The Effect of planting date, row spacing and variety on soybean yield in Mississippi

H. F. Hodges

Normie W. Buehring
Robert E. Coats
John McMillan
Ned C. Edwards

See next page for additional authors

Follow this and additional works at: https://scholarsjunction.msstate.edu/mafes-bulletins

Recommended Citation
Hodges, H. F.; Buehring, Normie W.; Coats, Robert E.; McMillan, John; Edwards, Ned C.; and Hovermale, Carl H., "The Effect of planting date, row spacing and variety on soybean yield in Mississippi" (1983). MAFES Research Bulletins. 817.
https://scholarsjunction.msstate.edu/mafes-bulletins/817

This Article is brought to you for free and open access by the MAFES (Mississippi Agricultural and Foresty Experiment Station) at Scholars Junction. It has been accepted for inclusion in MAFES Research Bulletins by an authorized administrator of Scholars Junction. For more information, please contact scholcomm@msstate.libanswers.com.

Authors

H. F. Hodges, Normie W. Buehring, Robert E. Coats, John McMillan, Ned C. Edwards, and Carl H. Hovermale

H. F. Hodges, Professor and Agronomist, and F. D. Whisler, Professor and Agronomist, Mississippi State University Department of Agronomy
N. W. Buehring, Associate Agronomist, MAFES Northeast BranchR. E. Coats, Superintendent, MAFES Black Belt BranchJohn McMillan, Associate Agronomist, MAFES Coastal PlainsBranch
N. C. Edwards, Associate Agronomist, MAFES Brown LoamBranch
C. Hovermale, Assistant Agronomist, MAFES South MississippiBranch
Content
Page
Objectives 2
Procedure 2
Results 3
Date of Planting 3
Row Spacing 4
Varieties 4
Plant Height 5
Soil Moisture 6
Morphogenetic Development (Growth Stages) 6
Discussion 9
Date of Planting 9
Row Spacing 9
Flowering 9
Root Development 10
Cultural Considerations 11
References 11
Acknowledgment 11

The Effect of Planting Date, Row Spacing and Vapiety on Soybean Yield in Mississippi

Che acreage and economic imctance of soybean has increased oidly in Mississippi during reit years. The increase in acreage d numbers of producers has used some concern that ailable date-of-planting inforation is sometimes limited and t based on locally derived data. me have observed that working ys during which some soybean reage can be planted often are ailable in mid-April; however, formation available on the effect early planting on yields is nited.
Some soybeans in nearly every mmunity are planted in July ch year. During the ten-year $\operatorname{riod}(1969-78), 50 \%$ of the soybean reage in Mississippi was not anted by June 1, and 33% still as not planted by June 10 (Figure

Soybeans are photoperiod sentive and the long days of late ne and early July in Mississippi event flowering while the shorter ys of late July and August cause owering. Planting too early uses premature flowering, and te-planted beans often are inaced to flower before the regetative factory" is large rough to supply adequate notosynthetic materials for opmum seed production. Belowormal yields normally can be zpected from beans planted too arly or too late.
National magazines have ported farmer experiences and ata from reputable scientists and stitutions showing yield increase om narrow-row (solid-seeded) yybeans in the mid-West. Rowoacing data from Heatherly (peronal communication) on Sharkey ay at Stoneville, Mississippi, aggest that the greatest

Figure I. Percent of total Mississippi soybean acreage not planted by specified dates (1969-78 overage).

Source: Mississippi Crop and Livestock Reporting Service, Mississippi Weather and Crop Report, (1969-78).
differences between 20 - and 40 -inch rows occurred when yield levels were relatively high and in seasons in which rainfall was well distributed. Adequate rain during the pod-filling period is thought to be especially important. These results are different from the findings in Indiana, Illinois and Ohio but are similar to results found in several experiments from other southern states (Egli, 1976 and Parker and Marchant, 1981).

A row-spacing study at Holly Springs, Mississippi, in 1967 through 1970 found Lee and Bragg to yield slightly more in 20 - than in 30 - or 40 -inch row spacings at most plantings. In 1967, the only year in which a very late planting was conducted, Lee produced 11.0, 7.4 and $5.2 \mathrm{bu} /$ acre when planted in 20 -, 30 - and 40 -inch rows, respectively.

The scarcity of information about the effect of date of planting
and row spacing on the performance of determinant-type soybeans (such as those most widely grown in Mississippi) led to initiation of this study at five locations (Verona, Starkville, Brooksville, Raymond and Poplarville) in 1976. A sixth location (near Newton) was added to the study in 1977. These locations represent a diverse group of soil and climate regions in the non-delta section of Mississippi. The general soil characteristics by study areas are as follow:

Northeast Mississippi (Verona)---Silty clay loam soil, slowly permeable to water,
primarily surface drained. High water table present through much of the year.

Blackbelt (Brooksville)-.-Clay to clay loam soil, shallow to chalk. The experimental site varies with 18 inches to chalk on one end of the field to about 12 inches on the other. The experimental plots were arranged so that each treatment received an equal number of plots on the deep as well as on the shallow soil

MAFES Plant Science Farm (Starkville)---Sandy clay loam soil, slowly permeable to water. Some evidence of plow pan. The
site was deep chiseled before th crop year. High water tabl? present through much of th, year.

Coastal Plains (Newton)Sandy loam soil, with plow pa $8-10$ inches deep under norma cultivation. The soil was dee, chiseled before the 1977 cro year.

Brown Loam (Raymond)Deep silt loam soil, minc evidence of a genetic pan 20-2 inches deep.

South Mississippi (Popla ville)---Sandy loam soil es cessively well drained.

Objectives

The objectives of the study were to determine (1) the optimum time to plant soybeans at each location, (2) the relative yield reduction one should expect by planting before

The general plan followed at all locations was to begin planting soybeans on April 15 and plant at two-week intervals until July 1. Soil moisture at the various locations and in different years caused the planting schedule to vary. At some locations (e.g., Newton and Poplarville) there was only limited space available, and the numbers of planting dates were restricted.

Soil moisture at each location was monitored at different depths throughout the growing season. Considerable variation in rainfall from year-to-year and among locations was an important determinant of planting schedules. Appendix Table 7 presents the rainfall distribution throughout the growing season at each location and year.

Forty-, 30- and 7-inch row spacings were evaluated at all locations except Newton and Raymond where 40 - and 7 -inch
spacings were evaluated. The $40-$ and 30 -inch spacings were planted with a conventional planter, and the 7 -inch spacings were planted with a grain drill. Manufacturers and models of equipment varied among locations. Planting rates were about 45 lbs of seed/acre when planted in 30 - and 40 -inch rows and about $60 \mathrm{lbs} /$ acre when planted with the grain drills. Stand establishment generally was not a problem; however, stand establishment was poor in some of the late plantings when soil moisture was low and soil surface temperatures were high. Germination of the Hill seed was low in 1978, and poor stands resulted even though seeding rates were increased. Data are reported for plots where stands were reasonable but are not included in the statistical analysis.

Plots planted with a conventional planter were four rows wide except at Raymond where plots were eight rows ($20-\mathrm{ft}$ wide). Plots
interaction of different maturix varieties with these manageme practices.
planted with a grain drill were 8 . 10 -ft wide at all locations. Lenॄt of plots varied from 25 to 50 ft .

Pests were controlled as need and control varied consideral among locations and years. W $\epsilon=$ control was generally satisfacter to excellent except at Starkville i 1978, Newton in 1979 and Popl ville in 1978 and 1979. A combis tion of cultivation and herbicir was used on plots planted wt conventional planters, and casional hand weeding was us? on plots planted with a grain dr.

