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Stallion Sperm Transcriptome Comprises Functionally
Coherent Coding and Regulatory RNAs as Revealed by
Microarray Analysis and RNA-seq
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Abstract

Mature mammalian sperm contain a complex population of RNAs some of which might regulate spermatogenesis while
others probably play a role in fertilization and early development. Due to this limited knowledge, the biological functions of
sperm RNAs remain enigmatic. Here we report the first characterization of the global transcriptome of the sperm of fertile
stallions. The findings improved understanding of the biological significance of sperm RNAs which in turn will allow the
discovery of sperm-based biomarkers for stallion fertility. The stallion sperm transcriptome was interrogated by analyzing
sperm and testes RNA on a 21,000-element equine whole-genome oligoarray and by RNA-seq. Microarray analysis revealed
6,761 transcripts in the sperm, of which 165 were sperm-enriched, and 155 were differentially expressed between the sperm
and testes. Next, 70 million raw reads were generated by RNA-seq of which 50% could be aligned with the horse reference
genome. A total of 19,257 sequence tags were mapped to all horse chromosomes and the mitochondrial genome. The
highest density of mapped transcripts was in gene-rich ECA11, 12 and 13, and the lowest in gene-poor ECA9 and X; 7 gene
transcripts originated from ECAY. Structural annotation aligned sperm transcripts with 4,504 known horse and/or human
genes, rRNAs and 82 miRNAs, whereas 13,354 sequence tags remained anonymous. The data were aligned with selected
equine gene models to identify additional exons and splice variants. Gene Ontology annotations showed that sperm
transcripts were associated with molecular processes (chemoattractant-activated signal transduction, ion transport) and
cellular components (membranes and vesicles) related to known sperm functions at fertilization, while some messenger and
micro RNAs might be critical for early development. The findings suggest that the rich repertoire of coding and non-coding
RNAs in stallion sperm is not a random remnant from spermatogenesis in testes but a selectively retained and functionally
coherent collection of RNAs.
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Introduction

Mammalian sperm are considered terminally differentiated and

functionally dormant cells with the sole purpose of delivering the

paternal genome into the zygote [1,2]. Therefore, early claims

about the presence of RNA in mouse [3], bull [4], rat and human

sperm [5] were met with skepticism. However, research over the

past decade has provided compelling evidence that mature

mammalian sperm contain complex populations of RNAs

[1,2,6,7,8,9]. These include over 3,000 mRNAs [6,8], and a

heterogeneous population of small and long non-coding RNAs

[8,10,11,12,13,14], though typically sperm are depleted of intact

ribosomal RNAs [6].

The functions of sperm RNAs remain a subject of debate. The

initial opinion was that sperm RNAs have no functions of their

own and are simply residues of spermatogenesis, reflecting the

events that occurred during their formation in the testes [1]. This

may be partially valid, although recent discoveries have essentially

expanded these views showing that sperm mRNAs constitute a

population of stable full-length transcripts, many of which are

selectively retained during spermatogenesis [6,11]. Some mRNAs

are thought to have a role in sperm chromatin reorganization by

setting up boundaries between protamine- and histone-packaged

DNA [11,15]. Some mRNAs/cDNAs can be sperm-borne via

transcription and reverse-transcription [10,16]. It has been

reported that sperm mRNAs can be de novo translated using

mitochondrial-type ribosomes during capacitation [17,18,19].

Both sperm mRNAs and micro RNAs (miRNAs) are involved in

non-Mendelian inheritance, serving as transgenerational epige-

netic signals for zygotic gene regulation [20,21,22]. Furthermore, a

few RNAs have been found only in the sperm and the zygote, but

PLOS ONE | www.plosone.org 1 February 2013 | Volume 8 | Issue 2 | e56535



not in the oocyte, providing evidence for a unique paternal

contribution [23,24].

Even though the functions of the majority of the sperm RNAs

remain enigmatic, it has been proposed that sperm transcriptional

profiles might provide clinical markers for male fertility [1,11].

Moreover, the non-invasive sample procurement through semen

collection makes the approach particularly attractive. Indeed, an

increasing number of studies in humans demonstrate that sperm

mRNA profile can serve as a molecular diagnostic platform for

evaluating male fertility [1,9,25,26]. Consistent and biologically

relevant qualitative and quantitative differences are present

between the sperm RNAs of fertile men and men with abnormal

reproductive phenotypes, such as skewed protamine ratios [27],

teratozoospermia [26], cryptorchidism [28], reduced sperm

motility [29], and idiopathic infertility [30,31]. Similarly, sperm

transcriptome studies have been initiated in bulls [29,32,33,34]

and boars [23,35,36] showing differences between the mRNA

profiles of high- and low fertility bulls [34]. Analysis of porcine

sperm, oocytes and two-cell embryos reveal that mRNAs of some

genes, viz., CLU, PRM1 and PRM2 are delivered to the zygote

exclusively by the sperm [23].

Despite the promising diagnostic potential of sperm RNAs for

male fertility, the approach has found only limited attention in

stallions [37,38]. At the same time, poor fertility of breeding

stallions is a recognized concern in the equine industry. While foal

crop and stud fees form a principal component of the economy of

the industry, stallions are typically selected on the basis of their

ancestry and performance, and not for their reproductive potential

[39]. As a result, about 36–43% of prospective breeding stallions

do not pass the breeding soundness tests [40,41].

The goal of this study was to obtain detailed information about

the RNAs present in the sperm of normal fertile stallions to

improve understanding of the biological significance of sperm

RNAs and to establish a foundation for the discovery of sperm-

based biomarkers for stallion fertility.

Results

Expression microarray analysis
Gene expression microarray analysis revealed 6,761 gene/EST

transcripts in stallion sperm and 11,112 in the testes. The majority

(97%) of the sperm transcripts were shared with the testes, while

surprisingly, 165 transcripts were detected (at signal-to-noise ratio,

SNR $2) only in the sperm and not in the testes, and are referred

to as sperm-enriched transcripts.

Gene Ontology (GO) annotations were found for 3,319 (49%)

sperm transcripts and grouped according to biological process

(2,136; 78.9%), molecular function (1,503; 55.5%) and cellular

component (2,270; 83.8%) (Table S1). The sperm transcripts were

most significantly (p,0.001) involved in chemoattractant-activated

signal transduction pathways, viz., sensory perception and G-

protein coupled signaling, and ion transport related biological

processes. The most prevalent molecular functions were related to

ion-, nucleotide-, and chromatin binding and the associated

cellular components were membranes and vesicles (Table S2).

These functional categories were also represented among the 165

sperm-enriched transcripts, though with lower significance values

because of fewer genes analyzed (Table S3). In contrast, testes

transcripts were localized in all cellular compartments and

involved in diverse molecular functions and biological processes

(data not shown).

Comparison of the expression of the 6,596 transcripts common

for the sperm and the testes (Fig. 1) identified 155 genes/

transcripts that were differentially expressed (DE) between them.

Of these, 60 were up-regulated (fold change; FC.2; p,0.05) and

95 were down-regulated (FC,22; p,0.05) in the sperm (Table

S4). Gene ontology terms could be determined for 37 up-regulated

and 47 down-regulated transcripts showing that the former were

involved in cell motility and cytoskeleton functions, while the latter

were associated with functions in translation and non-membrane-

enclosed organelles, e.g., ribosomes (Fig. 2). Microarray results for

the most significant (p,0.005) DE genes were confirmed by

quantitative RT-PCR (qRT-PCR) (Fig. 3; Fig. S1; Table 1).

