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Due to the growing number of diverse power systems disruptions, including extreme 

weather events, technical factors, and human factors, assessing and quantifying the resilience of 

electric power subsystems has become an indispensable step to develop an efficient strategic plan 

to enhance the resilience and reliability of these systems and to endure the diverse interruptions. 

In this study, factors and sub-factors that may have either direct or indirect impact on the resilience 

of biomass-based combined heat and power systems are identified, and the interdependencies 

among them are determined as well. A Bayesian network model is implemented to quantify the 

resilience of a bCHP system, and the results are analyzed by applying three different techniques, 

which are sensitivity analysis, forward propagation analysis, and backward propagation analysis. 
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CHAPTER I 

INTRODUCTION 

The industry of electric power is considered as the cornerstone of the economic sectors in 

the United States. Many economic sectors extremely depend on the electric power industry in order 

to utilize the generated electric power to perform their work in the global market. Some of these 

economic sectors are considered as critical infrastructures that depend completely on the electricity 

grid, such as emergency services, telecommunication sectors, and transportations; consequently, 

power disruptions may lead to affect the critical infrastructures (U.S. Department of Energy, 2015). 

There are many factors that cause power disruptions across around 3 thousand electric 

power distribution systems in the United States, such as extreme weather events. In 2018, the 

average duration of the power outage in the U.S. was almost 6 hours per customer (EIA, 2020). In 

addition, the electric power systems infrastructures in the U.S. are aging, and they are at the end 

of their lifespans or near it (Johansen & Tien, 2017). Moreover, electric power systems 

infrastructure in the U.S. even vulnerable to various threats, including natural disasters. Power 

disruptions in the U.S.  have a great impact on the public’s security and health, and they cost from 

$18 to $70 billion annually (Hossain et al., 2019). 

The electric power demand in the U.S. is increasing rapidly, and it is expected that the 

electricity demand will increase from 3826 billion kWh in 2012 to 4954 billion kWh in 2040. 

Therefore, in order to cope with the expected increase in electricity demand efficiently, essential 

improvements and enhancements are required to increase the power systems reliability and 
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efficiency, and one of the alternatives that could improve the power system efficiency are 

microgrid systems that have the ability to operate in different operational modes, such as standby, 

parallel, and island mode (Marino et al., 2018). 

Combined heat and power, CHP, is an electric power generation plant that dually produced 

electric power and thermal energy, and it has been broadly utilized in microgrids systems 

(Haghifam & Manbachi, 2011; Naderipour et al., 2020; Balli et al., 2007). Thus, instead of wasting 

heat resulting from the electricity production, CHP systems capture and use it (Chittum & Relf, 

2019). CHP systems have been utilized worldwide as the major alternative electricity power 

system to traditional systems, and they are considered as renewable energy that saves energy and 

conserves the environment as well (Dong et al., 2009). CHP systems are also considered as a 

successful, efficient, and underutilized short-term energy solution to help the U.S. improve the 

reliability of the energy systems and infrastructures as well as improve the quality of the 

environment (EPA, 2012). Moreover, the U.S. government have started in the recent years 

promoting CHP systems by proposing various incentive and inducement policies to encourage the 

usage of CHP Systems (Zhang et al., 2016). 

 In 2003, large parts of the Midwest and the Northeast regions in the United States suffered 

from an electric power blackout. About 50 million people across six states were affected, and about 

61,800 MW of the electric power load was down. Many businesses and manufacturers had huge 

economic losses due to the power blackout. The total economic cost in the U.S. is estimated 

between $4 and $10 billion. However, during the blackout, various facilities had backup generators 

resources, such as combined heat and power systems, CHP, and that enabled them to remain 

operations (Carlson & Hedman, 2004). CHP systems also have proven their high reliability by 

empowering different critical facilities to remain their operations during various major hurricanes 
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that caused power outages, such as Hurricanes Harvey, Irma, and Maria in 2017, and Hurricane 

Sandy in 2012 (DOE, 2019). In other words, CHP systems contributed to increasing the resilience 

of power in these facilities in the middle of the many blackouts. 

Besides the reliability and resiliency, CHP systems have many various benefits, including 

economic, environmental, efficiency benefits. It helps decrease energy costs, reduce harmful 

emissions, and increase power efficiency. Figure 1.1 illustrates the efficiency difference between 

CHP and conventional station power generation. In order to produce 30 units of electricity and 45 

units of steam, the conventional station power generation consumes 147 units of fuel, resulting in 

an overall efficiency of 51%. However, to produce the same amount of electricity and thermal 

units by a CHP system, the CHP requires 100 units of fuel, resulting in an overall efficiency of 

75% (EPA, 2017). 

 

Figure 1.1 An efficiency comparison between conventual generation and CHP (EPA, 2017). 