The early-planted (mid and l_{i} April) beans were sprayed 1 : quently in early May to cont bean leaf beetle. Late-season 1 sects (fall armyworm, velvet be: caterpillar, the green clover wo and the cabbage looper) were serious problem at Brooksville a Starkville only in 1977. One ins ticide treatment controlled this pests in late July and early Augu; however, large populations of ci_{i}
age loopers and velvet bean catertlars developed in early eptember and seriously defoliated e late-planted soybeans at tarkville in 1977. The earlierlanted beans were damaged but ot completely defoliated by these isects.
The plots at Verona, Starkville, rooksville and Newton were arvested by hand in 1976 and ith a small-plot combine in 19779. Harvest at Poplarville was with small commercial combine in 976 and by hand in the other ears. The plots at Raymond were larvested with a field combine ach year. Beans from all handlarvested plots were threshed with small stationary thresher. The wo center rows of plots planted with a conventional planter and a trip 5 -ft wide from plots planted with a grain drill were combined. The plots were laid out in a andomized three-split block lesign with planting date the first split, row spacing the second split and variety the third split. The Raymond trial was replicated three times, and trials at the other locations were replicated four times.
The data were summarized by years and subjected to Duncan's New Multiple Range Test. The over-years summaries were subjected to Student Newman Kuel's Test.

Results

Jate of Planting

Data were summarized across all row spacings and varieties, but data for some years were excluded from the averages because of year-to-year variations in planting dates. There was little interaction of row spacings and planting dates or varieties and planting dates.
The highest yields at Verona, Starkville and Brooksville were from the late-April or early May plantings. The average reduction in yield observed for mid-April plantings compared to the op-

Figure 2. Four-yeor ($1976-79$) average yields of soybeons of Verono ond Storkville (overages of Centenniol, Forrest and Tracy, by row spacings and planting dates).
timum date (May planting) was about 15%. In contrast, mid-to lateJune planting had an average yield reduction of 33%. Yields from beans planted in June and July were lower with each delay in planting date. A typical yield response to different planting dates is illustrated in Figure 2. Yields were highest from plantings in May and early June. Each day of delay in planting on 30 -inch rows after June 10 resulted in a yield decrease of about 0.7 bu/acre/day. Yields of beans planted on 30 -inch rows on June 10, 15 and 25 averaged 34, 30 and 24 bu/acre, respectively. However, beans planted on 30 -inch rows in mid- and late-April produced $34 \mathrm{bu} / \mathrm{acre}$ or more.
Results at Newton and Raymond
were inconsistent (Table 1). Yields at Newton were lowest for beans planted in mid-April, but the highest average yield at Raymond was in plots planted April 19. Yield reduction from planting through May and until June 4 ranged from 1-17\%, and reductions after June 4 were relatively steep with progressively later planting dates.
The limited data available from South Mississippi show results similar to those observed in North Mississippi. Days available for planting during any particular time period are limited because of the low water-holding capacity of the sandy soils at that location. Hence, there were fewer planting dates at Poplarville than at other locations.

Table 1. The effect of planting date on soybean ylelds, averages of all varieties and row spacings, by location, $1976-79$.

$\begin{aligned} & \text { Planting } \\ & \text { Date } \\ & \hline \end{aligned}$	Bu / A	$\begin{gathered} \% \\ \text { Max. } 2 / \end{gathered}$	$\begin{aligned} & \text { Planting } \\ & \text { Date } \\ & \hline \end{aligned}$	Bu / A	$\begin{gathered} \hline \% \\ \text { Max. } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Planting } \\ & \text { Date } \end{aligned}$	Bu / A	$\begin{gathered} \% \\ \text { Max. } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Planting } \\ & \text { Date } \end{aligned}$	Bu / A		$\begin{aligned} & \% \\ & \text { Max. } \end{aligned}$	$\begin{gathered} \text { Planting } \\ \text { Date } \\ \hline \end{gathered}$	Bu / A	$\begin{aligned} & \% \\ & \text { Max. } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Planting } \\ & \text { Date } \\ & \hline \end{aligned}$	Bu / A	$\begin{aligned} & \% \\ & \text { Max. } \end{aligned}$
$\begin{gathered} \text { April } \\ 20 \end{gathered} \text { 16- }$	$29.9 \mathrm{C}^{3 /}$	85	$\begin{gathered} \text { Apri1 } 14- \\ 16 \end{gathered}$	29.3 C	85	$\begin{aligned} & \text { April } 14- \\ & 20 \end{aligned}$	20.4 C	83	$\begin{aligned} & \text { April 15- } \\ & 21 \end{aligned}$	19.1	D	60	April 19	37.6 A	100	$\begin{aligned} & \text { Apr11 17- } \\ & 28 \end{aligned}$	24.5 B	83
$\begin{gathered} \text { April } 29-10 \\ 30 \end{gathered}$	35.0 A	100	$\begin{aligned} & \text { April 28- } \\ & \text { May } 2 \end{aligned}$	33.9 A	99	$\begin{gathered} \text { April } 28-20 \\ 30 \end{gathered}$	24.6A	100	$\begin{gathered} \text { May } \\ 3 \end{gathered}$	23.2	c	73	$\begin{aligned} & \text { April 27- } \\ & \text { May } 5 \end{aligned}$	$32.9 \text { в }$	88	$\begin{aligned} & \text { May 11- } \\ & 18 \end{aligned}$	29.6 A	100
$\begin{gathered} \text { May } 19- \\ 24 \end{gathered}$	32.8 в	94	$\begin{gathered} \text { May } 16- \\ 24 \end{gathered}$	34.3 A	100	$\begin{array}{r} \text { May } 15- \\ 20 \end{array}$	22.9 B	93	$\begin{gathered} \text { May } 16- \\ 28 \end{gathered}$	31.9	A	100	$\begin{gathered} \text { May } 19- \\ 24 \end{gathered}$	37.2 A	99	$\begin{gathered} \text { June } 6- \\ 18 \end{gathered}$	25.2 B	B 8
$\begin{gathered} \text { June } 6- \\ 13 \end{gathered}$	32.6 B	93	$\begin{aligned} & \text { May } 30- \\ & \text { June } 8 \end{aligned}$	31.1 B	91	$\underset{5}{\text { June }} 1 \text { - }$	20.8 C	85	$\begin{gathered} \text { June } 6- \\ 14 \end{gathered}$	27.1	B		May 28- June 14	31.1 B	83			
$\begin{aligned} & \text { June } 28 \text { - } \\ & \text { July } 26 \end{aligned}$	27.3 D	78	$\begin{aligned} & \text { June } 15- \\ & 18 \end{aligned}$	19.1 D		$\begin{aligned} & \text { June } 14- \\ & 15 \end{aligned}$	16.1 D	66					$\begin{aligned} & \text { June } 21- \\ & 22 \end{aligned}$	$27.9 \text { C }$	74			
			$\begin{gathered} \text { June } 30- \\ \text { July } 12 \end{gathered}$	10.2 E		$\begin{gathered} \text { June } 29- \\ \text { July } 2 \end{gathered}$	9.3 E	38					$\begin{gathered} \text { June 29- } \\ \text { July } 6 \end{gathered}$	$25.3 \mathrm{D}$	67			
						$\begin{aligned} & \text { July } 14- \\ & 18 \end{aligned}$	4.2 F	17					$\begin{aligned} & \text { July } 12-1 \\ & 20 \end{aligned}$	$15.3 \mathrm{D}$	41			

[^0]
Row Spacing

The row-spacing results are presented as averages over all planting dates, varieties and years (Table 2). Generally, there was no difference between the average yield of soybeans seeded with a grain drill in 7 -inch rows and those planted in 30 -inch rows. However, yields from the narrower spacings usually were greater than for beans planted in 40 -inch rows.

