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Globally, water bodies are increasingly affected by undesirable harmful algal
blooms. This dissertation contributes to research methodology pertaining to
quantification of the algal blooms in multiple water bodies of Mississippi using in situ,
analytical, and remote sensing techniques. The main objectives of this study were to
evaluate the potential of several techniques for phytoplankton enumeration and to
develop remote sensing algorithms for several sensors and evaluate the performance of
the sensors for quantifying phytoplankton in several water bodies. Analytical techniques
such as “FlowCam”, an imaging flow cytometer; “HPLC”, high performance liquid
chromatography with the chemical taxonomy program “ChemTax”; spectrofluorometric
analyses; and “ELISA” assay were used to quantify a suite of parameters on algal
blooms. Additionally, in-situ algal pigment biomass was measured using fluorescence
probes. It was found that that each technique has unique potential. While some of the
rapid and simpler techniques can be used instead of more involved techniques, sometimes
use of several techniques together is beneficial for managing aquatic ecosystems and

protecting human health.



Algorithms were developed to quantify chlorophyll a using five remote sensing
sensors including three currently operational satellite sensors and two popular sensors
onboard the Unmanned Aerial Systems (UASs). Empirical band ratio algorithms were
developed for each sensor and the best algorithms were chosen. Cluster analysis helped in
differentiating the water types and linear regression was used to develop algorithms for
each of the water types. The UAS sensor- Micasense was found to be most useful among
the UAS sensors and the best overall with highest R? value 0.75 with p<0.05 and
minimum %RMSE of 28.22% and satellite sensor OLCI was found to be most efficient
among the three satellite sensors used in the study for chlorophyll a estimation with R? of
0.75 with p<0.05 and %RMSE 13.19%. The algorithms developed for these sensors in
this study represent the best algorithms for chlorophyll @ estimation in these water bodies
based on R? and %RMSE. The applicability of the algorithms can be extended to other
water bodies directly or the approach developed in this study can be adopted for

estimating Chl a in other water bodies.
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CHAPTER I

INTRODUCTION

Globally, water bodies are increasingly affected by undesirable harmful algal
blooms (HABs) due to increase in nutrient inputs from the natural and anthropogenic
discharges, thus creating more amenable environments for algal blooms (Anderson,
2009). HABs are caused by rapid growth of photosynthetic microorganisms in water
bodies, which are commonly known as “algae” or phytoplankton. HABSs are detrimental
to the aquatic environment for several reasons. Firstly, they can block the sunlight,
resulting in shading and affecting the visibility of the aquatic organisms living below the
water surface. Secondly, the dissolved oxygen (DO) concentration of the water column
depletes because of increased microbial activity as the algae die and sink to the bottom,
thus affecting the viability of aquatic life. Third and the most threatening effect of HABs
is the capability of certain species to produce toxins which has significant consequences
including impacts on public health, commercial fisheries, and recreation, and an
increased cost for monitoring and management (D. Anderson, Glibert, and Burkholder
2002). Cyanobacteria, which is commonly known as blue-green algae, is the dominant
harmful algal group present in freshwaters and their blooms are aesthetically undesirable.
During the bloom state they discolor the water, increase turbidity, form surface scums,
and synthesize a large number of low molecular weight compounds, causing taste and
odor problems (Paerl et al. 2001). Moreover, cyanobacterial blooms are of concern due to
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the ability of cyanobacterial species to produce at least 60 types of toxins (cyanotoxins)
which are categorized as, hepatotoxins (causes liver damage), neurotoxins (causes
damage to nervous system), cytotoxins (damages cells), dermatotoxins (damages skin)
and irritant toxin (Blaha, Babica, and Marsalek 2009). Thus toxic cyanobacteria can
cause human and animal health hazards, by introducing risks of illness and mortality
(Falconer 1989).

Routine monitoring of algal blooms is important to issue warnings during the
outbreak of toxic HABs, which is critical for protecting public health, wild and farmed
fish, and aquatic life (Izydorczyk et al. 2005). The conventional monitoring is done by
enumerating the number of toxic cells present in water bodies (Alvarez et al. 2014). Such
techniques are logistically cumbersome and labor-intensive. Hence, development of
alternative methods is essential. There are a few in sifu and laboratory techniques, which
provide rapid detection of harmful algal blooms. Additionally, the optically active nature
of pigments in phytoplankton cells make the detection and quantification of algal blooms
possible using Remote sensing technology (Jensen 2000). Among the several optically
active pigments present in phytoplankton, chlorophyll a is the photosynthetic pigment
that is present in all phytoplankton and phycocyanin is the pigment that is present only in
cyanobacterial species (Sarada, Pillai, and Ravishankar 1999; Wintermans and De Mots
1965). Chlorophyll a has absorption maxima at 665 and 465 nm in the electromagnetic
spectrum and phycocyanin has an absorption maximum at 620 nm (Siegelman and Kycia
1978; Wintermans and De Mots 1965). The total biomass of algal bloom can be

estimated in terms of chlorophyll a concentrations and total cyanobacteria can be



estimated in terms of phycocyanin concentrations (Dekker 1993; Schalles and Yacobi
2000; Simis, Peters, and Gons 2005).

Traditionally, phytoplankton communities are monitored by visual inspection
using standard microscopy of plankton cell counts (Benfield et al. 2007). This method is
tedious and time-consuming, resulting in a long time-lag between sample collection, data
analysis, and interpretation. Moreover, a well-trained expert capable of distinguishing
subtle morphological features of a wide variety of phytoplankton communities is required
to process and handle the samples (Culverhouse et al. 2003). ChemTax, a factor analysis
program, offers an alternative to the traditional microscopic technique by providing the
relative and absolute abundances of algal groups using concentrations of diagnostic
photopigments quantified by high performance liquid chromatography (HPLC)(J. L.
Pinckney, Harrington, and Howe 1998). In recent years, FlowCam, which consists of an
automated microscope with the ability to compute the community structure by rapidly
acquiring large sets of particle image data has been used for visual identification and
classification of phytoplankton (Alvarez, Lopez-Urrutia, and Nogueira 2012; Buskey and
Hyatt 2006; Garcia et al. 2010; See et al. 2005). FlowCam has the combined capabilities
of both flow cytometry and microscopy, and produces the images of all the particles in a
water sample along with several statistical parameters by counting, imaging, and
analyzing cells rapidly (J.Nicole and Martin L.Jennifer 2010). Meanwhile,
spectrofluorometric techniques are used for total phytoplankton biomass estimation by
quantifying Chl a which is used as a proxy for all the phytoplankton present in the water
(Holmes et al. 1965) and phycocyanin (PC) is used as the pigment representing the
biomass of cyanobacteria (Dash et al. 2011). Similarly, in situ devices also provide
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phytoplankton and cyanobacterial biomass by measuring Chl a and PC
fluorescence(Gregor and Marsalek 2004; See et al. 2005; Zamyadi et al. 2012).

Since conventional HABs monitoring strategies based on sampling at fixed
stations cannot provide the information needed for combating the water quality issues,
alternative methods (Dash et al. 2015), such as Satellite remote sensing and Unmanned
Aerial Systems(UAS), are preferred as they are economical and provide synoptic regional
information that is unmatched to the information provided through fixed station sampling
(Dash et al. 2011; Watts, Ambrosia, and Hinkley 2012). Although in situ sampling is the
most accurate way of determining chlorophyll-a concentration, yet the use of remote
sensing technology has been increasing recently for routine and synoptic chlorophyll-a
monitoring due to the synoptic coverage (T. Moore et al. 2014).

Many of the satellite sensors are not useful in studying the water quality
properties due to the smaller sizes of these water bodies. Low spatial resolution of
satellite sensors limits the ability to accurately detect and quantify phytoplankton in water
bodies. Unmanned aerial System (UAS) could be the best remote sensing approach in
such cases when the UAS is combined with sensors with suitable spectral bands and
spatial resolution (Flynn and Chapra 2014). The utility of satellite sensors and UAS
sensors in small but ecologically important water bodies are yet not assessed. The
overarching goal of this dissertation is to determine the best technique to monitor harmful
algal blooms in small but ecologically important water bodies by using an array of
available techniques including in-situ, analytical, and remote sensing techniques.

The present study is divided into two main chapters, each dealing with specific

objectives as documented in these chapters. Briefly, chapter two focuses on
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determination of phytoplankton community structure in multiple water bodies (e.g., lakes,
estuaries, coastal waters) and comparison of the potential of several in situ and laboratory
techniques. Chapter three focuses on measurement of phytoplankton abundance using
remote sensing technology and comparative analysis of the estimations by three satellite

sensors and two popular sensors onboard Unmanned Aerial Systems.



CHAPTER 1II

DETERMINATION OF PHYTOPLANKTON COMMUNITY STRUCTURE IN
MULTIPLE WATER BODIES AND COMPARISON OF THE POTENTIAL OF

SEVERAL IN SITU AND LABORATORY TECHNIQUES

2.1 Introduction

Globally, water bodies are increasingly affected by undesirable harmful algal
blooms (HABs). Algae or phytoplankton are present in water bodies naturally but
excessive use of fertilizers in agricultural fields leads to an increase in nutrients through
discharge during rainfall and surface runoff, thus causing algal blooms in receiving water
bodies (D. M. Anderson 2009). An adverse effect of HABs is that certain species produce
phycotoxins. Three types of phycotoxins are widely found in water bodies, including
microcystins, brevetoxin, and domoic acid. Microcystins are produced by certain species
of cyanobacteria, brevetoxin is produced by the dinoflagellate Karenia brevis, and
domoic acid is produced by the diatom Pseudo-nitzia spp. (Dash et al. 2015; Garcia et al.
2010; Rinta-Kanto et al. 2005). These toxins negatively impact public health, fisheries
and recreation, and increase the need and costs of monitoring and management (D. M.
Anderson 2009). Thus, routine monitoring of phytoplankton community structure and
species composition is critical for protecting animal and human health, and preventing
economic losses by issuing timely advisory of developing bloom conditions or an

outbreak of toxic species (See et al. 2005).



To enumerate phytoplankton community structure and species composition
rapidly, there are many efficient techniques. However, there is no consensus on the best
technique or a specific combination of techniques to determine phytoplankton community
structure and species composition operationally. Traditionally, phytoplankton
communities are monitored by visual inspection using standard microscopy of plankton
cell counts (Benfield et al. 2007). This method is tedious and time-consuming, resulting
in a long time-lag between sample collection, data analysis, and interpretation. Moreover,
a well-trained expert capable of distinguishing subtle morphological features of a wide
variety of phytoplankton communities is required to process and handle the samples
(Culverhouse et al. 2003). ChemTax, a factor analysis program, offers an alternative to
the traditional microscopic technique by providing the relative and absolute abundances
of algal groups using concentrations of diagnostic photopigments quantified by high
performance liquid chromatography (HPLC) (J. L. Pinckney, Harrington, and Howe
1998). This program uses steepest descent algorithms to find the best fit for the data
based on initial estimates of pigment ratios for the classes to be determined (Mackey et
al. 1996). Although ChemTax is a powerful tool for phytoplankton classification, its
ability is limited to taxonomical classes, thus genus and species level of identification
cannot be achieved by this method.

In recent years, FlowCam, which consists of an automated microscope with the
ability to compute the community structure by rapidly acquiring large sets of particle
image data has been used for visual identification and classification of phytoplankton
(Alvarez, Lopez-Urrutia, and Nogueira 2012; Buskey and Hyatt 2006; Garcia et al. 2010;
See et al. 2005). FlowCam has the combined capabilities of both flow cytometry and
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microscopy, and produces the images of all the particles in a water sample along with
several statistical parameters by counting, imaging, and analyzing cells rapidly (J.Nicole
and Martin L.Jennifer 2010). Additionally, previous studies have shown that results
obtained from FlowCam showed minimal differences compared to traditional
microscopic estimates for a synoptic understanding of phytoplankton species abundance,
biomass, and diversity (Alvarez et al. 2014). Meanwhile, spectrofluorometric techniques
are used for total phytoplankton biomass estimation by quantifying Chl a which is used
as a proxy for all the phytoplankton present in the water (Holmes et al. 1965) and
phycocyanin (PC) is used as the pigment representing the biomass of cyanobacteria(Dash
et al. 2011). Similarly, in situ devices also provide phytoplankton and cyanobacterial
biomass by measuring Chl a and PC fluorescence (Gregor and Marsalek 2004; See et al.
2005; Zamyadi et al. 2012). Previous studies using these in-situ devices for
phytoplankton concentration measurements produced comparable results as laboratory
approaches such as spectrophoto- and fluorometric techniques, HPLC & ChemTax, and
microscopic analyses such as FlowCam (Buchaca, Felip, and Catalan 2005; See et al.
2005). Enzyme Linked Immunosorbent Assay (ELISA), a technique used for rapid and
reliable determination of algal toxins (Dash et al. 2015; Pierce and Kirkpatrick 2001;
Ueno et al. 1996) can provide the toxin concentrations but it cannot differentiate between
species because sometimes the same toxin is produced by several species of
phytoplankton (e.g. microcystins). Additionally, toxin producing species of
phytoplankton produce toxins only at certain stages of their life cycle in response to
environmental conditions (Marshall et al. 2000). Hence, it is difficult to discern the

ability to produce toxins among algal strains solely based on cellular morphology (Baker
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et al. 2002). Furthermore, molecular techniques such as Quantitative Polymerase Chain
Reaction (QPCR) can provide rapid quantification of total cells of a specific algal group,
genus or species, or the total number of cells producing a specific type of toxin (Galluzzi
et al. 2004) but this technique is expensive and time consuming compared to other
available techniques when the sample size is large.