 

4 

In this thesis, our purpose is to quantify the resilience and reliability of biomass-based 

combined heat and power systems in order to make a decision of integrating it with an existed 

power system as a standby or parallel generator by developing a Bayesian network model via a 

powerful software called Aginarisk.  Plant Watson in Southern Mississippi is used in this research 

paper as a case study to demonstrate the quantification of the resilience of the bCHP. The fuel of 

the CHP system is biomass pellet, which is one sort of biofuel resources. Figure 1.2 briefly 

illustrates the stages that are needed to feed the bCHP system with biomass pellet. It starts with 

harvesting biomass then supplying the manufacturers with feedstock for producing pellets. After 

that bCHP facilities are supplied with the fuel in order to operate the plant.  

 

Figure 1.2 Biomass pellets supply system to feed the biomass-based CHP facilities. 
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CHAPTER II 

LITERATURE REVIEW 

In this section, the essential objective is to introduce the existing research studies that are 

related to the resilience and reliability of CHP systems, electric power systems, and engineering 

infrastructure. To date, many research studies have been proposed in the field of engineering 

systems resilience and reliability; however, a few research studies have presented reliability and 

resilience modeling for CHP systems. Haghifam & Manbachi, 2011 developed a model for 

assessing a CHP system reliability and availability based on the continuous Markov and the state-

space technique. Naderipour et al., 2020 developed a method using PSO, particle swarm 

optimization, to optimally allocate CHP systems in microgrids endeavoring for various 

improvements, including improving reliability. Costa and Fichera, 2014 proposed an optimization 

method based on a mixed-integer linear programming, MILP, for optimally sizing a CHP system. 

Mrino et al., 2018 studied the effect of renewable resources variability on the operation of 

microgrid system through a chance-constrained stochastic mixed integer linear programming 

model. 

Furthermore, biomass supply, which is the fuel of the system in this thesis, is in important 

factor that can impact the operation and resilience of the bCHP system. Various existing bodies of 

literature studied the biomass supply. For instance, Marufuzzaman et al., 2014 also developed a 

model using a mixed-integer linear programming in order to design a a biomass supply chain 

network considering various disruption factors, such as hurricanes and drought. Quddud et al., 
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2018 studied the impacts of biomass seasonality and uncertainty on pelleting process by utilizing 

a mixed-integer linear programming approach. Marufuzzaman and Eksioglu, 2017 developed a 

model using a mixed-integer linear programming in order to manage congestion in supply chains 

through a real-life case study, a biomass supply chain network in Southern United States. 

Moreover, various existing bodies of literature that are related to Bayesian Network 

approaches, which being applied in this research paper, with applications on assessing different 

engineering systems industries, decision-making problems, and risk assessment problems. 

Bayesian network approach has been widely implemented in various fields, including reliability 

and resilience of engineering systems and infrastructure and complex decision-making problems 

as well. In the field of assessing and quantifying the resilience of infrastructure, Johansen & Tien, 

2017 used a BN-based approach in order to quantify and assess the resilience of complex 

interdependencies, including service provision, geographic, and access interdependencies, 

amongst infrastructure systems to increase and improve their resilience. They used a real 

interdependent network, water, power, and gas network, in Memphis, TN, as a case study to 

employ the BN- based approach. Yu et al., 1999 implemented the BN approach to quantify the 

reliability of a power system through a case study.  Hossain et., 2020 also developed a BN model 

in order to assess the critical interdependencies between inland port infrastructure and supply chain 

network. They used Port of Vicksburg in Mississippi as a case study and identified its various 

potential disruptions, collected historical data, and assessed how any of these disruptions could 

interrupt the port operations and affect the supply chain operations as well. Hosseini & barker, 

2016 proposed a BN model in order to measure the resilience of an inland waterway port as a 

function of three different resilience capacities, namely, absorptive, adaptive, and restorative, and 

they considered the Port of Catoosa in Oklahoma a case study for their research to assess its 
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resilience capacities. Hossain et., 2020 proposed another framework to measure the resilience of 

power system infrastructures in Washington DC through the BN approach. The BN approach is 

also used for decision-making problems. Hosseini & Sarder, 2019 proposed a BN model by which 

they determined the optimal location of the electric vehicle charging station, EVCS, among 

different alternatives. Based on expert knowledge and historical data, they identified criteria and 

sub-criteria for site selection, developed and validated the BN model, and selected the optimal 

alternative based on the results. Hossain et., al, 2019 also assessed the performance of an inland 

water way port through developing a BN model. 

