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It is known that a Cayley digraph of an abelian group 𝐴 is isomorphic to a nontrivial wreath

product if and only if there is a proper nontrivial subgroup 𝐵 of 𝐴 such that the connection set

without 𝐵 is a union of cosets of 𝐵 in 𝐴. We generalize this result to Cayley digraphs of nonabelian

groups 𝐺 by showing that such a digraph is isomorphic to a nontrivial wreath product if and only

if there is a proper nontrivial subgroup 𝐻 of 𝐺 such that 𝑆 without 𝐻 is a union of double cosets of

𝐻 in 𝐺. This result is proven in the more general situation of a double coset digraph (also known

as a Sabidussi coset digraph.) We then give applications of this result which include obtaining

a graph theoretic definition of double coset digraphs, and determining the relationship between a

double coset digraph and its corresponding Cayley digraph. We further expand the result obtained

for double coset digraphs to a collection of bipartite graphs called bi-coset graphs and the bipartite

equivalent to Cayley graphs called Haar graphs. Instead of considering when this collection of

graphs is a wreath product, we consider the more general graph product known as an 𝑋-join by

showing that a connected bi-coset graph of a group 𝐺 with respect to some subgroups 𝐻0 and



𝐻1 of 𝐺 is isomorphic to an 𝑋-join of a collection of empty graphs if and only if the connection

set is a union of double cosets of some subgroups 𝐾0 containing 𝐻0 and 𝐾1 containing 𝐻1 in 𝐺.

The automorphism group of such 𝑋-joins is also found. We also prove that disconnected bi-coset

graphs are always isomorphic to a wreath product of an empty graph with a bi-coset graph.

Key words: Double coset digraph, bi-coset graph, wreath product, 𝑋-join, automorphism group,
Cayley digraph
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CHAPTER I

INTRODUCTION

1.1 Double coset digraphs and wreath products

The purpose of this dissertation is to be able to identify when a double coset digraph is a wreath

product. In this section, we collect basic definitions and examples we will need for our main result.

Definition 1

Let Γ1 and Γ2 be digraphs. The wreath product of Γ1 and Γ2, denoted Γ1 o Γ2, is the digraph

with vertex set 𝑉 (Γ1) × 𝑉 (Γ2) and arc set {((𝑢, 𝑣), (𝑢, 𝑣′)) : 𝑢 ∈ 𝑉 (Γ1) and (𝑣, 𝑣′) ∈ 𝐴(Γ2)} ∪

{((𝑢, 𝑣), (𝑢′, 𝑣′)) : (𝑢, 𝑢′) ∈ 𝐴(Γ1) and 𝑣, 𝑣′ ∈ 𝑉 (Γ2)}.

The wreath product is sometimes referred to as the lexicographic product, graph composition,

or the Γ2-extension of Γ1. Intuitively, Γ1 o Γ2 is constructed as follows: First, we have |𝑉 (Γ1) |

copies of the digraph Γ2, with these |𝑉 (Γ1) | copies indexed by elements of 𝑉 (Γ1). Next, between

corresponding copies of Γ2 we place every possible arc from one copy to another if in Γ1 there is

an arc between the indexing labels of the copies of Γ2, and no arcs otherwise. An example of a

wreath product is shown in Figure 1.1.

Wreath products of graphs were introduced by Harary [10], mainly to find a graph operation

where the automorphism group of the product would be the (group) wreath product of the automor-

phism groups of the factor graphs. Necessary and sufficient conditions for when the automorphism

1



Γ1•0 • 1

Γ2

•𝑎

•𝑏

•𝑐

•𝑑

Γ1 o Γ2

•(0, 𝑎)

•(0, 𝑏)

•(0, 𝑐)

•(0, 𝑑)

•(1, 𝑎)

•(1, 𝑏)

• (1, 𝑐)

•(1, 𝑑)
Figure 1.1

Γ1 and Γ2 given on the left, Γ1 o Γ2 on the right.

group of the wreath product is the wreath product of the automorphism groups were given in a

sequence of papers first by Sabidussi [21, 22] and then by Hemminger [11], and finally by Ted

Dobson and Joy Morris [5] in increasingly general situations.

We give definitions of Cayley and double coset digraphs.

Definition 2

Let 𝐺 be a group and 𝑆 ⊆ 𝐺. Define a Cayley digraph of 𝐺, denoted Cay(𝐺, 𝑆), to be the digraph

with vertex set 𝑉 (Cay(𝐺, 𝑆)) = 𝐺 and arc set 𝐴(Cay(𝐺, 𝑆)) = {(𝑔, 𝑔𝑠) : 𝑔 ∈ 𝐺, 𝑠 ∈ 𝑆}. We call 𝑆

the connection set of Cay(𝐺, 𝑆). When 𝑆 = 𝑆−1 then it is called a Cayley graph of 𝐺.

Figure 1.2 is an example of a Cayley graph ofZ10. Note that the connection set 𝑆 = {1, 3, 7, 9} =

𝑆−1 and so it is a graph and not a digraph.

Definition 3

Let 𝐺 be a group and 𝐻, 𝐾 < 𝐺. For each 𝑔 ∈ 𝐺, 𝐻𝑔𝐾 = {ℎ𝑔𝑘 : ℎ ∈ 𝐻, 𝑘 ∈ 𝐾} is called an

(𝐻, 𝐾)-double coset of 𝑔 in 𝐺. The (𝐻, 𝐾)-double cosets of 𝐺 form a partiton of 𝐺 and need not

2



•0

•9

•8

•7

•
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5

•
4

• 3

• 2

•1

Figure 1.2

The Cayley graph Cay(Z10, {1, 3, 7, 9}).

have the same cardinality. If 𝐻 = 𝐾 , then the (𝐻, 𝐾)-double cosets are referred to as the double

cosets of 𝐻 in 𝐺 or the 𝐻 double cosets of 𝐺.

Note that the ({1}, 𝐾)-double cosets are the left cosets of 𝐾 in 𝐺 and the (𝐻, {1})-double

cosets are just the right cosets of 𝐻 in 𝐺. In general, 𝐻𝑔𝐾 is a union of right cosets of 𝐻 as well

as the union of left cosets of 𝐾 .

Definition 4

Let 𝐺 be a group, 𝐻 ≤ 𝐺, and 𝑆 ⊆ 𝐺 such that 𝐻𝑆𝐻 = 𝑆. Define a digraph Cos(𝐺, 𝐻, 𝑆) with

vertex set𝑉 (Cos(𝐺, 𝐻, 𝑆)) the set of left cosets of𝐻 in𝐺, and arc set (𝑥𝐻, 𝑦𝐻) ∈ 𝐴(Cos(𝐺, 𝐻, 𝑆))

if and only if 𝑥−1𝑦 ∈ 𝑆. The digraph Cos(𝐺, 𝐻, 𝑆) is called a double coset digraph of 𝐺 with

connection set 𝑆 (or 𝐻𝑆𝐻).

3



The smallest vertex-transitive non-Cayley graph is the Petersen graph, which can be written as

a double coset graph of AGL(1, 5) � Z5 o Z4 � 〈𝜌〉 o 〈𝜏〉 (see Figure 1.3).

𝐻

𝜌𝐻

𝜌2𝐻𝜌3𝐻

𝜌4𝐻

𝜏𝐻

𝜌𝜏𝐻

𝜌2𝜏𝐻

𝜌3𝜏𝐻

𝜌4𝜏𝐻

Figure 1.3

The Peterson graph as a double coset graph.

It is customary to impose on 𝐻 the condition that it is core-free in 𝐺. That is, that it contains

no nontrivial normal subgroups of 𝐺. This ensures that the action of 𝐺 on the left cosets of 𝐻 in

𝐺 is faithful, which is certainly a condition one would want if one were, say, drawing a particular

double coset graph. We will not follow this custom - several of the applications of our main results

are actually false if this convention is followed. The custom also, inconveniently for us, means that

abelian groups, for example, have no double coset digraphs that are not Cayley digraphs as the only

core-free subgroup of an abelian group is the trivial group.

We first solve the recognition problem for wreath products of vertex-transitive digraphs. It is

known that a Cayley digraph Cay(𝐴, 𝑆) of an abelian group is isomorphic to a wreath product of

4



two smaller digraphs if and only if there exists 1 < 𝐵 < 𝐴 such that 𝑆 \ 𝐵 is a union of cosets of

𝐵. This was shown explicitly for prime powers in [15, 20] and mentioned without proof in [1]. As

every vertex-transitive digraph can be written as a double coset digraph [23, Theorem 2], it suffices

to give necessary and sufficient conditions on the connection set of a double coset digraph Γ for Γ

to be isomorphic to a non-trivial wreath product. This is done in Theorem 2, where it is shown that

a double coset digraph Cos(𝐺, 𝐻, 𝑆) can be written as a nontrivial wreath product if and only if

there exists 𝐻 < 𝐾 < 𝐺 such that 𝐻 (𝑆 \𝐾)𝐻 is a union of double cosets of 𝐾 in𝐺. As a corollary,

a Cayley digraph Cay(𝐺, 𝑆) can be written as a nontrivial wreath product if and only if there exists

1 < 𝐾 < 𝐺 such that 𝑆 \ 𝐾 is a union of double cosets of 𝐾 in 𝐺. The full automorphism groups

of such wreath products are also found.

We then consider applications of these results to double coset digraphs. Sabidussi showed [23,

Theorem 4] that a “multiple" of a double coset digraph Cos(𝐺, 𝐻, 𝑆) is isomorphic to a Cayley

digraph of 𝐺 (the multiple is Cos(𝐺, 𝐻, 𝑆) o �̄� |𝐻 |, where �̄�𝑛 is the complement of the complete

graph on 𝑛 vertices). He also showed [23, Lemma 7] that every double coset digraph is a natural

quotient of a Cayley digraph. We first unify and strengthen these results by giving a bijective

correspondence between irreducible (see Definition 13) double coset digraphs Γ of 𝐺 (with point

stabilizers allowed to vary) and Cayley digraphs of 𝐺 that can be written in the form Γ o �̄�𝑛 for

some irreducible vertex-transitive graph Γ and 𝑛 ≥ 2. As every digraph of the form Γ o �̄�𝑛 with

Γ irreducible have automorphism group Aut(Γ) o 𝑆𝑛, double coset digraphs can be interpreted as

nothing more than devices for succinctly storing the symmetry information of some Cayley digraphs

of𝐺. Finally, we show that the automorphism group of a double coset digraph is determined by the

automorphism group of its corresponding Cayley digraph and vice versa, showing that the problem

5



of finding automorphism groups of double coset digraphs is equivalent to finding automorphism

groups of Cayley digraphs. We also show a similar, but weaker, relationship between isomorphisms

of a double coset digraph of a group 𝐺 and isomorphisms of its corresponding Cayley digraph of

𝐺.

We are able to extend the definition of generalized wreath product digraphs to all double coset

digraphs. Generalized wreath product digraphs are a relatively new but very important family of

digraphs from the point of view of computing automorphisms groups. They previously were only

defined for Cayley digraphs of abelian groups precisely because the recognition problem of wreath

products was only solved for Cayley digraphs of abelian groups. This last problem was the original

motivation for this work.

1.2 Bi-coset graphs and 𝑋-joins

Originally, our next goal was to determine when a Haar graph (formally defined in Definition

6) is isomorphic to a wreath product of a small graph and an empty graph (a graph with no edges)

by inspection of its connection set. However, just as quotients of Cayley digraphs need not be

Cayley digraphs, quotients of Haar graphs need not be Haar graphs. So the proper context in which

to proceed is in the class of graphs which contains all bipartite graphs, and have a group acting

transitively on each of the bipartition classes (as Haar graphs have this property - see the discussion

of Haar graphs following Definition 6). These graphs are the bi-coset graphs, originally studied by

Du and Xu [7], and are the natural analogues to double coset digraphs for bipartite graphs.

Definition 5

Let𝐺 be a group, let 𝐻0 and 𝐻1 be subgroups of𝐺, and let 𝑆 be a union of double cosets of 𝐻0 and

6



𝐻1 in 𝐺, namely, 𝑆 =
⋃
𝑖 𝐻0𝑠𝑖𝐻1. Define a bipartite graph Γ = B(𝐺, 𝐻0, 𝐻1, 𝑆) with bipartition

𝑉 (Γ) = 𝐺/𝐻0 ∪ 𝐺/𝐻1 and edge set 𝐸 (Γ) = {{𝑔𝐻0, 𝑔𝑠𝐻1} : 𝑔 ∈ 𝐺, 𝑠 ∈ 𝑆}. This graph is called

the bi-coset graph with respect to 𝐻0, 𝐻1, and 𝑆. We call 𝑆 the connection set of Γ.

In Figure 1.4, we have an example of a bi-coset graph of Z6 constructed using the subgroups 〈3〉

(the subgroup generated by the element 3 ∈ Z6) and 〈2〉 with connection set 𝑆 =
⋃〈3〉+1+〈2〉 = Z6.

〈3〉

1 + 〈3〉

2 + 〈3〉

〈2〉

1 + 〈2〉

Figure 1.4

Bi-coset graph B(Z6, 〈3〉, 〈2〉, {0, 1, 2, 3, 4, 5, 6}).

It was shown in [7, Lemma 2.3] that the action of 𝐺 by left multiplication on 𝑉 (Γ) is a

semiregular subgroup of Aut(B(𝐺, 𝐻0, 𝐻1, 𝑆)) with two orbits. We denote this subgroup by �̂�.

Notice �̂�𝐺/𝐻0 (the induced action of �̂� on the left cosets𝐺/𝐻0) is transitive on𝐺/𝐻0, and similarly

for �̂�𝐺/𝐻1 . (We use 𝐺/𝐻 to represent the set of all left cosets of 𝐻 in 𝐺, which is not necessarily

a quotient group as we do not assume 𝐻 is normal in 𝐺.)

When 𝐻0 = 𝐻1 in a bi-coset graph, we will write the vertex set as Z2 × 𝐺/𝐻0. This is only to

distinguish the “left partition" of vertices from the “right" partition of vertices.

7



Definition 6

Let 𝐺 be a group and 𝑆 ⊆ 𝐺. Define the Haar graph, denoted Haar(𝐺, 𝑆) with connection set 𝑆

to be the graph with vertex set Z2 × 𝐺 and edge set {({0, 𝑔), (1, 𝑔𝑠)} : 𝑔 ∈ 𝐺, 𝑠 ∈ 𝑆}.

Define �̂�𝐿 = {�̂�𝐿 : 𝑔 ∈ 𝐺}, where �̂�𝐿 : Z2 × 𝐺 → Z2 × 𝐺 is given by �̂�𝐿 (𝑖, 𝑗) = (𝑖, 𝑔𝐿 ( 𝑗)).

It is straightforward to verify that �̂�𝐿 ≤ Aut(Haar(𝐺, 𝑆)) for every group 𝐺 and 𝑆 ⊆ 𝐺, and that

�̂�𝐿 � 𝐺𝐿 � 𝐺. So �̂�𝐿 is a natural subgroup of Aut(Haar(𝐺, 𝑆)) that is semiregular with two

orbits and is isomorphic to 𝐺.

In Figure 1.5 is an example of a Haar graph. In fact, the graph pictured is the Heawood graph,

which is usually constructed as a point-line incidence graph of the Fano plane. The Heawood graph

as a Haar graph is Haar(Z7, {1, 2, 4}).

(0, 0)

(0, 1)

(0, 2)

(0, 3)

(0, 4)

(0, 5)

(0, 6)

(1, 0)

(1, 1)

(1, 2)

(1, 3)

(1, 4)

(1, 5)

(1, 6)

Figure 1.5

Haar(Z7, {1, 2, 4}), also known as the Heawood graph.
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When 𝐻0 = 𝐻1 = {1} in the definition of a bi-coset graph, the set 𝑆 is just a subset of 𝐺,

and the bi-coset graph with respect to 𝐻0, 𝐻1, and 𝑆 is simply Haar(𝐺, 𝑆). We remark that some

authors refer to Haar graphs as bi-Cayley graphs, and denote them accordingly. As with Cayley

graphs, note that (0, 𝑥) (1, 𝑦) ∈ 𝐸 (Haar(𝐺, 𝑆)) if and only if 𝑥−1𝑦 ∈ 𝑆. Also note that Haar graphs

are the natural bipartite analogues of Cayley digraphs. Haar graphs were introduced in [12].

As the subgroups 𝐻0 and 𝐻1 used to construct a bi-coset graph need not have the same size, the

natural product to recover the original bi-coset graph from its quotient will no longer be the wreath

product. It is the generalization of the wreath product which allows each vertex to be replaced by

arbitrary graphs, called the 𝑋-join.