For making time sensitive decisions related to harmful algal blooms, there is a
need for determining suitable techniques and their potential to acquire accurate results
rapidly using economically feasible and technically sound methods. Thus, selection of
optimal techniques depending on the purpose can prove most useful and can help save a
tremendous amount of time and resources. Hence, the main objective of this study was to
determine phytoplankton community structure in multiple water bodies including an
estuary, several lakes, and a coastal waterbody by employing a multitude of techniques,
and evaluating and comparing the potential of these techniques in Mississippi/Louisiana
water bodies.

In this study, we investigated whether some techniques can be used as an
alternative to another to obtain critical information on harmful algal bloom. This study
highlights the strengths and weaknesses of each of the available techniques and provides
recommendations on the preferred techniques in various scenarios in water bodies of

Mississippi/Louisiana.

2.2 Materials and Methods
2.2.1 Site description

Surface water samples were collected from four major lakes in Mississippi

including Ross Barnett Reservoir (RB), Lake Sardis (LS), Lake Enid (LE), and Lake
9



Grenada (LG), the Lower Pearl River Estuary (LPRE) and the Eastern Mississippi Sound
(EMS) (Fig.2.1). Ross Barnett Reservoir is located adjacent to the City of Jackson, the
capital city of Mississippi, and Lakes Sardis, Enid, and Grenada are located in northern
Mississippi. The Ross Barnett Reservoir is used as a source of drinking water for the City
of Jackson and all four lakes have traditionally been used for recreational activities such
as swimming, boating, and sports fishing. These lakes produce large quantities of
commercial and recreational fish (Dash et al. 2015). The Pearl River originates

in Neshoba County, Mississippi and has a meander length of 714 km before emptying
into the Gulf of Mexico. The lower185 km of the river forms the part of the boundary
between Mississippi and Louisiana, and is termed the Lower Pearl River. The estuary at
the lower most portion of the river, the Lower Pearl River Estuary (LPRE) is considered
one of the most critical areas of remaining natural habitat in Louisiana (The Nature
Conservancy 2017). The Eastern Mississippi Sound (EMS) is the eastern portion of
Mississippi Sound along the coasts of Mississippi and Alabama. The Mississippi Sound
is rich in marine biodiversity and widely utilized for commercial fishing, shell-fishing,
crabbing, and recreation. Seafood harvests in the Mississippi Sound, particularly shellfish
and crabs, have been declining because of pollution, and frequent hurricanes, flooding,
and droughts. Since all these water bodies are used either as drinking water sources or for
fishing and recreational purposes, the algal blooms in these water bodies pose a serious
threat to the human and aquatic ecosystem health. Thus, these water bodies were chosen
for this study. Also, the outcome from this study can be applicable to other water bodies

in United States and globally.
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Field data and water samples were collected from twelve sites in each of the lakes
on twelve sampling trips during the summer of 2012 and 2013 (Table 2.1). Each
sampling points were approximately 1 km apart from each other and 12 sampling
locations per lake made an ideal sample numbers to sample per day that could represent
the ecosystem health of the lakes. The sampling was carried out during the summer in the
lakes because the motive of our study was to capture high concentration of phytoplankton
and algal blooms occur mostly during the summers.

The EMS was sampled once in October 2012 and five times during the summer of
2013, and LPRE was sampled five times, once each in December 2014, March 2015,
May 2015, August 2015, and December 2015 (Table 1). EMS was sampled mostly during
the summer but one sampling event was carried out during the fall to observe any
variability in algal concentration in EMS. The sampling in the Lower Pearl River Estuary
was carried out in each season to capture the seasonal variation in algal blooms. In the
field, water samples were collected in clean Nalgene bottles. /n sifu remote sensing
reflectance measurements were made using a GER 1500 spectro-radiometer (Spectravista
Inc., Poughkeepsie, NY, USA), and backscattering and fluorescence measurements made
using two Eco-Triplets (Wetlabs Inc., Philomath, OR, USA). Measurements of physical
parameters (temperature, pH, salinity, and conductivity) were made using a calibrated

multiparameter probe (Hanna Instruments, Woonsocket, RI, USA).
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Table 2.1 Dates of field data and water sample collection in Lower Pearl River
Estuary (LPRE), Eastern Mississippi Sound (EMS), Ross Barnett Reservoir
(RB), Lake Sardis (LS), Lake Enid (LE), and Lake Grenada (LG)

LPRE EMS RB LS LE LG

2014 Decemberl6-18 2012 October 18 2012 June 13 2012 June 26 2012 June 20 2012 June 20
2015 March16-19 2013 June 18 2012 June 29 2013 June 18 2013 June 11 2013 June 18
2015 May 18-22 2013 June 23 2013 May 22

2015 August 10-13 2013 June 30 2013 July 10

2015 December 14-16 2015 July 10 2014 July 25

2015 August 31
2015 October 8

2.2.2 Water sample processing and preservation

Water samples were collected for FlowCam, HPLC, Chl a, PC, and phycotoxin
analyses. Surface water samples were collected in four clean one liter Nalgene bottles,
placed in a cooler with ice, and processed within 5-6 hours of collection. Subsamples
were preserved in 4% glutaraldehyde and stored at 4° C until analysis using FlowCam.
For HPLC analysis of photopigments including Chl a, 100 mL aliquots of surface water
were filtered onto 4.7 cm diameter glass fiber filters (Whatman GF/F), immediately
frozen, and stored at —80 °C. 50 mL aliquots of surface water were filtered (<50 kPa) for
PC and 100 mL aliquots of surface water were filtered (<50 kPa) for Chl a and kept
frozen (-80°C) until analysis using a Horiba Jovin Yvon FluoroMax-4
Spectrofluorometer (Horiba Scientific, Edision, NJ, USA). For phycotoxins, 20 mL of
aliquots of surface samples were stored in 20 ml glass vials and kept frozen at -80 °C

until analysis
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2.2.3 Semi-automated processing of FlowCam samples for enumeration of
phytoplankton and species composition

2.2.3.1 FlowCam imaging

One mL aliquots of glutaraldehyde-fixed subsample were run for analysis with
20X magnification to digitize particles between 5 um and 100 pm in size. The lower limit
for magnification corresponds to particles that could not be resolved by the FlowCam
procedure we used, and thus they were not considered. In FlowCam, photographs can be
captured in either auto-image mode or fluorescence-triggered mode. In auto-image mode,
photographs are taken at a constant rate capturing images of each particle passing through
the flow cell in front of the camera, while in fluorescence-triggered mode, photographs
are taken of particles that emit fluorescent light, such as that emitted by excited
phytoplankton photopigments. In this study, the samples were analyzed in fluorescence-
triggered mode as we were interested in capturing images of phytoplankton only. Thirty
minutes were considered the maximum running time for each subsample with a flow rate
of 0.025mL min™' at a capture rate of 20 frames per second. The Visual Spreadsheet
software of FlowCam extracts each particle present in the photograph using an image
segmentation algorithm, and stores the photographs on the computer. The result is a
plankton sample converted into a collection of images, each containing an individual
particle. These images are combined in collages that constitute the raw output of the
Visual Spreadsheet. In addition to the collage of images, the Visual Spreadsheet also
stores ancillary information of each particle that includes over 40 different measurements

including area, volume, perimeter, shape, size, and aspect ratio.
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2.2.3.2 Classification of images

To classify images captured by FlowCam, the semi -automated process of image
classification was followed in the Visual Spreadsheet software, where we created a
library of each identified species in the sample. Then a training set for each species was
generated from visually identified species from the collage of images and were matched
with the species stored in library. Once the images of species were sorted based on the
training sets, they were manually corrected for any artifacts present in the selected images

through visual recognition (Zarauz et al. 2007)

2.2.33 Estimation of Area

Area Based Diameter (ABD) of each species and taxa, as recorded and calculated
by FlowCam. was used to estimate the relative abundance following (Garcia et al. 2010).
The reason for using the ABD instead of particle counts was that the area would give
more accurate estimates of phytoplankton biomass and would be comparable to the
estimates provided by HPLC-ChemTax and in sifu probes due to the size variation of
phytoplankton cells between taxa and species (J.Nicole and Martin L.Jennifer 2010).

To calculate the relative abundance of the phytoplankton groups identified by
FlowCam, the species information presented above were further grouped into six
taxonomical classes including cyanobacteria, diatoms, dinoflagellates, chlorophytes,
chrysophytes, and euglenophytes for comparison with the relative abundance obtained
using HPLC and ChemTax. Unresolved particles were grouped as unidentified cells or
detritus. Relative abundance was calculated by adjusting cell counts for the surface area
for all the species of all taxonomic groups. Area of chlorophytes and euglenophytes were

combined for LPRE samples to generate a comparable result of relative abundance as
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determined by HPLC-ChemTax because the HPLC-ChemTax estimated the pigment

concentration of chlorophytes and euglenophytes combined.

2.2.4 Determination of phytoplankton class abundances using HPLC and
ChemTax

For HPLC pigment analysis, the filter papers were shipped overnight on dry ice
to the University of South Carolina, Columbia, SC. High performance liquid
chromatography (HPLC) was used to separate, identify, and quantify phytoplankton
photosynthetic pigments. First, filters were lyophilized (-50°C, vacuum of 0.50 atm) for
20-24 h, followed by extraction in 90% aqueous acetone (600-750 ul at -20°C for 18-22
h). The internal standard was the synthetic carotenoid pigment B-apo-8'-carotenal
(Sigma). Filtered extracts (250 ul) were injected into a Shimadzu HPLC (LC-10AT)
equipped with reverse- phase C18 columns (Rainin Microsorb, 0.46 X 1.5 cm, 3 um
packing, Vydac 201TP54, 0.46 x 25 cm, 5 um packing) in series as the solid phase.
Gradients and flow conditions are described in Pinckney et al. (2001). A Shimadzu SPD-
M10av photodiode array detector was used to obtain absorption spectra and
chromatograms (440 £+ 4 nm). Pure standards (DHI, Denmark) were used to confirm peak
identities and retention times.

ChemTax (v. 1.95) was used to determine the relative abundances of major
phytoplankton groups based on photopigment (Higgins HW, Wright SW 2011; J.
Pinckney et al. 2001). The major phytoplankton groups used for ChemTax categories
were based on qualitative microscopic examinations of water samples. The initial

pigment ratio matrix was derived from (Higgins HW, Wright SW 2011; Schliiter,
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Mpghlenberg F., Havskum. H 2000) and the convergence procedure outlined by (Latasa

Mikel 2007) was used iteratively to correct for inaccuracies in pigment ratio seed values

2.2.5 In situ phytoplankton quantification based on Chl a, PC, and
phycoerythrin.

Ecotriplet FL3B (Wetlabs inc., Philomath, OR), an in-situ submersible
fluorescence probe with three sensors specific to Chl a (ex/em 470/695 nm), PC (ex/em:
630/680 nm) and phycoerythrin (PE) (ex/em: 518/595 nm) was used to measure the
pigment concentration of Chl a, PC, and PE by lowering the probe into the water so that

the sensors are a few centimeters below the water surface.

2.2.6 Spectrofluorometric quantification of PC.

Fifty mL subsamples of surface water were filtered (<50 kPa) onto polycarbonate
filters with 4.7 cm diameter and 0.2 pm pore size, and kept frozen at -80 °C freezer until
analysis for determination of PC concentrations. PC was extracted in 50 mM phosphate
buffer by cell disruption using a probe sonicator (Fisher Scientific™ Model 50 Sonic
Dismembrator) and fluorescence intensity was measured using a Horiba Jovin Yvon
FluoroMax-4 Spectrofluorometer (Horiba Scientific, Edision, NJ, USA) at 615 nm

excitation and 647 nm emission using the standard protocol (Horvatha et al. 2013)

2.2.7 Spectrofluorometric quantification of Chl a

To quantify Chl a concentration, 100 mL aliquots of surface water were filtered
(<50 kPa) onto GF/F filters with 4.7 cm diameter and 0.7 um pore size, and kept frozen at
-80°C until analysis. Chl a was extracted using 90% acetone and determined

spectrofluorometrically using a Horiba Jovin Yvon FluoroMax-4 Spectrofluorometer
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(Horiba Scientific, Edision, NJ, USA) following standard laboratory protocol (Joint

global Ocean Flux Study, 1998).

