i=r+1

ln
(
tn
ti

)
+ rln

(
tn
tr

)
. When T = (Tr, Tr+1, ..., Tn) is replaced by its

observed value t = (tr, tr+1, ..., tn), we obtain the following result

Wobs = W (t; t, γ, β)

=
γtβn

t
β[
∑n−1
i=r+1 ln(tn/ti)+rln(tn/tr)]/τ

n

= γ. (3.38)

The result (3.38) shows that Wobs = W (t; t, γ, β) = γ does not depend on the nuisance

parameter β. Therefore, W is a generalized pivotal quantity.

Based on the distribution of W , a 100(1 − α)% generalized confidence interval for

parameter γ can be obtained as follows:

[Wα/2,W1−α/2], (3.39)

whereWα/2 andW1−α/2 denote the (α/2)th and (1−α/2)th percentile of the distribution of

W , respectively. Consequently, a test for the hypotheses H0 : γ = γ0 versus H1 : γ > γ0

is to reject H0 if γ̂ > Wα.

Notice that the (α/2)th and (1 − α/2)th percentile of W (Wα/2 and W1−α/2) can be

estimated from the quantity W = V/2t
U/(2τ)
n using the following simulation algorithm.

Algorithm 1

Step 1: For given failure times tr, tr+1, ..., tn, compute τ =
n−1∑
i=r+1

log

(
tn
ti

)
+rlog

(
tn
tr

)
.

Step 2: Generate U ∼ χ2
(2n−2r) and V ∼ χ2

(2n), independently. Then, compute W =

V

2t
U/(2τ)
n

.

Step 3: Repeat Step 2 m times.
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Notice that a numerical error results by computing the improper integral for FW (w) in

(3.30), when we truncate the integral at some finite value. For example, if the integration

range is from 0 to m, then the error is given by

εm =

∫ ∞
m

g(u)e−y
n−1∑
j=0

yj

j!
du. (3.40)

For any specified ε > 0, we can choose a sufficiently large value for m to make εm < ε.

Then, we can evaluate the improper integral for FW (w) in (3.30) to the desired accuracy.

Step 4: Arrange all W values in ascending order: W(1) < W(2) < ... < W(m). Then,

the αth percentile of W is estimated by W(αm).

3.6 Existing Confidence interval for the Scale Parameter of the Power-Law Process

Yu et al. (2008) consider the intensity function (β/θ)(t/θ)β−1 which reduces to (1.17)

when θ = γ−1/β , and the MLE of θ is given by

θ̂ =
tn

n1/β̂
. (3.41)

Let Z = (θ̂/θ)β̂ = (1/n)(V/2)2(n−r+1)/U . Yu et al. (2008) show that the distribution

of Z is free from unknown parameters. Then, a two-sided (α∗)100% confidence interval

for θ is given by

(θ̂(z(1+α∗)/2)−1/β̂, θ̂(z(1−α∗)/2)−1/β̂), (3.42)

where β̂ is the MLE of β and Zα∗ denotes the α∗ quantile of the distribution of Z (see

Appendix B), and the confidence interval for γ can also be obtained using the invariance

property of the MLE.

47



3.7 Simulation Study

In this section, we design a simulation study to investigate the influence of the pre-

determined number of failures (n) and the number of missing failures in the early testing

stage (r − 1) toward the proposed generalized confidence interval (PGCI) and the existing

confidence interval (CCI) for the scale parameter γ.

On the basis of the most common parameters in practical cases, we select some of the

parameter configurations of Wang et al. (2013)[?], β = 1, γ = 0.1, and propose other lev-

els of parameters as β = 0.5, 1.5, γ = 0.05, 0.5, and calculate the 95% confidence intervals

(α = 0.05) as two-sided with equal tail probabilities. Numbers of failures considered are

10, 20, 30, and 40, and numbers of missing failures considered are 0, 1, 2, ..., (0.2n - 1)

or r = 1, 2, ..., 0.2n, respectively. For each parameter configuration, we generate 10,000

random samples from W and Z distributions and use 1,000 simulation replications.

The coverage probability is accepted as the most important attribute of a confidence

interval. Thus, we prefer to use this criterion to evaluate the performance of the confidence

interval with probability close to the nominal level 1 − α. Moreover, we also determine

the bias by examining how the confidence interval fails when it does not cover the true

parameter γ. When the confidence interval is more likely to be lower than the true parame-

ter, we consider the method to be negatively biased. When the confidence interval is more

likely to be higher than the true parameter, we consider the method to be positively biased.

Another criterion is the width of the confidence interval. If two or more intervals have

similar coverage probabilities, the shortest one is superior to the others because it indicates

the preciseness. Therefore, to compare performances of the PGCI and CCI methods, the
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following criteria are considered: coverage probability, coverage error, relative bias, and

average width of the resulting confidence intervals.

3.7.1 Simulation Procedure

We use the following procedure to investigate the accuracy of proposed methods.

1. Generate the NHPP power law data with r − 1 missing failure times (see Appendix
A).

2. Calculate confidence intervals using PGCI and CCI methods.

3. Consider if the true value of parameter γ falls in the interval in 2).

4. Repeat 1) to 3) 1,000 times for each situation.

5. Calculate the coverage probability, coverage error, relative bias, and average width.

(i) Coverage probability (CP) is defined as

CP =
1

1000

1000∑
i=1

Ci, (3.43)

where Ci is 0 when the interval from the ith replication does not cover the true value of the

parameter, and Ci is 1 when the interval from the ith replication covers the true value of

the parameter. To compare the coverage probability with the nominal level, we conclude

that the coverage probability is close to the nominal level 1− α if it falls in the interval

[P0 − Z1−α/2se(P̂ ), P0 + Z1−α/2se(P̂ )],

where P0 is a confidence level, P̂ is an approximate coverage probability from the simula-

tion method, and se(P̂ ) is a standard error of estimation, and given by

se(P̂ ) =

√
P0(1− P0)

1000
.
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Therefore, for 95% confidence level, we conclude that the coverage probability is close to

the nominal level if the coverage probability falls in the interval [0.9365, 0.963].

(ii) Coverage error (CE) is defined as

CE = |CP − 0.95|, (3.44)

where 0.95 is the nominal level used in this study.

(iii) Relative bias (RB) is defined as

RB =
%CI < γ −%CI > γ

%CI < γ + %CI > γ
, (3.45)

where %CI < γ and %CI > γ represent the percentage of the intervals falling below and

above the true parameter γ, respectively.

(iv) Average width (AW) is defined as

AW =
s∑
i=1

Li/s, (3.46)

where Li is the interval width from the ith replication, and s is the total number of intervals

that cover the true value of the parameter.

3.7.2 Simulation Results

The results of performance evaluations for the proposed generalized confidence interval

(PGCI) and the classical confidence interval (CCI) using simulations are shown in Tables

3.1-3.4 and Figure 4-7.

It is quite clear that the PGCI is not biased estimates or overly estimates since its cov-

erage probabilities are close to the nominal level 0.95 for all levels of γ and β, even for
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Table 3.1

Coverage probability (CP), coverage error (CE), relative bias (RB), and average width
(AW) of 95% CI for γ obtained from PGCI and CCI when n = 10

β γ r
PGCI CCI

CP CE RB AW CP CE RB AW
0.5 0.05 1 0.949 0.001 -0.0169 0.9678 0.958 0.008 -0.0492 3.3542

2 0.943 0.007 0.0000 1.0881 0.945 0.005 -0.0313 6.2703
0.10 1 0.955 0.005 +0.0667 1.3158 0.953 0.003 +0.0213 6.8065

2 0.957 0.007 +0.0698 1.4526 0.957 0.007 +0.1163 14.4752
0.50 1 0.945 0.005 +0.0545 2.6296 0.947 0.003 +0.0189 42.136

2 0.951 0.001 +0.1429 2.8152 0.952 0.002 +0.2083 47.212
1.0 0.05 1 0.947 0.003 +0.0943 0.9809 0.940 0.010 +0.1667 3.3586

2 0.939 0.011 +0.0820 1.0986 0.941 0.009 +0.0169 7.0585
0.10 1 0.956 0.006 +0.1364 1.3140 0.951 0.001 +0.1020 6.0921

2 0.952 0.002 +0.0833 1.4541 0.952 0.002 +0.1250 12.6410
0.50 1 0.951 0.001 +0.1020 2.6625 0.957 0.007 +0.1163 29.853

2 0.958 0.008 +0.1429 2.8346 0.957 0.007 +0.1163 51.935
1.5 0.05 1 0.947 0.003 +0.1321 0.9794 0.953 0.003 +0.1064 2.9781

2 0.950 0.000 +0.0400 1.1214 0.950 0.000 +0.0400 6.1279
0.10 1 0.948 0.002 +0.0385 1.2991 0.954 0.004 +0.0435 5.9064

2 0.953 0.003 +0.0638 1.4582 0.951 0.001 +0.0612 11.4015
0.50 1 0.958 0.008 +0.2381 2.6891 0.957 0.007 +0.2093 29.593

2 0.955 0.005 +0.2000 2.8696 0.955 0.005 +0.2889 61.673
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rather small failure numbers. It can be seen in Tables 1-3 that the coverage probabilities

obtained from PGCI fall in the interval (0.9365, 0.9635) for a 95% confidence level, and

the coverage errors are close to 0.

Likewise, the CCI is not biased estimate for all levels of γ and β, except when n = 20, γ

= 0.05, β = 0.5, and r = 3. In this case, the confidence intervals obtained from CCI are more

likely to be less than the true value of parameter γ, which can be seen from the positive

sign of the relative bias (+0.0303) in Table 3.2. In this scenario, the CCI is considered as

negatively biased.

Regarding average widths, Tables 3.1, 3.2 and 3.4 demonstrate that the average widths

of confidence intervals obtained from PGCI increase slightly as the value of parameter γ

and r increases for all levels of β (see Figure 3.1 and Figure 3.2), while confidence inter-

vals obtained from CCI increase significantly (see Figure 3.3 and Figure 3.4). Moreover,

the average widths of confidence intervals obtained from both methods also decrease as

the predetermined number of failures (n) increases. When the predetermined numbers of

failures are small (n < 30), the PGCI yields confidence intervals that have shorter aver-

age widths than CCI for all levels of γ and β. On the other hand, the average widths of

confidence intervals obtained from CCI are shorter than the average widths obtained from

PGCI for all levels of β when γ = 0.05 and 0.1, and the predetermined numbers of failures

are large (n ≥ 30).

