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Globally, water bodies are increasingly affected by undesirable harmful algal 

blooms. This dissertation contributes to research methodology pertaining to 

quantification of the algal blooms in multiple water bodies of Mississippi using in situ, 

analytical, and remote sensing techniques. The main objectives of this study were to 

evaluate the potential of several techniques for phytoplankton enumeration and to 

develop remote sensing algorithms for several sensors and evaluate the performance of 

the sensors for quantifying phytoplankton in several water bodies. Analytical techniques 

such as “FlowCam”, an imaging flow cytometer; “HPLC”, high performance liquid 

chromatography with the chemical taxonomy program “ChemTax”; spectrofluorometric 

analyses; and “ELISA” assay were used to quantify a suite of parameters on algal 

blooms. Additionally, in-situ algal pigment biomass was measured using fluorescence 

probes. It was found that that each technique has unique potential. While some of the 

rapid and simpler techniques can be used instead of more involved techniques, sometimes 

use of several techniques together is beneficial for managing aquatic ecosystems and 

protecting human health. 



 

 

     

 

 

  

 

  

      

   

    

  

     

   

     

    

 

 

Algorithms were developed to quantify chlorophyll a using five remote sensing 

sensors including three currently operational satellite sensors and two popular sensors 

onboard the Unmanned Aerial Systems (UASs). Empirical band ratio algorithms were 

developed for each sensor and the best algorithms were chosen. Cluster analysis helped in 

differentiating the water types and linear regression was used to develop algorithms for 

each of the water types. The UAS sensor- Micasense was found to be most useful among 

the UAS sensors and the best overall with highest R2 value 0.75 with p<0.05 and 

minimum %RMSE of 28.22% and satellite sensor OLCI was found to be most efficient 

among the three satellite sensors used in the study for chlorophyll a estimation with R2 of 

0.75 with p<0.05 and %RMSE 13.19%. The algorithms developed for these sensors in 

this study represent the best algorithms for chlorophyll a estimation in these water bodies 

based on R2 and %RMSE. The applicability of the algorithms can be extended to other 

water bodies directly or the approach developed in this study can be adopted for 

estimating Chl a in other water bodies. 
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CHAPTER I 

INTRODUCTION 

Globally, water bodies are increasingly affected by undesirable harmful algal 

blooms (HABs) due to increase in nutrient inputs from the natural and anthropogenic 

discharges, thus creating more amenable environments for algal blooms (Anderson, 

2009). HABs are caused by rapid growth of photosynthetic microorganisms in water 

bodies, which are commonly known as “algae” or phytoplankton. HABSs are detrimental 

to the aquatic environment for several reasons. Firstly, they can block the sunlight, 

resulting in shading and affecting the visibility of the aquatic organisms living below the 

water surface. Secondly, the dissolved oxygen (DO) concentration of the water column 

depletes because of increased microbial activity as the algae die and sink to the bottom, 

thus affecting the viability of aquatic life. Third and the most threatening effect of HABs 

is the capability of certain species to produce toxins which has significant consequences 

including impacts on public health, commercial fisheries, and recreation, and an 

increased cost for monitoring and management (D. Anderson, Glibert, and Burkholder 

2002). Cyanobacteria, which is commonly known as blue-green algae, is the dominant 

harmful algal group present in freshwaters and their blooms are aesthetically undesirable. 

During the bloom state they discolor the water, increase turbidity, form surface scums, 

and synthesize a large number of low molecular weight compounds, causing taste and 

odor problems (Paerl et al. 2001). Moreover, cyanobacterial blooms are of concern due to 
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the ability of cyanobacterial species to produce at least 60 types of toxins (cyanotoxins) 

which are categorized as, hepatotoxins (causes liver damage), neurotoxins (causes 

damage to nervous system), cytotoxins (damages cells), dermatotoxins (damages skin) 

and irritant toxin (Blaha, Babica, and Marsalek 2009). Thus toxic cyanobacteria can 

cause human and animal health hazards, by introducing risks of illness and mortality 

(Falconer 1989). 

Routine monitoring of algal blooms is important to issue warnings during the 

outbreak of toxic HABs, which is critical for protecting public health, wild and farmed 

fish, and aquatic life (Izydorczyk et al. 2005). The conventional monitoring is done by 

enumerating the number of toxic cells present in water bodies (Alvarez et al. 2014). Such 

techniques are logistically cumbersome and labor-intensive. Hence, development of 

alternative methods is essential. There are a few in situ and laboratory techniques, which 

provide rapid detection of harmful algal blooms. Additionally, the optically active nature 

of pigments in phytoplankton cells make the detection and quantification of algal blooms 

possible using Remote sensing technology (Jensen 2000). Among the several optically 

active pigments present in phytoplankton, chlorophyll a is the photosynthetic pigment 

that is present in all phytoplankton and phycocyanin is the pigment that is present only in 

cyanobacterial species (Sarada, Pillai, and Ravishankar 1999; Wintermans and De Mots 

1965). Chlorophyll a has absorption maxima at 665 and 465 nm in the electromagnetic 

spectrum and phycocyanin has an absorption maximum at 620 nm (Siegelman and Kycia 

1978; Wintermans and De Mots 1965). The total biomass of algal bloom can be 

estimated in terms of chlorophyll a concentrations and total cyanobacteria can be 
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estimated in terms of phycocyanin concentrations (Dekker 1993; Schalles and Yacobi 

2000; Simis, Peters, and Gons 2005). 

Traditionally, phytoplankton communities are monitored by visual inspection 

using standard microscopy of plankton cell counts (Benfield et al. 2007). This method is 

tedious and time-consuming, resulting in a long time-lag between sample collection, data 

analysis, and interpretation. Moreover, a well-trained expert capable of distinguishing 

subtle morphological features of a wide variety of phytoplankton communities is required 

to process and handle the samples (Culverhouse et al. 2003). ChemTax, a factor analysis 

program, offers an alternative to the traditional microscopic technique by providing the 

relative and absolute abundances of algal groups using concentrations of diagnostic 

photopigments quantified by high performance liquid chromatography (HPLC)(J. L. 

Pinckney, Harrington, and Howe 1998). In recent years, FlowCam, which consists of an 

automated microscope with the ability to compute the community structure by rapidly 

acquiring large sets of particle image data has been used for visual identification and 

classification of phytoplankton (Álvarez, López-Urrutia, and Nogueira 2012; Buskey and 

Hyatt 2006; Garcia et al. 2010; See et al. 2005). FlowCam has the combined capabilities 

of both flow cytometry and microscopy, and produces the images of all the particles in a 

water sample along with several statistical parameters by counting, imaging, and 

analyzing cells rapidly (J.Nicole and Martin L.Jennifer 2010). Meanwhile, 

spectrofluorometric techniques are used for total phytoplankton biomass estimation by 

quantifying Chl a which is used as a proxy for all the phytoplankton present in the water 

(Holmes et al. 1965) and phycocyanin (PC) is used as the pigment representing the 

biomass of cyanobacteria (Dash et al. 2011). Similarly, in situ devices also provide 
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phytoplankton and cyanobacterial biomass by measuring Chl a and PC 

fluorescence(Gregor and Maršálek 2004; See et al. 2005; Zamyadi et al. 2012). 

Since conventional HABs monitoring strategies based on sampling at fixed 

stations cannot provide the information needed for combating the water quality issues, 

alternative methods (Dash et al. 2015), such as Satellite remote sensing and Unmanned 

Aerial Systems(UAS), are preferred as they are economical and provide synoptic regional 

information that is unmatched to the information provided through fixed station sampling 

(Dash et al. 2011; Watts, Ambrosia, and Hinkley 2012). Although in situ sampling is the 

most accurate way of determining chlorophyll-a concentration, yet the use of remote 

sensing technology has been increasing recently for routine and synoptic chlorophyll-a 

monitoring due to the synoptic coverage (T. Moore et al. 2014). 

Many of the satellite sensors are not useful in studying the water quality 

properties due to the smaller sizes of these water bodies.  Low spatial resolution of 

satellite sensors limits the ability to accurately detect and quantify phytoplankton in water 

bodies. Unmanned aerial System (UAS) could be the best remote sensing approach in 

such cases when the UAS is combined with sensors with suitable spectral bands and  

spatial resolution (Flynn and Chapra 2014). The utility of satellite sensors and UAS 

sensors in small but ecologically important water bodies are yet not assessed. The 

overarching goal of this dissertation is to determine the best technique to monitor harmful 

algal blooms in small but ecologically important water bodies by using an array of 

available techniques including in-situ, analytical, and remote sensing techniques. 

The present study is divided into two main chapters, each dealing with specific 

objectives as documented in these chapters. Briefly, chapter two focuses on 
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determination of phytoplankton community structure in multiple water bodies (e.g., lakes, 

estuaries, coastal waters) and comparison of the potential of several in situ and laboratory 

techniques. Chapter three focuses on measurement of phytoplankton abundance using 

remote sensing technology and comparative analysis of the estimations by three satellite 

sensors and two popular sensors onboard Unmanned Aerial Systems. 

. 
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CHAPTER II 

DETERMINATION OF PHYTOPLANKTON COMMUNITY STRUCTURE IN 

MULTIPLE WATER BODIES AND COMPARISON OF THE POTENTIAL OF 

SEVERAL IN SITU AND LABORATORY TECHNIQUES 

2.1 Introduction 

Globally, water bodies are increasingly affected by undesirable harmful algal 

blooms (HABs). Algae or phytoplankton are present in water bodies naturally but 

excessive use of fertilizers in agricultural fields leads to an  increase in nutrients through 

discharge during rainfall and surface runoff, thus causing algal blooms in receiving water 

bodies (D. M. Anderson 2009). An adverse effect of HABs is that certain species produce 

phycotoxins. Three types of phycotoxins are widely found in water bodies, including 

microcystins, brevetoxin, and domoic acid. Microcystins are produced by certain species 

of cyanobacteria, brevetoxin is produced by the dinoflagellate Karenia brevis, and 

domoic acid is produced by the diatom Pseudo-nitzia spp. (Dash et al. 2015; Garcia et al. 

2010; Rinta-Kanto et al. 2005). These toxins negatively impact public health, fisheries 

and recreation, and increase the need and costs of monitoring and management (D. M. 

Anderson 2009).  Thus, routine monitoring of phytoplankton community structure and 

species composition is critical for protecting animal and human health, and preventing 

economic losses by issuing timely advisory of developing bloom conditions or an 

outbreak of toxic species (See et al. 2005). 
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To enumerate phytoplankton community structure and species composition 

rapidly, there are many efficient techniques. However, there is no consensus on the best 

technique or a specific combination of techniques to determine phytoplankton community 

structure and species composition operationally. Traditionally, phytoplankton 

communities are monitored by visual inspection using standard microscopy of plankton 

cell counts (Benfield et al. 2007). This method is tedious and time-consuming, resulting 

in a long time-lag between sample collection, data analysis, and interpretation. Moreover, 

a well-trained expert capable of distinguishing subtle morphological features of a wide 

variety of phytoplankton communities is required to process and handle the samples 

(Culverhouse et al. 2003). ChemTax, a factor analysis program, offers an alternative to 

the traditional microscopic technique by providing the relative and absolute abundances 

of algal groups using concentrations of diagnostic photopigments quantified by high 

performance liquid chromatography (HPLC) (J. L. Pinckney, Harrington, and Howe 

1998). This program uses steepest descent algorithms to find the best fit for the data 

based on initial estimates of pigment ratios for the classes to be determined (Mackey et 

al. 1996). Although ChemTax is a powerful tool for phytoplankton classification, its 

ability is limited to taxonomical classes, thus genus and species level of identification 

cannot be achieved by this method. 

In recent years, FlowCam, which consists of an automated microscope with the 

ability to compute the community structure by rapidly acquiring large sets of particle 

image data has been used for visual identification and classification of phytoplankton 

(Álvarez, López-Urrutia, and Nogueira 2012; Buskey and Hyatt 2006; Garcia et al. 2010; 

See et al. 2005). FlowCam has the combined capabilities of both flow cytometry and 
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microscopy, and produces the images of all the particles in a water sample along with 

several statistical parameters by counting, imaging, and analyzing cells rapidly (J.Nicole 

and Martin L.Jennifer 2010). Additionally, previous studies have shown that results 

obtained from FlowCam showed minimal differences compared to traditional 

microscopic estimates for a synoptic understanding of phytoplankton species abundance, 

biomass, and diversity (Alvarez et al. 2014). Meanwhile, spectrofluorometric techniques 

are used for total phytoplankton biomass estimation by quantifying Chl a which is used 

as a proxy for all the phytoplankton present in the water (Holmes et al. 1965) and 

phycocyanin (PC) is used as the pigment representing the biomass of cyanobacteria(Dash 

et al. 2011). Similarly, in situ devices also provide phytoplankton and cyanobacterial 

biomass by measuring Chl a and PC fluorescence (Gregor and Maršálek 2004; See et al. 

2005; Zamyadi et al. 2012). Previous studies using these in-situ devices for 

phytoplankton concentration measurements produced comparable results as laboratory 

approaches such as spectrophoto- and fluorometric techniques, HPLC & ChemTax, and 

microscopic analyses such as FlowCam (Buchaca, Felip, and Catalan 2005; See et al. 