2.2.8 Toxin analysis

The three phycotoxins, microcystins, brevetoxin by dinoflagellates, and domoic
acid were analyzed by Enzyme Linked Immunosorbent Assay (ELISA) technique
following manufacturer’s protocol (Abraxis LLC, PA, USA). Toxins were analyzed
manually for samples from lakes and Eastern Mississippi Sound using the toxin analysis
kits, but samples from LPRE were analyzed using a Cyanotoxin Automated Assay
System (CAAS) (Abraxis LLC, PA, USA). Twenty mL of water sample were collected
and frozen at -4°C until analysis for all three types of toxins in the CAAS. For manual
determination of microcystins, 50 ml of subsamples were filtered onto 2.5 cm diameter
glass fiber filters (Whatman GF/F), and kept frozen at —80 °C. On the day of the analysis,
5 mL of extraction solvent (methanol: water: acetic acid: 50:49:1) was added to the filter
papers, vortexed for 1 minute, sonicated for 2 minutes at 30—40 watts output on ice and
centrifuged for 10 minutes at 3000 rpm, and the supernatant was collected for the
determination of cellular microcystin concentrations using an ELISA kit (Abraxis LLC,
Warminster, PA, USA). Brevetoxin and domoic acid were extracted using deionized

water and analyzed using the same protocol as for microcystin.

2.3  Results
2.3.1 Species composition and relative abundance determined by FlowCam

We found 108 different species of phytoplankton in all the study areas combined

(Table A1& A2), in which 52 species of phytoplankton were found in EMS (Table A3),
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86 species in LPRE (Table A4), 79 species in RB (Table A4), 54 species in LS (Table
AS5), 58 species in LE (Table A6), and 41 species were found in LG (Table A7).

FlowCAM derived species composition revealed that cyanobacteria were the most
diverse class in LPRE, RB, LS, LE, and LG whereas diatoms were the most diverse class
in EMS with at least 19 species identified. Among all the study areas, cyanobacteria were
found to be most diverse in LPRE (Fig. 2.2 & Fig 2.3). In the lakes (RB, LS, LE, LG),
chlorophytes were the second most diverse class after cyanobacteria, except in RB where
on two occasions, chlorophytes were the most diverse (Fig.2.4-Fig2.7). Meanwhile,
diatoms were the most diverse species in EMS with at least 19 species identified (Fig.2.8
& Fig2.9). Using FlowCam, the toxin-producing diatom genus Pseudo-nitzschia, could
not be distinguished from cryptic forms of other diatom species. Similarly,
dinoflagellates of genus Prorocentrum were not further identified into species level, and
chlorophytes of genus Chlamydomonas could not be further identified to species level.
Due to their small cell size, these genera could not be identified to the species level
because morphological differences were not distinguishable.

By measurements of relative abundance using FlowCam, cyanobacteria were
found to be the most abundant group based on their total surface area at all the study sites

in LPRE (Fig.2.10). Similarly, in RB cyanobacteria were dominant on three sampling
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2.3.2 Relative abundance determined by pigment analysis

Relative abundance of phytoplankton determined by HPLC-ChemTax in LPRE
revealed that diatoms were the most abundant group with concentrations ranging from 2
to 7.1 pug Chl a/L in December 2014, chlorophytes were found to be most abundant in
March, 2015, and chlorophytes and haptophytes were most abundant in May 2015 (Fig.
2.14). The relative abundance of phytoplankton in four Mississippi lakes determined by
HPLC-ChemTax have previously been described in Dash et al. 2015(Dash et al. 2015).
RB was dominated by euglenophytes on June 13, 2012, May 22, 2013, and July 10, 2013,
whereas cyanobacteria was dominant on June 29, 2012. LE was consistently found to be
dominated by cyanobacteria whereas LS was dominated by euglenophytes and
cyanobacteria, and LG was dominated by chrysophytes and euglenophytes. In all the
lakes, cyanobacteria were found to be present in all the sampling sites. The relative
abundance of phytoplankton in EMS shows that diatoms were dominant in October 2012
(Fig. 2.15a) but cyanobacteria was dominant during the summer of 2013 (Fig. 2.15b-f).
Thus, HPLC-ChemTax method could separate taxa such as haptophytes, cryptophytes
and chrysophytes as a separate group that were not clearly distinguishable using
FlowCam. Meanwhile, HPLC-ChemTax classified chlorophytes and euglenophytes into a
single group so their individual relative abundance could not be quantified, which could

be easily separated into two separate groups using FlowCam.
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Figure 2.14 Relative abundance of phytoplankton determined by ChemTax in Lower Pearl River Estuary (LPRE) in terms of Chl

a concentration specific to each taxonomic group

s A,B,C,D,E,F, and G shows the bar graph of relative abundance of phytoplankton in LPRE site 1 through site 109. Sites 1-

30 were collected in December 2014, 31-61 were collected in March 2015, and 62-109 were collected in May 2015.



€10T ‘¢1 AN uo pajoaq[od sajdures ur () ‘€107 ‘0€ dunf uo pajod[[od saduwres ut (q) ‘€107 ‘€7 dunf uo pajod[[od sorduwes ur ((7)
‘€10T ‘91 aunf uo pajoa[[od sopdwes ur (D) ‘€107 ‘7 dunf uo pajdd[od sajdwes ur (g) ‘710 ‘|1 1290100 U0 Pa3dd[[od sardwes ur (V)

(SINH) punos 1ddissIssIA 3seq ul xe]way)) £q paururajop uopjue(dolAyd jo souepunge aAne[oy G Z In3I

sejiydoydly saje|jebejoulq [ swoelq
sojfydoide I  safydosfuyp [  saihydousibna+sejiydosoy) I euseqoueiD N

sals sa)g sals
B M pmomomoEm 22T o mm omom
FREZZ2222222 EEEZS222325 3 RN
EESEaaaneans SCEE22945£88 2 2L 2 2838828 ¢
0 _ -0
Fz F .
Ly L Q
Z WNN
joi]
=
-9 e e €
Fs -y -
ll I 3 a
g 5
5 oz oo nom o I CoppopEmooooo
m m m m m m m mMm M M M M mMm m m
& 5 &5 2 2 g 2 2 SSESTETTTEFTEELE Fis=zzz=zz2z:2z2z%
5 B 5 8 8 9 8 97 SEEd 8L snELLE SEoBBEYEREYLEE
0 -0 - 00
g0
Fi
Lz
- o
L Q
[4 Fs1L =
(- W
=
Le roz &
Fsz
-9
-
—0€
0] 4 \4

34



233 Comparison of relative abundance of phytoplankton determined by
FlowCam and ChemTax

The comparison of the results from ChemTax and FlowCam for phytoplankton
abundance are shown in Fig. 2.16. In LPRE, we found a good linear relationship (r=0.9,
n= 108, p<0.01) between diatoms determined by ChemTax pigment analysis and the
relative abundance of diatoms determined using FlowCam (Fig. 2.16a). Also, we found a
good correlation between diatom-specific Chl a determined by ChemTax and the area of
diatoms in two lakes: Lake Grenada (r=0.79, n=12, p<0.05, Fig. 2.16b) and Lake Enid
(r=0.84; n=12, p<0.05, Fig. 2.16¢). Further, we found a good correlation for chlorophytes
(r=0.72, n=12, p<0.05, Fig. 2.16d) in Lake Enid and but a relatively poor correlation for
cyanobacteria (r=0.23, n=109, p=0.053, Fig. 2.16e) in LPRE as determined by ChemTax
and their area determined using FlowCam. These results suggested that FlowCam and
ChemTax can be used as alternative techniques for some groups of phytoplankton,
diatoms for example as found in this study, however they do not produce corresponding
results for all groups of phytoplankton. Further, use of HPLC-ChemTax approach is
limited to taxonomical class, thus no genus and species level of identification can be
achieved by using HPLC-ChemTax. If genus or species level information is desired, then
FlowCam would be the preferred approach with the caveat that phytoplankton with small
cell size cannot be identified to the species level. Thus, both these techniques have some
strengths as well as some weaknesses to determine phytoplankton community structure

and their abundance.
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2.34 Comparison of Chl a and PC concentrations measured by using in situ
(Eco triplet FL3B probe), HPLC, and spectrofluorometric techniques

HPLC provided much lower estimates for Chl a than the probe (Fig. 2.17a)
although the correlation was high (r=0.91, n=109, p<0.05) in LPRE. And that in EMS,
the probe provided lower estimates than the spectrofluorometer for Chl a (Fig 2.18a)
although the correlation was high (r=0.95 n=17, p<0.05). In both cases, the correlations
are good, but the values do not fall close to the 1:1 line. In contrast, the FL3B probe
estimated the PC concentrations close to as estimated by Spectroflorometer in LPRE
(Fig. 2.17b) and EMS (Fig. 2.18b). The correlation coefficient was 0.61 for LPRE
(n=152, p<0.05) and 0.8 for EMS (n=47, p<0.05) and the values of PC are close to the
1:1 line in both the plots (Fig. 2.17b & 2.18b). There was a good correspondence (r=
0.81, p<0.001, n=109) between PC and Chl a concentration measured using the FL3B
probe (Fig. 2.17¢). Also, we found a good correspondence (1= 0.81, p<0.0001, n=47)
between PC and Chl a concentration measured using the FL3B probe in EMS (Fig.
2.18c). The in-situ instrument FL3B provided a rapid measurement of Chl a and PC
concentrations in water bodies to determine the changes in phytoplankton abundance

compared to HPLC and spectrofluorometric techniques.
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2.3.5 Algal toxins

Microcystins were present in small concentrations in LPRE ranging from 0- 0.12
ng/L (Fig.2.19a-e). Brevetoxin was detected in LPRE but in very low concentrations
(below 0.5 pg/L) in most of the sites in December 2015, and March, May, and August
2015 (Fig. 2.19¢), but higher concentrations (between 0.5-1.6 pg/L) at 2 sites in
December 2015 when there was a Karenia brevis bloom in the coastal waters (Fig.
2.191). Brevetoxin concentrations were as high as 14.55 pg/L in the samples collected at
seven sites in the Mississippi sound (Fig. 2.19f). The phycotoxin concentrations in four
Mississippi lakes have been described previously in (Dash et al. 2015). Phycotoxin
analysis techniques such as ELISA can confirm whether toxin producing species are
present and can also quantify the low level of toxin concentrations. This technique when
combined with FlowCam provides valuable insights about which species or group of

phytoplankton are responsible for the phycotoxins in the water.
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2.4 Discussion

The community structure of phytoplankton and species composition provides vital
information about the health of the ecosystem in water bodies and potential risk to
humans and the environment. Due to increased eutrophication in water bodies, rapid and
precise monitoring of phytoplankton is very important. An array of techniques is
available to investigate the phytoplankton abundance. In this study, we employed in-situ
instrument (FL3B probe), automated microscopy (FlowCam), spectrofluorometry, and
HPLC to obtain valuable information on phytoplankton and compared the obtained
results to evaluate the performances as well as utility of each of these techniques. We
measured the Chl a concentration using in- situ FL3B probe, HPLC, and standard
spectrofluorometric techniques and compared the results. We determined community
structure of phytoplankton using two techniques, a pigment based technique, HPLC-
ChemTax, and an automated microscopic technique, FlowCam. The variability in
samples and the large number of samples ensured the reliability of the comparisons. A
good correspondence between FlowCam and ChemTax was found for determining the
relative abundance of diatoms, which corroborated with previous findings (Alvarez et al.
2014; See et al. 2005). The high correlation was because of large cell size of diatoms,
which was easily distinguishable in FlowCam thus could be accurately quantified.

Similarly, Chl a concentration measured using the in situ probe were compared
with the Chl @ measured using HPLC and spectrofluorometric technique. High
correlations suggested that in-situ fluorescence probe can be used to measure the
concentration of Chl « as an alternative method to HPLC or standard spectrofluorometric

technique, however an underestimation in probe measured Chl a is expected.
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Additionally, a good correspondence between concentrations measured by in-situ probe
and spectroflorometric technique suggests that in-situ probe can be used for rapid
measurement of PC concentration.

Since the standard methods are time-consuming and expensive, a preferred
approach would be to obtain a relationship between the two methods using regression by
sampling at a few sites and then using the regression equation to calculate the
concentration of Chl @ and PC by converting the in-situ measured Chl a and PC to HPLC
or spectrofluorometrically measured Chl a and PC.

