
Mississippi State University Mississippi State University

Scholars Junction Scholars Junction

Theses and Dissertations Theses and Dissertations

4-30-2021

Machine learning for wireless signal learning Machine learning for wireless signal learning

Logan Smith
logan.smith.5@gmail.com

Follow this and additional works at: https://scholarsjunction.msstate.edu/td

Recommended Citation Recommended Citation
Smith, Logan, "Machine learning for wireless signal learning" (2021). Theses and Dissertations. 5147.
https://scholarsjunction.msstate.edu/td/5147

This Graduate Thesis - Open Access is brought to you for free and open access by the Theses and Dissertations at
Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of
Scholars Junction. For more information, please contact scholcomm@msstate.libanswers.com.

https://scholarsjunction.msstate.edu/
https://scholarsjunction.msstate.edu/td
https://scholarsjunction.msstate.edu/theses-dissertations
https://scholarsjunction.msstate.edu/td?utm_source=scholarsjunction.msstate.edu%2Ftd%2F5147&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsjunction.msstate.edu/td/5147?utm_source=scholarsjunction.msstate.edu%2Ftd%2F5147&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholcomm@msstate.libanswers.com

Machine learning for wireless signal learning

By

Logan Riggs Smith

Approved by:

John E. Ball (Major Professor)
Bo Tang

Maxwell Young
James E. Fowler

Jenny Du (Graduate Coordinator)
Jason M. Keith (Dean, Bagley College of Engineering)

A Thesis
Submitted to the Faculty of
Mississippi State University

in Partial Fulfillment of the Requirements
for the Degree of Master of Science

in Computer Engineering
in the Department of Electrical and Computer Engineering

Mississippi State, Mississippi

April 2021

Copyright by

Logan Riggs Smith

2021

Name: Logan Riggs Smith

Date of Degree: April 30, 2021

Institution: Mississippi State University

Major Field: Computer Engineering

Major Professor: John E. Ball

Title of Study: Machine learning for wireless signal learning

Pages of Study: 53

Candidate for Degree of Master of Science

Wireless networks are vulnerable to adversarial devices by spoofing the digital identity of valid

wireless devices, allowing unauthorized devices access to the network. Instead of validating devices

based on their digital identity, it is possible to use their unique "physical fingerprint" caused by

changes in the signal due to deviations in wireless hardware. In this thesis, the physical fingerprint

was validated by performing classification with complex-valued neural networks (NN), achieving

a high level of accuracy in the process. Additionally, zero-shot learning (ZSL) was implemented to

learn discriminant features to separate legitimate from unauthorized devices using outlier detection

and then further separate every unauthorized device into their own cluster. This approach allows

42% of unauthorized devices to be identified as unauthorized and correctly clustered

Key words: Zero-Shot Learning, Wireless Physical Fingerprint, Machine Learning

DEDICATION

To my mother, who took care of me after a serious eye injury, giving me time and space to

consider my future. Without her hospitality, I would not have chosen to pursue a graduate degree.

ii

TABLE OF CONTENTS

DEDICATION . ii

LIST OF TABLES . v

LIST OF FIGURES . vi

CHAPTER

I. INTRODUCTION . 1

II. BACKGROUND . 3

2.1 Physical Fingerprinting . 3
2.2 WiFi . 4
2.3 Neural Networks . 4
2.4 Zero-Shot Learning . 5

III. CLASSIFYING WIFI PHYSICAL FINGERPRINTS USING COMPLEX DEEP
LEARNING . 7

3.1 Abstract . 7
3.2 Introduction . 7
3.3 Device Fingerprinting . 9
3.4 Neural Networks . 12

3.4.1 Complex NN . 13
3.5 Support Vector Machines . 14
3.6 Methods . 15

3.6.1 Development Environment . 15
3.6.2 Datasets . 16
3.6.3 Data Preprocessing . 17
3.6.4 Network Architectures . 18

3.6.4.1 Complex-valued and Real-valued DNNs 18
3.6.4.2 Complex-valued and Real-valued CNNs 19

3.6.5 Network Sizes . 20

iii

3.6.6 Training parameters . 21
3.7 Results and Discussion . 21
3.8 Conclusions and Future Work . 23

IV. IDENTIFYING UNLABELED WIFI DEVICES WITH ZERO-SHOT LEARNING 26

4.1 Abstract . 26
4.2 Introduction . 27
4.3 Background and Related Work . 29
4.4 Methods . 31

4.4.1 Dataset . 31
4.4.2 Models . 31
4.4.3 Outlier Detection . 33
4.4.4 Zero-Shot Learning . 34
4.4.5 Generalized Zero-Shot Learning 35

4.5 Results . 35
4.6 Conclusions and Future Work . 37

V. CONCLUSIONS . 39

5.1 Further Research . 39

REFERENCES . 41

APPENDIX

A. KERAS NETWORK CODES . 46

iv

LIST OF TABLES

3.1 Architecture of DNN-R1. � is the number of classes. 19

3.2 Architecture of DNN-C1. � is the number of classes. 19

3.3 Architecture of CNN-R1. � is the number of classes. 20

3.4 Architecture of CNN-C1. � is the number of classes. 24

3.5 Network number of layers and total number of trainable parameters. 24

3.6 Training parameters and settings for the DNN and CNN architectures. 24

3.7 Experiment results showing overall test accuracies in percent. Best results for each

method are shown in bold text. 25

3.8 Overall average confusion matrix for the testing data for DNN-C1 over ten runs.

The true values are in columns, and the network classifier outputs are in rows. The

bold diagonal elements are correctly classified. 25

v

LIST OF FIGURES

3.1 Preamble of a wireless signal in the 802.11a/g protocol. STF=Short Training Field,

LTF=Long Training Field, and SIG=Signal. 8

3.2 SVM parameter sweep over the kernel size and loss parameters. Individual values

in each square represent the percent accuracy achieved by the SVM averaged over

ten runs. Lighter colors mean better results. Best viewed in color. 22

4.1 Overview of generalized zero-shot learning for this test case. 28

4.2 ROC curves for the selected models. 36

4.3 Clustering accuracies for both the ZSL and GZSL settings. As expected, clustering

in the ZSL setting performed marginally better than the GZSL due to not contain-

ing legitimate devices in the mix. Both autoencoders performed better than the

classification methods. 37

vi

CHAPTER I

INTRODUCTION

Wireless networks identify devices by using a digital media access control (MAC) address,

which is intended to be unique for every device. This allows wireless networks to choose which

devices to allow access; however, this address can be easily mimicked, allowing unauthorized

devices access to the network.

Wireless devices also have a "physical fingerprint" which is less easily mimicked. This unique

identifier is caused by differences in the manufacturing of their hardware, leading to differences in

each device’s transmitted signal [16]. By using the physical fingerprint, MAC address mimicking

is avoided since the MAC address is no longer used for identification.

A wireless network may have several devices that are intended to be authorized, with all other

devices not being allowed on the network. When an authorized device tries to connect, the network

should allow access. When an unauthorized device tries the same, the network should not allow

access. Additionally, identifying and capturing inputs from unauthorized devices can be further

utilized for other purposes, such as localization of the unauthorized device. Wireless devices can be

separated and clustered using Zero-shot Learning (ZSL), where outlier detection is applied to these

wireless signals to separate authorized and unauthorized devices. These unauthorized devices are

then further clustered into their own set.

1

The contributions in this work to the physical device fingerprinting research area are:

1. Four real and complex neural networks (NN) are implemented for classification of wireless
devices using their physical fingerprint. These networks showed state-of-the-art accuracy,
implying that the physical fingerprint is indeed a valid classification input which is more
robust than using the digital MAC address.

2. A ZSL method is implemented for the case of wireless physical fingerprints, which has not
been attempted before in the literature.

3. A wireless signal dataset containing 9 classes with approximately 100 samples each.

Beyond the research here and in Chapters 3 and 4, this work has been extended by classifying

long term evolution (LTE) signals and investigated the effect on classification for applying the

short time Fourier transform with varying filter sizes to wireless signals. Additional code and

experiments were written to perform localization of wireless devices for both real and simulated

data.

2

CHAPTER II

BACKGROUND

Herein, an explanation of physical fingerprints is presented, alongside an overview of NNs used

in this document and a review of the ZSL literature.

2.1 Physical Fingerprinting

When a wireless device is communicating to a receiver using a wireless protocol, MAC address

identification occurs in the data link layer. The signal is originally obtained in the physical layer

before being passed to the data link layer. By focusing on the signal obtained in the physical layer,

the physical fingerprint of the device can be captured. This fingerprint is unique to that device due

to differences in the analog circuitry of every device when they are manufactured [16], which is

shown in differences in transmissions in the physical layer.

There have been several methods that have already utilized physical fingerprinting to increase

robustness. The transient of the signal has been utilized [27], as well as the power [45], and the

wavelet transform [28], and the magnitude and phase of each signal [48]. Dimensionality reduction

of the data was implemented using principal component analysis [41] as well as autoencoders (AE)

[51]. A comparison between using high-end and low-end receivers has also been employed [44].

3

2.2 WiFi

WiFi refers to a class of IEE 802.11 network protocols which allow wireless devices to connect

to access points and the Internet. The most common radio bands used are 2.4 gigahertz (GHz) and

5 GHz. Data sent over these bands are formatted into 802.11 frames, using the MAC address when

sending over a local area network (LAN).

