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Nitrogen (N) is the most critical fertilizer applied nutrient for supporting plant growth. It is a 

critical part of photosynthesis as a component of chlorophyl, hence it is a key indicator of plant 

health. In recent years, rapid development of multispectral sensing technology and machine 

learning (ML) methods make it possible to estimate leaf chemical components such as N for 

predicting yield spatially and temporally. The objectives of this study were to compare the 

relationships between canopy reflectance and corn (Zea mays L.) leaf N concentration acquired by 

two multispectral sensors: red-edge multispectral camera mounted on the Unmanned Aerial 

Vehicle (UAV) and crop circle ACS-430. Four fertilizer N rates were applied, ranging from 

deficient to excessivein order to have a broad rangein plant N status. Spectral information was 

collected at different phenological stages of corn to calculate vegetation indices (VIs) for each 

stage. Moreover, leaf samples were taken simultaneously to determine N concentration. Different 

ML methods (Multi-Layer Perceptron (MLP), Support Vector Machines (SVMs), Random Forest 

regression, Regularized regression models, and Gradient Boosting) were used to estimate leaf N% 

from VIs and predict yield from VIs. Random Forest Regression was utilized as a feature selection 

method to choose the best combination of variables for different stages and to interpret the 



 

 

relationships between VIs and corn leaf N concentration and grain yield. The Canopy Chlorophyll 

Content Index (SCCCI) and Red-edge Ratio Vegetation Index (RERVI) were selected as the most 

efficient VIs in leaf N estimation and SCCCI, Red-edge chlorophyll index (CIRE), RERVI, Soil 

Adjusted Vegetation Index (SAVI), and Normalized Difference Vegetation Index (NDVI) were 

chosen as the most effective VIs in predicting corn grain yield. The results derived from using a 

red-edge multispectral camera showed that the SCCCI was the most proper index for predicting 

yield at most of the phenological stages and Gradient Boosting was the best-fitted model to 

estimate leaf N% with an 80% coefficient of determination. Using a Crop Circle ACS-430 showed 

that the Support Vector Regression (SVR) model achieved the best performance measures than 

other models tested in the prediction of leaf N concentration. 
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CHAPTER I 

 INTRODUCTION  

The United States Department of Agriculture (USDA) reported that approximately 36 million 

hectares of corn were planted and 11.3 ton/ha grain yield was harvested in the US in 2019 

(USDA/NASS, 2019). Agricultural lands expanded about 10 million ha every year from 1980 to 

2007 (West et al., 2010) to meet the needs of a growing population, changing diets, and increasing 

biofuel requirement. Harvested land under corn has expanded from 27 million to 35 million ha in 

the US from 1936 to 2016 (Kakkar, 2017). Therefore, corn has a remarkable impact on feeding 

the world’s population.  

Nitrogen (N) is one of the essential nutrients required for plant growth, development, and 

reproduction. It is a critical input in boosting yields and economic return to agriculturalists and is 

often considered as the limiting nutrient for crop production (Bender et al., 2012). Nitrogen 

deficiency causes stunted growth, low chlorophyll contents, and yellowing of older leaves in 

plants. The readily available N in soils is mainly in the inorganic forms of ammonium and nitrate. 

Nitrogen is abundant in the atmosphere as a format of N2 gas, but this form is not easily available 

to plants. A mismatch between applied N and crop N demand can potentially prevent crop growth 

or damage the environment when N fertilizer is more or less used, respectively. Both situations 

may lead to a decrease in N use efficiency (NUE) resulting in economical production losses and 

possibly environemental hazards. Excess N gets into the groundwater and contaminates it as a 
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result of NO3
--N leaching (West et al., 2010). Although worldwide usage of synthetic fertilizer N 

is increasing, NUE is around 50% for corn (Siqueira, 2016).  

One of the main aims of agricultural production is attaining the highest crop yield at the lowest 

cost. Early detection and managing the problems associated with crop yield indicators can improve 

yield providing econimc and environemental benefits. Visible (blue, green, red) and thermal 

wavelengths (near-infrared (NIR) and red-edge) have been utilized successfully to monitor spatial 

variability of crop health, crop cover, soil moisture, N stress, and crop yield (Baez-gonzalez et al., 

2005; Báez-González et al., 2002; Barzin et al., 2020; Doraiswamy et al., 2003; Lillesand et al., 

2015; Lobell et al., 2005; Magri et al., 2005; Pathak et al., 2018; Sun, 2000; P. Yang et al., 2004). 

In recent years, aerial imagery using drones has been broadly utilized for crop yield prediction 

before harvest (Barzin et al., 2020; GopalaPillai and Tian, 1999; Senay et al., 1998). These spectral 

images can provide high spatial resolution and cloud-free information on the crop’s characteristics 

and it allows continual analysis of crop vegetation conditions during the growing season. In the 

past, normalized difference vegetation index (NDVI) analysis has been widely used for analyzing 

plant growth to support precision farming (Báez-González et al., 2002; Butchee et al., 2011; Funk 

and Budde, 2009; GopalaPillai and Tian, 1999; Matsushita et al., 2007; Reyniers et al., 2006; 

Santamar, 2017; Sharma et al., 2015; C. Yang and Anderson, 2000). Other research has shown 

strong relationships between other spectral bands and yield (Aquino et al., 2018; Barzin et al., 

2020; Ferencz et al., 2010; Fox, 2015; He et al., 2018; Johnson, 2014; Shi et al., 2013; Sumner, 

2019; Tadesse et al., 2015). Senay et al., 1998 found a 0.99 coefficient of determination (R2) 

between corn yield values and NIR wavelength of an aerial image under controlled conditions 

(Senay et al., 1998). Sumner, 2019 reported that green or red-edge bands have a strong relationship, 
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however, the combined index such as Normalized Difference Red-edge (NDRE) that incorporates 

the red-edge bands outperformed the other indices (Sumner, 2019).  

Various in-field sensors utilized to collect the spectral bands for plant reflectance can be used 

to calculate multiplevaried VIs. A common commercially availabel sensor such as the handheld 

GreenSeeker from the Trimble company which measures the red and NIR bands and provides the 

NDVI. Crop Circle ACS-211 from Holland Scientific company is another sensor that is like 

GreenSeeker and collects the red and NIR wavelength and computes the NDVI. Another sensor 

used in this research is Crop Circle ACS-430 measures three specific bands (red, red-edge, and 

NIR) and prepares the NDVI and NDRE. Since Crop Circle ACS-430 records the wavelengths and 

geolocation of each measured point on an SD flashcard, the other VIs related to these three bands 

can be calculated as well. Vehicle-mounted sensors can also be used to collect plant canopy 

information over large study areas or agricultural landscapes rapidly. One of the advantages of this 

sensor in comparison to other active sensors on the market is that it can measure spectral 

reflectance independent of its height above a target. The other sensor utilized in this research is 

the RedEdge™ multispectral band sensor from the MicaSense® company which can be mounted 

on Unmanned Aerial Vehicles (UAVs) and collect spectral bands from different heights. One of 

the advantages of these in-field sensors in comparison to satellite imagery is that these collections 

can be scheduled for a different time during the growing season considering the weather 

conditions. 

 

This study used remotely sensed canopy reflectance data collected from a RedEdge™ 

multispectral band sensor mounted on a UAV and a handheld Crop Circle ACS-430.  

 The objectives of this study were to: 
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1- Develop a yield prediction model at specific corn growth stages using spectral data and 

VIs, 

2- Develop and compare ML-based models to estimate the leaf N content of corn using 

different spectral bands and VIs acquired from a red-edge multispectral band sensor 

mounted on a UAV, and 

3- Estimate leaf N content and predict corn yield using the multispectral handheld sensor’s 

observations (crop circle ACS-430 field sensor) and develop and compare ML algorithms 

to find the best prediction model. 
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CHAPTER II 

USE OF UAS TO TAKE MULTISPECTRAL IMAGERY AT DIFFERENT PHYSIOLOGICAL 

STAGES FOR YIELD PREDICTION AND INPUT RESOURCE OPTIMIZATION IN CORN  

Introduction 

The objectives of this study were to track five different spectral bands obtained through 

sensors mounted on a UAS at five different phenological stages of corn and evaluate 26 calculated 

VIs at each specific stage of growth. Feature selection approaches were applied to reduce the 

number of predictors. Consequently, relationships between the spectral bands and 26 VIs (as 

predictors), and corn yield (as a response variable) were investigated to determine more correlated 

covariates with the response variables. Finally, machine-learning techniques were used to develop 

models for corn yield prediction at each phenological stage. Estimation of corn yield during the 

crop-growing season is essential for efficient management at strategic phenological stages. 

Agricultural surveys and field sampling of standing crops are useful and reliable approaches to 

estimate corn production. However, the spatiotemporal variability of biophysical characteristics of 

the crops due to inconsistency in soil nutrients and water availability, as well as other 

environmental parameters affecting plant growth present challenges in estimating yield accurately 

on a large spatial scale. The Normalized Difference Vegetation Index (NDVI) can be used to 

quantify biomass production (Santamar, 2017) by measuring the difference between near-infrared 

(NIR) and red wavelengths and is widely used in agricultural crop studies (Bronson et al., 2005; J. 

M. Chen, 1996; Hogrefe et al., 2017). In this study, vegetation indices (VIs) including Normalized 
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Difference Red-Edge (NDRE), Optimized Soil Adjusted Vegetation Index (OSAVI), Simplified 

Canopy Chlorophyll Content Index (SCCCI), and Visible Atmospherically Resistant Index 

(VARIgreen), were used to determine their importance in predicting corn grain yield. 

Remote sensing technologies have been used across a wide range of application in agriculture 

to detect and monitor the biophysical characteristics of plants. The spectral information collected 

in pixel scale is used to compute VIs, which are algorithms derived from the spectral 

transformation of reflectance at two or more specified wavelengths and are used to evaluate 

vegetative cover or biomass and plant growth or health status. Differencing, Rationing, Rationing 

Sums and Differences, and Linear Combinations of different spectral wavelengths are standard 

methods used to calculate different VIs. One of the advantages of using a remotely sensed VI 

products is that they are computed in a uniform manner and comparable during time and 

location(Jackson and Huete, 1991). 

Unmanned aerial systems (UAS) equipped with the RedEdge™ multispectral camera can be 

used to detect spatial and temporal variability in biophysical characteristics of corn, such as 

spectral reflectance for the specified wavelengths, which can be used to compute multiple VIs. 

Satellite imagery is routinely used to estimate the yield of different crops (Báez-González et al., 

2002; Shiu and Chuang, 2019; Silvestro et al., 2017). Ongoing and past examinations show that 

the red-edge waveband is useful for estimating the chlorophyll content and N status of plants. 

NDVI-Red-edge is increasingly profitable and helpful for later stages when contrasted with the 

early V6 stage for in-season N application (Sharma et al., 2015).  

A UAS can acquire data from low altitude, where interference by clouds is not an obstacle 

between the sensor and land surface (Bondi et al., 2016; Zhang and Kovacs, 2012). Although 

shadows created by a UAS can still be an issue, data from a UAS is more readily available as 
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compared to satellite imaging because flights can be scheduled at key periods of designated 

phenological stages considering weather conditions, and they can provide greater spatial 

resolution. From an altitude of 60 m or less, a camera mounted on a UAS can collect more detailed 

and important local landscape information at around 4 cm spatial resolution. The spatial resolution 

can be improved by using a more accurate camera sensor or decreasing the UAS flight altitude 

(Iizuka et al., 2018). Therefore, a UAS can provide images with greater pixel resolution, and it is 

possible to acquire spectral images as far as required for research objectives more frequently.  

The emergence of new statistical learning models such as Ensemble methods based on 

decision trees can estimate yield before harvesting. The decision tree approach is increasingly 

being used for different purposes such as corn optimal fertilizer estimation (Qin et al., 2018) and 

corn yield estimation (Khanal et al., 2018). Gradient boosting machines (GBMs) are ensemble 

learning models to empower the weaker models such as decision trees by combining the results 

from them. GBMs are widely used in a broad range of practical applications (Natekin and Knoll, 

2013) and have demonstrated remarkable success for regression and classification applications. 

 

Materials and Methods 

The study was undertaken on an experimental plot at Mississippi State University. 

Geographical Area of Study 

The geographic area of the study was at the W.B. Andrews Agriculture Systems Research 

Farm at Mississippi State, MS, USA (33°28′13.5″N, 88°45′48.0″W) (Figure 2.1). The total area of 

the field was 0.8 ha mapped as a Marietta fine sandy loam (fine-loamy, mixed, siliceous, thermic, 
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Aquic Fluventic Eutrochept). The imagery data were collected during the corn growing season of 

years 2017, 2018, and 2019. 

 

 

Figure 2.1 Geolocation of the study area monitored during the growing season. 

