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Radio-frequency (RF) fingerprinting is a process that uses the minute inconsistencies among

manufactured radio transmitters to identify wireless devices. Coupled with location fingerprinting,

which is a machine learning technique to locate devices based on their radio signals, it can uniquely

identify and locate both trusted and rogue wireless devices transmitting over the air. This can have

wide-ranging applications for the Internet of Things, security, and networking fields. To contribute

to this effort, this research first builds a software-defined radio (SDR) testbed to collect an RF

dataset over LTE and WiFi channels. The developed testbed consists of both hardware which

are receivers with multiple antennas and software which performs signal preprocessing. Several

features that can be used for RF device fingerprinting and location fingerprinting, including received

signal strength indicator and channel state information, are also extracted from the signals. With

the developed dataset, several data-drivenmachine learning algorithms have been implemented and

tested for fingerprinting performance evaluation. Overall, experimental results show promising



3performance with a radio fingerprinting accuracy above 90% and device localization within 1.10

meters.

Keywords: radio fingerprinting, location fingerprinting, software-defined radio, machine learning,
classifiers, wireless communication



DEDICATION

To Jennifer Hoang, Cathy Figueroa, and Dingo. I couldn’t have done this without you all.

ii



ACKNOWLEDGEMENTS

I thank Logan Smith, Ajaya Dahal, Surya Teja, and Daniel Rayborn for their input and expertise

in the project. I thank Deepak Chapagain, Keith Hunter, andMarkMcDonnell with their assistance

in helping setup this project’s hardware. I thank Keith Powell for dealing with my sporadic

questioning at times. Finally, I thank Dr. Tang, Dr. Ball, and Dr. Young for their guidance and

advice throughout this research.

This research is supported by the National Institute of Justice (NĲ) grant 2018-75-CX-K002.

Permission to reproduce the MSU logo was given by Mississippi State University.

I thank my committee for their comments on this thesis, and I thank Bo Tang for directing this

research.

iii



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

CHAPTER

I. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

II. BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 RF Device Fingerprinting . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Indoor Location Fingerprinting . . . . . . . . . . . . . . . . . . . . . . 7
2.3 IEEE802.11g Properties and Structure . . . . . . . . . . . . . . . . . . . 8
2.4 LTE Uplink Frame Structure . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 CSI and RSSI/RSRP Calculations . . . . . . . . . . . . . . . . . . . . . 14

2.5.1 Channel State Information . . . . . . . . . . . . . . . . . . . . . 14
2.5.2 RSSI/RSRP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

III. WIFI DATASET AND COLLECTION PROCESS . . . . . . . . . . . . . . . . 17

3.1 GNURadio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Modified Collection Algorithm . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Testbed Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

IV. LTE DATASET AND COLLECTION PROCESS . . . . . . . . . . . . . . . . . 25

4.1 srsLTE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Modified Collection Algorithm . . . . . . . . . . . . . . . . . . . . . . 26
4.3 Testbed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.4 Fingerprinting Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 29

iv



4.4.1 Device Fingerprinting . . . . . . . . . . . . . . . . . . . . . . . . 30
4.4.2 Location Fingerprinting . . . . . . . . . . . . . . . . . . . . . . . 31

4.5 Fingerprinting Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.5.1 Device Fingerprinting Results . . . . . . . . . . . . . . . . . . . 33
4.5.2 Location Fingerprinting Results . . . . . . . . . . . . . . . . . . 33

V. CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

v



LIST OF TABLES

3.1 Properties and features of final WiFi dataset . . . . . . . . . . . . . . . . . . . . . 24

4.1 Properties and features of final LTE dataset . . . . . . . . . . . . . . . . . . . . . 29

4.2 Architecture of LTE device fingerprinting MLP . . . . . . . . . . . . . . . . . . . 30

4.3 Architecture of LTE location fingerprinting CNN . . . . . . . . . . . . . . . . . . 32

vi



LIST OF FIGURES

2.1 Subcarrier spacing in the frequency domain for OFDM [13] . . . . . . . . . . . . 9

2.2 PPDU and training structure for IEEE802.11g [1] . . . . . . . . . . . . . . . . . . 10

2.3 Comparison between OFDMA and SC-FDMA [32] . . . . . . . . . . . . . . . . . 12

2.4 Timing structure of the LTE physical uplink layer [3] . . . . . . . . . . . . . . . . 13

3.1 Flowgraph of WiFi receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Image of SDR setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Layout of testbed for WiFi collection . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1 Layout of testbed for LTE collection showing SDR (blue) and collection points (green) 28

4.2 Training(left) and testing(right) confusion matrices for the MLP . . . . . . . . . . 33

4.3 The training and validation RMSE (left) and loss (right) . . . . . . . . . . . . . . 34

vii



CHAPTER I

INTRODUCTION

In the past several years, the number of Internet of Things (IoT) andwireless devices have grown

exponentially with no sign of stopping soon. With this in mind, it is vital for security applications

that networks can determine and verify a device’s identity. However, there are currently a number

of adversarial attacks that can circumvent these efforts. One such method is media access control

(MAC) address “spoofing." This technique requires the attacker to change theMAC address in their

low layer packets to the MAC address of a trusted source. By doing this, a secured network can

mistake the attacker as being trusted and allow them access to the network. To further complicate

matters, IoT devices have limited power and computational resources that prevents them from

performing intensive verification procedures. Moreover, the spectrum has become increasingly

band-limited requiring spectrum efficient solutions to this troublesome security issue.