RNA sequence analysis
Mapping RNA sequence reads in the equine

genome. Next generation sequencing (NGS) of total RNA from

the sperm of two reproductively normal stallions generated about

70 million raw reads and more than 3 Gb of sequence per sample;

over half of these aligned with the EcuCab2 [42] reference

genome (Table 2). Average coverage (AC; normalized number of

transcripts) values could be calculated for over 30 million reads

that mapped to all equine chromosomes, including ChrUn and the

mitochondrial genome (Table 2, Table S9), whereas 19,257

sequence tags with AC $1 were uniquely mapped to specific

locations in the horse genome (Table 2). Of these, 14,982 map

locations were shared between the two samples, while 2,188 and

2,087 were unique to sample 1 and sample 2, respectively (Fig. 4a).

These differences could be due to a combination of individual and

technical variations, and justified the use of two biological

replicates in this study. Genomic locations of all mapped tags

together with their absolute and relative AC values are presented

in Table S5. The data are deposited in NCBI Gene Expression

Omnibus [43,44] and are accessible through GEO series accession

number GSE38725 (http://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?acc = GSE38725).

The 19,257 sequence tags mapped to all horse (Equus caballus,

ECA) autosomes, the X chromosome, chromosome Un, and the

mitochondrial (Mt) genome (Table 3). Because the horse Mt

genome is only 16,660 bp [45], it showed the highest number of

mapped tags per megabase (Mb) though only 3 tags mapped to

this part of the genome. Among the autosomes, the number of tags

in relation to chromosome size correlated well with the known

gene densities and was the highest in ECA11, ECA12 and ECA13,

and the lowest in ECA9 and ECAX (Table 3).

According to the AC value which was used as the measure of

expression level, the 19,257 tags fell into three categories: i) 1,028

(5%) tags with very high expression and AC$100; ii) 8,759 (45%)

Figure 1. Venn diagram of transcripts detected in stallion
sperm and testes by microarray analysis (SNR $2).
doi:10.1371/journal.pone.0056535.g001

Stallion Sperm Transcriptome
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tags with high expression and AC between 10 and 100, and iii)

9,470 (50%) tags with medium expression and AC between 1 and

10 (Fig. 4b). The distribution of very highly expressed tags in the

horse genome was not uniform and tags with ACmax.100,000

were predominantly found in ECAUn, ECA1, ECA3, and ECAX,

possibly indicating the locations of functionally important genes

for the sperm. However, accumulation of very highly expressed

tags to ECAUn is more likely because it contains multicopy

sequences encoding for 18S and 28S ribosomal RNA which form

about 80% of raw reads (see below). Compared to this, the ACmax

in ECA12, ECA16 and ECA30 was less than 1,000 sequence reads

per locus (Table 3).

Overall, there was a good agreement between the two sperm

samples regarding the number and AC values of about 80% of

mapped tags across the genome, including the tags with very high

expression (Table S5). The most pronounced differences were

cases where the same tag scored high or very high (AC.10) in one

sample and low (AC,1) in another. Some differences in alignment

of data in biological replicates were likely due to sequencing errors

and chance alignments which is a significant problem for short

reads and low alignment scores [46]. Among the 19,257 tags, 22%

fell into this category and were uniquely mapped in sperm 1 or

sperm 2 (Fig. 4a; Table S5).

Structural and functional annotation of RNA sequence

data. Structural and GO annotations of the 19,257 mapped

RNA-seq tags with AC$1 were conducted by alignment to the

equine reference sequence (EcuCab2; UCSC Genome Browser;

http://genome.ucsc.edu/) using Enhanced Read Analysis of Gene

Expression (ERANGE) software packages [47], as well as by

homology-based approach against the human genome in GOanna

(AgBase; http://www.agbase.msstate. edu/cgi-bin/tools/GOan-

na.cgi) pipeline. A total of 5,903 (,30%) of all mapped tags,

aligned with annotated genes in the horse genome and were

classified by ERANGE as expressed sequence tags (5,268),

mRNAs (495) and micro RNAs (140) (Fig. 5a). Since the structural

annotation of the equine genome is as yet incomplete, we used a

permissive 620 kb parameter to identify additional untranscribed

regions (UTRs), new external exons, and to discriminate best

candidates for novel genes. Among the 5,903 annotated

transcripts, ,17% entirely fell within the boundaries of annotated

genes, 83% partially aligned with known genes, and 0.03%

localized within the extended gene boundaries (see Materials and

Methods). Only 1,378 annotations uniquely corresponded to

individual equine genes. Similarly, 34% (6,606) of all mapped

RNA-seq tags aligned with annotated sequences in the human

genome identifying 3,262 unique genes. Because the horse

Figure 2. Heat maps of GO functional groups for sperm up-regulated (a) and sperm down-regulated (b) transcripts. Blue boxes
denote that the gene has not been associated with the corresponding GO category. Genes with symbols in red font were validated by qRT-PCR.
doi:10.1371/journal.pone.0056535.g002

Figure 3. Validation of significantly (p,0.05) sperm up-
regulated (a) and sperm down-regulated (b) genes by qRT-
PCR (see also Table 1).
doi:10.1371/journal.pone.0056535.g003

Stallion Sperm Transcriptome
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(ERANGE) and human (GOanna) annotations shared only 136

genes in common (Table S6), stallion sperm transcripts as observed

by RNA-seq analysis corresponded to a total of 4,504 annotated

genes (Fig. 5b).

The majority of mapped RNA sequence tags (13,354 tags, 70%)

had no match in the current horse genome draft assembly by

ERANGE. From the tags that could not be annotated, we selected

12 tags with extremely high average coverage values (AC.50,000)

and showed by manual BLAST analysis that 67% of these tags

were highly similar to the rRNA in the 60S (5S, 28S) and 40S

(18S) subunits of the eukaryotic ribosome (Table 4). High AC

values of these tags indicated abundant representation of rRNA in

stallion sperm.

Gene ontology analysis of the sperm transcripts that corre-

sponded to 1,378 annotated equine genes and 3,262 human

orthologs produced 10 main functional categories: 1) plasma

Table 1. Selected most significantly (p,0.005) differentially expressed genes between stallion sperm and testes by microarray
analysis and qRT-PCR (see also Fig. 3).