2005). Enzyme Linked Immunosorbent Assay (ELISA), a technique used for rapid and 

reliable determination of algal toxins (Dash et al. 2015; Pierce and Kirkpatrick 2001; 

Ueno et al. 1996) can provide the toxin concentrations but it cannot differentiate between 

species because sometimes the same toxin is produced by several species of 

phytoplankton (e.g. microcystins). Additionally, toxin producing species of 

phytoplankton produce toxins only at certain stages of their life cycle in response to 

environmental conditions (Marshall et al. 2000). Hence, it is difficult to discern the 

ability to produce toxins among algal strains solely based on cellular morphology (Baker 
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et al. 2002). Furthermore, molecular techniques such as Quantitative Polymerase Chain 

Reaction (QPCR) can provide rapid quantification of total cells of a specific algal group, 

genus or species, or the total number of cells producing a specific type of toxin (Galluzzi 

et al. 2004) but this technique is expensive and time consuming compared to other 

available techniques when the sample size is large. 

For making time sensitive decisions related to harmful algal blooms, there is a 

need for determining suitable techniques and their potential to acquire accurate results 

rapidly using economically feasible and technically sound methods. Thus, selection of 

optimal techniques depending on the purpose can prove most useful and can help save a 

tremendous amount of time and resources. Hence, the main objective of this study was to 

determine phytoplankton community structure in multiple water bodies including an 

estuary, several lakes, and a coastal waterbody by employing a multitude of techniques, 

and evaluating and comparing the potential of these techniques in Mississippi/Louisiana 

water bodies. 

In this study, we investigated whether some techniques can be used as an 

alternative to another to obtain critical information on harmful algal bloom. This study 

highlights the strengths and weaknesses of each of the available techniques and provides 

recommendations on the preferred techniques in various scenarios in water bodies of 

Mississippi/Louisiana. 

2.2 Materials and Methods 

2.2.1 Site description 

Surface water samples were collected from four major lakes in Mississippi 

including Ross Barnett Reservoir (RB), Lake Sardis (LS), Lake Enid (LE), and Lake 
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Grenada (LG), the Lower Pearl River Estuary (LPRE) and the Eastern Mississippi Sound 

(EMS) (Fig.2.1). Ross Barnett Reservoir is located adjacent to the City of Jackson, the 

capital city of Mississippi, and Lakes Sardis, Enid, and Grenada are located in northern 

Mississippi. The Ross Barnett Reservoir is used as a source of drinking water for the City 

of Jackson and all four lakes have traditionally been used for recreational activities such 

as swimming, boating, and sports fishing. These lakes produce large quantities of 

commercial and recreational fish (Dash et al. 2015). The Pearl River originates 

in Neshoba County, Mississippi and has a meander length of 714 km before emptying 

into the Gulf of Mexico. The lower185 km of the river forms the part of the boundary 

between Mississippi and Louisiana, and is termed the Lower Pearl River. The estuary at 

the lower most portion of the river, the Lower Pearl River Estuary (LPRE) is considered 

one of the most critical areas of remaining natural habitat in Louisiana (The Nature 

Conservancy 2017). The Eastern Mississippi Sound (EMS) is the eastern portion of 

Mississippi Sound along the coasts of Mississippi and Alabama. The Mississippi Sound 

is rich in marine biodiversity and widely utilized for commercial fishing, shell-fishing, 

crabbing, and recreation. Seafood harvests in the Mississippi Sound, particularly shellfish 

and crabs, have been declining because of pollution, and frequent hurricanes, flooding, 

and droughts. Since all these water bodies are used either as drinking water sources or for 

fishing and recreational purposes, the algal blooms in these water bodies pose a serious 

threat to the human and aquatic ecosystem health. Thus, these water bodies were chosen 

for this study. Also, the outcome from this study can be applicable to other water bodies 

in United States and globally. 
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Field data and water samples were collected from twelve sites in each of the lakes 

on twelve sampling trips during the summer of 2012 and 2013 (Table 2.1). Each 

sampling points were approximately 1 km apart from each other and 12 sampling 

locations per lake made an ideal sample numbers to sample per day that could represent 

the ecosystem health of the lakes. The sampling was carried out during the summer in the 

lakes because the motive of our study was to capture high concentration of phytoplankton 

and algal blooms occur mostly during the summers. 

The EMS was sampled once in October 2012 and five times during the summer of 

2013, and LPRE was sampled five times, once each in December 2014, March 2015, 

May 2015, August 2015, and December 2015 (Table 1). EMS was sampled mostly during 

the summer but one sampling event was carried out during the fall to observe any 

variability in algal concentration in EMS. The sampling in the Lower Pearl River Estuary 

was carried out in each season to capture the seasonal variation in algal blooms. In the 

field, water samples were collected in clean Nalgene bottles. In situ remote sensing 

reflectance measurements were made using a GER 1500 spectro-radiometer (Spectravista 

Inc., Poughkeepsie, NY, USA), and backscattering and fluorescence measurements made 

using two Eco-Triplets (Wetlabs Inc., Philomath, OR, USA).  Measurements of physical 

parameters (temperature, pH, salinity, and conductivity) were made using a calibrated 

multiparameter probe (Hanna Instruments, Woonsocket, RI, USA). 
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Figure 2.1 Study area map 
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 LPRE  EMS  RB LS  LE   LG 

  2014 December16-18   2012 October 18   2012 June 13     2012 June 26    2012 June 20    2012 June 20 

  2015 March16-19    2013 June 18   2012 June 29     2013 June 18    2013 June 11    2013 June 18 

   2015 May 18-22    2013 June 23   2013 May 22     

  2015 August 10-13    2013 June 30   2013 July 10     

  2015 December 14-16   2015 July 10    2014 July 25     

   2015 August 31     

   2015 October 8     

Table 2.1 Dates of field data and water sample collection in Lower Pearl River 

Estuary (LPRE), Eastern Mississippi Sound (EMS), Ross Barnett Reservoir 

(RB), Lake Sardis (LS), Lake Enid (LE), and Lake Grenada (LG) 

2.2.2 Water sample processing and preservation 

Water samples were collected for FlowCam, HPLC, Chl a, PC, and phycotoxin 

analyses. Surface water samples were collected in four clean one liter Nalgene bottles, 

placed in a cooler with ice, and processed within 5-6 hours of collection. Subsamples 

were preserved in 4% glutaraldehyde and stored at 4° C until analysis using FlowCam. 

For HPLC analysis of photopigments including Chl a, 100 mL aliquots of surface water 

were filtered onto 4.7 cm diameter glass fiber filters (Whatman GF/F), immediately 

frozen, and stored at −80 °C. 50 mL aliquots of surface water were filtered (<50 kPa) for 

PC and 100 mL aliquots of surface water were filtered (<50 kPa) for Chl a and kept 

frozen (-80°C) until analysis using a Horiba Jovin Yvon FluoroMax-4 

Spectrofluorometer (Horiba Scientific, Edision, NJ, USA).  For phycotoxins, 20 mL of 

aliquots of surface samples were stored in 20 ml glass vials and kept frozen at -80 °C 

until analysis 
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2.2.3 Semi-automated processing of FlowCam samples for enumeration of 

phytoplankton and species composition 

2.2.3.1 FlowCam imaging 

One mL aliquots of glutaraldehyde-fixed subsample were run for analysis with 

20X magnification to digitize particles between 5 µm and 100 µm in size. The lower limit 

for magnification corresponds to particles that could not be resolved by the FlowCam 

procedure we used, and thus they were not considered. In FlowCam, photographs can be 

captured in either auto-image mode or fluorescence-triggered mode. In auto-image mode, 

photographs are taken at a constant rate capturing images of each particle passing through 

the flow cell in front of the camera, while in fluorescence-triggered mode, photographs 

are taken of particles that emit fluorescent light, such as that emitted by excited 

phytoplankton photopigments. In this study, the samples were analyzed in fluorescence-

triggered mode as we were interested in capturing images of phytoplankton only. Thirty 

minutes were considered the maximum running time for each subsample with a flow rate 

of 0.025mL min-1 at a capture rate of 20 frames per second. The Visual Spreadsheet 

software of FlowCam extracts each particle present in the photograph using an image 

segmentation algorithm, and stores the photographs on the computer. The result is a 

plankton sample converted into a collection of images, each containing an individual 

particle. These images are combined in collages that constitute the raw output of the 

Visual Spreadsheet. In addition to the collage of images, the Visual Spreadsheet also 

stores ancillary information of each particle that includes over 40 different measurements 

including area, volume, perimeter, shape, size, and aspect ratio. 
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2.2.3.2 Classification of images 

To classify images captured by FlowCam, the semi -automated process of image 

classification was followed in the Visual Spreadsheet software, where we created a 

library of each identified species in the sample. Then a training set for each species was 

generated from visually identified species from the collage of images and were matched 

with the species stored in library. Once the images of species were sorted based on the 

training sets, they were manually corrected for any artifacts present in the selected images 

through visual recognition (Zarauz et al. 2007) 

2.2.3.3 Estimation of Area 

Area Based Diameter (ABD) of each species and taxa, as recorded and calculated 

by FlowCam. was used to estimate the relative abundance following (Garcia et al. 2010). 

The reason for using the ABD instead of particle counts was that the area would give 

more accurate estimates of phytoplankton biomass and would be comparable to the 

estimates provided by HPLC-ChemTax and in situ probes due to the size variation of 

phytoplankton cells between taxa and species (J.Nicole and Martin L.Jennifer 2010). 

To calculate the relative abundance of the phytoplankton groups identified by 

FlowCam, the species information presented above were further grouped into six 

taxonomical classes including cyanobacteria, diatoms, dinoflagellates, chlorophytes, 

chrysophytes, and euglenophytes for comparison with the relative abundance obtained 

using HPLC and ChemTax. Unresolved particles were grouped as unidentified cells or 

detritus. Relative abundance was calculated by adjusting cell counts for the surface area 

for all the species of all taxonomic groups. Area of chlorophytes and euglenophytes were 

combined for LPRE samples to generate a comparable result of relative abundance as 
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determined by HPLC-ChemTax because the HPLC-ChemTax estimated the pigment 

concentration of chlorophytes and euglenophytes combined. 

2.2.4 Determination of phytoplankton class abundances using HPLC and 

ChemTax 

For HPLC pigment analysis, the filter papers were shipped overnight on dry ice 

to the University of South Carolina, Columbia, SC. High performance liquid 

chromatography (HPLC) was used to separate, identify, and quantify phytoplankton 

photosynthetic pigments. First, filters were lyophilized (-50˚C, vacuum of 0.50 atm) for 

20-24 h, followed by extraction in 90% aqueous acetone (600-750 µl at -20°C for 18-22 

h). The internal standard was the synthetic carotenoid pigment β-apo-8'-carotenal 

(Sigma).  Filtered extracts (250 µl) were injected into a Shimadzu HPLC (LC-10AT) 

equipped with reverse- phase C18 columns (Rainin Microsorb, 0.46 × 1.5 cm, 3 µm 

packing, Vydac 201TP54, 0.46 × 25 cm, 5 µm packing) in series as the solid phase.  

Gradients and flow conditions are described in Pinckney et al. (2001).  A Shimadzu SPD-

M10av photodiode array detector was used to obtain absorption spectra and 

chromatograms (440 ± 4 nm). Pure standards (DHI, Denmark) were used to confirm peak 

identities and retention times. 

ChemTax (v. 1.95) was used to determine the relative abundances of major 

phytoplankton groups based on photopigment (Higgins HW, Wright SW 2011; J. 

Pinckney et al. 2001). The major phytoplankton groups used for ChemTax categories 

were based on qualitative microscopic examinations of water samples. The initial 

pigment ratio matrix was derived from (Higgins HW, Wright SW 2011; Schlüter, 
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Møhlenberg F., Havskum. H 2000) and the convergence procedure outlined by (Latasa 

Mikel 2007) was used iteratively to correct for inaccuracies in pigment ratio seed values 

2.2.5 In situ phytoplankton quantification based on Chl a, PC, and 

phycoerythrin. 

Ecotriplet FL3B (Wetlabs inc., Philomath, OR), an in-situ submersible 

fluorescence probe with three sensors specific to Chl a (ex/em 470/695 nm), PC (ex/em: 

630/680 nm) and phycoerythrin (PE) (ex/em: 518/595 nm) was used to measure the 

pigment concentration of Chl a, PC, and PE by lowering the probe into the water so that 

the sensors are a few centimeters below the water surface. 

2.2.6 Spectrofluorometric quantification of PC. 

Fifty mL subsamples of surface water were filtered (<50 kPa) onto polycarbonate 

filters with 4.7 cm diameter and 0.2 μm pore size, and kept frozen at -80 °C freezer until 

analysis for determination of PC concentrations. PC was extracted in 50 mM phosphate 

buffer by cell disruption using a probe sonicator (Fisher Scientific™ Model 50 Sonic 

Dismembrator) and fluorescence intensity was measured using a Horiba Jovin Yvon 

FluoroMax-4 Spectrofluorometer (Horiba Scientific, Edision, NJ, USA) at 615 nm 

excitation and 647 nm emission using the standard protocol (Horvátha et al. 2013) 

2.2.7 Spectrofluorometric quantification of Chl a 

To quantify Chl a concentration, 100 mL aliquots of surface water were filtered 

(<50 kPa) onto GF/F filters with 4.7 cm diameter and 0.7 μm pore size, and kept frozen at 

-80°C until analysis. Chl a was extracted using 90% acetone and determined 

spectrofluorometrically using a Horiba Jovin Yvon FluoroMax-4 Spectrofluorometer 
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(Horiba Scientific, Edision, NJ, USA)  following standard laboratory protocol (Joint 

global Ocean Flux Study, 1998). 