One such solution is known as radio frequency (RF) fingerprinting. When an RF transmitter

sends a signal, the signal passes through a series of mixers, filters, amplifiers, and other RF circuitry

before finally being transmitted through the antenna. These different RF circuit components are

all manufactured with different tolerances making no two exactly alike. Together, the unique

components contribute slight fluctuations on certain parts of the physical signal such as the rise-

time signature and in-phase/quadrature (IQ) imbalances. As a whole, these fluctuations are known
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as the device’s RF fingerprint. Using these physical fingerprints, it has been shown that devices

can be uniquely identified based on their physical signal alone as opposed to any information it

may carry [10].

For practical reasons, once a device is determined to be rogue, it may also be useful to locate

said device. This can be especially true for mobile cell phones which are presumed to be constantly

moving and can also indicate its owner’s location. To achieve this goal, one can couple RF

fingerprinting with location fingerprinting. Location fingerprinting uses machine learning (ML)

techniques to map the raw signals a device transmits back to their original locations. Typically, this

requires a dataset collected over the target area where multiple devices’ signals are paired with their

respective locations. The ML algorithm takes these raw signal samples or certain properties of

them such as Received Signal Strength Intensity (RSSI) and uses a regression network to determine

the exact spot the signal was transmitted from.

The common factor for both of these approaches is a dataset of raw signals collected over the

air from multiple devices over a fixed area. The labels for both of these problems would be the

transmitter identities such as MAC addresses and the physical location of the transmitter. It is a

known issue that collecting these datasets can be prohibitively difficult and time-consuming. This

study attempts to provide this dataset using a testbed composed of software-defined radios (SDRs)

as receivers and cell phones as transmitters. By using relatively low-cost SDRs and open-source

algorithms, I prepared an accessible solution others can mirror to collect their own fingerprinting

dataset.

SDRs are multi-purpose RF equipment that implements much of the functionality traditionally

performed by hardware in software. This makes the development process much quicker and more
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flexible by implementing different communication schemes using the same device. This has the

benefit of communicating with devices using different protocols and evolving those protocols over

time to agree with newer standards.

To prove the dataset’s efficacy, it was tested with both location and device fingerprinting

algorithms. One multi-layer perceptron (MLP) and one convolutional neural network were created

for both of these tasks using Scikit-Learn and TensorFlow respectively [26] [5]. Each were trained

and tested separately on the dataset and showed promising results comparable to the current

state-of-the-art networks.

The rest of this paper is organized as follows. The background for location fingerprinting and

the different protocols’ demodulation parameters is provided in Chapter 2. Chapters 3 and 4 focus

on the Wireless Fidelity (WiFi) and Long-Term Evolution (LTE) collection procedures and the

fingerprinting algorithms to verify them. Finally, chapter 5 summarizes this work’s conclusions

and results.

Contributions from this thesis include the following:

• Modified open-source GNURadio module to collect IEEE802.11g frames and features

• Modified open-source srsLTE code to collect LTE uplink raw frames and features

• Code to process each dataset into an easy-to-use format for ML purposes

• A small LTE dataset for device/location fingerprinting with ML baselines

• A large WiFi dataset for device/location fingerprinting

• An SDR testbed for data collection purposes

• Supported multiple conference papers [35], [36], [27]

All code and datasets discussed are available within this document at available at

https://github.com/nicksmith37/NĲ_Code.
3



CHAPTER II

BACKGROUND

2.1 RF Device Fingerprinting

Wireless devices operate in an environment where they are affected by multipath, temperature

changes, movement, and other factors. These present challenges to device fingerprinting algorithms

trying to distinguish different devices on minute signal fluctuations commonly characterized as

noise. In order to ensure that these signal variations are preserved for the dataset, it is a requirement

that the signal be captured with the least amount of modifications being applied to it as possible.

This can prove to be challenging as it can be hard to receive signals without certain corrections

and compensations. These are exacerbated by the fact that not only does the transmitter impart a

fingerprint on the signal but the receiver does as well [29]. In the literature, there are several survey

papers written discussing the topic of RF device fingerprinting [8] [48] [38].

There are many different traditional methods proposed for RF fingerprinting. Gerdes et al.

used amatched filter and threshold approach to detect IEEE802.3 Ethernet preambles and classified

them by model and manufacturer with very high accuracy [15]. Suski et al. attempted to classify

IEEE802.11a frames by the power spectral density (PSD) of their preambles. Using only three

devices, their results showed approximately 80%accuracy formoderately high signal-to-noise ratios

(SNRs) [39]. Jana and Kasera proved it was possible to identify access points (APs) using their

clock skews allowing users to determine fake APs [20]. Williams et al. performed classification
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of Global System for Mobile Communication (GSM) signals from different manufacturers using

both the transient and midamble of the signal [47]. They showed over 90% accuracy using the

midamble at >= 12 dB and the transient at >= 16 dB suggesting that the midamble may outperform

the transient in lower SNR regions.