2.3 Neural Networks

NNs are a collection of neurons that learn through training on a dataset. Given sufficient

depth and appropriate non-linearities, NNs can learn any continuous function to any given desired

precision [15]. This has allowed intellectual work to be offloaded onto NNs, saving time and

even allowing superhuman performance. NNs have been shown to control a manned aircraft after

simulated damage affecting maneuverability has occurred [25]. They have been used to analyze

nuclear sites and their economic impact [36]. The medical field has made use of NNs for the

purpose of sleep analysis [49] and decision making for potential intensive care patients [29].

Deep NNs (DNN) include a large class of NNs, including AEs, convolutional neural networks

(CNN), and complex NNs which are presented in this work. The "deep" adjective means there are

multiple hidden layers in the network.

Convolutional neural networks (CNN) apply convolution to the dataset (usually images) to

detect high level features like edges and corners. It may also contain max pooling layers and

dense layers at the end of the network. A popular CNN is Alexnet which achieved state-of-the-art

accuracy in 2012 on the imagenet dataset [32].

4

AEs are NNs that first encodes data and then decodes it back into the original data. This allows

the network to learn a compression of the data while optimizing for the minimal loss of information

in the process. Many methods use the AEs compressed representation of the data for the purpose

of dimensionality reduction and feature selection.

Complex NNs have complex-valued weights and activation functions. This greatly expands the

possible representation space of the network parameters [52, 17].

Support vector machines (SVM) attempt to separate the inputs using a learned hyperplane.

Many datasets cannot be linearly separated, though it is possible to avoid that issue by first

projecting the data using a kernel before learning an optimal hyperplane. SVMs have been applied

in many important applications, with one example being facial recognition [43]

2.4 Zero-Shot Learning

ZSL attempts to correctly classify unseen classes of data that were not seen in the training

dataset. This is closely related to one-shot learning where one example of each unseen class is

available during training. Typically in ZSL, extraneous semantic information is available for the

unseen classes. For example, the unseen class of "zebra" contains the semantic labels of "black",

"white", and "striped". As the network learns these semantic labels from other classes, it can then

transfer that knowledge to recognize a zebra in the testing phase, even though it was not trained on

any zebras in the training dataset. Mathematically, ZSL can be defined as follows:

Zero-Shot Learning: Denote DCA = {(G8, H8)}, for 8 = 1, 2, · · · , #CA , as the training data set

consisting of #CA labeled data samples. Assume that these #CA training samples belong to a set of

#B seen classes: CCA = {2CA8 }, for 8 = 1, 2, · · · , #B. Also, denote DC4 = {GC48 }, for 8 = 1, 2, · · · , #C4,

5

as a test data set, and each data sample GC4
8
belongs to either one of the seen classes from CCA or one

of the unseen classes from CC4 = {2C48 }, for 8 = 1, 2, · · · , #D, where CCA ∩ CC4 = ∅. Then, the goal

of ZSL is to train a classifier that can predict class labels of all testing data samples in DC4.

Although in cases such as wireless classification, meaningful semantic labels cannot be curated

beforehand. It then falls toNNs to learn features that can differentiate unseen classes into reasonable

clusters.

Once these features are learned, clustering is required to separate the dataset accordingly.

Clustering is an unsupervised learning method which groups data points according to a similarity

metric, such as their Euclidean distance and their density. K-means clustering assigns clusters

based on euclidean distance from k randomly selected centroids. For many cases, it is unknown an

optimal value to choose for k, though a useful heuristic is the "elbow" method where the variance of

the data is plotted against the number of clusters [50]. A useful value for k is found in the "elbow"

of the graph where most of the variance is explained for the least amount of clusters chosen, and

greater values of k result in diminishing returns.

Density-based spatial clustering of applications with noise (DBSCAN) is another clustering

algorithm, though this method relies on a closeness parameter n and density (minPts) as opposed to

a pre-specified value k for the number of clusters [20]. For every point, if it is has minPts neighbors

within n-distance, it is considered part of that cluster with those neighbors. Points without a

sufficient amount of neighbors are considered noise.

6

CHAPTER III

CLASSIFYING WIFI PHYSICAL FINGERPRINTS USING COMPLEX DEEP LEARNING

3.1 Abstract

Wireless communication is susceptible to security breaches by adversarial actors mimicking

Media Access Controller (MAC) addresses of currently-connected devices. Classifying devices by

their “physical fingerprint” can help to prevent this problem since the fingerprint is unique for each

device and independent of the MAC address. Previous techniques have mapped the WiFi signal

to real values and used classification methods that support solely real-valued inputs. In this paper,

four new deep neural networks (NNs) are implemented for classifying WiFi physical fingerprints:

a real-valued deep NN, a corresponding complex-valued deep NN, a real-valued deep CNN, and

the corresponding complex-valued deep convolutional NN (CNN). Results show state-of-the-art

performance against a dataset of nine WiFi devices.

3.2 Introduction

In order to classify the “physical fingerprint”, only the preamble of each wireless signal is used.

The preamble for the 802.11a/g wireless protocol can be broken down into three subcomponents:

the Short Training Field (STF), the Long Training Field (LTF), and the Signal (SIG). This provides

information regarding synchronization and data length (or how to decode and howmuch to decode).

Importantly, information on the MAC address is absent, making it invariant to MAC-address

7

spoofing. Sampling at 20 MHz with a software-defined radio (SDR), the preamble is located in

the first 400 samples of each signal as shown in Figure 3.1.

Figure 3.1: Preamble of a wireless signal in the 802.11a/g protocol. STF=Short Training Field,
LTF=Long Training Field, and SIG=Signal.

Herein, real-valued and complex-valued deep neural networks (DNNs) and deep convolutional

neural networks (CNNs) are investigated to classify WiFi preamble signals. The contributions in

this work to the physical device fingerprinting research area are:

1. A high-performance real-valued DNN has been developed and validated.

2. A complex-valued DNN that mirrors the architecture of the corresponding real-valued DNN
has been developed and validated.

3. A high-performance real-valued deep CNN has been developed and validated.
8

4. A complex-valued deep CNN that mirrors the architecture of the corresponding real-valued
deep CNN has been developed and validated.

5. All four networks show performance that is at or above state-of-the-art methods for physical
device fingerprinting.

This section will discuss some basics of NNs and support vector machines (SVMs) and discuss

previous methods in device fingerprinting analysis.

3.3 Device Fingerprinting

Device fingerprinting relies on hardware devices having a unique digital transmission signa-

ture [30, 4, 21, 10, 46]. Radio frequency (RF) fingerprinting is challenging due to multipath and

channel fading effects, component aging and temperature effects on electronics [46, 21], as well

as hardware related imperfections and differences between individual units that cause modulation

errors and artifacts [9]. There are several survey papers on this topic as device fingerprinting is an

active area of interest [37, 10, 21, 7, 57, 22, 59, 54, 39, 23, 2, 5].

Over the past several years, a number of methods have been proposed for device fingerprint-

ing [4, 21]. A common approach is to rely on the usage of RF technology. For example, many

RF identification systems (RFIDs) are used in a wide variety of applications due to their resistance

to multipath effects and the complexities of indoor systems [21]. One method, in particular, takes

advantage of RF technology by using Bayesian change detectors to find RF fingerprints [53]. How-

ever, performance is dependent on specific equipment, and the corresponding energy consumption

may be prohibitive in certain settings. Chen et al. utilized infinite hidden Markov random fields for

device fingerprinting [12]. Lanze et al. used RF clock skew to analyze RF fingerprints [33]. Some

proposed solutions utilize the transient signal for analysis. Klein et al. performed a sensitivity

9

study using two different techniques [27]. Rehman et al. examined the energy envelope of signal

transients for RF fingerprint extraction [45]. Klein et al. utilized wavelet transforms to analyze RF

fingerprints [28].

A mobile approach to fingerprinting has also been investigated. Khullar and Dong opted for

a client-server approach using cell phones to scan and extract data from the WiFi access points.

Afterward, the collected data is processed through SVMs, in order to train and test their system [24].

They found that adding temporal features greatly enhanced location prediction accuracies. Suski

et al. put forth a digital fingerprint classifier system. The system first estimated the instantaneous

amplitude, phase for each time sample and then estimated the transient start-up location [48].

Based on the transient location, they extracted statistical and parametric features from the signal

and applied Fisher’s linear discriminant analysis and spectral correlation. They achieved about

83% and 93% overall localization accuracies using spectral correlation and multiple discriminant

accuracy, respectively, with three classes and a 6 dB signal to noise ratio. Padilla et al. utilized

principal components analysis and partial least squares regression to classify digital fingerprints.

They classified ten different devices and the best results were about 94% overall accuracy [41].

Brik et al.’s Passive RAdiometric Device Identification System (PARADIS) approached fin-

gerprinting by specifically identifying hardware modulation differences such as IQ encoder errors,

self-interference, frequency errors and amplitude clipping [9]. They tested their system on a rel-

atively large set of data (138 different devices). Their approach works in the modulation domain

by estimating the IQ origin offsets , frequency differences, Sync correlation behavior, magnitude

error and phase error between ideal and observed data over multiple symbols in a frame. An

Agilent 89641S vector signal analyzer was used to capture the data. They achieved excellent

10

performance of about 99.6% overall accuracy. However, their approach requires sensitive and very

costly equipment ($100 range) to estimate the error data and many frames to perform analysis.