2.2.8 Toxin analysis 

The three phycotoxins, microcystins, brevetoxin by dinoflagellates, and domoic 

acid were analyzed by Enzyme Linked Immunosorbent Assay (ELISA) technique 

following manufacturer’s protocol (Abraxis LLC, PA, USA). Toxins were analyzed 

manually for samples from lakes and Eastern Mississippi Sound using the toxin analysis 

kits, but samples from LPRE were analyzed using a Cyanotoxin Automated Assay 

System (CAAS) (Abraxis LLC, PA, USA). Twenty mL of water sample were collected 

and frozen at -4˚C until analysis for all three types of toxins in the CAAS.  For manual 

determination of microcystins, 50 ml of subsamples were filtered onto 2.5 cm diameter 

glass fiber filters (Whatman GF/F), and kept frozen at −80 °C. On the day of the analysis, 

5 mL of extraction solvent (methanol: water: acetic acid: 50:49:1) was added to the filter 

papers, vortexed for 1 minute, sonicated for 2 minutes at 30–40 watts output on ice and 

centrifuged for 10 minutes at 3000 rpm, and the supernatant was collected for the 

determination of cellular microcystin concentrations using an ELISA kit (Abraxis LLC, 

Warminster, PA, USA). Brevetoxin and domoic acid were extracted using deionized 

water and analyzed using the same protocol as for microcystin. 

2.3 Results 

2.3.1 Species composition and relative abundance determined by FlowCam 

We found 108 different species of phytoplankton in all the study areas combined 

(Table A1& A2), in which 52 species of phytoplankton were found in EMS (Table A3), 
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86 species in LPRE (Table A4), 79 species in RB (Table A4), 54 species in LS (Table 

A5), 58 species in LE (Table A6), and 41 species were found in LG (Table A7). 

FlowCAM derived species composition revealed that cyanobacteria were the most 

diverse class in LPRE, RB, LS, LE, and LG whereas diatoms were the most diverse class 

in EMS with at least 19 species identified. Among all the study areas, cyanobacteria were 

found to be most diverse in LPRE (Fig. 2.2 & Fig 2.3). In the lakes (RB, LS, LE, LG), 

chlorophytes were the second most diverse class after cyanobacteria, except in RB where 

on two occasions, chlorophytes were the most diverse (Fig.2.4-Fig2.7). Meanwhile, 

diatoms were the most diverse species in EMS with at least 19 species identified (Fig.2.8 

& Fig2.9). Using FlowCam, the toxin-producing diatom genus Pseudo-nitzschia, could 

not be distinguished from cryptic forms of other diatom species. Similarly, 

dinoflagellates of genus Prorocentrum were not further identified into species level, and 

chlorophytes of genus Chlamydomonas could not be further identified to species level. 

Due to their small cell size, these genera could not be identified to the species level 

because morphological differences were not distinguishable. 

By measurements of relative abundance using FlowCam, cyanobacteria were 

found to be the most abundant group based on their total surface area at all the study sites 

in LPRE (Fig.2.10). Similarly, in RB cyanobacteria were dominant on three sampling 
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2.3.2 Relative abundance determined by pigment analysis 

Relative abundance of phytoplankton determined by HPLC-ChemTax in LPRE 

revealed that diatoms were the most abundant group with concentrations ranging from 2 

to 7.1 µg Chl a/L in December 2014, chlorophytes were found to be most abundant in 

March, 2015, and chlorophytes and haptophytes were most abundant in May 2015 (Fig. 

2.14). The relative abundance of phytoplankton in four Mississippi lakes determined by 

HPLC-ChemTax have previously been described in Dash et al. 2015(Dash et al. 2015). 

RB was dominated by euglenophytes on June 13, 2012, May 22, 2013, and July 10, 2013, 

whereas cyanobacteria was dominant on June 29, 2012. LE was consistently found to be 

dominated by cyanobacteria whereas LS was dominated by euglenophytes and 

cyanobacteria, and LG was dominated by chrysophytes and euglenophytes. In all the 

lakes, cyanobacteria were found to be present in all the sampling sites. The relative 

abundance of phytoplankton in EMS shows that diatoms were dominant in October 2012 

(Fig. 2.15a) but cyanobacteria was dominant during the summer of 2013 (Fig. 2.15b-f). 

Thus, HPLC-ChemTax method could separate taxa such as haptophytes, cryptophytes 

and chrysophytes as a separate group that were not clearly distinguishable using 

FlowCam. Meanwhile, HPLC-ChemTax classified chlorophytes and euglenophytes into a 

single group so their individual relative abundance could not be quantified, which could 

be easily separated into two separate groups using FlowCam. 
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2.3.3 Comparison of relative abundance of phytoplankton determined by 

FlowCam and ChemTax 

The comparison of the results from ChemTax and FlowCam for phytoplankton 

abundance are shown in Fig. 2.16. In LPRE, we found a good linear relationship (r=0.9, 

n= 108, p<0.01) between diatoms determined by ChemTax pigment analysis and the 

relative abundance of diatoms determined using FlowCam (Fig. 2.16a). Also, we found a 

good correlation between diatom-specific Chl a determined by ChemTax and the area of 

diatoms in two lakes: Lake Grenada (r=0.79, n=12, p<0.05, Fig. 2.16b) and Lake Enid 

(r=0.84; n=12, p<0.05, Fig. 2.16c). Further, we found a good correlation for chlorophytes 

(r=0.72, n=12, p<0.05, Fig. 2.16d) in Lake Enid and but a relatively poor correlation for 

cyanobacteria (r=0.23, n=109, p=0.053, Fig. 2.16e) in LPRE as determined by ChemTax 

and their area determined using FlowCam. These results suggested that FlowCam and 

ChemTax can be used as alternative techniques for some groups of phytoplankton, 

diatoms for example as found in this study, however they do not produce corresponding 

results for all groups of phytoplankton. Further, use of HPLC-ChemTax approach is 

limited to taxonomical class, thus no genus and species level of identification can be 

achieved by using HPLC-ChemTax. If genus or species level information is desired, then 

FlowCam would be the preferred approach with the caveat that phytoplankton with small 

cell size cannot be identified to the species level. Thus, both these techniques have some 

strengths as well as some weaknesses to determine phytoplankton community structure 

and their abundance. 
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2.3.4 Comparison of Chl a and PC concentrations measured by using in situ 

(Eco triplet FL3B probe), HPLC, and spectrofluorometric techniques 

HPLC provided much lower estimates for Chl a than the probe (Fig. 2.17a) 

although the correlation was high (r=0.91, n=109, p<0.05) in LPRE. And that in EMS, 

the probe provided lower estimates than the spectrofluorometer for Chl a (Fig 2.18a) 

although the correlation was high (r=0.95 n=17, p<0.05). In both cases, the correlations 

are good, but the values do not fall close to the 1:1 line. In contrast, the FL3B probe 

estimated the PC concentrations close to as estimated by Spectroflorometer in LPRE 

(Fig. 2.17b) and EMS (Fig. 2.18b). The correlation coefficient was 0.61 for LPRE 

(n=152, p<0.05) and 0.8 for EMS (n=47, p<0.05) and the values of PC are close to the 

1:1 line in both the plots (Fig. 2.17b & 2.18b). There was a good correspondence (r= 

0.81, p<0.001, n=109) between PC and Chl a concentration measured using the FL3B 

probe (Fig. 2.17c). Also, we found a good correspondence (r= 0.81, p<0.0001, n=47) 

between PC and Chl a concentration measured using the FL3B probe in EMS (Fig. 

2.18c). The in-situ instrument FL3B provided a rapid measurement of Chl a and PC 

concentrations in water bodies to determine the changes in phytoplankton abundance 

compared to HPLC and spectrofluorometric techniques. 
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2.3.5 Algal toxins 

Microcystins were present in small concentrations in LPRE ranging from 0- 0.12 

µg/L (Fig.2.19a-e). Brevetoxin was detected in LPRE but in very low concentrations 

(below 0.5 µg/L) in most of the sites in December 2015, and March, May, and August 

2015 (Fig. 2.19e), but higher concentrations (between 0.5-1.6 µg/L) at 2 sites in 

December 2015 when there was a Karenia brevis bloom in the coastal waters (Fig. 

2.19f). Brevetoxin concentrations were as high as 14.55 µg/L in the samples collected at 

seven sites in the Mississippi sound (Fig. 2.19f). The phycotoxin concentrations in four 

Mississippi lakes have been described previously in (Dash et al. 2015). Phycotoxin 

analysis techniques such as ELISA can confirm whether toxin producing species are 

present and can also quantify the low level of toxin concentrations. This technique when 

combined with FlowCam provides valuable insights about which species or group of 

phytoplankton are responsible for the phycotoxins in the water. 
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2.4 Discussion 

The community structure of phytoplankton and species composition provides vital 

information about the health of the ecosystem in water bodies and potential risk to 

humans and the environment. Due to increased eutrophication in water bodies, rapid and 

precise monitoring of phytoplankton is very important. An array of techniques is 

available to investigate the phytoplankton abundance. In this study, we employed in-situ 

instrument (FL3B probe), automated microscopy (FlowCam), spectrofluorometry, and 

HPLC to obtain valuable information on phytoplankton and compared the obtained 

results to evaluate the performances as well as utility of each of these techniques. We 

measured the Chl a concentration using in- situ FL3B probe, HPLC, and standard 

spectrofluorometric techniques and compared the results. We determined community 

structure of phytoplankton using two techniques, a pigment based technique, HPLC-

ChemTax, and an automated microscopic technique, FlowCam. The variability in 

samples and the large number of samples ensured the reliability of the comparisons. A 

good correspondence between FlowCam and ChemTax was found for determining the 

relative abundance of diatoms, which corroborated with previous findings (Alvarez et al. 

2014; See et al. 2005). The high correlation was because of large cell size of diatoms, 

which was easily distinguishable in FlowCam thus could be accurately quantified. 

Similarly, Chl a concentration measured using the in situ probe were compared 

with the Chl a measured using HPLC and spectrofluorometric technique. High 

correlations suggested that in-situ fluorescence probe can be used to measure the 

concentration of Chl a as an alternative method to HPLC or standard spectrofluorometric 

technique, however an underestimation in probe measured Chl a is expected. 
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Additionally, a good correspondence between concentrations measured by in-situ probe 

and spectroflorometric technique suggests that in-situ probe can be used for rapid 

measurement of PC concentration. 

Since the standard methods are time-consuming and expensive, a preferred 

approach would be to obtain a relationship between the two methods using regression by 

sampling at a few sites and then using the regression equation to calculate the 

concentration of Chl a and PC by converting the in-situ measured Chl a and PC to HPLC 

or spectrofluorometrically measured Chl a and PC. 

FlowCam provides images of the cells allowing not only the calculation of cell 

abundance but also determination of the species composition and community structure. 

Species identified by FlowCam can provide solid clues about the presence of toxin 

producing phytoplankton in the collected samples. However, the presence of phycotoxin 

producing species of phytoplankton does not always mean a proportionate amount of 

toxin would be present in the water as they produce toxin only at certain stages of their 

life cycle in response to environmental conditions. Similarly, the toxin concentration can 

be high even when the cell counts or Chl a is low. For example, we found high 

brevetoxin concentrations at Chl a concentrations below 5 µg/L (Fig. 2 & 11e). Hence, it 

is not always possible to infer toxicity in the water using the pigment analysis or 

FlowCam alone. So, use of rapid toxin measurement techniques such as ELISA aids in 

determining the toxicity level in the water when toxin producing species of 

phytoplankton is detected using FlowCam or HPLC-ChemTax or measurement of Chl a 

spectrophoto- or fluorometrically or by in-situ probes. 
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The in-situ FL3B probe used in our study offers continuous measurement of Chl 

a, PC, and PE concentrations. Furthermore, the in-situ probe does not require 

pretreatment and a large sample volume. The method is simple, nondestructive, selective, 

sensitive, and rapid thus a greater volume of data can be obtained quickly and in real 

time. Since, it is not essential to perform taxonomic classification for all samples, it can 

be done only for locations where changes in phytoplankton biomass (Chl a 

concentrations) or composition (PC and PE concentrations) would be detected by the 

probe. So, use of such in-situ instruments provides information quickly to determine the 

changes in phytoplankton abundance. In our study, we found a fair correspondence 

between HPLC measured and in-situ FL3B probe measured PC, but the results did not 

correspond well in the case of Chl a possibly due to in vivo measurements of Chl a by the 

probe in LPRE samples where both these techniques were employed. We found good 

correspondence between results from FlowCam and ChemTax for large-sized 

phytoplankton, diatoms, but we did not obtain good correspondence between these two 

techniques for other classes of phytoplankton such as cyanobacteria, dinoflagellates, and 

chlorophytes. The lack of correspondence between the area of cyanobacterial cells with 

the pigment based HPLC-ChemTax analysis could be explained by low concentration of 

pigment zeaxanthin from HPLC, which is used to quantify cyanobacteria in ChemTax or 

the small cell size of some cyanobacterial cells such as Microcystis spp. Physical factors 

such as water temperature, water clarity, stratification, residence time, or chemical factors 

such as availability of nitrogen and phosphorus and the salinity regime have been 

reported to affect cellular zeaxanthin concentrations (Q. Hu 2004). Hu (2004) found that 

environmental factors particularly light, temperature, nutrient affect photosynthesis and 
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productivity which result in variation in biomass. Among the above factors, nitrogen 

limitation may explain the higher value of area estimated by FlowCam because the 

cellular light harvesting pigment content such as Chl a and zeaxanthin decrease under 

nutrient stress(Latasha Mikel and Elisa 1994). The other plausible reason for this non 

correspondence could be the presence of many small sized phytoplankton in the sample. 