Gene symbol DE Primers for qRT-PCR 59-39 Function: GeneCards:http://www.genecards.org/

PADI6 up F: GATTGTGATGGGCAAGAACC Embryonic development

R: AGCAGCTGGCAGATCTTTTC

DNAJC16B up F: GAGAAGCAGGGCTACCAGAA Unannotated

R: TCTTTCCAAACAGGCTCGAT

DCDC2 up F: TGGCTTTTACCTGTGGGTCT Sperm motility-sperm flagellum outer layer

R: TACACCAGCACGCTCTTCAC

CTTN up F: CTGGAACCCGTGTACAGCA Sperm structure -organizing the cytoskeleton

R: GCCTCCGTGCTTTCATAGAC

REEP6 up F: GGCTTCCTGTTGTTCTGCAT Sperm structure-outer dense fiber of sperm tails

R: CACTGCCTCGTGATGCTTTA

ARID5B up F: GCTTGCACGGACCTTACATT Regulation-regulator of smooth muscle cell differentiation and
proliferation, defects in male reproductive organs; cryptorchid
phenotype

R: GGAGTGTCTTCTGGGAGGAA

ATG12 up F: TGGCAGTGATGGTAAACTGG Regulation-bulk-protein degradation pathway, essential for
autophagosomal formation

R: CCACAAGTCTCTTGCCACAA

GSTA1 down F: GGAAGTTTGATGTTCCAGCA Regulation-cytosolic and membrane bound- detoxification of
electrophilic compounds

R: GTATTTGGCGGCGATGTAGT

DYNTL1 down F: GCCTACCAGCACAGCAAAGT Sperm structure -minus-end, microtubule-based motile processes

R: TTAAACGGTTTTCCCAGCTT

SPA17 down F: TCCAAGGAGATGTCGATTCC Surface protein -sperm surface zona pellucida binding protein

R: GTTGCTCCCTCAGAATCTCG

PRPSAP1 down F: CTGATCATGGCTTACGCTCT Regulation-negative regulation of 5-phosphoribose 1-diphosphate
synthesis

R: ATGGAACCCCTCTTCCTCAT

doi:10.1371/journal.pone.0056535.t001

Figure 4. Summary statistics for mapped RNA sequence tags: (a) Comparison of mapped tags (AC$1) between the two sperm samples; (b)
Proportions of tags with very high (AC$100), high (10,AC,100), and medium (1#AC#10) expression.
doi:10.1371/journal.pone.0056535.g004

Stallion Sperm Transcriptome
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membrane; 2) mitochondrial ribosomal protein; 3) chemokine

receptor and protein folding; 4) transcription regulation; 5) ion

binding; 6) cytoskeleton; 7) DNA packaging; 8) chromatin

assembly complex; 9) GTPase activator, and 10) RNA processing

factors and protein transport. Notably, EST and mRNA sequences

with the highest AC values all had known functions in

spermatogenesis or sperm-egg interactions (Table 5).

Finally, among the 140 sequence tags classified as miRNAs, 82

unique miRNAs were identified of which 17 completely aligned

with known equine miRNA genes (Table S7). The majority of

miRNAs (76%) showed high expression level (10 AC 100), 13

miRNAs (16%) had AC lower than 10, whereas 6 miRNAs-

MIR34B, MIR34C, MIR191, MIR223, MIR1248, and

MIR1905C-showed very high expression levels (AC$100) in

stallion sperm (Table S7).

Comparison of RNA-seq data with current gene

models. Structural annotations of RNA-seq data by ERANGE

for pyruvate kinase (PKM2), cysteine-rich secretory protein 3

(CRISP3), protamine 1 (PRM1), and transition protein 2 (TNP2)

were compared with the current NCBI equine gene models

(UCSC Genome Browser; http://genome.ucsc.edu/). The genes

were selected due to their known functions in sperm motility,

packaging, structure and fertilization (Table 5), and because all

four genes were represented by high number of transcripts

(AC.100) in the sperm.

Of the 9 tags that mapped to PKM2, each corresponded to two

different NCBI accessions (Table S8) suggesting the presence of

two splice variants in stallion sperm. Based on the AC values, the

variant comprising of exons 1, 3, 4, 5, and 6 was more abundant

than a variant where exons 2 and 9 were included; no tags aligned

with exons 7, 8, 10, and 11. However, a relatively abundant

(AC = 94.16) sequence tag aligned with a 59 upstream region of the

gene indicating likely presence of an additional exon (Fig. 6a).

The three CRISP3 sequence tags mapped 59 upstream from the

current gene model and did not align with any of the eight known

exons (Fig. 6b). This could indicate inaccurate annotation of the

gene in the equine draft assembly (EcuCab2) [42] or the presence

of additional 59exons.

All RNA-seq mapped tags that aligned with PRM1, aligned also

with TNP2, thus having two distinct accession locations (Table S8,

Fig. 6c) in this tightly regulated protamine gene cluster [48,49].

Transcripts with the highest AC values aligned with the two PRM1

exons, while a number of sequence tags with high to medium AC

values mapped 59 upstream of PRM1, and between PRM1 and

TNP2 (Fig. 6c)-the latter corresponding to parts of the initial joint

transcript of the protamine gene cluster [48,49].

Discovery of Y chromosome transcripts in stallion

sperm. Horse Y chromosome sequences are not present in

the draft assembly (EcuCab2) [42] or in the whole genome (WG)

expression oligoarray [50]. Therefore, we used the recently

published catalogue for 29 ECAY genes and ESTs that have

cDNA evidence [51], and found seven transcripts in the sperm

(Fig. 7). These included one X-degenerate gene (DDX3Y), three

horse specific novel transcripts (ETSTY4, ETSTY6 and ETY1), and

three Y-acquired retrotransposed genes (EIF3CY, MTND1 and

RPS3AY).

Comparison of microarray and RNA-seq data. The

21,000-element equine gene expression oligoarray is designed to

specifically target genes, so that each probe on the array

corresponds to a specific gene or EST [50]. The RNA-seq data,

on the other hand, comprises the entire transcriptome and

multiple sequence tags can be mapped to a genomic region

corresponding to one gene. This explains the substantial difference

between the number of sperm RNAs detected by microarray

analysis (6,761 transcripts) and by RNA-seq (19,257 mapped tags).

Nevertheless, the two datasets were similar regarding the number

of annotated genes: 3,319 by microarray and 4,504 by RNA-seq.

While 65–70% of the microarray transcripts were present among

RNA sequences (data not shown), RNA-seq additionally identified

miRNAs and over 13,000 anonymous mapped tags. The latter

potentially correspond to splice variants of known genes, to genes

yet to be annotated, to various non-coding RNAs (ncRNAs), and

maybe even to a few novel genes. Importantly, RNA-seq data

allowed refined quantitation of RNA transcripts as expressed by

the AC values (Table S5), to determine the level of their expression

in stallion sperm.

Discussion

The discovery of haploid transcripts in mammalian sperm dates

back to almost two decades when c-MYC mRNA [52] and MHC

Class I transcripts [53] were detected by RT-PCR in human

sperm. Since then, a number of studies have characterized

individual transcripts, as well as the global transcriptome of the

sperm in normal and subfertile men [6,8,28,31,54]. In animals,

sperm transcripts have been studied in bulls [29,32,33,34], boars

[23,35], and recently in the water buffalo [55] using human

microarrays, species-specific small custom-made microarrays, or

quantitative PCR. To our best knowledge, the present study is the

first global sperm RNA analysis in stallions, though massively

parallel sequencing has been recently used to study RNAs in the

sperm of men [56] and mice [57]. Our findings that thousands of

coding and non-coding RNAs are present in mature stallion sperm

are in good agreement with previous research in the field

[6,34,56,57].

Microarray analysis versus RNA-seq
Analysis of stallion sperm transcriptome by microarray and

RNA-seq in the present study, allowed comparison of the two

approaches for the efficiency to detect sperm mRNAs. The

information obtained by gene expression microarrays is typically

influenced by array design and annotation, with a possible

advantage that previously known annotations of array probes will

reduce the bioinformatics load of analysis. The 21,351-element

equine WG oligoarray [50] used in this study contains 14,531 GO

annotated gene products (AgBase: http://www.agbase.msstate.

edu/) of which 3,319 were identified in the sperm. In contrast,

transcriptional profiling by RNA-seq is unbiased, targets all classes

of RNAs, and substantially outperforms microarray in the

dynamic range of the expression levels [47,58]. Indeed, the

Table 2. Summary statistics for stallion sperm RNA-seq.