The yield response (averages of the three highest-yielding varieties) to different row spacings at different planting dates at Verona and Starkville is presented in Figure 2. The data were summarized in this way because we suspected that the narrow row spacings would improve yields only in high-yielding situations. The 7 - and 30 -inch row spacings were generally higher yielding than the 40 -inch row spacings. There was little interaction between row spacings and planting dates; however, the greatest differences among the row spacings were for May and June plantings, the least for April and July plantings.

Table 2. The effect of row spacing on soybean yields, averages of all varieties and planting dates, by location, 1976-79.

Row spacing	Location					
	Verona	Starkville	Brooksville	Newton ${ }^{1 /}$	Raymond	Poplarvill
(inches) Bus	els/Acre	-	Poplar
40	$31.2 \mathrm{AB}^{2 /}$	25.0 B	15.7 B	27.4 A	28.3 A	26.5 B
30	32.1 A	29.0 A	18.1 A	----	---	25.0 B
7	29.9 B	29.1 A	18.5 A	25.9 A	29.2 A	29.9 A
1/ Data for 1977-79 only.						
Within each column, numbers followed by the same letter are not significantly different at the 0.05 probability level as determined by the Student Newman Kuel Test.						

The effect of planting date or variety on soybean yield response to row spacing was slight. There was a tendency for the latestplanted beans to yield better in the 7 -inch spacing than in 30 or 40 inch spacings.

Varieties

Our data show that the intera tion between row spacings an 1 planting dates was small. Th later-maturing varieties, Trac and Centennial, usually were tr 3

Table 3. The effect of varieties on soybean yields, averages of all planting dates, row spacings and years, by location, 1976-79.

Variety	Location					
	Verona	Starkville	Brooksville	Newton ${ }^{1 / 1}$	Raymond	Poplarville
	-	- • • •	bushels/acr	- .	-	-
Hill	28.9 C	22.9 C	14.8 B	23.9 B	24.1 B	19.8 E
Forrest	32.3 B	24.9 C	15.3 B	27.8 A	29.9 A	23.8 D
Tracy	35.7 A	30.6 A	19.6 A	28.7 A	29.3 A	--
Lee 74/Centennial ${ }^{\text {2/ }}$	$34.6{ }^{\circ} \mathrm{C}$	30.9 A	19.1 A	--	32.0 A	--
Bragg	23.8 D	27.9 B	17.8 A	16.2 AB	28.3 A	29.7 B
Davis	--	--	--	--	--	28.7 B
Pickett	--	--	--	--	--	26.3 C
Cobb	--	--	--	--	--	32.5 A
1/ Data for 1977-79 only.						
2/ Lee 74 was representative for this maturity group in 1976 at locations except Starkville, Centennial was used in 1977-79.						
3/ Within each column, values followed by the same letter are not different at a probability level to or less than 0.05 as determined by the Student-Newman-Kuel's Test.						

ghest yielding of the varieties sted at all planting dates and row acings (Table 3).
Tracy had the highest yield and e lowest yield reduction when anted in early April. Yields of orrest, Centennial and Tracy reraged over the three northern cations were 22,15 and 9% lower, spectively, from mid-April plantg than from planting at the otimum time (Table 4). Forrest, an arly-maturing variety, generally elded less in northern Mississippi hen planted in April; however, orrest yields were similar to yields
Tracy and Centennial when lanted in May and June. Bragg ielded less than the other varieties hen planted early; however, it is usceptible to stem canker, a disase that causes more damage to usceptible varieties when planted arly.
The general response of varieties planting date (photoperiod) is ie same, but some varieties are core sensitive than others. The ata in Table 5 illustrate this. The nost nodes were developed on lants in plots planted in May. lanting earlier or later resulted in wer nodes. Hill appeared to be ore sensitive than Tracy, and racy was more sensitive than ragg.

Plant Height

Plants at maturity (averages of all varieties tested at Brooksville in 1976) were slightly taller in the 7 inch spacing than in the 30 - or 40 -
inch rows (Table 6). Plant height declined rather dramatically when soybeans were planted after midJune.

Soil moisture

Soil-water changes at 6 -inch intervals, beginning at 21 inches below the soil surface, in plots planted in early May are presented in Figure 3A. All depths dried rapidly soon after June 1 and were recharged to field capacity by a mid-June rain. From that point, there was a long dry period in which the 21 -inch depth dried fastest and to the greatest extent. It appeared that the May-planted beans were capable of extracting water from deep in the soil. The soil was dried from the surface; i.e., the 6 -inch layer centered at 21 inches below the surface dried before the 6 inch layer immediately below it, and that layer dried faster than the next deepest layer. Apparently, soil water was removed gradually from areas explored by roots as they grew progressively deeper.

Soil water changes did not differ ($\mathrm{P}<.05$) among depth intervals on adjacent plots where beans were planted in July (Figure 3B). Apparently these late-planted beans were not capable of rooting sufficiently deep to remove significant amounts of water from any of the depths measured. This condition prevailed even though the surface soil was quite dry and the plants showed severe stress. Soil water content in the deeper strata (21 to 39 inches) was near field capacity during this period.

Morphogenetic development (growth stages)

Stages of development were monitored throughout the growing seasons at Starkville in 1978 and 1979 and in a similar experiment in 1980. (In the 1980 experiment, the same varieties as in previous years plus Bedford were planted April 30, May 12 and June 3. Later plantings were not made due to dry weather.) Dates of flowering were recorded as the time at which flowers appeared

Figure 3. Sail water use by saybeans, by depths
Belaw the sail surface. ($A=$ May planting, $B=$ July planting)

- field capacity

Source: Dato fram the MAFES Black Belt Branch.

Table 5.Effect of planting date and variety on node numbers, E . planting date and variety, Verona,

Planting Date	Variety		
	Hill	Tracy	Bragg
	nodes/plant		
4-16-76	12.6	14.5	16.6
2-29-76	12.7	17.2	17.0
5-25-76	12.5	15.9	17.5
4-16-77	13.3	14.8	16.2
4-29-77	13.0	19.1	19.3
5-19-77	14.6	19.3	19.9
6-09-77	11.7	16.8	16.3

Table 6. Plant height at maturity, averages of all varieties tested a Brooksville in 1976, by planting date and row width.

Planting	Row Width			Average
Date	7	30	40	
	- .	-	hes	- • -
4/20	31	27	28	28.7
4/30	35	28	28	30.3
5/20	32	27	25	28.0
6/14	29	22	25	25.3
7/02	23	18	17	19.3
7/15	12	13	15	13.3
Average	27.0	22.5	23.0	

any of the upper four nodes on re mainstem. Plant maturity was corded when some of the pods ecame mature pod colored.
Numbers of days from planting , flowering and numbers of days om flowering to maturity for each f the five varieties at five planting ates in 1979 are presented in igure 4. This year was selected to epresent a year when there was elatively little crop stress. In ontrast, 1978 and 1980 were both ears in which a hot, dry period ccurred during much of the growag season. The data show that ays from planting to flowering are afluenced strongly by planting ate. In the plots planted May 1, all arieties except Bragg flowered at he same time. The general trend or the later plantings was for the ater-maturing varieties to require nore days between planting and lowering than did the early arieties. Hill, however, usually equired a few more days to flower han did Forrest even though it
matures earlier. This is a trait for which Hill has been noted previously; however, its fruiting period is shorter.
Numbers of days from flowering to maturity appear to be influenced strongly by planting date. However, in contrast to days to flower, the varietal effect seems to be greater at the early planting dates than at the late planting dates; i.e., at early planting dates there are several days difference among varieties in the length of time from flowering to maturity. Bragg required 80 days compared to about 50 days for Hill when planted on May 1. As the planting date was delayed, the difference in length of reproductive period among varieties was much less. Thus, in late plantings, the primary effect of varieties with later maturity is delayed flowering, not an extension of the pod-filling period.