FlowCam provides images of the cells allowing not only the calculation of cell
abundance but also determination of the species composition and community structure.
Species identified by FlowCam can provide solid clues about the presence of toxin
producing phytoplankton in the collected samples. However, the presence of phycotoxin
producing species of phytoplankton does not always mean a proportionate amount of
toxin would be present in the water as they produce toxin only at certain stages of their
life cycle in response to environmental conditions. Similarly, the toxin concentration can
be high even when the cell counts or Chl a is low. For example, we found high
brevetoxin concentrations at Chl a concentrations below 5 ng/L (Fig. 2 & 11e). Hence, it
is not always possible to infer toxicity in the water using the pigment analysis or
FlowCam alone. So, use of rapid toxin measurement techniques such as ELISA aids in
determining the toxicity level in the water when toxin producing species of
phytoplankton is detected using FlowCam or HPLC-ChemTax or measurement of Chl a

spectrophoto- or fluorometrically or by in-situ probes.
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The in-situ FL3B probe used in our study offers continuous measurement of Chl
a, PC, and PE concentrations. Furthermore, the in-situ probe does not require
pretreatment and a large sample volume. The method is simple, nondestructive, selective,
sensitive, and rapid thus a greater volume of data can be obtained quickly and in real
time. Since, it is not essential to perform taxonomic classification for all samples, it can
be done only for locations where changes in phytoplankton biomass (Chl a
concentrations) or composition (PC and PE concentrations) would be detected by the
probe. So, use of such in-sifu instruments provides information quickly to determine the
changes in phytoplankton abundance. In our study, we found a fair correspondence
between HPLC measured and in-situ FL3B probe measured PC, but the results did not
correspond well in the case of Chl a possibly due to in vivo measurements of Chl a by the
probe in LPRE samples where both these techniques were employed. We found good
correspondence between results from FlowCam and ChemTax for large-sized
phytoplankton, diatoms, but we did not obtain good correspondence between these two
techniques for other classes of phytoplankton such as cyanobacteria, dinoflagellates, and
chlorophytes. The lack of correspondence between the area of cyanobacterial cells with
the pigment based HPLC-ChemTax analysis could be explained by low concentration of
pigment zeaxanthin from HPLC, which is used to quantify cyanobacteria in ChemTax or
the small cell size of some cyanobacterial cells such as Microcystis spp. Physical factors
such as water temperature, water clarity, stratification, residence time, or chemical factors
such as availability of nitrogen and phosphorus and the salinity regime have been
reported to affect cellular zeaxanthin concentrations (Q. Hu 2004). Hu (2004) found that

environmental factors particularly light, temperature, nutrient affect photosynthesis and
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productivity which result in variation in biomass. Among the above factors, nitrogen
limitation may explain the higher value of area estimated by FlowCam because the
cellular light harvesting pigment content such as Chl a and zeaxanthin decrease under
nutrient stress(Latasha Mikel and Elisa 1994). The other plausible reason for this non
correspondence could be the presence of many small sized phytoplankton in the sample.
Due to their smaller size, they were grouped into the unidentified class in FlowCam
analysis but they were accurately classified by ChemTax into their respective classes
based on their respective unique pigment. Alvarez et al. (2014) found similar results in
case of haptophytes and chlorophytes (Alvarez et al. 2014). We used area based diameter
to determine the relative abundance as opposed to the use of cell counts (See et al. 2005)
or shape based automatic classifications (Alvarez et al. 2014) used in other studies.
Additionally, Alvarez et al. (2014) reported that phytoplankton content must be very high
in order to acquire correct estimation of community structure by FlowCam as error can
occur while classifying automatically(Alvarez et al. 2014). Hence in such situations,
ChemTax is more effective than microscopic analysis using FlowCam.

This study involves comparison and evaluation of several techniques to monitor
harmful algal bloom is first attempt in diverse water bodies of Mississippi/Louisiana.
These results can be useful for further research in choosing the best techniques to rapidly
collect information in an efficient way. The species composition and relative abundance
of algal group determined in this study provides preliminary information to continue the
research in the Mississippi /Louisiana water bodies.

There were some unavoidable limitations of the study such as fixing the samples
using glutaraldehyde which could alter the size of phytoplankton thus giving some
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compromised result from FlowCam analysis. Use of glutaraldehyde as a fixative has
advantages as it is an effective chemical compared to formaldehyde and does not stain the
cells as Lugol’s solution, but it could alter the area or shape of phytoplankton to the
extent where they cannot be identified in the images. Since, large volume of samples
collected per day cannot be run immediately after the collections, the samples needed to
be preserved. Another limitation of this study was that the relationship between
phytoplankton with the physical parameters such as temperature, solar irradiance, or
nutrient were not explored in this study. Investigating those aspects could help better
understand the trends of phytoplankton community, species composition, and toxin
production.

HPLC-ChemTax provides rapid quantification of algal groups and allows
automated analysis as compared to FlowCam where each sample run takes at least 30
minutes to an hour and additional time for classifications. In view of constantly
developing technology, we surmise that FlowCam will continue to improve to provide
more rapid sample processing and improved software for classifications. Despite these
limitations, we have shown that estimates of taxonomic richness derived from FlowCam

are reasonably comparable with those obtained by ChemTax.

2.5 Conclusion

This study compared the potential of several laboratory and field techniques used
for determining phytoplankton community structure. While in some scenarios one
technique is better than others, it was found that use of a few techniques together can
extract the crucial information in understanding the phytoplankton community structure

and occurrence of phycotoxins in water. For instance, FlowCam could be used for
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separating chlorophytes and euglenophytes, or diatoms and dinoflagellates, visually
which is not always possible in ChemTax pigment analysis due to shared pigments by
both phytoplankton. However, for small cell size phytoplankton, ChemTax produces
better results due to difficulties in identifying small cell size phytoplankton using
FlowCam. When phycotoxin-producing phytoplankton are considered, if toxin is
measured together with FlowCam or HPLC-ChemTax or pigment measurements, it will
provide a comprehensive information about the presence of toxins as well as the
phytoplankton species responsible for producing the toxins which will be helpful for
adopting preventive measures for water managers.

Surface area of phytoplankton can be used to obtain an accurate measure of
relative abundance of genus or species within a group of phytoplankton. The three
pigment based methods, HPLC-ChemTax, in situ fluorescence probe, and fluorescence of
extracted Chl a and PC, provide complementary information on freshwater and estuarine
phytoplankton. The findings of this study conclude that among several techniques
available for monitoring phytoplankton structure, FlowCam is the most useful technique
for species identification, HPLC-ChemTax for taxonomic classification, in-situ probes
for gathering information rapidly for initial estimation of phytoplankton biomass, and
spectrofluorometric techniques and toxin analysis are needed for precise determination of
harmful impacts. These findings provide insights for future studies to make a suitable

selection of techniques as per their objectives.
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CHAPTER III

COMPARATIVE ANALYSIS OF CHLOROPHYLL A ESTIMATION BY THREE
SATELLITE SENSORS AND TWO POPULAR SENSORS ONBOARD UNMANNED

AERIAL SYSTEMS

3.1 Introduction

Water quality parameters such as chlorophyll a (Chl a) concentration, total
suspended matter, nutrient concentrations, pathogens, and heavy metals are used as
indicators of lake and coastal water environmental health by water resources managers to
guide resource management and public safety decisions (Dash et al. 2015). Of these, Chl
a concentration is arguably the most representative environmental parameter as it is a
measure of phytoplankton biomass as well as an indicator of water clarity. Harmful algal
blooms represent a major environmental problem worldwide and throughout USA with
severe impacts on human health, aquatic ecosystems, and the economy (D. M. Anderson
2009). Although in situ sampling is the most accurate way of determining Chl a
concentration, yet the use of remote sensing technology has been increasing recently for
routine Chl @ monitoring due to the synoptic coverage (T. Moore et al. 2014).

Low spatial resolution of satellite sensors limits the ability to accurately detect
and quantify phytoplankton in small water bodies. Unmanned aerial Systems (UASs)
offer the best remote sensing approach in such cases with sensors of suitable spectral

bands and spatial resolution (Flynn and Chapra 2014). Additionally, algal blooms can be
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very dynamic and patchy, changing significantly in a short time. Monitoring such events
with even high resolution satellite data is not suitable by itself because such data does not
have the temporal resolution needed to monitor the quickly changing blooms (Gholizadeh
and Robeson 2016). Thus, these events are well suited for UAS based monitoring (Lekki
et al. 2009; Watts, Ambrosia, and Hinkley 2012).

Algorithms used for remote estimation of Chl a content are categorized as either
empirical or semi-analytical algorithms. The empirical algorithms are based on statistical
relationships between either normalized water leaving radiance (nLw) or remote sensing
reflectance (Rrs) ratios at two or more bands and in situ Chl a, e.g. the SeaWiFS OC4v4
and OC2v4 algorithms (O’Reilly et al. 1998, 2000). The semi-analytical models, on the
other hand, are based on theoretical relationships between Rrs and inherent optical
properties such as absorption and backscattering coefficients but include some statistical
relationships formulated through datasets of relevant in-water parameters and optical
properties (Twardowski et al. 2005). In the past, numerous empirical and semi analytical
algorithms have been developed for coastal areas and relatively large inland lakes for
estimating Chl a using remotely sensed data (Gower et al. 2005; Mayo et al. 1995;
Ruddick et al. 2001). The inherent optical properties of different water constituents vary
with the concentration and specifically with the composition. The specific properties are
important for reflectance models used to determine the concentration of water
constituents from remote sensing data..(Siegel et al. 2005) IOPs of water bodies can
differ due to the variability in trophic conditions, sediment concentration from run off,
nutrient and colored dissolved organic matter concentration. As a consequence, a single

algorithm developed for a specific water body is not applicable to water bodies with
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varying IOPs. ,. (T. Moore et al. 2014)Subsequently, empirical algorithms are standard
approaches used to produce global maps of Chl-a concentration from satellite reflectance
data (C. Hu, Lee, and Franz 2012). Empirical algorithms have key advantage over semi-
analytical algorithms in terms of computational efficiency in comparison to complex
structure of semi analytical algorithms. Although the semi-analytical algorithms account
for the effect of other optically active constituents in water such as CDOM absorption,
backscattering by sediments, and phytoplankton, there is a greater chance of introduction
of errors due to sensitivity of semi-analytical algorithms to parameter-tuning. For
instance, different types of phytoplankton have different absorption spectra owing to the
presence of different pigments (Hoepffner and Sathyendranath 1991); thus universally
fixed absorption models in semi analytical algorithms can’t represent varying
composition of phytoplankton communities. Likewise training data sets for some of the
model inputs, such as backscattering coefficients of particles, are not widely available
(Dierssen 2010). Meanwhile, a previous study found that empirical methods performed
better than semi analytical algorithms in a comparative study (Brewin et al. 2015). Thus,
in this study we developed and tested empirical band ratio algorithms for five different
sensors in our study areas. The study included two types of water bodies in Mississippi.
1) five lakes in Mississippi and 2) an estuary, the Lower Pearl River Estuary (LPRE). The
main aim of this research was to develop remote sensing algorithms to quantify
chlorophyll @ employing five sensors including two popular UAS sensors and three
currently operating satellite sensors and evaluate the performance of the sensors in

quantifying chlorophyll a in the lakes and the estuary
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3.2 Material and Methods
3.2.1 Study areas

Water quality data were collected from five different lakes in Mississippi
including Ross Barnett Reservoir (RB), Lake Sardis (LS), Lake Enid (LE), Lake Grenada
(LG), and Lake Okatibbee (LO) and Lower Pearl River Estuary (LPRE) (Fig. 3.1). Ross
Barnett Reservoir is located adjacent to the City of Jackson, the capital city of
Mississippi, and Lakes Sardis, Enid, and Grenada are located in northern Mississippi, and
Lake Okatibbee is located in eastern Mississippi. The Ross Barnett Reservoir is used as a
source of drinking water for the City of Jackson and all five lakes have traditionally been
used for recreational activities such as swimming, boating, and fishing. These lakes
produce large quantities of commercial and recreational fish (Dash et al. 2015). The Pearl
River originates in Neshoba County, Mississippi and has a meander length of 714 km

before emptying into the Gulf of Mexico. The lower185 km of the river forms the part of

the boundary between Mississippi and Louisiana, is termed as Lower Pearl River. The
estuary at the lower most portion of the river, the Lower Pearl River Estuary (LPRE) is
considered as one of the most critical areas of remaining natural habitats in Louisiana-
Mississippi coast (The Nature Conservancy 2017).Likewise the four Mississippi Lakes
LS, LE, LG and LO are diverse and ecologically important water bodies that are heavily
used for fishing and recreational purposes. Additionally, the algorithms developed for
these water bodies can be applicable to other water bodies in United States directly or

with adjustment of coefficients.
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Figure 3.1  Study area Map

3.2.2 Data collection

Five Mississippi lakes including RB, LS, LE, LG, and LO were sampled during
13 field campaigns from 2012 to 2016.Data were collected in during summer in RB, LS,
LE, and LG and LO was sampled during winter (February 2015). With 12 sampling
points in each lake, a dataset of 156 sampling points were generated (Table 3.1). The
dataset from LPRE comprises of 164 stations from 5 sampling events in December 2014
and March, May, August, and December 2015 (Table 3.2). We collected samples for all

lakes except LO during summer motive was to capture higher bloom conditions. The
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sample collection in LPRE were done in four seasons — Spring, Summer, Fall, and Winter

to record the functionality of the entire study area. The field data included water samples

collected in clean Nalgene bottles, in-situ remote sensing reflectance, in- situ

phytoplankton pigment concentrations (chlorohyll-a, Phycocyanin and phycoerythrin),

water quality parameters such as temperature, pH, salinity, and dissolved oxygen. Surface

water samples were placed in a cooler with ice after collection, and filtered within 5-6

hours of collection. /n situ remote sensing reflectance measurements were taken at each

sampling points with hyperspectral radiometer GER 1500covering 200 to 1100 nm

wavelength. The reflectance data were visually examined individually, and obvious

erroneous spectra were not included in the final data set.