In addition to traditional techniques, ML techniques are often used for device fingerprinting

with great success. Brik et al. used specific features of the modulated signal such as magnitude

and phase errors, synchronization correlation errors, and IQ origin offset to develop a fingerprint

profile for 138 IEEE802.11b devices [10]. These samples were collected between 3 to 15 meters

from the antenna by a high-end vector network analyzer (VNA), which were used as a dataset by a

support vector machine (SVM) and k nearest neighbors (k-NN) networks. This showed very high

accuracy of 99% but requires costly (upwards of $100,000), well-calibrated equipment. Rehman

et. al suggested that low-end SDRs could perform similarly to high-end SDRs and achieve strong

classification results in 15 dB and higher SNR environments [28].

Deep learning has especially proven to be a fruitful method for device fingerprinting. Two

of the most common types of deep learning networks are the deep neural network (DNN) and

convolutional neural network (CNN). A DNN contains an input layer, multiple hidden layers, and

an output layer all composed of neurons. Each neuron calculates the dot product of its inputs with

its weights and adds a bias term before passing it to a nonlinear activation function. The output

from the output layer is then passed to a loss function with the label to calculate the network’s loss.

This loss is used to update the weights of every neuron in the network using a backpropagation

algorithm.
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DNN is often used as a baseline to compare against in literature and thus can be useful to

explore. Youssef et al. collected 12,000 samples from 12 transmitters using the IEEE802.11a/g

protocol [50]. They then used a DNN to classify them and achieved an accuracy of 84.8%, notably

despite the small dataset. Jafari et al. showed better performance with a much larger dataset at

varying SNR levels[19]. They were able to classify six ZigBee devices with a DNN for an accuracy

of 96.3%. Soltaniet al. shows the limitations of DNNs for fingerprinting activities, especially in

different channel environments and using different equipment [37]. They develop a scheme to

augment the dataset to potentially increase accuracy by as much as 51%.

A common variant of the DNN is the CNN. A CNN uses filters to perform convolutions as

it passes over the input. The output from these convolutions are then passed through nonlinear

activation functions similar to the DNN before. These results are then stored in feature maps and

often passed to pooling layers for feature reduction. After a series of these, the outputs are usually

flattened and passed through a few fully-connected layers before being passed to the output. A

major advantage of CNNs over DNNs is that they use fewer parameters which translates to less

memory usage.

CNN have seen much use recently in the literature for device fingerprinting. Merchant et al.

uses a CNN to classify seven ZigBee devices [24]. They use the time-domain complex baseband

error signal and get 92.29% accuracy on for above 40 dB SNR. Wang et al. used the differential

constellation trace figure to classify six mobile phones [41]. They also used a CNN andwere able to

achieve an accuracy of 99.77% for SNR of 50 dB or higher. Roy et al. compared the classification

performance of a DNN, CNN, and recurrent neural network (RNN) for eight SDR transmitters

[31]. Their dataset was composed of 1024 raw complex samples per one Quadrature Phase-Shift
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Keying (QPSK) frame. The experiment yielded accuracy of 81.6%, 94.60%, and 97.06% for the

CNN, DNN, and RNN respectively suggesting the CNN may have the worst performance on raw

data samples.

2.2 Indoor Location Fingerprinting

Location fingerprinting is a very popular application of RF fingerprinting. Many early location

fingerprinting algorithms focused on using RSSI for locating devices. RSSI is often available in

many communication systems and is easy to calculate. The first location fingerprinting system

used for WiFi is WiFi RADAR [7]. At every point in a grid, it stored the RSSI values that would

later serve as the dataset for a k-NN network. The network overall was able to locate a user within

2-3 meters. On the other hand, the HORUS system used a probabilistic approach to determine

the device’s location[51]. It uses RSSI from different APs as input and infers the location using

Bayesian inference and had an average error of less than 0.6 meters. However, it requires a large

number of samples from the APs to construct an accurate representation of the data and can

therefore be costly. A more recent work, CellinDeep, demonstrates the performance of RSSI from

LTE signals collected by multiple cell phone towers [30]. They achieve an accuracy 0.78 meters

in a floor of a building using a DNN. Going further, it has been shown that RSSI is especially

vulnerable to multipath and attenuation, especially when not in line-of-sight [49].

The other metric commonly used for location fingerprinting is channel state information (CSI).

CSI is already a part of most OFDMcommunication schemes and can provide amuchmore detailed

observation of the channel. In the literature, CSI is often collected for WiFi via a commercial

network interface card (NIC) with three antennae to provide the dataset [?] [?]. CSI-MIMO and
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DeepFi were some of the first works to successfully pair deep learning with CSI for localization

[12] [44]. They were able to provide sub-meter accuracy with mean distance errors of 0.95 and 0.94

meters respectively using a kNN and DNN. Another promising method using CSI is bi-modality

deep learning. By using bi-modal data such as angle of arrival (AoA) and average amplitude

over antenna pairs, BiLoc and ResLoc achieved considerable accuracy of 1.06 and 0.89 meters

respectively using various deep learning techniques [43] [46]. Zhang et al. are able to achieve

below a half meter accuracy with their proposed system in [53]. They use a single AP, a novel

phase decomposition algorithm, and an SVM to achieve 0.46 meter accuracy for a single room.