 

Growing season precipitation totals measured at the experimental field varying between 58 

cm in 2017, 42 cm in 2018, and 76 cm in 2019, as shown in Figure 2.2. The data were retrieved 

from the Mississippi Delta weather information of the Delta Agricultural Weather Center at the 

Delta Research and Extension Center, which is located at a distance of 1 km from the research 

field. The precipitation in 2019 was the greatest of the three years, whereas 2018 was the lowest 

year. Because of the low precipitation, signs of water stress were observed in the plants. The water 

deficiency issue was addressed through furrow-irrigation in early June 2018. The mean 

temperature was almost similar throughout all three growing seasons, which was 23 degrees 

Celsius. 
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Figure 2.2 Monthly precipitation chart for the growing seasons: 2017, 2018, and 2019 

 

Experimental Design 

The experimental field was divided into 16 plots, including 12 rows of corn, which were 

planted at a row spacing of 97 cm, and plot length was 38 m, and there was a 3 m alleyway in 

between each plot. The experimental design was a randomized complete block. Corn (DeKalb 

Brand-DKC67-72 variety) was planted on 13 April 2017, 19 April 2018, and 23 April 2019. There 

were four treatments of N, including 0, 90, 180, and 270 kg/ha, applied randomly with four 

replicates. Figure 2.3. illustrates the spatial distribution of each treatment and associated 

replication in the study field. The goal of the spatially varied N application was to identify the 

optimal N requirements for the corn crop and to address the spatial variability of the soil. 

Treatments were randomly assigned to the plots and have been repeated each year on the same 

experimental units. 
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Figure 2.3 Nitrogen treatments and four replicates in 2017-2019 at the Research Farm, 

Mississippi State, US. 

 

The first N application was made just after emergence each year at V2-3 (2–3 leaves with 

visible leaf collar), followed by a second application at V6-7 (6–7 leaves with visible leaf collar). 

Figure 2.4 illustrates fertilizer N applications, planting/harvesting, and flight dates during the 

different phenological stages of corn for 2017, 2018, and 2019. Fertilizer N was side dressed as 

liquid urea ammonium nitrate (UAN) (32-0-0) with an applicator equipped with coulters, and 

liquid knives spaced 23 cm from one side of each corn row and 7.62 cm deep. Limited furrow 

irrigation (50.8 mm) in 2018 was supplied to the experimental area in early June because of the 

low rainfall received with resulting visible signs of water stress.. Strip tillage was utilized for these 

years, although plots were initially disked, and beds were formed following the 2017 growing 

season. Following the 2017 corn harvest, a Persian clover (Trifolium resupinatum L.) cover crop 

was planted at a percent live seeding rate of 6.74 kg seed ha-1 across the whole experimental area 
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using a no-till grain drill to provide winter cover and possible soil improvements. Plots were 

fertilized based on soil test results and received uniform applications of P-K-Mg-S before planting 

for all parcels. The fertilizer blend consisted of two parts muriate of potash (0-0-60), one part 

concentrated super phosphate (0-46-0), and one part sulfate of potash-magnesia (0-0-22-11Mg-

22S) and was applied at a material rate of 224 kg ha–1. Weeds and pests were controlled based on 

Mississippi State University Extension recommendations. The field under study has been used for 

corn cultivation since 2012 with the same fertilize N rates applied each year. Corn grain was 

harvested using a two-row plot combine, which collected the yield from rows 2 and 3 and rows 10 

and 11 (Figure 2.5). 

 

 

Figure 2.4 N applications, planting/harvesting, and flight dates during the different 

phenological stages of corn for 2017, 2018, and 2019. 
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Figure 2.5 The spatial location of rows 2, 3, 10, and 11 

Data Collection 

The MicaSense RedEdge™ multispectral band sensor mounted on a UAS was used to capture 

images in five different spectral bands simultaneously. The unit weight was 150 grams with a 

dimension of 12.1 cm × 6.6 cm × 4.6 cm. The UAS was flown at an altitude of 60 m in 2017 and 

2018, whereas in 2019 it was flown at an altitude of 30 m. Decreasing the altitude from 60 m to 

30 m provided better images with approximately four times greater resolution. The enhanced 

resolution was beneficial in the separation of soil and vegetation. The sensor was mounted on the 

bottom of the UAS with a viewing angle not exceeding 10 degrees from nadir. The multispectral 

sensor measured the wavelength at five different spectral bands, including blue (475 nm center, 32 

nm bandwidth), green (560 nm center, 27 nm bandwidth), red (668 nm center, 16 nm bandwidth), 

red-edge (717 nm center, 12 nm bandwidth), and near-infrared (842 nm center, 57 nm bandwidth). 

All five bands were collected simultaneously at a rate of one capture per second. Optimal image 

acquisition time is within plus or minus two and a half hours of local solar noon (Bronson et al., 

2005; Erdle et al., 2011; Gitelson, 2004; Gitelson et al., 2002; Shanahan et al., 2001), therefore, 

all the flights were performed around 10:30 am under cloud-free conditions. The length of the 

flight was around 10 minutes for the 0.8 ha field area; therefore, environmental conditions such as 

solar radiation, temperature, and humidity were nearly constant during the data acquisition process. 

The UAS images were acquired with a horizontal overlap of at least 75%. Images were stitched 
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and mosaicked with the Pix4D mapper software (Pix4D SA, Lausanne, Switzerland) to obtain 

unique and compiled images for the study area. Superimposed images obtained through the 

stacking of images were disoriented during the first flight. This may be due to the errant movement 

of the camera. To address this issue a co-registration process was adopted. A calibrated reflectance 

panel (CRP) was used for the radiometric calibration of the acquired images. The CRP offers 

calibration information associated with the acquired images across the visible and near-infrared 

images. Images of the CRP that had been taken before and after the flight were used to convert 

raw pixel values into reflectance. The initial processing of the raw images was done at the 

Geosystems Research Institute (GRI) at Mississippi State University. 

Vegetation Indices 

Vegetation indices are mathematical combinations of wavelength-specific spectral reflectance 

developed to detect and monitor vegetation’s phenological conditions remotely. For vegetation, 

reflectance by itself is low in both the blue and red bands of the spectrum due to maximum 

chlorophyll absorption in those bands, while reflectance has a peak in the green band. Because of 

the cellular structures of leaves, the reflectance is much more significant in the NIR bands 

compared to visible bands. In this study, several VIs were derived from a 5-band multispectral 

sensor. Multispectral bands are visually and numerically similar; on the other hand, they are often 

highly correlated (Barzin et al., 2017a; González-audícana et al., 2004). To avoid the issue 

associated with VI calculation, row data was converted to percentage reflectance to signify the 

quantitative data. The name of the indices and associated spectral bands are listed in Table 2.2. 

The choices of indices by the researchers may vary according to their need but for biomass content, 

most indices involving red, infrared, and red-edge bands were preferred. These bands are supposed 

to explain even the subtle changes in biomass content. 
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Table 2.2 Mathematical representation of vegetation indices and ratios calculated from 

spectral reflectance. 

 

Vegetati

on 

Indices 

(VI) 

Name Formula 

Study 

Groups 

(Reference) 

1 DVI 
Difference Vegetation 

Index 
NIR-Red 

(Tucker, 

1979) 

2 GDVI 
Green Difference 

Vegetation Index 
NIR-Green (Wu, 2014) 

3 RDVI 
Renormalized Difference 

Vegetation Index 
(NIR-Red)/√𝑁𝐼𝑅 + 𝑅𝑒𝑑 

(Roujean 

and Breon, 

1995) 

4 TDVI 
Transformed Difference 

Vegetation Index 1.5(NIR-Red)/√NIR² + Red + 0.5 
(Bannari et 

al., 2002) 

5 NDVI 
Normalized Difference 

Vegetation Index 
(NIR-Red)/(NIR+Red) 

(Pathak et 

al., 2018; 

Rouse et 

al., 1974) 

6 GNDVI 

Green Normalized 

Difference Vegetation 

Index 

(NIR-Green)/(NIR+Green) 

(Gitelson 

and 

Merzlyak, 

1998a) 

7 NDRE 
Normalized Difference 

Red-edge 
(NIR-Red-edge) / (NIR+Red-edge) 

(Gitelson 

and 

Merzlyak, 

1994; T. B. 

Raper and 

Varco, 

2015) 

8 SCCCI 

Simplified Canopy 

Chlorophyll Content 

Index 

NDRE / NDVI 

(T. B. 

Raper and 

Varco, 

2015) 

9 EVI 
Enhanced Vegetation 

Index 

2.5*(NIR-Red)/ (NIR+6Red-

7.5Blue+1) 

(Matsushita 

et al., 2007) 

10 TVI 
Triangular Vegetation 

Index 

0.5 [120 (NIR-Green)] -200 (Red – 

Green) 

(Broge and 

Leblanc, 

2001) 

11 
VARIgre

en 

Visible Atmospherically 

Resistant Index 
(Green-Red)/(Green + Red-Blue) 

(Gitelson et 

al., 2002) 
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Table 2.2 (continued) 

 
Vegetation 

Indices (VI) 
Name Formula 

Study Groups 

(Reference) 

12 TGI 
Triangular 

Greenness Index 

(Red-Blue) (Red-Green) - (Red 

- Green) (Red - Blue))/2 
(Hunt et al., 2011) 

13 NLI Non-Linear Index (NIR2-Red)/(NIR2+Red) 
(Vescovo and 

Gianelle, 2008) 

14 MNLI 
Modified Non-

Linear Index 

(NIR2-Red) *(1+0.5)/ 

(NIR2+Red+0.5) 

(Feng et al., 2019; 

Gong et al., 2003) 

15 SAVI 
Soil-Adjusted 

Vegetation Index 

1.5*(NIR-

Red))/(NIR+Red+0.5) 

(Rondeaux et al., 

1996) 

16 GSAVI 

Green Soil-

Adjusted 

Vegetation Index 

1.5 * (NIR-

Green)/(NIR+Green+0.5) 

(Sripada et al., 

2008) 

17 OSAVI 

Optimized Soil-

Adjusted 

Vegetation Index 

(NIR-Red)/(NIR+Red+0.16) 
(Rondeaux et al., 

1996) 

18 GOSAVI 

Green Optimized 

Soil-Adjusted 

Vegetation Index 

(NIR-

Green)/(NIR+Green+0.16) 

(Sripada et al., 

2008) 

19 MSAVI2 

Modified Soil-

Adjusted 

Vegetation Index 

2 

(2NIR+1- 

√(2NIR + 1)2 − 8(NIR − Red) 

)/2 

(Qi et al., 1994) 

20 MSR 
Modified Simple 

Ratio 
(NIR/Red)-1/√NIR/Red +1 (J. M. Chen, 1996) 

21 GRVI 
Green Ratio 

Vegetation Index 
NIR / Green (Tucker, 1979) 

22 WDRVI 

Wide Dynamic 

Range Vegetation 

Index 

(0.1 NIR-Red) / (0.1 NIR + 

red) 
(Gitelson, 2004) 

23 SR Simple Ratio NIR/Red 
(Fraser and 

Latifovic, 2005) 

24 GARI 

Green 

Atmospherically 

Resistant Index 

NIR-Green - (1.7 (Blue-

Red))/(NIR+Green-(1.7 (Blue-

Red)) 

(Gitelson et al., 

1996) 

25 GCI 

Green 

Chlorophyll 

Index 

(NIR/Green) - 1 
(Gitelson et al., 

2003) 

26 GLI Green Leaf Index 
(Green-Red-

Blue)/(2Green+Red+Blue) 

(Louhaichi et al., 

2001) 
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Masking Soil Pixels 

To estimate the spatial average of VIs for each corn row, it was essential to mask bare soil 

pixels located between corn rows. After the VIs calculation, the bare soil pixels were removed 

since these pixels do not provide further information in the yield estimation modeling. Eliminating 

these pixels reduced the image processing time and attributed to better estimate the spatial average 

of VIs for each row. Moreover, reflectance data from the corn rows contain information associated 

with the corn leaves and the scattered wavelength from the background soil within the leaves. The 

background soil reflectance potentially decreases the effectiveness of the leaves in VI values 

(Morales et al., 2019). The occurrence of such a phenomenon is explicitly noticed when the leaves 

are in the primary phenological stages. To reduce this effect, different VIs such as the Soil-

Adjusted Vegetation Index (SAVI), Optimized Soil-Adjusted Vegetation Index (OSAVI), Green 

Soil-Adjusted Vegetation Index (GSAVI), Green Optimized Soil-Adjusted Vegetation Index 

(GOSAVI), and Modified Soil-Adjusted Vegetation Index 2 (MSAVI2) have been used. These 

VI’s takes care of the contribution of the soil reflectance in VIs calculation, specifically in the leaf 

edge pixels which may have soil and vegetation information together, therefore, the pure soil pixels 

were removed. As a result, an empirical equation (Equation 1.1) was used to mask the unshaded 

and shaded bare soil pixels. 