When the performance of the two confidence intervals are compared and validated

regarding average widths, the PGCI is superior to CCI due to the shorter average widths

when the predetermined numbers of failures are small (n < 30). For large numbers of
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Table 3.2

Coverage probability (CP), coverage error (CE), relative bias (RB), and average width
(AW) of 95% CI for γ obtained from PGCI and CCI when n = 20

β γ r
PGCI CCI

CP CE RB AW CP CE RB AW
0.5 0.05 1 0.948 0.002 +0.1538 0.6361 0.943 0.007 +0.1930 0.6755

2 0.950 0.000 +0.2000 0.6747 0.946 0.004 +0.1852 0.7674
3 0.939 0.011 -0.0164 0.6973 0.934 0.016 +0.0303 0.8431
4 0.943 0.007 +0.0175 0.7501 0.937 0.013 -0.0476 0.9839

0.1 1 0.944 0.006 -0.1429 0.8818 0.948 0.002 0.0000 1.2408
2 0.944 0.006 +0.0357 0.9396 0.945 0.005 +0.0545 1.3964
3 0.946 0.004 +0.0370 0.9962 0.945 0.005 +0.0909 1.6768
4 0.950 0.000 +0.2400 1.0603 0.950 0.000 +0.2000 1.9854

0.5 1 0.955 0.005 -0.2444 2.1989 0.956 0.006 -0.2273 6.1866
2 0.951 0.001 -0.0612 2.3109 0.947 0.003 -0.0943 7.1504
3 0.950 0.000 0.0000 2.4105 0.949 0.001 -0.0196 8.3321
4 0.950 0.000 0.0000 2.4931 0.951 0.001 0.0204 9.8216

1.0 0.05 1 0.957 0.007 0.0233 0.6125 0.952 0.002 0.0000 0.6280
2 0.956 0.006 -0.1818 0.6363 0.954 0.004 -0.1304 0.6965
3 0.958 0.008 -0.0952 0.6832 0.954 0.004 -0.0870 0.8098
4 0.954 0.004 -0.0870 0.7293 0.954 0.004 -0.0435 0.9792

0.1 1 0.949 0.001 -0.0588 0.8883 0.953 0.003 +0.1064 1.2736
2 0.948 0.002 -0.0385 0.9309 0.947 0.003 +0.0566 1.4021
3 0.949 0.001 +0.0588 0.9737 0.950 0.000 +0.0400 1.5874
4 0.948 0.002 +0.1385 1.0747 0.937 0.013 +0.1429 1.8918

0.5 1 0.947 0.003 -0.0303 2.2668 0.946 0.004 +0.0462 4.6466
2 0.953 0.003 +0.0333 2.3387 0.949 0.001 +0.0154 5.1306
3 0.953 0.003 -0.0169 2.4195 0.952 0.002 -0.0357 5.6422
4 0.953 0.003 -0.1148 2.5250 0.953 0.003 -0.1525 6.3882

1.5 0.05 1 0.951 0.001 +0.0204 0.6110 0.956 0.006 +0.1364 0.6358
2 0.949 0.001 +0.0588 0.6438 0.956 0.006 +0.0909 0.7180
3 0.954 0.004 +0.0435 0.6884 0.955 0.005 -0.0222 0.8233
4 0.949 0.001 -0.0196 0.7280 0.956 0.006 -0.0455 0.9514

0.1 1 0.950 0.000 -0.2000 0.9437 0.951 0.001 -0.2245 1.4089
2 0.952 0.002 -0.1667 0.9946 0.955 0.005 -0.1556 1.6393
3 0.947 0.003 -0.2453 1.0375 0.957 0.007 -0.1163 1.9245
4 0.958 0.008 -0.1905 1.1007 0.952 0.002 -0.0833 2.1620

0.5 1 0.954 0.004 +0.0435 2.2528 0.953 0.003 +0.0638 6.3625
2 0.951 0.001 -0.0612 2.3318 0.951 0.001 -0.0612 7.3670
3 0.949 0.001 +0.0196 2.4374 0.946 0.004 +0.0370 8.7654
4 0.951 0.001 +0.0204 2.5362 0.949 0.001 -0.0196 10.2482
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Figure 3.1

Lower limits and upper limits of 95% CI for γ obtained from PGCI when n = 10
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Figure 3.2

Lower limits and upper limits of 95% CI for γ obtained from PGCI when n = 20
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Figure 3.3

Lower limits and upper limits of 95% CI for γ obtained from CCI when n = 10
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Figure 3.4

Lower limits and upper limits of 95% CI for γ obtained from CCI when n = 20
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Table 3.3

Coverage probability of 95% CI for γ obtained from PGCI and CCI when n is large

n r Method
β = 0.5 β = 1 β = 1.5

γ = 0.05 γ = 0.1 γ = 0.5 γ = 0.05 γ = 0.1 γ = 0.5 γ = 0.05 γ = 0.1 γ = 0.5
30 1 PGCI 0.953 0.946 0.953 0.950 0.959 0.956 0.949 0.943 0.951

CCI 0.956 0.945 0.952 0.953 0.959 0.955 0.949 0.942 0.949
2 PGCI 0.955 0.948 0.959 0.953 0.959 0.962 0.950 0.944 0.952

CCI 0.956 0.951 0.957 0.951 0.958 0.961 0.955 0.940 0.953
3 PGCI 0.959 0.948 0.956 0.942 0.953 0.962 0.950 0.941 0.949

CCI 0.958 0.949 0.958 0.937 0.958 0.962 0.952 0.937 0.947
4 PGCI 0.955 0.946 0.956 0.942 0.962 0.957 0.956 0.943 0.945

CCI 0.954 0.948 0.954 0.942 0.960 0.956 0.957 0.943 0.945
5 PGCI 0.954 0.953 0.951 0.951 0.957 0.956 0.957 0.945 0.947

CCI 0.955 0.954 0.953 0.946 0.960 0.957 0.956 0.945 0.948
6 PGCI 0.956 0.952 0.950 0.948 0.958 0.957 0.956 0.938 0.953

CCI 0.959 0.953 0.951 0.951 0.961 0.956 0.954 0.940 0.950
40 1 PGCI 0.952 0.951 0.942 0.949 0.950 0.947 0.944 0.950 0.947

CCI 0.950 0.950 0.944 0.947 0.948 0.946 0.943 0.948 0.947
2 PGCI 0.945 0.947 0.941 0.948 0.945 0.950 0.942 0.952 0.949

CCI 0.946 0.951 0.944 0.950 0.944 0.949 0.944 0.958 0.946
3 PGCI 0.948 0.950 0.944 0.951 0.950 0.950 0.946 0.952 0.954

CCI 0.945 0.950 0.946 0.953 0.945 0.950 0.938 0.948 0.950
4 PGCI 0.954 0.952 0.946 0.948 0.946 0.954 0.942 0.950 0.952

CCI 0.951 0.955 0.944 0.948 0.947 0.952 0.942 0.952 0.949
5 PGCI 0.953 0.951 0.949 0.951 0.947 0.954 0.942 0.950 0.957

CCI 0.951 0.951 0.948 0.950 0.942 0.956 0.939 0.950 0.958
6 PGCI 0.950 0.952 0.945 0.949 0.945 0.952 0.946 0.956 0.950

CCI 0.954 0.948 0.944 0.947 0.943 0.953 0.944 0.950 0.950
7 PGCI 0.956 0.954 0.943 0.943 0.940 0.953 0.946 0.946 0.953

CCI 0.956 0.955 0.941 0.941 0.939 0.950 0.942 0.952 0.951
8 PGCI 0.955 0.952 0.941 0.941 0.941 0.955 0.948 0.948 0.954

CCI 0.951 0.948 0.937 0.941 0.942 0.954 0.948 0.950 0.953
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failures (n ≥ 30), the CCI is better than PGCI when γ < 0.5. Therefore, the PGCI

is practically useful to save business costs and time during the developmental phase of

system testing since only small numbers of failures are required to test systems, and it

yields precise results.

3.8 Numerical Examples

In this section, we use two real examples from an engine system development program

provided by Zhou and Weng in 1992 and the failure times in hours for an aircraft generator

provided by Rigdon and Basu in 1989 to illustrate the proposed methods.

3.8.1 Engine Failure Data

The total number of failure times (hours) in the engine system development testing is

fixed at 40 and were reported as follows: *, *, *, 171, 234, 274, 377, 530, 533, 941, 1074,

1188, 1248, 2298, 2347, 2347, 2381, 2456, 2456, 2500, 2913, 3022, 3038, 3728, 3873,

4724, 5147, 5179, 5587, 5626, 6824, 6983, 7106, 7106, 7568, 7568, 7593, 7642, 7928,

8063, where * represents the unknown exact failure times which occur in the early phase

of the test.

Here, we have n = 40 and r = 4. We thus obtain the maximum likelihood estimates of

γ and β using (3.8) and (3.9) and get γ̂ = 0.0914 and β̂ = 0.6761.

To determine whether the engine system is improving, we can also perform a test with

null (H0) and alternative (H1) hypotheses as follows:

H0: The engine system is not improving (β = 1),

H1: The engine system is improving (β < 1).
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Table 3.4

Average width of 95% CI for γ obtained from PGCI and CCI when n is large

n r Method
β = 0.5 β = 1 β = 1.5

γ = 0.05 γ = 0.1 γ = 0.5 γ = 0.05 γ = 0.1 γ = 0.5 γ = 0.05 γ = 0.1 γ = 0.5
30 1 PGCI 0.4644 0.7030 2.0008 0.4701 0.6948 1.9274 0.4723 0.6928 1.9478

CCI 0.3822 0.6510 3.1827 0.3886 0.6433 2.9854 0.3849 0.6262 3.0449
2 PGCI 0.4812 0.7229 2.0557 0.4907 0.7161 1.9765 0.4845 0.7222 1.9947

CCI 0.4043 0.6769 3.3752 0.4199 0.6752 3.1689 0.4096 0.6750 3.2257
3 PGCI 0.4922 0.7502 2.1066 0.5070 0.7295 2.0371 0.5022 0.7384 2.0275

CCI 0.4320 0.7141 3.5536 0.4451 0.6977 3.3674 0.4278 0.7002 3.3285
4 PGCI 0.5145 0.7841 2.1603 0.5237 0.7656 2.0748 0.5136 0.7593 2.0971

CCI 0.4629 0.7824 3.7504 0.4669 0.7359 3.5172 0.4615 0.7494 3.5784
5 PGCI 0.5315 0.8145 2.2175 0.5526 0.7887 2.1296 0.5394 0.7837 2.1520

CCI 0.4920 0.8316 4.0031 0.5086 0.7805 3.7462 0.4963 0.7896 3.8009
6 PGCI 0.5554 0.8458 2.2706 0.5716 0.8217 2.2045 0.5580 0.8128 2.2121

CCI 0.5235 0.8877 4.2316 0.5676 0.8657 4.0095 0.5222 0.8381 4.0542
40 1 PGCI 0.3847 0.6060 1.7320 0.3872 0.6005 1.7686 0.3790 0.6392 1.7417

CCI 0.2834 0.5234 2.3748 0.2841 0.5141 2.4299 0.2764 0.6154 2.3721
2 PGCI 0.3949 0.6167 1.7696 0.3907 0.6165 1.7947 0.3853 0.6490 1.7684