This is on par with Zhang et al. for LTE indoor positioning using CSI [52]. Their method used a

time domain fusion approach by means of multiple MLPs to achieve an indoor mean distance error

of 0.47 meters.

2.3 IEEE802.11g Properties and Structure

For WiFi, this work captures IEEE802.11g packets from over the air. IEEE802.11g was chosen

due to being relatively simpler than other IEEE802.11 protocols while still holding widespread

popularity. It is a Single-Input Single-Output (SISO) protocol meaning devices only communicate

using one antenna pair for sending and receiving. It employs packet-based orthogonal frequency-

division multiplexing (OFDM) with 52 subcarriers over a bandwidth of 20 MHz [1].

OFDM is a communication scheme dating back to 1966 that packs tightly spaced subcarriers

in the frequency domain resulting in a longer symbol duration in order to achieve higher data rates

[11]. This is in stark contrast to the other single carrier methods of the time that attempted to

transmit at a much higher symbol rate using only a single carrier in order to achieve similar data
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rates. OFDM also solves the problem of intersymbol interference (ISI) by appending a cyclical

prefix (CP) to the beginning of each symbol. The CP is a direct copy of the last portion of the

symbol and designed to be at least as long as the delay spread. This prevents adjacent symbols from

"smearing" together due tomultipath and allows for circular convolution, whichmakes the hardware

design significantly simpler. When symbols are first being decoded, their CPs are discarded, which

in effect is the signal being windowed with a Boxcar function. This results in a sinc wave in

the frequency domain with zero crossings at the subcarrier spacings. This prevents intercarrier

interference (ICI) in the frequency domain and makes the subcarriers orthogonal as seen in Fig.

2.1. For these reasons, OFDM was chosen as the communication scheme for IEEE802.11g.

Figure 2.1: Subcarrier spacing in the frequency domain for OFDM [13]
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The ideal dataset for fingerprinting should contain no descriptive information about the signals

other than the signals’ physical properties. This descriptive information includes details like the

MAC address, frame length, and information actually being transmitted. This makes it imperative

to understand the structure of the frame and use only the parts not containing any information about

the device, so the algorithm does not attempt to learn these features. The IEEE802.11g physical

layer protocol data unit (PPDU) and training structure is shown below in Fig. 2.2.

Figure 2.2: PPDU and training structure for IEEE802.11g [1]

As can be seen in the figure, the first field in the PPDU is known as the preamble. The preamble

is made up of two components: the short training field (STF) and the long training field (LTF).

Each occupies two OFDM symbol durations. The STF contains 10 iterations of a 0.8 microsecond
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signal, which can be useful for OFDM synchronization [33]. The LTF is a predefined symbol

repeated 2.5 times and is often used for fine frequency offset correction and channel equalization.

After the preamble is processed, the next field is the signal field. The signal field contains one

binary phase-shift keying (BPSK) OFDM symbol, which is the most robust OFDMmodulation. It

indicates to the receiver the length and encoding of the rest of the signal. The rest of the signal is

a data payload of variable length with six trailing 0’s and additional pad bits.

With this information, the preamble of the frame was chosen as the portion of the signal used

in the dataset. This section of the signal contains no descriptive higher level information, is a set

length, and includes the signal transient which has to proven to be useful for device fingerprinting

[34].

2.4 LTE Uplink Frame Structure

Like WiFi, it is also important to understand the frame structure and modulation parameters

of LTE in order to not contaminate the samples with any kind of noisy information. Cell phones

transmit LTE signals over the air using single-carrier frequency-division multiple access (SC-

FDMA) scheme, which is a variant of OFDM modulation. Since regular OFDM sends multiple

subcarriers in parallel, it often results in a high peak-to-average power ratio (PAPR) compared

to SC-FDMA. This results in more complex and costly architecture schemes for the transmitters

which could problematic for the resource-constrained cell phones. Therefore, SC-FDMA was

chosen as the modulation of choice for the LTE uplink channel. The SC-FDMA scheme can be

seen in Fig. 2.3 in comparison to Orthogonal Frequency Division Multiple Access (OFDMA), an

extension of OFDM used in the LTE downlink. SC-FDMA transmits “sub-symbols" instead of
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subcarriers. These sub-symbols occupy the total bandwidth of the signal with a single carrier but

are transmitted much faster allowing multiple sub-symbols to be transmitted per slot. This can

carry the same amount of information as OFDMwhile occupying the same bandwidth and symbol

duration. In addition, SC-FDMA retains the addition of the CP like OFDM, so it can also mitigate

some of the effects of ISI from multipath. Even so, SC-FDMA still has drawbacks such as lower

spectral efficiency and an increase in “noise enhancement" when used with linear amplifiers [40].

Figure 2.3: Comparison between OFDMA and SC-FDMA [32]

Organizationally, the LTE uplink transmission structure is broken down into 10 ms frames [6].