 

𝐺𝑖𝑛𝑑𝑒𝑥  =  2 ∗  𝐺𝑟𝑒𝑒𝑛 −  𝑅𝑒𝑑 –  𝐵𝑙𝑢𝑒 (2.1) 

 

The Gindex values greater than 0.06 were selected as vegetation pixels based on trial and error. 

Although NDVI has been used to remove soil pixels (Gallo et al., 2018; Sader and Winne, 1992), 
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it does not detect and remove shaded pixels. Therefore, the proposed Gindex filter can remove all 

shaded and unshaded bare soil pixels precisely. 

Harvesting Process 

The Corn grain was harvested by a two-row plot combine for the whole plot length. Rows 2 

and 3 and rows 10 and 11 of each plot were combined. Some of the plots suffered extensive 

raccoon damage in 2018; hence, ears were harvested by hand from uniformly standing undamaged 

rows. Hand harvesting was performed by pulling ears from two 6.1-m row lengths of each harvest 

row pairs (rows 2, 3, and rows 10, 11). The regions of damage were skipped during the hand 

harvesting. All grain yield data were adjusted to 15.5% moisture content. Since yield data were 

collected for rows 2–3 and rows 10–11, VIs derived from pixels reciprocating the rows were 

calculated. The bare soil pixels between rows were eliminated by applying Equation 1.1, and then 

the spatial average of pixels was taken for each row and applied as variables in company with yield 

for each row. Figure 2.5 shows the spatial location of the rows within each treatment. 

Outlier Detection  

After calculating VIs for each phenological stage, outliers for each VI and at each stage were 

removed from the data set by utilizing a well-known z-score (z = (x − x̅ )/σx) (Schubert and 

Kriegel, 2014; Torres et al., 2011). Here, the observations with z-score greater than 2.5 were 

considered as outlier data. The threshold number flexible between 2.5 and 3 were used to remove 

outliers (Nurunnabi et al., 2015). A smaller threshold number of results in a greater selection of 

outliers. All in all, approximately 3–8% of the data for each growth stage were removed as outliers. 

Feature Selection 

The process of identifying the most important features is called “feature selection”. The random 
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forest method is one of the most popular machine-learning methods used in data science 

workflows. This method is a combination of tree predictors used commonly as a tool for 

classification, regression, and ranking of candidate predictors (Breiman, 2001; Janitza et al., 2016). 

In this research, the most important variables for each phenological stage were identified by the 

Random Forest feature selection method. The Random Forest method uses a training dataset and 

creates multiple subsets of the data randomly. Then, trees (samples) are used to create a ranking 

of classifiers and perform a vote for each predicted result. Finally, prediction results are selected 

which have the most votes (Breiman, 2001). Random Forest is considered a highly accurate and 

robust method (Janitza et al., 2016) because of the number of decision trees participating in the 

process. This method has acceptable predictive performance, low overfitting, and simple 

interpretability. 

Statistical Analysis 

In this research, density plot and Shapiro–Wilk’s test (Akbarzadeh Baghban et al., 2013; Kox 

et al., 2016; Razali and Wah, 2011; Vellidis et al., 2013) were used to evaluate whether the data 

follow Gaussian distribution or not. Although some statisticians suggest that in case of the large 

sample size (n > 30), we can ignore the distribution of the data and use parametric tests (Razali 

and Wah, 2011)(Akbarzadeh Baghban et al., 2013; Ghasemi and Zahediasl, 2012; Vellidis et al., 

2013), the observed yield data were not large enough (32 samples size for each year) and were not 

following the normal distribution; therefore, two approaches were used to make yield prediction 

models: 1) the data were normalized and then multiple regression models were fitted using the 

important features, and 2) a gradient boosting decision tree model was hired as a non-parametric 

method to estimate corn yield. Gradient boosting machines (GBMs) is a method of converting 

weak learners into strong learners like the Random Forest, however, in GBM the kth tree is trained 
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from the first k-1 trees and updated the residual for the ith example of the difference between 

prediction and observations (Friedman, 2002). In other words, the predictors were sequentially 

trained and tried to correct the predecessors. One of the advantages of using GBM is that this 

method is highly customizable to the specific necessity of the application, such as being learned 

with regard to various loss functions (Natekin and Knoll, 2013). 

For the multiple regression models, some of the input variables were not associated with the 

response variables that triggered excessive complexity in the final model. Therefore, possible 

combinations of the essential variables were used to fit different multiple regression models. 

Linear model selection was used to determine the number of significant variables that improve the 

model by maximizing the adjusted R2, minimizing Bayesian information criterion (BIC), and 

minimizing the cross-validated prediction error (Cp) (Hastie et al., 2004). Furthermore, cross-

validation (CV) (Kutner et al., 2005) was used as a backup method to ensure the predictors were 

correctly determined. Cross-validation is a method used in the selection of models to test the ability 

of different models in their accuracy in the prediction of results. In this research, the data were 

split into two subsets. Eighty percent of the data were used as training samples or the model-

building set, and 20% of the data were used for prediction or as a validation set. Each variable was 

included in the model, and then the average of the cross-validation error was estimated. Overall, 

after removing outliers, the Random Forest and cross-validation methods were used to find the 

number of influential variables for predicting the corn yield. Random Forest feature selection 

illustrates the importance of variables at each stage. Different variables were selected for each 

phenological stage of corn. 

In this research, the software programs ArcMap 10.7.1 (Environmental Systems Research 
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Institute, Inc. (ESRI), Redlands, CA, USA) (Esri, Redlands, Ca, 2019), QGIS v.3.12.0 

(Böschacherstrasse 10a CH-8624 Grüt (Gossau ZH), Zurich, Switzerland) (“QGIS Development 

Team,” 2020), and R version 3.6 (R Core Team: Vienna, Austria) (R Core Team: Vienna, 

2019)were used to manipulate and analyze the data. 

Results and Discussion 

Graphical (density plot) and numerical (Shapiro–Wilk’s test) assessment of the normality 

of the data illustrated that the data does not follow a normal distribution (Figure 2.6). It can be 

observed that the corn yield data distribution shape does not match the normal distribution (dashed 

lines). Since the normality test is sensitive to sample size, therefore, it is important to combine 

visual inspection and significance tests in order to make the right decision. The Shapiro–Wilk’s 

test confirmed the same result and therefore, the data was normalized. The correlation between 

yield and 31 independent variables is shown in Figure 2.7 at V4-5 and VT stages. 

 

 

Figure 2.6 Yield density plot (solid line) and corresponding normal distribution (dashed line). 
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a 

 

 
b 

Figure 2.7 Correlation between corn yield and 31 variables (5 spectral bands and 26 

vegetation indices (VIs): (a) at V4-5 (4-5 leaves with visible leaf collar); (b) at 

tasseling stage (VT). 
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The taller the data bar, the greater is the correlation between each variable and yield. As shown 

in Figure 2.7, the SCCCI, NDRE, MSAVI2, and Green Difference Vegetation Index (GDVI) at 

V4-5 stage and Triangular Greenness Index (TGI), SCCCI, Green Atmospherically Resistant 

Index (GARI), and GOSAVI at VT were more correlated with yield as a response variable. 

However, all of these variables were not included in the final model due to their interaction 

between the independent variables. 

In machine learning modelling, feature selection is primarily focused on eliminating non-

informative or redundant predictors from the model. Some machine learning models contain built-

in variable selection, meaning that the model will only include variables that improve accuracy. In 

these cases, the model can pick and choose which representation of the data is best. The most 

common techniques are using correlation coefficient for selecting the important features 

correlation. All in all, statistical-based feature selection methods involve evaluating the 

relationship between each input feature and the target variable using statistics and selecting those 

input variables that have the strongest relationship with the target variable. Random Forest selected 

different features for each corn phenological stage. For instance, the 

SCCCI, NDRE, and MSAVI2 were the most striking features to predict the yield at the V4-5 stage 

(Figure 2.8 a). The TGI, Green Leaf Index (GLI), VARIgreen, and SCCCI were the most significant 

VI’s to estimate yield at the VT stage (Figure 2.8 b).  
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a 

 
b 

Figure 2.8 Feature importance by Random Forest feature selection method: (a) at V4-5; (b) at 

VT. 

 

Regarding the model selection method, for the VT stage, three predictors had a significant 

impact on increasing yield prediction accuracy (Figure 2.9). The three variables lead to almost the 

greatest adjusted-R2 and the lowest BIC and Cp. Although adding a 4th variable increased the 

adjusted-R2 or decreased the BIC and Cp, these improvements were not significant. Therefore, 

three predictors were used in the yield prediction model for the VT stage, which explained 

approximately 95% of the corn yield variation. 
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Figure 2.9 The linear model selection at the VT stage. 

 

Moreover, the mean CV error confirmed that the same number of variables were needed for 

the final model (Figure 2.10). As a result, the best subset selection on the full dataset with the 

lowest mean square error (MSE) was the 3-variable model used to predict grain yield at the VT 

stage. 

 

Figure 2.10 Mean cross-validation error versus the number of variables. 

 

To achieve a mathematical yield prediction algorithm, multiple linear regression models were 

fitted for each phenological stage (Table 2.4). 
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Table 2.3 Regression models and performance for each model to predict yield at different 

phenological stages. 

Phenological 

stage 
Yield prediction models R2-adj 

V3 Yield = - 23 + 144.4 OSAVI 0.63 

V4-5 Yield = - 13.36 + 45.48 SCCCI 0.69 

V6-7 
Yield = - 161 + 590.3 GARI + 151.7 NDRE - 456.9 

GNDVI 
0.70 

V10-11 Yield = - 22.64 + 68.93 SCCCI - 19.13 SAVI 0.90 

VT 
Yield = - 10.96 + 26.07 SCCCI - 68.25 GLI + 13.25 

VARIgreen 
0.93 

 

Although TGI was the most important feature at VT (Figure 2.8 b), it was not statistically 

significant among other selected variables. Similarly, all these processing methods were applied 

for each of the five growth stages in order to predict grain yield. Since plant leaf area and 

metabolism are different at phenological stages, the relationships between yield and spectral 

bands/VI are likely to differ; therefore, a model for each stage was developed. The coefficients of 

determination (R2) for different models at each phenological stage are shown in Table 2.4. All the 

variables used in these models are statistically significant (at the ⍺ = 95% significance level). As 

the spectral bands and VIs are highly correlated, principal component analysis (PCA) may help, 

however in this research we used this subjective method to solve the proble. 

Furthermore, the measured yield data were compared to the fitted models to evaluate the 

performance of the algorithms. Figures 2.11 a to 2.11 e illustrate the scatter plot of observed yield 

values versus predicted yield values at different stages using multiple linear regression. In these 

figures, the blue line is the 1:1 line, which has a slop of 1, and the red line is the modeled prediction 

regression line. The regression line indicates how a response variable changes as predictors 
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change. The increasing similarity in the slope and intercepts of the regression line to the 1:1 

indicates a more significant model predictive capacity. 

 

Figure 2.11 Scatter plot of observed versus predicted yield model of corn using multiple linear 

regression: (a) V3 (3 leaves with visible leaf collar); (b) V4-5; (c) V6-7; (d) V10; 

(e) VT stages. 

 

The yield model at V3 with one single variable, OSAVI, resulted in the simplest yield 

estimation model, which has the advantage of simplicity and ease of calculation. As Rondeaux 

(1996) concluded, OSAVI excels in regions with sparse vegetation where the soil is visible through 
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the plants (Hatfield and Prueger, 2010)(Rondeaux et al., 1996) and, thus, utilization of a VI that 

corrects for soil interference such as OSAVI worked the best when corn leaf area was at the lowest 

and bare soil was the greatest among all the sampling times. This model predicted corn grain yield 

using only one variable at the V3 stage, and the model explained the 63% variation in the corn 

yield. At the V4-5 stage, the SCCCI predicted grain yield with the highest level of accuracy. The 

variable selection method indicated that including more variables did not significantly improve the 

efficiency of the model at V3 and V4-5 stages. Adding a 2nd variable (VI) only increased the R2 

to 0.7 which was not significant. At the V6-7 stage, the GARI, NDRE, and Green Normalized 

Difference Vegetation Index (GNDVI) together resulted in the best prediction accuracy of grain 

yield. Although the NDVI is a commonly used index to predict yield, this index saturates when 

the leaf area index is greater than 1.5 (Trotter et al., 2008). The green NDVI (GNDVI) was most 

strongly related to grain yield because it has a broader dynamic range than NDVI and combines 

the green and NIR wavelengths, which are more strongly associated with leaf chlorophyll, N 

content, and grain yield than the red wavelength (Gitelson et al., 1996; Rattanakaew, 2015; 

Shanahan et al., 2001). The SAVI is a VI related to biomass to predict yield in highly vegetated 

areas (Trotter et al., 2008). At the V10-11 stage, SAVI was one of the most effective variables in 

predicting yield with an R2 of 0.90. The SCCCI, GLI, and VARIgreen were found to provide the 

best predictive accuracy at the VT stage (R2 = 0.93). Moderate to high R2 values (0.63, 0.69, and 

0.70) at V3, V4-5, and V6-7 were observed respectively, and high R2 values (0.90 and 0.93) at 

V10 and VT were obtained, respectively. As a result, at V3 and V4-5, the models with a single 

index, and after V6-7, the predictive models with multiple indices produced the most solid 

relationships between observed and predicted grain yields. Similar results were reported for lettuce 

yield prediction (Kizil et al., 2012). To conclude, the VIs used in the predictive models (Table 2.4) 
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were interchangeable with the next most important VIs (Figure 2.8); however, this replacement 

led to a reduction in the prediction accuracy of the model by about 5%. 