Data collected in 1980 (a hot and dry growing season) show that
length of time from planting to flowering was shorter in the hot season, and the varietal effect on days to flowering was less. Numbers of days from flowering to maturity, however, were longer. The later-maturing varieties (Tracy, Centennial and Bragg) required much longer from flowering to maturity at each planting date than did the earlier-maturing varieties (Hill, Forrest and Bedford). Thus, the hot weather appeared to shorten the time required to flower for all varieties tested but lengthened the period between flowering and maturity. Part of this lengthening probably was due to a delay in fertilization and the successful setting of pods. Due to the hot, dry weather in 1980, the early flowers were aborted, resulting in a long period during which additional flowers were produced. So, the time during which seed actually were being filled may not have been much different.

VARIETY AND PLANTING DATE

Figure 4. Time from planting to flowering and from flowering to maturity af soybeans grown on the MAFAS Plant Scierce Farm in 1979, by variefy and planting date.

Table 7. Dates of soybean growth stage attainment, by variety and planting dates, Starkville, 1979 l/.
$\underline{R-2} \frac{R-3}{R-4} \frac{R-5}{R-7} \frac{R-1}{}$

$\begin{aligned} & \text { Hil1 } \\ & \text { PD 12/ } \end{aligned}$	7/16-7/26	7/26-7/29	7/29-8/4	8/04-8/8	8/08-8/26	8/26-9/05	9/05-9/08
2	7/17-7/28	7/28-8/4	8/04-8/9	8/9-8/21	8/21-8/28	8/28-9/06	9/06-9/09
3	8/02-8/7	8/07-8/13	8/13-8/19	8/19-8/29	8/29-9/6	9/06-9/09	9/09-9/15
4	8/11-8/17	8/17-8/23	8/23-8/27	8/27-9/3	9/03-9/12	9/12-9/16	9/16-9/21
5	8/12-8/14	8/14-8/31	8/31-9/3	9/03-9/9	9/09-9/21.	9/21-9/26	9/26-10/02
Forrest							
PD 1	7/06-7/28	7/28-8/03	8/03-8/08	8/08-8/24	8/24-9/08	9/08-9/13	9/13-9/21
2	7/17-8/01	8/01-8/08	8/08-8/16	8/16-8/30	8/30-9/13	9/13-9/17	9/17-9/21
3	8/02-8/06	8/06-8/12	8/12-8/25	8/25-9/03	9/03-9/15	9/15-9/21	9/21-9/27
4	8/07-8/16	8/16-8/23	8/23-8/29	8/29-9/07	9/07-9/15	9/15-9/21	9/21-9/27
5	8/13-8/24	8/24-8/28	8/28-9/06	9/06-9/11	9/11-9/29	9/29-10/03	10/03-10/10
Tracy							
FD 1	7/06-8/04	8/04-8/12	8/12-8/23	8/23-8/30	8/30-9/21	9/21-9/24	9/24-10/01
2	7/17-8/09	8/09-8/13	8/13-8/25	8/25-9/03	9/03-9/21	9/21-9/24	9/24-10/03
3	8/08-8/12	8/12-8/19	8/19-8/27	8/27-9/04	9/04-9/24	9/24-9/28	9/28-10/03
4	8/08-8/20	8/20-8/27	8/27-9/02	9/02-9/09	9/09-9/26	9/26-10/01	10/01-10/06
5	8/14-8/22	8/22-8/28	8/28-9/07	9/07-9/19	9/19-9/30	9/30-10/03	10/03-10/08
Centennial							
PD 1	7/17-8/10	8/10-8/19	8/19-8/29	8/29-9/07	9/07-9/25	9/25-10/01	10/01-10/08
2	7/14-8/14	8/14-8/23	8/23-9/02	9/02-9/09	9/09-9/29	9/29-10/01	10/01-10/10
3	8/01-8/19	8/19-8/27	8/27-9/02	9/02-9/09	9/09-9/29	9/29-10/04	10/04-10/10
4	8/08-8/24	8/24-8/29	8/29-9/06	9/06-9/18	9/18-10/01	10/01-10/05	10/05-10/12
5	9/14-8/26	8/26-9/02	9/02-9/07	9/07-9/22	9/22-10/03	10/03-10/11	10/11-10/17
Bragg							
PD 1	7/21-8/15	8/15-8/18	8/18-8/26	8/26-9/08	9/08-10/01	10/01-10/09	10/09-10/17
2	7/24-8/15	8/15-8/18	8/18-8/30	8/30-9/11	9/11-10/01	10/01-10/10	10/10-10/18
3	8/08-8/17	8/17-8/24	8/24-9/01	9/01-9/11	9/11-10/01	10/01-10/10	10/10-10/20
4	8/14-8/24	8/24-8/29	8/29-9/06	9/06-9/19	9/19-10/07	10/07-10/10	10/10-10/20
5	8/22-8/27	8/27-9/02	9/02-9/06	9/06-9/19	9/19-10/07	10/07-10/13	10/13-10/22

1) Growth stages from Fehr \& Caviness, 1977.

2/ Planting Dates: PD $1=$ May $1, P D 2=$ May 16 , PD $3=$ June $5, ~ P D ~ 4=J u n e ~ 18, ~ P D ~ 5=J u l y ~ 2 . ~$

Table 7 contains data on the calendar time required for each variety at each planting date in the 1979 experiment to progress through the different reproductive growth stages (Table 8). This table can be used to estimate the length of time to maturity. It also may be used to compare the effect of planting date and variety on the rate of progression through the various reproductive growth stages. The growing season in 1979 was relatively cool and wet, especially during the reproductive period. By comparing the developmental rate of these soybean varieties with the same varieties in different years, some idea of the effect of weather on developmental rate can be gained.

Table 8. Reproductive stages of development of soybean
R1time of first flower
R2time when flowers are extended to any of the upper four nodes on the main stem

R3 beginning pod (3/16-inch long at any of the four uppermost nodes
R4full pod (3/4-inch long or longer at any of the four uppermost nodes)

R5beginning seed (slight seed enlargement can be felt)
R6full seed (pod containing green seed that fill the cavity of pod at any of the top four nodes)

R7beginning maturity (leaves turning yellow and one pod on mainste has reached mature pod color)

R8full maturity (95% of pods have reached mature pod color)
Five to 10 days of drying weather are required before $R 8$ beans have les than 15% moisture.
Source: Fehr and Caviness, 1977.

Discussion

ate of Planting

Results of this trial are similar to rose from trials in other states. he response to planting dates by dapted varieties was compared to linois, Kentucky, South Carolina nd Florida. Varieties best adapted each location were tested at everal planting dates. The yield esponse to planting dates was imilar at each location.