Number of: Sperm 1 Sperm 2

Raw reads 64,488,380 76,386,416

Base-pairs 3,224,419,000 3,819,320,800

Reads aligned to EcuCab2 45,266,539 42,335,436

Alignment % to EcuCab2 70.2 55.4

Non-match reads 19,221841 34,050,980

Calculated total mapped reads* 38,087,876 30,261,556

Unique mapped reads** 17,170 17,069

*Aligned reads with calculated AC values.
**Reads with AC $1 mapped to unique locations (see Table S5 for details).
doi:10.1371/journal.pone.0056535.t002

Stallion Sperm Transcriptome
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heterogeneity and expression range of the 19,257 mapped RNA-

seq tags in stallion sperm essentially exceeded the microarray data.

The downside, however, was limited power of structural

annotation of the RNA sequences due to which 70% of mapped

tags remained anonymous and will be targets for bioinformatics

pipelines in the future. Partial incompatibility between the

accession identities of microarray and RNA-seq annotations set

additional limitations to efficiently compare the two datasets. We

conclude that RNA-seq is certainly the method of choice for global

transcriptome analysis and for the discovery of biomarkers for

stallion fertility.

Sperm versus testis: selective retention of mRNAs in
sperm

The sperm of reproductively normal stallions contained a rich

repertoire of about 6,000 mRNAs/ESTs (Figs. 1, 5a) which,

according to microarray analysis, represent approximately 50% of

the mRNAs found in the testes (Fig. 1), a ratio similar to that

reported for men [6]. The ,11,000 testes transcripts, as

determined here by microarray, are close in number to the

12,013 expressed genes recently found in stallion testes by RNA-

seq [59].

Table 3. Distribution and expression of mapped RNA sequence tags in the horse genome.

Sequence map data RNA-seq data

Horse chr. Chr size, Mb No. of genes* Genes/Mb No of tags(AC$1) Tags/Mb ACmax

ECA1 185.8 2070 11.1 1,741 9 242,049

ECA2 120.8 1273 10.5 696 6 85,760

ECA3 119.4 1063 8.9 566 5 155,206

ECA4 108.5 980 9.0 390 4 30,327

ECA5 99.6 1221 12.3 440 4 15,063

ECA6 84.7 1107 13.1 346 4 31,927

ECA7 98.5 1455 14.8 412 4 49,977

ECA8 94 880 9.4 372 4 9,702

ECA9 94 610 6.5 276 3 7,597

ECA10 83.9 1204 14.4 1,451 17 18,607

ECA11 61.3 1245 20.3 1,544 25 49,866

ECA12 33 742 22.5 775 23 1,244

ECA13 42.5 745 17.5 1,023 24 4,197

ECA14 93.9 839 8.9 1,141 12 10,517

ECA15 91.5 815 8.9 1,159 13 42,457

ECA16 87.3 846 9.7 1,160 13 1,592

ECA17 80.7 497 6.2 754 9 4,436

ECA18 82.5 578 7.0 782 9 5,761

ECA19 59.9 541 9.0 574 10 2,189

ECA20 64.1 840 13.1 484 8 57,595

ECA21 57.7 491 8.5 290 5 1,717

ECA22 49.9 613 12.3 278 6 3,832

ECA23 55.7 410 7.4 281 5 14,218

ECA24 46.7 564 12.1 276 6 37,167

ECA25 39.5 605 15.3 284 7 12,795

ECA26 41.8 272 6.5 203 5 12,070

ECA27 39.9 277 6.9 217 5 5,922

ECA28 46.1 477 10.3 263 6 56,479

ECA29 33.6 246 7.3 141 4 55,336

ECA30 30 218 7.3 127 4 1,233

ECA31 24.9 176 7.1 116 5 19,300

ECAX 124.1 1239 10.0 390 3 133,493

ECAUn n/a n/a n/a 302 n/a 272,950

Mt 0.016 37 2312.5 3 188 4,390

TOTAL 19,257

Mb–megabase-pair; AC–average coverage; Mt–mitochondrial genome; map information for horse chromosomes was retrieved from Ensemb (http://www.ensembl.
org/index. html); * includes known and novel protein coding, miRNA, rRNA, snRNA, snoRNA and Misc RNA genes.
doi:10.1371/journal.pone.0056535.t003
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The majority of mRNA/EST transcripts in stallion sperm were

concordant with those in testes (Fig. 1), supporting the prevailing

idea that sperm transcripts are solely historical records of

spermatogenesis in testes [1,6,7,8,60,61]. Therefore, the detection

of 60 sperm up-regulated and 165 sperm-enriched transcripts by

microarray analysis was a surprise. Because GO analysis of these

transcripts showed their direct relevance to sperm functions (Figs.

2, 3; Tables S2, S3), it is tempting to speculate that certain

transcriptional products of spermatogenesis are selectively retained

in the sperm but not in the testes. This was further supported by

GO annotations for the sperm RNAs that corresponded to known

genes, mRNAs and ESTs (Table S1, Table 5) showing that the

majority of sperm transcripts relate to a few defined functional

categories. These included cytoskeleton and G-protein coupled

receptor activities, transmembrane transport, ion channels, and

mitochondrial ribosomal proteins-functions involved in sperm

chemotaxis, capacitation, sperm-egg interactions, and the acro-

some reaction [62,63,64]. For example, ion channels play an

important role in fertilization by facilitating interactions of the

sperm with its environment and the egg during capacitation,

sperm-egg recognition, and the acrosome reaction [65,66]. Trans-

membrane transport of glycoproteins on the surface of sperm tails,

on the other hand, is required for primary binding of the sperm to

the zona pellucida during capacitation and sperm-cumulus

interaction [67]. Even though the high abundance of olfactory

receptors (OR) and the predominance of sensory perception

related biological processes in sperm transcriptome (Table S1)

seems at first sight bizarre, ORs too are directly involved in sperm

functions. There are between 20 and 66 testicular ORs in

mammals which play pivotal roles in progesterone activated signal

transduction pathways in guiding sperm chemotaxis, capacitation,

Ca2+- channels and acrosome reaction [64,68]. The findings also

set an important foundation for future research to examine

whether the regulation of ORs in individual sperm cells is as tightly

controlled as their expression in the central nervous system, where

each neuron expresses monoallelically only one particular OR

[69]. This might be of value for assisted reproduction and for the

improvement of the therapy of subfertility.

Y chromosome transcripts in stallion sperm
One of the original findings was the detection of seven Y

chromosome mRNAs in stallion sperm (Fig. 7). Sequences of the Y

chromosome are typically missing from EST and cDNA libraries,

from genome sequence draft assemblies, and thus, from expression

arrays and gene annotation pipelines. Therefore, Y transcripts in

the sperm have been identified only in species with advanced Y

Figure 5. Structural annotation of 19, 257 mapped RNA sequence tags (AC$1): (a) Distribution of the tags in structural annotation
categories by ERANGE; (b) Comparison of annotated genes by GOanna (human genome) and ERANGE (horse genome).
doi:10.1371/journal.pone.0056535.g005

Table 4. NCBI BLAST alignments for 12 most abundant (AC.50,000) un-annotated mapped RNA sequence tags.