Definition 7

Let 𝑋 be a graph, and 𝑌 = {𝑌𝑥 : 𝑥 ∈ 𝑋} a collection of graphs indexed by 𝑉 (𝑋). The 𝑋-join of 𝑌

is the graph 𝑍 =
∨(𝑋,𝑌 ) with vertex set

𝑉 (𝑍) = {(𝑥, 𝑦) : 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌𝑥} (1.1)

and edge set

𝐸 (𝑍) = {{(𝑥, 𝑦), (𝑥′, 𝑦′)} : {𝑥, 𝑥′} ∈ 𝐸 (𝑋) or 𝑥 = 𝑥′ and {𝑦, 𝑦′} ∈ 𝐸 (𝑌𝑥)}. (1.2)

In other words, the graph 𝑍 is obtained by replacing each vertex of 𝑋 by the graph 𝑌𝑥 and

inserting either all or none of the possible edges between vertices of 𝑌𝑢 and 𝑌𝑣 depending on

whether or not there is an edge between 𝑢 and 𝑣 in 𝑋 . If the𝑌𝑥’s are all isomorphic, then the 𝑋-join

of {𝑌𝑥 : 𝑥 ∈ 𝑋} is the wreath product 𝑋 o 𝑌 , where 𝑌 � 𝑌𝑥 for all 𝑥 ∈ 𝑋 . Figure 1.6 is an example

of an 𝑋-join of 𝑌 where 𝑋 = 𝐾2 and 𝑌 = {𝐾2, 𝐾3}.
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(0, 𝑎)

(0, 𝑏)

(1, 𝑥)

(1, 𝑦)
(1, 𝑧)

Figure 1.6∨(𝐾2, {𝐾2, 𝐾3}).

We solve the recognition problem for 𝑋-joins of connected bi-coset graphs. We give necessary

and sufficient conditions on the connection set of a bi-coset graph 𝑍 for 𝑍 to be isomorphic to an

𝑋-join of a collection of empty graphs 𝑌 . This is done in Theorem 9, where it is shown that a

bi-coset graph B(𝐺, 𝐻0, 𝐻1, 𝑆) can be written as an 𝑋-join of empty graphs if and only if there

exists 𝐻0 < 𝐾0 < 𝐺 and 𝐻1 < 𝐾1 < 𝐺 such that 𝑆 is a union of (𝐾0, 𝐾1)-double cosets in 𝐺. As

a corollary, a Haar graph Haar(𝐺, 𝑆) can be written as an 𝑋-join of empty graphs 𝑌 if and only if

there exists 1 < 𝐾0, 𝐾1 < 𝐺 such that 𝑆 is a union of (𝐾0, 𝐾1)-double cosets in 𝐺. We also find

the full automorphism groups of such 𝑋-joins.

We then solve the recognition problem for disconnected bi-coset digraphs. We show that a

disconnected bi-coset graph B(𝐺, 𝐻0, 𝐻1, 𝑆) has [𝐺 : 𝐾] isomorphic components where 〈𝑆𝑆−1〉 =

𝐾 , and as such is isomorphic to the wreath product of an empty graph and another bi-coset graph.

The automorphism group of such graphs is also found.
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CHAPTER II

RECOGNIZING VERTEX-TRANSITIVE GRAPHS WHICH ARE WREATH PRODUCTS

2.1 Digraphs as wreath products

In this section, we will introduce some more definitions that will be necessary for our main

theorem in this chapter. This section also introduces a lemma and a theorem that were a foundation

for our work.

Definition 8

Let 𝑋 be a set, 𝐺 ≤ 𝑆𝑋 be a transitive group and 𝐵 ⊆ 𝑋 . 𝐵 is called a block of 𝐺 if whenever

𝑔 ∈ 𝐺, then 𝑔(𝐵) ∩ 𝐵 = ∅ or 𝐵. If 𝐵 = {𝑥} for some 𝑥 ∈ 𝑋 or 𝐵 = 𝑋 , then 𝐵 is a trivial block.

Note that if 𝐵 is a block of 𝐺, then so is 𝑔(𝐵) for every 𝑔 ∈ 𝐺, and is called a conjugate block

of 𝐵. The set of all blocks conjugate to 𝐵, denoted B, is a partition of 𝑋 , and is called a block

system of𝐺. If B is the set of orbits of a normal subgroup of𝐺, it is called a normal block system

of 𝐺. We will need a special block system of the wreath product of two transitive permutation

groups.

Definition 9

Let 𝐺 ≤ 𝑆𝑋 and 𝐻 ≤ 𝑆𝑌 be transitive groups. The lexi-partition of 𝐺 o 𝐻 with respect to 𝐻 is the

block system B = {{(𝑥, 𝑦) : 𝑦 ∈ 𝑌 } : 𝑥 ∈ 𝑋}.
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Definition 10

Suppose that 𝐺 ≤ 𝑆𝑛 is a transitive group with a block system B consisting of 𝑚 blocks of size 𝑘 .

Then 𝐺 has an induced action on B, which we denote by 𝐺/B. Namely, for 𝑔 ∈ 𝐺, we define

𝑔/B(𝐵) = 𝐵′ if and only if 𝑔(𝐵) = 𝐵′, and set 𝐺/B = {𝑔/B : 𝑔 ∈ 𝐺}. We also define the fixer of

B in 𝐺, denoted fix𝐺 (B), to be {𝑔 ∈ 𝐺 : 𝑔/B = 1}.

Definition 11

Let Γ be a vertex-transitive digraph whose automorphism group contains a transitive sub-

group 𝐺 with a block system B. Define the block quotient digraph of Γ with re-

spect to B, denoted Γ/B, to be the digraph with vertex set B and arc set 𝐴(Γ/B) =

{(𝐵, 𝐵′) : 𝐵 ≠ 𝐵′ ∈ B and (𝑢, 𝑣) ∈ 𝐴(Γ), 𝑢 ∈ 𝐵, 𝑣 ∈ 𝐵′}.

The following result gives necessary and sufficient conditions to recognize when a vertex-

transitive digraph is a wreath product. The first version of this result is by Joseph [13, Lemma

3.11]. The following is a generalization of her result, whose very similar proof is omitted.

Lemma 1

Let Γ be a vertex-transitive digraph whose automorphism group contains a transitive subgroup 𝐺

that has a block system B. Then Γ � Γ/B oΓ[𝐵0], 𝐵0 ∈ B, if and only if whenever 𝐵, 𝐵′ ∈ B are

distinct then there is an arc (𝑥, 𝑥′) from a vertex 𝑥 ∈ 𝐵 to a vertex 𝑥′ ∈ 𝐵′ if and only if every arc

of the form (𝑥, 𝑥′) with 𝑥 ∈ 𝐵 and 𝑥′ ∈ 𝐵′ is contained in 𝐴(Γ).

The following theorem was proven in [5, Theorem 5.7], and gives the automorphism group of

the wreath product of vertex-transitive digraphs.
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Theorem 1

Let Γ1 and Γ2 be vertex-transitive digraphs. If Γ = Γ1 o Γ2 and Aut(Γ) ≠ Aut(Γ1) o Aut(Γ2),

then there exist positive integers 𝑟 > 1 and 𝑠 > 1 and vertex-transitive digraphs Γ′
1 and Γ′

2 for

which Γ1 � Γ′
1 o 𝐾𝑟 , Γ2 � 𝐾𝑠 o Γ′

2 or Γ1 � Γ′
1 o 𝐾𝑟 , Γ2 � 𝐾𝑠 o Γ′

2. In either case, Aut(Γ) �

Aut(Γ′
1) o 𝑆𝑟𝑠 o Aut(Γ′

2).

Suppose Γ1 o Γ2 is not complete nor the complement of a complete graph, that is, assume

that in the statement Γ′
1 or Γ′

2 have more than one vertex. The above result implies that a wreath

product of two vertex-transitive digraphs can always be written as another wreath product of two

vertex-transitive digraphs where the automorphism group can also be written as a wreath product

of the automorphism groups, that is if Γ � Γ1 o Γ2 with Aut(Γ) � Aut(Γ1) oAut(Γ2), then there are

two nontrivial graphs Γ′
1, Γ

′
2 where Γ � Γ′

1 o Γ
′
2 with Aut(Γ) = Aut(Γ′

1) o Aut(Γ′
2).

2.2 Double coset digraphs as wreath products

Before turning to our main result on recognizing wreath products, we have a preliminary result.

Lemma 2

Let 𝐺 be a group 𝐻 ≤ 𝐺, and let 𝐺 act on 𝐺/𝐻 by left multiplication. Then 𝐺 acts transitively

on 𝐺/𝐻 and any block system of this action is the set of left cosets of some subgroup 𝐻 ≤ 𝐾 ≤ 𝐺.

Proof: Note 𝐺 acts by left multiplication on the left cosets of 𝐻 in 𝐺. Suppose C is a block system

of𝐺. By [2, Theorem 1.5A], there is 𝐾 ≥ 𝐻 such that the block of𝐺 that contains 𝐻 is the orbit of

𝐾 that contains 𝐻. Then the block of 𝐺 that contains 𝐻 is the set of all left cosets of 𝐻 contained

in 𝐾 , which is 𝐾 . Then any block conjugate to 𝐾 is simply of the form 𝑔𝐾 for some 𝑔 ∈ 𝐺, and so

B is the set of left cosets of 𝐾 in 𝐺.
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Lemma 3

Let 𝐺 be a group, 𝐻 ≤ 𝐺, and 𝑆 ⊆ 𝐺 such that 𝑆 = 𝐻𝑆𝐻. Suppose Γ = Cos(𝐺, 𝐻, 𝑆) � Γ1 o Γ2

for Γ1 and Γ2 digraphs with at least two vertices. Let B be the lexi-partition of Aut(Γ1) o Aut(Γ2)

with respect to Aut(Γ2). Then 𝑆 \ 𝐾 = 𝐾 (𝑆 \ 𝐾)𝐾 .

Proof: By Lemma 2, B is the set of left cosets of some subgroup 𝐻 ≤ 𝐾 ≤ 𝐺. Suppose 𝑎 ∉ 𝐾 and

𝑎 ∈ 𝑆. Let 𝐵 = 𝑎𝐾 ∈ B such that 𝐻 * 𝐵 (here 𝑎𝐾 is viewed as a union of left cosets of 𝐻). Since

there is an arc from 𝐻 to 𝑎𝐻 if and only if there is an arc from 𝐻 to every left coset of 𝐻 contained

in 𝐵 as Γ = Γ1 o Γ2 and B is the lexi-partition with respect to Γ2, we conclude that 𝑎𝐾 ⊆ 𝐻𝑆𝐻 and

𝐻 (𝑆 \ 𝐾)𝐻 is a union of left cosets of 𝐾 in 𝐺. Then, for every 𝑘, 𝑘′ ∈ 𝐾 , we have 𝑘𝐻, 𝑘′𝐻 ⊆ 𝐾 ,

and (𝑘𝐻, 𝑎𝑘′𝐻) ∈ 𝐴(Cos(𝐺, 𝐻, 𝑆)). So 𝑘−1𝑎𝑘′ ∈ 𝐻𝑆𝐻 for every 𝑘, 𝑘′ ∈ 𝐾 . So 𝐾𝑎𝐾 ⊆ 𝐻𝑆𝐻.

As 𝑎 ∉ 𝐾 , 𝑘−1𝑎𝑘′ ∈ 𝐻 (𝑆 \ 𝐾)𝐻. Thus, 𝐻 (𝑆 \ 𝐾)𝐻 can be written as a union of double cosets of

𝐾 in 𝐺.

With the next result, we are able to recognize when double coset digraphs are wreath products

from their connection sets.

Theorem 2

Let 𝐺 be a group, 𝐻 ≤ 𝐺, and 𝑆 ⊆ 𝐺 such that 𝐻𝑆𝐻 = 𝑆. The double coset digraph

Γ = Cos(𝐺, 𝐻, 𝑆) is isomorphic to a nontrivial wreath product of two vertex-transitive digraphs

of smaller order if and only if there exists 𝐻 < 𝐾 < 𝐺 such that 𝐻 (𝑆 \ 𝐾)𝐻 is a union of double

cosets of 𝐾 in 𝐺. If such a 𝐻 < 𝐾 < 𝐺 exists and B is the set of left cosets of 𝐾 , then

Cos(𝐺, 𝐻, 𝑆) � Γ/B o Γ[𝐾] � Cos(𝐺, 𝐾, 𝑆 \ 𝐾) o Cos(𝐾, 𝐻, (𝑆 ∩ 𝐾)). (2.1)
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Additionally, if Γ is not complete nor the complement of a complete graph and 𝐾 is chosen to be

maximal in 𝐺 with the above properties, then

Aut(Cos(𝐺, 𝐻, 𝑆)) � Aut(Cos(𝐺, 𝐾, 𝑆 \ 𝐾)) o Aut(Cos(𝐾, 𝐻, (𝑆 ∩ 𝐾))). (2.2)

Proof: Suppose Γ = Γ1 o Γ2, where both Γ1 and Γ2 are nontrivial and not Γ. Then the lexi-partition

B of Aut(Γ1) o Aut(Γ2) with respect to Aut(Γ2) is a block system of Aut(Γ1) o Aut(Γ2) ≤ Aut(Γ).

The result follows by Lemma 3.

Conversely suppose 𝐻 < 𝐾 < 𝐺 such that 𝐻 (𝑆 \ 𝐾)𝐻 is a union of double cosets of 𝐾 in 𝐺.

We now show Γ � Γ/B o Γ[𝐾]. This will complete the “if and only if" part of the proof as well as

the first part of the first displayed equation. Suppose (𝑎𝑘1𝐻, 𝑏𝑘2𝐻) ∈ 𝐴(Γ) and 𝑎𝑘1𝐻 and 𝑏𝑘2𝐻

are not contained in the same left coset of 𝐾 in 𝐺, where 𝑘1, 𝑘2 ∈ 𝐾 . This gives 𝑘−1
1 𝑎−1𝑏𝑘2 ∉ 𝐾 .

Then 𝑘−1
1 (𝑎−1𝑏)𝑘2 ∈ 𝐾 (𝑆 \ 𝐾)𝐾 = 𝐻 (𝑆 \ 𝐾)𝐻, with the last equality holding as 𝐻 (𝑆 \ 𝐾)𝐻 is a

union of double cosets of 𝐾 in 𝐺. Thus 𝐾 (𝑎−1𝑏)𝐾 ⊆ 𝐾 (𝑆 \ 𝐾)𝐾 and (𝑎𝑘′𝐻, 𝑏𝑘𝐻) ∈ 𝐴(Γ) for

all 𝑘, 𝑘′ ∈ 𝐾 . This means that whenever 𝐵, 𝐵′ ∈ B are distinct then there is an arc (𝑥, 𝑥′) from a

vertex 𝑥 ∈ 𝐵 to a vertex 𝑥′ ∈ 𝐵′ if and only if every arc of the form (𝑥, 𝑥′) with 𝑥 ∈ 𝐵 and 𝑥′ ∈ 𝐵′

is contained in 𝐴(Γ). By Lemma 1, Γ � Γ/B o Γ[𝐾].

We next show Γ/B = Cos(𝐺, 𝐾, 𝑆 \𝐾). The digraph Cos(𝐺, 𝐾, 𝑆 \𝐾) is a well-defined double

coset digraph as 𝑆 \ 𝐾 is a union of double cosets of 𝐾 . Let 𝑎, 𝑏 ∈ 𝐺 such that 𝑎−1𝑏 ∉ 𝐾 . Then

(𝑎𝐾, 𝑏𝐾) ∈ 𝐴(Γ/B) if and only if there is 𝑎1, 𝑏1 ∈ 𝐺 such that 𝑎1𝐻 ⊆ 𝑎𝐾 , 𝑏1𝐻 ⊂ 𝑏𝐾 , and

(𝑎1𝐻, 𝑏1𝐻) ∈ 𝐴(Γ). This occurs if and only if 𝑎−1
1 𝑏1𝐻 ∈ 𝑆. As 𝑆 \ 𝐾 is a union of double cosets

of 𝐾 and 𝑎−1
1 𝑏1𝐻 ⊆ 𝑎−1𝑏𝐾 , we see 𝑎−1

1 𝑏1𝐻 ∈ 𝑆 \ 𝐾 . Thus (𝑎𝐾, 𝑏𝐾) ∈ 𝐴(Γ/B) if and only if
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𝑎−1𝑏𝐾 ∈ 𝑆 \ 𝐾 (viewing 𝑆 \ 𝐾 as a union of left cosets of 𝐾 in 𝐺), which occurs if and only if

(𝑎𝐾, 𝑏𝐾) ∈ 𝐴(Cos(𝐺, 𝐾, 𝑆 \ 𝐾)). So Γ/B = Cos(𝐺, 𝐾, 𝑆 \ 𝐾).

As 𝐾 is a left coset of itself, 𝐾 ∈ B. Then Cos(𝐺, 𝐻, 𝑆) [𝐾] = Cos(𝐾, 𝐻, 𝐾 ∩ 𝑆), and so

Γ[𝐾] = Cos(𝐾, 𝐻, 𝑆 ∩ 𝐾). This completes the proof of Equation (2.1).