Examination of our results on the effect of date of planting on soybean yields (Figure 2, Table 1 and Appendix Tables 1-6) reveals marked declines in yields of soybeans planted after June 10. Comparison of these data with the historic planting practices of Mississippi producers (Figure 1) shows that 33% of the Mississippi soybean
acreage is planted too late for optimum production. Producers need to find ways to plant more acreage during the optimum planting period (May 1 to June 10). The data (Table 1) show that soybeans planted in northern Mississippi as early as April 15-20 yield more than those planted after June 10.
soils or fine textured soils with more organic matter and a more developed soil structure. Thus, a uniform distribution of soybean plants over the soils used in this study may result in a more rapid use of available water early in the season and reduce the availability of stored water later in the season. Unless an excellent distribution of rain occurs during the growing season (especially July, August and September), the narrow-rows (drilled crop) are exposed to more serious drought stress than are crops planted on 30 -inch row spacings. Also, stands in some of our late-planted plots were poor, especially the drill-seeded plots, which may be the reason for failure to obtain a higher yield in late, drill-seeded beans than in beans planted on the 30 - and 40 -inch rows.

lowering

The variety determines how ort days have to be before flowerg is induced. Young seedlings owing under conditions that do t induce flowering normally ve five to eight immature leaf ds and vegetative nodes in the owing tip of the stem. An adtional immature leaf is formed as e oldest buds grow and become sible. The next immature node
becomes floral rather than vegetative when the photoperiod becomes short enough for leaves to induce flowering, and the plant will begin to flower when that developing bud matures. The plant then ceases to grow additional mainstem nodes.

Some stem elongation and branch growth may occur after the apex becomes floral. First flower-
ing usually is apparent near the middle of the main stem, and flowers seemingly develop at random at nodes on the main stem. Flowering on the branches occurs in much the same pattern but a few days later than on the main stem.

Late-planted beans often are induced to flower when the first true leaf is exposed, and this causes the newly formed buds in the tip of
the stem to be floral. As soon as the five to eight preformed leaf buds have developed, this floral bud will be the next to mature and the plant begins to flower. This usually is long before the "vegetative factory" is large enough to supply adequate photosynthetic materials for optimum seed production. Such small plants can be expected to yield less per plant; therefore, higher yields from late-planted beans can be expected if narrower plant spacings are used. However, this is not always evident due to
other growth limiting factors.
In general, the late-maturing varieties are less sensitive to photoperiod than are early- or midseason varieties. Results from south Georgia showed the most nodes/plant from early May planting and the fewest from early July planting. Bragg and Hutton had 12 and 13 nodes, respectively, when planted in early July compared with the earlier maturing Essex which had only 10 nodes. Beans planted in early April had two to three fewer nodes than those
planted in early May but one t three more nodes than thos planted in early July. Centennia planted in mid-June at Starkvill Mississippi, produced 20 nodes o: plants 39 inches tall but, whe: planted in late July, a veraged onl 9.5 nodes/plant and 8.6 inches tal

Flower racemes originate fron buds at the nodes. The more nodes the more chances for racemes whes the days become short enough t stimulate flower formation.
roots for its water and nutrient supply.

This occurs in Mississippi during August and September for early varieties and during late August, September and October for late varieties. The plants are most susceptible to drought during this time. This also is a period of very high evaporative demand. The combination of intra-plant competition for nutrients, which results in a decreasing root mass, and the high evaporative demand of the atmosphere forces the crop into a highly dependent situation relative to available water supply. The crop needs a soil with excellent waterholding capabililties and a reasonable seasonal distribution of rain if it is to reach its yield potential.

In late-planted beans, which flower while the plant is still small, the intra-plant competition for available nutrients limits root development. In such cases, the smaller root mass forces the plant into a less competitive position relative to removal of available soil water than exists for plants that have had adequate time for vegetative growth and root development before flowering. Such late-planted beans are more dependent on a uniform distribution of rainfall during the growing season.

The failure of July-planted beans
to root deeply in Mississipp probably is caused by the interna competition of one plant part witl another for available carbi hydrates. The late-planted bean are induced to flower before the have a chance to develop a larg root system, and a major part of th available carbohydrates is used i seed production rather than fc leaf, stem and root growth.

Premature flowering results in self-destructive situation for th: plant in a dry environment becaus the plant is unable to feed the ror to support the growth it need Thus, the late-planted crop is muc 1 more dependent on timely rainfal than is the crop planted at th optimum time.

Data on growth-stages were nct collected on the experiments it south Mississippi during th. relatively cool and wet growin, season in 1979. Similar data we collected for the varieties Esse: Davis, Bragg and Hutton atTiftor Georgia. A three-year average : the planting date, flowering an $;$ maturity-date data shows that th : length of time to flowering considerably shorter at thi latitude than at Starkville. Braॄ required 82 and 52 days fro planting to flowering at Starkvil \ddagger when planted in early May ar early July, respectively. In sou1 Georgia, Bragg required only and 40 days to develop flowers aft
anting in early May and early aly, respectively. In south leorgia, the day length will be norter in summer than in north ississippi. Therefore, it appears lat the critical short-day length ecessary to induce flowering in ragg occurs 12 to 20 calendar ays earlier at Tifton, Georgia than t Starkville, Mississippi.

The length of time from flowering to maturity for soybeans at the more southernly latitude was longer than that at Starkville. Bragg required 108 days from flowering to maturity in south Georgia when planted in early May but only 81 days at Starkville. When planted in early July, the length of Bragg's reproductive
period was reduced to 68 days at the more southernly latitude and 55 days at Starkville. The effect of relatively small changes in day length (as influenced by northsouth location and planting dates) obviously can have a large effect on the development of soybeans.

Cultural Considerations

Two very serious constraints on ite planting are difficulty in btaining stands and water-related roblems.
Row-planted beans can be altivated and herbicides can be ost-directed for weed control; hereas, weed control in drilllanted beans must be acomplished entirely with over-the-
top herbicides and canopy cover. Cultivation and post-directed herbicide applications for weed control are generally less costly than broadcast over-the-top herbicide applications. Beans on rows may be treated with herbicides over-thetop, in a band over the row or postdirected; however, only over-thetop applications can be used with
solid-seeded beans.
Late-season insect populations frequently are such a serious threat to soybeans in south Mississippi that producers need to be alert to damaging infestations each season and be prepared to apply insecticides as needed.

References

gli, D. B. 1976. Planting Date, Row Width, Population Growth Regulation, p. 56-62. World Soybean Research, L. D. Hill The Interstate Printers \& Publishers, Inc.
arker, M. B. and M. W. Marchant.
1981. Response of four soybean cultivars to row spacing and planting dates. Agron. J. 73:759762.

Palmer, J. H. 1980. The Soybean Scene. FS 80-1. Cooperative Extension Service, Clemson Uni-
versity, South Carolina.
Fehr, W. R. and C. E. Caviness. Stages of Soybean Development. Iowa State University Cooperative Extension Service Special Report 80. 1977.

Acknowledgment

The financial support of the Mississippi Soybean Promotion Board is greatly appreciated as is the cooperation of BranchStation Superintendents, R. C. Albritton, W. A. Brock, E. G. Morrison and W. W. Kilby (retired). Dan Childress, R. L. Ivy, W. Stewart, A. Trent, T. Stewart, J. K. Young and T. K. Porter helped in various aspects of conducting this study, and their assistance is sincerely acknowledged.