Rehman et al. has examined low-end and high-end receivers, and concludes that low-end receivers

(SDRs) require a higher SNR to achieve good performance compared to high-end receivers [44].

High-end receivers definitely have a performance advantage over low-end SDRs.

Many NN are called deep networks or DNNs, because they have many layers. DNNs have

been used successfully in many areas including image processing, remote sensing, etc. [6]. A

special class of DNNs is a CNN. A CNN is loosely based on the human and primate visual system.

A typical CNN operates on imagery and usually employs multiple groups 2D masks followed by

pooling and some nonlinear activation such as a rectified linear unit (relu). Usually, at the tail

end of the network, there are some fully connected (Dense) layers followed by a softmax layer for

classification.

Recently, DNNs and CNNs have been applied for RF fingerprint analysis. For example, using

2D radio maps as inputs, Jang and Hong developed a system using a CNN for indoor localization

[23]. An attractive feature of CNNs is that they have fewer parameters than DNNs; consequently,

using a CNN allows for improved execution times and offers more sensitivity to power fluctuations

caused by multipath effects. They used computer access points (APs) to collect data and analyzed

the received signal strength indicator (RSSI) values. They transformed the RSSI vector by adding

some padding data and reshaping it into an image then applied a deep CNN. Their goal was

to estimate the building ID and floor in the building, and they achieved about 95% accuracy.

Nowicki and Wietrzykowski proposed using DNNs to facilitate learning from the data rather

than tedious hand-tuning for fingerprinting [40]. Specifically, they used a diabolo-shaped stacked

11

autoencoder (AE) for dimensionality reduction. They also utilized RSSI information and analyzed

the UJIIndoorLoc dataset [51], which contains 21,048WiFi scans recorded by 25 Android devices.

The AE inputs 520 RSSI values in the dataset. Their system examined results on building and

floor localization, and achieved about 91% accuracy on the test subset. Merchant et al. used three

deep learning networks with exponential activation units (ELUs) [14] to recognize IEEE 802.15.4

devices with about 92.3% overall accuracy [38].

3.4 Neural Networks

NNs are loosely based on human neurons. Each fully-connected neuron accepts inputs and

calculates a dot product of the inputs and adds a bias term. The neuron output is the processed

with a linear or non-linear function called the activation function. A standard DNN is composed

of many interconnected layers of neurons. A process called backpropagation is used to adjust the

neuron weights and bias terms. This process is called training the network, and there exist several

training methods in the literature; herein, the Adam (adaptive moment estimation) method [26] is

used for network training.

Given sufficient depth and appropriate non-linearities, NNs can learn any continuous function to

any given desired precision [15]. This propertymakesNNs an attractive choice formachine learning

and signal classification. However, NNs must also contend with the problem of overtraining. To

mitigate this, the network size and complexity can be adjusted, and dropout layers can be utilized.

Dropout layers randomly set some specified fraction of these inputs to zero during training. In

most cases, this forces the network to generalize better. During the inference phase (giving the

network testing data), all of the signals are passed through the dropout layer.

12

3.4.1 Complex NN

Complex NNs are less common in the literature and it seems likely that there exists only

one implemented example [52, 17]. One may expect they are uncommon because most deep-

learning networks operate on real-valued data such as images or time sequences. Radar data and

receiver data in communication systems are instances where the data is inherently complex, and

these systems are beginning to implement deep learning, but even then, oftentimes these systems

transform the complex data and utilize real-valued networks. Moreover, there is a very significant

amount of software available for deep learningwith real-valued network, such as Tensorflow, Keras,

PyTorch, Matlab’s deep learning toolbox, etc. These heavily-used systems mostly provide support

for real-valued networks, so it is natural that their might be a scarcity of choices for complex-valued

networks.

Unfortunately, this implementation is a poor fit for the application. While this complex

NN can process complex data internally, its layers accept only real data as inputs. Moreover, a

critical function, ComplexConv1D, does not support the same input shape as TF’s one-dimensional

convolution layer, Conv1D. In TF, the input tensor is formatted as (None, data_vector_size,

1), where None indicates that TF can select the batch size. However, ComplexConv1D takes

inputs (None, data_vector_size). Consequently, TF Conv1D was used as the first layer in

the complex CNN.

A typical real-valued NN might use a rectified linear unit (relu) operator to provide a non-

linearity, where a relu is defined as

13

A4;D (G) =

G G ≥ 0

0 G < 0
, (3.1)

where G is a real-valued variable. However, the real-valued relu is not appropriate for a complex-

valued input. One suggested replacement is called the “modrelu” [56]. The modrelu utilized for a

complex value I with real-valued parameter 1 is

<>3A4;D (I) = A4;D (|I | + 1) I|I | . (3.2)

Herein, the modrelu is modified slightly to prevent division by zero. The Keras code is listed in

Appendix A and the modrelu used herein (with Y = 1.0× 10−12), which is a small value utilized to

prevent dividing by zero. Other values could have been chosen as well. The modified modrelu as

shown below in eq. (3.3)

<>3A4;D (I) = A4;D (|I | + Y + 1) I

|I | + Y . (3.3)

The complex networks was difficult to train using the suggested modrelu parameter of 1 = −0.5,

so instead 1 = 0.01 was used.

3.5 Support Vector Machines

A SVM is a shallow-learning methods that uses an objective function to find an optimal

separating hyperplane, either in the input data space or in the kernel space, that best separates

the data samples. A linear SVM learns an optimal separating hyperplane from the training data,

and this decision boundary is then applied to the testing data. If the data are slightly non-linearly
14

separable, slack variables can be used. However, if the data are highly nonlinear, then the linear

SVM will provide sub-optimal results. The second approach is to utilize kernel machines, which

project the data into a nonlinear space (when designed correctly this space will make the data

nearly linearly separable) and then use a linear SVM in the projected space. The non-linear SVM

is called a kernel SVM.

Herein, the radial basis function (RBF) kernel, which has one parameter that controls the RBF

variance, was utilized. The SVM itself has a cost parameter, which is the penalty incurred during

optimization for classification errors. The rfb kernel SVM thus has two hyperparameters, the cost

� and the RBF kernel size. The RBF kernel with two input vectors x and y is

 (x, y) = 4G?
(
−‖x − y‖2

2f2

)
. (3.4)

The scikit SVM [42], which is a wrapper around libsvm [11], was used.

3.6 Methods
3.6.1 Development Environment

Herein, Keras [13] and Tensorflow (TF) [1] are used for implementing and testing the various

NN architectures. Anaconda [3] was utilized to install the required packages as shown in Appendix

A.10.

TF 2 was utilized with graphical processing unit (GPU) support for faster training. TF GPU

is not required, the CPU version is fine as well. Instructions for installing TF GPU can be found

here: https://towardsdatascience.com/tensorflow-gpu-installation-made-easy-use-conda-instead-

of-pip-52e5249374bc.

15

3.6.2 Datasets

To collect the signals for this dataset, IEEE 802.11a/g WiFi traffic were captured from nine

different devices: Five WiFi routers, a Google Pixel 2XL, a Samsung Galaxy J2 Prime, an Oppo

R11, and a Blackberry Curve 3G 9300 phone. This variety of transmitters was intended to prove the

efficacy of the radio fingerprinting process. A USRP B210 SDR was used to collect the complex

data using GNURadio [19]. The USRP B210 offers many desirable features for this experiment,

such as a frequency range of 70 MHz - 6GHz, instantaneous bandwidth of 200 KHz - 56 MHz,

sampling rates up to 61.44 MS/s, and receiver front-end gains of up to 76dB. Ultimately, traffic

was captured at a 20 MHz sampling rate for approximately two minutes.

Building off ofBloessl’sWiFi receiver [8], an autocorrelation function detects the STF sequence

of the WiFi frame based on its periodicity. Then, the receiver saves a copy of the raw frame with

a generated counter and attaches that same counter to the original. The original continues being

processed until the MAC address can be extracted and saved to file with the counter.

There are cases where the MAC address cannot be extracted; for example, due to a corrupted

frame. When collecting data, any frames where such an error occurs were thrown out. Additionally,

frames containing an all-zero MAC address were removed. However, there were still frames where

the noise was constant and cyclical over the whole frame, as opposed to just the STF sequence of

a normal frame. This is one reason to explain why the autocorrelation function categorized it as

a normal WiFi frame. Thus, any frames whose maximum correlation was not 1 higher than the

average autocorrelation were filtered out.

When recording data, the first sample was flagged if its amplitude was greater than 0.05,

keeping the next 400 samples which represent the preamble. The amplitude constant was set

16

empirically based on the receiver noise characteristics. Signals that had a preamble zeroed-out

midway through were discarded. Signals fromwireless devices that provided less than 90 instances

each were disposed. The remaining signals were split into real and imaginary components, leading

to a signal with 800 real samples representing 400 complex samples.

Additionally, approximately 0.1% of signals were not wireless preambles, but still passed the

autocorrelation threshold by coincidentally having the same periodicity of the preamble’s STF.

These were thrown out manually. This dataset contained preambles of nine wireless devices with

about 100 instances each.