It now only remains to show that if Γ is neither complete nor the complement of a complete

graph and 𝐾 is maximal with the property that 𝐻 (𝑆 \ 𝐻)𝐻 is a union of double cosets of 𝐾 , then

Equation (2.2) holds. Suppose otherwise. Then Cos(𝐺, 𝐾, 𝑆 \ 𝐾) can be written as a nontrivial

wreath product by Theorem 1. By what we have already shown, 𝑆 \ 𝐾 is a union of double cosets

of some subgroup 𝐾′. As the vertices of Cos(𝐺, 𝐾, 𝑆 \ 𝐾) are left cosets of 𝐾 , we have 𝐾′ ≥ 𝐾 .

As Cos(𝐺, 𝐾, 𝑆 \ 𝐾) can be written as a nontrivial wreath product, 𝐾′ > 𝐾 . But then 𝑆 is a union

of double cosets of 𝐾′, contradicting the maximality of 𝐾 .

If one follows the convention that 𝐻 is core-free in 𝐺 for double coset digraphs, then with 𝑁 =

core𝐺 (𝐻), the above equation for the automorphism group of Cos(𝐺/𝑁, 𝐻/𝑁, {𝑠𝑁 : 𝑠 ∈ 𝑆}) �

Cos(𝐺, 𝐻, 𝑆) becomes Cos(𝐺/𝑁, 𝐻/𝑁, {𝑠𝑁 : 𝑠 ∈ 𝑆}) � Γ/C o Γ[𝐾/𝑁] � Cos(𝐺/𝑁, 𝐾/𝑁,𝑇) o

Cos(𝐾/𝑁, 𝐻/𝑁, (𝑆 ∩ 𝐾)𝑁) where 𝑇 = {(𝑠𝑁) (𝐾/𝑁) : 𝑠 ∈ 𝐻 (𝑆 \ 𝐾)𝐻}.

When 𝐻 = {1𝐺}, Cos(𝐺, 𝐻, 𝑆) � Cay(𝐺, 𝑆) and we have a special case of Theorem 2 for

Cayley graphs.

Corollary 1

A Cayley digraph Γ = Cay(𝐺, 𝑆) of a group 𝐺 is isomorphic to a nontrivial wreath product of two

vertex-transitive digraphs of smaller order if and only if there exists 1 < 𝐾 < 𝐺 such that 𝑆 \ 𝐾 is
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a union of double cosets of 𝐾 in 𝐺. If such a 1 < 𝐾 < 𝐺 exists and B is the block system of 𝐺 that

consists of the left cosets of 𝐾 , then

Cay(𝐺, 𝑆) � Γ/B o Γ[𝐾] � Cos(𝐺, 𝐾, 𝑆) o Cay(𝐾, 𝑆 ∩ 𝐾). (2.3)

Additionally, if Γ is not complete nor the complement of a complete graph and 𝐾 is chosen to be

maximal in 𝐺 with the above properties, then

Aut(Cay(𝐺, 𝑆)) � Aut(Cos(𝐺, 𝐾, 𝑆)) o Aut(Cay(𝐾, 𝑆 ∩ 𝐾)). (2.4)

Example 1 Let 𝐺 = 𝐷6, where 𝐷6 = {𝜏, 𝜌 : 𝜏2 = 𝜌6 = 1; 𝜏𝜌 = 𝜌5𝜏} is the dihedral group with

12 elements. Let 𝐾 = 〈𝜏〉, which is not normal in 𝐺 as 𝜌𝜏𝜌5) = 𝜏𝜌4 ∉ 〈𝜏〉. Consider the Cayley

graph Γ = Cay(𝐷6, {𝜌, 𝜌5, 𝜏𝜌, 𝜏𝜌5}). The connection set of Γ is exactly the double coset 𝐾𝜌𝐾 .

So using Corollary 1, we see that Γ � Cos(𝐺, 𝐾, 𝑆 \ 𝐾) o Cay(𝐾, 𝑆 ∩ 𝐾). Note that 𝐺/𝐿 � 𝐷3,

𝐻/𝐿 � 〈𝜏〉, and 𝑆 ∩ 𝐻 = ∅. So Γ � Cos(𝐷6, 〈𝜏〉, {𝜌, 𝜌5, 𝜏𝜌, 𝜏𝜌5}) o Cay(〈𝜏〉, ∅).

In Figure 2.1 you can see the Cayley graph and the graph re-drawn as a wreath product. The

graphs can be identified via the map (𝑎, 𝑏) ↦→ (𝑎𝑏), where 𝑎 is the left coset of 𝐾 containing 𝑎.

Colors have also been added to distinguish each of the blocks in the graphs.

If, in the previous result we have 𝐾 ⊳𝐺, then we get a slightly nicer sufficient (but not necessary)

condition for a Cayley graph of 𝐺 to be a wreath product.

Corollary 2

A Cayley digraph Γ = Cay(𝐺, 𝑆) of a group 𝐺 is isomorphic to a nontrivial wreath product of two

17



1
𝜌

𝜌2

𝜌3

𝜌4

𝜌5

𝜏

𝜏𝜌

𝜏𝜌2

𝜏𝜌3

𝜏𝜌4

𝜏𝜌5

(1̄, 1)

(�̄�, 1)

(𝜌2, 1)

(𝜌3, 1)

(𝜌4, 1)

(𝜌5, 1)
(1̄, 𝜏)

(�̄�, 𝜏)

(𝜌2, 𝜏)

(𝜌3, 𝜏)

(𝜌4, 𝜏)

(𝜌5, 𝜏)

Figure 2.1

Cay(𝐷6, {𝜌, 𝜌5, 𝜏𝜌, 𝜏𝜌5}) ; Cos(𝐷6, 〈𝜏〉, {𝜌, 𝜌5, 𝜏𝜌, 𝜏𝜌5}) o Cay(〈𝜏〉, ∅).

vertex-transitive digraphs of smaller order if there exists 1 < 𝐻 ⊳ 𝐺 such that 𝑆 \ 𝐻 is a union of

cosets of 𝐻 in 𝐺. In this case, if B is the block system of 𝐺𝐿 formed by the orbits of 𝐻, then

Cay(𝐺, 𝑆) � Γ/B oΓ[𝐻] � Cay(𝐺/𝐻, 𝑆1) o Cay(𝐻, 𝑆2) (2.5)

where 𝑆1 is the set of cosets of 𝐻 contained in 𝑆 and 𝑆2 = 𝐻 ∩ 𝑆. Additionally, if Γ is not complete

nor the complement of a complete graph and 𝐾 is chosen to be maximal in 𝐺 with the above

properties, then

Aut(Cos(𝐺, 𝐻, 𝑆)) � Aut(Cos(𝐺, 𝐾, 𝑆)) o Aut(Cos(𝐾, 𝐻, 𝑆 ∩ 𝐾)). (2.6)

In the case when all subgroups of𝐺 are normal, the above sufficient condition is also necessary.

Groups in which every subgroup is normal are called Dedekind groups. Obviously, abelian groups

are Dedekind groups, and non-abelian Dedekind groups are called the Hamilton groups. Hamilton

groups have the form 𝐺 = 𝑄8 × 𝐵 × 𝐷 [9, Theorem 12.5.4], where 𝑄8 is the quaternion group of

order 8, 𝐵 is an elementary abelian 2-group, and 𝐷 is a finite abelian group of odd order. This
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result also generalizes the known result mentioned earlier that Cayley digraphs of abelian groups

can be written as nontrivial wreath products of two digraphs of smaller order if and only if its

connection set is a union of cosets of some subgroup.

Corollary 3

A Cayley digraph Cay(𝐴, 𝑆) of a Dedekind group 𝐴 is isomorphic to a nontrivial wreath product

of two vertex-transitive digraphs of smaller order if and only if there is 1 < 𝐻 < 𝐴 such that 𝑆 \ 𝐻

is a union of cosets of 𝐻 in 𝐴. In this case, if B is the block system of 𝐺𝐿 formed by the orbits of

𝐻, then

Cay(𝐴, 𝑆) � Cay(𝐴/𝐻, 𝑆1) o Cay(𝐻, 𝑆2) (2.7)

where 𝑆1 is the set of cosets of 𝐻 contained in 𝑆 and 𝑆2 = 𝐻 ∩ 𝑆. If Cay(𝐴, 𝑆) is neither complete

nor the complement of a complete graph, then choosing 𝐻 ≤ 𝐴 to be the maximal subgroup of 𝐴

such that 𝑆 \ 𝐻 is a union of cosets of 𝐻, then

Aut(Cay(𝐴, 𝑆)) = Aut(Cay(𝐴/𝐻, 𝑆1)) o Aut(Cay(𝐻, 𝑆2)). (2.8)

2.3 Applications to double coset digraphs

Sabidussi has shown that there is a strong relationship between Cayley digraphs and double

coset digraphs. He showed in [23, Theorem 2] that Cos(𝐺, 𝐻, 𝑆) o �̄�𝑛, where 𝑛 = |𝐻 |, is isomorphic

to a Cayley graph Γ of 𝐺 (the Cayley graph has connection set a union of left cosets of 𝐻 in 𝐺).

He also showed in [23, Theorem 2] that every double coset graph of 𝐺 is the quotient of a Cayley

graph of 𝐺 with connection set 𝑆 by the partition of 𝐺 given by the left cosets of a subgroup of 𝐺

that is disjoint from 𝑆. Examining the proofs of these two results (but not the statements), it turns

out the two Cayley graphs Sabidussi constructs in [23, Theorems 2 and 4] are equal. This allows
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for the use of a stronger quotient than previously defined, which mapped arcs of Γ to arcs of Γ/P.

The stronger quotient maps arcs of Γ to arcs of Γ/P and non-arcs of Γ to non-arcs of Γ/P. This

allows more combinatorial and symmetry information to lift from Γ/P to Γ and more to project

from Γ to Γ/P. This is what we now explore.

While our definition of a double coset digraph is more or less the usual one, it might be better,

for the purposes of this section, to think of first fixing the group 𝐺, then choosing 𝑆, and then

letting 𝐻 ≤ 𝐺 such that 𝑆 = 𝐻𝑆𝐻. Such a subgroup always exists, even if it must be 𝐻 = 1, in

which case a double coset digraph is isomorphic to a Cayley digraph. In this manner a double

coset digraph of 𝐺 exists for every 𝑆, but of course not all of these digraphs will have the same

number of vertices.

Definition 12

Let𝐺 be a group. Define Reducible(𝐺) to be the set of all Cayley digraphs of𝐺 that are reducible.

That is, Reducible(𝐺) = {Cay(𝐺, 𝑆) : Cay(𝐺, 𝑆) � Γ o �̄�𝑡 , Γ a digraph, 𝑡 ≥ 1}. Let Cos(𝐺) be the

set of all loopless double coset digraphs of 𝐺.

The condition that a double coset digraph Cos(𝐺, 𝐻, 𝑆) is loopless means that 𝐻 ∩ 𝑆 = ∅.

We will implicitly use the fact that if 𝐻 ≤ 𝐾 , 𝐻𝑆𝐻 = 𝑆 and 𝐻 ∩ 𝑆 = ∅, then 𝐾 ∩ 𝑆 = ∅. Note

that elements of Cos(𝐺) need not all have the same order as 𝐻 need not be core-free in 𝐺. If

we followed the convention that 𝐻 is core-free in 𝐺, the next result would not be true for abelian

groups, for example, as the only core-free subgroup of an abelian group is trivial.

Theorem 3

Let𝐺 be a group. Define 𝛾 : Cos(𝐺) → Reducible(𝐺) by 𝛾(Cos(𝐺, 𝐻, 𝑆)) = Cay(𝐺, 𝑆). Then 𝛾 is
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onto, and 𝛾(Cos(𝐺, 𝐻1, 𝑆1)) = 𝛾(Cos(𝐺, 𝐻2, 𝑆2)) if and only if 𝑆1 = 𝑆2 and 〈𝐻1, 𝐻2〉𝑆〈𝐻1, 𝐻2〉 =

𝑆.

Proof: To see 𝛾 is onto, let Γ ∈ Reducible(𝐺). Then there exists 𝑆 ⊂ 𝐺 such that Cay(𝐺, 𝑆)

� Γ1 o �̄�𝑡 , where Γ1 is a digraph and 𝑡 ≥ 2. Choose Γ1 and 𝑡 so that Aut(Cay(𝐺, 𝑆)) � Aut(Γ1) o

Aut(�̄�𝑡), in which case Aut(Cay(𝐺, 𝑆)) � Aut(Γ1) o 𝑆𝑡 by Theorem 1. Then Aut(Cay(𝐺, 𝑆))

has the lexi-partition with respect to 𝑆𝑡 , call it B, as a block system with blocks of size 𝑡. As

𝐺𝐿 ≤ Aut(Cay(𝐺, 𝑆)), the blocks of B are the left cosets of some subgroup 𝐾 of 𝐺. As

Cay(𝐺, 𝑆) = Γ1 o �̄�𝑡 and B is the lexi-partition, Cay(𝐺, 𝑆) [𝑔𝐾] � �̄�𝑡 for every 𝑔 ∈ 𝐺 and

so 𝑆 ∩ 𝐾 = ∅. By Lemma 3, 𝑆 = 𝐾 (𝑆 \ 𝐾)𝐾 = 𝐾𝑆𝐾 . Then Cos(𝐺, 𝐾, 𝑆) ∈ Cos(𝐺) and

𝛾(Cos(𝐺, 𝐾, 𝑆)) = Cay(𝐺, 𝑆). Thus 𝛾 is onto.

To see 𝛾(Cos(𝐺, 𝐻1, 𝑆1)) = 𝛾(Cos(𝐺, 𝐻2, 𝑆2)) if and only if 𝑆1 = 𝑆2 and 〈𝐻1, 𝐻2〉𝑆〈𝐻1, 𝐻2〉 =

𝑆, let Cos(𝐺, 𝐻1, 𝑆1),Cos(𝐺, 𝐻2, 𝑆2) ∈ Cos(𝐺). Suppose 𝛾(Cos(𝐺, 𝐻1, 𝑆1)) = 𝛾(Cos(𝐺, 𝐻2, 𝑆2)).

Then Cay(𝐺, 𝑆1) = Cay(𝐺, 𝑆2) and as 𝑆1 and 𝑆2 are both the neighbors of 1𝐺 , 𝑆1 = 𝑆2. Set

𝑆 = 𝑆1 = 𝑆2. Then 𝐻1𝑆𝐻1 = 𝑆, 𝐻2𝑆𝐻2 = 𝑆, and it is then easy to see that 〈𝐻1, 𝐻2〉𝑆〈𝐻1, 𝐻2〉 = 𝑆.

The converse is similarly difficult.

Observing that for every group 𝐺 and connection set 𝑆 such that there is a subgroup 𝐻 ≤ 𝐺

with 𝐻𝑆𝐻 = 𝑆 there is a maximal subgroup 𝐾 with 𝐾𝑆𝐾 = 𝑆, we may restrict the domain of 𝛾 to

these unique subgroups 𝐾 , and obtain a bijection.

Corollary 4

Let𝐺 be a group. Let Cos𝑈 (𝐺) be the set of all loopless double coset digraphs of𝐺 with connection

set 𝑆 such that 𝐾 is chosen to be maximal such that 𝐾𝑆𝐾 = 𝑆. That is, Cos𝑈 (𝐺) = {Cos(𝐺, 𝐾, 𝑆) :
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𝐾 ≤ 𝐺, 𝑆 = 𝐾𝑆𝐾 and 𝑔𝑆𝑔 ≠ 𝑆 for every 𝑔 ∈ 𝐺 \ 𝐾}. Define 𝛾𝑈 : Cos(𝐺)𝑈 → Reducible(𝐺) by

𝛾𝑈 (Cos(𝐺, 𝐻, 𝑆)) = Cay(𝐺, 𝑆). Then 𝛾𝑈 is a bijection.

For our next result, we will need some additional terms.

Definition 13

Let Γ be a digraph. Define an equivalence relation 𝑅 on 𝑉 (Γ) by 𝑢 𝑅 𝑣 if and only if the out- and

in-neighbors of 𝑢 and 𝑣 are the same. Then 𝑅 is an equivalence relation on 𝑉 (Γ). We say Γ is

irreducible if the equivalence classes of 𝑅 are singletons, and reducible otherwise.

The equivalence relation above was introduced for graphs by Sabidussi [22, Definition 3],

and independently rediscovered by Kotlov and Lovász [14], who call 𝑢 and 𝑣 twins, and Wilson

[24], who calls reducible graphs unworthy. It is easy to see that a vertex-transitive digraph Γ is

reducible if and only if it can be written as a wreath product Γ1 o �̄�𝑛 for some positive integer 𝑛 ≥ 2.

Sabidussi observed in [23] that ≡ is a 𝐺-congruence for 𝐺 ≤ Aut(Γ).