CCI 0.2924 0.5387 2.4741 0.2967 0.5319 2.5136 0.2833 0.6384 2.4336
3 PGCI 0.4055 0.6274 1.7860 0.4044 0.6326 1.8171 0.3959 0.6639 1.7958

CCI 0.2987 0.5491 2.5220 0.3081 0.5506 2.5770 0.2914 0.6497 2.5268
4 PGCI 0.4184 0.6418 1.8170 0.4107 0.6475 1.8397 0.4089 0.6687 1.8198

CCI 0.3179 0.5717 2.6027 0.3127 0.5731 2.6461 0.3070 0.6709 2.5877
5 PGCI 0.4260 0.6576 1.8505 0.4262 0.6640 1.8623 0.4189 0.6904 1.8614

CCI 0.3302 0.5880 2.6951 0.3342 0.5884 2.7251 0.3175 0.7047 2.7053
6 PGCI 0.4403 0.6783 1.8723 0.4360 0.6802 1.9093 0.4269 0.7053 1.8789

CCI 0.3468 0.6101 2.7629 0.3450 0.6160 2.8393 0.3295 0.7158 2.7599
7 PGCI 0.4570 0.7032 1.9172 0.4483 0.7002 1.9430 0.4376 0.7222 1.9210

CCI 0.3672 0.6489 2.8902 0.3601 0.6413 2.9477 0.3454 0.7456 2.8905
8 PGCI 0.4708 0.7278 1.9441 0.4611 0.7178 1.9683 0.4530 0.7448 1.9424

CCI 0.3825 0.6845 2.9692 0.3774 0.6749 3.0402 0.3739 0.7857 2.9668
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Let L0 = L(γ̂, β = 1) and L1 = L(γ̂, β̂) be the maximum likelihoods of the en-

gine failure data under H0 and H1 respectively. The likelihood ratio test in this case is

then defined as the statistic χ2 = −2ln(L0/L1) which, under H0, follows χ2 distribution

with 1 degree of freedom (L0 assumes 1 parameter less than L1), and the null hypothesis

is rejected if χ2 is greater than the critical value χ2
1,α. Using the joint probability den-

sity function of Yobs = tr, tr+1, ..., tn in (3.6), we obtain lnL0 = -819.0254 and lnL1 =

-235.3695. Therefore, the likelihood ratio test statistic is χ2 = −2ln(L0/L1) = 1167.3117,

which is greater than χ2
1,0.05 = 3.841. Thus, there is sufficiently strong evidence to sup-

port the hypothesis that the engine system is improving at a significance level of 0.05 (see

Figure 3.5).

Figure 3.5

Failure rate estimate for the engine system
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To illustrate the PGCI and CCI methods, we use the engine failure data to construct

95% confidence intervals for γ, and the results appear in Table 3.5.

Table 3.5

95% CIs and interval widths for γ using engine failure data

Method 95% CI for γ Interval width
PGCI [0.0129, 0.6309] 0.6179
CCI [0.0362, 0.5077] 0.4715

Table 3.5 shows that the interval width obtained from CCI is a bit shorter than the

interval width obtained from PGCI, and this result is similar to the result based on the

simulated data when n = 40, r = 4, β = 0.6761, and γ = 0.0914 (0.6146 and 0.5796 for

PGCI and CCI, respectively). The distributions of W and Z obtained from the simulation

algorithm using m = 10, 000 are demonstrated in Figure 3.6.

3.8.2 Failure Times of an Aircraft Generator

In this example, we consider the failure times of the aircraft generator when the testing

was stopped after the 13th failure. The observed failure times are as follows: 55*, 166*,

205*, 341, 488, 567, 731, 1308, 2050, 2453, 3115, 4017, and 4596.

For illustrative purposes, we assume that the exact failure times for the first three fail-

ures cannot be observed. The maximum likelihood estimates, 95% confidence intervals,

and interval widths obtained from the PGCI and CCI methods are tabulated in Table 3.6.
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Figure 3.6

Distributions of W and Z

Table 3.6

Estimates of parameters and interval widths for complete (r = 1) and incomplete failure
data (r ≥ 2)

r γ̂ β̂
PGCI CCI

95% CI for γ Width 95% CI for γ Width
1 0.1072 0.5690 [0.0081, 1.4244] 1.4164 [0.0394, 2.1045] 2.0651
2 0.1238 0.5519 [0.0103, 1.6140] 1.6037 [0.0463, 2.6811] 2.6348
3 0.1676 0.5159 [0.0137, 2.0741] 2.0605 [0.0590, 5.2652] 5.2062
4 0.1835 0.5052 [0.0151, 2.3437] 2.3286 [0.0656, 7.2116] 7.1460
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Similar to the engine failure data, we can perform a statistical hypothesis testing to

determine whether the aircraft generator is improving with the null (H0) and alternative

(H1) hypotheses as follows:

H0: The aircraft generator is not improving (β = 1),

H1: The aircraft generator is improving (β < 1).

Based on the MLEs of γ and β in Table 3.6, we obtained the likelihood ratio test statis-

tics for r = 1, 2, 3, and 4 as 869.9073, 1018.9382, 1414.5336, and 1558.1749, respectively.

Therefore, we can conclude that there is sufficiently strong evidence to support the hy-

pothesis that the aircraft generator is improving for all situations (r = 1, 2, 3, and 4) at a

significance level of 0.05 (χ2
1,0.05 = 3.841). The failure rate estimate during the testing time

is shown in Figure 3.7.

Moreover, we also observe that the interval widths obtained from both methods in-

crease as the number of missing failures increases, and that the PGCI is superior to the

CCI regarding the shorter interval widths (see Figure 3.8). This result is similar to the

result based on the simulated data when the predetermined number of failures (n) is small.

3.9 Conclusions and Discussions

In this research, we proposed the generalized confidence interval (PGCI) for the scale

parameter of the PLP with the specific type of incomplete failure data when missing failure

times occur only in the early developmental phase of system testing. This type of incom-

pleteness becomes essential to establish a warranty period or determine a maintenance

phase for repairable systems. The performance of the proposed generalized confidence
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Figure 3.7

Failure rate estimate for the aircraft generator

Figure 3.8

95% CI for γ obtained from PGCI and CCI using the failure times of an aircraft generator
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interval is validated and compared to the classical confidence interval (CCI) given by Yu

et al. using the following criteria: coverage probability, coverage error, relative bias, and

average width.

The results of the simulations indicate that the PGCI and CCI methods are not biased

estimates, which can be seen from the coverage probabilities obtained from both methods

being close to the nominal level 0.95 for all levels of γ and β. The simulation results also

demonstrate that the average widths of confidence intervals obtained from PGCI increase

slightly as the value of parameter γ and r increases for all levels of β, while confidence

intervals obtained from CCI increase greatly. The reason is that the proposed generalized

confidence interval does not depend on the shape parameter β, and as a result, the average

widths will depend only on n, r, and γ. On the other hand, the classical confidence interval

depends on the shape parameter β, and the MLE of β is a biased estimator. Therefore, β̂

significantly affects the width of CCI for small failure numbers, but it will improve with

increasing failure numbers. Moreover, the average widths of confidence intervals obtained

from both methods also decrease as the predetermined number of failures (n) increases.

These results correspond to the results presented by Wang et al. (2013)[43] for complete

failure data (r = 1).

When the performance of the two confidence intervals are compared and validated

regarding average widths, the PGCI is superior to CCI due to shorter average widths when

the predetermined numbers of failures are small (n < 30). Based on this result, it is quite

clear that the proposed method is practically useful to save business costs and time during
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the developmental phase of system testing since only small numbers of failures are required

to test systems, and it yields precise results.

Finally, this study only focuses on failure truncated case when the number of failures

is predetermined and considers only the situation when missing failure times occur in the

early developmental phase of system testing. Thus, the potential future research can be

extended to time truncated case, consider other scenarios of missing failure times, or apply

this proposed method to more than one system similar to the study presented by Il and

Woojin (2017)[29].
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CHAPTER 4

PROPOSED MODIFIED SIGNED LOG-LIKELIHOOD RATIO TEST FOR THE

SCALE PARAMETER OF THE POWER-LAW PROCESS

In this chapter, we present details of the proposed modified signed log-likelihood ratio

test (MSLRT) for testing the scale parameter of the PLP applicable on both complete and

incomplete failure data for failure truncated cases. To compare the proposed with the

signed log-likelihood ratio test (SLRT), the empirical type I errors and the empirical powers

for testing two-sided hypotheses are investigated.

4.1 Hypothesis Testing for the Scale Parameter of the Power-Law Process with Com-
plete Failure Data

In this section, we first review the method of likelihood ratio test (LRT) and signed

log-likelihood ratio test (SLRT), and then we propose the modified version of signed log-

likelihood ratio test (MSLRT).
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4.1.1 Likelihood Ratio Test for the Scale Parameter of the Power-Law Process with
Complete Failure Data

For the problem considered in this study, we are interested to make a conclusion about

the scale parameter (γ) of the PLP. To perform a two-sided test about γ, the null (H0) and

alternative (H1) hypotheses are stated as follows:

H0 : γ = γ0 versus H1 : γ 6= γ0. (4.1)

Let Ω = {(γ, β) : γ > 0, β > 0} denote the entire parameter space, and Ω0 = {(γ, β) :

γ = γ0, β = βγ0 > 0} denote the null hypothesis parameter space. Then, the likelihood

functions of the observed failure times t1, t2, ..., tn under the entire parameter space and

the null hypothesis parameter space are given by

L(Ω) = L(γ, β) = (γβ)nexp(−γtβn)
n∏
i=1

tβ−1
i (4.2)

and

L(Ω0) = L(γ = γ0, βγ0) = (γ0βγ0)
nexp(−γ0t

βγ0
n )

n∏
i=1

t
βγ0−1

i , (4.3)

respectively.

Let the maximum of L(Ω) in Ω be denoted by L(Ω̂) and let the maximum of L(Ω0) in

Ω0 be denoted by L(Ω̂0). Then the criterion for the test of H0 against H1 is the likelihood

ratio

Λ =
L(Ω̂0)

L(Ω̂)
. (4.4)

Here, L(Ω) obtains its maximum value at γ̂ and β̂ which are given in (2.10) and (2.11),

respectively. Thus

max L(Ω) = L(Ω̂) = (γ̂β̂)nexp(−n)
n∏
i=1

tβ̂−1
i . (4.5)
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Similarly, L(Ω0) obtains its maximum value at γ0 and βγ0 . Unfortunately, an analytic

solution for βγ0 is not available. Therefore, the following algorithm is used to find a nu-

merical solution for βγ0 .

Algorithm 2

Step 1: Find the maximum likelihood estimator for parameter β (as shown in 3.9) and

use it as an initial value for βγ0 . That is, we set β(0)
γ0 = β̂.

Step 2: Evaluate the first partial derivatives l′(Ω0) at βγ0 = β
(0)
γ0 ,

l′(γ0, β
(0)
γ0 ) =

n

β
(0)
γ0

− γ0t
β
(0)
γ0
n ln(tn) +

n∑
i=1

lnti.