Table 3.1 Sample collection sites and dates for Lakes
Sites RB RB RB RB RB RB LO
Date 6/13/12  6/29/2012  5/22/13 7/10/13  8/28/15 8/27/16 2/6/15
Sampleno 12 12 12 12 12 12 12
Sites LS LS LE LE LG LG
Date 6/18/13  7/6/2014  6/20/12 6/11/13  6/18/12 6/4/13
Total
N
Sampleno 12 12 12 12 12 12 156
Table 3.2 Sample collection sites and dates for LPRE
Sites LPRE LPRE LPRE LPRE LPRE
Date 2014 2015 2015 2015 2015 Total
December March May August  December N
Sample no 30 30 50 38 16 164
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3.23 Chlorophyll a concentration measurement

To quantify Chl a concentration, 100 mL aliquots of surface water was filtered
(<50 kPa) onto GF/F filters with 4.7 cm diameter and 0.7 pm pore size, and kept frozen at
-80°C until analysis. Spectoflorometric and HPLC techniques were used to determine Chl
a concentration in each sample. The samples for which HPLC analysis was not carried
out, Chl a was extracted using 90% acetone and the concentration was determined
spectrofluorometrically using a Horiba Jovin Yvon FluoroMax-4 Spectrofluorometer
(Horiba Scientific, Edision, NJ, USA) following standard laboratory protocol Joint
global Ocean Flux Study 1998). For HPLC pigment analysis, the filter papers were
shipped overnight on dry ice to the University of South Carolina, Columbia, SC. High
performance liquid chromatography (HPLC) was used to separate, identify, and quantify
chlorophyll a concentration following standard protocol (Mackey et al. 1996)The HPLC
method and spectroflorometreic methods produced similar results when results from both

tehniques were compared

3.24 Remote Sensing Reflectance

Remote sensing reflectance (Rrs) is defined as the ratio of the upwelling radiance
and downwelling irradiance. To derive above water Rrs three measurements are generally
required: (1) upward radiance (Lu), (2) downward sky radiance (Lsky), and (3) upward
radiance from a standard Spectralon reflectance plaque (Lplaque). First, measurements of
radiance from a plaque with known spectral directional reflectance (99% Spectralon,
Labsphere) were made using a GER 1500 radiometer (Spectravista Inc., Poughkeepsie,
NY). Subsequently, three replicate scans of target water surface were made and then sky

radiance was measured by pointing the radiometer towards the sky opposite to the sun.
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The radiometer data were processed following Hu (2003) for the determination of above
water Rrs . First, water leaving radiance (Lw) was determined by
Lw=Lu-(0.02 x Lsky)

Subsequently, Rrs was computed by

_y _ 101 XLw
R‘I"S(O ) - Lplaquexm
3.2.5 Conversion of hyperspectral data to sensor specific data

It is difficult to perform a comparative evaluation of satellite sensors using
satellite derived Rrs due to different ground resolution, inconsistent temporal resolution,
and variability in overpass time of sensors. Thus, in-situ measured Rrs were converted
into each sensor specific Rrs by application of the spectral response functions of three
currently operating satellite sensors- AQUA MODIS, OLCI SENTINEL- 3, and
LANDSAT 8 OLI, and two popular UAS sensors- MicaSense and Color Infra-red (CIR)

(Fig.3.2).
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3.2.6

Clustering the radiometric Rrs data

Our attempt to develop one algorithm for lakes and one algorithm for the estuary

was not successful. Thus, we adopted the clustering method to separate the sites based on

their Rrs. The datasets from the five Mississippi lakes were combined which included

data from Lakes Sardis, Grenada, Enid, Okatibbee, and Ross Barnett Reservoir for cluster

analysis. Samples collected from the Lower Pearl River estuary at various locations and

seasons were combined for cluster analysis. Based on cluster analysis of remote sensing

reflectance data, we separated the Rrs dataset of Lakes and LPRE into 3 clusters each.
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Our choice for cluster analysis was the k-means algorithm, which has been used in
many classification studies from medical image processing to remote sensing.(T. Moore
et al. 2014). Dendrogram and cluster validity function were used to choose the optimum
number of clusters. The k-means clustering algorithm was applied to the in-situ Rrs data
using R (v. 3.3.2) software. The k-means clustering algorithm produces clustering of the
data into a specified number of clusters, herein denoted by k. The basic function of this
algorithm is to choose clusters that minimizes the difference between the data points and
the prototype cluster centers or cluster means. Cluster centers are iteratively adjusted
until optimization criteria are met to achieve the minimum sum of the differences and
minimum change in the residuals. The clustering routine then returns the mean
reflectance vectors for the & classes, and a matrix containing the memberships of each
point to each class. The cluster analysis separated and differentiated subsets based on
both the shape and the magnitude of Rrs and resulted in three optimal clusters for the
Lakes and three clusters for LPRE (Fig. 3.3). The clusters for best performing sensors in
this study are shown in plots (Fig 3.4& Fig 3.5) The number of clusters was deemed best
based on a suite of cluster validity functions. When three clusters are specified, the
relation of data points to each other and cluster centers (mean vectors) in terms of
compactness and separation aspects were collectively in a better configuration compared
to other cluster choices. The differences between clusters can be more readily observed
when their reflectance means plotted together for three sensors (Fig.3.6, Table A.8-Table
A.13). Collectively, these Rrs means formed the optical water types (OWTs). They are
representations of averaged conditions governed by the optical properties of the water

column and ultimately depend on the absorption and scattering properties of the in-water
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constituents (e.g., phytoplankton and non-phytoplankton particles). In general, Rrs
spectra separated the OWTs based on their unique characteristics. In the lakes, OWTs
one and two have low overall spectral magnitude, and show relatively flat features above
600 nm compared to OWT three. These OWTs all show peaks around 700 nm, but are
different from each other in magnitude. OWT three shows a prominent peak at 700 nm
compared OWTs one and two. This peak is characteristic of strong particle
backscattering and has been associated with high algal particle concentration (Gilerson et
al. 2007; Gower et al. 2005; Zimba and Gitelson 2006). All the OWTs show a reflectance
peak to some degree at or near 555 nm, which is most pronounced in OWT three of lakes
and OWTs one and two of LPRE. The peak at 555 nm can be attributed to enhanced
particle scattering from living (e.g., phytoplankton) and non-living (e.g., sediments)
sources (Ahn, Bricaud, & Morel, 1992; Kutser, 2004). Other secondary peaks are seen at
or near 650 nm in these OWTs. While it is not possible to associate these features to

unique constituents without more complete optical information,
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3.2.7 Optimal Band Ratio Selection

The use of Rrs band ratio instead of singular Rrs bands is popular in remote
sensing algorithm development. The reflectance of a singular band can be influenced by
more than one component, whereas the use of band ratios gives enhanced spectral
signatures of different water constituents. It is also less sensitive to the atmospheric
correction errors when applied to satellite data (Gilerson et al. 2010). To select the most
suitable band ratio, we accessed all the combinations of band ratios for each sensor and
simple linear regression was computed against the measured Chl a concentration. We
also tested the popular band ratios as proposed by previous studies with available bands
in the used sensors. However, the best band ratio algorithm was chosen based on highest

R? obtained from the regression between band ratio and measured Chl a concentration.

3.2.8 Algorithm development

Randomly chosen 3/4 th of data were used in band ratio algorithm development
and 1/4" of data were used in model validation. Same data points were used in algorithm

development and validation for all five sensors to make the results comparable.

3.2.9 Model validation

All the algorithms were applied to the one fourth of randomly chosen validation
dataset to investigate the applicability of the newly developed algorithms and accuracy
was evaluated using root mean square error (RMSE) and mean absolute error (MAE). In
order to remove the effect of magnitude of observations, RMSE and MAE were
normalized using the range of observations and expressed in percentages. Expressions for

relative RMSE and relative MAE are given as
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Relative RMSE %= RMSE % 100

Measured maximum—Measured minimum

Yi, |Estimated—Measured|

Relative MAE%= X100

n (Measured Maximum—-Measured Minimum)

3.3 Results
3.3.1 Measured Chl a concentration

The range of Chl a in lakes is between 1.8-57.1 pg/L and LPRE is found to be

1.3-22.1 pg/L (Fig.3.7).
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Figure 3.7  Measured chlorophyll a in A) Lakes and B) LPRE
3.3.2 Chlorophyll-a algorithms developed for the satellite sensors
3.3.2.1 Lakes

Among the three satellite sensors used, we found the best algorithm from OLCI
Sentinel 3 and Landsat 8 OLI to quantify Chl a in our study areas (Fig.3.8). For OWT1
and OWT2 of lakes, Landsat band ratio PAN/NIR performed better in predicting the Chl

a with minimum errors in terms of RMSE of 5.6 pg/L and %MAE of 20.48 with an R? of
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0.49 for OWT1 and RMSE of 9.24 pg/L and %MAE of 38.80 with an R? of 0.28 for

OWT2. However, for OWT3, algorithm developed by OLCI, i.e band ratio Green/NIR

(Band6/Band11) performed best among all the sensors with an RMSE of 1.69, % MAE of

10.09, and an R? of 0.73. The results for three OWTs in terms of RMSE, MAE and R? are

shown in tables A.14, A.15 and A.16 respectively. Although some of the algorithm has

low R? value, that is the maximum we found among all the sensors used (Tables A.14,

A.15, A.16). Tables 3, 4, and 5 below show the concentration of Chl a ranged between

2.9-15.7 pg/L for OWTI, 1.8-40 pg/L for OWT2, and 10.02-57.1pg/ L for OWTS3 in the
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Figure 3.8  Algorithms developed for three optical water types (OWTs) of lakes, A)
OWT1, B) OWT2, and C) OWT3
3.3.2.2 Lower Pearl River Estuary

For LPRE, OLCI band ratio algorithm performed better in all three optical water

types (Tables A.17, A.18, and A.19). Among the three water types determined from

cluster analysis, the band ratio algorithm Green/Red (Band6/Band 10) performed best for
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OWT3 with an RMSE of 2.09 and % MAE of 26.23 with an R? of 0.32 (Fig.3.9). In
OWT1 and OWT2 Green//Red band ratio performed best among all three satellite sensors
with an RMSE of 4.09 pg/L and % MAE of 57.83, and an RMSE of 1.36 and % MAE of

45.9 respectively.

The measured versus modeled Chl a for lakes and LPRE for the aforementioned

satellite sensors are shown below (Fig.3.10, Tables A.14-A.19)
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Figure 3.9  Algorithms developed for three optical water types (OWTs) of LPRE, A)
OWTI, B) OWT2, and C) OWT3
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Figure 3.10 Create Algorithm validation for optical water types 1, 2, and 3 of lakes
using satellite sensors A) Lakes, and B) LPRE

3.33 Chlorophyll a algorithms developed for the UAS sensors
3.3.3.1 Lakes

Algorithms developed for the five-band sensor, MicaSense, performed better than
the 3 band CIR sensor for quantifying Chl a in all three optical water types in Lakes
(Tables A.20, A.21, A.22) Among the three water types, band ratio algorithm
(Blue/Rededge) developed for OWT3 performed better among the three OWT based on
RMSE (3.01 pg/L), % MAE (20%), and R?(0.73). In OWT1 and OWT2 Blue/NIR and
Green/Rededge band ratio performed better among all sensors with an RMSE of 5.08
pg/L and % MAE of 12.85, and an RMSE of 11.10 pg/L and % MAE of 46.5%,

respectively. The algorithms developed for each OTWs are shown below (Fig. 3.11)
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Figure 3.11 Algorithms developed for the optical water types (OWTs) 1, 2, and 3 of
lakes using UAS sensors, A) OWT1, and B) OWT2, and C) OWT3

3.3.3.2 Lower Pearl River Estuary

The band ratio algorithm (Green/Red) developed for the MicaSense sensor
performed better than CIR in all the three OWTs of LPRE. The algorithms developed for
each OTWs are shown in the below (Fig.3.12). Among three OWTs, the algorithm
developed for OWT3 performed better among the three water types with an RMSE of
2.038 png/L and %MAE of 25.64%. The algorithms developed for OWT1 and OWT?2 had
an RMSE of 4.08 pg/L and %MAE of 57.1%, and an RMSE of 2.1 pg/L and %MAE of
39.96%, respectively. Tables A.23, A.24, and A.25 show the result for the UAS sensors
and their performances in each OWTs of LPRE.