Theorem 4

Let 𝐺 be a group, 𝐻 ≤ 𝐺, and 𝑆 ⊂ 𝐺 such that 𝑆 ∩ 𝐻 = ∅. Then Cos(𝐺, 𝐻, 𝑆) is a well-

defined double coset digraph of 𝐺 if and only if the equivalence classes of 𝑅 in Cay(𝐺, 𝑆) is

refined by 𝐺/𝐻. Additionally, if Cos(𝐺, 𝐻, 𝑆) is a well-defined double coset digraph of 𝐺, then

Cos(𝐺, 𝐻, 𝑆) = Cay(𝐺, 𝑆)/(𝐺/𝐻).

Proof: If the equivalence classes of 𝑅 in Cay(𝐺, 𝑆) is refined by 𝐺/𝐻, then Cay(𝐺, 𝑆) can be

written as a wreath product Γ1 o Γ2, and Γ2 is the empty digraph on 𝐻. Then there is a maximum

supergraph Γ′
2 of Cay(𝐺, 𝑆) that is an empty graph and Cay(𝐺, 𝑆) � Γ′

1 o Γ
′
2 for some Γ′

1. As Γ
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is a Cayley digraph, we may assume without loss of generality that Aut(Γ′
1 o Γ

′
2) contains 𝐺𝐿 . As

Γ′
2 is maximal, Γ′

1 is irreducible so Aut(Γ′
1 o Γ

′
2) � Aut(Γ′

1) o Aut(Γ′
2). As 𝐺𝐿 ≤ Aut(Γ′

1 o Γ
′
2), this

gives that the lexi-partition of Aut(Γ′
1 o Γ

′
2) with respect to Aut(Γ′

2) is the set of left cosets of a

supergroup 𝐾 of 𝐻, and as Γ′
2 is a supergraph of Γ2, 𝐻 ≤ 𝐾 . As Γ′

2 was chosen to be maximal,

𝐾 is the maximal subgroup of 𝐺 for which Γ′
2 can be chosen to have vertex set a subgroup of 𝐺.

Applying 𝛾−1
𝑈

as defined in Corollary 4, we see 𝛾−1
𝑈
(Cay(𝐺, 𝑆)) = Cos(𝐺, 𝐻, 𝑆) and 𝑆 = 𝐾𝑆𝐾 . So

𝑆 = 𝐻𝑆𝐻 and Cos(𝐺, 𝐻, 𝑆) is a well-defined double coset digraph of 𝐺.

If Cos(𝐺, 𝐻, 𝑆) is a well-defined double coset digraph, then by definition, 𝑆 = 𝐻𝑆𝐻 and

so Cay(𝐺, 𝑆) is reducible by Corollary 1. Also, Cay(𝐺, 𝑆) � Cay(𝐺, 𝑆)/(𝐺/𝐻) o Γ[𝐻]. As

𝑆 ∩ 𝐻 = ∅, Γ[𝐻] has no arcs. This completes the if and only if statement of the result. To finish,

simply observe Cay(𝐺, 𝑆)/(𝐺/𝐻) � Cos(𝐺, 𝐻, 𝑆).

As Theorem 4 is an “if and only if" it gives an alternative definition of a double coset digraph

as follows:

Definition 14

Let 𝐺 be a group and 𝑆 ⊂ 𝐺 such that Cay(𝐺, 𝑆) is reducible with the equivalence classes of 𝑅

the left cosets of 𝐾 ≤ 𝐺. Let 𝐻 ≤ 𝐾 . Define Cos(𝐺, 𝐻, 𝑆) to be the digraph Cay(𝐺, 𝑆)/(𝐺/𝐻).

Let 𝐺 be a group, 1 < 𝐻 < 𝐺, and 𝑆 ⊂ 𝐺. Theorem 4 also gives an alternative way of

computationally checking whether 𝑆 is a union of double cosets of 𝐻. If 𝑆 is a union of double

cosets of 𝐻, then Theorem 4 gives that Cay(𝐺, 𝑆) is reducible. This means that the equivalence

classes of 𝑅 are not singleton sets. Thus one only needs to check if, say, 1𝐺 has the same set of in-

and out-neighbors as some other vertex in Cay(𝐺, 𝑆).
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While this method of determining whether a subset 𝑆 ⊂ 𝐺 defines a double coset digraph, once

one has established that Cos(𝐺, 𝐻, 𝑆) is well defined (even by checking 𝑆 = 𝐻𝑆𝐻), the maximum

𝐾 for which 𝑆 = 𝐾𝑆𝐾 is simply the equivalence class of 𝑅 which contains 1𝐺 . Computationally,

this seems much easier than checking which overgroups 𝐾 of 𝐻 in 𝐺 satisfy 𝐾𝑆𝐾 = 𝑆.

The next result shows that all of the symmetry information regarding Cay(𝐺, 𝑆) with 𝑆 a union

of double cosets of a subgroup can be recovered from a double coset digraph with more or less

the same connection set via a wreath product. Essentially then, a double coset digraph is simply

a way of storing the symmetry information of an appropriate Cayley digraph in a more compact

form (as it has fewer vertices and edges than the original Cayley graph). This result is essentially

[23, Theorem 4].

Theorem 5

Let 𝐺 be a group, 𝐻 ≤ 𝐺, and 𝑆 ⊂ 𝐺 such that 𝑆 = 𝐻𝑆𝐻 for some 𝐻 ≤ 𝐺 and 𝐻 ∩ 𝑆 = ∅. Let

𝐻 ≤ 𝐾 ≤ 𝐺 be maximal such that 𝑆 = 𝐾𝑆𝐾 , and let 𝑀 ≤ 𝐾 . Let C𝑀 be the left cosets of 𝑀 in 𝐺,

𝐿𝑀 = fix𝐺 (C𝑀), 𝑛𝑀 = |𝑀 |, and 𝑇𝑀 = {(𝑠𝐿) (𝑀/𝐿𝑀) : 𝑠 ∈ 𝑀𝑆𝑀}. Then

Cos(𝐺/𝐿𝑀 , 𝑀/𝐿𝑀 , 𝑇𝑀) o �̄�𝑛𝑀 � Cay(𝐺, 𝑆)/C𝑀 o �̄�𝑛𝑀 � Cay(𝐺, 𝑆). (2.9)

Proof: First observe that as 𝑀 ≤ 𝐾 and 𝑆 = 𝐾𝑆𝐾 , 𝑆 = 𝑀𝑆𝑀 as well so Cos(𝐺, 𝑀, 𝑆) is well-

defined. We apply Theorem 2 with 𝐻 of that result the subgroup {1𝐺}, 𝐾 of that result 𝑀 of this

result. This gives

Cos(𝐺, 1, 𝑆) = Cay(𝐺, 𝑆) � Cos(𝐺/𝐿, 𝑀/𝐿,𝑇𝑀) o (Cay(𝐺, 𝑆) [𝑀])

� Cay(𝐺, 𝑆)/C𝑀 o (Cay(𝐺, 𝑆) [𝑀]).
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As Cay(𝐺, 𝑆) is loopless and 𝑆 = 𝑀𝑆𝑀 , 1𝐺 ∉ 𝑆 and so 𝑀 ∩ 𝑆 = ∅. Then Cay(𝐺, 𝑆) [𝑀] � �̄�𝑛𝑀 ,

and the result follows.

The next result says that the automorphism group of a double coset graph can be recovered from

its corresponding Cayley digraph. The net effect of this result together with the previous result is

that automorphism groups of all double coset digraphs are known if and only if the automorphism

groups of their corresponding Cayley digraphs are known. Thus the problems of determining

automorphism groups of all Cayley digraphs are equivalent to determining the automorphism

groups of all double coset digraphs, and every vertex-transitive digraph is isomorphic to a double

coset digraph.

Definition 15

Let 𝐺 ≤ 𝑆𝑛 be transitive with block systems B and C. We write B � C if every block of C is a

union of blocks of B, and say B refines C.

Theorem 6

Let 𝐺 be a group, 𝐻 ≤ 𝐺, and 𝑆 ⊂ 𝐺 such that 𝑆 = 𝐻𝑆𝐻 and 𝑆 ∩ 𝐻 = ∅. If 𝐻 ≤ 𝐾 is chosen to

be maximal such that 𝑆 = 𝐾𝑆𝐾 , B is the set of left cosets of 𝐾 in 𝐺, and 𝑛 = [𝐾 : 𝐻], then

Aut(Cos(𝐺, 𝐻, 𝑆)) � (Aut(Cay(𝐺, 𝑆))/B) o 𝑆𝑛. (2.10)

Proof: Let 𝑛𝐾 = |𝐾 |. By Corollary 1, we know that Aut(Cay(𝐺, 𝑆)) � Aut(Cos(𝐺, 𝐾, 𝑆))o𝑆𝑛𝐾 , and

by Theorem 5, Cos(𝐺, 𝐻, 𝑆) o �̄�𝑛 � Cay(𝐺, 𝑆), so Aut(Cos(𝐺, 𝐻, 𝑆) o �̄�𝑛) = Aut(Cos(𝐺, 𝐾, 𝑆)) o

𝑆𝑛𝐾 . Notice that the largest subgroup 𝐴 of Aut(Cos(𝐺, 𝐻, 𝑆) o �̄�𝑛) that has the set C of left cosets

of 𝐻 in 𝐾 as a block system satisfies 𝐴/C = Aut(Cos(𝐺, 𝐻, 𝑆)), so the largest subgroup 𝐵 of
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Aut(Cos(𝐺, 𝐾, 𝑆)) o 𝑆𝑛𝐾 that has C as a block system satisfies 𝐵/C = Aut(Cos(𝐺, 𝐻, 𝑆)). As

𝐻 ≤ 𝐾 , C𝐻 � C𝐾 , 𝐵 � Aut(Cos(𝐺, 𝐾, 𝑆)) o 𝑆𝑛 o 𝑆𝑛𝐻 and 𝐵/C𝐻 � Aut(Cos(𝐺, 𝐾, 𝑆)) o 𝑆𝑛.

Our next goal is to show that the isomorphism problem can be solved for all double coset

digraphs of 𝐺 if and only if it can be solved for the corresponding Cayley digraphs of 𝐺.

Theorem 7

Let 𝐺 be a group, 𝐻1, 𝐻2 ≤ 𝐺, and 𝑆1, 𝑆2 ⊆ 𝐺 such that 𝐻𝑖𝑆𝑖𝐻𝑖 is a union of double cosets of

𝐻𝑖, 𝑖 = 0, 1. Let 𝐾𝑖 ≤ 𝐺 be maximal such that 𝑆𝑖 = 𝐾𝑖𝑆𝑖𝐾𝑖, 𝑖 = 0, 1. Then Cos(𝐺, 𝐻1, 𝑆1) �

Cos(𝐺, 𝐻2, 𝑆2) if and only if Cay(𝐺, 𝑆1) � Cay(𝐺, 𝑆2).

Proof: If Cos(𝐺, 𝐻1, 𝑆1) � Cos(𝐺, 𝐻2, 𝑆2) then clearly their vertex-sets have the same cardinality

and so |𝐻1 | = |𝐻2 |. We first show that Cay(𝐺, 𝑆1) � Cay(𝐺, 𝑆2).

Suppose 𝛿 : 𝐺/𝐻1 → 𝐺/𝐻2 is an isomorphism between Cos(𝐺, 𝐻1, 𝑆1) and Cos(𝐺, 𝐻2, 𝑆2).

As 𝛿 maps 𝐺/𝐻1 to 𝐺/𝐻2 we may define a map 𝛿 from 𝐺 to 𝐺. First 𝛿(𝑔𝐻1) = 𝛿(𝑔𝐻1), i.e. 𝛿

maps 𝐺/𝐻1 to 𝐺/𝐻2 in the same fashion as 𝛿 to extend 𝛿 to 𝛿 map elements of 𝑔𝐻1 to 𝛿(𝑔𝐻2)

(which will be a bijection from 𝑔𝐻1 to some left coset of 𝐻2) in any fashion. We now show every

choice of 𝛿 is an isomorphism from Cay(𝐺, 𝑆1) to Cay(𝐺, 𝑆2).

First, 𝛿 is a bijection as it maps𝐺/𝐻1 to𝐺/𝐻2 and maps the elements of a left coset of 𝐻1 to the

elements of a left coset of𝐻2. Let (𝑥, 𝑦) ∈ 𝐴(Cay(𝐺, 𝑆1)). Then (𝑥𝐻1, 𝑦𝐻1) ∈ 𝐴(Cos(𝐺, 𝐻1, 𝑆1))

so (𝛿(𝑥𝐻1), 𝛿(𝑦𝐻1)) = (𝑎𝐻2, 𝑏𝐻2) ∈ 𝐴(Cos(𝐺, 𝐻2, 𝑆2)). Then (𝑎ℎ2, 𝑏ℎ
′
2) ∈ 𝐴(Cay(𝐺, 𝑆2)) for

every ℎ2, ℎ
′
2 ∈ 𝐻2 so 𝛿(𝑥, 𝑦) ∈ 𝐴(Cay(𝐺, 𝑆2)) and 𝛿 is indeed an isomorphism. So Cay(𝐺, 𝑆1) �

Cay(𝐺, 𝑆2).
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Suppose 𝜙 : 𝐺 → 𝐺 is an isomorphism between Cay(𝐺, 𝐻1, 𝑆1) and Cay(𝐺, 𝐻2, 𝑆2). By

Theorem 1, we have by choice 𝐾𝑖 that Aut(Cay(𝐺, 𝐻𝑖, 𝑆𝑖)) � Aut(Cos(𝐺, 𝐾𝑖, 𝑆𝑖) o �̄�𝑘𝑖 , where

𝑘𝑖 = |𝐾𝑖 |, 𝑖 = 0, 1. By Theorem 1 we see that Cos(𝐺, 𝐾𝑖, 𝑆𝑖) cannot be written as a nontrivial

wreath product with the complement of a complete graph, so Cos(𝐺, 𝐾𝑖, 𝑆𝑖) is irreducible, 𝑖 = 0, 1.

This in turn implies 𝑘0 = 𝑘1. As 𝐺/𝐾𝑖 is the lexi-partition of Cay(𝐺, 𝑆𝑖) with respect to �̄�𝑘𝑖 , 𝐺/𝐾𝑖

is a block system of Aut(Cay(𝐺, 𝑆𝑖)) and 𝜙(𝐺/𝐾0) is a block system of Aut(Cay(𝐺, 𝑆1)). Then

𝜙(𝐺/𝐾0) � 𝐺/𝐾1 or 𝐺/𝐾1 � 𝜙(𝐺/𝐾0) by [3, Lemma 5], and so 𝜙(𝐺/𝐾0) = 𝐺/𝐾1. Clearly

then 𝜙 induces a bijection 𝜙′ between 𝐺/𝐾0 and 𝐺/𝐾1 and it is straightforward to verify that

𝜙′(Cos(𝐺, 𝐻1, 𝑆1)) = Cos(𝐺, 𝐻2, 𝑆2).

The above result may appear to reduce the isomorphism problem for vertex-transitive digraphs

to the isomorphism problem for Cayley digraphs, as every vertex-transitive graph can be written as

a double coset digraph. This, however, is not the case, as it is quite possible that a Cayley digraph

is isomorphic to a Cayley digraph of more than one group (see [20] for example). The above result

will not give isomorphisms between two different representations of a single digraph as Cayley

digraphs on different groups.

Corollary 5

Let𝐺0 and𝐺1 be groups with |𝐺0 | = |𝐺1 |, 𝐻𝑖 ≤ 𝐺𝑖 with |𝐻0 | = |𝐻1 |, and 𝑆𝑖 ⊆ 𝐺𝑖 such that 𝐻𝑖𝑆𝑖𝐻𝑖

is a union of double cosets of 𝐻𝑖, 𝑖 = 0, 1. Let {𝐿1, . . . , 𝐿𝑡} be the set of all regular subgroups of

Aut(Cay(𝐺, 𝑆0)). Then Cos(𝐺0, 𝐻0, 𝑆0) � Cos(𝐺1, 𝐻1, 𝑆1) if and only if there is some 1 ≤ 𝑗 ≤ 𝑡

such that 𝐿 𝑗 � 𝐺1 and Cay(𝐺0, 𝑆0) � Cay(𝐿 𝑗 , 𝑇𝑗 ).
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Proof: As |𝐺0 | = |𝐺1 | and |𝐻0 | = |𝐻1 | we have |𝑉 (Cos(𝐺0, 𝐻0, 𝑆0)) | = |𝑉 (𝐺1, 𝐻1, 𝑆1) |. As

𝐻𝑖𝑆𝑖𝐻𝑖 = 𝑆𝑖, by Corollary 1, we have Cos(𝐺𝑖, 𝐻𝑖, 𝑆𝑖) o �̄�𝑛 � Cay(𝐺𝑖, 𝑆𝑖), 𝑖 = 0, 1.