Step 3: Find the second partial derivatives l′′(Ω0) at βγ0 = β
(0)
γ0 ,

l′′(γ0, β
(0)
γ0 ) = − n

(β
(0)
γ0 )2

− γ0t
β
(0)
γ0
n (ln(tn))2.

Step 4: Compute the current estimate of the (k + 1)th iteration (k = 0, 1, 2, ...) for

parameter βγ0 ,

β
(k+1)
γ0 = β

(k)
γ0 − [l′′(γ0, β

(k)
γ0 )]−1l′(γ0, β

(k)
γ0 )

= β
(k)
γ0 −

β
(k)
γ0

(
n− γ0β

(k)
γ0 t

β
(k)
γ0
n ln(tn) + β

(k)
γ0

n∑
i=1

lnti

)
−n− γ0(β

(k)
γ0 )2t

β
(k)
γ0
n (ln(tn))2

.

Step 5: Repeat step (2) through (4) until the estimates meet a convergence crite-

rion. That is, we stop and obtain the final estimator, β̂γ0 = β
(k)
γ0 , when |l(γ0, β

(k+1)
γ0 ) −

l(γ0, β
(k)
γ0 )| ≤ ε where ε is the desired level of error (ε = 0.000000000000001).

Thus, the maximum of L(Ω0) is

L(Ω̂0) = (γ0β̂γ0)
nexp(−γ0t

β̂γ0
n )

n∏
i=1

t
β̂γ0−1

i . (4.6)
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Therefore, the likelihood ratio statistic can be expressed as

Λ =
L(Ω̂0)

L(Ω̂)
=

(γ0β̂γ0)
nexp(−γ0t

β̂γ0
n )

n∏
i=1

t
β̂γ0−1

i

(γ̂β̂)nexp(−n)
n∏
i=1

tβ̂−1
i

. (4.7)

To test hypotheses H0 : γ = γ0 versus H1 : γ 6= γ0, we base the test on the following

statistic:

Q = −2lnΛ, (4.8)

which under H0, we have approximately that Q ∼ χ2
(1). Therefore, an approximate size α

test is to reject H0 if Q ≥ χ2
(1) (Max and Lee, 1992[17]).

4.1.2 Signed Log-Likelihood Ratio Test for the Scale Parameter of the Power-Law
Process

The idea of signed log-likelihood ratio (SLRT) has been proposed and discussed by

McCullagh (1982, 1984)[27][28], Petersen (1981)[32], Pierce and Schafer (1986)[34], and

Barndorff-Nielsen (1980, 1984, 1986)[2][3][4].

4.1.2.1 Signed Log-Likelihood Ratio Test

Suppose the log-likelihood function based on sample data is l(θ) = l(ψ, λ) where

θ = (ψ, λ), ψ is a parameter of interest and λ is a nuisance parameter.

For testing the null hypothesis H0 : ψ = ψ0, a conclusion can be made based on the

statistic

Λ = −2[l(ψ, λ̂ψ)− l(ψ̂, λ̂)]

= 2[l(ψ̂, λ̂)− l(ψ, λ̂ψ)], (4.9)
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where θ̂ = (ψ̂, λ̂) denotes the maximum likelihood estimator of θ = (ψ, λ) and θ̂ψ =

(ψ, λ̂ψ) denotes the constrained maximum likelihood estimator of θ for a fixed ψ. Under

H0, it is well known that Λ follows χ2 distribution with 1 degree of freedom (l(ψ, λ̂ψ)

assumes 1 parameter less than l(ψ̂, λ̂)), so that an approximate size α test is to reject H0 if

LR ≥ χ2
1,α.

Based on the statistic in (4.9), it is easily verified that the signed log-likelihood ratio

statistic, say R(ψ), to test the null hypothesis H0 : ψ = ψ0 has the following form

R(ψ) = sign(ψ̂ − ψ)

√
2[l(ψ̂, λ̂)− l(ψ, λ̂ψ)], (4.10)

where sign(ψ̂ − ψ) = 1, if (ψ̂ − ψ) > 0 and sign(ψ̂ − ψ) = −1, if (ψ̂ − ψ) < 0.

R(ψ) is in general known to be approximately distributed as a standard normal distri-

bution up to an order of O(n−1/2) (Cox and Hinkley, 1974[9]), and a two-sided p-value for

testing the null hypothesis H0 : ψ = ψ0 can be obtained from R(ψ) by

p− value = 2P (R(ψ) > |R(ψ)0|) ≈ 2(1− φ(|R(ψ)0|)), (4.11)

where R(ψ)0 is the observed value of the statistic R(ψ) and φ(.) is the standard normal

distribution function. Additionally, the approximate 100(1-α)% confidence interval for ψ

can be obtained from

(ψ; |R(ψ)| ≤ zα/2), (4.12)

where zα/2 is the 100(1-α/2)th percentile of the standard normal distribution (Wu et al.,

(2002)[46]).
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4.1.2.2 Signed Log-Likelihood Ratio Test for the Scale Parameter of the Power-Law
Process with Complete Failure Data

Suppose the likelihood ratio test for H0 : γ = γ0 versus H1 : γ 6= γ0 is defined as (4.8),

then the SLRT is given by

R(γ) = sign(γ̂ − γ)
√
Q, (4.13)

where sign(γ̂ − γ) = 1 if (γ̂ − γ) > 0 and sign(γ̂ − γ) = −1 if (γ̂ − γ) < 0, and

R(γ) is asymptotically distributed as a standard normal to the first order. Therefore, an

approximate size α test is to reject H0 if |R(γ)| ≥ z1−α/2, where z1−α/2 is the (1− α/2)th

percentile of the standard normal distribution.

4.1.3 Modified Signed Log-Likelihood Ratio Test for the Scale Parameter of the
Power-Law Process with Complete Failure Data

It has been found that the SLRT is not very accurate (see Figure 4.1), especially when

the sample size is small[33]. Therefore, some improvements are required in order to

increase the accuracy of the SLRT. In this study, we propose the modified signed log-

likelihood ratio test (MSLRT) for the problem of testing the scale parameter of the PLP

and it has following form

R∗(γ) =
R(γ)−m[R̃(γ)]√

v[R̃(γ)]
, (4.14)

where R̃(γ) is the signed log-likelihood ratio statistic assessed at the constrained MLEs,

m[R̃(γ)] and v[R̃(γ)] are the mean and variance of the statistic R̃(γ), respectively. Then,

R∗(γ) is asymptotically distributed as a standard normal up to an error of O(n−3/2)[15].

As noted in DiCiccio et al. (2001)[15],R∗(γ) is approximately distributed as a standard

normal up to an error of O(n−3/2), while R(γ) follows a standard normal distribution to
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the first order. Furthermore, the asymptotic formula for m[R(γ)] and v[R(γ)] are complex

expression involving expectation of high-order derivatives of the log-likelihood. Therefore,

a simpler alternative method of calculation can be based on a parametric bootstrap (PB). In

this study, we will use the PB approach to approximate the mean and variance of the R(γ)

test statistic. Details of finding the value of MSLRT statistic are given in the following

simulation algorithm.

Algorithm 3

Step 1: For given NHPP power-law data (t1, t2, ..., tn), compute the unconstrained

MLEs, γ̂ and β̂, using (3.8) and (3.9), and the constrained MLE, β̂γ0 , using Algorithm

2. Then, compute the SLRT statistic, R(γ), using (4.13).

Step 2: Generate the Bootstrap NHPP power-law data (t∗1, t
∗
2, ..., t

∗
n) with parameter

γ = γ0 and β = β̂γ0 .

Step 3: Compute the unconstrained MLEs, β̂∗ and γ̂∗, and the constrained MLE, β̂∗γ0 .

Then, compute the SLRT statistic, R̃(γ), based on (t∗1, t
∗
2, ..., t

∗
n).

Step 4: Repeat steps 2-3 b times (b = 10, 000).

Step 5: Compute the sample mean and sample variance of R̃(γ)

m[R̃(γ)] =
1

b

b∑
i=1

R̃(γ)i, (4.15)

and

v[R̃(γ)] =
1

b− 1

b∑
i=1

(R̃(γ)−m[R̃(γ)])2, (4.16)

and then compute the MSLRT statistic, R∗(γ), using (4.14).
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For testing H0 : γ = γ0 versus H1 : γ 6= γ0, the null hypothesis is rejected at the level

of α if |R∗(γ)| ≥ z1−α/2, where z1−α/2 is the (1−α/2)th percentile of the standard normal

distribution.

Figure 4.1

Distributions of SLRT and MSLRT statistics when n = 8

4.2 Signed Log-Likelihood Ratio Test and Modified Signed Log-Likelihood Ratio
Test for the Scale Parameter of the Power-Law Process with Incomplete Failure
Data

Let define the incomplete failure data as the data in which some exact failure times

in the early of system development process cannot be observed. That is, we assume that

t1, t2, ..., tr−1 are missing, and the observed failure times are defined as Yobs = tr, tr+1, ..., tn.

Recall the likelihood function for Yobs = tr, tr+1, ..., tn (see Chapter 3 for details):

L(γ, β) =
γnβn+1−rexp(−γtβn)

(r − 1)!
t(r−1)β
r

n∏
i=r

tβ−1
i , 0 < tr < tr+1 < ... < tn. (4.17)
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Start

Generate the NHPP Power-law data (𝑡1, 𝑡2, …, 𝑡𝑛) with 

parameter 𝛾 and 𝛽. 

b = 10,000

Yes

Compute the sample mean and sample variance of ෨𝑅(𝛾),

m[ ෨𝑅(𝛾)] and  v[ ෨𝑅(𝛾)], respectively.

Stop

Print results

No

Compute ො𝛾, ෡𝛽, and መ𝛽𝛾0
.

Compute the SLRT statistic, R(𝛾).

Generate the Bootstrap NHPP power-law data (𝑡1
∗,𝑡2

∗, …,𝑡𝑛
∗ ) with parameter 

γ = 𝛾0 and 𝛽 = መ𝛽𝛾0
. 

Compute ො𝛾∗, መ𝛽∗, and መ𝛽𝛾0
∗ .

Compute the SLRT statistic, ෨𝑅(𝛾).

Compute the MSLRT statistic, 𝑅∗(𝛾).

Figure 4.2

MSLRT Algorithm diagram
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Similarly to complete failure case, to test hypothesis H0 : γ = γ0 against H1 : γ 6= γ0,

we let Ω = {(γ, β) : γ > 0, β > 0} denote the entire parameter space, and Ω0 = {(γ, β) :

γ = γ0, β = βγ0 > 0} denote the null hypothesis parameter space. Then, the likelihood

functions of the observed failure times Yobs = tr, tr+1, ..., tn under the entire parameter

space and the null hypothesis parameter space are given by

L(Ω) = L(γ, β) =
γnβn+1−rexp(−γtβn)

(r − 1)!
t(r−1)β
r

n∏
i=r

tβ−1
i (4.18)

and

L(Ω0) = L(γ = γ0, βγ0) =
γnβn+1−r

γ0
exp(−γtβγ0n )

(r − 1)!
t
(r−1)βγ0
r

n∏
i=r

t
βγ0−1

i , (4.19)

respectively.