The major contributions of this thesis are to assess the resilience of biomass-based 

combined heat and power system through a case study of a power plant in Mississippi and to 

provide a real-life problem and application to illustrate how effective, efficient, and useful the BN 

approach is on assessing engineering systems resilience.  This study distinguishes and differs from 

other CHP studies by which the resilience of CHP systems has not been considered through the 

BN method by previous studies. There are several existing research studies related to CHP systems 

considering the reliability, availability, efficiency, and determining the optimal allocation and 

capacity for CHP systems. Moreover, the BN approach has been implemented widely for assessing 

the resilience of engineering systems and infrastructures, but not biomass-based CHP systems. 
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CHAPTER III 

BAYESIAN NETWORK 

Bayesian Networks, BNs, are probabilistic graphical models representing complex 

problems and systems as networks and describe interdependences and relationships between a set 

of random variables via a directed acyclic graph, DAG, based on Bayes’ theory (Fenton & Neil, 

2019; Stephenson, 2000). The BN is an effective and useful tool for assessing risk and decision 

making, and it is constructed based on experts’ and scientists’ knowledge and historical data, 

whereas they determine the causality relationships among the variables. One of the features of BN 

is that the posterior probabilities of unknown variables have the ability to be updated once new 

evidence is provided and observed. The BNs are basically comprised of two elements: nodes and 

arcs. The nodes represent the variables in a network, and arcs link the variables and show the 

interconnections between them (Fenton & Neil, 2019). In BNs, nodes can be categorized into three 

types: root or parent nodes, intermediate nodes, and child or leaf nodes. The root nodes are primary 

in a network and independent. However, the leaf nodes are dependent, and they depend on the root 

nodes. In addition, intermediate nodes are the connection between the root and leaf nodes in BNs 

(Hosseini & Sarder, 2019; Abimbola & Khan, 2019). Furthermore, every variable or node in the 

BN is correlated with a conditional probability table, CPT, that determines the strength level of 

every interdependency (Chen & Pollino, 2012) 
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Figure 3.1 A BN example with seven nodes. 

 

Figure 3.1 is an example of BN with seven nodes representing seven variables. Nodes A1, 

A2, A3, A4, and A6 are called root nodes, and they are independent in the network. On the contrary, 

node A7 is called the leaf node because it depends on A4, A5, and A6. Node A5 is an intermediate 

node; it links nodes A1, A2, and A3 with node A7. Additionally, arcs in Figure 3.1 demonstrate the 

relationships among the seven nodes. The arc that is outgoing from node A1 to node A5 indicates 

the relationship type between them. It shows that A5 depends on A1. 

Equation (3.1) shows the general expression of a BN comprising of n variables A1, A2, 

A3,…, An for the full joint probability distribution.  

 
 

𝑃(𝐴1, 𝐴2, … . 𝐴𝑛) = 𝑃(𝐴1|𝐴2, … . 𝐴𝑛)𝑃(𝐴2|𝐴3, … . 𝐴𝑛) … 

𝑃(𝐴𝑛−1| 𝐴𝑛) 𝑃(𝐴𝑛) = ∏ 𝑃(𝐴𝑖

𝑛

𝑖=1

|𝐴𝑖+1, … . , 𝐴𝑛) (3.1) 

Since the root, intermediate, and leaf nodes are known in Figure 3.1, equation (3.1) can be 

simplified to equation (3.2). 
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𝑃(𝐴1, 𝐴2, … , 𝐴7) = 𝑃(𝐴1)𝑃(𝐴2)𝑃(𝐴3)𝑃(𝐴4)𝑃(𝐴6)𝑃(𝐴5|𝐴1, 𝐴2, 𝐴3)𝑃(𝐴7|𝐴4, 𝐴5𝐴6) (3.2) 

 

The join probability of 𝑃(𝐴1, 𝐴2, … , 𝐴7) can be found once the five unconditional 

probabilities, which are 𝑃(𝐴1)𝑃(𝐴2)𝑃(𝐴3)𝑃(𝐴4)𝑃(𝐴6), are determined as well as the two 

conditional probabilities, which are 𝑃(𝐴5|𝐴1, 𝐴2, 𝐴3)𝑃(𝐴7|𝐴4, 𝐴5𝐴6). 

One of the essential features of BNs is the ability to update belief propagation P(An) once 

some evidence is identified.  For instance, once an evidence e is identified, the conditional 

probability for variable A7, (𝑒 = {A1, A2, A3, A4, A5, A6, A7}), can be calculated using equation (3.3).  

 

𝑃(𝐴7|𝑒) =
𝑃(𝐴1,𝐴2,𝐴3,𝐴4,𝐴5,𝐴6,𝐴7)

𝑃(𝐴1,𝐴2,𝐴3,𝐴4,𝐴5,𝐴6)
 = 

𝑃(𝐴1,𝐴2,𝐴3,𝐴4,𝐴5,𝐴6,𝐴7)

∑ 𝑃(𝐴1,𝐴2,𝐴3,𝐴4,𝐴5,𝐴6)𝐴7

 (3.3) 

 

By considering conditional interdependencies, equation (3) can be calculated more 

proficiently using equation (3.4).  