Assessment of the gradient-boosting models used for prediction of corn yield for five 

phenological stages suggested that VI’s derived from MicaSense™ observations can predict corn 

yield with relatively greater accuracy (Figure 2.12 a to 2.12 e). The R2 ranged from 0.84 at V3 to 

0.97 at VT. Although GBM for the V3 stage hads a relatively high R2, the root mean square error 

was high (RMSE = 2.1 ton/ha). Compared with multiple regression models, ensemble learning 

models resulted in better estimations. For instance, at the V4 to V5 stages, gradient boosting 

consistently performed better in the prediction of corn yield during both the cross-validation and 

validation phase. The advantage of the non-parametric ensemble learning models over the 

regression-based model could be associated with the existence of non-linear relationships between 

the yield and VIs that Random Forest-based algorithms can integrate during model development. 

Additionally, the flexibility in the hyperparameters configuration of the boosting methods can 

result in a greater performance in yield prediction. 
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Figure 2.12 Scatter plot of observed versus predicted yield model of corn using gradient 

boosting machines: (a) V3; (b) V4-5; (c) V6-7; (d) V10; (e) VT stages. 

 

Two critical results were observed from this study: first, as shown in Table 2.4, the SCCCI as 

a combined index seems to be the most appropriate index for predicting yield (T. B. Raper and 

Varco, 2015). Second, as corn development progressed, the GBM and regression models predicted 

final grain yield more accurately, indicating that there is some relationship between the VI and the 

biomass content of the corn. It appears that the variation in fertilizer N rates provided a good basis 
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for differentiating growth and, ultimately, grain yield, which provided adequate sensitivity for 

model building and testing. 

 

Conclusions 

This study utilized five distinct wavelengths and 26 calculated VIs as input variables to 

develop regression-based and tree-based learning models at different corn phenological stages to 

predict corn grain yield at V3, V4-5, V6-7, V10-11, and VT phenological stages. The influence of 

the variables was found to vary with the phenological stages. In general, the VI that contributed to 

the majority of the models was SCCCI, suggesting the importance of red-edge-based VIs during 

yield estimation. At V3 and V4-5 stages, OSAVI and SCCCI were the single dominant features in 

the yield-predicting models, respectively. The most suitable GBM models with the greatest R2 

values of 0.97 and 0.95 resulted at the V10 and VT stages, respectively. Similarly, the highest R2 

values were obtained at the same stages using regression-based models. Although the R2 at V10-

11 and VT stage are higher than previous stages, applying N fertilizer is not applicable by 

instrument intalled on a tractor. This cannot make happen because the height of corn is too high, 

so if we are going to add extra N application, V6-7 stage would be the most commercial stage. 

When the models’ performances were compared for individual stages in both regression-based and 

tree-based models, however, the accuracies were greater as corn development progressed. One of 

the goals of this research was to find the models for each stage with minimum error (maximum 

R2) by using the appropriate number of predictors. The methodology used in this research can be 

extended to predict yield for other crops or in other regions as well, where yield prediction is 

mainly reliant on weather and climatic conditions. 



 

31 

The accuracy of the models in this research might have been affected by different variables, 

including a smaller number of yield samples collected for each year and the use of limited machine-

learning algorithms. In this study, we observed considerable improvement in yield prediction with 

the use of the ensemble learning model rather than the linear regression algorithm. For corn yield 

prediction, spectral information, preprocessing, and preprocessing algorithms were important. 

The results of this research demonstrated the use of the smallest number of predictive variables 

that are statistically significant which resulted in an improved explanation for corn yield 

prediction. Contributing to the accuracy in the predictive capacity of these models included the 

following: preprocessing of data, including removal of soil pixels, deletion of 3–8% of outliers 

before conducting the statistical analysis, evaluating for appropriate variables, and selecting 

appropriate machine-learning model. 
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CHAPTER III  

MACHINE LEARNING APPROACHES TO ESTIMATE CORN LEAF NITROGEN USING 

MULTISPECTRAL IMAGERY 

Introduction 

Nitrogen (N) is considered the most critical component of healthy crops. It is one of the major 

structural elements of chlorophyll content that supports plant growth, development, and 

productivity. The primary purpose of precision cropping systems is to provide information to make 

better decisions to use the optimum amount of inputs on the right place and at the right time to 

enhance the production and optimize the inputs for economic benefit and to protect the 

environment (Pathak et al., 2018). Since N is a vital element in chlorophyll and it needs for 

photosynthesis process, helpful information about plants' physiological status can be obtained by 

the leaf chlorophyll content (Bojović and Marković, 2009; Clevers and Gitelson, 2013; Hunt et al., 

2011) A strong correlation between leaf N content and chlorophyll concentration has been found 

for various plant species (Baret, F., Houlès, V., & Guerif, 2007; Oppelt and Mauser, 2010; Yoder 

and Pettigrew-Crosby, 1995). Nitrogen deficiency in maize leads to a decrease in chlorophyll 

concentration in turn changing the leaf color to pale (yellowish-green) with spindly stalks (Sawyer, 

2004). As N is a mobile nutrient, this symptom starts from lower (older) leaves and continues to 

the upper leaves if the deficiency persists. With N stress, absorbance, transmittance, and 

reflectance are affected (Al‐Abbas et al., 1972); canopy reflectance of red light rises, while near-

infrared (NIR) reflectance declines. While N plays a critical role in developing phenological stages 
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of corn, over-application of N fertilizer can lead to environmental degradation through the process 

of leaching away from root zone (Butchee et al., 2011).  

Data based digital agriculture has generated interest in the variable rate (VR) applications, 

which can optimize input application for positive environmental effects and economic benefits, as 

well as attain efficient N use. Studies illustrated that optical sensing measurements based on VR-

N applications may lead to higher N use efficiency in corn production (Stefanini et al., 2019). 

Farmers can utilize fertilizer more effectively using precise agriculture technologies like real-time 

on-the-go optical sensing measurements based on varying levels of N application (Stefanini et al., 

2019). Zermas et al., (2015) described a methodology to detect N deficiencies in the corn field 

(Zermas et al., 2015).  

Multispectral cameras mounted on Unmanned Aerial Vehicles (UAVs) can collect more 

detailed and useful local background information with higher spatial resolution. The ground 

resolution of UAV sensors is around 5 cm, which can be improved by using a high resolution 

camera sensor and decreasing flight altitude (Iizuka et al., 2018). Besides, UAVs have the 

advantage of collecting higher temporal resolution images to supplement data from satellites, even 

on cloudy days (Bondi et al., 2016; Gnädinger and Schmidhalter, 2017; Zhang and Kovacs, 2012). 

Moreover, the UAV flight altitude is less than clouds height (except in tropical climate) 

(Ruwaimana et al., 2018), which makes it possible to detect and analyze the land surface data 

under the clouds (T. Wang et al., 2019). Calibration Reflectance Panels (CRP) are utilized to 

convert sensor radiance into target reflectance to compensate incident light conditions and 

generation of quantitative data (Bondi et al., 2016). Therefore, UAV’s provide images that are 

reasonably independent of time and weather conditions. It is also time-saving and provides lower-

priced imagery (Gnädinger and Schmidhalter, 2017). Zermas et al., (2015) collected data by 
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sensors mounted on an UAV flying over stressed areas at a low height and captured high-resolution 

RGB images. Using supervised learning methods to distinguish N deficiency in crop leaves 

Zermas et al. (2015) reported a performance of 84.2% even if the leaves were covered by other 

leaves. Machine Learning (ML) is a branch of artificial intelligence for identifying natural patterns 

based on past data and automates probabilistic analytical models to make better decisions and 

predictions. As artificial intelligence has become one of the proven technologies to deal with 

digital information, it could restore significant outcomes while taking into consideration the crop 

types (Brinkhoff et al., 2019; He et al., 2018; Miyoshi et al., 2020). One of the significant 

advantages of ML techniques is the capability of autonomously solving huge non-linear problems 

utilizing multiple sources of data (Chlingaryan et al., 2018). Using ML techniques in multispectral 

imaging data can reveal physiological and structural characteristics in crops. It also tracks 

physiological dynamics due to environmental impacts and supports better decision making and 

decisive actions in real-world situations with or without minimum human intervention. Moreover, 

it can be applied in field spectroscopy in both the offline and online prediction of parameters in 

the field (Morellos et al., 2016). These techniques can work with derived spectral indices such as 

Vegetation Indices (VIs) and whole spectral response traces (Van Wittenberghe et al., 2014). 

Spectral indices depend on a small number of available spectral bands and therefore do not use the 

entire information conveyed by the spectral trace. Therefore, it is crucial to find a specific VI 

suitable for a given task. 

Identifying suitable VIs to estimate leaf or plant N concentration requires screening of most 

useful band combinations from a large range of digital information. Most of the mathematical 

methods are computationally sluggish or may result in irrational output. This may be due to 

multiple input parameters, multicollinearity or multiple interactive terms. There are some ML 
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techniques such as Multi-Layer Perceptron (MLP), Support Vector Machines (SVMs), Random 

Forest regression, Regularized regression models, and Gradient Boosting, which are broadly 

applicable in precision agriculture. Some of the statistical and ML methods that have been explored 

for fertilizer N recommendations are: Ridge Regression, Lasso, Elastic Net, Principal Component 

Analysis (PCA), and Random Forest. All of the above-mentioned methods have their own benefits 

and drawbacks. Ridge regression, Lasso, and Elastic Net are straightforward and less complicated, 

but require optimization of hyperparameters and yield considerably poorer results with non-linear 

relationships (Arruda et al., 2015; Xing et al., 2018). Whereas, PCA accommodates 

multicollinearity at the cost of scaling and normalization, which may ensure relationships with 

apparent variables (J. Wang et al., 2017). Compared to Ridge regression, Lasso, Elastic Net and 

PCA, Random Forest performance is considered to be more accurate and profound. The method 

can manage non-linear relationships. Random Forest is resilient to outliers and compensates for 

the overfitting observed during the process (Abdel-rahman et al., 2013). Osco et al., 2020 used 

machine learning approach to predict leaf N concentration and plant height based on the NDVI, 

NDRE, GNDVI and SAVI indices, identifying Random Forest as a beneficial predictor for both 

the N-concentration and plant height (Osco et al., 2020). The feature of inherent regularization and 

low sensitivity to the data dimensionality makes the technique self-effacing for solving imaging 

problems (Tuia et al., 2018).  

Machine Learning provides a robust and adaptable framework for data-driven decision making 

and incorporation of professional knowledge into the system. Hyperspectral images used 

combined with PCA and nonparametric regression algorithms can formulate biophysical and 

biochemical traits of the crops. Random Forest methods are less time consuming in both training 

and prediction whereas the kernel methods provide more amenable and manageable in context to 
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hyperspectral imaging (Berger et al., 2020). The objectives of this research were to develop and 

compare different ML-based models to estimate the leaf N content of corn using different VIs and 

spectral bands acquired from a red-edge multispectral band sensor mounted on a UAV. Besides, 

the performance of VIs and spectral bands were compared individually and collectively to see if 

the combinations of VIs substantially improve results as compared to the original spectral data. 

Data and Methods 

Site description 

The rain-fed corn crop was located in the research field (33°28’13.5” N, 88°45’48.0” W) MS, 

USA. The total study area was 0.8 ha with a Marietta fine sandy loam (fine-loamy, mixed, 

siliceous, Aquic Fluventic Eutrochept, thermic) soil. The nutrients K-P-Mg-S were applied 

according to soil test recommendation and crop maintenance rates, while weeds and pests were 

controlled based on Mississippi Cooperative Extension Service recommendations. The crop 

received furrow-irrigation in June 2018 and 2019 due to low total rainfall and visible water stress 

signs. No additional fertilizer N was supplied to the field throughout irrigation.  