3.6.3 Data Preprocessing

The data was collected using an SDR, and verifiedmanually. This data is IQ data. The preamble

consists of 400 complex samples. Most NNs are not designed to ingest complex data. As such,

there are several options available to the network designer. One option is to encode the complex

data as in eq. 3.5 by interleaving the real and the imaginary for each complex sample.

x� = ['� {G0} , �" {G>} , '� {G1} , �" {G1} , · · · , '� {G#−1} , �" {G#−1}]) . (3.5)

Here, '� {G} and �" {G} denote the real and imaginary portions of G, respectively, the superscript

) denotes a transpose operator, and # is the data vector size (400 complex samples). Herein, the

real imaginary encoding method shown in eq. 3.5 is utilized.

NNs can be sensitive to the data ranges. To normalize the data, the maximum values of the real

and complex data were used. The data was normalized by dividing all samples by the maximum

amplitude plus 0.1 for overhead. The normalized data was randomly shuffled and split into three

17

disjoint datasets: training (60 %), validation (10 %) and testing (30 %). The data splitting kept

the same approximate class ratios in each split. In the experiments, the network was run ten times,

each time preprocessing, randomizing, and splitting the data.

Finally, since there were not enough training samples for the network sizes, data augmentation

was used. For each data vector, ten new samples were created by taking the original vector and

adding a random constant phase shift to every interleaved sample prior to processing by eq. 3.5.

That is, a single phase offset was applied to the complex data. The rationale is the phase of the data

is inherently unknown, so this accounts for the uncertainty in this parameter while also providing

augmented data samples for the system.

3.6.4 Network Architectures

Several network architectures are investigated for their ability to distinguish different phone

signatures. Herein, four NN architectures are examined: (1) a deep, real-valued NN, (2) a deep,

complex-valued NN, (3) a deep, real-valued CNN, and (4) a deep, complex-valued CNN.

3.6.4.1 Complex-valued and Real-valued DNNs

Herein, two DNNs are analyzed, a real-valued DNN (DNN-R1) and a complex-valued DNN

(DNN-C1). The network architectures for the DNN-R1 and DNN-C1 networks are shown in Tables

3.1 and 3.2, respectively. Keras codes for these two networks is given in Appendix A. In addition,

to provide comparison methods to previous methods in the literature, a kernel SVMwas utilized to

provide a baseline. Dense is a TF fully-connected layer. The rate for a dropout layer is the fraction

of entries that are randomly zeroed during each training minibatch. The number of classes is �.

The Abs layer calculates the absolute value of the complex input and casts to TF float32 datatype.

18

Table 3.1: Architecture of DNN-R1. � is the number of classes.
Layer Size Options
Input (None, 800)
Dense 800 relu activation
Dense 200 relu activation
Dense 50 relu activation
Dropout 0.50 rate
Dense C softmax

Table 3.2: Architecture of DNN-C1. � is the number of classes.
Layer Size Options

Input (None, 800)
ComplexDense 800 modrelu activation
ComplexDense 200 modrelu activation
ComplexDense 50 modrelu activation
Abs
Dropout 0.60 rate
Dense C softmax

3.6.4.2 Complex-valued and Real-valued CNNs

The network architectures of the complex-valued CNNs are shown in Tables 3.3 and 3.4. The

CNN network uses 32 filters of size 12 followed by 2 × 2 max pooling and 64 filters of size 3,

followed by two 2 × 2 max pooling layers. A dropout layer with loss rate 0.5 is used to mitigate

overtraining. The data are flattened and then passed through two 32-neuron fully connected (dense)

layers and a final dropout layer before the softmax activation layer. The network CNN-C1 is the

complex equivalent of CNN-R1. The main differences are the second set of convolution layers

are complex, and the two fully connected layers after the flattening layer are also complex. The

first layer is a regular Conv1D, since the ComplexConv1D implementation was not able to accept

inputs compatible with the rest of the network. Also, a complex dense layer of size has 2
19

components (one each for real and complex), so the final layer would have 2� outputs, which did

not match the dataset with nine classes. For that reason, the last softmax layer is a real-valued fully

connected layer.

Table 3.3: Architecture of CNN-R1. � is the number of classes.
Layer Size Options

Input (None, 800, 1)

Conv1D 32

kernel size 12
relu activation
same padding
strides of 2

MaxPool1D 2

Conv1D 64

kernel size 3
relu activation
valid padding
strides of 2

MaxPool1D 2
MaxPool1D 2
Dropout rate 0.5
Flatten
Dense 32 relu activation
Dense 32 relu activation
Dropout rate 0.5
Dense � softmax activation

3.6.5 Network Sizes

One important consideration for any DNN or CNN is the total number of trainable parameters.

This affects the network performance as well as sets requirements on the minimum size of the

training set. Table 3.5 shows the overall number of parameters for each network. From the table,

there are a few more layers in DNN-C1 due to the conversion to absolute value. Also, in terms of

20

trainable parameters, CNN-C1 is about double the size of CNN-R1, which is expected, since the

ComplexConv1D will have double parameters to handle real and imaginary numbers. The CNN

networks are much smaller and perform relatively well.

3.6.6 Training parameters

Table 3.6 lists the training parameters for each network. The term “None” in the input size

is the encoding TF uses to allow batches to be any size. The number of training epochs and

batch sizes were adjusted to provide strong performance results while minimizing overtraining.

It is hard to directly compare to other classification results in the literature since the datasets

are different. The best results in the literature are currently PARADIS [9], but if you consider

the very expensive hardware required for their system versus the an inexpensive SDR solution,

state-of-the-art performance was achieved in device fingerprinting classification.

3.7 Results and Discussion

In this study, four NN’s were compared: A real-valued DNN (DNN-R1) and it’s complex-

valued counterpart (DNN-C1), a real-valued CNN (CNN-R1) and it’s complex-valued counterpart

(CNN-C1), and a RBF-SVM. To optimize the SVM parameters, a parameter sweep was performed

across the penalty parameter and the RBF size. Fig. 3.2 shows the results of the parameter sweep

for training (unaugmented dataset). Based on these results, the RBF standard deviation parameter

was selected as 4.096 and the cost as 38.0. The overall results are tabulated in Table 3.7. The

results show the overall accuracies for the raw complex data and the FFT-processed complex data.

The best results were obtained with DNN-C1 on the FFT-processed data, achieving 98.81% overall

accuracy. Network DNN-R1 was a close second with 98.14% overall accuracy on the raw complex

21

data. The SVM had the next best at 96.88% overall accuracy, followed by CNN-R1, with 96.06%

overall accuracy.

Figure 3.2: SVM parameter sweep over the kernel size and loss parameters. Individual values in
each square represent the percent accuracy achieved by the SVM averaged over ten runs. Lighter
colors mean better results. Best viewed in color.

From these results, it is seen that DNN-C1, the complex-valued version of DNN-R1, slightly

outperformed real-valued network for the FFT-processed data. Furthermore, in all cases except

DNN-R1 (which was very close), the FFT-processed data gave better results. This was expected,

since the time-domain data can have phase shifts. A delay in the time domain would just induce a

phase shift in the FFT domain.

22

Table 3.8 shows the testing average confusion matrix for CNN-C1 over ten runs. Classes 0 -

4 are routers, class 5 is a Blackberry Curve, 6 is an Oppo R11, 7 is a Google Pixel 2XL and 8

is a Samsung Galaxy J2 Prime. The most confusion was found for class 4, which the classifier

confused between the other routers. There was a small amount of confusion between classes 5, 6,

and 7.

3.8 Conclusions and Future Work

In this paper, four networks were created that provide state-of-the-art performance for device

ID fingerprinting based on the 400-sample preamble. Very high classification accuracies were

obtained for all of the proposed networks, especially DNN-R1. For data captured via SDR, state-

of-the-art RF classification performance was achieved. It was also demonstrated that complex NN

are feasible alternatives for complex-valued signal processing. Finally, in almost all cases, there

were performance gains by pre-processing the signals with a FFT.

Future work includes testing on a larger set of devices, implementing a complex NN that

natively handles complex inputs, testing different network architectures and optimizing via a genetic

algorithm. Furthermore, more training samples can benefit larger networks, so it is desirable to

perform a large-scale data collection. Finally, it would be beneficial to investigate modifying the

complex NN 1D convolution to be a drop-in replacement for a real-valued TF 1D convolution.

23

Table 3.4: Architecture of CNN-C1. � is the number of classes.
Layer Size Options

Input (None, 800, 1)

Conv1D 32

kernel size 12
modrelu activation
same padding
strides of 2

MaxPool1D 2

ComplexConv1D 64

kernel size 3
modrelu activation
valid padding
strides of 2
complex_independent kernel initializer

MaxPool1D 2
MaxPool1D 2
Dropout rate 0.5
Flatten
ComplexDense 32 modrelu activation
ComplexDense 32 modrelu activation
Dropout rate 0.5
Dense C softmax activation

Table 3.5: Network number of layers and total number of trainable parameters.