The measured vs modeled Chl a for lakes and LPRE for the aforenoted sensors

are shown in  below (Fig.3.13)
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3.4  Discussion
34.1 Satellite sensors derived algorithms in Lakes

This study shows that over the full range of in sifu Chl a, among the three satellite
sensors used, OLCI sensor estimated Chl a reasonably well with mean absolute errors
below 30% (for OWT1 and OWT3) shown in tables A.14, A.15 and A.16, which is

consistent with previous studies using similar satellite sensors (C. Hu, Feng, and Lee

69

14



2013; Kahru et al. 2014). In general, the algorithms developed for Chl a using remote
sensing are considered within acceptable goal if the algorithm meet accuracy goals of 5%
and 35% for the retrieved surface remote sensing reflectance and chlorophyll-a
concentrations in the surface ocean (Hooker et al., 1992). Since, the optical properties of
water in inland waters such as lakes and estuaries are more complex than oceans due to
higher influence of land and surface run offs, the results for lakes, the accuracy obtained
from our algorithms are consistent with previous work.

Algorithms using Green and NIR band of OLCI performed well among all other
band ratios. Although best performing algorithms for all three OWTs had Green/NIR
band ratios, the band center for Green was different for OWT?2 from OWT1 and OWT3
and error was also much higher. The difference in spectral shape due to optically active
constituents likely played a role in change of band center for OWT2. It is shown in Fig
4A that the Rrs in the green region is highest near 560 nm for OWT1 and OWT 3,
whereas the Rrs peak for OWT?2 is close to 510 nm. The Landsat band ratio algorithm
performed better among all the satellite sensors used for OWT2. However, error was
higher than those on OWT1 and OWT3 with an RMSE of 9.2 pg/L and %MAE of
38.8%. The high range of Chl a concentration in OTW?2 is the likely reason for the
resulting high error which was also the case in a previous study (T. Moore et al. 2014).In
OWT?2, the Chl a in lower concentration or higher concentration can have greater
influence in the algorithm coefficient which produce errors in validation . The range of
Chl a concentration for algorithm development was 1.8 to 40 pg/L ,with majority of Chl a

concertation in higher concentration, which were greater than 10 pg/L with weak R?
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(0.28) at 0.05 level of significance. The Chl a concentration in validation data set were in
lower concentration (1.3-3.4 pg/L) which resulted into higher errors.

Thus, our assessment of clustered Chl a algorithm in Mississippi Lakes showed
that OLCI band ratio algorithm performed best with minimum RMSE (1.6 pg/L), %
RMSE (13.1%), and % MAE (10.09%) when Chl a was at range of 2.9-15 pg/L and

average Rrs at Green and Red bands as shown in table 4 A.

3.4.2 Satellite derived algorithms in LPRE

The algorithms developed for the OLCI sensor to quantify Chl a in LPRE
performed the best among the algorithms for all the three satellites sensors in terms of R?
of the algorithm and errors; RMSE, % RMSE and % MAE. OLCI algorithm developed
from Green/ Red band performed well in all three OWTs but best performing algorithm
was developed for OWT3 with low RMSE and low %MAE (Table 8). The range of Chl a
was lower than that of OWT1 and OWT2. For OWT3, algorithms developed from
MODIS and Landsat also performed well with slightly higher RMSE and % MAE. The
bands used in algorithm development have distinct peaks at those two regions which can
be seen in Fig. 3.6 D. The Rrs was low near 560 nm (Band6) and high at 681 m (Band
10). Band 6 is the visible part of the spectrum hence it was absorbed the most by Chl a, in
contrast to band 10, which is close to Rededge region where reflectance from Chl a is
highest that allows the band ratio algorithm to extract the valuable information about Chl

a concentration
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343 UAS Algorithms derived for the lakes

The algorithms developed for the five-band sensor, MicaSense, performed well on
all three OWTs of lakes with mean absolute error below 30% for OWT1 and OWTS3.
These errors were less than the errors obtained for the algorithms developed for the
satellite sensors. The bands for the ratios were different for three OWTs (Table 9,
Table10 &Table 11), which corresponds well with the spectral shape of each water types
(Fig.3.6 E). Hence the bands Blue, Green, NIR and Red of the MicaSense are useful in

Chl a estimation.

3.4.4 UAS Algorithms derived for LPRE

The algorithms developed for the MicaSense sensor performed well on all three
OWTs of LPRE. The results were similar to the algorithms developed for the satellite
sensor OLCI in terms of RMSE and mean absolute error. The band ratios were Green/
Red for all the OWTs in case of both satellite and UAS sensors. Green/Red band ratio
performed best among all other band ratios in contrast to the algorithms developed for the
lakes that included three different band ratios for the three OTWs in the lakes.
Dissimilarity in water constituent such as sediments, CDOM and phytoplankton

concentration in lakes and estuary could be the possible reasons for such contrast.

3.5 Conclusion

Monitoring Chl a concentration is essential to prevent the effects of harmful algal
blooms which severely impacts human health, aquatic ecosystems, and the economy.
Given the dynamic nature of algal blooms which can be highly unpredictable, monitoring

such events can be challenging with satellite sensors since the sensors have low spatial
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resolution with respect to the size of water bodies, revisit time, and cloud coverages.
Application of remote sensing techniques using Unmanned Aerial Systems (UASs) offer
best remote sensing approaches to accurately detect and quantify phytoplankton
concentration in smaller water bodies. An assessment of suitable sensors to determine the
best algorithm for quantifying Chl a concentration can help continuous monitoring of
HABs and take preventive measures to protect human health and environment in the most
effective manner. Inland and coastal waters are highly susceptible to effects from land
such as runoff of sediments, nutrients and organic matter and re-suspension of sediments
from shallow bottoms. In addition, the concentrations of particles including
phytoplankton can be much variable in different water types. As a result, algorithms
developed for a particular water type are less effective and not applicable to optically
different water types (Melin et al. 2011; T. S. Moore, Campbell, and Dowell 2009). Our
assessment of a clustered chlorophyll-a product approach showed lower RMSE and MAE
than for either of the single algorithms over the entire range of the in situ data set. From
our analysis, each algorithm generally performed best at certain ranges of Chl a and
certain intensity of Rrs at each band centers of sensors. From our results, we found that a
single algorithm is not applicable for all water types as defined by the optical
characteristics governed by concentration of phytoplankton, suspended sediments,
CDOM etc. that was also demonstrated by previous studies(T. Moore et al. 2014; T. S.
Moore, Campbell, and Dowell 2009) Overall, the UAS sensor MicaSense developed
algorithm performed the best for all the sensors used in this study and the satellite sensor
OLCI performed better than Landsat OLI and MDIS sensors in chlorophyll-a estimation.
Hence, the algorithms developed for those sensors in this study represent the best
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algorithms at present for chlorophyll-a estimation in these water bodies. These findings
support the view that empirical algorithms tuned and developed for specific ranges of
conditions perform better than an algorithm tuned to a larger variety of conditions, and a
multiple sensor algorithm approach is superior to single sensor developed algorithms
when considering the entire dynamic range of environmental conditions.

For empirical algorithm, the seasonality of data collection does not influence in
algorithm performance greatly because the empirical algorithm does not take in account
for any other variables. In our study, the empirical algorithm provided the linear relation
between the Chl a concertation and band ratio Rrs. The data collected in lakes were
mostly in summer seasons but it could capture the variability and the range of Chl a from
low concentration to higher concentration through the sampling dates. Likewise, we
found a well distributed Chl a concertation range in LPRE sampled in four different
seasons. For instance, the average Chl a concentration for sample collected during
December 2014 was 11.3 pg/L with range of 6.5-22.1 ng/L and again when the samples
were collected in 2015 December, the average Chl a was 4.9 pg/L with range of 2.1 to
6.9 ng/L.

We are limited by data in this study. So, currently we do not know whether all
possible optical classes of estuaries and lakes are represented in three OWTs. To gain
more insight on this aspect, more data needs to be collected at throughout the year to
represent overall conditions in these water bodies. A larger dataset could also improve the

algorithm performance with improved R? and reduced errors.
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CHAPTER 1V

CONCLUSIONS

This study was carried out in multiple water bodies including lakes, estuary and
coastal regions. In this study several laboratory and in-situ techniques were used for
determining phytoplankton community structure present in each water bodies and five
sensors were used to quantify chlorophyll -a which represents total phytoplankton
biomass. While in some scenarios one technique is better than others, it was found that
use of a few techniques together can extract the crucial information in understanding the
phytoplankton community structure and occurrence of phycotoxins in water. For
instance, FlowCam could be used for separating chlorophytes and euglenophytes, or
diatoms and dinoflagellates visually which is not always possible in ChemTax pigment
analysis due to shared pigments by both phytoplankton. However, for small cell size
phytoplankton, ChemTax produces better results due to difficulties in identifying small
cell size phytoplankton using FlowCam. When phycotoxin-producing phytoplankton are
considered, if toxin is measured together with FlowCam or HPLC-ChemTax or pigment
measurements, it will provide a comprehensive information about the presence of toxins
as well as the phytoplankton species responsible for producing the toxins which will be
helpful for adopting preventive measures for water managers. Surface area of
phytoplankton can be used to obtain an accurate measure of relative abundance of genus
or species within a group of phytoplankton. The three pigment based methods, HPLC-
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ChemTax, in situ fluorescence probe, and fluorescence of extracted Chl a and PC,
provide complementary information on freshwater and estuarine phytoplankton. The
findings of this study conclude that among several techniques available for monitoring
phytoplankton structure, FlowCam is the most useful technique for species identification,
HPLC-ChemTax for taxonomic classification, in-situ probes for gathering information
rapidly for initial estimation of phytoplankton biomass, and spectrofluorometric
techniques and toxin analysis are needed for precise determination of harmful impacts.
Traditionally, phytoplankton identification and enumeration are done manually using a
microscope (Benfield et al., 2007) which is tedious, time consuming, costly and needs
highly skilled expertise. From our study, we found that several species of phytoplankton
can be identified rapidly by using FlowCam. Similarly, we attempted to determine algal
class based on area of phytoplankton and obtained comparable result with standard
pigment analysis method (HPLC). Our finding also corroborated the previous studies
(Alvarez et al. 2014; See et al. 2005). Likewise, from the comparative analysis of in-situ
verses analytical techniques to quantify Chlorophyll a, we confirmed the reliability of
in-situ probes to rapidly quantify the phytoplankton biomass in our study areas. See et al.,
2005 in their study also found out the similar results when they compared Chl a obtained
from HPLC with Chl a measured by in-situ probe. From our toxin analysis, we could
detect the algal toxins as low as 0.1 pug/L using ELISA. Our results suggested that even
though there were no significant correlation between phytoplankton pigment
concentration, toxins can be present. Hence, in water bodies where frequent human and
animal interactions occur for drinking water, recreation , fishing and swimming, ELISA

can be very useful for early detection of toxic algal outbreaks. Thus, these findings
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provide insights for future studies to make a suitable selection of techniques as per their
objectives.