The experimental design was a randomized complete block divided into 16 plots with four 

replicates. Four N fixed fertilizer N rates of 0, 90, 180, and 270 kg/ha were applied on 16 plots 

randomly. Each plot was comprised of 12 rows of corn planted with a 97 cm spacing between rows 

with an average row length of 38.1 m (Error! Reference source not found.).  
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Figure 3.1 Experimental design for a maize field study with four replications of four nitrogen 

fertilizer treatments, from 2017 to 2019 at Agriculture Systems Research Farm, 

Mississippi State, US. 

Experimental design 

Fertilizer N treatments were applied as a side-dressed liquid urea ammonium nitrate (UAN) 

solution (32-0-0) 2 times during the growing season, using an applicator equipped with coulters 

and attached liquid knives set at 23 cm from one side of each row and 7.62 cm deep. The maximum 

N level in corn occurs early in the growing season when plants proliferate (Hogrefe et al., 2017). 

Therefore, half of the fertilizer N rate for each treatment was applied just after emergence in each 

year when corn had 1-2 leaves with visible leaf collars (V1-V2 stage) and the remainder was 

applied when corn had 6-7 leaves with visible leaf collars (V6-V7 stage). Treatments were 

randomly allocated to the plots and have been repeated each year on the same experimental units. 

Since 2012, the field study had been on corn and the same N rates of fertilizer had been applied to 

the plots.  
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Materials and methods 

The multispectral images were captured for three years at 3 different growth stages (V4-V5, 

V6-V7, and VT) by the MicaSense® RedEdge™ multispectral camera mounted on a UAV. 

Planting/harvesting, fertilizer N applications, and flight dates are shown in Table 3.2. The spectral 

reflectance measurements were acquired at 475, 560, 668, 717, and 842 nm (blue, green, red, red-

edge, and NIR wavelengths, respectively). All five wavelengths were obtained simultaneously. 

Each flight took 10 minutes for 0.8 ha. The flight altitude was 60-m in 2017 and 2018, and it was 

decreased to 30-m in 2019 to increase resolution. The camera was mounted on the bottom of the 

UAV, and the viewing angle was less than 10o from nadir. The UAV images were taken with at 

least a 75% horizontal overlap. Then, Pix4Dmapper software was used to stitch and mosaic the 

images with a spatial resolution of 4-cm. A white calibration reflectance panel was used to 

compensate for incident light before and after each flight. The CRP has a calibration curve 

associated with the acquired images across the visible and near-infrared light spectrum. The 

Geosystems Research Institute (GRI) at Mississippi State University preprocessed all the images 

and mosaic the image tiles and converted the raw data to the reflectance data. 

Table 3.2 Cultural practices and sampling date each year of the study 

Cultural Dates 2017 2018 2019 

Planting 13-Apr 19-Apr 23-Apr 

1st N application 21-Apr 8-May 8-May 

2nd N application 16-May 23-May 27-May 

Harvest 24-Aug 13/14-Sep 6-Sep 
 

UAV Flight and 

sampling leaf N 
2017 2018 2019 

V4 2-May 14-May 23-May 

V6 15-May 23-May 30-May 

VT 9-Jun 18-Jun 21-Jun 
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The spectral data were processed to remove soil pixels. The empirical formula of 2*Green 

– Red – Blue > 0.06 (Barzin et al., 2020) was obtained to distinguish all the vegetative pixels. This 

formula also removes the corn’s shadowed pixels. After removing the soil pixels, five spectral 

bands (blue, green, red, red-edge, and NIR) were extracted for each pixel and based on these 

spectral bands, 26 VIs were computed. All these processes were performed by using QGIS v.3.12.0 

(“QGIS Development Team,” 2020) and R software ‘raster’ package (R Core Team: Vienna, 

2019). The indices and associated spectral bands were documented in Barzin et al. (2020). 

Nitrogen sampling  

Above ground biomass samples were taken at V4-V5 stages (referred to as V4 sampling), and 

leaf samples were collected at the V6-V7 stage (referred to as V6 sampling), and before tassel 

emergence (VT) in order to measure the crop tissue N concentration. Six samples were collected 

in at three phenological stages from rows 2 & 3, and 10 and 11 (3 samples from each row). The 

most recent, matured, and fully-collard leaves were selected for analysisand then samples were 

dried in a forced-air oven at 65̊ C. The oven-dried leaves were analyzed on a Carlo Erba N/C 1500 

automated dry combustion analyzer (Carlo Erba, Milan Italy) to measure the total N concentration. 

Multispectral data are visually and numerically similar and highly correlated (Barzin et al., 

2017b). Therefore, the analysis of all the original spectral bands is not efficient (Schowengerdt, 

2012). Summation, differencing, rationing, and using combinations of different bands make 

different VIs to compare them in a different time and places (Jackson and Huete, 1991). In this 

research, all the vegetation indices individually, the 5 original bands individually, and the 5 

original bands collectively have been compared with different ML methods. Moreover, three 
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different groups of VIs were used in 3 different data categories to compare the different ML 

methods for leaf N estimation:  

1) Thirty-one variables (five spectral bands + twenty-six VIs).  

2) Three different groups of VIs that previous researchers recommended using (2a and 2b) or have 

a high correlation with N.  

2a) The VIs that are important to estimate leaf chlorophyll concentration,  

2b) The VIs recommended for N requirement prediction for maize,  

2c) The VIs that have a high contribution in N estimation and were statistically significant. 

3) Three variables that were selected in the Random Forest feature importance and were 

statistically significant. 

For instance, Green Atmospherically Resistant Index (GARI) is one of the VIs, which has 

greater sensitivity to a wide range of chlorophyll concentrations (Gitelson et al., 1996). Green 

Chlorophyll Index (GCI) can be used for chlorophyll content estimation for a variety of plant 

species (Gitelson et al., 2003). Green Normalized Difference Vegetation Index (GNDVI) is the 

same as NDVI, except it uses the green wavelength instead of the red wavelength, and is more 

sensitive to chlorophyll concentration (Gitelson and Merzlyak, 1998a).  

 

Machine learning algorithms 

Eight ML techniques were used to find an estimation algorithm to explain the relationship 

between one dependent variable (%N) and 31 independent variables (5 wavelengths and 26 VIs) 

to estimate leaf %N. These algorithms include Random Forest (Breiman, 2001), Gradient Boosting 

(Friedman, 2002), Multi-Layer Perceptron (MLP) (Gardner and Dorling, 1998), Support Vector 
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Machines (SVM) (Smola and Scholkopf, 2004), Ordinary least squares method (or the standard 

linear model) (Shiu and Chuang, 2019; Yahya and Olaniran, 2014), and Penalized regression 

models (Ridge regression (Hoerl and Kennard, 1970), Lasso (Least Absolute Shrinkage and 

Selection Operator) (Tibshirani, 1997) regression, and elastic net regression (Zou and Hastie, 

2005). All the ML models were performed in Python ‘scikit-learn’ (Pedregosa et al., 2011).  

Algorithm setup 

Several ML regressors were applied to estimate leaf N%. Machine learning models usually 

have parameters tuned by users known as hyperparameters. Parameter tuning refers tochoosing the 

optimal value for the settings and optimizing the model for the optimal performance of the model. 

All related hyperparameters for ML models used in this research, along with their range of possible 

values to test final optimal values applied for the current dataset in this study are represented in 

Table 3.3.   

Table 3.3 Machine learning models with all related parameters used in this research. 

Algorithm hyperparameter Range of value for test Optimal value 

Random 

Forest 

Number of 

estimators (trees) 

Min_sample_split 

Min_sample_leaf 

Max depth of tree 

{20, 40, 60, 80, 100, 120, 140, 160, 

180, 200} 

{2, 5, 8, 10, 12, 14} 

{1, 2, 4, 6, 8, 10} 

{2, 3, 5, 6, 8, 10, None} 

40 

8 

6 

5 

Gradient 

Boosting 

Max_leaf_node 

Min_sample_leaf 

L2-regularization 

{2, 4, 6, 8, 10, 12, 14, 16, 18, 20} 

{1, 2, 4, 6, 8, 10} 

{1, 10−2, 10−4, 10−6, 10−8, 10−10} 

10 

4 

10−4 

SVM 

Kernel 

C (regularization 

term) 

Linear 

{1, 10, 100, 1000} 

Linear 

10 
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Table 3.3 (continued) 

MLP 

Hidden layer 

number 

Range of hidden 

layer neurons 

Activation function 

Optimization 

technique 

Alpha 

Max iteration 

{1, 2, 3} 

{1-100} 

{logistic, tanh, ReLU} 

{sgd, adam} 

{0, 0.001, 0.0005, 0.00005} 

500 

1 

50 

ReLU 

Adam 

0.001 

500 

Ridge 

regression 
L2 penalty {1, 10−2, 10−4, 10−6, 10−8, 10−10} 10−2 

Lasso 

regression 
L1 Penalty {1, 10−2, 10−4, 10−6, 10−8, 10−10} 10−4 

Elastic Net 
L2 penalty 

L1 Penalty 

{1, 10−2, 10−4, 10−6, 10−8, 10−10} 

{1, 10−2, 10−4, 10−6, 10−8, 10−10} 

10−2 

10−4 

 

The standard way to tune the hyperparameter and select the optimal value for them in 

more ML-like approaches is to perform cross-validation and select the value that minimizes the 

cross-validated sum of squared residuals (error). As can be seen in Table 3.3, a set of values for 

each hyperparameter were selected through cross-validation. Then the dataset was split into k 

folds, and each time the k-1 fold was used for training the model and the rest of the data was 

used for testing it. Later on, the strategy was repeated for k times of k folds and the optimal value 

was selected for each hyperparameter based on minimizing the sum of squared residuals. In this 

work, cross-validation with five folds has been applied to detect the optimal value for each of the 

hyperparameters and the input dataset was scaled to the standard deviation of 1 and mean of 

zero, as for all ML models standardizing the input data is important to avoid bias in the training 

process. In addition, between 20 to 200 trees have been tested for Random Forest and gradient 

boosting to find the optimal number of trees as a predictor. There are several ways to control the 
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overfitting problem (Breiman, 2001; Vezhnevets and Barinova, 2007). Different values for each 

of these hyperparameters for Random Forest and gradient boosting models were set by using the 

cross-validation technique and the resulting values were shown in Table 3.3. In the SVM model, 

a regularization term (C) was added to the loss function to compensate the overfitting issues. The 

C value serves to identify the greatest value for the? margin with the lowest mis-predicting. In 

this work, different values between 1-1000 have been tested based on the cross-validation 

technique, and the optimal value for linear SVM was 10 for input data. For the MLP model, the 

different combinations of hidden layer numbers (1, 2, and 3), range of hidden layer neurons 

(between 1-100), different optimization and activation techniques have been tested. The best 

combination and fit model for MLP based on input data were having only one layer with 50 

neurons and the activation function was ReLU with Adaptive Moment Estimation (adam) 

optimization technique. To avoid the overfitting problem, different values for alpha were tested, 

and the best value was 0.001. Ridge and Lasso regression were used to quantify the overfitting of 

the data by measuring the magnitude of coefficients. For all three regularized regression models, 

different values have been tested for L1 and L2 penalty terms which ended up to10−2 for L1 and 

10−4 for L2. 

Results and Discussion 

All the VI individually, the 5 wavebands individually, and the 5 wavebands collectively were 

compared in different ML methods for estimating corn leaf N leaf %. Figure 3.2 illustrates the 

resulting R-square for each method. Gradient boosting and the Random Forest method had the 

greatest R-squares when using the VIs and band variables individually. Although some variables 

such as VARIGREEN, SCCCI, Red-Edge, NIR, etc. resulted in small R-squares in the 

estimatation of leaf N%, it does not mean they are not valuable when they are used in a 
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combination with other variables. The correlation of all the variables was considered in the 

Random Forest feature selection method and this method can be used for selecting the features. 

As can be seen in the figure 3.2, using VI as an input substantially improved the models in 

comparison to using wavebands individually or even all the 5 bands collectively. The R-squeres 

wereincreased using VIs and spectral bands together.

 

Figure 3.2 R-squared derived from comparison of all the 26 VIs individually, the 5 

wavebands individually, and the 5 wavebands collectively to estimate leaf N 

content of corn using different ML models. 