Due to their smaller size, they were grouped into the unidentified class in FlowCam 

analysis but they were accurately classified by ChemTax into their respective classes 

based on their respective unique pigment. Alvarez et al. (2014) found similar results in 

case of haptophytes and chlorophytes (Alvarez et al. 2014). We used area based diameter 

to determine the relative abundance as opposed to the use of cell counts (See et al. 2005) 

or shape based automatic classifications (Alvarez et al. 2014) used in other studies. 

Additionally, Alvarez et al. (2014) reported that phytoplankton content must be very high 

in order to acquire correct estimation of community structure by FlowCam as error can 

occur while classifying automatically(Alvarez et al. 2014).  Hence in such situations, 

ChemTax is more effective than microscopic analysis using FlowCam. 

This study involves comparison and evaluation of several techniques to monitor 

harmful algal bloom is first attempt in diverse water bodies of Mississippi/Louisiana. 

These results can be useful for further research in choosing the best techniques to rapidly 

collect information in an efficient way. The species composition and relative abundance 

of algal group determined in this study provides preliminary information to continue the 

research in the Mississippi /Louisiana water bodies. 

There were some unavoidable limitations of the study such as fixing the samples 

using glutaraldehyde which could alter the size of phytoplankton thus giving some 
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compromised result from FlowCam analysis. Use of glutaraldehyde as a fixative has 

advantages as it is an effective chemical compared to formaldehyde and does not stain the 

cells as Lugol’s solution, but it could alter the area or shape of phytoplankton to the 

extent where they cannot be identified in the images. Since, large volume of samples 

collected per day cannot be run immediately after the collections, the samples needed to 

be preserved. Another limitation of this study was that the relationship between 

phytoplankton with the physical parameters such as temperature, solar irradiance, or 

nutrient were not explored in this study. Investigating those aspects could help better 

understand the trends of phytoplankton community, species composition, and toxin 

production. 

HPLC-ChemTax provides rapid quantification of algal groups and allows 

automated analysis as compared to FlowCam where each sample run takes at least 30 

minutes to an hour and additional time for classifications. In view of constantly 

developing technology, we surmise that FlowCam will continue to improve to provide 

more rapid sample processing and improved software for classifications. Despite these 

limitations, we have shown that estimates of taxonomic richness derived from FlowCam 

are reasonably comparable with those obtained by ChemTax. 

2.5 Conclusion 

This study compared the potential of several laboratory and field techniques used 

for determining phytoplankton community structure. While in some scenarios one 

technique is better than others, it was found that use of a few techniques together can 

extract the crucial information in understanding the phytoplankton community structure 

and occurrence of phycotoxins in water. For instance, FlowCam could be used for 
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separating chlorophytes and euglenophytes, or diatoms and dinoflagellates, visually 

which is not always possible in ChemTax pigment analysis due to shared pigments by 

both phytoplankton. However, for small cell size phytoplankton, ChemTax produces 

better results due to difficulties in identifying small cell size phytoplankton using 

FlowCam. When phycotoxin-producing phytoplankton are considered, if toxin is 

measured together with FlowCam or HPLC-ChemTax or pigment measurements, it will 

provide a comprehensive information about the presence of toxins as well as the 

phytoplankton species responsible for producing the toxins which will be helpful for 

adopting preventive measures for water managers. 

Surface area of phytoplankton can be used to obtain an accurate measure of 

relative abundance of genus or species within a group of phytoplankton. The three 

pigment based methods, HPLC-ChemTax, in situ fluorescence probe, and fluorescence of 

extracted Chl a and PC, provide complementary information on freshwater and estuarine 

phytoplankton. The findings of this study conclude that among several techniques 

available for monitoring phytoplankton structure, FlowCam is the most useful technique 

for species identification, HPLC-ChemTax for taxonomic classification, in-situ probes 

for gathering information rapidly for initial estimation of phytoplankton biomass, and 

spectrofluorometric techniques and toxin analysis are needed for precise determination of 

harmful impacts. These findings provide insights for future studies to make a suitable 

selection of techniques as per their objectives. 
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CHAPTER III 

COMPARATIVE ANALYSIS OF CHLOROPHYLL A ESTIMATION BY THREE 

SATELLITE SENSORS AND TWO POPULAR SENSORS ONBOARD UNMANNED 

AERIAL SYSTEMS 

3.1 Introduction 

Water quality parameters such as chlorophyll a (Chl a) concentration, total 

suspended matter, nutrient concentrations, pathogens, and heavy metals are used as 

indicators of lake and coastal water environmental health by water resources managers to 

guide resource management and public safety decisions (Dash et al. 2015). Of these, Chl 

a concentration is arguably the most representative environmental parameter as it is a 

measure of phytoplankton biomass as well as an indicator of water clarity. Harmful algal 

blooms represent a major environmental problem worldwide and throughout USA with 

severe impacts on human health, aquatic ecosystems, and the economy (D. M. Anderson 

2009). Although in situ sampling is the most accurate way of determining Chl a 

concentration, yet the use of remote sensing technology has been increasing recently for 

routine Chl a monitoring due to the synoptic coverage (T. Moore et al. 2014). 

Low spatial resolution of satellite sensors limits the ability to accurately detect 

and quantify phytoplankton in small water bodies. Unmanned aerial Systems (UASs) 

offer the best remote sensing approach in such cases with sensors of suitable spectral 

bands and  spatial resolution (Flynn and Chapra 2014). Additionally, algal blooms can be 
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very dynamic and patchy, changing significantly in a short time. Monitoring such events 

with even high resolution satellite data is not suitable by itself because such data does not 

have the temporal resolution needed to monitor the quickly changing blooms (Gholizadeh 

and Robeson 2016). Thus, these events are well suited for UAS based monitoring (Lekki 

et al. 2009; Watts, Ambrosia, and Hinkley 2012). 

Algorithms used for remote estimation of Chl a content are categorized as either 

empirical or semi-analytical algorithms. The empirical algorithms are based on statistical 

relationships between either normalized water leaving radiance (nLw) or remote sensing 

reflectance (Rrs) ratios at two or more bands and in situ Chl a, e.g. the SeaWiFS OC4v4 

and OC2v4 algorithms (O’Reilly et al. 1998, 2000). The semi-analytical models, on the 

other hand, are based on theoretical relationships between Rrs and inherent optical 

properties such as absorption and backscattering coefficients but include some statistical 

relationships formulated through datasets of relevant in-water parameters and optical 

properties (Twardowski et al. 2005). In the past, numerous empirical and semi analytical 

algorithms have been developed for coastal areas and relatively large inland lakes for 

estimating Chl a using remotely sensed data (Gower et al. 2005; Mayo et al. 1995; 

Ruddick et al. 2001). The inherent optical properties of different water constituents vary 

with the concentration and specifically with the composition. The specific properties are 

important for reflectance models used to determine the concentration of water 

constituents from remote sensing data..(Siegel et al. 2005) IOPs of water bodies can 

differ due to the variability in trophic conditions, sediment concentration from run off, 

nutrient and colored dissolved organic matter concentration. As a consequence, a single 

algorithm developed for a specific water body is not applicable to water bodies with 
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varying IOPs. ,. (T. Moore et al. 2014)Subsequently, empirical algorithms are standard  

approaches used to produce global maps of Chl-a concentration from satellite reflectance 

data (C. Hu, Lee, and Franz 2012). Empirical algorithms have key advantage over semi-

analytical algorithms in terms of computational efficiency in comparison to complex 

structure of semi analytical algorithms. Although the semi-analytical algorithms account 

for the effect of other optically active constituents in water such as CDOM absorption, 

backscattering by sediments, and phytoplankton, there is a greater chance of introduction 

of errors due to sensitivity of semi-analytical algorithms to parameter-tuning. For 

instance, different types of phytoplankton have different absorption spectra owing to the 

presence of different pigments (Hoepffner and Sathyendranath 1991); thus universally 

fixed absorption models in semi analytical algorithms can’t represent varying 

composition of phytoplankton communities. Likewise training data sets for some of the 

model inputs, such as backscattering coefficients of particles, are not widely available 

(Dierssen 2010). Meanwhile, a previous study found that empirical methods performed 

better than semi analytical algorithms in a comparative study (Brewin et al. 2015). Thus, 

in this study we developed and tested empirical band ratio algorithms for five different 

sensors in our study areas. The study included two types of water bodies in Mississippi. 

1) five lakes in Mississippi and 2) an estuary, the Lower Pearl River Estuary (LPRE). The 

main aim of this research was to develop remote sensing algorithms to quantify 

chlorophyll a employing five sensors including two popular UAS sensors and three 

currently operating satellite sensors and evaluate the performance of the sensors in 

quantifying chlorophyll a in the lakes and the estuary 
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3.2 Material and Methods 

3.2.1 Study areas 

Water quality data were collected from five different lakes in Mississippi 

including Ross Barnett Reservoir (RB), Lake Sardis (LS), Lake Enid (LE), Lake Grenada 

(LG), and Lake Okatibbee (LO) and Lower Pearl River Estuary (LPRE) (Fig. 3.1). Ross 

Barnett Reservoir is located adjacent to the City of Jackson, the capital city of 

Mississippi, and Lakes Sardis, Enid, and Grenada are located in northern Mississippi, and 

Lake Okatibbee is located in eastern Mississippi. The Ross Barnett Reservoir is used as a 

source of drinking water for the City of Jackson and all five lakes have traditionally been 

used for recreational activities such as swimming, boating, and fishing. These lakes 

produce large quantities of commercial and recreational fish (Dash et al. 2015). The Pearl 

River originates in Neshoba County, Mississippi and has a meander length of 714 km 

before emptying into the Gulf of Mexico. The lower185 km of the river forms the part of 

the boundary between Mississippi and Louisiana, is termed as Lower Pearl River. The 

estuary at the lower most portion of the river, the Lower Pearl River Estuary (LPRE) is 

considered as one of the most critical areas of remaining natural habitats in Louisiana-

Mississippi coast (The Nature Conservancy 2017).Likewise the four Mississippi Lakes 

LS, LE , LG and LO are diverse and ecologically important water bodies that are heavily 

used for fishing and recreational purposes. Additionally, the algorithms developed for 

these water bodies can be applicable to other water bodies in United States directly or 

with adjustment of coefficients. 
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Figure 3.1 Study area Map 

3.2.2 Data collection 

Five Mississippi lakes including RB, LS, LE, LG, and LO were sampled during 

13 field campaigns from 2012 to 2016.Data were collected in during summer in RB, LS, 

LE, and LG and LO was sampled during winter (February 2015). With 12 sampling 

points in each lake, a dataset of 156 sampling points were generated (Table 3.1). The 

dataset from LPRE comprises of 164 stations from 5 sampling events in December 2014 

and March, May, August, and December 2015 (Table 3.2). We collected samples for all 

lakes except LO during summer motive was to capture higher bloom conditions. The 
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sample collection in LPRE were done in four seasons – Spring, Summer, Fall, and Winter 

to record the functionality of the entire study area. The field data included water samples 

collected in clean Nalgene bottles, in-situ remote sensing reflectance, in- situ 

phytoplankton pigment concentrations (chlorohyll-a, Phycocyanin and phycoerythrin), 

water quality parameters such as temperature, pH, salinity, and dissolved oxygen. Surface 

water samples were placed in a cooler with ice after collection, and filtered within 5-6 

hours of collection. In situ remote sensing reflectance measurements were taken at each 

sampling points with hyperspectral radiometer GER 1500covering 200 to 1100 nm 

wavelength. The reflectance data were visually examined individually, and obvious 

erroneous spectra were not included in the final data set. 