Let the maximum of L(Ω) in Ω be denoted by L(Ω̂) and let the maximum of L(Ω0)

in Ω0 be denoted by L(Ω̂0). Then, the likelihood ratio statistic for testing H0 : γ =

γ0 versus H1 : γ 6= γ0, can be expressed as

Λ =
L(Ω̂0)

L(Ω̂)

=

γnβ̂n+1−r
γ0

exp(−γtβ̂γ0n )t
(r−1)β̂γ0
r

n∏
i=r

t
β̂γ0−1

i

γ̂nβ̂n+1−rexp(−n)t
(r−1)β̂
r

n∏
i=r

tβ̂−1
i

, (4.20)

where γ̂ and β̂ are MLEs of γ and β and can be obtained using (3.8) and (3.9), respectively,

and β̂γ0 can be obtained using the following algorithm.

Algorithm 4

Step 1: Find the maximum likelihood estimator for parameter β (as shown in Equation

(3.9)) and use it as an initial value for βγ0 . That is, we set β(0)
γ0 = β̂.
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Step 2: Evaluate the first partial derivatives l′(Ω0) at βγ0 = β
(0)
γ0 ,

l′(γ0, β
(0)
γ0 ) =

n+ 1− r
β

(0)
γ0

− γ0t
β
(0)
γ0
n lntn + (r − 1)lntr +

n∑
i=r

lnti.

Step 3: Find the second partial derivatives l′′(Ω0) at βγ0 = β
(0)
γ0 ,

l′′(γ0, β
(0)
γ0 ) = −n+ 1− r

[β
(0)
γ0 ]2

− γ0t
β
(0)
γ0
n (lntn)2.

Step 4: Compute the current estimate of the (k + 1)th iteration (k = 0, 1, 2, ...) for

parameter βγ0 ,

β
(k+1)
γ0 = β

(k)
γ0 − [l′′(γ0, β

(k)
γ0 )]−1l′(γ0, β

(k)
γ0 )

= β
(k)
γ0 −

β
(k)
γ0

(
n+ 1− r − γ0β

(k)
γ0 t

β
(k)
γ0
n lntn + (r − 1)β

(k)
γ0 lntr + β

(k)
γ0

n∑
i=r

lnti

)
−(n+ 1− r)− γ0[β

(k)
γ0 ]2t

β
(k)
γ0
n (lntn)2

.

Step 5: Repeat step (2) through (4) until the estimates meet a convergence crite-

rion. That is, we stop and obtain the final estimator, β̂γ0 = β
(k)
γ0 , when |l(γ0, β

(k+1)
γ0 ) −

l(γ0, β
(k)
γ0 )| ≤ ε where ε is the desired level of error (ε = 0.000000000000001).

Therefore, the SLRT and the MSLRT can be obtained using Equation (4.13) and (4.14)

as described in the previous section.

4.3 Simulation Study

In this section, we carry out a simulation study with 5,000 replications to assess the

accuracy of the proposed MSLRT methods. We investigate the empirical type I errors and

empirical powers for the two-sided hypotheses testing to compare the performance of the

proposed method with the existing SLRT.

To cover all three types of system reliability (reliability growth, constant failure rate,

and reliability degeneration), we select some values of the most common parameters in
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practical cases as β = 0.8, 1.0, and 1.2 and γ = 0.05, 0.1, and 0.5. Numbers of failures (n)

considered in this study are 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 for complete failures

case, and 10, 20, 30, 40, and 50 for incomplete failures case with missing ratio 10%, 20%,

and 30%.

4.3.1 Simulation Results for Complete Failure Data

Table shows the results of empirical type I errors for testing hypothesis H0 : γ = γ0

versus H1 : γ 6= γ0 at nominal level α = 0.05 when complete failure data are reported.

The results in Table 4.1 show that for all parameter configurations, the empirical type

I errors of the modified signed log-likelihood ratio test (MSLRT) are satisfactory because

they are close to the nominal level 0.05. However, the signed log-likelihood ratio test

(SLRT) also performs satisfactorily when n ≥ 30.

Figure 4.3

Distributions of test statistics when γ = 0.5 and β = 0.8
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Table 4.1

Empirical type I errors for testing H0 : γ = γ0 versus H1 : γ 6= γ0

n Methods
β = 0.8 β = 1.0 β = 1.2

γ0 = 0.05 γ0 = 0.1 γ0 = 0.5 γ0 = 0.05 γ0 = 0.1 γ0 = 0.5 γ0 = 0.05 γ0 = 0.1 γ0 = 0.5
10 SLRT 0.0680 0.0710 0.0742 0.0752 0.0718 0.0782 0.0752 0.0764 0.0756

MSLRT 0.0534 0.0580 0.0574 0.0540 0.0520 0.0598 0.0530 0.0562 0.0580
20 SLRT 0.0638 0.0660 0.0548 0.0680 0.0588 0.0690 0.0628 0.0646 0.0604

MSLRT 0.0526 0.0530 0.0548 0.0574 0.0512 0.0522 0.0554 0.0562 0.0546
30 SLRT 0.0572 0.0730 0.0632 0.0574 0.0596 0.0560 0.0620 0.0584 0.0620

MSLRT 0.0500 0.0550 0.0582 0.0500 0.0528 0.0506 0.0510 0.0514 0.0496
40 SLRT 0.0614 0.0580 0.0566 0.0602 0.0590 0.0602 0.0602 0.0580 0.0606

MSLRT 0.0528 0.0534 0.0494 0.0586 0.0522 0.0536 0.0544 0.0530 0.0564
50 SLRT 0.0576 0.0480 0.0574 0.0568 0.0614 0.0534 0.0590 0.0542 0.0534

MSLRT 0.0532 0.0560 0.0512 0.0562 0.0566 0.0502 0.0542 0.0520 0.0510
60 SLRT 0.0530 0.0582 0.0506 0.0530 0.0544 0.0526 0.0578 0.0558 0.0564

MSLRT 0.0506 0.0556 0.0510 0.0506 0.0536 0.0522 0.0546 0.0516 0.0544
70 SLRT 0.0510 0.0534 0.0524 0.0522 0.0558 0.0550 0.0514 0.0552 0.0522

MSLRT 0.0518 0.0500 0.0512 0.0514 0.0540 0.0514 0.0498 0.0520 0.0516
80 SLRT 0.0570 0.0552 0.0524 0.0556 0.0558 0.0594 0.0538 0.0540 0.0552

MSLRT 0.0534 0.0516 0.0498 0.0516 0.0548 0.0568 0.0520 0.0508 0.0514
90 SLRT 0.0578 0.0528 0.0520 0.0576 0.0550 0.0530 0.0510 0.0586 0.0492

MSLRT 0.0534 0.0514 0.0494 0.0530 0.0514 0.0526 0.0506 0.0570 0.0498
100 SLRT 0.0528 0.0616 0.0508 0.0530 0.0560 0.0482 0.0538 0.0566 0.0508

MSLRT 0.0498 0.0558 0.0494 0.0512 0.0548 0.0500 0.0522 0.0562 0.0494

The empirical powers clearly indicate that the MSLRT is very satisfactory for all num-

ber of failures (n) and parameters configurations. Moreover, the empirical powers of both

methods increase as n and k increases. Note that k is defined as function of the ratio γ1/γ0.

The results are reported in Table 4.2-4.4 and Figure 4.3.

4.3.2 Simulation Results for Incomplete Failure Data

The results of empirical type I errors for testing hypothesis H0 : γ = γ0 versus H1 :

γ 6= γ0 at nominal level 0.05 are reported in Table 4.5-4.7.

In terms of controlling type I errors, the MSLRT is preferable to the SLRT in most

situations which can be seen that most empirical type I errors are close to the nominal level
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Table 4.2

Empirical powers for testing H0 : γ = 0.05 versus H1 : γ = γ1 when β = 0.8

n Methods
γ1 = 0.05 γ1 = 0.1 γ1 = 0.2 γ1 = 0.3 γ1 = 0.5 γ1 = 1

(k = 1) (k = 2) (k = 4) (k = 6) (k = 10) (k = 20)
10 SLRT 0.0740 0.0760 0.1220 0.1940 0.3570 0.6500

MSLRT 0.0610 0.0850 0.1780 0.2920 0.4750 0.7400
20 SLRT 0.0610 0.0840 0.1960 0.3170 0.5260 0.8160

MSLRT 0.0480 0.1050 0.2530 0.4060 0.6220 0.8670
30 SLRT 0.0560 0.0770 0.2310 0.3820 0.6260 0.8950

MSLRT 0.0550 0.1060 0.2880 0.4690 0.6860 0.9230
40 SLRT 0.0430 0.0650 0.2780 0.4690 0.7250 0.9440

MSLRT 0.0380 0.0930 0.3430 0.5470 0.7750 0.9620
50 SLRT 0.0570 0.0900 0.2920 0.5270 0.7700 0.9650

MSLRT 0.0630 0.1150 0.3610 0.5920 0.8180 0.9750
60 SLRT 0.0620 0.1200 0.3580 0.5710 0.8190 0.9750

MSLRT 0.0570 0.1380 0.4280 0.6200 0.8480 0.9800
70 SLRT 0.0490 0.1270 0.4010 0.6360 0.8550 0.9890

MSLRT 0.0460 0.1650 0.4400 0.6840 0.8840 0.9920
80 SLRT 0.0520 0.1350 0.4170 0.6740 0.8970 0.9940

MSLRT 0.0560 0.1720 0.4760 0.7310 0.9130 0.9950
90 SLRT 0.0500 0.1380 0.4680 0.7280 0.9010 0.9950

MSLRT 0.0490 0.1700 0.5180 0.7620 0.9240 0.9960
100 SLRT 0.0510 0.1510 0.4770 0.7650 0.9300 0.9960

MSLRT 0.0520 0.1780 0.5300 0.7950 0.9410 0.9970
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Table 4.3

Empirical powers for testing H0 : γ = 0.05 versus H1 : γ = γ1 when β = 1

n Methods
γ1 = 0.05 γ1 = 0.1 γ1 = 0.2 γ1 = 0.3 γ1 = 0.5 γ1 = 1

(k = 1) (k = 2) (k = 4) (k = 6) (k = 10) (k = 20)
10 SLRT 0.0740 0.0760 0.1240 0.1950 0.3650 0.6650