 

𝑃(𝐴7|𝑒) =
𝑃(𝐴7|𝐴4,𝐴5. 𝐴6)𝑃(𝐴5|𝐴1, 𝐴2, 𝐴3)

∑ 𝑃(𝐴7|𝐴4,𝐴5, 𝐴6)𝑃(𝐴5|𝐴1, 𝐴2, 𝐴3)𝐴7

 (3.4) 

 

For more details regarding the Bayesian theorem, (Fenton & Neil, 2019) is recommended 

for the interested readers. 
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CHAPTER IV 

THE PROPOSED BN FRAMEWORK FOR RESILIENCE ASSESSMENT FOR BIOMASS-

BASED COMBINED HEAT AND POWER SYSTEM 

The proposed 4-phase framework of a bCHP resilience assessment is demonstrated in 

Figure 4.1. The details of these four phases are discussed below: 

• Phase I: the first phase contains three steps, which are identifying the factors and sub-

factors that may affect the resilience of bCHP system, identifying the relationships and 

interdependencies among the factors and sub-factors, and collecting data that are correlated 

with the identified factors and sub-factors. 

• Phase II: the second phase is constructing the BN model utilizing a BN software called 

AgenaRisk. 

• Phase III: once the model is built, the third phase is to run a sensitivity analysis to validate 

the model. 

• Phase VI: the final phase is to analyze and assess the results. This step can be beneficial 

and helpful to enhance and develop a strategic plan to deal with potential risks that may 

disrupt the bCHP.  
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Figure 4.1 The proposed 4-phase framework for assessing bCHP resilience. 
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CHAPTER V 

DESCRIPTION OF FACTORS AND DEVELOPMENT OF BN MODEL 

Identifying factors and sub-factors for assessing the resilience of bCHP is an essential step 

in this paper. We describe factors pertaining to bCHP resilience from four perspectives, namely, 

technical, human factors, and environmental factors. Furthermore, sub-factors that are related to 

the main factors are also considered and taken into account. Figure 5.1 illustrates the factors and 

sub-factors considered for assessing bCHP resilience. The details of the sub-factors are addressed 

below. 

5.1 Technical Factors: 

Six sub-factors are considered under the technical factors, namely, interruption of biomass 

fuel supply, bCHP equipment failure, bCHP periodic maintenance, suppliers performance, 

suppliers availability and variability, and biomass fuel availability and variability. The details of 

the sub-fact are addressed below. 

5.1.1 Interruption of Biomass Fuel Supply: 

This sub-factor refers to the risk of interruption of pellet supply, which is the needed fuel 

to operate the bCHP. A reliable and continuous pellet supply is essential to increase the resilience 

of the bCHP system; however, the interruption of the pellet supply causes interruptions of 

generating electrical power and producing thermal energy, especially for CHP plants that do not 

support dual-fuel capable systems. Pellet supply can be interrupted due to many factors in 
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Mississippi, such as extreme weather events. A resilient bCHP system requires an interrupted 

pellet supply. 

5.1.2 Modeling of Interruption of Biomass Fuel Supply: 

In order to model the interruption of biomass fuel supply, a NoisyOR function is used to 

compute the posterior probability. An example to illustrate NoisyOR function is that if n Boolean 

variables 𝑋1, 𝑋2, … . 𝑋𝑛 are conditioned on A, and the probability of A is True when only one of the 

Boolean variables is true. The NoisyOR function is shown in Equation (5.1) where Xn represents 

the Boolean variable, vn represents the weight associated with Xn, between 0 and 1, and l refers to 

the leak factor, which represents some other hidden factors that contribute to the leaf node being 

true (Fenton & Neil, 2019).  

 

𝐴 = 𝑁𝑜𝑖𝑠𝑦𝑂𝑅(𝑋1, 𝑣1, 𝑋2, 𝑣2, … . , 𝑙)  (5.1) 

The modeling equation of the interruption of biomass fuel supply is presented in Equation 

(5.2).  

 

𝑇ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡𝑖𝑜𝑛 𝑜𝑓 𝑏𝑖𝑜𝑚𝑎𝑠𝑠 𝑓𝑢𝑒𝑙 𝑠𝑢𝑝𝑝𝑙𝑦
= 𝑁𝑜𝑖𝑠𝑦𝑂𝑅(𝐸𝑥𝑡𝑟𝑒𝑚𝑒 𝑤𝑒𝑎𝑡ℎ𝑒𝑟 𝑒𝑣𝑒𝑛𝑡𝑠, 0.1,0.1) 

(5.2) 
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Figure 5.1 Factors and sub-factors for biomass-based CHP resilience assessment.  
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5.1.3 bCHP Equipment Failure: 

This sub-factor refers to the potential failure of the bCHP system and its components. If 

they occur, they will prevent the operation of the system. Thus, that may result in a complete 

shutdown of a bCHP system. Two main factors contributing to the bCHP equipment failure, 

namely, human errors and other sub-factors, including manufacturing defects and aging equipment 

and systems. 

5.1.4 Modeling of bCHP Equipment Failure: 

The modeling equation of bCHP equipment failure is presented in Equation (5.3).  