Network Number of
Layers

Total Trainable
Parameters

DNN-R1 5 811,509
DNN-C1 7 982,559
CNN-R1 11 57,161
CNN-C1 11 107,753

Table 3.6: Training parameters and settings for the DNN and CNN architectures.
Network DNN-R1 DNN-C1 CNN-R1 CNN-C1Parameter

Optimizer Adam Adam Adam Adam
Learning rate 2.0e-3 2.0e-3 2.0e-3 2.0e-3
Data vector size (#) 800 800 800 800
Input Size (None,#) (None,#) (None,# ,1) (None,# ,1)
Epochs 6 67 57 57
Batch size 100 500 725 725

24

Table 3.7: Experiment results showing overall test accuracies in percent. Best results for each
method are shown in bold text.

Method Complex Data
(No FFT)

Complex Data
(FFT Processed)

Real-valued NN (DNN-R1) 98.14 98.01
Complex-valued NN (DNN-C1) 96.09 98.81
Real-valued CNN (CNN-R1) 95.20 96.06
Complex-valued CNN (CNN-C1) 92.63 93.95
SVM 95.31 96.88

Table 3.8: Overall average confusion matrix for the testing data for DNN-C1 over ten runs. The
true values are in columns, and the network classifier outputs are in rows. The bold diagonal
elements are correctly classified.

0 1 2 3 4 5 6 7 8
0 1333.3 0.0 0.0 2.4 7.0 0.0 9.6 0.0 0.0
1 1.1 1363.0 3.9 0.0 7.4 5.6 0.0 0.0 6.3
2 1.1 0.0 1375.1 0.0 0.0 0.0 0.0 4.6 5.4
3 0.0 0.0 0.0 1376.9 0.0 6.4 0.0 8.8 0.0
4 13.2 3.1 7.0 6.7 1266.1 4.1 0.0 0.0 0.90
5 0.0 1.9 0.0 0.0 2.1 1065.5 0.0 0.0 0.0
6 9.3 0.0 0.0 0.0 0.0 5.2 901.4 5.1 0.0
7 0.0 0.0 0.0 0.0 0.4 1.2 0.0 1069.5 0.0
8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1029.4

25

CHAPTER IV

IDENTIFYING UNLABELED WIFI DEVICES WITH ZERO-SHOT LEARNING

4.1 Abstract

Inwireless networks,MAC-address spoofing is a common attack that allows an adversary to gain

access to the system. To circumvent this threat, previous work has focused on classifying wireless

signals using a “physical fingerprint”, i.e., changes to the signal caused by physical differences

in the individual wireless chips. Instead of relying on MAC addresses for admission control,

fingerprinting allows devices to be classified and then granted access. In many network settings,

the activity of legitimate devices—those devices that should be granted access—may be dynamic

over time. Consequently, when faced with a device that comes online, a robust fingerprinting

scheme must quickly identify the device as legitimate using the pre-existing classification, and

meanwhile identify and group those unauthorized devices based on their signals.

This paper presents a two-stage Zero-Shot Learning (ZSL) approach to classify a received

signal originating from either a legitimate or unauthorized device. In particular, during the training

stage, a classifier is trained for classifying legitimate devices. The classifier learns discriminative

features and the outlier detector uses these features to classify whether a new signature is an outlier.

Then, during the testing stage, an online clustering method is applied for grouping those identified

unauthorized devices. This approach allows 42% of unauthorized devices to be identified as

unauthorized and correctly clustered.

26

4.2 Introduction

There is a need to separate legitimate from unauthorized devices using a mix of both supervised

and unsupervised learning using ZSL. Once separated, the system needs to further isolate each

unauthorized device into its own cluster. This will allow specific information on each unauthorized

device to be available for further purposes such as localization of individual devices and method

of attack.

In the online setting, there is only access to legitimate devices beforehand for training; therefore,

labels exist for legitimate devices, but not for unauthorized ones. It follows that supervised model

cannot be solely used; however, to exclusively use an unsupervisedmethod would be throwing away

useful information about available legitimate devices. This motivates the use of ZSL, which is a

form of semi-supervised learning where it is possible to leverage information regarding observed

classes (legitimate devices) in order to better separate unseen classes (unauthorized devices) into

their own clusters. Figure 4.1 illustrates how generalized zero-shot learning applies to this specific

use case.

27

Figure 4.1: Overview of generalized zero-shot learning for this test case.

It is common to use additional semantic information to aid classification of unknown classes

(such as “black, white, stripes” to classify “zebra”). Unfortunately, in this case, there is not

meaningful semantic descriptions for wireless devices. The general form of ZSL without using

additional semantic information is as follows:

1. Feature extraction: learning discriminative features helps identify outliers and cluster unseen
classes.

2. Outlier detection: outliers will represent unknown/unauthorized devices.

3. Clustering of outliers: outliers will consist mostly of unknown/unauthorized devices, which
there are no labels for; therefore, there is a need to separate each device into it’s own cluster.

Here, the main contributions are (i) identifying features of wireless data that lend themselves

to outlier detection, and (ii) finding a different set of features more suited for clustering unseen

devices.

28

4.3 Background and Related Work

The problem of identifying unknown devices can be formulated as a ZSL problem where

the seen classes (i.e., legitimate devices) in the training data set and the unseen classes (i.e.,

unauthorized devices) to be classified in the test data set are disjoint. Mathematically, the ZSL can

be defined as follows:

Zero-Shot Learning: Denote DCA = {(G8, H8)}, for 8 = 1, 2, · · · , #CA , as the training data set

consisting of #CA labeled data samples. Assume that these #CA training samples belong to a set of

#B seen classes: CCA = {2CA8 }, for 8 = 1, 2, · · · , #B. Also, denote DC4 = {GC48 }, for 8 = 1, 2, · · · , #C4,

as a test data set, and each data sample GC4
8
belongs to either one of the seen classes from CCA or one

of the unseen classes from CC4 = {2C48 }, for 8 = 1, 2, · · · , #D, where CCA ∩ CC4 = ∅. Then, the goal

of ZSL is to train a classifier that can predict class labels of all testing data samples in DC4.

Unlike many traditional machine learning methods which focus on classification problems

where all classes are available in the training data set, ZSL requires incrementally learning and

identifying new unseen classes during the testing stage. Many ZSL algorithms have been developed

for the past decade with a wide range of applications in computer vision, robotics, and natural

language processing. The rest of this section presents a brief review of related works in zero-shot

learning, while interested readers can be referred to a more comprehensive survey of the literature,

such as Wang et al.[55].

A ZSL algorithm typically falls into the following two categories: instance-based methods

and classifier-based methods. While the former aims to leverage labeled instances for learning

classifiers of unseen classes, the latter focuses on the learning of classifiers directly upon instances

from both seen and unseen classes. Existing classifier-based methods usually apply a one-vs-rest

29

scheme to build classifiers for each class, and three types of approaches have been developed:

correspondence methods [18, 34, 35], relationship methods [31, 58, 60], and combination methods

[47]. The instance-based approaches focus on the building of labeled instances for the unseen

classes through projection, instance-borrowing, and synthesizing. Note that most existing zero-

shot learning methods are built by exploring the relations of seen and unseen classes in their

attributes and semantics. While these methods perform well in many image-analysis tasks, where

meaningful semantics exist to describe instances, they would fail in this study of RF signal analysis

to identify unseen devices whose fingerprints are difficult to describe with explicit attributes.

This paper presents a two-stage approach to address this problem. During the training stage,

a classifier is first trained to learn discriminative features and recognize those legitimate devices.

During the online testing stage, with the learned features, an outlier detector is used to identify all

test instances belonging to the unseen classes, and apply a clustering algorithm which groups those

unseen class instances, i.e., outliers, in terms of their similarity in the feature space.

Density-based spatial clustering of applications with noise (DBSCAN) is one such clustering

algorithm. This method uses two parameters: n which defines how close two datapoints need to

be and minPts which specifies the number of neighbors required [20]. For every point, if it is

has minPts neighbors within n-distance, it is considered part of that cluster with those neighbors.

Points without a sufficient amount of neighbors are considered noise.

30

4.4 Methods
4.4.1 Dataset

To collect the dataset for this project, USRP B210 SDR and GNURadio were used. Building

off of Bastian Bloessl’s WiFi receiver [8], an autocorrelation function detects the STF sequence of

the WiFi frame based on its periodicity.

The magnitude of each complex signal was recorded, and due to noise, the first sample of

each signal that had an amplitude greater than 0.05 was flagged, keeping the next 400 samples

which represent the preamble. The threshold was empirically determined based on the noise levels

of the SDR. Signals that had a preamble zeroed-out midway through were discarded. Signals of

wireless devices that contained less than 90 instances each were thrown out, as having less would

cause insufficient training. The remaining signals were then scaled individually to unit norm using

Sklearn’s normalize function [42].

Additionally, approximately 0.1% of signals were not wireless preambles, but still passed

the autocorrelation threshold by coincidentally having the same periodicity of the preamble’s STF.

Such signals were discardedmanually. Ultimately, the dataset contained preambles of nine wireless

devices with approximately 100 instances each.

4.4.2 Models

Four neural network models were implemented for learning discriminative features in an either

supervised or unsupervised manner: convolutional neural network (CNN), multi-layer perceptron

(MLP), Autoencoder (AE), and Autoencoder with transductance (AE-transductance). These were

implemented using custom networks from the keras library [13] in Python with layer-specific code

available in Appendix A.7-9. All learning rates were set to their default values.