Table 3.1 Sample collection sites and dates for Lakes 

Sites RB RB RB RB RB RB LO 

Date 6/13/12 6/29/2012 5/22/13 7/10/13 8/28/15 8/27/16 2/6/15 

Sample no 12 12 12 12 12 12 12 

Sites LS LS LE LE LG LG 

Date 6/18/13 7/6/2014 6/20/12 6/11/13 6/18/12 6/4/13 
Total 

N 

Sample no 12 12 12 12 12 12 156 

Table 3.2 Sample collection sites and dates for LPRE 

Sites LPRE LPRE LPRE LPRE LPRE 

Date 2014 2015 2015 2015 2015 Total 

December March May August December N 

Sample no 30 30 50 38 16 164 
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3.2.3 Chlorophyll a concentration measurement 

To quantify Chl a concentration, 100 mL aliquots of surface water was filtered 

(<50 kPa) onto GF/F filters with 4.7 cm diameter and 0.7 μm pore size, and kept frozen at 

-80°C until analysis. Spectoflorometric and HPLC techniques were used to determine Chl 

a concentration in each sample. The samples for which HPLC analysis was not carried 

out, Chl a was extracted using 90% acetone and the concentration was determined 

spectrofluorometrically using a Horiba Jovin Yvon FluoroMax-4 Spectrofluorometer 

(Horiba Scientific, Edision, NJ, USA)  following standard laboratory protocol Joint 

global Ocean Flux Study 1998). For HPLC pigment analysis, the filter papers were 

shipped overnight on dry ice to the University of South Carolina, Columbia, SC. High 

performance liquid chromatography (HPLC) was used to separate, identify, and quantify 

chlorophyll a concentration following standard protocol (Mackey et al. 1996)The HPLC 

method and spectroflorometreic methods produced similar results when results from both 

tehniques were compared 

3.2.4 Remote Sensing Reflectance 

Remote sensing reflectance (Rrs) is defined as the ratio of the upwelling radiance 

and downwelling irradiance. To derive above water Rrs three measurements are generally 

required: (1) upward radiance (Lu), (2) downward sky radiance (Lsky), and (3) upward 

radiance from a standard Spectralon reflectance plaque (Lplaque). First, measurements of 

radiance from a plaque with known spectral directional reflectance (99% Spectralon, 

Labsphere) were made using a GER 1500 radiometer (Spectravista Inc., Poughkeepsie, 

NY). Subsequently, three replicate scans of target water surface were made and then sky 

radiance was measured by pointing the radiometer towards the sky opposite to the sun. 
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The radiometer data were processed following Hu (2003) for the determination of above 

water Rrs . First, water leaving radiance (Lw) was determined by 

Lw = Lu - (0.02 × Lsky) 

Subsequently, Rrs was computed by 

1.01 Χ 𝐿𝑤 
𝑅𝑟𝑠(0−) = 

Lplaque×π 

3.2.5 Conversion of hyperspectral data to sensor specific data 

It is difficult to perform a comparative evaluation of satellite sensors using 

satellite derived Rrs due to different ground resolution, inconsistent temporal resolution, 

and variability in overpass time of sensors. Thus, in-situ measured Rrs were converted 

into each sensor specific Rrs by application of the spectral response functions of three 

currently operating satellite sensors- AQUA MODIS, OLCI SENTINEL- 3, and 

LANDSAT 8 OLI, and two popular UAS sensors- MicaSense and Color Infra-red (CIR) 

(Fig.3.2). 
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Figure 3.2 Create Spectral response functions (SRF) of sensors A) SRF of three band 

Unmanned Aerial Systems (UASs) sensor -Colored Infra-red (CIR) B) SRF 

of five band Unmanned Aerial System (UAS) sensor -MicaSense C) SRF 

of Operational Land Imager (OLI) onboard LANDSAT-8 satellite D) SRF 

of Moderate Resolution Imaging 

3.2.6 Clustering the radiometric Rrs data 

Our attempt to develop one algorithm for lakes and one algorithm for the estuary 

was not successful. Thus, we adopted the clustering method to separate the sites based on 

their Rrs. The datasets from the five Mississippi lakes were combined which included 

data from Lakes Sardis, Grenada, Enid, Okatibbee, and Ross Barnett Reservoir for cluster 

analysis. Samples collected from the Lower Pearl River estuary at various locations and 

seasons were combined for cluster analysis. Based on cluster analysis of remote sensing 

reflectance data, we separated the Rrs dataset of Lakes and LPRE into 3 clusters each. 
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Our choice for cluster analysis was the k-means algorithm, which has been used in 

many classification studies from medical image processing to remote sensing.(T. Moore 

et al. 2014). Dendrogram and cluster validity function were used to choose the optimum 

number of clusters. The k-means clustering algorithm was applied to the in-situ Rrs data 

using R (v. 3.3.2) software. The k-means clustering algorithm produces clustering of the 

data into a specified number of clusters, herein denoted by k. The basic function of this 

algorithm is to choose clusters that minimizes the difference between the data points and 

the prototype cluster centers or cluster means. Cluster centers are iteratively adjusted 

until optimization criteria are met to achieve the minimum sum of the differences and 

minimum change in the residuals. The clustering routine then returns the mean 

reflectance vectors for the k classes, and a matrix containing the memberships of each 

point to each class. The cluster analysis separated and differentiated subsets based on 

both the shape and the magnitude of Rrs and resulted in three optimal clusters for the 

Lakes and three clusters for LPRE (Fig. 3.3). The clusters for best performing sensors in 

this study are shown in plots (Fig 3.4& Fig 3.5) The number of clusters was deemed best 

based on a suite of cluster validity functions. When three clusters are specified, the 

relation of data points to each other and cluster centers (mean vectors) in terms of 

compactness and separation aspects were collectively in a better configuration compared 

to other cluster choices. The differences between clusters can be more readily observed 

when their reflectance means plotted together for three sensors (Fig.3.6, Table A.8-Table 

A.13). Collectively, these Rrs means formed the optical water types (OWTs). They are 

representations of averaged conditions governed by the optical properties of the water 

column and ultimately depend on the absorption and scattering properties of the in-water 
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constituents (e.g., phytoplankton and non-phytoplankton particles). In general, Rrs 

spectra separated the OWTs based on their unique characteristics. In the lakes, OWTs 

one and two have low overall spectral magnitude, and show relatively flat features above 

600 nm compared to OWT three. These OWTs all show peaks around 700 nm, but are 

different from each other in magnitude. OWT three shows a prominent peak at 700 nm 

compared OWTs one and two. This peak is characteristic of strong particle 

backscattering and has been associated with high algal particle concentration (Gilerson et 

al. 2007; Gower et al. 2005; Zimba and Gitelson 2006). All the OWTs show a reflectance 

peak to some degree at or near 555 nm, which is most pronounced in OWT three of lakes 

and OWTs one and two of LPRE. The peak at 555 nm can be attributed to enhanced 

particle scattering from living (e.g., phytoplankton) and non-living (e.g., sediments) 

sources (Ahn, Bricaud, & Morel, 1992; Kutser, 2004). Other secondary peaks are seen at 

or near 650 nm in these OWTs. While it is not possible to associate these features to 

unique constituents without more complete optical information, 
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3.2.7 Optimal Band Ratio Selection 

The use of Rrs band ratio instead of singular Rrs bands is popular in remote 

sensing algorithm development. The reflectance of a singular band can be influenced by 

more than one component, whereas the use of band ratios gives enhanced spectral 

signatures of different water constituents. It is also less sensitive to the atmospheric 

correction errors when applied to satellite data (Gilerson et al. 2010). To select the most 

suitable band ratio, we accessed all the combinations of band ratios for each sensor and 

simple linear regression was computed against the measured Chl a concentration. We 

also tested the popular band ratios as proposed by previous studies with available bands 

in the used sensors. However, the best band ratio algorithm was chosen based on highest 

R2 obtained from the regression between band ratio and measured Chl a concentration. 

3.2.8 Algorithm development 

Randomly chosen 3/4 th of data were used in band ratio algorithm development 

and 1/4th of data were used in model validation. Same data points were used in algorithm 

development and validation for all five sensors to make the results comparable. 

3.2.9 Model validation 

All the algorithms were applied to the one fourth of randomly chosen validation 

dataset to investigate the applicability of the newly developed algorithms and accuracy 

was evaluated using root mean square error (RMSE) and mean absolute error (MAE). In 

order to remove the effect of magnitude of observations, RMSE and MAE were 

normalized using the range of observations and expressed in percentages. Expressions for 

relative RMSE and relative MAE are given as 
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RMSE 
Relative RMSE %= × 100 

Measured maximum−Measured minimum 

n1 ∑ |Estimated−Measured| 
Relative MAE%= i=1 Χ100 

𝑛 (Measured Maximum−Measured Minimum) 

3.3 Results 

3.3.1 Measured Chl a concentration 

The range of Chl a in lakes is between 1.8-57.1 µg/L and LPRE is found to be 

1.3-22.1 µg/L (Fig.3.7). 

Figure 3.7 Measured chlorophyll a in A) Lakes and B) LPRE 

3.3.2 Chlorophyll-a algorithms developed for the satellite sensors 

3.3.2.1 Lakes 

Among the three satellite sensors used, we found the best algorithm from OLCI 

Sentinel 3 and Landsat 8 OLI to quantify Chl a in our study areas (Fig.3.8). For OWT1 

and OWT2 of lakes, Landsat band ratio PAN/NIR performed better in predicting the Chl 

a with minimum errors in terms of RMSE of 5.6 µg/L and %MAE of 20.48 with an R2 of 
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Figure 3.8 Algorithms developed for three optical water types (OWTs) of lakes, A) 

OWT1, B) OWT2, and C) OWT3 

  

 

 

0.49 for OWT1 and RMSE of 9.24 µg/L and %MAE of 38.80 with an R2 of 0.28 for 

OWT2. However, for OWT3, algorithm developed by OLCI, i.e band ratio Green/NIR 

(Band6/Band11) performed best among all the sensors with an RMSE of 1.69, %MAE of 

10.09, and an R2 of 0.73. The results for three OWTs in terms of RMSE, MAE and R2 are 

shown in tables A.14, A.15 and A.16 respectively. Although some of the algorithm has 

low R2 value, that is the maximum we found among all the sensors used (Tables A.14, 

A.15, A.16). Tables 3, 4, and 5 below show the concentration of Chl a ranged between 

2.9-15.7 µg/L for OWT1, 1.8-40 µg/L for OWT2, and 10.02-57.1µg/ L for OWT3 in the 

lakes. 

3.3.2.2 Lower Pearl River Estuary 

For LPRE, OLCI band ratio algorithm performed better in all three optical water 

types (Tables A.17, A.18, and A.19). Among the three water types determined from 

cluster analysis, the band ratio algorithm Green/Red (Band6/Band 10) performed best for 
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OWT3 with an RMSE of 2.09 and % MAE of 26.23 with an R2 of 0.32 (Fig.3.9). In 

OWT1 and OWT2 Green//Red band ratio performed best among all three satellite sensors 

with an RMSE of 4.09 µg/L and % MAE of 57.83, and an RMSE of 1.36 and % MAE of 

45.9 respectively. 

The measured versus modeled Chl a for lakes and LPRE for the aforementioned 

satellite sensors are shown below (Fig.3.10, Tables A.14-A.19) 

Figure 3.9 Algorithms developed for three optical water types (OWTs) of LPRE, A) 

OWT1, B) OWT2, and C) OWT3 
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Figure 3.10 Create Algorithm validation for optical water types 1, 2, and 3 of lakes 

using satellite sensors A) Lakes, and B) LPRE 

3.3.3 Chlorophyll a algorithms developed for the UAS sensors 

3.3.3.1 Lakes 

Algorithms developed for the five-band sensor, MicaSense, performed better than 

the 3 band CIR sensor for quantifying Chl a in all three optical water types in Lakes 

(Tables A.20, A.21, A.22) Among the three water types, band ratio algorithm 

(Blue/Rededge) developed for OWT3 performed better among the three OWT based on 

RMSE (3.01 µg/L), % MAE (20%), and R2 (0.73).  In OWT1 and OWT2 Blue/NIR and 

Green/Rededge band ratio performed better among all sensors with an RMSE of 5.08 

µg/L and % MAE of 12.85, and an RMSE of 11.10 µg/L and % MAE of 46.5%, 

respectively. The algorithms developed for each OTWs are shown below (Fig. 3.11) 
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Figure 3.11 Algorithms developed for the optical water types (OWTs) 1, 2, and 3 of 

lakes using UAS sensors, A) OWT1, and B) OWT2, and C) OWT3 

3.3.3.2 Lower Pearl River Estuary 

The band ratio algorithm (Green/Red) developed for the MicaSense sensor 

performed better than CIR in all the three OWTs of LPRE. The algorithms developed for 

each OTWs are shown in the below (Fig.3.12). Among three OWTs, the algorithm 

developed for OWT3 performed better among the three water types with an RMSE of 

2.038 µg/L and %MAE of 25.64%. The algorithms developed for OWT1 and OWT2 had 

an RMSE of 4.08 µg/L and %MAE of 57.1%, and an RMSE of 2.1 µg/L and %MAE of 

39.96%, respectively. Tables A.23, A.24, and A.25 show the result for the UAS sensors 

and their performances in each OWTs of LPRE. 

The measured vs modeled Chl a for lakes and LPRE for the aforenoted sensors 

are shown in below (Fig.3.13) 
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Figure 3.12 Algorithms developed for three optical water types (OWTs) for using UAS 

sensors in LPRE A) OWT1, B) OWT2, and C) OWT3 

Figure 3.13 Algorithm validation optical water types OWT1, OWT2 and OWT3 of 

Lakes using UAS sensors A) Lakes, and B) LPRE 

3.4 Discussion 

3.4.1 Satellite sensors derived algorithms in Lakes 

This study shows that over the full range of in situ Chl a, among the three satellite 

sensors used, OLCI sensor estimated Chl a reasonably well with mean absolute errors 

below 30% (for OWT1 and OWT3) shown in tables A.14, A.15 and A.16, which is 

consistent with previous studies using similar satellite sensors (C. Hu, Feng, and Lee 
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2013; Kahru et al. 2014). In general, the algorithms developed for Chl a using remote 

sensing are considered within acceptable goal if the algorithm meet accuracy goals of 5% 

and 35% for the retrieved surface remote sensing reflectance and chlorophyll-a 

concentrations in the surface ocean (Hooker et al., 1992). Since, the optical properties of 

water in inland waters such as lakes and estuaries are more complex than oceans due to 

higher influence of land and surface run offs, the results for lakes, the accuracy obtained 

from our algorithms are consistent with previous work. 