Suppose Cos(𝐺0, 𝐻0, 𝑆0) � Cos(𝐺1, 𝐻1, 𝑆1). Set 𝑛 = |𝐻0 | = |𝐻1 |. Then Cos(𝐺0, 𝐻0, 𝑆0) o

�̄�𝑛 � Cos(𝐺1, 𝐻1, 𝑆1) o �̄�𝑛. As Cos(𝐺𝑖, 𝐻𝑖, 𝑆𝑖) o �̄�𝑛 � Cay(𝐺𝑖, 𝑆𝑖), Aut(Cay(𝐺0, 𝑆0)) contains

a regular subgroup isomorphic 𝐺1, so 𝐺1 � 𝐿 𝑗 for some 𝐿 𝑗 . Then there exists 𝑇𝑗 ⊆ 𝐿 𝑗 with

Cay(𝐺1, 𝑆1) � Cay(𝑇𝑗 , 𝑆 𝑗 ), and so Cay(𝐺0, 𝑆0) � Cay(𝑇𝑗 , 𝑆 𝑗 ).

Conversely, suppose there is some 1 ≤ 𝑗 ≤ 𝑡 such that 𝐿 𝑗 � 𝐺1 and Cay(𝐺0, 𝑆0) �

Cay(𝐿 𝑗 , 𝑇𝑗 ). Then Cay(𝐺1, 𝑆1) � Cay(𝐺0, 𝑆0). As Cos(𝐺𝑖, 𝐻𝑖, 𝑆𝑖) o �̄�𝑛 � Cay(𝐺𝑖, 𝑆𝑖), 𝑖 = 0, 1,

we have Cos(𝐺0, 𝐻0, 𝑆0) � Cos(𝐺1, 𝐻1, 𝑆1).

In particular, this shows the importance of the problem of determining when a Cayley digraph is

isomorphic to a Cayley digraph of more than one group. We should point out of course that even if

this additional problem were solved, the reduction of the isomorphism problem for vertex-transitive

digraphs to Cayley digraphs is only of theoretical interest, as the Cayley digraphs corresponding

to double coset digraphs have more vertices and edges, and so the automorphism groups of the

double coset digraphs would, in practice, be calculated first.

2.4 Generalized wreath products

Generalized wreath products are a fairly new class of digraphs that were introduced to describe

automorphism groups of circulant digraphs (Cayley digraphs of cyclic groups). They form one

of three broad families of digraphs (the others being deleted wreath product types with a factor

a symmetric group, and normal Cayley digraphs of Z𝑛), and it was stated in [18, Theorem 2.3]

that all circulant digraphs fall into at least one of these families. This result is a translation of
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results proven using results of Schur rings [8, 16, 17] to the language of vertex-transitive digraphs.

We will not dwell on a fourth family, namely those with primitive automorphism groups, as for

circulant digraphs these digraphs are only the complete graph and its complement. Normal Cayley

digraphs were introduced in [25] by M.Y. Xu in 1998 and are those Cayley digraphs of𝐺 for which

𝐺𝐿 ⊳Aut(Cay(𝐺, 𝑆)). Deleted wreath type digraphs were first defined in [1], and are those digraphs

whose automorphism group is the same as a deleted wreath product of two smaller digraphs (in

general this family should probably be those digraphs whose automorphism group has a factor

which is the automorphism group of a digraph of smaller order that is quasiprimitive).

Definition 16

Let Γ1 and Γ2 be digraphs. The deleted wreath product of Γ1 and Γ2, denoted Γ1 o𝑑 Γ2, is the

digraph with vertex set 𝑉 (Γ1) ×𝑉 (Γ2) and arc set

{((𝑥1, 𝑦1), (𝑥2, 𝑦2)) : (𝑥1, 𝑥2) ∈ 𝐴(Γ1) and 𝑦1 ≠ 𝑦2 or 𝑥1 = 𝑥2 and (𝑦1, 𝑦2) ∈ 𝐴(Γ2)}. (2.11)

The determination of automorphism groups of circulant digraphs is not quite complete. While

we do have a classification of circulant digraphs into the three families mentioned above, the

automorphism groups of generalized wreath products are not known at this time. The same is

true for deleted wreath products, although some partial results are given in [6]. These results do

give a general template on how to approach the problem of determining automorphism groups

of other classes of vertex-transitive digraphs: prove a classification type result to show that all

Cayley digraphs under consideration fall within a certain set of families of digraphs. Then one

should determine the automorphism groups of the digraphs in each of the families, and a complete

determination of the automorphism groups will be obtained.
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Generalized wreath products have thus far only been defined for Cayley digraphs of abelian

groups. The reason that they were not defined for Cayley digraphs of nonabelian groups or vertex-

transitive digraphs that are not Cayley digraphs is that the recognition problem for when such

digraphs are wreath products had not been solved. The idea behind a generalized wreath product

Γ is that we do not have any control over which arcs have both endpoints inside a block of a block

system C of a transitive subgroup of the automorphism group, but the other arcs form a digraph

that is a wreath product, and the lexi-partition of that wreath product refines C. Thus we want to be

able to decompose the arc set of the digraph into two sets in such a way that one set of arcs defines

a disconnected digraph (which is a wreath product) and the other a wreath product in such a way

that the automorphism group of Γ contains the intersection of the automorphism groups of the

two wreath products. As up to now we could not determine, by inspection of the connection set,

whether the remaining arcs formed a wreath product, we could not extend the definition to other

vertex-transitive digraphs. Note that this will imply that Aut(Γ) contains a subgroup isomorphic

to the intersection of the automorphism groups of the two wreath product digraphs.

Correcting this defect was the original motivation for this problem. We now define generalized

wreath products for all double coset digraphs, and recall that by [23, Theorem 2] that every

vertex-transitive digraph is isomorphic to a double coset digraph.

Definition 17

Let 𝐺 be a group with subgroups 1 ≤ 𝐻 < 𝐾 ≤ 𝐿 < 𝐺 and 𝑆 ⊆ 𝐺 a union of double cosets of 𝐻

in 𝐺 such that 𝑆 \ 𝐿 is a union of double cosets of 𝐾 . The double coset digraph Cos(𝐺, 𝐻, 𝑆) is

called a (𝐾, 𝐿)-generalized wreath product.
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Notice that if 𝐾 = 𝐿, then by Theorem 2 we have that Cos(𝐺, 𝐻, 𝑆) is a wreath product.

So generalized wreath products are a generalization of the wreath product construction. It is

straightforward to show that if Aut(Cos(𝐺, 𝐻, 𝑆) is a (𝐾, 𝐿)-generalized wreath product, then

Aut(Cos(𝐺, 𝐻, 𝑆)) does contain the intersection of Aut(Cos(𝐺, 𝐻, 𝐿∩ 𝑆)) and Aut(Cos(𝐺, 𝐻, 𝑆 \

𝐿)), and these digraphs have the properties we were aiming for.

Lemma 4

Let 𝐺 be a group, and 1 ≤ 𝐻 < 𝐾 ≤ 𝐿 < 𝐺. Let 𝑆 ⊂ 𝐺, 𝑆1 = 𝑆 ∩ 𝐿 and 𝑆2 = 𝑆 \ 𝐿. If

Cos(𝐺, 𝐻, 𝑆) is isomorphic to a (𝐾, 𝐿)-generalized wreath product then

Aut(Γ) ≥ Aut(Cos(𝐺, 𝐻, 𝑆1)) ∩ Aut(Cos(𝐺, 𝐻, 𝑆2)) ≥ (𝑆𝑟 o Γ[𝐿]) ∩ (Γ/B o 𝑆𝑡), (2.12)

where 𝑟 = [𝐺 : 𝐿], 𝑡 = |𝐾 |, and B is the set of left cosets of 𝐻 in 𝐺.

A good general rule is that symmetry in digraphs is rare; one expects that the automorphism

group of a (𝐾, 𝐿)-generalized wreath product would be Aut(Cos(𝐺, 𝐻, 𝑆∩𝐿))∩Aut(Cos(𝐺, 𝐻, 𝐿\

𝐾)). It seems likely that there will be many ways in which the automorphism group will be larger

than expected. The following problem is then natural, and its solution is a crucial step in determining

automorphism groups of vertex-transitive digraphs.

Problem 1

Determine necessary and sufficient conditions for the automorphism group of a (𝐾, 𝐿)-

generalized wreath product Cos(𝐺, 𝐻, 𝑆) to have automorphism group Aut(Cos(𝐺, 𝐻, 𝑆 ∩ 𝐿)) ∩

Aut(Cos(𝐺, 𝐻, 𝑆 \ 𝐿)) as expected. Additionally, for each class of generalized wreath products

that do not have automorphism group Aut(Cos(𝐺, 𝐻, 𝑆 ∩ 𝐿)) ∩Aut(Cos(𝐺, 𝐻, 𝑆 \ 𝐿)), determine
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the full automorphism group for each such class. In particular, solve these problems for circulant

digraphs.

It has been shown in [4, Theorem 35] that a (𝐾, 𝐿)-generalized wreath product circulant digraph

of square-free order 𝑛 has automorphism group Aut(Cay(Z𝑛, 𝑆∩ 𝐿)) ∩Aut(Cay(Z𝑛, 𝑆 \ 𝐿)). Also,

Theorem 1 solves this problem in the special case when Γ is a wreath product, which is guaranteed

when 𝐾 = 𝐿.
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CHAPTER III

RECOGNIZING BI-COSET GRAPHS WHICH ARE 𝑋-JOINS

3.1 The automorphism group of the join of a bipartite graph with empty graphs

Hemminger in his 1968 paper provided the necessary and sufficient conditions for the automor-

phism group of an 𝑋-join of 𝑌 to be what he calls the “natural" ones, those maps that permute the

components of the 𝑋-join and then applying an arbitrary automorphism of each of the components.

This will be our tool for determining the automorphism group of a connected bi-coset graph when

it is an 𝑋-join (specifically of empty graphs). We begin this section by introducing all the necessary

definitions and terminology. In this section we do not assume graphs are finite.

Definition 18

Let 𝑍 be an 𝑋-join of {𝑌𝑥}𝑥∈𝑋 . Then a graph automorphism 𝜑 of 𝑍 is called natural if for each

𝑥1 ∈ 𝑋 there is an 𝑥2 ∈ 𝑋 such that 𝜑(𝑌𝑥1) = 𝑌𝑥2 . Otherwise 𝜑 is called unnatural.

It is important to note that if 𝜑 is a natural automorphism of 𝑍 , then 𝜑 induces an automorphism

𝜑∗ of 𝑋 where 𝜑∗(𝑥1) = 𝑥2 if 𝜑(𝑌𝑥1) = 𝑌𝑥2 . Similarly, if 𝜙 is an automorphism of 𝑋 such that

𝑌𝑥 � 𝑌𝜙(𝑥) for all 𝑥 ∈ 𝑋 , then 𝜙 induces a set of natural automorphisms of 𝑍 where if 𝜙′ is one of

these natural automorphisms, then (𝜙′)∗ = 𝜙.

Definition 19

Let Γ be a graph. Define 𝐷 and the equivalence relations 𝑅Γ and 𝑆Γ on 𝑉 (Γ) as follows:
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1. (𝑣, 𝑢) ∈ 𝑅Γ if 𝑁Γ (𝑣) = 𝑁Γ (𝑢),

2. (𝑣, 𝑢) ∈ 𝑆Γ if 𝑁Γ (𝑣) ∪ {𝑣} = 𝑁Γ (𝑢) ∪ {𝑢},

3. 𝐷 = {(𝑣, 𝑣) : 𝑣 ∈ 𝑉 (Γ)}.

Γ is called irreducible if 𝑅Γ = 𝐷, otherwise it is called reducible. We call the set of equivalence

classes of 𝑅Γ the unworthy partition of𝑉 (Γ). 𝐷 is called the diagonal (or identity) relation. Note

that 𝑆Γ = 𝐷 if and only if Γ̄ is irreducible.

Definition 20

Let 𝑋 be a graph and 𝑌 a collection of graphs indexed by 𝑉 (𝑋). The partition {{(𝑥, 𝑦) : 𝑦 ∈

𝑉 (𝑌𝑥)} : 𝑥 ∈ 𝑉 (𝑋)} is the join partition of
∨(𝑋,𝑌 ).

Theorem 8

Let Γ be a graph. Suppose Γ �
∨(𝑋,𝑌 ), where 𝑌 = {𝑌𝑥 : 𝑥 ∈ 𝑉 (𝑋)} and each 𝑌𝑥 ∈ 𝑌 is an empty

graph. The following are equivalent:

1. 𝑋 is irreducible,

2. the join partition of
∨(𝑋,𝑌 ) is the unworthy partition of Γ,

3. Aut(Γ) is the group of the complete set of natural automorphisms induced by 𝑋 .

Proof: (1): =⇒ (2) Suppose 𝑋 is irreducible. It is clear that if 𝑥 ∈ 𝑉 (𝑋) and𝑌𝑥 is an empty graph

then 𝑢 𝑅Γ 𝑣 for all 𝑢, 𝑣 ∈ {𝑥} ×𝑉 (𝑌𝑥) (regardless of whether 𝑋 is irreducible or if the other graphs

in 𝑌 are empty graphs), so the join partition of Γ is refined by the unworthy partition of Γ. As 𝑋

is irreducible, for any two distinct vertices 𝑥1, 𝑥2 ∈ 𝑉 (𝑋), one of 𝑥1, 𝑥2, say 𝑥1, is adjacent to some

vertex 𝑥3 that 𝑥2 is not adjacent to in 𝑋 . Then no vertex of {(𝑥2, 𝑦) : 𝑦 ∈ 𝑉 (𝑌𝑥2)} is adjacent to

any vertex of {(𝑥3, 𝑦) : 𝑦 ∈ 𝑉 (𝑌𝑥3)} while all vertices {(𝑥1, 𝑦) : 𝑦 ∈ 𝑉 (𝑌𝑥1)} are adjacent to every
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vertex of {(𝑥3, 𝑦) : 𝑦 ∈ 𝑉 (𝑌𝑥3)}. We conclude that the cells of the unworthy partition that contains

{(𝑥1, 𝑦) : 𝑦 ∈ 𝑉 (𝑌𝑥1)} is {(𝑥1, 𝑦) : 𝑦 ∈ 𝑉 (𝑌𝑥1)}. As 𝑥1 ∈ 𝑉 (𝑋) was arbitrary, the join partition of

Γ is the unworthy partition of Γ.

(2) =⇒ (3): Suppose the join partition of
∨(𝑋,𝑌 ) is the unworthy partition of Γ. Let

𝛾 ∈ Aut(Γ) and 𝑢, 𝑣 ∈ Γ such that 𝑢 𝑅Γ 𝑣. Then the neighbors in Γ of 𝛾(𝑢) and 𝛾(𝑣) are the same.

Thus 𝛾(𝑢) 𝑅Γ 𝛾(𝑣). This implies that 𝛾 maps the unworthy partition to the unworthy partition,

which implies that 𝛾 is a natural automorphism of Γ induced by 𝑋 as the unworthy partition Γ is

the join partition of
∨(𝑋,𝑌 ).

(3) =⇒ (1): Suppose Aut(Γ) is the group of the complete set of natural automorphisms

induced by 𝑋 . If 𝑋 is reducible, then there exists vertices 𝑥1, 𝑥2 ∈ 𝑉 (𝑋) whose neighbors in 𝑋 are

the same. Then every vertex of {(𝑥1, 𝑦) : 𝑦 ∈ 𝑉 (𝑌𝑥1)} and every vertex of {(𝑥2, 𝑦) : 𝑦 ∈ 𝑉 (𝑌𝑥2)}

have the same neighbors. The permutation ((𝑥1, 𝑦1), (𝑥2, 𝑦2)), 𝑦2 ∈ 𝑉 (𝑌𝑥1) and 𝑦2 ∈ 𝑉 (𝑌𝑥2) is an

automorphism of Γ and it is an unnatural automorphism, a contradiction.

3.2 Automorphism groups of reducible bi-coset graphs

We will have need of quotients, but as bi-coset graphs need not be vertex-transitive [7], the

natural partition by which to quotient has two parts (one for each cell of the natural bipartition),

and so is slightly more complicated.

Definition 21

Let Γ be a bi-coset graph B(𝐺, 𝐻0, 𝐻1, 𝑆) where the left partition 𝐵0 consists of the left cosets of

𝐻0 and the right partition 𝐵1 consists of the left cosets of 𝐻1. Let 𝐻𝑖 ≤ 𝐾𝑖 ≤ 𝐺, 𝑖 = 0, 1. Define
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the join-partition of 𝑉 (Γ) with respect to 𝐾0 and 𝐾1, denoted P(𝐾0, 𝐾1), of the vertices of Γ as

follows:

1. Let P𝑖 be the partition of 𝐵𝑖 that consists of the left cosets of 𝐾𝑖 in 𝐺. Note P𝑖 is a block
system of 𝐺 with its action on 𝐵𝑖 by left multiplication, 𝑖 = 0, 1.

2. The partition P(𝐾0, 𝐾1) of 𝑉 (Γ) is P = P0 ∪P1. This partition of the vertices of Γ does not
necessarily form a block system of Aut(Γ) as Γ may not be vertex-transitive.

With the natural partition in hand, we may now define the appropriate quotient graphs for

bi-coset graphs.