These frames are divided into ten subframes that are 1 ms each. Each subframe has two slots of

0.5 ms each. These slots normally have seven 71.4 µs SC-FDMA symbols. The middle symbol of

each slot is known as the Demodulating Reference Signal (DMRS), which is used for equalization

and demodulation of the signal as the name implies. This system is illustrated in Fig. 2.4. In the
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frequency domain, the signal is organized into resource blocks. These blocks span an entire slot in

time and 180 kHz in frequency, or 12 subcarriers. The slot can have different numbers of Resource

Blocks (RBs) based on the total bandwidth allocated to the LTE cell. The smallest unit in the LTE

resource grid is called a Resource Element (RE).

Figure 2.4: Timing structure of the LTE physical uplink layer [3]

For the goals of this work, it was decided that the DMRS would be the most appropriate section

of the signal to use for the LTE dataset. It is also a set position for every uplink signal and contains

no higher-order descriptive information about the device or location.
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2.5 CSI and RSSI/RSRP Calculations

Besides the physical signals themselves, the dataset collects other features about the signals

such as the information-rich CSI and RSSI. The methods to determine these quantities can greatly

affect the values they take on, so it is important to note the steps to calculate each.

2.5.1 Channel State Information

CSI is determined in the equalizer of any communication scheme and is used to ensure reliable

communications in any system, especially one with a rapidly changing electromagnetic environ-

ment. It contains information on many factors such as fading, scattering, decay, etc. and can be

used by both the receiver and transmitter to improve the performance of physical communications.

For IEEE802.11g, the algorithm used in this paper to calculate CSI is the spectral temporal

averaging (STA). This method has proven to be reliable and robust against noisy conditions [14].

This algorithm contains two steps and works as follows. The first symbol is demapped, and the

CSI is calculated using the least-squares method shown in Eq. 2.1.

�8 (:) =
(',8 (:)
-8 (:)

(2.1)

where i is the index of the ith OFDM symbol, H(k) is the channel estimation, SR(k) is the received

data symbol, and X(k) is the demapped transmitted symbol, which differs from the transmitted

symbol due to imperfect channel estimation and could be incorrectly demapped. Then, the Hi is

averaged in the frequency domain by the Eq. 2.2.

�D?30C4 (:) =
V∑

_=−V
(l_�8 (: + _)) (2.2)

14



For the next step, the Hupdate is averaged in the time-domain by means of a low-pass filter with

the following equation:

�() �,8 (:) = (1 −
1
U
)�STA,i-1(:) +

1
U
�D?30C4 (:) (2.3)

HSTA,i is the new, calculated CSI per symbol of the frame and stored for the dataset. The

parameters α and β are channel dependent variables with α being related to the Doppler spread.

For the purposes of this testbed, the values α = 0.5 and β = 2 are used as optimized by [14]. Also,

since most algorithms do not compute the CSI for the STF, this work opts to not as well, so the

first CSI value corresponds to the first symbol of the LTF. In addition, there is 1 CSI value per

symbol/64 samples (64 instead of 80 since the cyclical prefix is removed before equalization). For

more information on STA, please refer to [42].

Like WiFi, LTE has its own methods for determining CSI. It obtains the initial CSI values from

the DMRS and other pilot symbols using the least-squares method similar to Eq. 2.1. Once the

initial values are obtained, they are averaged in order to reduce noise and interpolated for all the

other carriers in the frame. A more rigorous explanation of this process as it pertains to LTE can

be seen in [4].

2.5.2 RSSI/RSRP

RSSI is a loosely defined term in communications. Its formulation varies depending on the

communication scheme related to the received radio signal power. This value can be used to make

important optimization decisions regarding cell association, power usage, and packet scheduling.

For IEEE802.11g, RSSI has no definition in the standard and is therefore decided by wireless
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chipset manufacturers for their individual products. These manufacturers often provide formulas

for tracing these RSSI back to a dBm value [23]. The one thing the standard does specify about

RSSI is that it should be calculated only in the preamble portion of the frame [2].

Since the testbed uses SDRs and not wireless chipsets to collect signals, there is latitude on

how to calculate the RSSI. A useful method in the literature that can be incorporated easily into

the proposed system is described by Liu et. al in [22] Section 3:

H[=] = 10 ∗ ;>610(
1
#

#∑
:=1
(� [:]2 +& [:]2) (2.4)

This is the average of the squared magnitude of samples in logarithmic scale for the preamble.

I and Q represent the real and imaginary components of the sample k, and N is the length of the

preamble

In LTE systems, RSSI comprises the linear average of the total received power in Watts in the

measurement bandwidth over N number of resource blocks from all sources. The obvious problem

with this is that including the power from all these sources can be counterproductive when only

wanting to measure the power from the received signal’s power. In addition, taking the average

power over the entire resource grid with many empty resource elements results in a much lower

value. For this reason, another metric is often used in LTE, Received Signal Received Power

(RSRP). RSRP is the average value of the reference signals (pilot symbols) only measured in dBm,

while RSSI is the average of the whole signal itself. The RSRP is determined from the energy

received during the useful part of the pilot symbol, excluding the CP.