31

Convolutional Neural Net. For the CNN, a one-dimensional convolutional layer was chosen.

Two-dimensional CNN’s are typical for image inputs in order to learn image-related features such

as edges and corners. On the other hand, a one-dimensional CNN is able to learn temporal features

in time-series data which is suited for the preamble signals. For both the CNN and the MLP below,

adagrad and categorical crossentropy were used for the optimizer and loss function, respectively.

Multi-layer Perceptron. As a base comparison against the CNN, an MLP was implemented

containing three Dense layers with 50 units separated by dropout layers with dropout parameter

set to 0.3. This means 30% of input units from the previous layer will be randomly zeroed during

training to help prevent overfitting. During testing, all layers are passed through the dropout layer.

Autoencoder. An eight-layer diabolo-shaped AE was implemented with 200, 100, 40, and 13

neurons in the encoder layers, and vice-versa for the decoder layers. The embedded layer of

size 13 was empirically determined to perform better than marginally smaller and greater values.

Particularly, “tanh” was used for the last layer’s activation function, mean absolute error for the

loss function, and Adamax for the optimizer as these scored highest for reconstruction error and

DBSCAN [20] clustering accuracy.

Autoencoder with Transductance An AE-transductance model was also implemented. All

parameters were similar to the regular AE except it was trained on all RF-signals as opposed to

only the legitimate devices. The motivation is to learn features of the unauthorized devices for

which no labels exist.

32

4.4.3 Outlier Detection

In all cases, the legitimate devices encompassed five classes, leaving four unauthorized device

classes. All experiments were averaged over ten runs using a different selection of wireless devices

split between legitimate and unauthorized. Each of the networks were trained on 70% of the

legitimate devices, and the remaining 30% and all unauthorized devices were encoded in each

network for testing. Encoding for the CNN and MLP is defined as the :-layer output of each

network. Encoding for the AE is the middle layer output. These encoded signals were then passed

to a local outlier detector (LOD).

LOD is an unsupervised outlier detectionmethod that determines outliers by their distance from

clusters based on the density of the cluster, i.e., a datapoint is more likely to be labeled as an outlier

if it is far from a dense cluster as opposed to a sparse cluster. In order to leverage this unsupervised

method, the LOD was ran with all encoded training data and one of the encoded legitimate or

unauthorized devices. If the training data is classified as an outlier, that information is ignored

since there will be training data with labels in the online setting. If the one encoded legitimate or

unauthorized device is classified as an outlier, it is counted as an outlier. This was repeated until all

of the test set were classified as an outlier or not. In the study, Sklearn’s implementation of Local

Outlier Factor was used with a threshold over the negative outlier factor. The normal outlier factor

is determined by calculating the density of every point. Density is defined as the distance between

the point of interest and its k nearest neighbors. If a point has a much smaller density compared

to its neighbors, then it is considered an outlier. The negative outlier factor is the opposite of the

regular outlier factor, meaning that a smaller value implies normality because it has a larger density

and a larger value implies abnormality because it has a smaller density.

33

4.4.4 Zero-Shot Learning

The DBSCAN clustering algorithm was used on encoded data of all trained networks due to its

ability to form complex-shaped clusters. DBSCAN also does not require knowing the exact number

of clusters which fits the use case since one would not know the exact number of unauthorized

devices in an online setting. Only encoded unauthorized devices are considered in order to compare

how well each network is able to learn general features of RF signals. This corresponds to the

typical ZSL setting where only the unknown classes are in the test set. Since DBSCAN is an

unsupervised method, a metric is needed in order to compare the performance of the models.

Since it is desirable to separate unseen classes into their own clusters, each unseen class will be

assigned the cluster that contains a majority of that unseen class. “Clustering accuracy” will then

be defined as the percent of each class that makes up their respective majority. For example, if 40

out of 100 signals are clustered into one cluster, and the rest are uniformly spread through several

other clusters, then a clustering accuracy of 40% is assigned.

Using sklearn’s implementation of DBSCAN, the epsilon parameter was initially set to a mini-

mum of the distance between all centroid pairs of the training data. This incorporates information

about the shape and size of the known training clusters in order to better cluster similar, but unseen,

test clusters. This minimum distance was scaled between one to five times its original value during

testing of clustering accuracy as higher or lower values were not shown to increase accuracy.

34

4.4.5 Generalized Zero-Shot Learning

In a generalized zero-shot learning (GZSL) scheme, it is considered that the online testing stage

contains both unauthorized devices and legitimate devices. This should result in smaller accuracy

than obtained in the typical ZSL setting due to the test set containing both seen and unseen classes.

4.5 Results

Figure 4.2 shows the results for LOD using receiver operating characteristic (ROC) curves.

ROC curves show the rates of true positives (probability of detection) against the rates of false

positives (probability of false alarm) at different threshold settings. This means curves closer to

the top-left quadrant are better in the sense of having more true-positives and less false-positives.

In this case, the threshold varied between −1 and −1000 over the negative outlier factor in

LOD. As shown, the classifiers CNN and MLP outperformed the AE where the CNN scored

highest overall. To make this concrete, x-y location (0.1, 0.5) in Figure 4.2 represents a five-to-one

ratio of five correctly classified unauthorized devices for every one legitimate device incorrectly

classified as unauthorized. During training, the CNN scored an average of 91.52% while MLP

scored 90.41% implying higher training accuracy may have an affect on outlier detection.

35

Figure 4.2: ROC curves for the selected models.

Experiments were conducted to evaluate the clustering performance of grouping devices during

the testing stage for both ZSL and GZSL settings. Since the CNN performed best in outlier

detection, those outliers were used as inputs for clustering in DBSCAN. In particular, the clustering

accuracy is reported in terms of the selection of the hyperparameter in DBSCAN clustering

algorithm, i.e., epsilon, in Figure 4.3. As shown, the AE outperforms the other models for both

ZSL and GZSL settings. Specifically, for ZSL, this clustering accuracy implies AE is able to

correctly group 46% of an unknown class on average. Meanwhile, Figure 4.3 also shows both AE’s

outperforming the CNN, and the AE-transductance providing no improvement over the AE.

36

Figure 4.3: Clustering accuracies for both the ZSL and GZSL settings. As expected, clustering
in the ZSL setting performed marginally better than the GZSL due to not containing legitimate
devices in the mix. Both autoencoders performed better than the classification methods.

4.6 Conclusions and Future Work

ZSL and GZSL for wireless RF-signals were successfully implemented and validated, both

of which have not been attempted before in the literature. For the purpose of gathering enough

unauthorized RF-signals in order to classify them, an average clustering accuracy of 42% in the

GZSL setting was achieved. Whether this is sufficient for outlier detection depends on how many

RF-signals are required and how fault-tolerant the proposed model is to mis-clustered data.

Outlier detection performed best to identify unauthorized devices using features learned by

CNN-based classifiers, achieving a five-to-one legitimate-to-unauthorized device ratio. This ratio

tentatively seemed to improve with greater model accuracy implying that models that achieve closer

to 100% accuracy may show performance improvements in outlier detection; however, this may

only be the case if those models avoid overconfidence in the face of novel classes.

For clustering in both typical ZSL and GZSL settings, it appears that normal classification

models learn features that discriminate seen classes but do not generalize to previously unseen
37

classes. Autoencoders show more promise and may be able to learn features that do generalize,

and larger datasets may further improve both autoencoders implemented. Additionally, supervised

autoencoders may be able to better incorporate labeled data for increased performance in both

outlier detection and clustering accuracy.

38

CHAPTER V

CONCLUSIONS

This work presents state-of-the-art results for classification of wireless networks for both

complex and real-valued networks. This substantiates the claim that wireless physical fingerprints

are a viable metric for differentiating legitimate and unauthorized wireless devices. Additional

improvements were also found with preprocessing using the FFT.

Both ZSL and GZSL obtained non-trivial results in the novel application of wireless physical

fingerprints. The combination of outlier detection and clustering allowed a separation between

legitimate and unauthorized devices and further separation of unauthorized devices into their own

clusters. Specifically, a 42% average clustering accuracy was achieved in the GZSL setting; this

may be sufficient for further purposes such as localization depending on how many samples of the

unauthorized devices were captured and how many are required for localization. Higher clustering

accuracies would lower the amount of unauthorized device samples required to be captured.

5.1 Further Research

The dataset used included only nine devices with approximately 100 samples each. Gathering

a larger dataset in both device number and samples captured would be beneficial for testing the

generalization of the methods presented. A larger dataset on the order of 1000 samples per device

may benefit these DNNs. Extending the complex NN to accept complex-valued inputs may also

39

improve performance. The data could be additionally be preproccessed by the short time fourier

transform and the wavelet transform instead of the FFT.

For both the ZSL and GZSL settings, classification models that obtain higher accuracies than

those presented in this work may learn features that generalize to previously unseen classes. Using

state-of-the-art outlier detection methods would also increase performance in the outlier detection

portion of ZSL and may also lead to enhanced feature selection. In this work, AEs were used for

feature selection, but they were unsupervised models. Modified AEs that allow usage of labeled

data may achieve greater clustering accuracies.

40

REFERENCES

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis,
J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia,
R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D.Mané, R. Monga, S. Moore, D.Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke,
V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and
X. Zheng, “TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems,”, 2015,
Software available from tensorflow.org.