 

𝑏𝐶𝐻𝑃 𝑒𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡 𝑓𝑎𝑖𝑙𝑢𝑟𝑒
= 𝑁𝑜𝑖𝑠𝑦𝑂𝑅(𝐻𝑢𝑚𝑎𝑛 𝑒𝑟𝑟𝑜𝑟𝑠, 0.1, 𝑂𝑡ℎ𝑒𝑟 𝑠𝑢𝑏𝑓𝑎𝑐𝑡𝑜𝑟𝑠, 0.1,0.1) 

(5.3) 

  

5.1.5 bCHP Periodic Maintenance: 

Malfunctions are subject to occur in any system, and they can be both predictable and 

unpredictable. Operational failures due to the lack of periodic maintenance affect the resilience of 

bCHP system. In order to avoid this situation, immediate repair and periodic maintenance would 

be needed. The lack of an efficient on-site repair and periodic maintenance service is one of the 

sub-factors that degrade bCHP resilience. Periodic Maintenance is addressed in terms of on-time 

repair and spare parts availability. 

5.1.6 Modeling of bCHP Periodic Maintenance: 

Two main variables, known as continuous variables, contributing to the periodic 

maintenance, which are on time repair and availability of spare parts. The modeling of a bCHP 

periodic maintenance and its contributors are shown in Table 5.1 and Table 5.2.  
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Table 5.1 Modeling of variables contributing to periodic maintenance. 

Variable name Modeling technique Modeling description 

On-time repair TNORM (µ=0.85, α2=0.02, 

LB=0.65, UB=0.95) 

We assumed that on time repair follows a t 

normal distribution with a mean of 0.85, a 

variance of 0.02, best case of 95% and 

worst case of 0.65. 

Availability of 

spare parts 

TNORM (µ=0.90, α2=0.03, 

LB=0.8, UB=1) 

We approximately assumed that spare 

parts are available with a mean of 0.9, a 

variance of 0.03, and lower bound and 

upper bound of 0.8 and 1, respectively. 

 

Table 5.2 Modeling of periodic maintenance variable. 

Variable name Modeling technique Modeling description 

bCHP periodic 

maintenance 

If (on time repair ≥0.85&& 

availability of spare parts ≥ 

0.85, “True”,” False”) 

If the on-time repair is equal or more than 

85% and the availability of spare parts is 

more than 85%, the bCHP periodic 

maintenance is labeled (True), otherwise, 

(False) 

 

5.1.7 Supplier Performance: 

This sub-factor refers to supplier’s ability to feed the bCHP system with biomass pellets 

fuel within the predefined delivery schedule. It is obvious that the more efficient the supplier is, 

the more resilient the bCHP system is. Supplier performance is addressed in terms of lead time 

and on-time delivery, and it can be affected by extreme weather events as well.
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5.1.8 Modeling of Supplier Performance: 

Two main continuous variables contributing to the periodic maintenance besides extreme 

weather events, which are on time delivery and lead time. The modeling of bCHP supplier 

performance and its contributors are shown in Table 5.3 and Table 5.4.  

Table 5.3 Modeling of variables contributing to supplier performance. 

Variable name Modeling technique Modeling description 

Lead time TNORM (µ=10, 

α2=0.05, LB=6, UB=15) 

According to (Hossain et al., 2020), the 

lead time of biomass supply chain follows 

a TNORM distribution with a mean of 10 

days, an estimated variance of 0.05, and 

lower and upper bound of 15 days and 6 

days, respectively. 

On-time delivery TNORM (µ=0.95, 

α2=0.0005, LB=0.9, 

UB=1) 

On-time delivery follows a TNORM 

distribution with a mean delivery rate of 

0.95, a variance of 0.0005, and lower and 

upper bound of 0.90 and 1 rate, 

respectively (Hossain et al., 2020). 

 

Table 5.4 Modeling of supplier performance variable. 

Variable name Modeling technique Modeling description 

Supplier performance If (Lead time<=15&& 

on time delivery>=0.90, 

&& extreme weather 

events == “False”, 

“True”,” False”) 

If the lead time is less than 16 days, on-

time delivery rate is more than 0.9, and the 

extreme weather events do not occur, the 

supplier performance is labeled (True); 

otherwise, (False). It is assumed that on- 

time delivery and lead time are weighted 

equally by 45%, and the extreme weather 

events are weighted by 10%. 
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5.1.9 Supplier Availability and Variability: 

This sub-factor refers to the availability of biomass suppliers around the plant. Since the 

used fuel of the CHP is biomass pellets, CHP resilience significantly depends on the availability 

of biomass pellets. Suppliers variability is an important factor as well. It increases the reliability 

of feeding the plant in case the main supplier fails to feed the cogeneration plant with the fuel. 

Hence, the more available and variable suppliers, the more resilient the bCHP is. 

 Table 5.5 shows the biomass pellet manufacturers that are located within 300 miles 

around the plant in Mississippi, Alabama, and Louisiana.  