 

Three different groups of VIs which were derived from UAV imagery were used in 8 ML 

models. All 31 variables (26 VIs and five wavebands) were used for the first comparison between 

these models to find which of the ML models can predict leaf N %most accurately. Figure 3.3 

shows leaf N% estimation using different ML methods in category 1. As can be seen in figure 3.3, 

the coefficient of determination for Random Forest, Gradient Boosting, SVM, MLP, Ridge 
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Regression, Lasso Regression, and Elastic Net models were 0.80, 0.81, 0.74, 0.73, 0.74, 0.77, 0.77, 

and 0.77, respectively. Therefore, it can be concluded that gradient boosting and Random Forest 

are the best methods to estimate plant %N with the highest coefficients of determination among 

all other models. Random Forest and gradient boosting are regression trees methods (Liaw and 

Wiener, 2002) and both of them utilize a similar strategy to combine a set of weak learners into 

strong learners by a different method of training data (Barzin et al., 2020; Friedman, 2002). 

Random Forest regression applied on hyperspectral data has shown potential to accurately predict 

the leaf N concentration of sugarcane (Abdel-rahman et al., 2013). Li et al., (2016), indicated that 

the Random Forest model provides the most accurate prediction in comparison to regression 

models (Z. Li et al., 2016). Zha et al., (2020), illustrated that the Random Forest method performed 

better than other ML algorithms in the estimation of a N nutrition index (Zha et al., 2020). 
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Figure 3.3 Comparing different models for corn N estimation based on 31 variables. 
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The relative importance of each variable by the Random Forest feature selection method is 

illustrated in Figure 3.4. As can be seen in this figure, the height of each bar is indicative of the 

variables contributionto the model derived by this method. The results showed that the most 

effective variables to estimate leaf N % were NDRE, SCCCI, and Red-edge, as gathered from the 

feature importance plot. These variables are statistically significant based on the Analysis of 

Variance (ANOVA). While TGI was the most important variable in the Random Forest feature 

importance with the tallest bar, it was not significant at a 95% confidence level. Therefore, for 

category 2, 15 out of 31 variables were selected as acceptable variables to be used to predict N 

requirements for maize (GDVI, GSAVI, and GOSAVI), and leaf chlorophyll content (GARI, GCI, 

GNDVI, NDVI, and TGI), or have a greater contribution in estimating leaf N concentration based 

on Figure 3.4 (NDRE, NIR, SCCCI, Red-edge, GRVI, LAI, EVI, and Green). Previous studies 

have also shown similar VIs selection for N requirement prediction for corn (Louhaichi et al., 

2001; Sripada et al., 2006) and leaf chlorophyll content estimation (Gitelson et al., 1996, 2003; 

Gitelson and Merzlyak, 1998b; Hunt et al., 2011; Rouse et al., 1974).  
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Figure 3.4 Feature importance based on Random Forest 

 

As a result, eight different ML models were applied to these selected variables to estimate 

leaf N%. Figure 3.5 illustrates the comparison of ML methods in using 15 variables of category 

2. As can be seen in Figure 3.5, the coefficients of determination for Random Forest, Gradient 

Boosting, SVM, MLP, Ridge Regression, Lasso Regression, and Elastic Net models were 0.81, 

0.82, 0.70, 0.71, 0.74, 0.73, 0.75, and 0.73, respectively. Therefore, it can be concluded that the 

gradient boosting and Random Forest methods resulted in the best prediction of leaf N%. 
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Figure 3.5 Comparison of different models for leaf N% estimation based on 15 selected 

variables (GDVI, GSAVI, GOSAVI, GARI, GCI, GNDVI, NDVI, TGI, NDRE, 

SCCCI, CGI, GRVI, EVI, Red-edge, LAI). 

For the third category, the three variables that had the most influence in the Random Forest 

feature selection method and were statistically significant (i.e., Red-edge, SCCCI, and NDRE) 

were used to import in the ML models. The correlation of all the variables was considered in the 

Random Forest feature selection method and this method can be used for feature selection. 
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Moreover, using VIs as the inputs substantially improved the models in comparison to wavebands 

individually or even all the 5 bands collectively. Previous studies illustrated that SCCCI has a 

strong relationship with fertilizer N rates and can estimate leaf N concentration accurately (Fox, 

2015; T. B. Raper and Varco, 2015; Sumner, 2019). Besides, it is sensitive to N status early-season 

when N fertilization decisions have a huge impact on yield results (T. B. Raper, 2011). Moreover, 

NDRE and red-edge have a strong relationship with the N status indicators (Cao et al., 2018; T. B. 

Raper and Varco, 2015; Sumner, 2019). Figure 3.6 illustrated the comparison of different ML 

methods in category 3 with three variables. Based on the trends shown in Error! Reference source 

not found.this figure, gradient boosting as the non-parametric models have provided the best 

results with a 0.80 coefficient of determination. In general, gradient boosting can better prevent 

the possibility of overfitting which normally occurs with decision tree algorithms. More accurately, 

gradient boosting has a greater robustness, in that it is less likely to be affected by the scale of 

training datasets, and that outliers and less-related variables cannot simply change its performance 

(Ye et al., 2009). In this analysis, MLP compared to Random Forest and gradient boosting 

presented the least correlation with 0.71 for R2. Ordinary linear regression has shown a good 

correlation with other regression models. Moreover, ridge, Lasso, and elastic net regression 

provided very close results to each other all with a 0.73 coefficient of determination. Although 

some variables individually such as VARIGREEN, SCCCI, Red-Edge, NIR, etc. have a small R-

squared with leaf N%, it does not mean they are not valuable when they used in a combination 

with other variables. 
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Figure 3.6 Comparing different models for N estimation based on three selected variables 

(Red-edge, SCCCI, and NDRE). 

 

As a result, between 8 ML models used in this research, gradient boosting was the best-fitted 

model to estimate leaf N % with the greatest coefficient of determination by using a different 

number of variables in the models (the 31 variables, 15 selected variables, and even three 

variables used in category 1, 2, and 3, respectively. Moreover, using VIs as substantially 
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improved the models in comparison to wavebands individually or even all the 5 bands 

collectively. 

Conclusion 

This study was conducted to develop ML models for estimating leaf N % of maize by using 

several VIs and spectral wavelengths. Three approaches were used to select the inputs for the ML 

models: 1) twenty six VIs and five wavebands (31 inputs) in the ML models, 2) 15 out of 31 

variables which previous research projects recommended for leaf N concetration estimation, leaf 

chlorophyll content and the VIs that have a high correlation with N, and 3) three VIs that Random 

Forest selected as the important variables in estimation leaf N and those VIs were statistically 

significant at 95% confidence interval. The Random Forest feature selection method illustrated 

that red-edge, SCCCI, and NDRE were the most effective variables in estimating leaf N% in maize. 

Furthermore, this research attempted to evaluate the performance of a ML algorithm and find the 

most accurate method for leaf N concentration estimation. Based on the 8 ML algorithms, the 

gradient boosting had the greatest coefficient of determination in the estimatation of leaf N%.
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CHAPTER IV 

EVALUATING CROP CIRCLE MULTISPRCTRAL ACTIVE CANOPY SENSOR FOR 

PREDICTION OF CORN LEAF NITROGEN CONCENTRATION AND YIELD 

 USING MACHINE LEARNING 

Introduction 

Agricultural products play a major role in feeding the world’s population and have a 

remarkable impact on people’s life and work by providing food and fuels. Agricultural lands 

expanded around 10 million ha every year during 1980 and 2007 (West et al., 2010) to aid meet 

the needs of a growing population, changing diets, and boosted biofuel requirement. However, in 

2010–2012, around 870 million people consumed an insufficient quantity of food to cover their 

minimum dietary energy needs (McGuire, 2013). The United States Department of Agriculture 

(USDA) reported that approximately 36 million hectares of corn were planted in the US and 0.27 

million hectares in Mississippi and 11.3 ton/ha and 11.7 ton/ha corn grain were harvested in the 

US and Mississippi, respectively in 2019 (USDA/NASS, 2019). Therefore, the importance of 

increasing production efficiency to meet global food demands is critical to maintaining or 

increasing economic viability while minimizing environmental hazards.  

Nitrogen (N) is a primary nutrient required for plant growth, development, and reproduction 

of healthy plants, and it plays a key role in the developing phenological stages of corn since N is 

directly related to photosynthesis (Andrews et al., 2013). An increase fertilizer N application rates 

has contributed substantially to an increase in yield of grain crops throughtout the world (Cassman 
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et al., 2003). However applying fertilizer N in excess of crop demand can result in decreased 

economic returns, low Nitrogen Use Efficiency (NUE), poor nutritional quality, and a negative 

environmental impact (Gautam and Panigrahi, 2007; Kim and Dale, 2008). On the other hand, in 

response to N deficiency, N transfers from lower (older) tissues to the meristematic region 

(younger ones) (Raper et al., 2013). Nitrogen deficiency always leads to a decrease in leaf 

chlorophyll concentration, which is coupled with changing leaf color from dark green to light green 

or yellow (Bronson et al., 2005). This distinction was associated with physiological and structural 

changes in cotton leaves (Fridgen and Varco, 2004), which results in an increase leaf spectral 

reflectance in visible wavelength range (400-700 nm) (Zhao et al., 2003). Moreover, NIR 

reflectance changes due to N deficiencies, in which these wavelengths are increasingly used for 

estimating crop N, especially at early growth stages (F. Li et al., 2010). Therefore, N deficiency 

strongly influences the phenotypic characteristics of crops (Zhu et al., 2014). 

Applying the optimum amount of fertilizer N can have a considerable impact on grain yield. 

Improving grain yield production and quality of crops using optimal fertilizer N application rates 

, as well as proper application of pesticides, herbicides, and other inputs are the primary goals of 

precision agriculture. Critical parameters such as fertilizer and irrigation management, weather 

conditions, topography, and soil properties affect potential growth and yield. Multispectral sensors 

can be used to provide to assist in the accurate and timely application of these inputs for large 

agricultural fields providing spectral, spatial, and temporal information related to crop growth. 

Tracking corn growth rates during the growing season to estimate yield is important to efficiently 

managing N fertilization. Several studies used remotely sensed sensor’s data to predict yield 

(Chang et al., 2003; Reyniers et al., 2006; Sakamoto et al., 2014; Solari et al., 2008; Tadesse et al., 

2015; Uno et al., 2005). In the past, it was common to use a chlorophyll meter (SPAD) and 
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associated leaf color charts to obtain point measurements of crop N status (Dobermann et al., 2002; 

Gitelson and Merzlyak, 1998a); however, this method is time-consuming and labor-intensive when 

used to define spatial structure in large production fields. In recent years, there is an increasing 

interest in using active field sensors and passive multispectral sensors for estimating yield and 

plant N due to a greater efficiency in mapping large areas (Cao et al., 2013; Yao et al., 2012).  

Multispectral sensors can quickly collect spectral information on actively growing crops aross 

fields. One such commercially available handheld multispectral sensor is the Crop Circle ACS-

430 (Holland Scientific Inc., Lincoln, Nebraska, USA). It is an active canopy sensor with its own 

source of illumination. It simultaneously measures reflectance at 3 wavelengths continuously, 

which can be used for computing Vegetation Indices (VIs). A vegetation index is a single value 

calculated index using several mathematical combinations of different spectral wavelengths. 

Vegetation indices can be used for estimating various physiological characteristics such as 

biomass, leaf area, vegetation cover, leaf chlorophyll content at different growth stages for 

different crops (Hatfield and Prueger, 2010). For instance, Cao et al. (2013) evaluated 43 VIs 

gained from reflectance at the green, red-edge and NIR wavelengths acquired with a Crop Circle 

ACS-470 to estimate N status in rice, Trotter et al. (2008) used three VIs derived from a Crop 

CircleTM for biomass assessment under differing farming environments. Raper et al. (2013) used 

the normalized difference vegetation index (NDVI) to predict N status of cotton leaves, while Cao 

et al. (2017) used a Crop Circle ACS-470 to develop a precision N management strategy for winter 

wheat in the north China plain and compare it with GreenSeeker, evaluated the performance of a 

Crop Circle ACS-470 (CC-470) and Crop Circle ACS-430 (CC-430) for N status estimation of 

winter wheat at different height and growth stages, and Shi et al. (2013) evaluated the Crop Circle 

ACS-470 sensor observations to estimate N status and yield for rice in China There are other 
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handheld devices such as GreenSeeker handheld crop sensor (Trimble Navigation Limited, 

Sunnyvale, California, USA), Crop Circle ACS-211 (Holland Scientific Inc., Lincoln, Nebraska, 

USA), and CropSpec (Topcon Positioning Systems, Inc., Livermore, California, USA), which 

measure just two wavelengths (red and NIR, NIR and green, NIR and red-edge respectively). One 

of the limitations of using these sensors is a lower number of spectral bands and VIs limiting the 

capacity for using differing indices for different plant biophysical parameters and phenological 

stages (Hatfield and Prueger, 2010; F. Li et al., 2010). So, having more than 2 wavelengths can 

improve a canopy sensors' utility (Cao et al., 2013).  