Definition 22

Let Ω be a set, and P a partition of Ω. Let Γ be a digraph with vertex set Ω. Define the quotient

digraph of Γ with respect to P, denoted Γ/P, by𝑉 (Γ/P) = P and (𝑃1, 𝑃2) ∈ 𝐴(Γ/P) if and only

if (𝑝1, 𝑝2) ∈ 𝐴(Γ) for some 𝑝1 ∈ 𝑃1 and 𝑝2 ∈ 𝑃2.

Lemma 5

Let Γ be a connected bipartite graph with bipartition B = {𝐵0, 𝐵1}. The unworthy partition P of

Γ refines B.

Proof: Suppose otherwise, and so there exists 𝑃𝑥 ∈ P such that 𝑃𝑥 ∩ 𝐵𝑖 ≠ ∅, 𝑖 = 0, 1. As Γ is

connected, Γ/P is connected. So 𝑃𝑥 is adjacent in Γ/P to some 𝑃𝑥 ′ ∈ P. Let 𝑖 ∈ Z2 such that

𝑃𝑥 ′ ∩ 𝐵𝑖 ≠ ∅, and 𝑥′′ ∈ 𝑃𝑥 such that 𝑥′′ ∈ 𝐵𝑖. Then 𝑥′𝑥′′ ∈ 𝐸 (Γ), contradicting the choice of B as

a bipartition of Γ.

Lemma 6

Let Γ = 𝐵(𝐺, 𝐻0, 𝐻1, 𝑆) be a connected bi-coset graph. Let E be the unworthy partition of 𝑉 (Γ),
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and E𝑖 consist of those elements of E that are contained in 𝐵𝑖, 𝑖 = 0, 1. Then E𝑖 is the set of orbits

of the kernel of the action of 𝐹 on 𝐵𝑖+1, where 𝐹 is the set-wise stabilizer of B, and are the set of

left cosets of some subgroups 𝐻𝑖+1 ≤ 𝐾𝑖+1 ≤ 𝐺.

Proof: By Lemma 5, we see that E𝑖 is a partition of 𝐵𝑖, 𝑖 = 0, 1. Let 𝐿𝑖 be the kernel of the action

of 𝐹 on 𝐵𝑖+1, O be an orbit of 𝐿𝑖, 𝑣 ∈ O, and 𝐸𝑖 ∈ E𝑖 with 𝑣 ∈ 𝐸𝑖. As 𝐿𝑖 is the kernel of the

action of 𝐹 on 𝐵𝑖+1, 𝐿𝑖 fixes every vertex of 𝐵𝑖+1. As every neighbor 𝑥 in Γ of 𝑣 is contained in

𝐵𝑖+1 and 𝐿O
𝑖

is transitive on O, every element of O is adjacent in Γ to 𝑥. As 𝑣 ∈ O is arbitrary, and

𝑥 ∈ 𝐵𝑖+1 is arbitrary, every element of O has the same neighbors in Γ. Thus O ⊆ 𝐸𝑖. Conversely,

let 𝐸𝑖 ∈ E𝑖, and for each 𝜎 ∈ 𝑆𝐸𝑖 , define �̄� ∈ 𝑆𝑉 (Γ) by �̄�(𝑣) = 𝜎(𝑣) if 𝑣 ∈ 𝐸𝑖 and �̄�(𝑣) = 𝑣

otherwise. Then �̄� ∈ 𝐹 so 𝐸𝑖 ⊆ O, and hence, 𝐸𝑖 = O. That the E𝑖 are the sets of left cosets of

subgroups 𝐻𝑖 ≤ 𝐾𝑖 ≤ 𝐺 follows from Lemma 2.

We now give the automorphism group of every bi-coset graph which can be written as an

𝑋-join of a set of empty graphs 𝑌 such that the partition P = {𝑉 (𝑌𝑥) : 𝑥 ∈ 𝑋} refines the natural

bipartition B.

Corollary 6

Let Γ = 𝐵(𝐺, 𝐻0, 𝐻1, 𝑆) be a connected bi-coset graph that can be written as a nontrivial 𝑋-join

of empty graphs𝑌 such that P = {𝑉 (𝑌𝑥) : 𝑥 ∈ 𝑋} refines the natural bipartition B of Γ. Then there

exists 𝐻𝑖 ≤ 𝐾𝑖 ≤ 𝐺 such that for the (𝐾0, 𝐾1)-join partition P′ and where 𝑌 ′ is the collection of

empty graphs on the cells of P′, we have Γ �
∨(Γ/P′, 𝑌 ′) and Aut(∨(Γ/P′, 𝑌 ′)) is the complete

set of natural automorphisms induced by Γ/P′.
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Proof: Let 𝐹 be the setwise stabilizer of B in Aut(Γ). Let 𝐿𝑖 be the kernel of the action of 𝐹 on

𝐵𝑖+1. By Lemma 6 the orbits of 𝐿𝑖 are equivalence classes of 𝑅Γ and are the set of left cosets of

𝐻𝑖 ≤ 𝐾𝑖 ≤ 𝐺, 𝑖 = 0, 1. Consider the action of Aut(Γ/P′) on Γ/P′, suppose it is not faithful. Let

𝛿𝑖 be an element of the kernel of the action of Aut(Γ/P′) on 𝐵′
𝑖+1, 𝑖 = 0, 1, where B′ = {𝐵′0, 𝐵

′
1}

is the natural bipartition of Γ/P′. Suppose 𝛿𝑖 (𝐾𝑖) = 𝑔𝑖𝐾𝑖 for some 𝑔𝑖 ∈ 𝐺, 𝑔𝑖 ≠ 1𝐺 , and 𝛿𝑖 fixes

all left cosets of 𝐾𝑖+1. Thus 𝐾𝑖 and 𝑔𝑖𝐾𝑖 must have the same neighbors in the quotient. But this

implies that 𝐻𝑖 and 𝑔𝑖𝐻𝑖 have the same neighbors in the quotient, and so 𝐻𝑖 𝑅Γ 𝑔𝑖𝐻𝑖. Then 𝐾𝑖 must

contain 𝑔𝑖𝐾𝑖, which is a contradiction to our choice of 𝐾𝑖. Thus, the action of Aut(Γ/P′) on Γ/P′

must be faithful. So 𝑅Γ/P ′ = 𝐷, and the result follows by Theorem 8.

Corollary 7

Let Γ = Haar(𝐺, 𝑆) be a connected Haar graph that can be written as a nontrivial 𝑋-join of

empty graphs 𝑌 such that P = {𝑉 (𝑌𝑥) : 𝑥 ∈ 𝑋}. Then there exists 𝐾𝑖 ≤ 𝐺 such that for the

(𝐾0, 𝐾1)-join partition P′ and where 𝑌 ′ is the collection of empty graphs on the cells of P′,

we have Γ �
∨(Γ/P′, 𝑌 ′) and Aut(∨(Γ/P′, 𝑌 ′)) is the complete set of natural automorphisms

induced by Γ/P′.

Proof: When 𝐻0 = 𝐻1 = {1𝐺}, Γ = 𝐵(𝐺, 𝐻0, 𝐻1, 𝑆) = Haar(𝐺, 𝑆). The result follows from

Corollary 6.

3.3 Connected bi-coset graphs as 𝑋-joins

Lemma 7

Let Γ = 𝐵(𝐺, 𝐻0, 𝐻1, 𝑆) and P a partition of 𝑉 (Γ) that refines B. Then P is a 𝐺-invariant
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partition of 𝑉 (Γ) under the left multiplication action of 𝐺 if and only if there exists 𝐻0 ≤ 𝐾0 ≤ 𝐺

and 𝐻1 ≤ 𝐾1 ≤ 𝐺 such that P is the join-partition of 𝑉 (Γ) with respect to 𝐾0 and 𝐾1.

Proof: It is clear that the join-partition of 𝑉 (Γ) with respect to 𝐾0 and 𝐾1 is a refinement of B and

invariant under the left multiplication action of 𝐺 as left multiplication permutes left cosets of any

subgroup of 𝐺, where 𝐻0 ≤ 𝐾0 ≤ 𝐺 and 𝐻1 ≤ 𝐾1 ≤ 𝐺. Conversely, suppose that P refines B and

is invariant under the left multiplication action of 𝐺. Let P𝑖 consists of those subsets of P that are

properly contained in 𝐵0 and 𝐵1. As P refines B, P𝑖 is a partition of 𝐵𝑖, 𝑖 = 0, 1. Additionally,

𝐺 is transitive on 𝐵𝑖, 𝑖 = 0, 1, so P𝑖 is a block system of 𝐺𝐵𝑖 , 𝑖 = 0, 1. Let 𝑃𝑖 ∈ P𝑖 contain 1𝐺 .

By [2, Theorem 1.5A], 𝑃𝑖 is an orbit of the left multiplication action of 𝐺 of some subgroup 𝐾𝑖 of

𝐺 which contains the stabilizer in 𝐺 of a point, so we assume without loss of generality that this

stabilizer is 𝐻𝑖. Then left multiplication of an element of 𝑃𝑖 by an element of 𝐾𝑖 fixes 𝑃𝑖. Then the

vertices in 𝑃𝑖 are the sets {𝑘𝑖𝐻𝑖 : 𝑘𝑖 ∈ 𝐾𝑖}, 𝑖 = 0, 1, and so 𝑃𝑖 consists of all left cosets of 𝐻𝑖 that

are contained in 𝐾𝑖. So 𝑃𝑖 = 𝐾𝑖, and as 𝐺 acts by left multiplication, P𝑖 is the set of left cosets of

𝐾𝑖 in 𝐺. So P is the join-partition of 𝑉 (Γ) with respect to 𝐾0 and 𝐾1.

We first prove a variation of Lemma 1 adapted for bi-coset graphs. We remind the reader that

bi-coset graphs need not be vertex-transitive, and we do not assume they are here.

Lemma 8

Let 𝐺 be a group, 𝐻0 ≤ 𝐾0 ≤ 𝐺, 𝐻1 ≤ 𝐾1 ≤ 𝐺, 𝑚0 = [𝐾0 : 𝐻0], and 𝑚1 = [𝐾1 : 𝐻1]. Let 𝑆 ⊆ 𝐺

such that 𝑆 is a union of (𝐻0, 𝐻1)-double cosets in 𝐺, and Γ = B(𝐺, 𝐻0, 𝐻1, 𝑆). Let 𝑋 = Γ/P

where P is the join-partition of Γ with respect to 𝐾0 and 𝐾1, 𝑌𝑔,𝑖 be the empty graph on the left

cosets of 𝐻𝑖 contained in 𝑔𝐾𝑖, and 𝑌 = {𝑌𝑔,𝑖 : 𝑔 ∈ 𝐺, 𝑖 ∈ Z2}. Then Γ is the 𝑋-join of 𝑌 if and
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only if whenever 𝑃0 ∈ P0 and 𝑃1 ∈ P1, then there is an edge {𝑥0, 𝑥1} from a vertex 𝑥0 ∈ 𝑃0 to a

vertex 𝑥1 ∈ 𝑃1 if and only if every edge of the form {𝑥0, 𝑥1} with 𝑥0 ∈ 𝑃0 and 𝑥1 ∈ 𝑃1 is contained

in 𝐸 (Γ).

Proof: Suppose Γ =
∨(𝑋,𝑌 ). Let 𝑃0 ∈ P0, 𝑃1 ∈ P1, and 𝑥0 ∈ 𝑃0 and 𝑥1 ∈ 𝑃1. Then

{𝑥0, 𝑥1} ∈ 𝐸 (Γ) if and only if {𝑃0, 𝑃1} ∈ 𝐸 (Γ/P) (3.1)

if and only if {𝑥0, 𝑥1} ∈ 𝐸 (Γ)∀𝑥0 ∈ 𝑃0 and 𝑥1 ∈ 𝑃1. (3.2)

by the definition of the 𝑋-join of 𝑌 .

For the converse, as each vertex of Γ/P is of the form 𝑔𝐾𝑖 where 𝑔 ∈ 𝐺 and 𝑖 ∈ Z2, and each

𝑌𝑔,𝑖 is the empty graph on the left cosets of 𝐻𝑖 contained in 𝑔𝐾𝑖, 𝑉 (
∨(𝑋,𝑌 )) = 𝑉 (Γ). We now

need only show that the edges of Γ are the same as the edges of
∨(𝑋,𝑌 ). As Γ is bipartite with

bipartition 𝐺/𝐻0 and 𝐺/𝐻1, every edge of Γ is from some vertex 𝑥𝐻0 ∈ 𝑥𝐾0 ∈ P0 to some vertex

𝑦𝐻1 ∈ 𝑦𝐾1 ∈ P1. By hypothesis, this occurs if and only if every edge of the form {𝑥𝐻0, 𝑦𝐻1}

with 𝑥𝐻0 ∈ 𝑥𝐾0 and 𝑦𝐻1 ∈ 𝑦𝐾1 is contained in 𝐸 (Γ). Then

𝐸 (Γ) = {{𝑥𝐻0, 𝑦𝐻1} : 𝑥𝐻0 ∈ P0, 𝑦𝐻1 ∈ P1; {𝑥𝐾0, 𝑦𝐾1} ∈ 𝐸 (Γ/P)} (3.3)

= {𝜙{𝑥0, 𝑥1} : {𝑃0, 𝑃1} ∈ 𝐸 (Γ/P); 𝑥0 ∈ 𝑃0 ∈ P0, 𝑥1 ∈ 𝑃1 ∈ P1} (3.4)

= {{(𝑃0, 𝑖), (𝑃1, 𝑗)} : {𝑃0, 𝑃1} ∈ 𝐸 (Γ/P); 𝑖 ∈ Z𝑚0 , 𝑗 ∈ Z𝑚1}. (3.5)

Then 𝜙(𝐸 (Γ)) = 𝐸 (∨(𝑋,𝑌 )), and 𝜙(Γ) = ∨(𝑋,𝑌 ).

We are now ready to prove our main theorem regarding recognition of bi-coset graphs that are

𝑋-joins using their connection set. This is the analogue of Theorem 2 for bi-coset graphs. We only

concern ourselves here with recognizing 𝑋-joins from their connection sets as we determined in

the previous sections the automorphism group of such graphs. We need an additional term.
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Definition 23

Let 𝑋 be a set, and 𝐺 ≤ 𝑆𝑋 (we note that 𝐺 need not be transitive). A partition P of 𝑋 will be

called a 𝐺-invariant partition of 𝑋 if 𝑔(𝑃) ∈ P for every 𝑃 ∈ P.

We observe that if 𝐺 is transitive, a 𝐺-invariant partition is simply a block system of 𝐺. We

will only use this terminology though when the group 𝐺 is intransitive.

Similar to double coset digraphs, the action of 𝐺 on (𝐺/𝐻0) ∪ (𝐺/𝐻1) is faithful if and

only if core𝐺 (𝐻0) ∩ core𝐺 (𝐻1) = {1𝐺}. The next result shows that we may implicitly assume

core𝐺 (𝐻0) ∩ core𝐺 (𝐻1) = {1𝐺}.

Lemma 9

Let 𝐺 be a group, 𝐻0, 𝐻1 ≤ 𝐺, 𝑆 ⊂ 𝐺 such that 𝑆 is a union of (𝐻0, 𝐻1)-double cosets, and

Γ = 𝐵(𝐺, 𝐻0, 𝐻1, 𝑆). Let 𝑁 = core𝐺 (𝐻0) ∩ core𝐺 (𝐻1). Then

𝐵(𝐺, 𝐻0, 𝐻1, 𝑆) � 𝐵(𝐺/𝑁, 𝐻0/𝑁, 𝐻1/𝑁, {𝑠𝑁 : 𝑠 ∈ 𝑆}). (3.6)

Proof: Define 𝛾 : (𝐺/𝐻0) ∪ (𝐺/𝐻1) → ((𝐺/𝑁)/(𝐻0/𝑁)) ∪ ((𝐺/𝑁)/(𝐻0/𝑁)) by 𝛾(𝑔𝐻𝑖) =

𝑔𝑁 (𝐻𝑖/𝑁). Suppose 𝛾(𝑔𝐻𝑖) = 𝛾(𝑔′𝐻𝑖). Then 𝑔𝑁 (𝐻𝑖/𝑁) = 𝑔′𝑁 (𝐻𝑖/𝑁) or (𝑔−1𝑔′𝑁)𝐻𝑖/𝑁 =

𝐻𝑖/𝑁 . Hence 𝑔−1𝑔′𝑁 ∈ 𝐻𝑖/𝑁 and 𝑔−1𝑔′ ∈ 𝐻𝑖. Thus 𝑔𝐻𝑖 = 𝑔′𝐻𝑖 and 𝛾 is well-defined. As

|𝐺/𝐻𝑖 | = | (𝐺/𝑁)/(𝐻𝑖/𝑁) | and 𝐺 is finite, we see 𝛾 is a bijection. Let 𝑇 = {𝑠𝑁 : 𝑠 ∈ 𝑆}. As

𝑆 = 𝐻0𝑆𝐻1 and 𝑁 ⊳𝐻𝑖, 𝑖 ∈ Z2, we see that (𝐻0/𝑁)𝑇 (𝐻1/𝑁) = 𝑇 as ℎ0𝑁𝑠𝑁ℎ1𝑁 = ℎ0𝑠ℎ1𝑁 ∈ 𝑇 for

every ℎ𝑖 ∈ 𝐻𝑖, 𝑖 = 0, 1. Thus 𝐵(𝐺/𝑁, 𝐻0/𝑁, 𝐻1/𝑁,𝑇) is a well-defined graph. Let {𝑔𝐻0, 𝑔𝑠𝐻1} ∈

𝐸 (𝐵(𝐺, 𝐻0, 𝐻1, 𝑆)), so 𝑠 ∈ 𝑆. Then

𝛾({𝑔𝐻0, 𝑔𝑠𝐻1}) = {𝑔𝑁 (𝐻0/𝑁), 𝑔𝑠𝑁 (𝐻1/𝑁)} ∈ 𝐵(𝐺/𝑁, 𝐻0/𝑁, 𝐻1/𝑁,𝑇) (3.7)
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as 𝑠𝑁 ∈ 𝑇 as 𝑠 ∈ 𝑆. The result follows.