Chromosomal Location AC NCBI BLAST alignment NCBI accession number E-value Identity %

chrUn:41671499-41671648 272,950 Sus scrofa 28S rRNA AB117610 2E-48 92

chr1:183854089-183854405 189,364 Homo sapiens RPS29 gene for ribosomal protein S29 AB061847 3E-150 99

chr3:36417092-36417971 155,205 Mouse 28S rRNA X00525 0 91

chrX:51467917-51468014 133,492 Crocodylus siamensis 18S rRNA EU727190 1E-13 93

chr1:89070737-89071827 104,507 Equus caballus 28S rRNA NR_046309 0 99

chrUn:55274673-55275483 98,778 Homo sapiens 28S rRNA M11167 0 91

chrX:87062618-87062767 82,610 Homo sapiens 7SL RNA, NG_002426 2E-54 94

chrUn:64060479-64061987 62,499 Bubalus bubalis 18S rRNA JN412502 0 99

chr20:7063095-7063141 57,594 Crocodylus porosus 18S rRNA EU727191 3E-10 98

chr28:36791911-36792005 56,479 Homo sapiens 7SL RNA M20910 9E-30 94

chr29:1282347-1282467 55,336 Homo sapiens 45S pre-rRNA NR_046235 3E-51 99

chr1:89070491-89070650 53,940 Equus caballus hypothetical protein XM_001916364 1E-60 94

doi:10.1371/journal.pone.0056535.t004
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chromosome gene catalogues–DBY, SRY, and RPS4Y in men [70]

and Dby in mice [24]. Given the known role of Y chromosome

genes in spermatogenesis and male fertility and their high

expression levels in testes [51,71], the presence of Y transcripts

in sperm is not surprising. Although, it is noteworthy that among

tens of Y genes expressed in testes, only a few transcripts are

retained in the sperm. Among these, DBY (alias DDX3Y) is of

particular interest because it is present in the sperm of all three

species–humans, mice and horses. In mice, Dby transcripts are

retained in the sperm after capacitation and transferred into the

oocyte during fertilization. These transcripts are thought to be

necessary for the early development because blocking Dby with

antisense RNA results in inhibition of zygotic development in mice

[24]. Given that Y transcripts are delivered to the zygote

exclusively by the sperm, the functions of ECAY transcripts in

stallion sperm need further investigation.

In summary, functional coherence of the GO categories of

stallion sperm coding RNAs is in agreement with the observations

in humans that sperm mRNAs are not random untranslated

remnants of spermatogenesis but constitute a population of stable

full-length transcripts that are selectively retained for functions in

fertilization and early development [6,11].

Non-coding RNAs: rRNAs, miRNAs and lncRNAs
Direct sequencing of stallion sperm total RNA allowed the

discovery and identification of RNA species other than mRNAs.

Among these, ribosomal RNAs (rRNAs) comprised a substantial

portion of mapped tags with very high AC values (Table 4). This

was a surprise because it has been a common knowledge that the

sperm are depleted of rRNA [6,72]. Absence of intact 18S and

28S rRNA peaks has been shown in most microarray-based sperm

transcriptome studies [6,32,35,38] and is an established standard

for sperm RNA quality evaluation [73]. Recent RNA-seq of

human sperm transcriptome [56] reveals that the truth lies in the

middle: 18S and 28S are the most abundant (80%) sperm

transcripts but they are not intact. Sperm rRNAs undergo selective

cleavage which specifically destroys full-length rRNAs but does not

affect mRNAs or small non-coding RNAs. Cleavage of sperm

rRNAs is needed to ensure translational cessation and prevent

spurious protein synthesis in the sperm. These findings explain the

presence of rRNAs in the stallion sperm in this study but also

clarify why 18S and 28S peaks are absent from sperm RNA

quality control electropherograms [73].

One of the most exciting results was the discovery of 82 sperm

miRNAs (Table S7) which comprised 0.73% of all RNA-seq

Table 5. Structural and functional annotations for mRNAs and ESTs with the highest AC values by RNA-seq.

NCBI Accession No Gene symbol Gene name
Location
Chr:Mb AC value Predicted or known function(s) Ref.

mRNA

NM_001081847 MMP1 Matrix metallopeptidase 1 7:12.7 11766 spermatogenesis [94]

NM_001082495 MMP3 Matrix metallopeptidase 3 7:12.7 11766 spermatogenesis [94]

NM_001135102 TNP2 Transition protein2 13:33.2 1730 sperm chromatin structure [95]

NM_001083596 PRM1 Protamine 1 13:33.2 1730 sperm chromatin structure [96]

NM_001159690 PKM2 Pyruvate kinase, muscle 1:121.0 297 high fertility sperm [97]

NM_001163873 GRP94 Glucose-regulated protein 28:27.3 238 sperm maturation [98]

NM_001081764 COL2A1 Collagen, type II, alpha 1 6:65.6 222 testes development and descent,
male infertility

[98]

NM_001160296 FBXO9 F-box protein 9 20:50.6 182 expressed in male germ-cells,
sperm differentiation

[95,99]

NM_001081842 CASP1 Caspase 1, apoptosis-related
cysteine peptidase

7:14.5 119 male fertility [100,101]

NM_001081932 CRISP2 Cysteine-rich secretory protein 2 20:47.7 114 sperm capacitation and
sperm-egg fusion

[102]

NM_001081874 CRISP3 Cysteine-rich secretory protein 3 20:47.7 114 protects sperm from degradation [103]

dbEST

CD470129 NEMF Nuclear export mediator factor 1:183.8 242048 sperm-egg interaction [104]

CX595503 CTNNBIP1 Beta-catenin-interacting protein 1 2:41.4 85760 cytoskeletal, cellular
morphogenesis, germ cell loss
and sterility

[105,106]

CD466273 LCP1 Lymphocyte cytosolic protein 1 7:12.7 11766 sperm maturation [107]

CD472316 DNTTIP2 Deoxynucleotidyltransferase,
terminal, interacting protein 2

5:71.1 11420 chromatin remodeling [108]

CD467145 FGD3 FGD1 family, member 3 23:54.9 10551 sperm motility [109]

CX595998 LYRM1 LYR motif containing 4 20:5.6 8565 mitochondrial membrane
polarization

[110,111]

CX596255 PDIA4 Protein disulfide-isomerase A4
precursor

4:101.1 4232 spermatogenesis, sperm
maturation

[112]

CX592294 NDUFV2 NADH dehydrogenase (ubiquinone)
flavoprotein 2

8:34.0 1997 expressed in sperm [113]

doi:10.1371/journal.pone.0056535.t005
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mapped tags (Fig. 4) and were annotated according to the in silico

detection of miRNAs in the horse genome [74]. The number of

miRNAs in stallion sperm was comparable with the 68 miRNAs

found in human spermatozoa [13], and several stallion miRNAs

were the same as identified in the sperm of men [75], boars [76]

and mice [57,77]. Among the latter, the most noteworthy were the

sperm-borne miRNAs which are required for the first cleavage

division and are found in mouse sperm and one-cell embryos but

not in the oocytes or embryos past the one-cell stage. Three such

miRNAs [77], MIR34B, MIR34C and MIR449A, were highly

abundant (AC$100) in stallion sperm (Table S7). While the

functions of sperm microRNAs in equine biology are yet to be

determined, recent discoveries in mouse and humans suggest that

sperm miRNAs, as well as novel piRNA- and tRNA-derived small

RNAs [57,78], regulate gene expression in the early zygote either

by direct interaction with mRNA or via epigenetic mechanisms

[13,20,21,77,79]. For example, miR-124, also found in stallions, is

critical for the establishment of a distinct, heritable chromatin

structure in the promoter region of Sox9 and is responsible for

RNA-mediated epigenetic control of embryonic and adult growth

in mice [79]. Further, recent comparative study on birth and

expression evolution of mammalian miRNA genes [80] indicates

the particular importance of X-linked miRNAs in testes where

they are potentially involved in diverse functions during

spermatogenesis. These X derived miRNAs tend to be duplicated

and have higher expression levels than autosomal miRNAs.