Appendix Table 1. Yield of soybeans, by planting date, variety and row spacing, MAFES North Mississippi Branch, 1976-79.					
$\begin{gathered} \text { Planting } \\ \text { Date } \end{gathered}$	Variety	Yield*			Average
		Row Width (inches)			
		7	30	40	
		1976			
4/16		--------------------------1/			
	Kent	20.4 c	27.4 d	26.2 c	24.2
	Hill	46.2 ab	38.0 b	44.0 a	42.7
	Forrest	38.5 b	40.2 b	37.2 b	38.6
	Tracy	49.3 a	50.3 a	48.7 a	49.1
	Lee 74	40.4 ab	36.5 b	38.3 b	38.4
	Bragg	29.3 c	28.8 d	27.7 c	28.6
4/29	Average	37.3	36.9	37.0	37.1
	Kent	25.7 d	34.1 bc	36.5 ab	32.1
	Hill	36.4 b	34.7 bc	34.2 ab	35.1
	Forrest	42.4 a	35.2 bc	40.9 a	39.5
5/25	Tracy	43.4 a	43.4 a	40.5 a	42.4
	Lee 74	33.1 c	41.2 ab	34.2 ab	36.2
	Bragg	17.0 e	31.0 c	29.0 b	25.7
	Average	33.0	36.6	35.9	35.2
	Kent	34.5 ab	31.1 b	36.4 b	34.0
	Hill	38.0 ab	42.0 a	45.3 a	41.8
	Forrest	35.6 ab	43.7 a	42.2 ab	40.5
6/30	Tracy	40.4 a	44.2 a	46.2 a	43.6
	Lee 74	32.2 b	44.4 a	40.4 ab	39.0
	Bragg	31.6 b	33.9 b	34.7 b	33.4
	Average	35.4	39.9	40.9	38.7
	Kent	21.4 b	25.2 a	21.8 a	22.8
	Hill	28.1 a	28.9 a	25.0 a	27.3
	Forrest	28.4 a	28.9 a	22.7 a	26.7
	Tracy	27.9 a	29.3 a	24.2 a	27.1
	Lee 74	27.0 a	27.5 a	26.8 a	27.1
	Bragg	27.3 a	29.5 a	27.6 a	28.1
	Average	26.7	28.2	24.7	26.5
			continued		

Appendix Table 1. (Continued)					
$\begin{gathered} \text { Planting } \\ \text { Date } \end{gathered}$	Yield*				Average
	Variety	Row Width (inches)			
		7	30	40	
1977					
4/16	Hill	21.6 by	25.9 cx	26.4 b x	24.6
	Forrest	36.8 a xy	40.6 a x	32.6 a y	36.7
	Tracy	33.3 a x	37.7 ab x	35.7 a x	35.6
	Centennial	31.9 a x	36.0 b x	34.2 a x	34.0
	Bragg	12.6 c z	18.2 d y	20.4 c x	17.1
	Average	27.2	31.7	30.0	29.6
4/30	Hill	26.1 b y	34.1 b x	30.5 b x	30.2
	Forrest	41.9 a x	46.4 a x	41.8 a x	43.4
	Tracy	42.7 a x	43.9 a x	39.3 a x	42.0
	Centennial	38.9 a y	44.5 a x	40.4 a y	41.3
	Bragg	11.0 c y	20.4 c x	18.4 c x	16.6
	Average	32.1	37.9	34.1	34.7
5/19	Hill	36.7 b x	33.4 b x	$31.7 \mathrm{c} x$	33.9
	Forrest	52.4 a x	37.9 a y	37.5 a y	42.6
	Tracy	38.1 b x	37.9 a x	33.1 bc x	36.4
	Centennial	35.5 b x	37.9 a x	36.4 ab x	36.6
	Bragg	9.4 c y	15.1 c x	14.9 dx	13.1
	Average	34.4	32.4	30.7	32.5
6/09	Hill	31.7 b xy	36.5 a x	31.0 a y	33.1
	Forrest	37.8 a x	33.8 ab x	34.1 a x	35.2
	Tracy	$32.7 \mathrm{ab} x$	37.4 a x	31.6 a x	33.9
	Centennial	33.1 ab x	33.9 ab x	31.7 a x	32.9
	Bragg	14.8 c y	27.8 b x	19.9 b y	20.8
	Average	30.0	33.9	29.7	31.2
7/06	Hill	22.2 ab x	18.9 c x	16.5 c x	19.2
	Forrest	28.2 a x	27.7 a x	22.0 abc x	26.0
	Tracy	25.2 ab x	20.1 bc x	23.1 ab x	22.8
	Centennial	24.7 ab x	26.2 ab x	26.9 a x	25.9
	Bragg	20.0 b x	16.8 c x	17.2 bc x	18.0
	Average	24.1	21.9	21.1	22.4
		continued			

Appendix Table 1. (Continued)					
$\begin{gathered} \text { Planting } \\ \text { Date } \end{gathered}$	Variety	Yield*			Average
		Row Width (inches)			
		7	30	40	
		1978			
4/17	2/ Hill	27.8	29.0	23.7	26.8
	Forrest	26.8 bc x	31.4 a x	29.8 bc x	29.3
	Tracy	34.8 a x	37.6 a x	37.3 a x	36.6
	Centennial	33.0 ab x	30.2 a x	33.5 ab x	32.2
	Bragg	22.7 c x	24.8 a x	27.2 c x	24.9
	Average	29.4	31.0	31.9	30.8
5/19	Hill ${ }^{\text {/ }}$		27.8	24.4	26.1
	Forrest	35.8 a x	30.7 a x	30.6 b x	32.4
	Tracy	39.2 a x	33.8 a x	38.1 a x	37.0
	Centennial	40.9 a x	36.4 a x	38.7 a x	38.7
	Bragg	28.1 b x	29.3 a x	30.6 b x	29.3
6/6	Average	36.0	32.5	34.5	34.3
		30.0 3/	3/	3/	--
	Forrest	39.4 b y	45.3 a x	42.5 ab xy	42.4
	Tracy	40.0 b y	47.7 a x	$41.2 \mathrm{ab} y$	43.0
	Centennial	45.6 a x	48.9 a x	45.9 a x	46.8
	Bragg	36.0 b y	47.8 a x	37.4 b y	40.4
6/28	Average	40.2	47.4	41.8	43.2
	Hill	29.2	25.6	22.5	25.8
	Forrest	39.6 a x	37.1 a x	34.6 a x	37.1
	Tracy	38.4 a x	33.0 a y	33.0 a y	34.8
	Centennial	40.2 a x	37.4 a x	33.1 a y	36.9
	Bragg	35.8 a x	37.8 a x	32.8 a x	35.5
	Average	38.5	36.3	33.4	36.1
1979					
4/20	Hill	22.9 bx	26.3 bx	26.2 bx	25.2
	Forrest	5.8 cy	14.6 cx	13.5 cx	11.3
	Tracy	41.4 ax	38.4 ax	41.5 ax	40.4
	Centennial	18.5 by	30.1 abx	25.6 bxy	24.7
	Bragg	0.8 cx	1.2 cx	1.4 cx	1.1
	Average	17.4	22.1	21.1	
continued					