Conventional analytical and in-situ techniques of phytoplankton quantification
and toxin analysis are expensive and time consuming and they do not provide the
synoptic coverage. Hence for early detection and warning the bloom conditions, remote
sensing quantification of chlorophyll-a serves as the best technique which is economic as
well as time efficient. So, use appropriate sensors in UASs can be an efficient technique
to provide valuable information to water managers and agencies to issue early warning
during the outbreak of harmful algal blooms. Among five sensors used in our study, we
found that MicaSense sensor was most efficient in quantifying Chl a with minimum
errors hence, we suggest using the algorithm developed by this sensor for future
quantification of Chl a in these and similar water bodies. We tested the applicability of
multiple sensors, three currently operational satellite sensors — MODIS, OLI, OLCI and
two popular UAS sensors CIR and MicaSense for quantifying Chl a in five major
Mississippi Lakes and an estuary LPRE for the first time. We found the best algorithms
for these water bodies using those sensors. Among three satellite sensors, OLCI and OLI
produced better performing algorithm in terms of RMSE and %MAE for quantifying Chl
a. For OLCI , the algorithm with maximum R? of 0.73 was obtained with % RMSE of
13.1% in lakes , similar results were obtained by (Watanabe et al. 2017) when using MSI
sensors which is the similar sensor in Sentinel -2 satellite platform developed band ratio
algorithm for Chl a estimation. Likewise, for OLI sensors, the algorithm with maximum

R? of 0.73 was obtained with % RMSE of 13.1% in lakes, and clustering improved the
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algorithm which was also mentioned by (Watanabe et al. 2017) since their algorithm had

lower R? value (0.02)when a single algorithm was developed for entire water body.

In summary, this study emphasized the application of in-situ, laboratory and
remote sensing techniques to access the phytoplankton community structure to determine
the overall health of aquatic ecosystem. Early detection and identification of
phytoplankton including toxin producing harmful algal blooms are critical to protect the
health of human, animals and ecosystem and prevent economic loss. Thus, this study
helped us better understand the application of various techniques and their potentials in

quantifying harmful algal blooms.

4.1 Significance of this study

This dissertation research focused on identifying and enumerating phytoplankton
species composition and relative abundance as well as quantifying pigment concentration
of phytoplankton using in-situ, precise laboratory and remote sensing techniques.
Knowledge of species composition and relative abundance of phytoplankton is necessary
to predict and prevent possible hazards caused by harmful algal blooms. Based on the
scenarios one technique serve better than another and use of appropriate technique can be
efficient and economically feasible to prevent hazards related to harmful algal blooms.
With increased nutrient run off from agricultural lands, the problem of HAB’s is
inevitable hence continuous monitoring of HAB’s is essential for health of human and
environment. Present study provided an insight on utility of techniques to quantify

harmful algal blooms in relatively smaller but ecologically important water bodies of
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Mississippi. The results from the study can be used to quantify harmful algal blooms in

these and similar water bodies for continuous monitoring.
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Table A.1

List of identified class and taxa found in the study areas

Class Taxa Class Taxa Class Taxa

Cyanobacteria Anabaena circinalis Cyanobacteria Merismopedia sp. Diatoms Stephanodiscus agassizensis

Cyanobacteria Anabaena crassa Cyanobacteria Microcystis Diatoms Symbella sp.

aeruginosa

Cyanobacteria Anabaena laxa Cyanobacteria Microcystis cf. firma Diatoms Amphipleura pellicuda

Cyanobacteria Anabaena palnctonica Cyanobacteria Microcystis flos aquae | Diatoms Aulacoseria granulata

Cyanobacteria Anabaena spiriods Cyanobacteria microcystis Diatoms Craticula ambigua

wesenbergii

Cyanobacteria Anabaenopsis circularis | Cyanobacteria Nostoc sp. Diatoms Cyclotella sp.

Cyanobacteria Anabena spherica Cyanobacteria QOocysts sp. Diatoms cylindrotheca closterium

Cyanobacteria Anabena torulosa Cyanobacteria Oscillatoria sp. Diatoms Cymatopleura solea

Cyanobacteria Aphanizomenon flos Cyanobacteria Other Anabaena Diatoms Cymbella sp.

aquae
Cyanobacteria Arthrospira Cyanobacteria Other microcystis Diatoms Diatoma vulgaris
Stizenberger ex gomont

Cyanobacteria Chrococcus sp. Cyanobacteria Phormidium sp. Diatoms Gomphonema sp.

Cyanobacteria Cocconies pediculus Cyanobacteria Plaktothrix rubescens Diatoms Navicula sp.

Cyanobacteria Coelosphaerium sp. Cyanobacteria Planktothrix agradhii Diatoms Niztchia sp.

Table A.1 (continued)

Class Taxa Class Taxa Class Taxa

Chlorophytes Staurastrum tetracerum Chlorophytes Tetrastrum staurogeniaeforme Chlorophytes | Scenedesmus
quadricauda

Chlorophytes Staurastum planctonicum | Chlorophytes Botrycoccus sp Chlorophytes | Scenesdesmus
acuminatus

Diatoms Synedra sp. Chlorophytes Cosmarium Botrys Chlorophytes | Scenesdesmus
disciformis

Diatoms Synedra ulna Chlorophytes Crucigenia lauterbornii Chlorophytes | Spirogyra

Diatoms Tabellaria flocculosa Chlorophytes Crucigenia quadracauda Chlorophytes | Staurastrum
paradoxum

Diatoms Tabellaria sp. Chlorophytes Crucigenia quadrata Chlorophytes | Staurastrum sp

Dinoflagellates | Alexandrium fundyense Chlorophytes Crucigenia tetrpedia Chlorophytes | Closterium sp

Dinoflagellates | Ceratium furca Chlorophytes Desmodesmus brasiliensis Chlorophytes | Crucigenia
fenestrata

Dinoflagellates | Ceratium hirundinella Chlorophytes Kentrosphaera gibberosa Chlorophytes | Scenesdesmus
sp

Dinoflagellates | Dinophysis acuminata Chlorophytes Monoraphidium arcuatum Chlorophytes | Volvox tertius
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Table A.1 (continued)
Class Taxa Class Taxa Class Taxa
Dinoflagellates | Gyrosigma Chlorophytes | Monoraphidium Chrysophytes | Dictyosphaerium
acuminatum species nageli
Dinoflagellates | Karenia brevis Chlorophytes | Other green algae | Chrysophytes | Synura sp.
Dinoflagellates | Noticula sp. Chlorophytes | Pandorina sp Euglena Euglena sp.
Dinoflagellates | other Dinofalgellates Chlorophytes | Pediastrum Unidentified | Detritus and
duplex Unidentified
Dinoflagellates | Prorocentrum Chlorophytes | Pediastrum
minimum simplex
Dinoflagellates | Prorocentrum micans
Dinoflagellates | Ceratium fusus
Dinoflagellates | Craticula hirudinella
Chlorophytes Chlamydomonas
Table A.2  List of identified species found in East Mississippi Sound (EMS)
Chlorophytes Diatoms Dinoflagellates Cyanobacteria Diatoms
Dictyosphaerium Cyclotella sp. Prorocentrum micans | Nostoc sp. Niztchia sp.
nageli
Scenesdesmus Tabellaria sp. Karenia brevis Microcystis Gomphonema sp.
quadricauda wesenbergii
Cosmarium botrys | Synedra sp. Prorocentrum micans | Microcystis flos Navicula sp.
aquae
Synura sp. Tabellaria Prorocentrum Microcystis Diatoma vulgaris
Sflocculosa minimum aeruginosa
Closterium sp. Synedra ulna Dinophysis Eutonia formica Cymatopleura
acuminatum solea
Tetrastrum Symbella sp. Ceratium furca Coleosphaerium sp. Cylindrotheca
staurogeniaforme closterium
Chlamydomonas Stephanodiscus Alexandrium Cocconies pediculus Cyclotella sp.
sp. agassizensis fundyense
Botrycoccus sp. Pleurosigma Chrococcus sp. Craticula ambigua
elongatum
Pleurosigma Aulacoseria
acuminatum granulata
Pinularia sp. Melosira sp.
Pennate diatoms Melorisa varians
Gyrosigma
acuminatum
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Table A.3  List of identified species found in Lower Pearl River Estuary(LPRE)
Chlorophytes Cyanobacteria Diatoms Dinoflagellates Euglenophytes
Dictyosphaerium Raphidosis curvata Amphipleura Prorocentrum Euglena sp.
nageli pellicuda micans
Ankistrodesmus sp. | Anabaena circinalis Aulacoseria Alexandrium Euglena

granulata fundyense proxima
Chlamydomonas Anabaena flos aquae Craticula ambigua Ceratium fusus
sp.
Coelastrum sp. Anabaena laxa Craticula sp. Craticula hiudinella
Cosmarium botrys | Anabaena torulosa Diatoma vulgaris Cyclotella sp.
Cosmarium botrys | Anabaenopsis Gomphonema sp. Gyrodinium sp.
circularis
Cosmarium botrys | Aphanizomenon flos Gyrosigma Karenia brevis
aquae acuminatum
Crucigenia Chrococcus sp. Melosira ap. Other dinofigellates
fenestrata
Crucigenia Coeloaphaerium sp. Melosira varians Peridinium sp.
lauterbornii
Crucigenia Coelosphaerium sp. Navicula sp. Prorocentrum
quadracaudata micans
Crucigenia Cylindrospermopsis Niztchia sp. Prorocentrum
quadrata raciborski minimum
Crucigenia Eutonia formica Othe diatoms
tetrapedia
Dictyosphaerium Johannesbaptisia Pennate diatoms
nageli primaria
Monoraphidium Merismopedia sp. Stephanodiscus
Sp. agassizensis
Other green algae | Miccrocystis Synedra sp.
wesenbergii

Table A.3 (continued)

Chlorophytes Cyanobacteria Diatoms
Pandorina sp. Microcystis aeruginosa Synedra ulna
Pediastrum simplex Microcystis cf. firma Tabellaria sp.

Scenesdesmus quadrata

Microcystis flos aquae

Scenesdesmus quadricauda

Microcystis flos aquae

Senesdesmus quadratra

Microcystis wesenbergii

Staurastrum planctonicum

Nostoc sp.

Staurastrum sp.

Oocysts sp.
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Table A.4

List of identified species found in Ross Barnett Reservoir(RB)

Chlorophytes Cyanobacteria Diatoms Dinofalgellates | Euglenophytes

Dictyosphaerium Microcystis Symbella sp. Dinophysis Euglena sp.

nageli wesenbergii acuminata

Ankistrodesmus sp. Anabaena circinalis Amphipleura pellicuda Other
dinoflagellates

Botrycoccus sp. Anabaena flos aquae Aulacoseria granulata Noticula sp.

Chlamydomonas sp. | Anabaena laxa Diatoma vulgaris Craticula
hirudinella

Closterium sp. Anabaena spherica Gomphonema sp. Ceratium fuscus

Cosmarium botrys Anabaenopsis Gyrosigma acuminatum | Alexandrium

circularis fundyense

Crucigenia Anabena spiriods Melosira varians Other

lauterbornii dinofalgellates

Crucigenia Aphanizomenon flos Melosiratoma varians Noticula sp.

quadracauda aquae

Crucigenia quadrata | Microcystis cf. firma Navicula sp. Alexandrium
fundyense

Crucigenia Microcystis Nizchia sp. Karenia brevis

tetrapedia wesenbergii

Desmodesmus Nostoc sp. Pennate diatoms Alexandrium

brasiliensis fundyense

Dictyosphaerium Oocysts sp. Stephanodiscus

nageli agassizensis

Monoraphidium Oscillatoria sp.

arcuatum

Monoraphidium sp. Other anabaena

Other green algae

Other microcystis
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Table A.5

List of identified species found in Lake Sardis (LS)

sp.

Chlorophytes Cyanobacteria Diatoms Dinoflagellates | Euglenophytes
Staurstrum Raphidosis curvata Synedra sp. Alexandrium Euglena sp.
tetracerum fundyense

Chlamydomonas | Anabaena circinalis Amphipleura Other

sp. pellicuda dinoflagellates

Cosmarium Anabaena flos aquae Aulacoseria Noticula sp.

botrys granulata

Crucigenia Anabaena laxa Diatoma vulgaris Karenia brevis

fenestrata

Crucigenia Anabaena spherica Gomphonema sp. Dinophysis

quadrata acuminata

Dictyosphaerium | Anabaenopsis Melosira sp.

nageli circularis

Monoraphidium | Anabena circinalis Niztchia sp.

Other green Aphanizomenon flos Pennate diatoms
algae aquae
Pedisastrum Arthrospira Stephanodiscus agassizensis
simplex stizenberger ex goment
Scenesdesmus Coelosphaerium sp.
acuminatus
Scenesdesmus Cylindrospermosis
quadricaudata raciborskii
Merismopedia sp.
Microcystis
aeruginosa
Microcystis cf. firma
Microcystis flos aquae
Microcystis
wesenbergii
Nostoc sp.