16



CHAPTER III

WIFI DATASET AND COLLECTION PROCESS

3.1 GNURadio

GNURadio 3.7 was used to implement and run the data collection algorithms forWiFi due to its

open-source nature and flexibility [16]. GNURadio operates by connecting a series of functional

blocks together and operating the blocks in parallel on a block per thread basis. The data collection

algorithm described in this paper is based on a module in GNURadio called gr-ieee-80211 [9].

This module implements the functional blocks to build an IEEE802.11a/g/p transceiver and can be

connected to internet if desired.

First, it performs a normalized autocorrelation on the complex samples coming into the SDR

to detect the STF of the IEEE802.11g based on its periodicity. The Sync Short block checks the

autocorrelation against a user-defined threshold and triggers if it reaches that threshold. It then

passes the next 43,200 samples/540 symbols (the approximate maximum size of a IEEE802.11g

frame) to the next block after performing a coarse frequency correction. Next, the Sync Long

block finds the start of the frame based on a cross-correlation with the known sequence for the

LTF, performs a fine frequency correction, and removes the CP before the signal is passed to

a Fast Fourier Transform (FFT). The FFT input size is 64 and uses a rectangular window. The

subcarriers from the FFT’s output are passed to the Frame Equalization block. Here the subcarriers

are demapped to their constellation points, and the CSI is calculated using the STA method. They
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are then deinterleaved and decoded using a Viterbi Decoder into bits before being passed to the

Decode Mac block. The Decode Mac block simply decodes the bits of the PLCP header and MAC

header into their respective values based on the rate and length field in the signal field and checks

the checksum. Finally, these decoded values are sent to the Parse Mac block to be printed neatly

to the output. The full flowgraph of this process is shown in Fig. 3.1.
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Figure 3.1: Flowgraph of WiFi receiver
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3.2 Modified Collection Algorithm

In order to use this WiFi flowgraph for fingerprint collection, it needs to be modified to output

the signals features such as the raw samples, CSI, and sequence number as well as labels to associate

it with a device identity and location. To this end, the receiver was modified in the Sync Short

and Sync Long blocks to the record the raw samples from both antennas before they were ever

modified or frequency corrected. Then, the CSI calculated in the frame equalizer was recorded

using a similar approach. These values were only saved if the MAC address and sequence number

for the frame could be decoded and were not corrupted.

In post-processing, there are two binary files for each SDR: one containing the raw data for

both of the antennas and MAC addresses and another containing the raw data for the CSI. The data

in these two files are matched based on their received order. Next, the timestamps are also used

along with the MAC header sequence numbers to correlate the frames among the different SDRs.

At this point, every frame captured should contain the raw samples received at each SDR’s two

antennas and CSI. Next, the raw frames are trimmed to only their preambles and transients by first

detecting the LTF using a cross-correlation. Then, the first 320 samples of the frame are saved as

well as the 30 samples proceeding it. At this point, the RSSI can be calculated using the method

discussed above in section 2.5.2 and attached. The final files are saved in .hdf5 format for easy

loading into TensorFlow.

3.3 Testbed Layout

The space the dataset was collected in can be considered a challenging environment. It was

collected in a 4.7 by 7.54 meter lab room that still contained furniture, electrical equipment, and
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human beings. It was collected during daytime on campus and can therefore be reasonably expected

to have other interferers on the same band. Four USRP B210 SDRs were tuned to channel 11

(2.426 GHz) with a sampling rate of 20 MHz and passively listened for incoming IEEE802.11g

frames. The SDRs were positioned around the room close to the ceiling as shown in Fig. 3.2,

and each were connected to their own individual computer. This positioning prevents symmetry,

which should allow better performance for localization using RSSI. Each SDR uses two LP0965

directional log-periodic antennas for receiving. They are all connected to the Octoclock-G, a timing

and synchronization device that should synchronize all the SDR’s internal clocks.

Figure 3.2: Image of SDR setup
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The testbed itself contains 55 training points and 13 testing points. The training points are

arranged in a 5 by 11 grid spaced 0.5 m apart as seen in Fig. 3.3. This spacing has been shown

to be beneficial for CSI fingerprinting while decreasing the performance of RSSI fingerprinting

[45] [25] [18]. The testing points are randomly scattered throughout the grid sometimes occupying

even the edges. This creates a more challenging dataset for the ML algorithms.

Four cell phones were used to collect this dataset. The phones were two Apple iPhone SEs,

Samsung Galaxy J2 Prime, and Motorola G4 Plus. The cell phones were placed at each training

and testing point on a 0.6 m stand. Once 1500 frames were collected for each collection point, the

recording was stopped, and the device was moved to the next point where the recording started

again. This process was continued for all four phones until there was data at all locations for each

device.
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Figure 3.3: Layout of testbed for WiFi collection

Table 3.1 describes the final WiFi dataset’s contents as well as the environment it was collected

in.
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Table 3.1: Properties and features of final WiFi dataset

MAC Format IEEE802.11g

Frequency 2.462 GHz

Bandwidth 20 MHz

Sampling Rate 20 MHz

Number of locations 68 (55 training + 13 testing)