Though the functions of miRNAs in testes and sperm are likely

different, it is worth mentioning that among the 82 sperm miRNAs

identified in this study, six were derived from the X chromosome

of which MIR223 has high expression level (AC = 295; Table S7).

The discovery of over 100 sperm miRNA sequence tags of

which 82 could be aligned with unique miRNAs evidenced that to

some extent the small RNA fraction can be successfully targeted by

global transcriptome sequencing, without special small RNA

library construction. However, given that mammalian species on

average have about 300 miRNAs [80] and that sperm are

enriched with mse-tsRNAs (mature sperm-enriched tRNA-derived

small RNAs) [78] and other small non-coding RNAs [57] with

likely functions in development, additional studies are needed for

in depth analysis of the small non-coding RNA fraction of stallion

sperm.Male germ cells also contain transcripts of long non-coding

(lnc) regulatory RNAs [21] which are longer than 200 nucleotides,

have little or no protein-coding capacity, and regulate gene

expression through a diversity of mechanisms [81]. Because only

three lncRNA genes are available for the horse in the Long Non-

Coding RNA Database (http://lncrnadb.com/) and lncRNA

sequences are not conserved across species [81], the RNA-seq

annotation pipelines (ERANGE, AgBase) [47] did not identify any

lncRNAs. However, we anticipate that among the over 13,000

RNA-seq tags that could not be annotated in this study, many

represent small and long regulatory RNA species.

Functions of sperm transcripts
Recent studies have essentially challenged the prevalent concept

that the sperm are transcriptionally and translationally dormant

cells [82] and that sperm transcripts have no functions of their own

[1,6,7,8,11,61,83]. For example, there is evidence that the mature

sperm possess an efficient RNA polymerase machinery for

transcription, mRNA splicing and for reverse transcription of the

primary RNA into stable cDNAs [84], majority of which are

delivered during fertilization to the zygote [16]. Sperm mRNAs

can be de novo translated using mitochondrial-type ribosomes and

at least 26 such sperm-translated proteins are known to be

required during capacitation, sperm-egg interactions and fertiliza-

tion [17,18,19,85]. Also, sperm coding and non-coding RNAs are

thought to have a role in stabilizing sperm chromatin and

facilitating the selective escape of sequences necessary for early

development from repackaging by protamines [15]. This is in line

Figure 6. Comparison of RNA-seq data with current equine gene models: (a) PKM2 showing 9 in silico prediction sites, of which two are
positioned 59 upstream to exon 1; (b) CRISP3 with 3 in silico prediction sites, all located 59 upstream to exon 1; (c) PRM1 and TNP2 cluster (the
protamine cluster) with 12 in silico prediction sites of which only two align with PRM1 and TNP2 exons. Black boxes with numbers –exons in current
gene models; blue boxes –very highly expressed tags (AC$100); red boxes–highly expressed tags (10,AC,100); green boxes–tags with medium
expression (1#AC#100). Exact start and end sites of all mapped tags are presented in Additional file 7.
doi:10.1371/journal.pone.0056535.g006
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with our findings that stallion sperm mRNAs are not retained

randomly but form a distinct population with functions directly

relevant to sperm-egg interactions, fertilization and embryonic

development. Furthermore, the presence of non-coding regulatory

RNAs suggests that like in mice, RNAs can serve as epigenetic

modifiers of gene regulation in early equine development

[10,20,21,86]. Despite these recent advances, functions of the

majority of RNAs found in mammalian sperm remain to be

identified [10] and need further investigation.

The primary practical goal of sperm transcriptome analysis in

humans and animals is the detection of transcripts that could serve

as biomarkers or diagnostic tools for fertility evaluation. For

example, elevated protamine mRNA retention in human sperm is

an indication of abnormal protamine translation and infertility

[27]. Also, consistent and biologically relevant differences in sperm

mRNA expression profiles have been found between fertile men

and men with teratozoospermia [26], cryptorchidism [28] and

idiopathic infertility [30,31]. In bulls, DE sperm transcripts have

been associated with high or low sperm motility [29], as well as

with overall high- and low-fertility [34]. In boars, statistically

significant differences in sperm mRNA profiles have been

associated with seasonal changes in the reproductive status [36].

Overall, the current knowledge about sperm transcriptome in men

and animals suggests that sperm RNA profiles could be used as a

genetic fingerprint of normal fertile males and as a molecular

diagnostic platform for male infertility. In this respect, the results

of the present study, particularly the expression data for sperm

miRNAs and the mRNAs relevant to sperm functions, set a

foundation for the development of sperm-based markers for

fertility evaluation in stallions in the future.

RNA-seq data and structural annotation of the horse
genome

While the primary goal of this study was to characterize in detail

the transcriptome of stallion sperm, the generated RNA-seq data is

a valuable resource for the improvement of horse genome

structural annotation [54]. This was illustrated by suggesting

additional exons, splice variants or another genomic location for

four important sperm genes-PKM2, CRISP3, TNP2 and PRM1

(Fig. 6). Thus, the RNA-seq data is a valuable resource to improve

the structural annotation of the horse genome, and for the

discovery of novel genes and regulatory RNAs.

Methods

Ethics statement
Procurement of stallion semen and testes was performed

according to the United States Government Principles for the Utilization

and Care of Vertebrate Animals Used in Testing, Research and Training and

were approved by the Clinical Research Review Committee

(CRRCs #08–19; #08–33; #09–32; #09–47) and Animal Use

Protocol #2009–115 at Texas A&M University, supplemented

with Informed Owner Consent From stating that owners of the

stallions gave permission for their animals to be used in this study.

Samples
Fresh ejaculates from five reproductively normal stallions were

collected using an artificial vagina (Missouri model). The ejaculates

were first evaluated for sperm concentration, motility character-

istics and morphological features [87,88], followed by purification

from somatic cells and immature sperm by EquiPureTM (Nidacon

International, Sweden) discontinuous gradient centrifugation [73].

Testes samples were obtained from four normal stallions by

castration. Purified sperm and testes were stored in RNAlater

(Ambion) at 280uC until use.