Table 5.5 Biomass pellet suppliers. 

Biomass pellet supplier State Distance to the plant 

Enviva Pellets Lucedale LLC 

Enviva Pellets Amory 

Drax Biomass Inc. Amite Bioenergy 

Alabama Pellets LLC 

Zilkha Biomass Selma 

Westervelt Renewable Energy, LLC 

Drax Biomass Inc. Morehouse Bioenergy 

Drax Biomass Port 

Drax Biomass Lasalle Bio Energy 

Mississippi 

Mississippi 

Mississippi 

Alabama 

Alabama 

Alabama 

Louisiana 

Louisiana 

Louisiana 

69 mi 

285 mi 

167 mi 

205 mi 

248 mi 

254 mi 

296 mi 

137 mi 

286 mi 

 

5.1.10 Modeling of Supplier Availability and Variability: 

Table 5.6 shows the modeling of the suppliers availability in the study area.  

 

Table 5.6 Modeling of the availability of biomass pellet suppliers. 

Variable name Modeling technique Modeling description 

Suppliers availability If (biomass pellet 

suppliers > 3 suppliers, 

“True”,” False”) 

If the biomass pellet suppliers are more 

than 3, the suppliers availability is labeled 

(True), otherwise, (False). 
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5.1.11 Biomass Fuel Availability and Variability: 

This sub-factor refers to the availability and variability of biomass feedstocks in Harrison 

county, where Plant Watson is located, and in its neighbor counties, namely, George county, 

Hancock county, Pearl River county, and Stone county. According to the National Renewable 

Energy Laboratory, NREL, Table 5.7 illustrates the biomass feedstock production in each county 

and how many types are available. 

Table 5.7 Biomass feedstock availability and variability in the study area. 

County Number of feedstock types Feedstock Production 

(Tons/Year) 

Harrison County 

 

14 types 53,664.37 

Jackson County 

 

13 types 66,795.77 

George County 13 types 62,737.83 

Hancock County 13 types 25,394 

Pearl River County 13 types 152,649.28 

Total Production in All 

Counties 

14 types 435,188.5 

 

5.1.12 Modeling of Biomass Fuel Availability and Variability: 

One main variable contribution to the biomass fuel availability, which is feedstock 

production. The modeling of feedstock production is shown in Table 5.8, and the modeling of 

biomass fuel availability is shown in Table 5.9. 
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Table 5.8 Modeling of feedstock production in the study area. 

Variable name Modeling technique Modeling description 

Feedstock production Triangle (37565, 53664, 

69763) 

The feedstock production in the study area 

follows a triangle distribution with 

estimated minimum and maximum values 

of 37,565 and 69,763, respectively, and the 

most likely value is 53,664 tons/year. 

 

Table 5.9 Modeling of biomass feedstock availability and variability in the study area. 

Variable name Modeling technique Modeling description 

Biomass fuel 

availability 

If (feedstock 

production>=50,000, 

“True”,” False”) 

If the feedstock production is more than 

50,000 tons per year, biomass fuel 

availability is labeled (True); otherwise, 

(False). 

 

5.2. Environmental Factors: 

Environmental factors are the aspects that may have negative impacts on the resilience of 

bCHP in its physical environment in Mississippi State. Environmental factors include one main 

sub-factors, which is extreme weather events, including hurricanes and tornadoes. 

5.2.1. Extreme Weather Events: 

This sub-factor refers to the natural disasters that occur commonly in Mississippi. Since 

some natural disasters, such as hurricanes and tornados, are inevitable and common in Mississippi, 

the bCHP is vulnerable to disruptions. Moreover, one of the most primary reasons for power 

outages in the United States of America is severe weather (President’s Council of Economic 

Advisers and the U.S. Department of Energy’s Office of Electricity Delivery and Energy 

Reliability, 2013). Indeed, many CHP systems have proved their high resilience and reliability 
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through extreme weather events in many areas. However, natural disasters may still affect the 

bCHP, biomass fuel supply, and supplier performance. 

 

5.2.2. Modeling of Extreme Weather Events: 

5.2.2.1. Hurricanes: 

About 10 major hurricanes hit Mississippi from 2000 to 2020 with an average of 0.47. In 

addition, some of these hurricanes were severe hurricanes, such as Hurricane Katrina in 2005, and 

it caused extreme economic costs estimated from $160 billion to $250 billion according to 

(Amadeo, 2020). Table 5.10 shows the major and effective hurricanes that hit Mississippi.  

Table 5.10 Major hurricanes hit Mississippi from 2000 to 2020. 

Hurricane Category Year 

Isidore 

Cindy 

Dennis 

Rita 

Katrina 

Humberto 

Irma 

Nate 

Barry 

Zeta 

3 

1 

4 

5 

5 

3 

5 

1 

1 

2 

2002 

2005 

2005 

2005 

2005 

2007 

2017 

2017 

2019 

2020 

 

In order to find the probability of hurricanes, the Poisson distribution function is used as 

represented in the following equation (5.4) (Bhusal et al., 2020).  