MSLRT 0.0610 0.0850 0.1940 0.2960 0.4790 0.7430
20 SLRT 0.0610 0.0840 0.1750 0.3090 0.5190 0.8230

MSLRT 0.0480 0.1050 0.2410 0.3950 0.6190 0.8730
30 SLRT 0.0560 0.0770 0.2280 0.3620 0.6180 0.8880

MSLRT 0.0550 0.1060 0.2920 0.4490 0.6850 0.9200
40 SLRT 0.0430 0.0920 0.2430 0.4670 0.7080 0.9380

MSLRT 0.0380 0.1270 0.3380 0.5370 0.7700 0.9610
50 SLRT 0.0570 0.1130 0.3350 0.5240 0.7690 0.9550

MSLRT 0.0630 0.1360 0.3980 0.5770 0.8170 0.9680
60 SLRT 0.0620 0.1200 0.3600 0.5780 0.8380 0.9840

MSLRT 0.0570 0.1380 0.4130 0.6300 0.8640 0.9890
70 SLRT 0.0490 0.1270 0.3890 0.6430 0.8710 0.9860

MSLRT 0.0460 0.1650 0.4480 0.6930 0.8940 0.9880
80 SLRT 0.0520 0.1350 0.4130 0.6820 0.8850 0.9960

MSLRT 0.0560 0.1720 0.4590 0.7240 0.9190 0.9970
90 SLRT 0.0500 0.1380 0.4690 0.7040 0.9140 0.9890

MSLRT 0.0490 0.1700 0.5160 0.7530 0.9290 0.9910
100 SLRT 0.0510 0.1650 0.4930 0.7250 0.9280 0.9960

MSLRT 0.0520 0.1840 0.5410 0.7610 0.9420 0.9970
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Table 4.4

Empirical powers for testing H0 : γ = 0.05 versus H1 : γ = γ1 when β = 1.2

n Methods
γ1 = 0.05 γ1 = 0.1 γ1 = 0.2 γ1 = 0.3 γ1 = 0.5 γ1 = 1

(k = 1) (k = 2) (k = 4) (k = 6) (k = 10) (k = 20)
10 SLRT 0.0740 0.0760 0.1220 0.1940 0.3650 0.6430

MSLRT 0.0610 0.0850 0.1790 0.2920 0.4790 0.7490
20 SLRT 0.0610 0.0840 0.1840 0.3170 0.5190 0.7870

MSLRT 0.0480 0.1050 0.2430 0.4060 0.6190 0.8500
30 SLRT 0.0560 0.0770 0.2230 0.3820 0.6180 0.8850

MSLRT 0.0550 0.1060 0.2760 0.4690 0.6850 0.9190
40 SLRT 0.0430 0.0900 0.2700 0.4690 0.7080 0.9260

MSLRT 0.0380 0.1240 0.3240 0.5470 0.7700 0.9430
50 SLRT 0.0570 0.0920 0.3310 0.5270 0.7690 0.9730

MSLRT 0.0630 0.1240 0.3830 0.5920 0.8170 0.9770
60 SLRT 0.0620 0.1200 0.3430 0.5710 0.8380 0.9760

MSLRT 0.0570 0.1380 0.4130 0.6200 0.8640 0.9820
70 SLRT 0.0490 0.1270 0.3930 0.6160 0.8710 0.9860

MSLRT 0.0460 0.1650 0.4460 0.6610 0.8940 0.9900
80 SLRT 0.0520 0.1350 0.4210 0.6740 0.8850 0.9930

MSLRT 0.0560 0.1720 0.4710 0.7310 0.9190 0.9950
90 SLRT 0.0500 0.1380 0.4670 0.6950 0.9140 0.9980

MSLRT 0.0490 0.1700 0.5080 0.7580 0.9290 0.9990
100 SLRT 0.0510 0.1370 0.4970 0.7530 0.9280 0.9970

MSLRT 0.0520 0.1680 0.5470 0.7810 0.9420 0.9990
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Figure 4.4

Empirical powers as function of the ratio γ1/γ0 of proposed methods with complete
failure data

Table 4.5

Empirical type I errors for testing H0 : γ = γ0 versus H1 : γ 6= γ0 when β = 0.8

Missing
n

γ0 = 0.05 γ0 = 0.1 γ0 = 0.3
ratio (%) SLRT MSLRT SLRT MSLRT SLRT MSLRT

10 10 0.0800 0.0520 0.0800 0.0590 0.0820 0.0560
20 0.0570 0.0550 0.0600 0.0590 0.0610 0.0590
30 0.0650 0.0520 0.0610 0.0540 0.0560 0.0510
40 0.0540 0.0510 0.0640 0.0590 0.0640 0.0540
50 0.0590 0.0580 0.0630 0.0540 0.0610 0.0550

20 10 0.0830 0.0720 0.0800 0.0530 0.0820 0.0540
20 0.0660 0.0510 0.0690 0.0540 0.0580 0.0560
30 0.0520 0.0490 0.0550 0.0530 0.0600 0.0560
40 0.0550 0.0550 0.0640 0.0500 0.0600 0.0500
50 0.0640 0.0530 0.0670 0.0500 0.0580 0.0530

30 10 0.0840 0.0830 0.0870 0.0630 0.0790 0.0630
20 0.0680 0.0520 0.0650 0.0540 0.0690 0.0540
30 0.0690 0.0540 0.0640 0.0580 0.0600 0.0570
40 0.0630 0.0520 0.0620 0.0510 0.0530 0.0500
50 0.0540 0.0570 0.0560 0.0500 0.0670 0.0550
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Table 4.6

Empirical type I errors for testing H0 : γ = γ0 versus H1 : γ 6= γ0 when β = 1

Missing
n

γ0 = 0.05 γ0 = 0.1 γ0 = 0.3
ratio (%) SLRT MSLRT SLRT MSLRT SLRT MSLRT

10 10 0.0740 0.0516 0.0792 0.0576 0.0754 0.0590
20 0.0674 0.0560 0.0590 0.0510 0.0674 0.0548
30 0.0592 0.0524 0.0606 0.0548 0.0616 0.0508
40 0.0560 0.0500 0.0538 0.0512 0.0510 0.0500
50 0.0600 0.0520 0.0610 0.0560 0.0540 0.0510

20 10 0.0860 0.0490 0.0840 0.0550 0.0850 0.0570
20 0.0660 0.0550 0.0650 0.0550 0.0670 0.0550
30 0.0440 0.0500 0.0530 0.0520 0.0560 0.0560
40 0.0620 0.0540 0.0580 0.0540 0.0580 0.0520
50 0.0670 0.0560 0.0680 0.0570 0.0670 0.0590

30 10 0.0600 0.0830 0.0590 0.0640 0.0830 0.0510
20 0.0610 0.0520 0.0610 0.0510 0.0560 0.0520
30 0.0570 0.0510 0.0570 0.0530 0.0620 0.0510
40 0.0480 0.0530 0.0480 0.0530 0.0510 0.0510
50 0.0590 0.0500 0.0600 0.0510 0.0600 0.0540
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Table 4.7

Empirical type I errors for testing H0 : γ = γ0 versus H1 : γ 6= γ0 when β = 1.2

Missing
n

γ0 = 0.05 γ0 = 0.1 γ0 = 0.3
ratio (%) SLRT MSLRT SLRT MSLRT SLRT MSLRT

10 10 0.0830 0.0670 0.0850 0.0680 0.0840 0.0730
20 0.0620 0.0510 0.0610 0.0510 0.0600 0.0520
30 0.0550 0.0510 0.0620 0.0550 0.0710 0.0520
40 0.0650 0.0580 0.0670 0.0570 0.0640 0.0550
50 0.0560 0.0540 0.0540 0.0510 0.0690 0.0590

20 10 0.0740 0.0630 0.0740 0.0610 0.0790 0.0550
20 0.0720 0.0500 0.0710 0.0500 0.0700 0.0500
30 0.0640 0.0560 0.0650 0.0550 0.0640 0.0570
40 0.0620 0.0550 0.0630 0.0540 0.0600 0.0580
50 0.0580 0.0600 0.0570 0.0600 0.0540 0.0580

30 10 0.0680 0.0600 0.0870 0.0630 0.0690 0.0530
20 0.0660 0.0560 0.0640 0.0540 0.0780 0.0550
30 0.0630 0.0510 0.0610 0.0520 0.0610 0.0500
40 0.0610 0.0560 0.0660 0.0580 0.0630 0.0520
50 0.0580 0.0520 0.0650 0.0510 0.0630 0.0590
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0.05, except when number of failures is very small (n = 10). Moreover, the MSLRT also

performs well when the missing ratio is up to 30%.

The empirical powers of the SLRT, and MSLRT are reported in Table 8-10. We ob-

serve that the MSLRT is superior to the SLRT for most situations, except when number of

failures is very small (n = 10) and missing ratio is large (30%). Moreover, we also observe

that the empirical powers of both methods tend to decrease as the missing ratio increase

when k > 2, and increase as n and k increase.

4.4 Case Study

We use the failure-time data of a copy machine to illustrate some of the results of the

proposed methods. For this machine, time is measured by the number of copies made, and

the time at installation is defined to be 0 (Ni et al. (2007)[30]). A test is stopped after the

8th failure, and the observed failure times are shown in Table 4.11.

Here, we have n = 8, tn = 19694, lntn = 9.8881, and
n∑
i=1

lnti = 63.4407. We thus

obtain the maximum likelihood estimates of γ and β using Equation (2.10) and (2.11), and

obtain the unbiased estimate of β using Equation (2.17). Then, the maximum likelihood

estimates of γ and β are γ̂ = 0.0513 and β̂ = 0.5107, respectively, and the unbiased

estimate of β is β̃ = 0.3830.

Using the maximum likelihood estimates (β̂) and the unbiased estimate (β̃) of β as

initial values in Algorithm 1 to find the constrained MLE of βγ0 , we obtain the iteration

estimate, β̂γ0 , as shown in Table 4.12.
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Table 4.8

Empirical powers for testing H0 : γ = 0.05 versus H1 : γ = γ1 when β = 0.8

Missing
n

γ1 = 0.1 (k = 2) γ1 = 0.3 (k = 6) γ1 = 0.5 (k = 10) γ1 = 1 (k = 20)
ratio (%) SLRT MSLRT SLRT MSLRT SLRT MSLRT SLRT MSLRT

10 10 0.0700 0.0880 0.1980 0.2760 0.3730 0.4780 0.6480 0.7090
20 0.0840 0.1060 0.2890 0.3870 0.4860 0.5760 0.7930 0.8530
30 0.0770 0.0980 0.3590 0.4410 0.6170 0.6860 0.8640 0.8950
40 0.0740 0.0910 0.4170 0.4980 0.6980 0.7470 0.9090 0.9330
50 0.0970 0.1250 0.4850 0.5420 0.7470 0.7970 0.9380 0.9560
60 0.0820 0.1130 0.5400 0.6060 0.7780 0.8180 0.9760 0.9830
70 0.0840 0.1260 0.5580 0.6190 0.8210 0.8570 0.9830 0.9870
80 0.1280 0.1520 0.6290 0.6690 0.8740 0.8930 0.9870 0.9940
90 0.1290 0.1460 0.6400 0.6860 0.8990 0.9160 0.9930 0.9950