Theorem 9

Let Γ = 𝐵(𝐺, 𝐻0, 𝐻1, 𝑆) be a connected bi-coset graph, 𝐻𝑖 ≤ 𝐾𝑖 ≤ 𝐺, 𝑖 = 0, 1, and P = P(𝐾0, 𝐾1)

be the join-partition of 𝑉 (Γ) with respect to 𝐾0 and 𝐾1. Let 𝑋 = Γ/P. For 𝑔𝐾𝑖 ∈ P, let 𝑌𝑔,𝑖 the

empty graph with vertex set 𝑔𝐾𝑖, and let 𝑌 = {𝑌𝑔,𝑖 : 𝑔 ∈ 𝐺, 𝑖 ∈ Z2}. Then Γ is the 𝑋-join of 𝑌 if

and only if 𝑆 is a union of (𝐾0, 𝐾1)-double cosets in 𝐺. If such a 𝐾0, 𝐾1 ≤ 𝐺 exists, then

𝐵(𝐺, 𝐻0, 𝐻1, 𝑆) =
∨

(Γ/P, 𝑌 ) �
∨

(𝐵(𝐺, 𝐾0, 𝐾1, 𝑆), 𝑌 ) (3.8)

Proof: We use the notation of the statement of the theorem. Suppose Γ is isomorphic to the 𝑋-join

of 𝑋 and 𝑌 . Let 𝑠 ∈ 𝑆. Then 𝐻0 is adjacent to some vertex of 𝑠𝐾1. Then every vertex of 𝐾0 is

adjacent to every vertex of 𝑠𝐾1. Let 𝑘−1
0 ∈ 𝐾0 and 𝑘1 ∈ 𝐾1. Then {𝑘−1

0 𝐻0, 𝑠𝑘1𝐻1} ∈ 𝐸 (Γ) as

𝑘1𝐻1 is a vertex in 𝐾1, and so 𝑘0𝑠𝑘1 ∈ 𝑆. Hence as 𝑘0 and 𝑘1 were arbitrary, 𝐾0𝑠𝐾1 ⊆ 𝑆 and as 𝑠

is arbitrary, 𝑆 is a union of (𝐾0, 𝐾1)-double cosets.

Conversely, suppose that 𝐻0 ≤ 𝐾0 ≤ 𝐺 and 𝐻1 ≤ 𝐾1 ≤ 𝐺 such that 𝑆 is a union of (𝐾0, 𝐾1)-

double cosets. Suppose that {𝑥𝐻0, 𝑦𝐻1} ∈ 𝐸 (Γ), where 𝑥, 𝑦 ∈ 𝐺. Then 𝑥−1𝑦 ∈ 𝑆, and as 𝑆 is a

union of (𝐾0, 𝐾1)-double cosets, we see 𝑘−1
0 𝑥−1𝑦𝑘1 ∈ 𝑆 for every 𝑘0 ∈ 𝐾0 and 𝑘1 ∈ 𝐾1 and so

𝐾0𝑥
−1𝑦𝐾1 ⊆ 𝑆. Then {𝑥𝑘0𝐻0, 𝑦𝑘1𝐻1} ∈ 𝐸 (Γ). for every 𝑘0 ∈ 𝐾0 and 𝑘1 ∈ 𝐾1. So every vertex

contained in 𝑥𝐾0 is adjacent in Γ to every vertex in 𝑦𝐾1 (here 𝐾0 and 𝐾1 are viewed as unions

of cosets of 𝐻0 and 𝐻1, respectively) for every 𝑥, 𝑦 ∈ 𝐺. As Γ[𝑔𝐾𝑖] has no edges, we see that

Γ =
∨(Γ/P, 𝑌 ).

We next show Γ/P = B(𝐺, 𝐾0, 𝐾1, 𝑆). The graph B(𝐺, 𝐾0, 𝐾1, 𝑆) is a well-defined bi-coset

digraph as 𝑆 is a union of (𝐾0, 𝐾1)-double cosets in 𝐺. Let 𝑎, 𝑏 ∈ 𝐺 such that 𝑎−1𝑏 ∉ 𝐾1. Then
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(𝑎𝐾0, 𝑏𝐾1) ∈ 𝐸 (Γ/P) if and only if there is 𝑎′, 𝑏′ ∈ 𝐺 such that 𝑎′𝐻0 ⊆ 𝑎𝐾0, 𝑏′𝐻1 ⊆ 𝑏𝐾1, and

(𝑎′𝐻0, 𝑏
′𝐻1) ∈ 𝐸 (Γ). This occurs if and only if (𝑎′)−1𝑏′𝐻1 ∈ 𝑆. As 𝑆 is a union of (𝐾0, 𝐾1)-double

cosets in 𝐺 and (𝑎′)−1(𝑏′)𝐻1 ⊆ (𝑎′)−1𝑏𝐾1, we see (𝑎′)−1𝑏′𝐻1 ∈ 𝑆. Thus (𝑎𝐾0, 𝑏𝐾1) ∈ 𝐸 (Γ/P)

if and only if 𝑎−1𝑏𝐾1 ∈ 𝑆 (viewing 𝑆 as a union of left cosets of 𝐾1 in 𝐺), which occurs if and only

if (𝑎𝐾0, 𝑏𝐾1) ∈ 𝐸 (B(𝐺, 𝐾0, 𝐾1, 𝑆)). So Γ/P = B(𝐺, 𝐾0, 𝐾1, 𝑆).

Some observations are in order. First, it is possible that a given bi-coset graph Γ =

𝐵(𝐺, 𝐻0, 𝐻1, 𝑆) is isomorphic to an 𝑋-join of 𝑌 , where 𝑋 = 𝐵(𝐺′, 𝐻′
0, 𝐻

′
1, 𝑆) is a bi-coset graph

and 𝑌 is a set of empty graphs, but that there is no relationship at all between 𝐺 and 𝐺′, as the

next example shows. So the result above does not capture all the ways a bi-coset graph can be

isomorphic to an 𝑋-join of a set of empty graphs, but rather only those where 𝑋 is a quotient of Γ

using a partition of 𝑉 (Γ) which is a join-partition of 𝑉 (Γ) with respect to 𝐾0 and 𝐾1.

Example 2 Let 𝐺 = Z5, 𝐻0 = 1, 𝐻1 = 𝐺, and 𝑆 = {0}. Then 𝐵(𝐺, 𝐻0, 𝐻1, 𝑆) is a star on 6

vertices (that is, it has six vertices with one vertex of degree 5 and 5 vertices of degree 1). Let

𝑋 = (Z2, 1,Z2, {0}) (so 𝑋 is the star on 3 vertices), and label the vertices of 𝑋 with element of

{𝑥, 𝑦, 𝑧} such that the unique vertex of 𝑋 of degree 2 is 𝑥. Set 𝑌𝑥 = 𝐾1, 𝑌𝑦 = �̄�2, 𝑌𝑧 = �̄�3, and

𝑌 = {𝑌𝑥 , 𝑌𝑦, 𝑌𝑧}. Then 𝐵(𝐺, 𝐻0, 𝐻1, 𝑆) is isomorphic to the 𝑋-join of 𝑌 .

Corollary 8

Let Γ = 𝐵(𝐺, 𝐻0, 𝐻1, 𝑆) be a connected bi-coset graph, 𝐻𝑖 ≤ 𝐾𝑖 ≤ 𝐺, 𝑖 = 0, 1, and P = P(𝐾0, 𝐾1)

be the join-partition of 𝑉 (Γ) with respect to 𝐾0 and 𝐾1. Let 𝑋 = Γ/P. For 𝑔𝐾𝑖 ∈ P, let 𝑌𝑔,𝑖

the empty graph with vertex set 𝑔𝐾𝑖, and let 𝑌 = {𝑌𝑔,𝑖 : 𝑔 ∈ 𝐺, 𝑖 ∈ Z2}. Assume 𝑆 is a union of

(𝐾0, 𝐾1)-double cosets. Then Γ � Γ/P o �̄�𝑚 if and only if 𝑚 = [𝐾0 : 𝐻0] = [𝐾1 : 𝐻1].
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Proof: The graph
∨(𝑋,𝑌 ) � Γ/P o �̄�𝑚 if and only if each 𝑌𝑔,𝑖 is isomorphic which occurs if and

only if 𝑚 = [𝐾0 : 𝐻0] = [𝐾1 : 𝐻1].

Notice that it is possible for a bi-coset graph Γ to be simultaneously isomorphic to a wreath

product and an 𝑋-join of empty graphs that is not written as a wreath product.

Example 3 Let 𝑛 ≥ 3 and 𝐺 a group of order 𝑛. Then 𝐾𝑛,𝑛 � 𝐵(𝐺, 1, 1, 𝐺) � 𝐾2 o �̄�𝑛. Let

{𝑆1, 𝑆2} be a partition of 𝐺 into two subsets of different sizes, 𝑃1 = {(0, 𝑝1) : 𝑝1 ∈ 𝑆1},

𝑃2 = {(0, 𝑝2) : 𝑝2 ∈ 𝑆2}, and 𝑃3 = {(1, 𝑔) : 𝑔 ∈ 𝐺}. Set P0 = {𝑃1, 𝑃2} and P1 = {𝑃3}.

Then P = P0 ∪ P2 is a partition of 𝑉 (𝐵(𝐺, 1, 1, 𝐺)). Let 𝑋 be the graph with 𝑉 (𝑋) = P and

edge set {{𝑃1, 𝑃3}, {𝑃2, 𝑃3}, and let 𝑌𝑃𝑖 be the graph with vertex set 𝑃𝑖 and no edges. Then

𝐵(𝐺, 1, 1, 𝐺) = ∨(𝑋,𝑌 ) is not a wreath product as |𝑆1 | ≠ |𝑆2 | (it is though, of course, isomorphic

to a wreath product).

When 𝐻0 = 𝐻1 = {1𝐺}, 𝐵(𝐺, 𝐻0, 𝐻1, 𝑆) � Haar(𝐺, 𝑆), and we have a special case of Theorem

9 for Haar graphs.

Corollary 9

Let Γ = Haar(𝐺, 𝑆) be a connected Haar graph, 𝐾𝑖 ≤ 𝐺, 𝑖 = 0, 1, and P = P(𝐾0, 𝐾1) be the

join-partition of 𝑉 (Γ) with respect to 𝐾0 and 𝐾1. Let 𝑋 = Γ/P. For 𝑔𝐾𝑖 ∈ P, let 𝑌𝑔,𝑖 be the empty

graph with vertex set 𝑔𝐾𝑖, and let 𝑌 = {𝑌𝑔,𝑖 : 𝑔 ∈ 𝐺, 𝑖 ∈ Z2}. Then Γ is the 𝑋-join of 𝑌 if and only

if 𝑆 is a union of (𝐾0, 𝐾1)-double cosets in 𝐺. If such a 𝐾0, 𝐾1 ≤ 𝐺 exists, then

𝐻𝑎𝑎𝑟 (𝐺, 𝑆) =
∨

(Γ/P, 𝑌 ) �
∨

(𝐵(𝐺, 𝐾0, 𝐾1, 𝑆), 𝑌 ). (3.9)

For Haar graphs, 𝐻0 = 𝐻1 = 1 so [𝐾𝑖 : 𝐻𝑖] = |𝐾𝑖 |. So we have a slightly simpler form of

Corollary 8.
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Corollary 10

Let Γ = Haar(𝐺, 𝑆) be a connected Haar graph, 𝐾𝑖 ≤ 𝐺, 𝑖 = 0, 1, and P = P(𝐾0, 𝐾1) be

the join-partition of 𝑉 (Γ) with respect to 𝐾0 and 𝐾1. Let 𝑋 = Γ/P. For 𝑔𝐾𝑖 ∈ P, let 𝑌𝑔,𝑖 the

empty graph with vertex set 𝑔𝐾𝑖, and let 𝑌 = {𝑌𝑔,𝑖 : 𝑔 ∈ 𝐺, 𝑖 ∈ Z2}. Assume 𝑆 is a union of

(𝐾0, 𝐾1)-double cosets. Then Γ � Γ/P o �̄�𝑚 � B(𝐺, 𝐾0, 𝐾1, 𝑆) o �̄�𝑚 if and only if 𝑚 = |𝐾0 | = |𝐾1 |.

Example 4 Let Γ = Haar(𝐷3, {1, 𝜏, 𝜌, 𝜏𝜌})), where 𝐷3 is the dihedral group with six elements.

Looking closely at the connection set 𝑆, we see that it is exactly the double coset 〈𝜏〉𝜏〈𝜏𝜌〉. Also

|〈𝜏〉| = |〈𝜏𝜌〉| = 2. Then by Corollary 10 we know that Γ is isomorphic to the wreath product

B(𝐷3, 〈𝜏〉, 〈𝜏𝜌〉, {1, 𝜏, 𝜌, 𝜏𝜌}) o �̄�2. Figure 3.1 shows the Haar graph and its corresponding

quotient digraph using the join-partition with respect to 〈𝜏〉 and 〈𝜏𝜌〉. Colors have been added to

the vertices so we can easily recognize the partition sets.

(0, 1)

(0, 𝜏)

(0, 𝜌)

(0, 𝜏𝜌)

(0, 𝜌2)

(0, 𝜏𝜌2)

(1, 1)

(1, 𝜏)

(1, 𝜌)

(1, 𝜏𝜌)

(1, 𝜌2)

(1, 𝜏𝜌2)

〈𝜏〉

𝜌〈𝜏〉

𝜌2〈𝜏〉

〈𝜏𝜌〉

𝜌〈𝜏𝜌〉

𝜌2〈𝜏𝜌〉

Figure 3.1

Haar(𝐷3, {1, 𝜏, 𝜌, 𝜏𝜌}) (left) and its quotient digraph (right).
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3.4 Disconnected bi-coset graphs as 𝑋-joins

It has been shown [19, Lemma 2.1] that if 𝐺 is a group and 𝑆 ⊆ 𝐺, then for every 𝛼 ∈ 𝐺 and

𝑎, 𝑏 ∈ 𝐺, Haar(𝐺, 𝑆) � Haar(𝐺, 𝑎𝛼(𝐺)𝑏). We will have need of a version of this for bi-coset

graphs. For Haar graphs, one can show that there are three types of isomorphisms can be used to

prove the statement. The first type is induced by automorphisms of𝐺, and for 𝛼 ∈ Aut(𝐺) is given

by (𝑖, 𝑔) ↦→ (𝑖, 𝛼(𝑔)). The other two can be though of as multiplication on the right and left by

elements of 𝐺: for 𝑎, 𝑏 ∈ 𝐺, we have the maps

(0, 𝑔) ↦→ (0, 𝑔) and (1, 𝑔) ↦→ (1, 𝑎𝑔) (3.10)

and

(1, 𝑔) ↦→ (0, 𝑔) and ((1, 𝑔) ↦→ (1, 𝑔𝑏). (3.11)

Unfortunately, multiplication on the right cannot be generalized to bi-coset graphs as the vertex

set consists of left cosets of subgroups of 𝐺, not right cosets. However, multiplication on the

right can be thought of as composition of multiplication on the left, and an appropriate inner

automorphism of 𝐺. We will use this trick to generalize the above fact about isomorphisms of

Haar graphs to bi-coset graphs. Note that the isomorphisms we will obtain will usually not have

the same vertex-sets as in the result for Haar graphs, but will still be an isomorphism of bi-coset

graphs of 𝐺 (but 𝐻0 and 𝐻1 may change).