Algorithms using Green and NIR band of OLCI performed well among all other 

band ratios. Although best performing algorithms for all three OWTs had Green/NIR 

band ratios, the band center for Green was different for OWT2 from OWT1 and OWT3 

and error was also much higher. The difference in spectral shape due to optically active 

constituents likely played a role in change of band center for OWT2. It is shown in Fig 

4A that the Rrs in the green region is highest near 560 nm for OWT1 and OWT 3, 

whereas the Rrs peak for OWT2 is close to 510 nm. The Landsat band ratio algorithm 

performed better among all the satellite sensors used for OWT2. However, error was 

higher than those on OWT1 and OWT3 with an RMSE of 9.2 µg/L and %MAE of 

38.8%. The high range of Chl a concentration in OTW2 is the likely reason for the 

resulting high error which was also the case in a previous study (T. Moore et al. 2014).In 

OWT2, the Chl a in lower concentration or higher concentration can have greater 

influence in the algorithm coefficient which produce errors in validation .The range of 

Chl a concentration for algorithm development was 1.8 to 40 µg/L ,with majority of Chl a 

concertation in higher concentration, which were greater than 10 µg/L with weak  R2 
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(0.28) at 0.05 level of significance. The Chl a concentration in validation data set were in 

lower concentration (1.3-3.4 µg/L) which resulted into higher errors. 

Thus, our assessment of clustered Chl a algorithm in Mississippi Lakes showed 

that OLCI band ratio algorithm performed best with minimum RMSE (1.6 µg/L), % 

RMSE (13.1%), and % MAE (10.09%) when Chl a was at range of 2.9-15 µg/L and 

average Rrs at Green and Red bands as shown in table 4 A. 

3.4.2 Satellite derived algorithms in LPRE 

The algorithms developed for the OLCI sensor to quantify Chl a in LPRE 

performed the best among the algorithms for all the three satellites sensors in terms of R2 

of the algorithm and errors; RMSE, % RMSE and % MAE. OLCI algorithm developed 

from Green/ Red band performed well in all three OWTs but best performing algorithm 

was developed for OWT3 with low RMSE and low %MAE (Table 8). The range of Chl a 

was lower than that of OWT1 and OWT2. For OWT3, algorithms developed from 

MODIS and Landsat also performed well with slightly higher RMSE and % MAE. The 

bands used in algorithm development have distinct peaks at those two regions which can 

be seen in Fig. 3.6 D. The Rrs was low near 560 nm (Band6) and high at 681 m (Band 

10). Band 6 is the visible part of the spectrum hence it was absorbed the most by Chl a, in 

contrast to band 10, which is close to Rededge region where reflectance from Chl a is 

highest that allows the band ratio algorithm to extract the valuable information about Chl 

a concentration 
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3.4.3 UAS Algorithms derived for the lakes 

The algorithms developed for the five-band sensor, MicaSense, performed well on 

all three OWTs of lakes with mean absolute error below 30% for OWT1 and OWT3. 

These errors were less than the errors obtained for the algorithms developed for the 

satellite sensors. The bands for the ratios were different for three OWTs (Table 9, 

Table10 &Table 11), which corresponds well with the spectral shape of each water types 

(Fig.3.6 E). Hence the bands Blue, Green, NIR and Red of the MicaSense are useful in 

Chl a estimation. 

3.4.4 UAS Algorithms derived for LPRE 

The algorithms developed for the MicaSense sensor performed well on all three 

OWTs of LPRE. The results were similar to the algorithms developed for the satellite 

sensor OLCI in terms of RMSE and mean absolute error. The band ratios were Green/ 

Red for all the OWTs in case of both satellite and UAS sensors. Green/Red band ratio 

performed best among all other band ratios in contrast to the algorithms developed for the 

lakes that included three different band ratios for the three OTWs in the lakes. 

Dissimilarity in water constituent such as sediments, CDOM and phytoplankton 

concentration in lakes and estuary could be the possible reasons for such contrast. 

3.5 Conclusion 

Monitoring Chl a concentration is essential to prevent the effects of harmful algal 

blooms which severely impacts human health, aquatic ecosystems, and the economy. 

Given the dynamic nature of algal blooms which can be highly unpredictable, monitoring 

such events can be challenging with satellite sensors since the sensors have low spatial 
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resolution with respect to the size of water bodies, revisit time, and cloud coverages. 

Application of remote sensing techniques using Unmanned Aerial Systems (UASs) offer 

best remote sensing approaches to accurately detect and quantify phytoplankton 

concentration in smaller water bodies. An assessment of suitable sensors to determine the 

best algorithm for quantifying Chl a concentration can help continuous monitoring of 

HABs and take preventive measures to protect human health and environment in the most 

effective manner. Inland and coastal waters are highly susceptible to effects from land 

such as runoff of sediments, nutrients and organic matter and re-suspension of sediments 

from shallow bottoms. In addition, the concentrations of particles including 

phytoplankton can be much variable in different water types. As a result, algorithms 

developed for a particular water type are less effective and not applicable to optically 

different water types (Melin et al. 2011; T. S. Moore, Campbell, and Dowell 2009). Our 

assessment of a clustered chlorophyll-a product approach showed lower RMSE and MAE 

than for either of the single algorithms over the entire range of the in situ data set. From 

our analysis, each algorithm generally performed best at certain ranges of Chl a and 

certain intensity of Rrs at each band centers of sensors. From our results, we found that a 

single algorithm is not applicable for all water types as defined by the optical 

characteristics governed by concentration of phytoplankton, suspended sediments, 

CDOM etc. that was also demonstrated by previous studies(T.  Moore et al. 2014; T. S. 

Moore, Campbell, and Dowell 2009) Overall, the UAS sensor MicaSense developed 

algorithm performed the best for all the sensors used in this study and the satellite sensor 

OLCI performed better than Landsat OLI and MDIS sensors in chlorophyll-a estimation. 

Hence, the algorithms developed for those sensors in this study represent the best 
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algorithms at present for chlorophyll-a estimation in these water bodies. These findings 

support the view that empirical algorithms tuned and developed for specific ranges of 

conditions perform better than an algorithm tuned to a larger variety of conditions, and a 

multiple sensor algorithm approach is superior to single sensor developed algorithms 

when considering the entire dynamic range of environmental conditions. 

For empirical algorithm, the seasonality of data collection does not influence in 

algorithm performance greatly because the empirical algorithm does not take in account 

for any other variables. In our study, the empirical algorithm provided the linear relation 

between the Chl a concertation and band ratio Rrs. The data collected in lakes were 

mostly in summer seasons but it could capture the variability and the range of Chl a from 

low concentration to higher concentration through the sampling dates. Likewise, we 

found a well distributed Chl a concertation range in LPRE sampled in four different 

seasons. For instance, the average Chl a concentration for sample collected during 

December 2014 was 11.3 µg/L with range of 6.5-22.1 µg/L and again when the samples 

were collected in 2015 December, the average Chl a was 4.9 µg/L with range of 2.1 to 

6.9 µg/L. 

We are limited by data in this study. So, currently we do not know whether all 

possible optical classes of estuaries and lakes are represented in three OWTs. To gain 

more insight on this aspect, more data needs to be collected at throughout the year to 

represent overall conditions in these water bodies. A larger dataset could also improve the 

algorithm performance with improved R2 and reduced errors. 
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CHAPTER IV 

CONCLUSIONS 

This study was carried out in multiple water bodies including lakes, estuary and 

coastal regions. In this study several laboratory and in-situ techniques were used for 

determining phytoplankton community structure present in each water bodies and five 

sensors were used to quantify chlorophyll -a which represents total phytoplankton 

biomass. While in some scenarios one technique is better than others, it was found that 

use of a few techniques together can extract the crucial information in understanding the 

phytoplankton community structure and occurrence of phycotoxins in water. For 

instance, FlowCam could be used for separating chlorophytes and euglenophytes, or 

diatoms and dinoflagellates visually which is not always possible in ChemTax pigment 

analysis due to shared pigments by both phytoplankton. However, for small cell size 

phytoplankton, ChemTax produces better results due to difficulties in identifying small 

cell size phytoplankton using FlowCam. When phycotoxin-producing phytoplankton are 

considered, if toxin is measured together with FlowCam or HPLC-ChemTax or pigment 

measurements, it will provide a comprehensive information about the presence of toxins 

as well as the phytoplankton species responsible for producing the toxins which will be 

helpful for adopting preventive measures for water managers.  Surface area of 

phytoplankton can be used to obtain an accurate measure of relative abundance of genus 

or species within a group of phytoplankton. The three pigment based methods, HPLC-
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ChemTax, in situ fluorescence probe, and fluorescence of extracted Chl a and PC, 

provide complementary information on freshwater and estuarine phytoplankton. The 

findings of this study conclude that among several techniques available for monitoring 

phytoplankton structure, FlowCam is the most useful technique for species identification, 

HPLC-ChemTax for taxonomic classification, in-situ probes for gathering information 

rapidly for initial estimation of phytoplankton biomass, and spectrofluorometric 

techniques and toxin analysis are needed for precise determination of harmful impacts. 

Traditionally, phytoplankton identification and enumeration are done manually using a 

microscope (Benfield et al., 2007) which is tedious, time consuming, costly and needs 

highly skilled expertise. From our study, we found that several species of phytoplankton 

can be identified rapidly by using FlowCam. Similarly, we attempted to determine algal 

class based on area of phytoplankton and obtained comparable result with standard 

pigment analysis method (HPLC). Our finding also corroborated the previous studies 

(Alvarez et al. 2014; See et al. 2005). Likewise, from the comparative analysis of in-situ 

verses analytical techniques to quantify Chlorophyll a, we confirmed the reliability of   

in-situ probes to rapidly quantify the phytoplankton biomass in our study areas. See et al., 

2005 in their study also found out the similar results when they compared Chl a obtained 

from HPLC with Chl a measured by in-situ probe. From our toxin analysis, we could 

detect the algal toxins as low as 0.1 µg/L using ELISA. Our results suggested that even 

though there were no significant correlation between phytoplankton pigment 

concentration, toxins can be present. Hence, in water bodies where frequent human and 

animal interactions occur for drinking water, recreation , fishing and swimming, ELISA 

can be very useful for early detection of toxic algal outbreaks. Thus, these findings 
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provide insights for future studies to make a suitable selection of techniques as per their 

objectives. 

Conventional analytical and in-situ techniques of phytoplankton quantification 

and toxin analysis are expensive and time consuming and they do not provide the 

synoptic coverage.  Hence for early detection and warning the bloom conditions, remote 

sensing quantification of chlorophyll-a serves as the best technique which is economic as 

well as time efficient. So, use appropriate sensors in UASs can be an efficient technique 

to provide valuable information to water managers and agencies to issue early warning 

during the outbreak of harmful algal blooms. Among five sensors used in our study, we 

found that MicaSense sensor was most efficient in quantifying Chl a with minimum 

errors hence, we suggest using the algorithm developed by this sensor for future 

quantification of Chl a in these and similar water bodies. We tested the applicability of 

multiple sensors, three currently operational satellite sensors – MODIS, OLI, OLCI and 

two popular UAS sensors CIR and MicaSense for quantifying Chl a in five major 

Mississippi Lakes and an estuary LPRE for the first time. We found the best algorithms 

for these water bodies using those sensors. Among three satellite sensors, OLCI and OLI 

produced better performing algorithm in terms of RMSE and %MAE for quantifying Chl 

a. For OLCI , the algorithm with maximum R2 of 0.73 was obtained with % RMSE of 

13.1% in lakes , similar results were obtained by (Watanabe et al. 2017) when using MSI 

sensors which is the similar sensor in Sentinel -2 satellite platform developed band ratio 

algorithm for Chl a estimation. Likewise, for OLI sensors, the algorithm with maximum 

R2 of 0.73 was obtained with % RMSE of 13.1% in lakes, and clustering improved the 
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algorithm which was also mentioned by (Watanabe et al. 2017) since their algorithm had 

lower R2 value (0.02)when a single algorithm was developed for entire water body. 

In summary, this study emphasized the application of in-situ, laboratory and 

remote sensing techniques to access the phytoplankton community structure to determine 

the overall health of aquatic ecosystem. Early detection and identification of 

phytoplankton including toxin producing harmful algal blooms are critical to protect the 

health of human, animals and ecosystem and prevent economic loss. Thus, this study 

helped us better understand the application of various techniques and their potentials in 

quantifying harmful algal blooms. 

4.1 Significance of this study 

This dissertation research focused on identifying and enumerating phytoplankton 

species composition and relative abundance as well as quantifying pigment concentration 

of phytoplankton using in-situ, precise laboratory and remote sensing techniques. 