100 0.1250 0.1600 0.6930 0.7270 0.9050 0.9270 0.9960 0.9980
20 10 0.0740 0.0750 0.1840 0.2510 0.3230 0.3810 0.5880 0.6210

20 0.0850 0.0970 0.2690 0.3450 0.4500 0.5310 0.7520 0.8090
30 0.0870 0.1140 0.3330 0.4200 0.5520 0.6220 0.8290 0.8630
40 0.0850 0.1020 0.3860 0.4620 0.6130 0.6810 0.8790 0.9090
50 0.0960 0.1170 0.4520 0.5250 0.7090 0.7510 0.9290 0.9460
60 0.0920 0.1160 0.4960 0.5600 0.7530 0.8000 0.9420 0.9500
70 0.1090 0.1340 0.5410 0.5990 0.7710 0.8130 0.9640 0.9750
80 0.0960 0.1180 0.5710 0.6320 0.8150 0.8420 0.9790 0.9820
90 0.1040 0.1260 0.6170 0.6800 0.8560 0.8810 0.9820 0.9900

100 0.1150 0.1390 0.6370 0.6800 0.8630 0.8830 0.9880 0.9900
30 10 0.0630 0.0780 0.1660 0.2180 0.2840 0.3160 0.5340 0.4680

20 0.0660 0.0790 0.2130 0.2990 0.3830 0.4930 0.6700 0.7460
30 0.0750 0.0980 0.3050 0.3860 0.5190 0.6010 0.7760 0.8350
40 0.0800 0.1000 0.3470 0.4360 0.5230 0.5990 0.8230 0.8700
50 0.0810 0.1020 0.3840 0.4570 0.6270 0.6880 0.9000 0.9210
60 0.0940 0.1230 0.4400 0.5040 0.6860 0.7540 0.9180 0.9330
70 0.0970 0.1250 0.4530 0.5290 0.7360 0.7750 0.9400 0.9600
80 0.0960 0.1240 0.5170 0.5850 0.7830 0.8220 0.9630 0.9700
90 0.1090 0.1260 0.5440 0.5920 0.7800 0.8220 0.9740 0.9780

100 0.1150 0.1430 0.5810 0.6320 0.8270 0.8590 0.9820 0.9860
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Table 4.9

Empirical powers for testing H0 : γ = 0.05 versus H1 : γ = γ1 when β = 1

Missing
n

γ1 = 0.1 (k = 2) γ1 = 0.3 (k = 6) γ1 = 0.5 (k = 10) γ1 = 1 (k = 20)
ratio (%) SLRT MSLRT SLRT MSLRT SLRT MSLRT SLRT MSLRT

10 10 0.0780 0.0940 0.1980 0.2760 0.3600 0.4460 0.6540 0.7240
20 0.0850 0.1110 0.2890 0.3870 0.5010 0.5860 0.7900 0.8450
30 0.0890 0.1220 0.3590 0.4410 0.6130 0.6850 0.8610 0.8920
40 0.0810 0.1150 0.4170 0.4980 0.6740 0.7340 0.9110 0.9310
50 0.0910 0.1160 0.4930 0.5570 0.7400 0.7860 0.9420 0.9540
60 0.1020 0.1260 0.5580 0.6020 0.7860 0.8300 0.9740 0.9810
70 0.0940 0.1230 0.5800 0.6360 0.8330 0.8630 0.9860 0.9900
80 0.1140 0.1440 0.6310 0.6780 0.8570 0.8870 0.9810 0.9890
90 0.1120 0.1430 0.6740 0.7110 0.9090 0.9260 0.9900 0.9920

100 0.1450 0.1660 0.6750 0.7270 0.8980 0.9150 0.9940 0.9970
20 10 0.0750 0.0820 0.1860 0.2490 0.3140 0.3880 0.6090 0.6480

20 0.0600 0.0840 0.2550 0.3330 0.4560 0.5670 0.7280 0.8090
30 0.0710 0.1010 0.3120 0.3970 0.5590 0.6400 0.8500 0.8840
40 0.0990 0.1220 0.4060 0.4750 0.6240 0.6940 0.9000 0.9220
50 0.0960 0.1180 0.4620 0.5190 0.6990 0.7470 0.9360 0.9540
60 0.0820 0.1050 0.4810 0.5400 0.7530 0.8020 0.9500 0.9620
70 0.0910 0.1150 0.5310 0.6020 0.7750 0.8220 0.9550 0.9670
80 0.0970 0.1190 0.5490 0.6170 0.8220 0.8610 0.9740 0.9840
90 0.1070 0.1300 0.6030 0.6560 0.8620 0.8860 0.9850 0.9880

100 0.1100 0.1400 0.6510 0.6900 0.8840 0.9080 0.9890 0.9910
30 10 0.0740 0.0840 0.1720 0.2220 0.2870 0.3160 0.5640 0.4940

20 0.0630 0.0830 0.2300 0.3190 0.4080 0.5160 0.6950 0.7640
30 0.0660 0.0870 0.2640 0.3470 0.5270 0.6170 0.7980 0.8500
40 0.0890 0.1160 0.3170 0.3900 0.5740 0.6470 0.8290 0.8740
50 0.0810 0.1050 0.3540 0.4310 0.6440 0.7050 0.8890 0.9200
60 0.1080 0.1280 0.4370 0.4990 0.6650 0.7280 0.9160 0.9310
70 0.1090 0.1250 0.4510 0.5140 0.7500 0.7980 0.9540 0.9700
80 0.0920 0.1140 0.4880 0.5550 0.7730 0.8220 0.9680 0.9710
90 0.0980 0.1300 0.5670 0.6160 0.7990 0.8440 0.9720 0.9830

100 0.1240 0.1610 0.5660 0.6240 0.8480 0.8700 0.9800 0.9880
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Table 4.10

Empirical powers for testing H0 : γ = 0.05 versus H1 : γ = γ1 when β = 1.2

Missing
n

γ1 = 0.1 (k = 2) γ1 = 0.3 (k = 6) γ1 = 0.5 (k = 10) γ1 = 1 (k = 20)
ratio (%) SLRT MSLRT SLRT MSLRT SLRT MSLRT SLRT MSLRT

10 10 0.0630 0.0770 0.1870 0.2630 0.3510 0.4510 0.6540 0.7190
20 0.0770 0.1080 0.3070 0.3810 0.4940 0.5870 0.7830 0.8390
30 0.0770 0.1010 0.3570 0.4420 0.6010 0.6710 0.8850 0.9150
40 0.0800 0.1130 0.4290 0.4930 0.6610 0.7230 0.9160 0.9420
50 0.1140 0.1390 0.4830 0.5410 0.7550 0.8000 0.9610 0.9770
60 0.1090 0.1340 0.5340 0.5870 0.7980 0.8380 0.9690 0.9760
70 0.1110 0.1280 0.5740 0.6320 0.8240 0.8570 0.9860 0.9900
80 0.1070 0.1390 0.6220 0.6700 0.8460 0.8820 0.9830 0.9900
90 0.1270 0.1570 0.6890 0.7270 0.8900 0.9150 0.9930 0.9950

100 0.1410 0.1670 0.6900 0.7330 0.9060 0.9230 0.9900 0.9920
20 10 0.0590 0.0790 0.1720 0.2520 0.3230 0.3810 0.5730 0.6250

20 0.0650 0.0820 0.2630 0.3500 0.4500 0.5310 0.7330 0.8020
30 0.0760 0.0990 0.3110 0.4110 0.5520 0.6220 0.8340 0.8850
40 0.0780 0.1100 0.3990 0.4760 0.6130 0.6810 0.8870 0.9210
50 0.0760 0.0990 0.4440 0.5130 0.7090 0.7510 0.9150 0.9420
60 0.0910 0.1120 0.4780 0.5420 0.7530 0.8000 0.9460 0.9640
70 0.1230 0.1460 0.5120 0.5800 0.7710 0.8130 0.9740 0.9830
80 0.1190 0.1490 0.5820 0.6360 0.8150 0.8420 0.9860 0.9880
90 0.1200 0.1470 0.6100 0.6470 0.8560 0.8810 0.9780 0.9830

100 0.1160 0.1400 0.6440 0.6850 0.8630 0.8830 0.9910 0.9930
30 10 0.0730 0.0930 0.1720 0.2160 0.2840 0.3160 0.4940 0.4770

20 0.0740 0.0850 0.2130 0.3050 0.3830 0.4930 0.6690 0.7540
30 0.0740 0.0940 0.2670 0.3530 0.4980 0.5830 0.7680 0.8270
40 0.0940 0.1220 0.3310 0.4270 0.5460 0.6260 0.8340 0.8740
50 0.0830 0.1080 0.3680 0.4490 0.6140 0.6750 0.8860 0.9130
60 0.0730 0.0950 0.4200 0.4940 0.6940 0.7540 0.9380 0.9480
70 0.0950 0.1270 0.4670 0.5260 0.7380 0.7880 0.9430 0.9630
80 0.0920 0.1200 0.5170 0.5700 0.7520 0.7940 0.9550 0.9670
90 0.1040 0.1320 0.5760 0.6220 0.7970 0.8290 0.9670 0.9740

100 0.1240 0.1560 0.5820 0.6250 0.8230 0.8550 0.9770 0.9820
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Figure 4.5

Empirical powers as function of the ratio γ1/γ0 of proposed methods with incomplete
failure data

Table 4.11

Copy machine failure data

Failure number (i) Failure time (ti)
1 452
2 472
3 2467
4 2517
5 3727
6 4537
7 8079
8 19694
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Figure 4.6

Failure rate estimates for the copy machine

Table 4.12

Iteration estimates for parameter βγ0

Number of iterations (k)
Starting value

β̂ = 0.5107 β̃ = 0.3830
1 0.513195230366468 0.614211030400670
2 0.513167231233629 0.549751554428545
3 0.513167227559253 0.518857933071618
4 0.513167227559253 0.513316731976915
5 0.513167227559253 0.513167332260168
6 0.513167227559253 0.513167227559304
7 0.513167227559253 0.513167227559253
8 0.513167227559253 0.513167227559253
9 0.513167227559253 0.513167227559253

10 0.513167227559253 0.513167227559253
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In Table 4.12, the iteration estimation result for βγ0 using initial value β(0)
γ0 = β̂ =

0.5107 and ε = 0.000000000000001 is β̂γ0 = 0.513167227559253 with number of it-

erations of 3, and the iteration estimation result for βγ0 using β
(0)
γ0 = β̃ = 0.3830 is

β̂γ0 = 0.513167227559253 with number of iterations of 7. Therefore, it can be concluded

that both initial values yield the same estimation results, but using the unbiased estimate

(β̃) has more iteration number than using maximum likelihood estimates (β̂).

Other statistics that are required for finding the MSLRT are obtained as follows. The

SLRT statistic, R(γ), is 0.0137, the parametric bootstrap estimate for m[R(γ)] is -0.3829,

and the parametric bootstrap estimate for v[R(γ)] is 1.0629. Using Equation (4.14), the

MSLRT statistic, R∗(γ), can be then obtained as

R∗(γ) =
0.0137− (−0.3829)√

1.0629
= 0.3847. (4.21)

To test hypothesis H0 : γ = 0.05 versus H1 : γ 6= 0.05, the test statistics, p-value, and

conclusion of the proposed methods are reported are reported in Table 4.13.