Machine learning (ML) techniques are applied to multispectral images which can be utilized 

to illustrate physiological and structural attributes of plants and their response to environmental 

stress (Wahabzada et al., 2016); Moreover, ML imports several variables such as meteorological 

data, soil moisture, irrigation, spectral bands as inputs to predict fertilizer N requirements or 

automated recommendations for irrigation (Goldstein et al., 2018). Barzin et al. (2020) applied 8 

ML methods on 5 spectral bands and various VIs to find the best method for estimating leaf N in 

corn. Gutiérrez et al. (2018) applied an ML algorithm on thermal imagery in order to develop a 

new technique for fast and reliable water status estimation in a vineyard. Weng et al. (2018) used 

one of the ML methods (least squares-support vector machine classifier) on hyperspectral images 

in order to detect Huanglongbing disease and nutrient deficiency in the citrus orchard during hot 

and cold seasons.  

The primary objective of this study was to estimate corn leaf N concentration and grain yield 

using a multispectral handheld sensor to acquire canopy reflectance. This study employed four ML 

algorithms to find the best prediction model by using Ccrop Circle ACS-430 field sensor 

measurements at different growth stages. The results of this project provided detailed information 
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regarding three spectral bands (red, red-edge, and NIR) and 25 VIs to estimate the leaf N status 

and predict the yield of corn potentially. Additionally, the accuracy of wavelength-based and VI-

based models were compared to examine the best model inputs.  

Data and Methods 

The study was undertaken on an experimental plot at Mississippi State University. 

Study site description and Experimental design 

The data was collected during the 2019 corn growing season using a Crop Circle ACS-430 at 

the W.B. Andrews Agriculture Systems Research Farm at Mississippi State, MS, USA 

(33°28’13.5” N, 88°45’48.0” W). The field area was 0.8 ha with Marietta fine sandy loam (Fine-

loamy, siliceous, active, thermic Fluvaquentic Eutrudepts). The field was rainfed and the average 

precipitation and temperature during the 2019 growing season was 76 cm and 22 degrees Celsius, 

respectively (Barzin et al., 2020). 

The experimental field study was divided into 16 plots. Twelve rows of corn were planted in 

each plot. There was a 97 cm space between each row that had a 38 m length and a 3 m alley in 

between each plot. Four fertilizer N levels (0, 90, 180, and 270 kg/ha) with four replicates were 

applied (Figure 3.1). All the treatments were randomly assigned to each plot. The experimental 

design of the field was a randomized complete block. Corn (DeKalb Brand-DKC67-72 variety) 

was planted on April 23, 2019, at the Mississippi State research farm. Soil samples were taken 

before planting and analyzed utilizing Mississippi soil test extraction. The field received uniform 

applications of P-K-Mg-S before planting based on soil test results: one part concentrated super 

phosphate (0-46-0), two parts muriate of potash (0-0-60), and one part sulfate of potash-magnesia 

(0-0-22-11Mg-22S) and was applied at a material rate of 224 kg ha-1. Moreover, weeds and pests 
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were managed based on Mississippi State University Extension recommendations. The fertilizer 

N source was liquid urea ammonium nitrate (32-0-0), which was applied as a side dress. The N 

fertilizer was applied as two splits: 50% after emergence, when corn had 1-2 leaves with visible 

leaf collars (V1-V2 stage) on May 8, 2019, and 50% of N fertilizer was applied when corn had 6-

7 leaves with visible leaf collars (V6 stage) on May 27, 2019. The experimental field has been 

devoted to corn production since 2012 with the same fertilizer N rates assigned to individual plots.  

Data Collection 

The Crop Circle ACS-430 (Holland Scientific Inc., Lincoln, Nebraska, USA) was used in 2019 

to collect canopyreflectance data at 670, 730, and 780 nm (red, red-edge, and NIR spectral bands) 

from rows 2 and 3 and rows 10 and 11 of each plot (Figure 4.1). Spectral reflectance data was 

simply and instantly recorded as a CSV file on an SD flash card using the Holland Scientific 

GeoSCOUT X datalogger (Figure 4.2). It also measured the NDVI and NDRE values directly with 

geolocation of each. The sensor’s field of view was an oval of ~30 degrees by ~14 degrees. The 

sensor to canopy distance can be typically between 25 to 180 cm based on the device’s operation 

manual; however, in this research, the sensor was held approximately 60 cm above the canopy 

with a speed of 10 Hz, while walking thru each plot with a constant speed. The Crop Circle ACS-

430 refers to reflectance measurements as Pseudo Solar Reflectance (PSR), which means the 

spectral reflectance wavelengths are scaled as percentages and will not differ with sensor height 

above a target (Cao et al., 2018). The Crop Circle ACS-430 has an internal GPS to record the 

latitude, longitude, and elevation of each point, but it was not considered accurate enough for our 

purposes. Therefore, it was connected to a Piksi Multi Evaluation Kit (Swift Inc., Canada) as a 

Real-time Kinematic (RTK) GPS. Data was extracted with a 3-m reduction from the beginning 

and end of each plot length. This reduction was applied to skip the first and last crop canopy of 
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each plot to eliminate border effects. Data was collected at three phenological stages (V4, V6, and 

VT) around 10:30 am for each stage. The average reflectance values were computed to represent 

rows 2, 3 and 10, 11 of each plot (Figure 4.1). The calculated spectral VIs using red, red-edge, and 

NIR are listed in Table 4.2. R software was employed for all the mathematical and statistical 

analysis used in this research.  

 

 

Figure 4.1 Fertilizer N treatment and 4 replicates for corn in 2019 at Agriculture Systems 

Research Farm, Mississippi State, US. 
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Figure 4.2 Crop Circle ACS-430 and GeoSCOUT X datalogger connected to RTK GPS. 

 

Table 4.2 calculated spectral vegetation indices using red, red-edge, and NIR spectral bands. 

 Vegetation 

Indices 
 Formula Reference 

1 Normalized 

Difference 

Vegetation Index 

NDVI (NIR-Red)/(NIR+Red) 

(Rouse et al., 

1973) 

 

2 Renormalized 

Difference 

Vegetation Index 

RDVI (NIR-Red)/√𝑁𝐼𝑅 + 𝑅𝑒𝑑 
(Roujean and 

Breon, 1995) 

3 Transformed 

Difference 

Vegetation Index 

TDVI 1.5(NIR-Red)/√NIR² + Red + 0.5 
(Bannari et al., 

2002) 

4 Difference 

Vegetation Index  
DVI NIR-Red 

(Tucker, 1979) 

 

5 Red edge 

difference 

vegetation index  

REDVI NIR-Red-edge 
(Tucker, 1979) 

 

6 Red edge re-

normalized 

different 

vegetation index 

RERDVI (NIR-Red-edge)/√𝑁𝐼𝑅 + 𝑅𝑒𝑑 − 𝑒𝑑𝑔𝑒 
(Cao et al., 

2013) 
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Table 4.2 (continued) 

7 
Normalized 

Difference Red-

Edge 

NDRE 
(NIR-Red-edge) / (NIR+Red-

edge) 

(Gitelson and 

Merzlyak, 1994) 

(Raper & Varco, 

2014) 

8 Simplified Canopy 

Chlorophyll 

Content Index 

SCCCI NDRE / NDVI 
(T. B. Raper and 

Varco, 2015) 

9 
Non-Linear Index NLI (NIR2-Red)/(NIR2+Red) 

(Vescovo and 

Gianelle, 2008) 

10 
Modified Non-

Linear Index 
MNLI 

(NIR2-Red) *(1+0.5)/ 

(NIR2+Red+0.5) 

(Gong et al., 2003) 

(Feng et al., 2019) 

 

11 Soil Adjusted 

Vegetation Index 
SAVI 1.5*(NIR-Red)/(NIR+Red+0.5) 

(Rondeaux et al., 

1996) 

12 Optimized Soil 

Adjusted 

Vegetation Index 

OSAVI (NIR-Red)/(NIR+Red+0.16) 
(Rondeaux et al., 

1996) 

13 Modified Soil 

Adjusted 

Vegetation Index 2 

MSAVI2 

(2NIR+1- 

√(2NIR + 1)2 − 8(NIR − Red) 

)/2 

(Qi et al., 1994) 

14 
Simple Ratio SR NIR/Red 

(Fraser and 

Latifovic, 2005) 

15 Modified Simple 

Ratio 
MSR (NIR/Red)-1/√(NIR /Red) + 1  (J. M. Chen, 1996) 

16 Wide Dynamic 

Range Vegetation 

Index 

WDRVI (0.1 NIR-Red) / (0.1 NIR + Red) (Gitelson, 2004) 

17 Red-edge wide 

dynamic range 

vegetation index 

REWD

RVI 

= (0.12* NIR − Red-

edge)/(0.12 * NIR + Red-edge) 
(Cao et al., 2013) 

18 Red-edge ratio 

vegetation index 
RERVI NIR/ Red-edge (Tucker, 1979) 

19 Red-edge 

difference 

vegetation index 

REDVI NIR − Red-edge (Tucker, 1979) 

20 Red-edge 

chlorophyll index 
CIRE (NIR/Red-edge) – 1  

(Gitelson et al., 

2005) 

  



 

62 

Table 4.2 (continued) 

21 Modified 

red-edge 

simple 

ratio 

 

MSR_RE ((NIR/Red-edge) – 1) /√(NIR/Red − edge)  +  1  
(Cao et 

al., 2013) 

22 Red-edge 

soil 

adjusted 

vegetation 

index 

RESAVI 1.5 * [(NIR − Red-edge)/(NIR + Red-edge + 0.5)] 
(Cao et 

al., 2013) 

23 

Modified 

RESAVI 

MRESA

VI 

0.5 * [2 * NIR + 1 − 

√(2 ∗  NIR +  1)² −  8 ∗  (NIR −  Red − edge) 

] 

 

(Cao et 

al., 2013) 

24 Red-edge 

optimal 

soil 

adjusted 

vegetation 

index 

REOSAV

I 

 1.16 * (NIR − Red-edge)/(NIR + Red-

edge + 0.16) 

(Cao et 

al., 2013) 

25 Red-edge 

re-

normalize

d different 

vegetation 

index 

RERDVI (NIR − Red-edge)/√NIR +  Red − edge 
(Cao et 

al., 2013) 

 

Leaf Nitrogen sampling  

Whole plant or leaf sampleswere collected at 3 stages: Whole plant samples were collected at 

V4 stage (May 23, 2019), leaf samples were taken at V6 (May 30, 2019), and just before tassel 

emergence (VT) (Jun 21, 2019). Six samples were collected from rows 2 and 3 and six samples 

from rows 10 and 11 (three samples from each row). The most recently matured and fully-collared 

leaf on individual corn plants were selected for sampling. Samples were placed in a forced-air oven 

and dried at 65 oC and weighed before they were ground through a 40-mesh sieve in a Willy Mill 
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and placed in airtight plastic vials. They were again dried and stored in sealed polypropylene vials 

until analysis and were processed for total N concentration on a Carlo Erba N/C 1500 automated 

dry combustion analyzer (Carlo Erba, Milan Italy). 

Grain yield 

Corn grain was harvested with a two-row plot combine for the entire plot length and grain yield 

was calculated on ton/ha for rows 2 and 3 and rows 10 and 11 of each plot (Figure 4.1). Grain yield 

was adjusted to a moisture content of 15.5 %.  

Statistical Analysis 

Feature selection 

Due to the availability of a large number of VI’s, there is a need to to select ones that optimally 

can predict crop yield and and tissue N concentration. In this research, the Recursive Feature 

Elimination (RFE) method (Granitto et al., 2006), was used which is a popular feature selection 

method used to select predictors from the training data set that are more effective in predicting the 

independent variable and maximizing model accuracy. Most feature selection methods are able to 

determine important features. However, before inputing variables into the ML algorithm, it should 

be considered that only the predictors that significantly improve the prediction should be imported 

to the models. Thus, in this research the Random Forest RFE (RF-RFE) method was used to select 

the most appropriate VIs, derived from a Crop-Circle spectral sensor, to estimate corn leaf N 

concentration and predict grain yield. This method works mainly in three steps including: 

1- RFE builds a model and estimates the feature importance by using a training data set.  

2- RFE sets the priority of the important features. It takes a subgroup of the selected variables 

in step 1 and builds models of a given subset size. In each iteration, the ranking of each 
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feature is recalculated. In this step, the repeated cross-validations were implemented within 

the RFE method. 

3- the model performance is evaluated across different subset sizes to derivean optimal list of 

predictors.  

Most importantly, the flexibility of this method in terms of hyperparameters and ability to 

control what algorithms are utilized makes it an appropriate feature selection model for most of 

the ML applications. Since we were interested in fitting an appropriate model with a limited 

number of predictors, the RFE method chooses the optimum number of features, without affecting 

the model accuracy.  