Knowledge of species composition and relative abundance of phytoplankton is necessary 

to predict and prevent possible hazards caused by harmful algal blooms.  Based on the 

scenarios one technique serve better than another and use of appropriate technique can be 

efficient and economically feasible to prevent hazards related to harmful algal blooms.  

With increased nutrient run off from agricultural lands, the problem of HAB’s is 

inevitable hence continuous monitoring of HAB’s is essential for health of human and 

environment. Present study provided an insight on utility of techniques to quantify 

harmful algal blooms in relatively smaller but ecologically important water bodies of 
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Mississippi. The results from the study can be used to quantify harmful algal blooms in 

these and similar water bodies for continuous monitoring. 
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Table A.1 List of identified class and taxa found in the study areas 

Class Taxa Class Taxa Class Taxa 

Cyanobacteria Anabaena circinalis Cyanobacteria Merismopedia sp. Diatoms Stephanodiscus agassizensis 

Cyanobacteria Anabaena crassa Cyanobacteria Microcystis 

aeruginosa 

Diatoms Symbella sp. 

Cyanobacteria Anabaena laxa Cyanobacteria Microcystis cf. firma Diatoms Amphipleura pellicuda 

Cyanobacteria Anabaena palnctonica Cyanobacteria Microcystis flos aquae Diatoms Aulacoseria granulata 

Cyanobacteria Anabaena spiriods Cyanobacteria microcystis 
wesenbergii 

Diatoms Craticula ambigua 

Cyanobacteria Anabaenopsis circularis Cyanobacteria Nostoc sp. Diatoms Cyclotella sp. 

Cyanobacteria Anabena spherica Cyanobacteria Oocysts sp. Diatoms cylindrotheca closterium 

Cyanobacteria Anabena torulosa Cyanobacteria Oscillatoria sp. Diatoms Cymatopleura solea 

Cyanobacteria Aphanizomenon flos 
aquae 

Cyanobacteria Other Anabaena Diatoms Cymbella sp. 

Cyanobacteria Arthrospira 

Stizenberger ex gomont 

Cyanobacteria Other microcystis Diatoms Diatoma vulgaris 

Cyanobacteria Chrococcus sp. Cyanobacteria Phormidium sp. Diatoms Gomphonema sp. 

Cyanobacteria Cocconies pediculus Cyanobacteria Plaktothrix rubescens Diatoms Navicula sp. 

Cyanobacteria Coelosphaerium sp. Cyanobacteria Planktothrix agradhii Diatoms Niztchia sp. 

Table A.1 (continued) 

Class Taxa Class Taxa Class Taxa 

Chlorophytes Staurastrum tetracerum Chlorophytes Tetrastrum staurogeniaeforme Chlorophytes Scenedesmus 

quadricauda 

Chlorophytes Staurastum planctonicum Chlorophytes Botrycoccus sp Chlorophytes Scenesdesmus 

acuminatus 

Diatoms Synedra sp. Chlorophytes Cosmarium Botrys Chlorophytes Scenesdesmus 

disciformis 

Diatoms Synedra ulna Chlorophytes Crucigenia lauterbornii Chlorophytes Spirogyra 

Diatoms Tabellaria flocculosa Chlorophytes Crucigenia quadracauda Chlorophytes Staurastrum 

paradoxum 

Diatoms Tabellaria sp. Chlorophytes Crucigenia quadrata Chlorophytes Staurastrum sp 

Dinoflagellates Alexandrium fundyense Chlorophytes Crucigenia tetrpedia Chlorophytes Closterium sp 

Dinoflagellates Ceratium furca Chlorophytes Desmodesmus brasiliensis Chlorophytes Crucigenia 

fenestrata 

Dinoflagellates Ceratium hirundinella Chlorophytes Kentrosphaera gibberosa Chlorophytes Scenesdesmus 

sp 

Dinoflagellates Dinophysis acuminata Chlorophytes Monoraphidium arcuatum Chlorophytes Volvox tertius 
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Table A.1 (continued) 

Class Taxa Class Taxa Class Taxa 

Dinoflagellates Gyrosigma 

acuminatum 

Chlorophytes Monoraphidium 

species 

Chrysophytes Dictyosphaerium 

nageli 

Dinoflagellates Karenia brevis Chlorophytes Other green algae Chrysophytes Synura sp. 

Dinoflagellates Noticula sp. Chlorophytes Pandorina sp Euglena Euglena sp. 

Dinoflagellates other Dinofalgellates Chlorophytes Pediastrum 

duplex 

Unidentified Detritus and 

Unidentified 

Dinoflagellates Prorocentrum 

minimum 

Chlorophytes Pediastrum 

simplex 

Dinoflagellates Prorocentrum micans 

Dinoflagellates Ceratium fusus 

Dinoflagellates Craticula hirudinella 

Chlorophytes Chlamydomonas 

Table A.2 List of identified species found in East Mississippi Sound (EMS) 

Chlorophytes Diatoms Dinoflagellates Cyanobacteria Diatoms 

Dictyosphaerium 

nageli 

Cyclotella sp. Prorocentrum micans Nostoc sp. Niztchia sp. 

Scenesdesmus 

quadricauda 

Tabellaria sp. Karenia brevis Microcystis 

wesenbergii 

Gomphonema sp. 

Cosmarium botrys Synedra sp. Prorocentrum micans Microcystis flos 

aquae 

Navicula sp. 

Synura sp. Tabellaria 

flocculosa 

Prorocentrum 

minimum 

Microcystis 

aeruginosa 

Diatoma vulgaris 

Closterium sp. Synedra ulna Dinophysis 

acuminatum 

Eutonia formica Cymatopleura 

solea 

Tetrastrum 

staurogeniaforme 

Symbella sp. Ceratium furca Coleosphaerium sp. Cylindrotheca 

closterium 

Chlamydomonas 

sp. 

Stephanodiscus  

agassizensis 

Alexandrium 

fundyense 

Cocconies pediculus Cyclotella sp. 

Botrycoccus sp. Pleurosigma 

elongatum 

Chrococcus sp. Craticula ambigua 

Pleurosigma 

acuminatum 

Aulacoseria 

granulata 

Pinularia sp. Melosira sp. 

Pennate diatoms Melorisa varians 

Gyrosigma 

acuminatum 
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Table A.3 List of identified species found in Lower Pearl River Estuary(LPRE) 

Chlorophytes Cyanobacteria Diatoms Dinoflagellates Euglenophytes 

Dictyosphaerium 

nageli 

Raphidosis curvata Amphipleura 

pellicuda 

Prorocentrum 

micans 

Euglena sp. 

Ankistrodesmus sp. Anabaena circinalis Aulacoseria 

granulata 

Alexandrium 

fundyense 

Euglena 

proxima 

Chlamydomonas 

sp. 

Anabaena flos aquae Craticula ambigua Ceratium fusus 

Coelastrum sp. Anabaena laxa Craticula sp. Craticula hiudinella 

Cosmarium botrys Anabaena torulosa Diatoma vulgaris Cyclotella sp. 

Cosmarium botrys Anabaenopsis 

circularis 

Gomphonema sp. Gyrodinium sp. 

Cosmarium botrys Aphanizomenon flos 

aquae 

Gyrosigma 

acuminatum 

Karenia brevis 

Crucigenia 

fenestrata 

Chrococcus sp. Melosira ap. Other dinoflgellates 

Crucigenia 

lauterbornii 

Coeloaphaerium sp. Melosira varians Peridinium sp. 

Crucigenia 

quadracaudata 

Coelosphaerium sp. Navicula sp. Prorocentrum 

micans 

Crucigenia 

quadrata 

Cylindrospermopsis 

raciborski 

Niztchia sp. Prorocentrum 

minimum 

Crucigenia 

tetrapedia 

Eutonia formica Othe diatoms 

Dictyosphaerium 

nageli 

Johannesbaptisia 

primaria 

Pennate diatoms 

Monoraphidium 

sp. 

Merismopedia sp. Stephanodiscus 

agassizensis 

Other green algae Miccrocystis 

wesenbergii 

Synedra sp. 

Table A.3 (continued) 

Chlorophytes Cyanobacteria Diatoms 

Pandorina sp. Microcystis aeruginosa Synedra ulna 

Pediastrum simplex Microcystis cf. firma Tabellaria sp. 

Scenesdesmus quadrata Microcystis flos aquae 

Scenesdesmus quadricauda Microcystis flos aquae 

Senesdesmus quadratra Microcystis wesenbergii 

Staurastrum planctonicum Nostoc sp. 

Staurastrum sp. Oocysts sp. 
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Table A.4 List of identified species found in Ross Barnett Reservoir(RB) 

Chlorophytes Cyanobacteria Diatoms Dinofalgellates Euglenophytes 
Dictyosphaerium 

nageli 

Microcystis 

wesenbergii 

Symbella sp. Dinophysis 

acuminata 

Euglena sp. 

Ankistrodesmus sp. Anabaena circinalis Amphipleura pellicuda Other 

dinoflagellates 

Botrycoccus sp. Anabaena flos aquae Aulacoseria granulata Noticula sp. 

Chlamydomonas sp. Anabaena laxa Diatoma vulgaris Craticula 

hirudinella 

Closterium sp. Anabaena spherica Gomphonema sp. Ceratium fuscus 

Cosmarium botrys Anabaenopsis 

circularis 

Gyrosigma acuminatum Alexandrium 

fundyense 

Crucigenia 

lauterbornii 

Anabena spiriods Melosira varians Other 

dinofalgellates 

Crucigenia 

quadracauda 

Aphanizomenon flos 

aquae 

Melosiratoma varians Noticula sp. 

Crucigenia quadrata Microcystis cf. firma Navicula sp. Alexandrium 

fundyense 

Crucigenia 

tetrapedia 

Microcystis 

wesenbergii 

Nizchia sp. Karenia brevis 

Desmodesmus 

brasiliensis 

Nostoc sp. Pennate diatoms Alexandrium 

fundyense 

Dictyosphaerium 

nageli 

Oocysts sp. Stephanodiscus 

agassizensis 

Monoraphidium 

arcuatum 

Oscillatoria sp. 

Monoraphidium sp. Other anabaena 

Other green algae Other microcystis 
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Table A.5 List of identified species found in Lake Sardis (LS) 

Chlorophytes Cyanobacteria Diatoms Dinoflagellates Euglenophytes 

Staurstrum 

tetracerum 

Raphidosis curvata Synedra sp. Alexandrium 

fundyense 

Euglena sp. 

Chlamydomonas 

sp. 

Anabaena circinalis Amphipleura 

pellicuda 

Other 

dinoflagellates 

Cosmarium 

botrys 

Anabaena flos aquae Aulacoseria 

granulata 

Noticula sp. 

Crucigenia 

fenestrata 

Anabaena laxa Diatoma vulgaris Karenia brevis 

Crucigenia 

quadrata 

Anabaena spherica Gomphonema sp. Dinophysis 

acuminata 

Dictyosphaerium 

nageli 

Anabaenopsis 

circularis 

Melosira sp. 

Monoraphidium 

sp. 

Anabena circinalis Niztchia sp. 

Other green 

algae 

Aphanizomenon flos 

aquae 

Pennate diatoms 

Pedisastrum 

simplex 

Arthrospira 

stizenberger ex goment 

Stephanodiscus agassizensis 

Scenesdesmus 

acuminatus 

Coelosphaerium sp. 

Scenesdesmus 

quadricaudata 

Cylindrospermosis 

raciborskii 

Merismopedia sp. 

Microcystis 

aeruginosa 

Microcystis cf. firma 

Microcystis flos aquae 

Microcystis 

wesenbergii 

Nostoc sp. 

Oscillatoria sp. 
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Table A.6 List of identified species found in Lake Enid (LE) 

Chlorophytes Cyanobacteria Diatoms Dinoflagellates Euglenophytes 

Scenesdesmus 

quadricauda 

Abanaena 

planctonica 

Stepanodiscus 

agassizensis 

Cyclotella sp. Euglena sp. 

Ankistrodesmus 

sp. 

Anabaena circinalis Pleurosigma 

acuminatum 

Ceratium 

hirudinella 

Botrycoccus sp. Anabaena crassa Pennate diatoms Noticula sp. 

Chlamydomonas 

sp. 

Anabaena laxa Diatoma vulgaris 

Crucigenia 

quadrata 

Anabaena 

planctonica 

Aulacoseria 

granulata 

Dictyosphaerium 

nageli 

Anabaena spiriods Synedra sp. 

Kentrosphaera 

gibberosa 

Anabaena torulosa Stephanodiscus 

sgassizensis 

Other green algae Anabanea laxa Pennate diatoms 

Pediastrum 

duplex 

Anthrospira 

Stizenberger ex 

gomont 

Navicula sp. 

Pediastrum 

simplex 

Aphanizomenon flos 

aquae 

Cymbella sp. 

Scenesdesmus 

quadricauda 

Chrococcus sp. Aulacoseria 

granulata 

Scenesdesmus sp. Cylindrospermopsis 

raciborskii 

Amphipleura 

Pellicuda 

Gleocapsa sp. 

Johannesbaptisia 

primaria 

Merismopedia sp. 

Microcystis 

aeruginosa 

Microcystis cf. firma 

Nostoc sp. 

Nostoc sp. 

Osscillatoria sp. 