Oscillatoria sp.
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Table A.6

List of identified species found in Lake Enid (LE)

Chlorophytes Cyanobacteria Diatoms Dinoflagellates | Euglenophytes
Scenesdesmus Abanaena Stepanodiscus Cyclotella sp. Euglena sp.
quadricauda planctonica agassizensis
Ankistrodesmus Anabaena circinalis | Pleurosigma Ceratium
sp. acuminatum hirudinella
Botrycoccus sp. Anabaena crassa Pennate diatoms Noticula sp.
Chlamydomonas | Anabaena laxa Diatoma vulgaris
Sp.
Crucigenia Anabaena Aulacoseria
quadrata planctonica granulata
Dictyosphaerium | Anabaena spiriods Synedra sp.
nageli
Kentrosphaera Anabaena torulosa Stephanodiscus
gibberosa sgassizensis
Other green algae | Anabanea laxa Pennate diatoms
Pediastrum Anthrospira Navicula sp.
duplex Stizenberger ex
gomont
Pediastrum Aphanizomenon flos Cymbella sp.
simplex aquae
Scenesdesmus Chrococcus sp. Aulacoseria
quadricauda granulata
Scenesdesmus sp. | Cylindrospermopsis Amphipleura
raciborskii Pellicuda
Gleocapsa sp.
Johannesbaptisia
primaria
Merismopedia sp.
Microcystis
aeruginosa
Microcystis cf. firma
Nostoc sp.
Nostoc sp.

Osscillatoria sp.

Other anabaena

Other microcystis

Planktothrix
rubescens

Raphidosis curvata

Raphidosis
curvispora
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Table A.7

List of identified species found in Lake Grenada (LG)

Chlorophytes Cyanobacteria Diatoms Dinoflagellates | Euglenophytes
Other green algae Nostoc sp. Diatoma vulgaris Other Euglena sp.
dinoflagellates
Ankistrodesmus sp. Anabaena circinalis Aulacseria granulata Noticula sp.
Chlamydomonas sp. Anabaena laxa Amphopleura pellicuda
Crucigenia fenestrta Anabaena spherica Aulacoseria granulata
Dictyosphaerium nageli Anabaena torulosa Amphipleura pellicuda
Monoraphidium sp. Anabaenopsis
circularis
Other green lagae Anabena torulosa
Pediastrum duplex Aphanizomenon fos
aquae
Pediastrum simplex Cylindrospermopsis
raciborskii
Scenesdesmus acuminatus Merismopedia specis
Scenesdesmus quadricauda Microcystis
aeruginosa
Microcystis cf. firma
Microcystis
wesenbergii
Oscillatoria sp.
Other anabaena
Plaktothrix rubescens
Raphidosis curvata
Table A.8  Average Rrs of OLCI bands in lakes
Lakes OLCI Bands band center nm OWTlaverage Rrs  OWT2 Average Rrs OWTS3 Average Rrs
Band1 400 3.35E-03 5.41E-03 0.01062
Band2 412.5 3.27E-03 5.51E-03 0.01167
Band3 442.5 3.37E-03 6.46E-03 0.01413
Band 4 490 4.10E-03 8.28E-03 0.01677
Band5 510 4.74E-03 9.60E-03 0.02139
Band6 560 7.14E-03 0.01392 0.02448
Band 7 620 5.87E-03 0.01347 0.02298
Band 8 665 5.25E-03 0.01219 0.02150
Band 9 673.75 4.85E-03 0.01162 0.02112
Band 10 681.2 4.93E-03 0.01166 0.02072
Band 11 708.75 5.67E-03 0.01165 0.01511
Band 12 753.75 2.11E-03 4.98E-03 9.93E-03
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Table A.9  Average Rrs of Landsat bands in lakes

Lakes LANDSAT band center nm OWT1 Average OWT2 Average OWTS3 Average Rrs
Bands Rrs Rrs
Blue 482.04 4.05E-03 8.97E-03 0.015337
Green 561.41 6.93E-03 0.015103 0.024641
PAN 589.5 5.34E-03 0.013238 0.021957
Red 654.59 5.65E-03 0.014124 0.023288
Table A.10  Average Rrs of Micasense bands in lakes
Lakes MicaSense Band center nm OWT]1 Average Rrs OWT2 Average Rrs OWT3 Average Rrs
Bands
Blue 482 4.17E-03 9.37E-03 0.015917
Green 557 6.06E-03 0.013246 0.021718
Red 667 4.97E-03 0.012211 0.020311
Red Edge 717 4.63E-03 0.01092 0.017651
NIR 831 2.28E-03 5.87E-03 0.010458
Table A.11  Average Rrs of MicaSense bands in lakes
LPRE OLCI Bands  Band center nm Cluster 1 Average Rrs Cluster 2 Cluster 3 Average Rrs
Average Rrs
Band-1 400 5.32E-03 8.28E-03 2.65E-03
Band -2 412.5 5.56E-03 8.51E-03 2.75E-03
Band-3 442.5 6.93E-03 0.0101 3.42E-03
Band 4 490 9.31E-03 0.01287 4.74E-03
Band 5 510 0.010691 0.014453 5.54E-03
Band 6 560 0.01464 0.018861 7.84E-03
Band 7 620 0.016206 0.021076 7.82E-03
Band 8 665 0.016216 0.021467 7.08E-03
Band 9 673.75 0.016036 0.021329 6.78E-03
Band 10 681.2 0.016202 0.021538 6.91E-03
Band 11 708.75 0.015334 0.020485 6.88E-03
Band 12 753.75 7.13E-03 0.010991 2.74E-03
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Table A.12  Average Rrs of Landsat bands in LPRE

LPRE LANDSAT Band center OWT1 Average OWT2 Average Rrs OWT3
Bands nm Rrs Average Rrs
Blue 482.04 8.78E-03 0.012996 4.55E-03
Green 561.41 0.014325 0.019313 7.76E-03
PAN 589.5 0.015438 0.021275 7.04E-03
Red 654.59 0.016162 0.0221 7.55E-03
NIR 864.67 5.54E-03 0.010029 2.26E-03
Table A.13  Average Rrs of MicaSense bands in LPRE
.LPRE Band center nm OWT1 Average OWT2 OWT3
Micasense Bands Rrs Average Rrs Average Rrs
blue 482 9.58E-03 0.013241 4.75E-03
Green 557 0.013078 0.017223 6.69E-03
Red 667 0.014485 0.019354 6.46E-03
Red Edge 717 0.012782 0.017516 5.71E-03
NIR 831 7.29E-03 0.011286 3.07E-03

Table A.14  Chlorophyll a algorithm and validation results in Lakes in OWT]1 satellite

Sensors

Satellite Band ratio  Bands Conc N R? RMSE %RMSE  %MAE N P-
SEnsors range value
OLCI Green/NIR  B6/B11 10.-57. 42 0.335 5.9 23.5 17.84 12 <0.05
Landsat Pan/NIR Pan/NIR 10.-57 42 0.49 5.6 222 20.48 12 <0.05
MODIS Green/Red BI12/B13  10-57 42 0.07 Not >0.05

statistically

significant

relationship
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Table A.15 Chlorophyll a algorithm and validation results in Lakes in OWT?2 satellite

Sensors
Satellite =~ Band ratio  Bands Conc N R? RMSE %RMSE %MAE N  P-
sensors range value
OLCI Green/NIR  B5/B11 1.8-40 38 0.44 13.78 64.8 50.8 12 <0.05
Landsat ~ Pan/NIR Pan/NIR  1.8-40 38 028 9.24 45.6 38.8 12 <0.05
MODIS  Green/Red B12/B14 1.8-40 38 0.106 14.25 70.4 579 12 <0.05

Table A.16  Chlorophyll a algorithm and validation results in Lakes in OWT3 satellite

Satellite  Bandratio  Bands Conc N R? RMSE %RMSE %MAE N  P-

sensors range value
OLCI Green/NIR  Band6/Bandl1 2.9-15 26 073 1.659 13.1 10.09 7 <0.05
Landsat  Green/pan  Green/pan 2.9-15 26 0.76  3.24 25.8 19.03 7 <0.05
Landsat Green/Red  Green/Red 2.9-15 26 0.68 3225 256 20.67 7 <0.05
MODIS  Green/Red  Bandl2/Band14  2.9-15 26 077 3.188 324 21.44 7 <0.05

Table A.17 Chlorophyll a algorithm and validation results in LPRE in OWTT1 satellite

SEensors
Satellite Band ratio  Band ratio Chla N R? RMS %RMSE  %MAE N P-
Sensors E value
OLCI Green/Red  Band6/Band9 1.7- 37 049 4.09 74.47 57.83 13 <0.0
21. 5

MODIS Green/Red  Bandl1/Bandl 1.7- 37 048 3.96 72.02 55.31 13 <0.0

4 21. 5
LANDSA Green/PA Green/PAN 1.7- 37 0.5 4.15 75.63 59.17 13 <0.0
T N 21. 5
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Table A.18 Chlorophyll a algorithm and validation results in LPRE in OWT2 satellite

SEeNsors
Satellite Band ratio  Band ratio Chl a N R? RMS %RMS %MA N P-
sensors E E E value
OLCI Green/Red Band6/Band10  1.3- 19 025 1.396  56.699 45.99 1 <0.0
10.3 1 5

MODIS Green/Red Bandl2/Bandl 1.3- 19 0.16 1.481 60.181 49.06 1 <0.0

4 10.3 1 5
LANDSA  Green/PA  Green/PAN 1.3- 19 0.15 2272  64.29 42.66 1 <0.0
T N 10.3 1 5

Table A.19  Chlorophyll a algorithm and validation results in LPRE in OWT3 satellite

SEensors

Satellite Band ratio Band ratio Chla N R2 RMS %RMS %MAE N P-

Sensors E E value

OLCI Green/Red  Band6/Band10 1.6- 42 032 2.098 33.207 26.23 19  <0.0
8.76 5

MODIS Green/Red  Bandl1/Bandl4  1.6- 42 032 2127  33.662 27.67 19  <0.0
8.76 5 5

LANDSA Green/PA Green/PAN 1.6- 42 031 2.178  34.479 29.85 19  <0.0

T N 8.76 5

Table A.20  Chlorophyll-a algorithm and validation in lakes in OWT1 UAS sensors

UAS Band ratio Band ratio Chla N R? RMSE %RMSE %MAE N P-
Sensors value
MicaSense  Blue/NIR Blue/NIR 10.02- 42 0.42 5.08 19.9 12.85 12 <0.05
57.10
CIR Blue/Green Blue/Green  10.02- 42 0.34 6.89 27.05 23.45 12 <0.05
57.10
Table A.21  Chlorophyll a algorithm and validation results in Lakes in OWT2 UAS
SEensors
UAS Band ratio Band ratio Chla N R2 RMS %RMS %MA N  P-
Sensors E E E value
MicaSens  Green/Rededg  Green/Rededg  1.8- 38 0.2498 11.06 54.70 46.59 12 <0.0
e e e 40 5
CIR Blue/Green Blue/Green 1.8- 38 0.12 9.36 46.32 42.09 12 <0.0
40 5
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Table A.22  Chlorophyll a algorithm and validation results in lakes in OWT3 UAS

SEensors
UAS Band ratio Band ratio Chl a N R? RMS %RMS %MA N P-
Sensors E E E value
MicaSense  Green/Red Green/Red 2.9- 26 0.7 3.549  28.222 21.42 7 <0.05
15.7 5
MicaSense  Blue/Rededg  Blue/Rededg  2.9- 26 0.7 3.016 23987 20 7  <0.05
e e 15.7 3
CIR Green/Red Green/Red 2.9- 26 0.7 3.162 25.15 19.73 7 <0.05
15.7 1

Table A.23  Chlorophyll a algorithm and validation results in LPE in OWT1 UAS

SEensors
UAS Band ratio Bandratio Chla N R? RMSE %RMSE  %MAE N  P-value
Sensors
MicaSense  Green/Red Green/Red 1.77-21.3 37 0.43 4.08 74.35 57.18 13 <0.05
CIR Green/Red Green/Red 1.77-21.3 37 0.12 4.22 76.80 42.61 13 <0.05

Table A.24  Chlorophyll a algorithm and validation results in LPRE in OWT2 UAS

SEensors
UAS Band ratio  Band ratio Chl a N R2 RMSE %RMSE %MAE N P-value
Sensors
MicaSense Green/Red Green/Red  1.3-10.3 19 021 2.141 60.587 39.96 11 <0.05
ng/L
CIR Relationship not significant statistically >0.05

Table A.25 Chloropyll a algorithm and validation results in LPRE in OWT3 UAS

SEensors
UAS Band ratio Bandratio Chla N R? RMSE %RMSE %MAE N P-
Sensors value
MicaSense Green/Red Green/Red 1.6-8.76 42 03325 2.038 34.615 25.64 19 <0.05
CIR Green/Red Green/Red 1.6-8.76 42 0.3 2.167 34.306 28.59 19 <0.05

101


https://1.6-8.76
https://1.6-8.76

	Quantification of Harmful Algal Blooms in Multiple Water Bodies of Mississippi Using In-Situ, Analytical and Remote Sensing Techniques
	Recommended Citation

	tmp.1631307727.pdf.zAu4s