[2] M. A. Al-Ammar, S. Alhadhrami, A. Al-Salman, A. Alarifi, H. S. Al-Khalifa, A. Alnafessah,
and M. Alsaleh, “Comparative survey of indoor positioning technologies, techniques, and
algorithms,” 2014 International Conference on Cyberworlds. IEEE, 2014, pp. 245–252.

[3] Anaconda, “Anaconda Software Distribution. Computer software. Vers. 2-2.4.0. Anaconda,”,
https://anaconda.com, 2016.

[4] P. Bahl and V. N. Padmanabhan, “RADAR: An in-building RF-based user location and track-
ing system,” Proceedings IEEE INFOCOM2000. Conference on Computer Communications.
Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies
(Cat. No. 00CH37064). IEEE, 2000, vol. 2, pp. 775–784.

[5] G. Baldini and G. Steri, “A survey of techniques for the identification of mobile phones
using the physical fingerprints of the built-in components,” IEEE Communications Surveys
& Tutorials, vol. 19, no. 3, 2017, pp. 1761–1789.

[6] J. E. Ball, D. T. Anderson, and C. S. Chan, “Comprehensive survey of deep learning in
remote sensing: theories, tools, and challenges for the community,” Journal of Applied
Remote Sensing, vol. 11, no. 4, 2017, pp. 042609–1 – 042609–54.

[7] C. Basri and A. El Khadimi, “Survey on indoor localization system and recent advances of
WIFI fingerprinting technique,” 2016 5th International Conference onMultimediaComputing
and Systems (ICMCS). IEEE, 2016, pp. 253–259.

[8] B. Bloessl, M. Segata, C. Sommer, and F. Dressler, “Performance Assessment of IEEE
802.11p with an Open Source SDR-based Prototype,” IEEE Transactions on Mobile Com-
puting, vol. 17, no. 5, May 2018, pp. 1162–1175.

41

[9] V. Brik, S. Banerjee, M. Gruteser, and S. Oh, “Wireless device identification with radiometric
signatures,” Proceedings of the 14th ACM international conference on Mobile computing
and networking, 2008, pp. 116–127.

[10] T. J. Carbino, M. A. Temple, and J. Lopez, “A comparison of PHY-based fingerprinting
methods used to enhance network access control,” IFIP International Information Security
and Privacy Conference. Springer, 2015, pp. 204–217.

[11] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector machines,” ACM
Transactions on Intelligent Systems and Technology, vol. 2, 2011, pp. 27:1–27:27, Software
available at http://www.csie.ntu.edu.tw/ cjlin/libsvm.

[12] F. Chen, Q. Yan, C. Shahriar, C. Lu, W. Lou, and T. C. Clancy, “On passive wireless device
fingerprinting using infinite hidden markov random field,” submitted for publication, 2017.

[13] F. Chollet, “keras,”, https://github.com/fchollet/keras, 2015.

[14] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and Accurate Deep Network Learning
by Exponential Linear Units (ELUs),”, 2015.

[15] G. Cybenko, “Approximation by superpositions of a sigmoidal function,” Mathematics of
Control, Signals, and Systems (MCSS), vol. 2, no. 4, 1989, pp. 303–314.

[16] B. Danev, D. Zanetti, and S. Capkun, “On physical-layer identification of wireless devices,”
ACM Computing Surveys (CSUR), vol. 45, no. 1, 2012, pp. 1–29.

[17] J. S. Dramsch and Contributors, “Complex-Valued Neural Networks in Keras with Tensor-
flow,”, 2019.

[18] M. Elhoseiny, B. Saleh, and A. Elgammal, “Write a classifier: Zero-shot learning using
purely textual descriptions,” Proceedings of the IEEE International Conference on Computer
Vision, 2013, pp. 2584–2591.

[19] GNU Radio Website, ,”, accessed April 2020.

[20] M. Hahsler, M. Piekenbrock, and D. Doran, “dbscan: Fast Density-Based Clustering with
R,” Journal of Statistical Software, vol. 91, no. 1, 2019, pp. 1–30.

[21] S. He and S.-H. G. Chan, “Wi-Fi fingerprint-based indoor positioning: Recent advances and
comparisons,” IEEE Communications Surveys & Tutorials, vol. 18, no. 1, 2015, pp. 466–490.

[22] V. Honkavirta, T. Perala, S. Ali-Loytty, and R. Piché, “A comparative survey of WLAN
location fingerprinting methods,” 2009 6th workshop on positioning, navigation and com-
munication. IEEE, 2009, pp. 243–251.

[23] J. Jang and S. Hong, “Indoor Localization with WiFi Fingerprinting Using Convolutional
Neural Network,” 2018 Tenth International Conference on Ubiquitous and Future Networks
(ICUFN), 2018, pp. 753–758.

42

[24] R. Khullar and Z. Dong, “Indoor localization framework with WiFi fingerprinting,” 2017
26th Wireless and Optical Communication Conference (WOCC), 2017, pp. 1–6.

[25] H. J. Kim and A. Y. Ng, “Stable adaptive control with online learning,” Advances in Neural
Information Processing Systems, 2005, pp. 977–984.

[26] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint
arXiv:1412.6980, 2014.

[27] R. Klein, M. A. Temple, M. J. Mendenhall, and D. R. Reising, “Sensitivity analysis of
burst detection and RF fingerprinting classification performance,” 2009 IEEE International
Conference on Communications. IEEE, 2009, pp. 1–5.

[28] R. W. Klein, M. A. Temple, and M. J. Mendenhall, “Application of wavelet-based RF finger-
printing to enhance wireless network security,” Journal of Communications and Networks,
vol. 11, no. 6, 2009, pp. 544–555.

[29] W. A. Knaus, E. A. Draper, D. P. Wagner, and J. E. Zimmerman, “APACHE II: a severity of
disease classification system.,” Critical care medicine, vol. 13, no. 10, 1985, pp. 818–829.

[30] T. Kohno, A. Broido, and K. C. Claffy, “Remote physical device fingerprinting,” IEEE
Transactions on Dependable and Secure Computing, vol. 2, no. 2, 2005, pp. 93–108.

[31] S. Kordumova, T. Mensink, and C. G. Snoek, “Pooling objects for recognizing scenes
without examples,” Proceedings of the 2016 ACM on international conference on multimedia
retrieval, 2016, pp. 143–150.

[32] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolu-
tional neural networks,” Advances in neural information processing systems, vol. 25, 2012,
pp. 1097–1105.

[33] F. Lanze, A. Panchenko, B. Braatz, and A. Zinnen, “Clock skew based remote device
fingerprinting demystified,” 2012 IEEE Global Communications Conference (GLOBECOM).
IEEE, 2012, pp. 813–819.

[34] X. Li, Y. Guo, and D. Schuurmans, “Semi-supervised zero-shot classification with label
representation learning,” Proceedings of the IEEE international conference on computer
vision, 2015, pp. 4211–4219.

[35] Y. Li, D. Wang, H. Hu, Y. Lin, and Y. Zhuang, “Zero-shot recognition using dual visual-
semantic mapping paths,” Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2017, pp. 3279–3287.

[36] P. J. Lisboa, “Industrial use of safety-related artificial neural networks,” HSE CR 327/2001,
2001.

43

[37] H. Liu, H. Darabi, P. Banerjee, and J. Liu, “Survey of wireless indoor positioning techniques
and systems,” IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications
and Reviews), vol. 37, no. 6, 2007, pp. 1067–1080.

[38] K. Merchant, S. Revay, G. Stantchev, and B. Nousain, “Deep learning for RF device finger-
printing in cognitive communication networks,” IEEE Journal of Selected Topics in Signal
Processing, vol. 12, no. 1, 2018, pp. 160–167.

[39] G. Minaev, A. Visa, and R. Piché, “Comprehensive survey of similarity measures for
ranked based location fingerprinting algorithm,” 2017 International Conference on Indoor
Positioning and Indoor Navigation (IPIN). IEEE, 2017, pp. 1–4.

[40] M. Nowicki and J. Wietrzykowski, “Low-effort place recognition with WiFi fingerprints
using deep learning,” International Conference Automation. Springer, 2017, pp. 575–584.

[41] J. Padilla, P. Padilla, J. Valenzuela-Valdés, J. Ramírez, and J. Górriz, “RF fingerprint
measurements for the identification of devices in wireless communication networks based on
feature reduction and subspace transformation,” Measurement, vol. 58, 2014, pp. 468–475.

[42] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, et al., “Scikit-learn: Machine learning in Python,”
Journal of machine learning research, vol. 12, no. Oct, 2011, pp. 2825–2830.

[43] P. J. Phillips and P. J. Phillips, “Support vector machines applied to face recognition,” 1998.

[44] S. U. Rehman, K. Sowerby, and C. Coghill, “Analysis of receiver front end on the performance
of RF fingerprinting,” 2012 IEEE 23rd International Symposium on Personal, Indoor and
Mobile Radio Communications-(PIMRC). IEEE, 2012, pp. 2494–2499.

[45] S. U. Rehman, K. Sowerby, and C. Coghill, “RF fingerprint extraction from the energy
envelope of an instantaneous transient signal,” 2012 Australian Communications Theory
Workshop (AusCTW). IEEE, 2012, pp. 90–95.