Definition 24

Let 𝐺 be a group and 𝐻0, 𝐻1 ≤ 𝐺. Set 𝑉𝐻0,𝐻1 = {(0, 𝑔𝐻0 : 𝑔 ∈ 𝐺} ∪ {(1, 𝑔𝐻1) : 𝑔 ∈ 𝐺}. Thus

𝑉𝐻0,𝐻1 is the vertex set of a bi-coset graph 𝐵(𝐺, 𝐻0, 𝐻1, 𝑆).
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Lemma 10

Let 𝐺 be a group, 𝑎, 𝑏 ∈ 𝐺 and 𝛼 ∈ Aut(𝐺). Then

𝐵(𝐺, 𝐻0, 𝐻1, 𝑆) � 𝐵(𝐺, 𝑎𝛼(𝐻0)𝑎−1, 𝑏−1𝛼(𝐻1)𝑏, 𝑎𝛼(𝑆)𝑏) (3.12)

by the map 𝜙 : 𝑉𝐻0,𝐻1 ↦→ 𝑉𝐻0,𝐻1 given by

𝜙(0, 𝑔𝐻0) = (0, 𝑔𝛼(𝐻0)) and 𝜙(1, 𝑔) = (1, 𝑔𝑎𝑏−1𝛼(𝐻1)𝑏). (3.13)

Proof: We will first show that there are two kinds of bijections from 𝑉𝐻0,𝐻1 which map bi-coset

graphs of𝐺 to bi-coset graphs of𝐺. Both of these will change the vertices of𝑉𝐻0,𝐻1 and connection

sets as it maps a bi-coset graph of 𝐺 to its image which is also a bi-coset graph of 𝐺. We will then

compose maps of each kind to obtain the isomorphism 𝜙. Let Γ = 𝐵(𝐺, 𝐻0, 𝐻1, 𝑆) be a bi-coset

of 𝐺 with 𝐻0, 𝐻1 ≤ 𝐺 and 𝑆 a union of (𝐻0, 𝐻1)-double cosets.

For the first kind of isomorphism, let 𝛼 ∈ Aut(𝐺). Define �̃� : 𝑉𝐻0,𝐻1 ↦→ 𝑉𝛼(𝐻0),𝛼(𝐻1) by

�̃�(𝑖, 𝑔𝐻𝑖) = (𝑖, 𝛼(𝑔)𝛼(𝐻𝑖)). Clearly �̃� is a well-defined bijection. As 𝛼 ∈ Aut(𝐺), 𝛼(𝐻0) and

𝛼(𝐻1) are subgroups of 𝐺, and as 𝑆 is a union of (𝐻0, 𝐻1)-double cosets, 𝛼(𝑆) is a union of

(𝛼(𝐻0), 𝛼(𝐻1))-double cosets. Let Γ′ = 𝐵(𝐺, 𝛼(𝐻0), 𝛼(𝐻1), 𝛼(𝑆)), so Γ′ is a bi-coset graph of

𝐺. Additionally, �̃�(𝑉 (Γ)) = 𝑉 (Γ′). Note that for every 𝑔 ∈ 𝐺, and 𝑠 ∈ 𝐺

�̃�((0, 𝑔𝐻0) (1, 𝑔𝑠𝐻1)) = (0, 𝛼(𝑔)𝛼(𝐻0), 𝛼(𝑔)𝛼(𝑠)𝛼(𝐻1)). (3.14)

Hence (0, 𝑔𝐻0) (1, 𝑔𝑠𝐻1) ∈ 𝐸 (Γ) if and only if �̃�((0, 𝑔𝐻0) (1, 𝑔𝑠𝐻1)) ∈ 𝐸 (Γ′) so �̃�(Γ) = Γ′.

For the second kind of isomorphism, let 𝑏 ∈ 𝐺. Define �̄�𝐿 : 𝑉𝐻0,𝐻1 ↦→ 𝑉𝐻0,𝑏−1𝐻1𝑏 be given by

�̄�𝐿 (0, 𝑔𝐻0) = (0, 𝑔𝐻0) and �̄�𝐿 (1, 𝑔𝐻1) = (1, 𝑔𝑏 · 𝑏−1𝐻1𝑏). (3.15)
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Note that �̄�𝐿 maps𝑉𝐻0,𝐻1 to𝑉𝐻0,𝑏−1𝐻1𝑏. Clearly �̄�𝐿 is a well-defined bijection on {(0, 𝑔𝐻0) : 𝑔 ∈ 𝐺}.

Suppose �̄�𝐿 (𝑔1𝐻1) = �̄�𝐿 (𝑔2𝐻1). Then 𝑔1𝑏 ·𝑏−1𝐻1𝑏 = 𝑔2𝑏 ·𝑏−1𝐻1𝑏 or equivalently, 𝑔1𝐻1 = 𝑔2𝐻1,

and �̄�𝐿 is well-defined, and is clearly a bijection from {(1, 𝑔𝐻1) : 𝑔 ∈ 𝐺} to {(1, 𝑔𝑏−1𝐻𝑏) : 𝑔 ∈ 𝐺}.

Also, let 𝐻0𝑠𝐻1 ∈ 𝑆. Then 𝐻0𝑠𝑏 · 𝑏−1𝐻1𝑏 = 𝐻0𝑠𝐻1𝑏, so 𝑆𝑏 is a union of (𝐻0, 𝑏
−1𝐻1𝑏)-double

cosets. Let Γ′ = B(𝐺, 𝐻0, 𝑏
−1𝐻1𝑏, 𝑆𝑏). Note that for every 𝑔 ∈ 𝐺, and 𝑠 ∈ 𝐺,

�̄�𝐿 ((0, 𝑔𝐻0) (1, 𝑔𝑠𝐻1)) = (0, 𝑔𝐻0) (1, 𝑔𝑠𝑏 · 𝑏−1𝐻1)𝑏). (3.16)

Hence (0, 𝑔𝐻0) (1, 𝑔𝑠𝐻1) ∈ 𝐸 (Γ) if and only if �̄�𝐿 ((0, 𝑔𝐻0) (1, 𝑔𝑠𝐻1)) ∈ 𝐸 (Γ′) so �̄�𝐿 (Γ) = Γ′.

To obtain 𝜙, let 𝛼 ∈ Aut(𝐺) and 𝑎, 𝑏 ∈ 𝐺. Let 𝛿 ∈ Aut(𝐺) be defined by 𝛿(𝑔) = 𝑎𝛼(𝑔)𝑎−1.

Put another way, 𝛿 is the automorphism of 𝐺 obtained by composing the inner automorphism

of 𝐺 induced by conjugation by 𝑎−1 with 𝛼. Let 𝜙 = 𝑎𝑏𝐿𝛿. Then 𝜙(𝐻0) = 𝑎𝛼(𝐻0)𝑎−1 ≤

𝐺 and 𝜙(𝐻1) = (𝑎𝑏)−1𝑎𝛼(𝐻1)𝑎−1(𝑎𝑏) = 𝑏−1𝛼(𝐻1)𝑏 ≤ 𝐺. Also, 𝛿(𝑆) = 𝑎𝛼(𝑆)𝑎−1, and

𝑎𝑏𝐿 (𝑎𝛼(𝑆)𝑎−1) = 𝑎𝛼(𝑆)𝑏. The result follows.

Lemma 11

Let 𝐺 be a group, 𝐻0, 𝐻1 ≤ 𝐺 and 𝑆 ⊆ 𝐺 such that 𝑆 is a union of (𝐻0, 𝐻1)-double cosets

in 𝐺. Then Γ = B(𝐺, 𝐻0, 𝐻1, 𝑆) is disconnected if and only if 𝑆 ⊆ 𝐾𝑔 for some subgroup

𝐻0, 𝐻1 ≤ 𝐾 < 𝐺 and 𝑔 ∈ 𝐺.

Proof: Suppose Γ is disconnected, then 〈𝑆𝑆−1〉 < 𝐺. Let 𝑡 ∈ 𝑆. Then for every 𝑠 ∈ 𝑆,

𝑠𝑡−1 = 𝑎 ∈ 〈𝑆𝑆−1〉 or 𝑠 = 𝑎𝑡. So 𝑆 ⊆ 〈𝑆𝑆−1〉𝑡. Let ℎ ∈ 𝐻0. Then there exists 𝑠 ∈ 𝑆, 𝑔 ∈ 𝐺, and

ℎ′ ∈ 𝐻1 such that 𝑠 = ℎ𝑔ℎ′. Then 𝑠(𝑔ℎ′)−1 = ℎ ∈ 〈𝑆𝑆−1〉 as 𝑔ℎ′ = 1𝐻0𝑔ℎ
′ ∈ 𝑆. Thus, 𝐻0 ≤ 〈𝑆𝑆−1〉.

Similarly, 𝐻1 ≤ 〈𝑆𝑆−1〉.
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Conversely, suppose there is 𝑔 ∈ 𝐺 and 𝐻0, 𝐻1 ≤ 𝐾 < 𝐺 such that 𝑆 ⊆ 𝐾𝑔. Let 𝑠1, 𝑠2 ∈ 𝑆 with

𝑘1, 𝑘2 ∈ 𝐾 such that 𝑠1 = 𝑘1𝑔 and 𝑠2 = 𝑘2𝑔 ∈ 𝑆. Then the product (𝑘1𝑔) (𝑘2𝑔)−1 = 𝑘1𝑘
−1
2 ∈ 𝐾 .

Thus, 〈𝑆𝑆−1〉 ⊆ 𝐾 < 𝐺, and Γ is disconnected.

It was shown in [7, Lemma 2.3 (iii)] that a bi-coset graph, Γ = B(𝐺, 𝐻0, 𝐻1, 𝑆) is disconnected

if and only if 〈𝑆𝑆−1〉 ≠ 𝐺. First observe that any element of 〈𝑆𝑆−1〉 is simply a walk starting

at (1, 1𝐺). Hence 〈𝑆𝑆−1〉 is a component of Γ. The next result then says that the “right hand"

bipartition sets of the components of Γ are the right cosets of 𝐾 in 𝐺.

Lemma 12

Let Γ = B(𝐺, 𝐻0, 𝐻1, 𝑆) be a disconnected bi-coset graph. Then the number of components of Γ

is [𝐺 : 𝐾] where 〈𝑆𝑆−1〉 = 𝐾 < 𝐺.

Proof: Since Γ is disconnected, 〈𝑆𝑆−1〉 = 𝐾 < 𝐺. Let 𝑘 ∈ 𝐾 and consider the left coset 𝑘𝐻0.

Since 〈𝑆𝑆−1〉 = 𝐾 , then there are 𝑠0, . . . , 𝑠𝑟 ∈ 𝑆 such that 𝑠0𝑠−1
1 𝑠2𝑠

−1
3 · · · 𝑠𝑟−1𝑠

−1
𝑟 = 𝑘 . Then,

𝐻0, 𝑠0𝐻1, 𝑠0𝑠
−1
1 𝐻0 . . . , 𝑠0𝑠

−1
1 · · · 𝑠𝑟−1𝑠

−1
𝑟 𝐻0 is a path from 𝐻0 to 𝑘𝐻0. Since 𝑘 was arbitrary, there

exists a path from 𝐻0 to every left coset of 𝐻0 in 𝐾 . Similarly, there is a path from 𝑔𝐻0 to 𝑔𝑘𝐻0

for 𝑔 ∈ 𝐺\𝐾 and 𝑘 ∈ 𝐾 , therefore the size of the vertex set of the left partition of each component

is [𝐾 : 𝐻0]. Since the size of the vertex set of the left partition of Γ is [𝐺 : 𝐻0], the number of

components of Γ must be [𝐺 : 𝐾].

As a consequence from the proof of the above lemma, we know that the component that contains

𝐻0 as a vertex also contains all left cosets of 𝐻0 in 𝐾 . This fact will be important in order to prove

the next lemma.
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Lemma 13

Let Γ = B(𝐺, 𝐻0, 𝐻1, 𝑆) be a disconnected bi-coset graph. Then each component of Γ is

isomorphic.

Proof: Let Γ𝑔 denote the component of Γ that contains the left coset 𝑔𝐻0, 𝑔 ∈ 𝐺 as a vertex. Define

the mapping 𝜙𝑔 : Γ1 → Γ𝑔 by 𝜙𝑔 (𝑥𝐻𝑖) = 𝑔𝑥𝐻𝑖 for 𝑖 = 0, 1 and 𝑥 ∈ 𝐺. Clearly 𝜙𝑔 is a well-defined

bijection.

We next show that 𝜙𝑔 is a graph isomorphism. By Lemma 12 we know that Γ1 contains all left

cosets of 𝐻0 in 𝐾 , where 𝐾 = 〈𝑆𝑆−1〉. So, every edge in Γ1 is of the form {𝑘𝐻0, 𝑘𝑠𝐻1}, where 𝑠 ∈

𝑆, 𝑘 ∈ 𝐾 . Now, 𝜙𝑔 ({𝑘𝐻0, 𝑘𝑠𝐻1}) = {𝑔𝑘𝐻0, 𝑔𝑘𝑠𝐻1} ∈ 𝐸 (Γ𝑔) if and only if (𝑔𝑘𝑠)−1(𝑔𝑘) = 𝑠 ∈ 𝑆.

Thus 𝜙𝑔 is a graph isomorphism from Γ1 to Γ𝑔. Since 𝑔 ∈ 𝐺 was arbitrary, we have shown that

each component of Γ is isomorphic to Γ1, thus all components of Γ are isomorphic.

Theorem 10

Let Γ = B(𝐺, 𝐻0, 𝐻1, 𝑆) be a disconnected bi-coset graph where 𝑆 ⊆ 𝐾𝑡, 𝑡 ∈ 𝐺 and 𝐾 = 〈𝑆𝑆−1〉.

Then

Γ � �̄�𝑛 o B(𝐾, 𝐻0, 𝑡𝐻1𝑡
−1, 𝑆𝑡−1) (3.17)

and

Aut(Γ) � 𝑆𝑛 o Aut(B(𝐾, 𝐻0, 𝑡𝐻1𝑡
−1, 𝑆𝑡−1)) (3.18)

where 𝑛 = [𝐺 : 𝐾] .

Proof: In order for B(𝐾, 𝐻0, 𝑡𝐻1𝑡
−1, 𝑆𝑡−1) to be defined, it must be the case that 𝑡𝐻1𝑡

−1 ≤ 𝐾 . As

Γ is defined, we have 𝐻0𝑆𝐻1 = 𝑆. This is true if and only if 𝐻0𝑆𝐻1𝑡
−1 = 𝑆𝑡−1, which is true if and

only if 𝐻0𝑆(𝑡−1𝑡)𝐻1𝑡
−1 = 𝑆𝑡−1. Rewriting this equality, we have 𝐻0 · 𝑆𝑡−1 · 𝑡𝐻1𝑡

−1 = 𝑆𝑡−1. As Γ
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is defined, 𝐻0, 𝐻1 ≤ 𝐾 and by hypothesis, 𝑆 ⊆ 𝐾𝑡. Hence 𝑆𝑡−1 ⊆ 𝐾 . So 𝐻0 · 𝑆𝑡−1 ⊆ 𝐾 , and so

𝑡𝐻1𝑡
−1 ≤ 𝐾 .

We now with to apply 𝜙 of Lemma 10 with 𝛼 = 1, 𝑎 = 1, and 𝑏 = 𝑡−1 to Γ to obtain

𝜙(Γ) = 𝐵(𝐻0, 𝑡𝐻1𝑡
−1, 𝑆𝑡−1). As 〈𝑆𝑆−1〉 = 𝐾 , we have 〈𝑆𝑡−1(𝑆𝑡−1)−1〉 = 𝐾 . Also, as 𝑆𝑡−1 ≤ 𝐾 ,

every walk in 𝜙(Γ) starting at a vertex in {(0, 𝑘) : 𝑘 ∈ 𝐾} or {(1, 𝑘) : 𝑘 ∈ 𝐾} will end at a vertex

in {(𝑖, 𝑘) : 𝑖 ∈ Z2, 𝑘 ∈ 𝐾}. As 〈𝑆𝑡−1(𝑆𝑡−1)−1〉, for every 𝑘 ∈ 𝐾 there is a walk in 𝜙(Γ) starting

at (1, 1𝐺) which ends at (1, 𝑘). Similarly, for every 𝑘 ∈ 𝐾 there is a walk in 𝜙(Γ) starting at

(0, 1𝐺) which ends at (0, 𝑘). We conclude that the component of 𝜙(Γ) that contains any element

of {(𝑖, 𝑘) : 𝑖 ∈ Z2, 𝑘 ∈ 𝐾} is {(𝑖, 𝑘) : 𝑖 ∈ Z2, 𝑘 ∈ 𝐾}. Thus the partition of 𝑉 (𝜙(Γ)) determined

by its components is P(𝐾, 𝐾). Thus there are 𝑛 components of 𝜙(Γ), each isomorphic (by an

element of �̂�𝐿 , we see 𝑛 = [𝐺 : 𝐾]. Then Aut(𝜙(Γ)) � 𝑆𝑛 o Aut(B(𝐺, 𝐻0, 𝑡𝐻1𝑡
−1, 𝑆𝑡−1)), and so

Aut(Γ) � 𝑆𝑛 o Aut(B(𝐺, 𝐻0, 𝑡𝐻1𝑡
−1, 𝑆𝑡−1)).
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