Number of transmitters 4

Number of receivers 4

Number of samples per frame 348 samples

Number of frames per location 24,000 = 1,500 frames * 4 TXs * 4 RXs

Number of frames per device 408,000 = 1,500 frames * 68 locations * 4 RXs

Dataset size 18.381 GB

Output file format .hdf5 (hierachical compressed file)

CSI included True

RSSI/RSRP included True

Two antennae used True
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CHAPTER IV

LTE DATASET AND COLLECTION PROCESS

4.1 srsLTE

To be able to ascertain which device is transmitting and calculate their signals’ CSI, one needs

knowledge only privy to the Evolved Packet Core (EPC) of the LTE network that the device is

connected. This presents a difficult problem as it eliminates any passive sniffing methods that

can be used and requires a direct link to the cell phone. This would require simulating an LTE

E-UTRAN Node B (eNodeB) to communicate with the cell phone. In LTE, the eNodeB acts as a

basestation and handles the RF interface with cellular devices and many other cell functions. It

was decided that the most appropriate software to use for this work would be srsLTE [17].

srsLTE 20.04.10 is a software suite that allows users to implement their own LTEEPC, eNodeB,

and even User Equipment (UE), or cellular device. It can also connect to the internet through the

terminal it is run on. The EPC and eNodeB are typically run on the same computer while the

the UE must be run independently. Users can configure srsLTE through the use of configuration

files that are read on startup. In these files, they can configure the network’s bandwidth, operating

frequency, RF gain, etc. With this software in hand, it is possible to connect normal cell phones to

the eNodeB and EPC providing data service. This software provides us with the ability to directly

connect with cell phones and obtain information privy only to the LTE network.

25



It is important to have a simplified idea of how srsLTE operates at the physical layer for the LTE

uplink in order to collect data. srsLTE uses SC-FDMAmodulationwith its frames allowing it to still

schedule multiple users per time slot to different RBs. This is notably different than IEEE802.11g

which uses carrier-sense multiple access (CSMA) for users to know when to transmit. When

a new cellular device wants to connect to an eNodeB, it must first undergo the attach process

by communicating on the Physical Random Access CHannel (PRACH). Once the UE has been

verified by the network and synchronized in time and frequency, it is scheduled in the MAC layer

to transmit when needed on the Physical Uplink Shared CHannel (PUSCH). Once a UE transmits,

the eNodeB records the slot it was assigned to. Then, it performs a FFT, calculates the CSI, and

decodes the subcarriers into bits. The MAC layer is notified, and the bits from each phone are sent

to different places.

4.2 Modified Collection Algorithm

The first modification made to srsLTE was to record the raw samples from both antennae

of the SDR when the UE was scheduled to transmit. This was accomplished by modifying the

eNodeB code to copy the sample buffers when the UE was scheduled to transmit. Next, the CSI

was retrieved after it was calculated by the eNodeB using the least-square estimation and linear

interpolation. Finally, the RSRP was calculated by taking the average of the reference symbols

power and scaling it before going into the logarithmic domain. All these values were then saved to

file along with the timestamp of the subframe.

It is important to note that in order to collect the signal emitted by a specific cell phone, one

must filter out the subcarriers it was assigned from the rest of the signal. However, this work
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attempts to only use the most raw data possible and therefore has decided to only collect signals

from one phone at a time to ensure the best data quality.

4.3 Testbed

The testbed for LTE is considerably smaller than WiFi but occupies an equally challenging

environment. It was collected in the 4.88 by 7.92 meter second floor of a fully furnished house.

Only one USRP B210 SDR with four omnidirectional VERT2450 antennas was used to collect

data, which was tuned to downlink EARFCN 3400 (2685 MHz for downlink, 2565 MHz for

uplink). There were 25 RBs which translates to roughly 5 MHz of bandwidth used. The sampling

rate was set to 5.76 MHz. The SDR was positioned as shown in Fig. 4.1 roughly one meter above

the ground and was designated as the origin.

There are 17 collection points in this dataset spaced 1 by 1 meter apart from each other in a

5 by 2 meter grid. Five phones were set at each point roughly one meter above the ground. The

phones were a Samsung Galaxy J2 Prime, Moto G4 Plus, and three IPhone SEs. At each location,

3000 LTE subframes of 5760 samples were collected for the dataset, resulting in 51,000 frames

per device.
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Figure 4.1: Layout of testbed for LTE collection showing SDR (blue) and collection points (green)

Table 4.1 describes the properties and features of the final dataset.
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Table 4.1: Properties and features of final LTE dataset

Frequency 2.565 GHz

Bandwidth 5 MHz

Sampling Rate 5.76 MHz

Number of locations 17

Number of transmitters 4

Number of receivers 1

Number of samples per frame 1,500 samples

Number of frames per location 12,000 = 3,000 frames * 4 TXs

Number of frames per device 51,000 = 3,000 frames * 17 locations

Dataset size 6.125 GB

Output file format .npz (Numpy compressed file)

Device fingerprinting accuracy 90.23%

Location fingerprinting accuracy 1.08 meters

CSI included False

RSSI/RSRP included False

Two antennae used False

4.4 Fingerprinting Algorithms

No CSI, RSRP, or second antenna was needed for these algorithms. This shows the potential

simplicity of the datasets constructed by these methods while still achieving goodML performance.