[46] S. U. Rehman, K. W. Sowerby, S. Alam, and I. Ardekani, “Radio frequency fingerprinting
and its challenges,” 2014 IEEE Conference on Communications and Network Security. IEEE,
2014, pp. 496–497.

[47] M. Rohrbach, M. Stark, G. Szarvas, I. Gurevych, and B. Schiele, “What helps where–and
why? semantic relatedness for knowledge transfer,” 2010 IEEEComputer Society Conference
on Computer Vision and Pattern Recognition. IEEE, 2010, pp. 910–917.

[48] W. C. Suski II, M. A. Temple, M. J. Mendenhall, and R. F. Mills, “Using spectral finger-
prints to improve wireless network security,” IEEE GLOBECOM 2008-2008 IEEE Global
Telecommunications Conference. IEEE, 2008, pp. 1–5.

[49] L. Tarassenko, “LogiCook and QUESTAR: two case studies in successful technology trans-
fer,” 1997.

44

[50] R. L. Thorndike, “Who belongs in the family?,” Psychometrika, vol. 18, no. 4, 1953, pp.
267–276.

[51] J. Torres-Sospedra, R. Montoliu, A. Martínez-Usó, J. P. Avariento, T. J. Arnau, M. Benedito-
Bordonau, and J. Huerta, “UJIIndoorLoc: A new multi-building and multi-floor database for
WLAN fingerprint-based indoor localization problems,” 2014 international conference on
indoor positioning and indoor navigation (IPIN). IEEE, 2014, pp. 261–270.

[52] C. Trabelsi, O. Bilaniuk, Y. Zhang, D. Serdyuk, S. Subramanian, J. F. Santos, S. Mehri,
N. Rostamzadeh, Y. Bengio, and C. J. Pal, “Deep complex networks,” arXiv preprint
arXiv:1705.09792, 2017.

[53] O. Ureten and N. Serinken, “Bayesian detection of Wi-Fi transmitter RF fingerprints,”
Electronics Letters, vol. 41, no. 6, 2005, pp. 373–374.

[54] Q. D. Vo and P. De, “A survey of fingerprint-based outdoor localization,” IEEE Communi-
cations Surveys & Tutorials, vol. 18, no. 1, 2015, pp. 491–506.

[55] W. Wang, V. W. Zheng, H. Yu, and C. Miao, “A survey of zero-shot learning: Settings,
methods, and applications,” ACMTransactions on Intelligent Systems and Technology (TIST),
vol. 10, no. 2, 2019, pp. 1–37.

[56] M. Wolter and A. Yao, “Complex gated recurrent neural networks,” Advances in Neural
Information Processing Systems, 2018, pp. 10536–10546.

[57] Q. Xu, R. Zheng, W. Saad, and Z. Han, “Device fingerprinting in wireless networks:
Challenges and opportunities,” IEEE Communications Surveys & Tutorials, vol. 18, no. 1,
2015, pp. 94–104.

[58] X. Xu, F. Shen, Y. Yang, J. Shao, and Z. Huang, “Transductive visual-semantic embedding
for zero-shot learning,” Proceedings of the 2017 ACM on International Conference on
Multimedia Retrieval, 2017, pp. 41–49.

[59] F. Zafari, A. Gkelias, and K. K. Leung, “A survey of indoor localization systems and
technologies,” IEEE Communications Surveys & Tutorials, vol. 21, no. 3, 2019, pp. 2568–
2599.

[60] Z. Zhang and V. Saligrama, “Zero-shot learning via joint latent similarity embedding,”
proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp.
6034–6042.

45

APPENDIX A

KERAS NETWORK CODES

46

A.1 Import commands

from __future__ import absolute_import

from __future__ import division

from __future__ import print_function

Tell python to find the complexnn directory

import sys

sys.path.append(r“path to complexnn”) # Put your path here

import complexnn

import numpy as np

import keras

import tensorflow as tf

from keras import models, optimizers, regularizers

from keras.models import Sequential

from keras.layers import Activation, Dropout, Dense, Flatten, Conv1D, Input, Layer

from keras.layers import MaxPooling1D

from keras.models import Model

from keras.utils import to_categorical

from tensorflow.python.keras import backend as K

from keras.metrics import categorical_accuracy

from datetime import datetime

47

from packaging import version

from math import pi

from sklearn.model_selection import train_test_split

from sklearn import svm

A.2 Keras code for DNN-R1

input_shape = [data_vector_size]

model = Sequential()

model.add(Dense(800, activation=’relu’, input_shape=input_shape))

model.add(Dense(200, activation=’relu’))

model.add(Dense(50, activation=’relu’))

model.add(Dropout(rate=0.50))

model.add(Dense(num_classes, activation=’softmax’))

A.3 Keras code for DNN-C1

input_shape = [data_vector_size]

inputs = Input(shape=input_shape)

z = inputs

z = complexnn.dense.ComplexDense(800, activation=ModReLU, input_dim=data_vector_size)(z)

z = complexnn.dense.ComplexDense(200, activation=ModReLU)(z)

z = complexnn.dense.ComplexDense(50, activation=ModReLU)(z)

48

za = complexnn.utils.GetAbs()(z)

za = tf.cast(za, dtype=tf.float32)

zd = Dropout(rate=0.60)(za)

outputs = Dense(num_classes, activation=’softmax’)(zd)

model =Model(inputs, outputs)

A.4 Keras code for CNN-R1

input_shape = (data_vector_size, 1)

model = Sequential()

model.add(Conv1D(32, 12, activation=’relu’, padding=’same’, strides=2, input_shape=input_shape))

model.add(MaxPooling1D(2))

model.add(Conv1D(64, 3, activation=’relu’, padding=’valid’, strides=2))

model.add(MaxPooling1D(2))

model.add(MaxPooling1D(2))

model.add(Dropout(rate=0.50))

model.add(Flatten())

model.add(Dense(32, activation=’relu’))

model.add(Dense(32, activation=’relu’))

model.add(Dropout(rate=0.50))

model.add(Dense(num_classes, activation=’softmax’))

49

A.5 Keras code for CNN-C1

input_shape = (data_vector_size, 1)

inputs = Input(shape=input_shape)

z = inputs

Had to use regular Conv1D instead of ComplexConv1D for first layer to get network to work

z= (Conv1D(32, 12, activation=ModReLU, padding=’same’, strides=2, input_shape=input_shape))(z)

z = (MaxPooling1D(2))(z)

z = (complexnn.conv.ComplexConv1D(64, 3, padding=’valid’, activation=ModReLU, strides=2,

kernel_initializer=’complex_independent’))(z)

z =MaxPooling1D(2)(z)

z =MaxPooling1D(2)(z)

z = Dropout(rate=0.50)(z)

z = Flatten()(z)

z = complexnn.dense.ComplexDense(32, activation=ModReLU)(z)

z = complexnn.dense.ComplexDense(32, activation=ModReLU)(z)

z = Dropout(rate=0.50)(z)

outputs = Dense(num_classes, activation=’softmax’)(z)

model =Model(inputs, outputs)

50

A.6 ModReLU activation function

ModReLU(z) = ReLU(|z| + b) * z / |z|

def ModReLU(z, b=0.01):

absz = K.abs(z) + 1.0e-12

out = K.relu(absz + b) * z / absz

return out

A.7 Keras code for CNN

input_shape = [data_vector_size]

model = Sequential()

model.add(Conv1D(16, kernel_size=(5), activation=’relu’, input_shape=input_shape))

model.add(Conv1D(64, kernel_size=(1), activation=’relu’))

model.add(MaxPooling1D(pool_size=(1)))

model.add(Dropout(0.25))

model.add(Flatten())

model.add(Dense(32, activation=’relu’))

model.add(Dropout(rate=0.50))

model.add(Dense(num_classes, activation=’softmax’))

51

A.8 Keras code for MLP

input_shape = Input(shape=(data_vector_size,))

l1 = Dense(50, activation=’relu’)(input_shape)

l1 = Dropout(rate=0.3)(l1)

l1 = Dense(50, activation=’relu’)(l1)

l1 = Dropout(rate=0.3)(l1)

l1 = Dense(50, activation=’relu’)(l1)

l2 = Dense(num_classes, activation=’softmax’)(l1)

model = Model(input_shape, l2)

A.9 Keras code for AE

input_shape = Input(shape=(data_vector_size,))

encoded = Dense(200)(input_shape)

encoded = Dense(100)(encoded)

encoded = Dense(40)(encoded)

encoded = Dense(13)(encoded)

decoded = Dense(40)(encoded)

decoded = Dense(100)(decoded)

decoded = Dense(200)(decoded)

decoded = Dense(data_vector_size)(decoded)

autoencoder = Model(input_shape, decoded)

52

encoder = Model(input_shape, encoded)

A.10 Anaconda installation code

conda create –name complex python=3.7.1 numpy=1.16.2

conda activate complex

conda install -c conda-forge packaging

conda install -c anaconda scikit-learn

conda install -c conda-forge keras

cd to code directory

pip install git

git clone https://github.com/JesperDramsch/keras-complex

cd keras_complex

pip install -r requirements-nogpu.txt

pip install keras-complex

53

	Machine learning for wireless signal learning
	Recommended Citation

	tmp.1628716322.pdf.L3_2s