Appendix Table 1. (Continued)							
$\begin{gathered} \text { Planting } \\ \text { Date } \\ \hline \end{gathered}$	Variety	Yield*			Average		
		Row Width (inches)					
		7	30	40			
5/21	Hill	25.4 bcy	26.9 bcy	23.4 by	25.2		
	Forrest	22.4 cy	23.8 cy	22.6 by	22.9		
	Tracy	34.0 ay.	37.5 ax	32.6 ay	34.7		
	Centennial	28.8 aby	31.5 by	30.5 ay	30.3		
	Bragg	12.9 dy	17.8 dxy	21.4 bx	17.4		
	Average	24.7	27.5	26.1			
6/13	Hill	33.2 ax	34.1 bx	26.0 ax	31.1		
	Forrest	37.8 ax	35.8 bxy	27.4 ay	33.7		
	Tracy	39.8 ax	35.4 bx	29.2 ay	34.8		
	Centennial	40.2 ax	39.3 ax	32.6 ax	37.4		
	Bragg	35.4 ax	28.6 cx	27.2 ax	30.4		
	Average	37.3	34.6	28.5			
6/29	Hill	31.3 ax	23.8 bxy	18.9 abcy	24.6		
	Forrest	25.6 ax	22.1 bxy	14.3 cy	20.7		
	Tracy	27.2 ax	25.9 abx	16.9 cy	23.3		
	Centennial	36.0 ax	33.5 ax	26.8 ax	32.1		
	Bragg	33.5 ax	25.1 aby	24.0 aby	27.5		
	Average	30.7	26.1	20.2			
*Adjusted to 13% moisture. 1/ Within each row width and planting date, values followed by the same letter (a, b, c or d) are not different at a probability of equal to or less than 0.05 as determined by Duncan's New Multiple Range Test. Values across row width, within a date and within a variety are not different if followed by the same letter (x or y).							
2/ Hill seed was of poor quality and, although planting rate was increased, the resulting yield may be artificially low. Hill was therefore excluded from data analysis. 3/ Was not harvested because of poor stand.							

Appendix Table 2. (Continued)					
$\begin{gathered} \text { Planting } \\ \text { Date } \end{gathered}$	Yield ${ }^{\text {\% }}$				Average
	Row Width (inches)				
	Varjety	7	30	40	
6/30	Hill 4/	--	--		4/ --
	Forrest	2.8 a x	5.5 a x	4.4 a x	4.2
	Tracy	3.9 a x	7.8 a x	4.7 a x	5.5
	Centennial	4.8 a x	6.9 a x	5.6 a x	5.8
	Bragg	4.0 a x	6.7 a x	6.6 a x	5.8
	Average	3.9	6.7	5.3	5.3
1979					
5/1	Hill	28.5 cx	28.0 ax	23.6 cx	26.7
	Forrest	35.1 bcx	41.6 ax	28.9 bcx	35.2
	Tracy	45.8 ax	41.1 axy	37.5 ay	41.5
	Centennial	43.8 ax	40.8 ax	34.0 aby	39.5
	Bragg	39.1 abx	34.9 ax	33.1 abx	35.7
5/16	Average	38.5	37.3	31.4	
	Hill	27.4 cx	31.8 cx	26.3 cx	28.5
	Forrest	34.3 bcxy	39.6 ax	30.5 bcy	34.8
	Tracy	42.3 abx	41.8 ax	37.6 ax	40.6
	Centennial	46.9 ax	38.8 aby	35.0 aby	40.2
	Bragg	32.6 bcx	35.6 bcx	34.2 abx	34.1
6/5	Average	36.7	37.5	32.7	
	Hill	34.8 bx	34.8 bcx	29.1 cy	32.9
	Forrest	37.8 abx	37.1 bxy	33.8 by	36.2
	Tracy	43.4 ax	42.0 axy	38.5 ay	41.3
	Centennial	43.6 ax	42.8 ax	33.2 by	39.9
	Bragg	29.1 abz	31.9 су	36.2 abx	32.4
6/18	Average	37.7	37.7	34.2	
	Hil1	23.0 bx	18.0 bx	14.5 bx	18.5
	Forrest	34.4 ax	23.3 by	16.0 bz	24.2
	Tracy	41.6 ax	30.7 ay	17.9 bz	30.1
	Centennial	38.7 ax	32.4 axy	27.0 ay	32.7
	Bragg	32.7 ax	22.2 by	17.7 by	24.2
	Average	33.9	25.3	18.6	
			continued		

Appendix Table 2. (Continued)					
$\begin{gathered} \text { Planting } \\ \text { Date } \\ \hline \end{gathered}$	Variety	Yield*			Average
		Row Width (inches)			
		7	30	40	
7/2	Hill	20.7 bx	19.7 cx	17.0 ax	19.1
	Forrest	21.7 bx	22.6 bcx	22.7 ax	22.3
	Tracy	27.0 abx	27.9 ax	21.1 ax	25.3
	Centennial	31.4 ax	29.7 ax	24.3 ay	28.5
	Bragg	28.7 abx	26.1 abx	24.0 ax	26.3
	Average	25.9	25.2	21.8	end of table

*Adjusted to 13% moisture.

Within each row width and planting date, values followed by the same letter (a, b, or c) are not different ($1^{0}<.05$) of equal to or less than 0.05 as determined by Duncan's New Multiple Range Test. Values across row widths within a date and within a variety are not different if followed by the same letter (x, y, or z).

Poor stands were obtained in soybeans planted $5 / 16$ due to dry weather. This was especially a problem with those plots planted on 7-inch rows.

Hill seed was of poor quality and, although planting rate was increased, the resulting yield may be artificially low. Hill was therefore excluded in data analysis.

Was not harvested because of poor stand.

Appendix Table 3. Yield of soybeans, by planting date, variety and row spacing, MAFES Black Belt Branch, 1976-79.

Appendix Table 3. (Continued)						
PlantingDate	Variety	Yield*			Average	
		Row Width (inches)				
		7	30	40		
7/02						
	Kent	17.6 b	12.7 cd	12.0 ab	14.1	
	1 ill	22.4 ab	19.4 ab	12.9 ab	18.2	
	Forrest	22.1 ab	12.2 d	11.6 b	15.3	
	Tracy	20.6 b	16.4 bcd	12.6 ab	16.5	
	Lee 74	27.4 a	18.7 abc	14.3 ab	20.1	
	Bragg	27.5 a	23.7 a	16.2 a	22.5	
	Average	22.9	17.2	13.3		
7/15	Kent Hill	Late maturity and fall rains prevented harvest				
	Forrest					
	Tracy					
	Lee 74					
	Eragg					
1977						
4/14	Hill	7.1 b xy	10.9 b x	5.4 by	7.8	
	Forrest	10.6 b x	12.4 b x	9.5 b x	10.8	
	Tracy	16.8 a xy	19.3 a x	16.0 a y	17.4	
	Centennial	18.0 a x	18.7 a x	17.8 a x	18.2	
	Bragg	15.1 a x	18.0 a x	15.9 a x	16.3	
	Average	13.5	15.9	12.9	14.1	
4/28	Hill	9.2 bx	9.3 b x	7.4 b x	8.6	
	Forrest	12.4 b x	12.6 b x	8.3 b y	11.1	
	Tracy	18.6 a x	19.9 a x	15.1 a y	17.9	
	Centennial	18.5 a x	19.1 a x	16.7 a x	18.1	
	Bragg	16.2 a x	18.3 a x	15.2 a x	16.6	
	Average	15.0	15.8	12.5	14.5	
5/13	Hill	8.7 c x	6.9 b xy	5.7 b y	7.1	
	Forrest	10.8 bc x	8.9 b xy	8.2 b y	9.3	
	Tracy	14.1 b x	17.8 a x	14.0 a x	15.3	
	Centennial	17.7 a x	16.3 a x	16.9 a x	17.0	
	Bragg	12.9 b y	17.4 a x	15.5 a xy	15.3	
	Average	12.8	13.5	12.1	12.8	