Table 4.13

Test results for H0 : γ = 0.05 versus H1 : γ 6= 0.05 at nominal level 0.05

Methods Test statistics p-value Conclusion
SLRT 0.0137 0.9890 Do not reject H0.
MSLRT 0.3847 0.7005 Do not reject H0.
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The results in Table 11 show that both methods do not reject the null hypothesis H0 :

γ = 0.05. Therefore, the data do not provide sufficient evidence to conclude that the scale

parameter of the PLP is not equal to 0.05.

4.5 Conclusions and Discussions

In this research, we propose a modified version of the signed log-likelihood ratio test

(MSLRT) for testing the scale parameter of the PLP with complete and incomplete failure

data. The accuracy of the proposed method is evaluated and compared with the signed

log-likelihood ratio test (SLRT). To compare them, the simulation technique is used to

investigate their empirical type I errors and empirical powers for two-sided hypotheses

testing.

As shown in simulation studies in Section 4.4, the modified signed log-likelihood ratio

test (MSLRT) performs well in controlling type I errors, and it is superior to the SLRT for

complete failure data. Moreover, the MSLRT works satisfactorily because it has desirable

powers and does better than the SLRT for all parameters configurations even for small

number of failures. Our results correspond to the results presented by Krishnamoorthy and

Lee, 2014[24] and Kazemi and Jafari (2015)[23] that the SLRT statistic is not very accurate

when the sample size is small. For incomplete failure data, we observe that the MSLRT is

preferable to the SLRT in most situations in terms of controlling type I errors, except when

number of failures is very small (n = 10). However, the MSLRT also performs well when

the missing ratio is up to 30% and n > 10. In terms of empirical powers, the MSLRT
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is superior to the SLRT for most situations, except when number of failures is very small

(n = 10) and missing ratio is large (30%).

For the SLRT and MSLRT, however, the maximum of likelihood function under the

null hypothesis parameter space cannot be solved analytically. Therefore, the iteration

algorithm such as the Newton Raphson Algorithm, the Fisher Scoring Algorithm, and the

Expectation Maximization Algorithm are necessary to obtain the constrained MLE.

Finally, this study only focuses on failure-truncated cases when predetermining the

number of failures and considering only one system. As Engelhardt and Bain (1992)[17]

noted, the chi-square approximation for the likelihood ratio test (LRT) does not work well

for time-truncated cases with left-censored data, so potential future research may be ex-

tended to this scenario or this proposed method may be applied by more than one system.

95



CHAPTER 5

CONCLUSIONS

5.1 Conclusion

In this dissertation, two statistical methods, the generalized confidence interval and the

modified signed log-likelihood ratio test for the scale parameter of the power-law process

are developed to assess reliability growth of repairable systems concerning the situation

that some recorded failure times in the early developmental phase of system testing cannot

be observed. As mentioned in Chapter 1, for the power-law process, the exact test and the

exact confidence interval for the shape parameter, β, is not troublesome to derive, but the

exact test and the exact confidence interval for the scale parameter, γ, is not easy to obtain

when β is unknown. Asymptotic distributions, such as the asymptotic normal distribution

and the asymptotic chi-square distribution, are therefore used in many previous studies to

make a conclusion about parameter γ. However, the issue raised by this approach is that

we need a sufficiently large number of failures to produce accurate results. This research

aims to solve such this problem in order to reduce time and cost during the developmental

phase of system testing and this contributes to the motivation of this research.

Before going to more details of research presented in this dissertation, in Chapter 1,

we provide definitions of key concepts that are therefore defined to clarify and eliminate

ambiguities, and then we address some fundamental concepts of reliability and some fun-
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damental results on homogeneous Poisson process and nonhomogeneous Poisson process.

We also present some concepts on a particular nonhomogeneous Poisson process, “power-

law process”, which plays an important role in this research.

In Chapter 2, we present some traditional inference results on the power-law process

for a single system including maximum likelihood estimates of γ and β, the unbiased

estimate of β, the interval estimation and hypothesis testing of β, the interval estimation

and hypothesis testing of γ, the estimation of intensity function and mean time between

failure, and the goodness of fit test. The results that are covered and addressed in Chapter

2 are essential and will be utilized for the research presented in Chapter 3 and Chapter 4.

In Chapter 3, we present details of the first proposed method, the generalized confi-

dence interval for the scale parameter of the power-law process with incomplete failure

data, including the background of this study, the maximum likelihood estimates for pa-

rameter γ and β with missing data, and the definition and some details of generalized

confidence interval. A simulation study and numerical examples are also conducted and

presented to evaluate the performance of the proposed method. In this study, we have

found that the proposed generalized confidence interval are not biased estimates, which

can be seen from the coverage probabilities obtained from this method being close to the

nominal level 0.95 for all levels of γ and β. Moreover, the average widths of the proposed

method increase slightly as the value of parameter γ and r increases for all levels of β, and

decrease as the predetermined number of failures (n) increases. When the performance of

the proposed method and the existing method are compared and validated regarding aver-

age widths, the simulation results show that the proposed method is superior to the another
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one due to shorter average widths when the predetermined numbers of failures are small

(n < 30). Based on this result, it is quite clear that the proposed method is practically use-

ful to save business costs and time during the developmental phase of system testing since

only small numbers of failures are required to test systems, and it yields precise results.

In Chapter 4, details of the second proposed method, the modified signed log-likelihood

ratio test for the scale parameter of the power-law process, are presented. In this study, we

have found that for complete failure data, the modified signed log-likelihood ratio test

performs well in controlling type I errors, and it has desirable powers for all parameters

configurations even for the small number of failures. For incomplete failure data, the

modified signed log-likelihood ratio test is preferable to the signed log-likelihood ratio

test in most situations in terms of controlling type I errors, except when the number of

failures is very small (n = 10). However, the modified signed log-likelihood ratio test

also performs well when the missing ratio is up to 30% and n > 10. In terms of empirical

powers, the modified signed log-likelihood ratio test is superior to the signed log-likelihood

ratio test for most situations, except when the number of failures is very small (n = 10)

and the missing ratio is large (30%).

5.2 Discussion and Future Works

In this research, we developed two statistical methods, the generalized confidence in-

terval and the modified signed log-likelihood ratio test for the scale parameter of the power-

law process concerning the situation that some recorded failure times in the early devel-

opmental phase of system testing cannot be observed. However, our research focuses on
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only one system and considers only the failure truncated case. Nowadays, there are many

works on the power-law process with applications to multiple repairable systems. In this

research, we carry out some useful detailed research and our findings can be extended to

multiple repairable systems case.

For multiple repairable systems, most works that deal with classical inferences of the

power law process such as the interval estimation always base on an asymptotic distribu-

tion, especially the asymptotic normal distribution. The most popular method to construct

an approximate confidence interval is using the local Fisher information matrix as follows.

În = −


∂2lnL̂
∂γ2

∂2lnL̂
∂γ∂β

∂2lnL̂
∂γ∂β

∂2lnL̂
∂β2

 , (5.1)

where L is the likelihood function for multiple repairable systems,
∂2lnL̂
∂γ2

,
∂2lnL̂
∂β2

, and

∂2lnL̂
∂γ∂β

are the partial derivatives evaluated at γ = γ̂ and β = β̂. Equation (5.1) implies

that −∂
2lnL̂
∂γ2

, −∂
2lnL̂
∂β2

, and −∂
2lnL̂
∂γ∂β

can be used as the estimators of Var(γ̂), Var(β̂), and

Cov(γ̂, β̂), respectively. These estimators respectively denoted by V̂ ar(γ̂), V̂ ar(β̂), and

V̂ ar(γ̂, β̂). Therefore, an approximate 100(1 − α)% confidence interval for γ and β are

given by

[max(0, γ̂ − zα/2
√
V̂ ar(γ̂), γ̂ + zα/2

√
V̂ ar(γ̂)], (5.2)

and

[max(0, β̂ − zα/2
√
V̂ ar(β̂), β̂ + zα/2

√
V̂ ar(β̂)], (5.3)

respectively, where zα/2 is the (α/2)th percentile of the standard normal distribution (Il

and Woojin, 2017[29]). However, this approach works well only when number of failures
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from each system is large enough. Therefore, the generalized confidence interval and the

modified signed log-likelihood ratio test may be applied to multiple repairable systems to

reduce the number of failures used for systems testing.
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APPENDIX A

GENERATING NHPP POWER-LAW DATA
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A.1 Generating NHPP Power-Law Complete Failure Data

The NHPP power-law complete failure data can be simulated using the following algo-

rithm:

Step 1: Input the positive constants of the scale parameter (γ), the shape parameter (β),

and the number of failure (n).

Step 2: Simulate n uniform (0,1) random numbers, u1, u2, ..., un.

Step 3: Calculate t1 =
(
− 1
γ
ln(u1)

)1/β

.

Step i: Calculate ti =
(
tβi−1 − 1

γ
ln(ui)

)1/β

for i = 2, 3, ..., n.

Then, we obtain t1, t2, ..., tn as complete failure times simulated from the NHPP Power-

Law process with parameters γ and β.

A.2 Generating NHPP Power-Law Incomplete Failure Data

The NHPP power-law incomplete failure data can be simulated using the following

algorithm:

Step 1: Input the positive constants of the scale parameter (γ), the shape parameter (β),

the number of failure (n), and the first observed failure (r).

Step 2: Simulate n uniform (0,1) random numbers, u1, u2, ..., un.

Step 3: Calculate t1 =
(
− 1
γ
ln(u1)

)1/β

.

Step i: Calculate ti =
(
tβi−1 − 1

γ
ln(ui)

)1/β

for i = 2, 3, ..., n.

We obtain t1, t2, ..., tn as complete failure times simulated from an NHPP Power-Law pro-

cess with parameters γ and β. In this case, we assume that the first r − 1 failure times
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(t1, t2, ..., tr−1) are missing. Therefore, the observed failure times are tr, tr+1, ..., tn.
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APPENDIX B

FINDING PERCENTILE OF Z
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B.1 Finding the αth Percentile of Z

The ((1−α∗)/2)th and ((1 +α∗)/2)th percentile of Z (Z(1−α∗)/2 and Z(1+α∗)/2) can be

estimated from the quantity Z = (1/n)(V/2)2(n−r+1)/U using the following algorithm:

Step 1: Generate U ∼ χ2
(2n−2r) and V ∼ χ2

(2n), independently. Then, compute

Z =

(
1

n

)(
V

2

)2(n−r+1)/U

Step 2: Repeat Step 1 m times.

Step 3: Arrange all Z values in ascending order: Z(1) < Z(2) < ... < Z(m) Then, the

αth percentile of Z is estimated by Z(αm).
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