Other anabaena 

Other microcystis 

Planktothrix 

rubescens 

Raphidosis curvata 

Raphidosis 

curvispora 
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Table A.7 List of identified species found in Lake Grenada (LG) 

Chlorophytes Cyanobacteria Diatoms Dinoflagellates Euglenophytes 

Other green algae Nostoc sp. Diatoma vulgaris Other 
dinoflagellates 

Euglena sp. 

Ankistrodesmus sp. Anabaena circinalis Aulacseria granulata Noticula sp. 

Chlamydomonas sp. Anabaena laxa Amphopleura pellicuda 

Crucigenia fenestrta Anabaena spherica Aulacoseria granulata 

Dictyosphaerium nageli Anabaena torulosa Amphipleura pellicuda 

Monoraphidium sp. Anabaenopsis 
circularis 

Other green lagae Anabena torulosa 

Pediastrum duplex Aphanizomenon fos 

aquae 

Pediastrum simplex Cylindrospermopsis 

raciborskii 

Scenesdesmus acuminatus Merismopedia specis 

Scenesdesmus quadricauda Microcystis 
aeruginosa 

Microcystis cf. firma 

Microcystis 

wesenbergii 

Oscillatoria sp. 

Other anabaena 

Plaktothrix rubescens 

Raphidosis curvata 

Table A.8 Average Rrs of OLCI bands in lakes 

Lakes OLCI Bands band center nm OWT1average Rrs OWT2 Average Rrs OWT3 Average Rrs 

Band1 400 3.35E-03 5.41E-03 0.01062 

Band2 412.5 3.27E-03 5.51E-03 0.01167 

Band3 442.5 3.37E-03 6.46E-03 0.01413 

Band 4 490 4.10E-03 8.28E-03 0.01677 

Band5 510 4.74E-03 9.60E-03 0.02139 

Band6 560 7.14E-03 0.01392 0.02448 

Band 7 620 5.87E-03 0.01347 0.02298 

Band 8 665 5.25E-03 0.01219 0.02150 

Band 9 673.75 4.85E-03 0.01162 0.02112 

Band 10 681.2 4.93E-03 0.01166 0.02072 

Band 11 708.75 5.67E-03 0.01165 0.01511 

Band 12 753.75 2.11E-03 4.98E-03 9.93E-03 
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Table A.9 Average Rrs of Landsat bands in lakes 

Lakes LANDSAT band center nm OWT1 Average OWT2 Average OWT3 Average Rrs 

Bands Rrs Rrs 

Blue 482.04 4.05E-03 8.97E-03 0.015337 

Green 561.41 6.93E-03 0.015103 0.024641 

PAN 589.5 5.34E-03 0.013238 0.021957 

Red 654.59 5.65E-03 0.014124 0.023288 

Table A.10 Average Rrs of Micasense bands in lakes 

Lakes MicaSense Band center nm OWT1 Average Rrs OWT2 Average Rrs OWT3 Average Rrs 

Bands 

Blue 482 4.17E-03 9.37E-03 0.015917 

Green 557 6.06E-03 0.013246 0.021718 

Red 667 4.97E-03 0.012211 0.020311 

Red Edge 717 4.63E-03 0.01092 0.017651 

NIR 831 2.28E-03 5.87E-03 0.010458 

Table A.11 Average Rrs of MicaSense bands in lakes 

LPRE OLCI Bands Band center nm Cluster 1 Average Rrs Cluster 2 Cluster 3 Average Rrs 

Average Rrs 

Band-1 400 5.32E-03 8.28E-03 2.65E-03 

Band -2 412.5 5.56E-03 8.51E-03 2.75E-03 

Band-3 442.5 6.93E-03 0.0101 3.42E-03 

Band 4 490 9.31E-03 0.01287 4.74E-03 

Band 5 510 0.010691 0.014453 5.54E-03 

Band 6 560 0.01464 0.018861 7.84E-03 

Band 7 620 0.016206 0.021076 7.82E-03 

Band 8 665 0.016216 0.021467 7.08E-03 

Band 9 673.75 0.016036 0.021329 6.78E-03 

Band 10 681.2 0.016202 0.021538 6.91E-03 

Band 11 708.75 0.015334 0.020485 6.88E-03 

Band 12 753.75 7.13E-03 0.010991 2.74E-03 
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Table A.13   Average Rrs of MicaSense bands in LPRE  

 .LPRE   Band center nm   OWT1 Average OWT2  OWT3   

  Micasense Bands  Rrs   Average Rrs   Average Rrs  

 blue  482  9.58E-03  0.013241  4.75E-03 

 Green  557  0.013078  0.017223  6.69E-03 

 Red  667  0.014485  0.019354  6.46E-03 

  Red Edge  717  0.012782  0.017516  5.71E-03 

 NIR  831  7.29E-03  0.011286  3.07E-03 

 

Table A.14     Chlorophyll a algorithm and validation results in Lakes in OWT1 satellite  

 sensors 

Satellite   Band ratio  Bands  Conc  N R²   RMSE %RMSE  %MAE   N P-

 sensors  range  value 

OLCI  

 Landsat 

 Green/NIR 

 Pan/NIR 

 B6/B11 

 Pan/NIR 

 10.-57. 

 10.-57 

 42 

 42 

 0.335 

 0.49 

 5.9 

 5.6 

 23.5 

 22.2 

 17.84 

 20.48 

 12 

 12 

 <0.05 

 <0.05 

 MODIS  Green/Red  B12/B13  10-57  42  0.07 Not 

 statistically 

significant 

 relationship 

 >0.05    

 

 

 

 

 

Table A.12 Average Rrs of Landsat bands in LPRE 

LPRE LANDSAT Band center OWT1 Average OWT2 Average Rrs OWT3 

Bands nm Rrs Average Rrs 

Blue 482.04 8.78E-03 0.012996 4.55E-03 

Green 561.41 0.014325 0.019313 7.76E-03 

PAN 589.5 0.015438 0.021275 7.04E-03 

Red 654.59 0.016162 0.0221 7.55E-03 

NIR 864.67 5.54E-03 0.010029 2.26E-03 
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Table A.15     Chlorophyll a algorithm and validation results in Lakes in OWT2 satellite 

 sensors 

Satellite 

 sensors 

  Band ratio  Bands  Conc 

 range 

 N R²   RMSE %RMSE  %MAE   N P-

 value 

OLCI  

 Landsat 

 MODIS 

 Green/NIR 

 Pan/NIR 

 Green/Red 

 B5/B11 

 Pan/NIR 

 B12/B14 

 1.8-40 

 1.8-40 

 1.8-40 

 38 

 38 

 38 

 0.44 

 0.28 

 0.106 

 13.78 

 9.24 

 14.25 

 64.8 

 45.6 

 70.4 

 50.8 

 38.8 

 57.9 

 12 

 12 

 12 

 <0.05 

 <0.05 

 <0.05 

 

    

 

    

 

      

 

           

           

           

           

 

Table A.17    Chlorophyll a algorithm and validation results in LPRE in OWT1 satellite 

 sensors 

Satellite 

 sensors 

  Band ratio   Band ratio  Chl a  N R²  RMS 

E  

%RMSE  %MAE   N P-

 value 

OLCI   Green/Red  Band6/Band9 1.7-

 21. 

37   0.49  4.09  74.47  57.83  13 <0.0 

5  

 MODIS  Green/Red Band11/Band1 

 4 

1.7-

 21. 

37   0.48  3.96  72.02  55.31  13 <0.0 

5  

LANDSA 

 T

Green/PA 

 N

 Green/PAN 1.7-

 21. 

37   0.5  4.15  75.63  59.17  13 <0.0 

5  

 

 

 

 

Table A.16 Chlorophyll a algorithm and validation results in Lakes in OWT3 satellite 

Satellite Band ratio Bands Conc N R² RMSE %RMSE %MAE N P-

sensors range value 

OLCI Green/NIR Band6/Band11 2.9-15 26 0.73 1.659 13.1 10.09 7 <0.05 

Landsat Green/pan Green/pan 2.9-15 26 0.76 3.24 25.8 19.03 7 <0.05 

Landsat Green/Red Green/Red 2.9-15 26 0.68 3.225 25.6 20.67 7 <0.05 

MODIS Green/Red Band12/Band14 2.9-15 26 0.77 3.188 32.4 21.44 7 <0.05 
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Table A.18    Chlorophyll a algorithm and validation results in LPRE in OWT2 satellite 

 sensors 

Satellite 

 sensors 

  Band ratio   Band ratio  Chl a  N R²  RMS 

E  

%RMS 

E  

 %MA 

 E 

 N P-

 value 

OLCI  

 MODIS 

LANDSA 

 T 

 Green/Red 

 Green/Red 

Green/PA 

 N 

 Band6/Band10 

Band12/Band1 

 4 

 Green/PAN 

1.3-

 10.3  

1.3-

 10.3  

1.3-

 10.3  

 19 

 19 

 19 

 0.25 

 0.16 

 0.15 

 1.396 

 1.481 

 2.272 

 56.699 

 60.181 

 64.29 

  45.99 

  49.06 

  42.66 

1 

1 

1 

1  

1 

1 

<0.0 

5  

<0.0 

5  

<0.0 

5  

 

Table A.19    Chlorophyll a algorithm and validation results in LPRE in OWT3 satellite 

 sensors 

Satellite 

 sensors 

  Band ratio   Band ratio  Chl a  N R²  RMS 

E  

%RMS 

E  

%MAE   N P-

 value 

OLCI  

 MODIS 

LANDSA 

 T 

 Green/Red 

 Green/Red 

Green/PA 

 N 

 Band6/Band10 

 Band11/Band14 

 Green/PAN 

1.6-

 8.76 

1.6-

 8.76 

1.6-

 8.76 

42  

42  

42  

 0.32 

0.32 

5  

 0.31 

 2.098 

 2.127 

 2.178 

 33.207 

 33.662 

 34.479 

 26.23 

 27.67 

 29.85 

 19 

 19 

 19 

<0.0 

5  

<0.0 

5  

<0.0 

5  

 

   

 

 

           

 

   

 

       

   

 

       

 

Table A.21   Chlorophyll a algorithm and validation results in Lakes in OWT2 UAS 

 sensors 

 UAS 

 Sensors 

  Band ratio   Band ratio  Chl a  N R²  RMS 

E  

%RMS 

E  

%MA 

 E 

 N P-

 value 

MicaSens 

 e

 CIR 

Green/Rededg 

 e

Blue/Green  

Green/Rededg 

 e

Blue/Green  

1.8-

 40 

1.8-

 40 

38  

38  

 0.2498 

 0.12 

 11.06 

 9.36 

 54.70 

 46.32 

 46.59 

 42.09 

 12 

 12 

<0.0 

5  

<0.0 

5  

 

Table A.20 Chlorophyll-a algorithm and validation in lakes in OWT1 UAS sensors 

UAS Band ratio Band ratio Chl a N R² RMSE %RMSE %MAE N P-

Sensors value 

MicaSense Blue/NIR Blue/NIR 10.02- 42 0.42 5.08 19.9 12.85 12 <0.05 

57.10 

CIR Blue/Green Blue/Green 10.02- 42 0.34 6.89 27.05 23.45 12 <0.05 

57.10 
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sensors 

UAS Band ratio Band ratio Chl a N R² RMS %RMS %MA N P-

Sensors E E E value 

MicaSense Green/Red Green/Red 2.9- 26 0.7 3.549 28.222 21.42 7 <0.05 

15.7 5 

MicaSense Blue/Rededg Blue/Rededg 2.9- 26 0.7 3.016 23.987 20 7 <0.05 

e e 15.7 3 

CIR Green/Red Green/Red 2.9- 26 0.7 3.162 25.15 19.73 7 <0.05 

15.7 1 

Table A.22 Chlorophyll a algorithm and validation results in lakes in OWT3 UAS 

 

  

 

 

 

            

           

           

Table A.23 Chlorophyll a algorithm and validation results in LPE in OWT1 UAS 

sensors 

UAS Band ratio Band ratio Chl a N R² RMSE %RMSE %MAE N P-value 

Sensors 

MicaSense Green/Red Green/Red 1.77-21.3 37 0.43 4.08 74.35 57.18 13 <0.05 

CIR Green/Red Green/Red 1.77-21.3 37 0.12 4.22 76.80 42.61 13 <0.05 

 

  

 

 

 

            

    

 

       

    

Table A.24 Chlorophyll a algorithm and validation results in LPRE in OWT2 UAS 

sensors 

UAS Band ratio Band ratio Chl a N R² RMSE %RMSE %MAE N P-value 

Sensors 

MicaSense Green/Red Green/Red 1.3-10.3 19 0.21 2.141 60.587 39.96 11 <0.05 

µg/L 

CIR Relationship not significant statistically >0.05 

 

 
 

 

 

           

 

           

           

Table A.25 Chloropyll a algorithm and validation results in LPRE in OWT3 UAS 

sensors 

UAS Band ratio Band ratio Chl a N R² RMSE %RMSE %MAE N P-

Sensors value 

MicaSense Green/Red Green/Red 1.6-8.76 42 0.3325 2.038 34.615 25.64 19 <0.05 

CIR Green/Red Green/Red 1.6-8.76 42 0.3 2.167 34.306 28.59 19 <0.05 
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