29



4.4.1 Device Fingerprinting

An MLP was used to validate this dataset for device fingerprinting. These are fairly standard

networks and can serve as a baseline for any future models trained on the dataset. This MLP was

built using scikit-learn on Google Colab using Python 3.6.9. Only one location (0.1) of frames was

used for this network giving us a dataset of 3000 LTE frames at 27 dB SNR from each device. The

frames are first trimmed to the first 1500 samples before the absolute value of the samples were

taken. These absolute values were then standardized to a range of 0 to 1. Next, they are passed to

the network shown in Table 4.2 below. As seen in the table, the MLP consists of four layers with

515 neurons and ReLU activations each before being passed to the output layer. The MLP uses a

5-fold cross-validation and has an L2 penalty term of 0.0001. It has a batch size of 200 and uses

the Adam (adaptive moment estimation) method for training with a learning rate of 0.001 [21].

The training and testing split was 80% and 20%.

Table 4.2: Architecture of LTE device fingerprinting MLP

Layer Size Options

Input 1500 Size of signals

Dense 515 relu activation

Dense 515 relu activation

Dense 515 relu activation

Dense 515 relu activation

Output 1 predicts class label
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4.4.2 Location Fingerprinting

For location fingerprinting, this work uses a 1D CNN. CNN exploit the spatial correlations

in data and require much less memory than normal DNNs. The CNN built for this task uses

TensorFlow built on Google Colab using Python 3.6.9. The network optimizer was the Adam

method for training with a learning rate of 0.0001 [21]. The batch sizes were 64, and the training,

validation, and testing splits were 60%, 20%, and 20% respectively. The structure for the network

is seen below in Table 4.3. The absolute value of the first 1500 complex samples were used for

this network to decrease network size. Next, the frames are passed to a conv1D with 25 filters of

size 20 and a max pooling layer of size 2. Next, they were sent to a Batch Normalization layer to

reduce overfitting, where afterwards is was sent again to a conv1D layer with 40 filters of size 13

and a max pooling layer of 2. Finally, the conv1D layer is used with 56 filters of size 7 and a max

pooling layer of size 2. They are followed by a dropout layer of 0.5 and then flattened. This is sent

to a 3 fully-connected layers of size 64, 32, 24, and 12 before going through another dropout layer

of 0.7. This is connected to the output layer with two nodes representing the x and y coordinate of

the device.
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Table 4.3: Architecture of LTE location fingerprinting CNN

Layer Size Options

Input (None, 1500, 1)

Conv1D 25
kernel size 20

relu activation

MaxPool1D 2

BatchNormalization

Conv1D 40
kernel size 13

relu activation

MaxPool1D 2

Conv1D 56
kernel size 7

relu activation

MaxPool1D 2

Dropout rate 0.5

Flatten

Dense 64 tanh activation

Dense 32 tanh activation

Dense 24 tanh activation

Dense 12 tanh activation

Dropout rate 0.7

Dense 2 (for x and y coordinate)
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4.5 Fingerprinting Results
4.5.1 Device Fingerprinting Results

TheMLP for device fingerprinting ran for 59 epochs before meeting its early stopping condition

of not improving the validation score by 0.001. This took in total 3.4 minutes. The confusion

matrices for the training and testing sets are shown below in Fig. 4.2. It can be seen that the

misclassifications were fairly evenly spread out among the devices. The only notable exceptions

would be between two of the IPhone SEs which is to be expected since they are both of the same

make and model. However, overall the algorithm shows good performance for the dataset with an

accuracy of 90.23% and proves to be a valuable baseline for future work.

Figure 4.2: Training(left) and testing(right) confusion matrices for the MLP

4.5.2 Location Fingerprinting Results

The CNN ran for 25 epochs and took approximately 7.1 minutes. The training and validation

losses for the model is shown below in Fig. 4.3. The final root mean squared error (RMSE), or

Euclidean distance, for the test set was 1.08 meters. This shows a good approximation given the

spacing between the points should allow the user to differentiate between where in the room the
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phone emitted the signal. This is simply a preliminary work and could most likely be improved

given other features such as CSI or RSRP.

Figure 4.3: The training and validation RMSE (left) and loss (right)
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CHAPTER V

CONCLUSIONS

To conclude, this work details methods for one to build their own dataset ofWiFi or LTE devices

for device/location fingerprinting. This includes the ability to use multiple low-end receivers and

open-source software to collect the data. Different features are gathered including raw IQ samples,

CSI, and RSSI/RSRP.

In addition, two datasets are provided using the above methodology for both WiFi and LTE.

These datasets contain many signals from multiple devices from different locations in a crowded

room. This provides extra difficulty to the datasets and the problems they attempt to solve. Finally,

baseline ML algorithms were provided for each that had performances similar to state-of-the-art

algorithms verifying their authenticity. Others can use these datasets and baseline algorithms to

test their fingerprinting algorithm’s performance.

Future work regarding this thesis could involve calculating different features from the data

collected. In addition, additional methods to collect more modern WiFi protocols such as

IEEE80211ac or LoRA could be designed with open-source and low-cost in mind.
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