 

𝑃(ℎ = 𝑥) =
𝑒𝑥𝑝(−𝜆) × 𝜆ℎ

𝑥!
 

 

(5.4) 
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 Where P represents the probability of annual occurrence of hurricanes, λ represents the 

mean or the average number of hurricanes, h represents the number of hurricanes per year, and x 

represents the number of occurrences. Thus, based on the historical data represented in Table 5.10, 

the probability one hurricane occurs is about 27%. 

5.2.2.2. Tornadoes: 

During the last 20 years, about 171 strong and violent tornadoes, ranging from F2 to F5 

tornadoes, hit Mississippi State with an average of 8.55 per year (NWS). Table 5.11 shows the 

major and effective tornadoes that hit Mississippi.  

Table 5.11 Number of tornadoes in Mississippi State from 2000 to 2019 (NWS). 

 

 Tornadoes 

Year F2 F3 F4 F5 Total 

2000 

2001 

2002 

2003 

2004 

2005 

2006 

2007 

2008 

2009 

2010 

2011 

2012 

2013 

2014 

2015 

2016 

2017 

2018 

2019 

2 

4 

2 

3 

8 

12 

3 

4 

9 

4 

11 

15 

8 

4 

5 

1 

5 

9 

3 

11 

1 

3 

1 

1 

2 

2 

2 

0 

5 

0 

2 

12 

2 

1 

4 

0 

0 

1 

0 

1 

0 

2 

0 

0 

0 

0 

0 

0 

0 

0 

1 

1 

0 

1 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

2 

0 

0 

0 

0 

0 

0 

0 

0 

3 

9 

3 

4 

10 

14 

5 

4 

14 

4 

14 

30 

10 

6 

10 

1 

5 

10 

3 

12 
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The probability of 8 or less tornadoes occur in Southern Mississippi is calculated by using 

Poisson distribution function as well, and the result is about 51%. 

Table 5.12 Modeling of extreme weather events. 

Variable name Modeling technique Modeling description 

Extreme Weather 

Events 

If (hurricanes || 

tornadoes== “True”, 

“True”,” False”) 

If any hurricanes or tornadoes occur, the 

extreme weather events are labeled (True); 

otherwise, (False) 

 

5.3. Human Factors: 

Human factors can be defined as the interrelationship between the bCHP and the staff, and 

it includes human errors. 

5.3.1. Human Errors:  

One of the main factors affecting the bCHP resilience is equipment and operational 

failures. There are various reasons leading to malfunction, and one of these reasons is personnel 

errors in the workplace.   

5.3.2. Modeling of Human Errors:  

Based on a research study by (Morais et al., 2018), the probabilities of human execution 

errors in different industry areas are 8.99% for wrong-time errors, 7.36% for wrong-type errors, 

and 1.09% for wrong place errors. Therefore, it can be assumed that there is an 8.99% chance that 

wrong-time errors happen, a 7.63% chance that wrong type errors occur, and a 1.09% chance that 

wrong place errors happen during operating a bCHP system. 
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Table 5.13 Modeling of human errors. 

Variable name Modeling technique Modeling description 

Human Errors If (wrong-time errors == 

“True” || wrong-place 

errors == “True” || 

wrong-type errors == 

“True”, “True”,” False”) 

If any type of human errors occurs, human 

errors are labeled (True); otherwise, 

(False). 

 

5.4. Modeling of the bCHP Resilience: 

The final target node in the BN model, the bCHP resilience variable, provides the result of 

bCHP resilience, and it is conditioned on three main factors, namely, technical factors, 

environmental factors, and human factors. The three main factors are associated with three 

different weights, 60%, 30%, and 10%, respectively. As illustrated in Figure 5.2, the probability 

of the resilience of bCHP being true or sufficient is 70.4%
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Figure 5.2 The base model of the BN for measuring the resilience of bCHP system. 
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CHAPTER VI 

RESULTS AND ANALYSIS 

In this section, we will introduce and perform three different types of analysis on the BN 

model, such as sensitivity analysis and belief propagation analysis. 

6.1 Sensitivity Analysis: 

Sensitivity analysis is an effective tool that can be implemented in order to validate an 

expert-built model. Performing sensitivity analysis allows to diagrammatically represent the 

impacts of a set of selected nodes on the target node or on any selected node. Moreover, it allows 

decision-makers to determine how sensitive their results are (Fenton & Neil, 2019). To gain more 

understanding of the BN model, and to determine what variables have more impact on the bCHP 

resilience, the sensitivity analysis is performed on the BN model using AgenaRisk software. 