RNA isolation and evaluation
Total RNA was isolated from sperm with TRIzol reagent

(Invitrogen) as described by Das and colleagues [73], and from

testes using RNeasy mini elute kit (Qiagen) and manufacturer’s

protocol. The RNA samples were cleaned from genomic DNA

(gDNA) with Turbo DNase kit (Applied Biosystems/Ambion) and

purified with RNeasy MinElute Cleanup kit (Qiagen). The

quantity and quality of isolated RNA were evaluated with

spectrophotometer (NanoDrop 1000, Thermo Fisher Scientific),

Bioanalyzer (Agilent Technologies), and reverse transcriptase PCR

(RT-PCR) using primers for sperm- and testes-specific PRM2

(protamine 2), and somatic cell-specific PTPRC (protein tyrosine

phosphatase, receptor type, C) (Fig. S2) [73]. The spectropho-

tometer OD values for all total RNA samples must to be 1.70–1.75

for absorbance ratios A260/A280, indicating that the RNA is free

from proteins and organic compounds [89]. The Bioanalyzer

profiles distinguish between testes and sperm total RNA: RNA

Integrity Number (RIN) above 8 and two peaks corresponding to

18S and 28S rRNAs are indicators for the good quality of testes

Figure 7. ECAY transcripts in stallion sperm. Agarose gel images
showing RT-PCR amplicons of 7 ECAY genes and transcripts in stallion
sperm.
doi:10.1371/journal.pone.0056535.g007
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RNA; in contrast, sperm is depleted of intact rRNA (Fig. S2) [73].

RT-PCR with intron-spanning primers for PRM2 validate that all

RNA samples are free of genomic DNA, while no amplification of

PTPRC in sperm indicates that the sperm RNA is not contam-

inated with RNA from somatic cells (Fig. S2) [73].

RNA linear amplification
For microarray hybridizations, sperm and testes total RNA was

subjected for two rounds of linear amplification by T3/T7

promoter synthesis with RNA Amplification RampUp kit (Geni-

sphere) following manufacturer’s instructions. Starting with 20–

30 ng of total RNA, about 20–60 mg of sense-strand mRNA was

obtained and stored at 280uC until use.

Expression microarray hybridizations
Four different testes and five sperm RNA samples were used for

microarray hybridizations. Testes samples were pooled to generate

a reference RNA for normal stallion testes, while sperm samples

were used individually. Individual sperm and pooled testes RNA

was converted into cDNA and labeled with Cy3 or Cy5 using

3DNA Array 900MPX Detection kit (Genisphere). Transcription-

al profiles of stallion sperm and testes were studied by hybridiza-

tion to the Texas A&M 21,351-element equine WG expression

oligoarray [50]. Each hybridization experiment comprised a pair

of differently labeled (Cy3 or Cy5) RNAs: the testes reference and

one of the five sperm samples. Including a dye swap, a total of ten

microarray hybridizations were conducted in a Sure Hyb

hybridization chamber (Agilent Technologies) overnight, followed

by post-hybridizaton washes in pre-warmed (42uC) 26 SSC with

0.2% SDS and 0.26 SSC at room temperature for 15 min each.

Microarray data analysis
The slides were scanned with a Gene Pix 4100B scanner at 5

micron resolution (Molecular Devices). Spot-finding and quanti-

fication of array images was carried out using Gene Pix Pro 6.1

software and the data were stored as GenePix Results (.gpr) files.

The raw intensity data were normalized within individual arrays

using print-tip LOWESS method [90]. To be considered

significant, the signal for a candidate had to be above a threshold

value (SNR $2) determined according to the fluorescence output

of the negative controls printed on the microarray. Bayesian t-test

was performed to consider DE genes between the sperm and

testes: signal FC .2 and p value 0.05 were considered significant.

The normalized data were analyzed with Bioconductor LIMMA

package in the R computing environment, followed by GO

analysis using DAVID Bioinformatics Resources (http://david.

abcc.ncifcrf.gov/) to describe those molecular functions and

biological processes that appeared to be influential.

Validation by quantitative real-time PCR (qRT-PCR)
The cDNA was synthesized from 2 mg of linearly amplified

testes and sperm RNA with SuperScript VILO cDNA synthesis kit

(Invitrogen), purified with MinElute PCR purification kit (Qiagen),

and evaluated for quantity and quality with a NanoDrop

spectrophotometer (Thermo Fisher Scientific). Aliquots of cDNA

were stored at 220uC until use. Exon spanning primers for qRT-

PCR were designed for selected genes (Table 1) using Primer3 ver

0.4.0 software [91], and the efficiency of all primers was evaluated

by making a standard curve in the sperm and testes samples.

Duplicate qRT-PCR reactions in triplicate experiments were

carried out on a Light CyclerH 480 (Roche Diagnostics) along with

two housekeeping genes (ACTB, b-actin and PPIA, peptidylprolyl

isomerase a) as controls. Each qRT-PCR assay used ,100 ng of

mRNA in a 20 mL reaction with 16 Universal SYBRH Green

Master Mix (Applied Biosytems, CA) and 300 nM primers. The

results were analyzed with LightCycler 480 Software v1.5 by

calculating log2
2DDCt; the P-value was calculated by performing

student’s t-test and p,0.05 was considered significant. Scatter

plots for qRT-PCR statistics were generated in Microsoft Excel

(Fig. S1).

Detection of Y chromosome transcripts in stallion sperm
Reverse transcriptase PCR experiments on stallion sperm and

testes were carried out according to standard protocol [73] using

primers for 29 known horse Y chromosome genes and transcripts

with cDNA evidence [51], along with primers for PRM2 and

PTPRC as positive and negative controls, respectively.

RNA-seq library construction and sperm RNA sequencing
Total RNA from the sperm of two reproductively normal

stallions was used for next generation sequencing (NGS) on the

ABI SOLiD 4 platform at Cofactor Genomics (ST. Louis, MO,

USA).-Total RNA (500 ng) was directly used for SOLiD single-

end RNA sequencing fragment library construction according to

the ABI protocol (http://www.cofactorgenomics.com/faq) [92].

First strand cDNA was directly generated from total RNA using

4 mL of random hexamers (ABI) and SuperScript II Reverse

Transcription Kit (Invitrogen) in a 30 mL final volume, following

the manufacturer’s instructions. The second strand cDNA was

generated using 10 mL of 56 second strand buffer (500 mM Tris-

HCl, pH 7.8; 50 mM MgCl2; 10 mM DTT), 30 nmol dNTPs; 2

U of RNase H, and 50 U of DNA Pol I (Invitrogen), and incubated

at 16 uC for 2.5 h. The double-stranded DNA (dsDNA) was

purified with QIAquick PCR purification kit (Qiagen) and the

concentration was quantified. From each sample, ,100–200 ng of

cDNA was fragmented using Covaris S2 System (Covaris, Inc.).

Sequencing libraries were generated with SOLiD Fragment

Library Construction Kit (ABI) as described elsewhere [92].

Briefly, fragmented cDNA was end-repaired with Polishing

Enzyme 1 and End Polishing Enzyme 2 (ABI); adapter ligated

with SOLiD P1 and P2 adaptors, size selected for 200 to 230 bp

on a SOLiD Library Size Selection gel, followed by nick

translation and PCR amplification using Library PCR Primers 1

and 2 and Platinum PCR Amplification Mix. Amplified libraries

were column purified, quantified using the SOLiD Library

TaqMan Quantitation Kit, and applied on ABI SOLiD sequencer

at a concentration of 10 ng per lane.