Machine Learning methods 

Since the observed grain yield and leaf N concntration data did not follow a normal distribution 

and VIs and multispectral observation are highly correlated, this type of study is best for performed 

through nonparametric models; therefore, this project utilized four nonparametric ML models to 

develop corn leaf N concentration and grain yield prediction models. Four ML methods (Random 

Forest (RF), Gradient Boosting Model (GBM), XGBoost, and Support Vector Regression (SVR)) 

were used in this research to find the best model to predict grain yield and leaf N concentration of 

corn. 

With its build-in ensembling capacity, RF (Breiman, 2001) is one of the most versatile ML 

algorithms, which is used for either regression or classification problems. This technique is robust 

to correlated predictors, such as spectral bands or different VIs, and is used to solve both supervised 

and unsupervised ML problems. Random Forest models can provide variable interaction detection, 

nonlinear relationship detection, handling of missing values, and modeling of local effects. 
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However, one of the disadvantages of the Random Forest ML is that it tends to return erratic 

prediction in the case where observations are out of range of training data. Therefore, to come up 

with a robust prediction model, it is required to not utilize out of range values in the validation 

data set.  

Similarly, the GBM (Friedman, 2002; Natekin and Knoll, 2013) is an RF model in that it runs 

numerous decision trees and uses these trees to compute an average. The GBM is a sequential 

modeling approach, though, the value added by this model is that each step learns from the 

previous step, whereas, with a Random Forest model all trees are run separately and they do not 

learn from each other. In the GBM model, on the other hand, high residuals from one step are 

upweighted when they get fed into the next step and, as a result, each tree can learn from previous 

trees. 

The other model used in this research was the XGBoost (T. Chen and Guestrin, 2016), which 

stands for Extreme Gradient Boosting. This model is an optimized distributed algorithm that has 

recently been dominating applied ML competitions for structured or tabular data. It has a fast, and 

accurate performance on regression and classification. It also can prevent overfitting by adding a 

regularization term (Mo et al., 2019). 

The regression model of Support Vector Machine (SVM) (Vapnik, 1998; Vapnik et al., 1997), 

called Support Vector Regression (SVR), is a supervised-learning approach and useful tool in real-

value function estimation. This model is used to model linear and nonlinear relationships and the 

essential data points are chosen to solve the regression function. Support vector regression is a 

classifier used for predicting discrete categorical data whereas SVR is a regressor that is applied 
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for predicting continuous variables. One of the advantages of SVR is that it is robust to the outliers 

and generalizing capability with high prediction accuracy (Awad and Khanna, 2015). 

Two groups of features were used to train the ML models including spectral bands and VIs. 

Therefore, two strategies were used to train the N and yield prediction models. In the first method, 

ML models were trained based on spectral bands. In this step, four features including Red, NIR, 

RedEdge, and growth stages were used as inputs in the training models. In the second strategy, the 

VIs selected by the RF-RFE method were used as input features to the training models. Each data 

set was randomly divided into training and test set, such that the training set contained 75% of the 

samples.  

Results and Discussion  

The Randon Forest recursive feature elimination method selected SCCCI and RERVI, which 

are two commonly red-edge-based VIs (Barzin et al., 2020; Fox, 2015; T. B. Raper and Varco, 

2015; Sumner, 2019) as predictors for estimating leaf N % and SCCCI, CIRE, RERVI, SAVI, and 

NDVI were chosen for predicting corn grain yield. Cao et al. (2013) and Erdle et al. (2011) found 

that RERVI was the most influential and temporally stable index for estimating N concentration. 

Besides, growth stages have a considerable effect on performing VIs for estimating plants 

biophysical parameters (Hatfield and Prueger, 2010; F. Li et al., 2010, 2012; Miao et al., 2009; Yu 

et al., 2013) and in this study, growth stage was imported to the models as an input for both leaf N 

estimation and yield prediction. 
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Regression analysis 

The relationship between the SCCCI and RERVI with leaf N concentration and grain yield was 

compared in Figure 4.3. In this figure, the data was organized concerning three phenological stages 

including V4 (purple), V6 (orange), and VT (pink). The density plots illustrated the distribution of 

leaf N% as a response and SCCCI and RERVI as predictors that have a huge impact on estimating 

leaf N%. The density plots for leaf N% (Figure 4.3, upper left) demonstrated that tissue N does 

not follow the normal distribution at any of stages. It has a similar probability distribution pattern 

for VIs at different phenological stages. For example, in Figure 4.3, the SCCCI almost followed 

the multimodal distribution. Scatter plots (lower panel) and associated correlations (upper panel) 

illustrated the relationship between the response variables (yield and N) and two independent 

variables (RERVI and SCCCI) for the three growth stages. Regarding the SCCCI index, the 

correlation coefficients between this index and N were -0.35, 0.90, and 0.92 at V4, V6, and VT 

stages, respectively. Correspondingly, the correlation coefficients between the RERVI and N were 

0.48, 0.74, and 0.95 at the V4, V6, and VT stages, respectively. The correlation coefficients 

between grain yield and SCCCI were -0.44, 0.72, and 0.93 and between yield and RERVI were 

0.67, 079, and 0.97 for V4, V6, and VT, respectively. The correlation coefficients between SCCCI 

and others was negative at V4 stages and it maybe happen because of the corn leaves were small 

at V4 stage. Four histograms were associated with each phenological stage and each variable was 

shown at the bottom of this figure. In the right panel, the boxplots showed the variation of each 

variable at different stages. For example, as corn development progressed the average of leaf N% 

increased (around %0.25) from V4 to V6, then at the VT stage, it decreased to almost the same 

level as the V4 stage. There is a variation in RERVI as phenological stages change from V6 to VT 

, however, unlike the SCCCI, there is a trend according to each stage. As illustrated in the 
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scatterplot between RERVI and leaf N%, the variation in RERVI for each growth stage is 

independent of the other stages; therefore, separate regression models were fitted for each stage 

individually (Figure 4.4). Shen et al. (2014) reported that RERVI had a consistent better correlation 

with plant N uptake across different growth stages The results of the regression analysis are 

illustrated in Table 4.3 and the fitted lines are shown in Fig 4.4.  
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Figure 4.3 Exploratory data analysis for N, yield, RERVI, and SCCCI at different 

phenological stages. 
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Table 4.3 Linear regression results of leaf N (%) and RERVI 

Stage 
Residual 

Standard Error 
R2 p-value 

V4 0.44 0.23 0.006 ** 

V6 0.36 0.54 1.45 ×10-6 *** 

VT 0.19 0.89 5.8 × 10-16 *** 

 

 

 

Figure 4.4 Scatter plots of RERVI versus leaf N percent in different corn growth stages 

 

The regression analysis was performed for other VIs to evaluate the relationship between leaf 

N concentration and VIs. The preliminary results of regression analysis were used to assess the 
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importance of independent variables in leaf N estimation. As illustrated in Table 4.3, RERVI has 

a statistically significant relationship with leaf N at all three stages (all the p-values were less than 

0.05 in 5% confidence interval). 

Machine Learning results 

Machine learning results for N estimation 

The box plots in Figure 4.5 displayed the variation of mean absolute error (a), root mean square 

error (b), and R-squares (c) resulting from the cross-validation of training models. Two groups of 

box plots were shown in Figure 4.5: the orange plots showed the cross-validation results derived 

from the ML model, which were trained by the VIs, and the brown plots illustrated cross-validation 

results derived from the models, which were trained by the spectral raw data. In this study, four 

non-parametric ML models were used to estimate the leaf N concentration. As indicated in Figure 

4.5, evaluation metrics were different in all models. For example, in the wavelength-based models, 

the average R2 resulting from cross-validations in the training data set were 0.61, 0.48, 0.62, and 

0.75 for RF, XGBoost, GBM, and SVR models, respectively. Results indicate that the SVR model 

outperformed the other models in almost all performance measures. In other words, the SVR model 

was able to predict leaf N% in 75% of the cases using wavelength-based inputs. Additionally, the 

same ML models were trained by two VIs including SCCCI and RERVI, which were the best 

predictors among the 25 VIs derived from Crop Circle spectral bands. Comparing the performance 

of two groups of ML models indicated that the models trained by the VIs have the greatest accuracy 

in comparison to models trained by the spectral bands in N prediction. The results of this study 

ranked the ML leaf N% estimation models from the best to the worst, according to the statistical 

evaluation metrics in the following order: SVR, RF, GBM, and XGBoost. In addition, regarding 
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the performance of the ML models, the same order can be seen for both VI-based and wavelength-

based modeling approaches.  

2  

Figure 4.5 Statistical evaluation metrics resulted from cross-validation in two sets of machine 

learning models to estimate leaf N content. 
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The performance of well-trained models was evaluated on the test data (25% of the samples), 

which had no contribution in training the models. Similar statistical evaluation metrics were used 

to validate model performance on the test data set (Figure 4.6). As illustrated in figure 4.6, the 

SVR model had achieved the best performance measures as compared to the other models. As a 

result, this study illustrated that VIs derived from the Crop Circle sensor can be used as reliable 

inputs for the SVR model to predict corn leaf N% accurately. 

 

 

Figure 4.6 Statistical evaluation metrics derived from ML models' performance on the 

validation (test) data set. 
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The results also indicate that the VIs-based models achieved slightly better performance 

measures than reflectance-based models. In both modeling strategies, the SVR model had 

significantly enhanced performance in comparison to the other models. While it may be more 

difficult to interpret the non-parametric models such as RF, in addition to the SVR model, it was 

found in this study to better predict leaf N concentration. 

 

Machine learning results for Yield estimation 

The variation in mean absolute error (a), root mean square error (b), and R-squared (c) resulted 

from the cross-validation of training models demonstrated in Figure 4.7. Regarding the 

wavelength-based models, the average R2 values resulted from cross-validations in the training 

data set were 0.73, 0.76, 0.74, and 0.72 for RF, XGBoost, GBM, and SVR models, respectively. 

Results indicated that there is no statistically significant difference between models. The results of 

cross-validation showed that the first quartile, median, and third quartile of the ML models were 

almost the same, indicating that there was no major difference between these models (Figure 4.7). 

It is notable to point out that the spectral-based models did not accuraretly predict grain yield. 

 

Conclusions 

This study was conducted to evaluate the reliability of a handheld Crop Circle ACS-430 to 

estimate corn leaf N% and predict grain yield corn using ML algorithms. The Random Forest 

recursive feature elimination method was applied and determined that SCCCI and RERVI were 

the most effective VIs to estimate corn leaf N concentration. This method also determined that 

SCCCI, CIRE, RERVI, SAVI, and NDVI were the most efficient VIs in predicting corn grain yield. 
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Furthermore, between the four ML models utilized in this research, SVR achieved accurate results 

for leaf N% estimation using either the spectral bands or VIs as the model inputs. While VIs can 

predict grain yield well, spectral bands were not reliable for predicting grain yield. More studies 

are needed to further evaluate this sensor with larger dataset collection across differing 

environments. 
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CHAPTER V 

CONCLUSIONS 

This study used spectral wavelengths and calculated VIs derived from a red-edge multispectral 

camera mounted on a UAV to develop regression-based and tree-based learning models at different 

growth stages. These models were developed in order to estimates corn leaf N concentration and 

predict grain yield. The effect of the input variables was found to vary with phenological stages. 

OSAVI and SCCCI were the single dominant variables in the yield prediction models at V3 and 

V4-5 stages, respectively. In general, SCCCI was a VI that contributed to most of the models to 

predict yield, suggesting the importance of red-edge-based VIs in yield estimation. The applied 

Gradient Boosting Machines (GBM) for yield prediction resulted in the greatest coefficient of 

determination (R2) of 0.97 and 0.95 at V10 and VT stages, respectively. Likewise, the greatest R2 

values were obtained at the same stages using regression-based models. As corn development 

progressed, the accuracy of both regression-based and tree-based models would be increased. 

GBM was the most accurate model among the eight ML models used to estimate the leaf N content 

in this study. The Random Forest feature selection method showed that SCCCI and NDRE were 

the most efficient VIs to estimate the leaf N content using a red-edge Multispectral camera 

mounted on the UAV. However, applying the Crop Circle ACS-430 illustrated that SCCCI and 

RERVI were the most effective VIs to estimate corn leaf N concentration which showed the 

importance of including the red-edge band.. This method also demonstrated that the SCCCI, 

RERVI, CIRE, SAVI, and NDVI idices were the most important ones in predicting corn grain 
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yield. Moreover, among the four ML models used for leaf N% estimation by the Crop Circle, 

Support Vector Regression (SVR) attained the most accurate results. More data collection is 

required to further evaluate this sensor. The methodology used in this research can be extended to 

predict yield for other crops or in other regions as well, where yield prediction is mainly reliant on 

weather and climatic conditions. 
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