The sensitivity analysis is performed on bCHP resilience as a target node with respect to 

its contributing variables, namely, extreme weather events, supplier performance, interruption of 

biomass fuel supply, biomass availability, human errors, periodic maintenance, and suppliers 

availability. The sensitivity analysis of the resilience of the bCHP is diagrammatically shown in 

figures 6.1 and 6.2, in the form of a tornado graph. The sensitivity of each node can be determined 

based on the length of the bars, where the longer the bar is, the more impactful the node is 

(Lawrence et al., 2020). Figure 6.1 demonstrates the impact of the selected factors and sub-factors 

on the bCHP resilience when bCHP resilience is labeled “True”. However, Figure 6.2 

demonstrates the impact of those factors and sub-factors on the bCHP resilience when bCHP 
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resilience is labeled “False”. It can be concluded from both figures that extreme weather events 

have the highest impact and periodic maintenance has the lowest impact on the resilience of bCHP 

system. The figures show that the probability of bCHP resilience given extreme weather events 

increases from 0.59, when the extreme weather events is “True” to 0.9 when the extreme weather 

events is “False”. On the contrary, the range of the impact of periodic maintenance is narrow, from 

0.62 to 0.72.  
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Figure 6.1 Sensitivity analysis of the resilience of bCHP: P (bCHP Resilience = True) = 70%. 
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Figure 6.2 Sensitivity analysis of the resilience of bCHP: P (bCHP Resilience = False) = 

29.6%. 

 

6.2 Belief Propagation Analysis: 

One of the distinct advantages and strengths of the Bayesian Network approach is the 

ability to perform propagation analysis that allows entering different observations in any node in 

the model and using propagation to compute the marginal probabilities of the other unobserved 
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variables that depend on the observed nodes (Hosseini et al., 2016; Hossain et al., 2019). Forward 

propagation analysis is performed on the BN model in order to measure the impact of one or more 

observed variables on the child or target node, bCHP resilience. Moreover, the backward 

propagation analysis is performed on the BN model in order to compute the probability of 

intermediate and parent nodes by propagating the impact of the child node on the entire network. 

In this study, two different scenarios, optimistic and pessimistic, are examined through 

forward propagation analysis on five variables, namely, extreme weather events, biomass fuel 

availability, periodic maintenance, bCHP equipment failure, and supplier performance. On the 

contrary, the best possible scenario or the target node is determined as well through backward 

propagation analysis.  

Figure 6.3 illustrates an optimistic scenario for extreme weather events, which means that 

the extreme weather events will not occur. As a result, the resilience of bCHP system increases 

from 70.4% to 90.9%. On the other hand, Figure 6.4 illustrates a pessimistic scenario for extreme 

weather events, which means that the extreme weather events will occur for a chance of 100%. As 

a result, the resilience of bCHP system decreases from 70.4% to 59%. Moreover, if the resilience 

of bCHP is set to 100%, as demonstrated in Figure 6.5, the technical factors should increase to 

96.38% and human factors and extreme weather events should decrease to 14.4% and 53.8%, 

respectively. The other results of forward propagation analysis are summarized below:  

• Biomass Fuel Availability:  for the optimistic scenario, the resilience is 73.4%, and 

for the pessimistic scenario, the resilience is 63%. 

• Periodic Maintenance: for the optimistic scenario, the resilience is 72.8%, and for 

the pessimistic scenario, the resilience is 62%. 
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• bCHP Equipment Failure: for the optimistic scenario, the resilience is 71.5%, and 

for the pessimistic scenario, the resilience is 61.5%. 

• Supplier Performance: for the optimistic scenario, the resilience is 71.8%, and for 

the pessimistic scenario, the resilience is 50%.
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Figure 6.3 The developed BN model for the optimistic scenario of extreme weather events. 
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Figure 6.4 The developed BN model for the pessimistic scenario of extreme weather events. 
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Figure 6.5 Backward propagation analysis of BN for a 100% resilience of bCHP.
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CHAPTER VII 

CONCLUSION AND FUTURE WORK 

This study has two major contributions, which are proposing a 4-phase framework for 

assessing the resilience of biomass-based combined heat and power system and demonstrating the 

efficiency and effectiveness of the approach of Bayesian network in assessing the resilience of 

engineering systems and infrastructure through a real-life application. In the initial stage, three 

major factors associated with the resilience of bCHP system are identified; namely, extreme 

weather events, technical factors, and human factors, and then the causations among the factors 

and sub-factors are identified as well. The information and data associated with the factors and 

sub-factors are obtained from different research papers and official websites. In the second stage, 

the collected data and subjective opinions are converted into a BN model using Agenarisk 

software. After the development stage, the BN model then is validated through sensitivity analysis, 

and then optimistic and pessimistic scenarios are applied on five different variables through 

forward propagation analysis, and finally, the backward propagation analysis is applied by setting 

the resilience value of bCHP to 100% to determine the optimal values of the causal variables.  

This study can be extended in various research directions. For instance, in this study, only 

the resilience of bCHP system is measured; however, the resilience of both the power plant station 

and bCHP system can be measured and quantified together in order to determine how resilience 

and reliable the overall plant will be.
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