RNA sequence analysis and annotation
The 50 bp single-end SOLiD raw reads were directly aligned

with the horse reference sequence EcuCab2 [42] using ABI aligner

software (NovoalignCS version 1.00.09, http://www.novocraft.

com/) which uses multiple indexes in the reference genome,

identifies candidate alignment locations for each primary read,

and scores alignment locations using the Needleman-Wunsch

algorithm [93]. The alignment parameters allowed the minimum

number of 30 good quality bases for a read (l = 30); the highest

alignment score acceptable for the best alignment was 140

(t = 140), whereas a default threshold was calculated from read

length and genome size such that an alignment to a non-repeat

should have a quality higher than 30; the number of alignments

recorded for a read during the iterative search process, i.e., the

number of alignments with score equal to the best alignment was

10 (e = 10). If a read was unaligned, it was shortened by 1 base and

tried again. Alignments in repetitive sequences were discarded by

removing reads with multiple similarly scoring alignments. The

single highest-scoring alignment for each raw read was mapped.
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Sequence alignment and alignment clustering to define expressed

loci and perform linear normalization across the two sperm RNA

samples was carried out with a software package EXpression

analysis Pipeline, EXP (Cofactor Genomics).

Gene expression level or average coverage (AC) was calculated by

normalizing each sample to the fewest reads and directly

comparing different loci. Expression level of a transcript was

estimated from the number of reads that mapped to that

transcript. The variability present in sequencing depths in different

samples was taken care of by the use of two biological replicates.

Sequencing depth at each locus and differences in gene expression

(AC) between the two sperm samples were calculated using log

(base2) ratio, thus showing the association between the two

samples. Some differences in alignment of data in biological

replicates were likely due to sequencing errors and chance

alignments which is a significant problem for short reads and

low alignment scores [46]. To combat the high false-positive rate,

we focused on a high-quality subset of the data consisting of

sequence variants supported by different independent reads.

Sequencing reads were computationally categorized according to

their AC and chromosomal location. This categorization was

conducted comparatively with respect to a present horse genome

draft sequence assembly, and normalized count of the number of

mapped position was calculated. This count served as a proxy for

the transcripts with true abundance in the sample. Expression

directories were divided into four categories according to the sum

of AC values: very high–AC$100; high 210,AC,100; medium

21#AC#10, and low AC,1. Loci with low expression in both

sperm samples were removed from further analysis because they

represented the least compelling evidence of expression. Genomic

locations of all mapped transcripts were retrieved using Python VS

2.66 script.

Structural annotation of genes for all sequence tags with AC$1

was conducted in two categories: i) a homology-based approach

with the human genome (AgBase GOanna; http://agbase.msstate.

edu/cgi-bin/tools/GOanna.cgi) and ii) direct annotation with the

horse genome using the Enhanced Read Analysis of Gene

Expression (ERANGE) with a 620 kb window for recognized

chromosomal locations. Matches were categorized as: F–falling

within gene boundaries; P–partially falling within gene boundar-

ies, and A–adjacent, falling into extended gene boundaries within

the expanded ERANGE window. Annotated genes were func-

tionally analyzed and clustered for GO terms in DAVID

Bioinformatics Resources (http://david.abcc.ncifcrf.gov/) with

medium classification stringency for all parameters.

Supporting Information

Figure S1 Scatter plots of qRT-PCR statistics for DE
genes in sperm and testes by microarray analysis (see
also Fig. 3). A Sperm up-regulated genes: a. PAD16, p-value

0.025063716, Fold change -17.74531191(sperm), 5.757703597

(testis); b. DNAJC16B, p-value 0.000370874, Fold change -

59.55886046 (sperm), 1.329895004 (testis); c. DCDC2, p-value

0.009505038, Fold change -41.79889717 (sperm), 1.054235336

(testis); d. CTTN, p-value 0.025377064, Fold change -114.2727567

(sperm), 17.61968043 (testis); e. REEP6, p-value 5.65337E-05,

Fold change -858.1806418 (sperm), 5.757703597 (testis); f.

ARID5B, p-value 0.029703844, Fold change -2.675065645

(sperm), 0.370649473 (testis); g. ATG12, p-value 0.079897582,

Fold change -4.477059424 (sperm), 0.693040106 (testes); B Sperm

down-regulated genes: a. GSTA1, p-value 0.008611828, Fold

change -0.427023 (sperm), 8.3 (testes); b. DYNTL1, p-value

0.028173, Fold change -0.777409 (sperm), 2.95 (testes); c. SPA17,

p-value 0.016193, Fold change -0.569896 (sperm), 1.75 (testes);

d. CTTN, p-value 3.3E-05, Fold change -0.24142 (sperm), 4.14.

(TIF)

Figure S2 Sperm RNA quality check. A Bioanalyzer analysis

showing that mature sperm is devoid of intact ribosomal 18S and

28S RNA; B RT-PCR with sperm and testis specific PRM2 (left)

and sperm-negative PTPRC.

(TIF)

Table S1 Gene Ontology classifications and terms for
3,319 sperm transcripts by microarray analysis. This

table contains GO analysis statistics for all annotated genes that

were expressed in sperm by microarray analysis. The GO

categories i) Biological process, ii) Molecular function, and iii)

Cellular component are shown on separate spreadsheets; Count-
number of genes associated with this gene set; Percentage-genes

associated with this gene set/total number of query genes; P-
value-modified Fisher Exact P-value; Genes-the list of genes

from query set that are annotated to this gene set.

(XLS)

Table S2 Most significant (p,0.001) GO terms for
sperm transcripts identified by microarray analysis
(count-number of genes associated with this gene set).
(DOCX)

Table S3 Gene Ontology classifications and terms for
165 sperm-enriched transcripts by microarray analysis.
This table lists GO analysis statistics for the sperm-enriched genes.

The GO categories i) Biological process, ii) Molecular function,

and iii) Cellular component are shown on separate spreadsheets;

Count-number of genes associated with this gene set; Percent-
age-genes associated with this gene set/total number of query

genes; P-value-modified Fisher Exact P-value; Genes-the list of

genes from query set that are annotated to this gene set.

(XLSX)

Table S4 Differentially expressed genes (n = 155) be-
tween the sperm and the testes. A list of the 60 sperm up-

regulated and 95 sperm down-regulated genes, their NCBI and

RefSeq accession numbers, logFC-log2 fold change in expression

between sperm and testes; AveExpr-average log2-expression level

of that gene across red-green channels, and P-value; NULL–no

annotation; #NA = unknown.

(XLS)

Table S5 Mapped RNA sequence tags (n = 19,257) from
the sperm of the two stallions. The table presents the

following information for each mapped sequence tag: i) genomic

location, ii) average coverage in sperm 1 (AC1) and sperm 2 (AC2),

and iii) log2 ratios between AC1 and AC2. Columns at the left are

sorted by AC1 and columns at the right by AC2. Mapped tags

with AC$1 are shaded grey.

(XLS)

Table S6 List of the 136 genes from RNA-seq data with
structural annotations both in the horse and the human
genome.
(DOCX)

Table S7 The 82 sperm micro RNAs discovered by RNA-
Seq.
(DOCX)

Table S8 Correspondence of the RNA-Seq data with the
current NCBI gene models for PKM2, CRISP3, TNP2 and
PRM1.
(DOCX)
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Table S9 Alignment and coverage statistics for RNA-seq
reads in the horse genome.
(XLSX)
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