Appendix Table 3. (Continued)					
Planting Date	Variety	Yield*			Average
		Row Width (inches)			
		7	30	40	
6/15	Hill	4.3 a x	2.6 a x	3.0 a x	3.3
	Forrest	4.2 a x	6.2 a x	4.5 a x	5.0
	Tracy	4.1 a x	4.8 a x	3.6 a x	4.2
	Centennial	7.2 a x	5.2 a x	4.7 a x	5.7
	Bragg	5.9 a x	4.3 a x	4.9 a x	5.0
	Average	5.2	4.6	4.1	4.6
6/30	Hill	1.6 bx	1.8 a x	0.8 c x	1.4
	Forrest	1.5 bx	2.8 a x	$2.5 \mathrm{ab} x$	2.3
	Tracy	4.5 a x	1.6 a y	1.4 bc y	2.5
	Centennial	1.9 bx	2.4 a x	3.8 a x	2.7
	Bragg	2.4 b x	2.7 a x	2.3 bc x	2.5
	Average	2.8	2.7	2.0	2.5
1978					
4/17	Hill ${ }^{\text {/ }}$	16.0	11.0	10.2	12.4
	Forrest	15.6 a x	14.4 a x	14.1 a x	14.7
	Tracy	8.9 b x	12.6 ab x	9.8 b x	10.4
	Centennial	6.2 b x	4.8 cx	8.4 b x	6.5
	Bragg	6.0 b y	8.3 bc x	9.3 b x	7.9
	Average	9.2	10.0	10.4	9.9
5/15	Hill	16.6	17.5	15.8	16.6
	Forrest	17.8 a x	18.6 a x	18.1 a x	18.2
	Tracy	13.7 ab x	18.6 a x	18.3 a x	16.9
	Centennial	$7.8 \mathrm{c} x$	7.6 b x	13.0 a x	9.5
	Bragg	10.2 bc x	14.9 a x	15.9 a x	13.7
	Average	12.4	14.9	16.3	14.5
6/1	Hill	15.3	18.6	14.7	16.2
	Forrest	17.1 a y	25.8 a x	17.2 b y	20.0
	Tracy	23.4 a x	25.5 a x	22.5 a x	23.8
	Centennial	19.4 a x	21.6 a x	17.2 b x	19.4
	Bragg	20.5 a x	20.7 a x	17.8 ab x	19.7
	Average	20.1	23.4	18.7	20.7
		continued			

Appendix Table 3. (Continued)					
$\begin{gathered} \text { P1anting } \\ \text { Date } \\ \hline \end{gathered}$	Variety	Yield*			Average
		Row Width (inches)			
		7	30	40	
6/15			ne1s		
	Hill	3.6	5.4	6.0	5.0
	Forrest	18.4 a x	18.2 a x	16.5 a x	17.7
	Tracy	19.9 a x	21.0 a x	20.0 a x	20.3
	Centennial	16.4 a y	19.4 a x	18.2 ab xy	18.0
	Bragg	15.7 a x	22.0 a x	20.2 a x	19.3
	Average	17.6	20.1	18.7	18.8
6/30	Hill	-3/	--	--	--
	Forrest	1.1 b y	3.2 a y	6.1 a x	3.5
	Tracy	4.3 a x	4.8 a x	5.6 a x	4.9
	Centennial	0.7 by	3.6 a xy	5.7 a x	3.3
	Bragg	$2.1 \mathrm{ab} y$	3.5 a x	6.5 a x	4.0
	Average	2.0	3.8	6.0	3.9
7/14	Hil1	--	--	--	--
	Forrest	9.6 a x	3.4 a y	0.7 c y	4.6
	Tracy	5.3 a x	4.3 a x	$1.7 \mathrm{ab} y$	3.7
	Centennial	7.2 a x	6.3 a x	2.3 a x	5.4
	Bragg	5.1 a x	4.6 a x	1.4 bx	3.7
	Average	6.8	4.6	1.6	4.3
1979					
4/18	Hill	13.9 bx	12.2 bx	12.6 bx	12.9
	Forrest	14.5 bx	13.0 bx	9.0 bx	12.1
	Tracy	17.8 abx	17.2 bx	14.1 bx	16.3
	Centennial	24.9 ax	23.7 ax	22.1 ax	23.6
	Bragg	16.9 bx	15.6 bx	15.3 bx	15.9
	Average	17.6	16.4	14.6	
4/30	Hill	19.0 ax	15.7 ax	13.3 bx	16.0
	Forrest	23.9 ax	17.1 ax	12.0 bx	17.7
	Tracy	34.1 ax	25.2 ax	20.5 abx	26.6
	Centennial	33.7 ax	22.8 ax	25.6 ax	27.4
	Bragg	28.7 ax	20.9 ax	16.5 abx	22.0
	Average	27.9	20.3	17.6	
		continued			

Appendix Table 3. (Continued)					
$\begin{gathered} \text { Planting } \\ \text { Date } \\ \hline \end{gathered}$	Variety	Yield*			Average
		Row Width (inches)			
		7	30	40	
5/17	Hil1	9.7 by	21.3 cdx	14.4 bxy	15.1
	Forrest	19.2 ax	13.7 dx	15.5 bx	16.8
	Tracy	23.9 ax	29.3 abx	26.5 ax	26.6
	Centennial	25.6 az	34.5 ax	30.0 ay	30.0
	Bragg	23.8 ax	24.2 bcx	25.4 ax	24.5
	Average	20.5	25.0	22.4	
6/5	Hill	15.3 bx	19.0 abx	18.7 ax	17.7
	Forrest	11.7 bx	17.0 bx	15.5 ax	14.8
	Tracy	20.3 abx	25.9 ax	18.9 ax	21.7
	Centennial	26.1 ax	29.2 ax	27.3 ax	27.5
	Bragg	20.4 abx	26.1 abx	21.8 ax	22.8
	Average	18.8	23.4	20.5	
6/15	Hill	5.2 bx	2.8 abx	4.0 bcx	4.0
	Forrest	1.1 cx	1.1 bx	1.0 dx	1.1
	Tracy	13.8 ax	13.4 ax	2.2 cdx	9.8
	Centennial	13.1 ax	7.8 abx	7.3 ax	9.4
	Bragg	2.6 cy	3.3 abxy	4.4 bx	3.5
	Average	7.2	5.7	3.8	
6/29	Hill	6.6 bx	10.8 ax	8.4 ax	8.6
	Forrest	10.0 abx	10.7 ax	9.3 ax	10.0
	Tracy	11.0 abx	10.3 ax	9.2 ax	10.2
	Centennial	14.5 ax	10.9 ax	10.6 ax	12.0
	Bragg	11.9 ax	16.2 ax	10.5 ax	12.9
	Average	10.8	11.8	9.6	of table

*Adjusted to 13% moisture.
1/ Within each row width and planting date, values followed by the same letter (a, b, or c) are not different at a probability of equal to or less than 0.05 as determined by Duncan's new Multiple Range Test. Values across row widths within a date and within a variety are not different if followed by the same letter (x, y, or z).
2/ Hill seed was of poor quality and, although planting rate was increased, the resulting yield may be artificially low. Hill was therefore excluded in data analysis.
3/ Plots not harvested due to poor stands.

*Adjusted to 13% moisture.
1/ Within each row width and planting date, values followed by the same letter (a or b) are not different at a probability of equal to or less than 0.05 as determined by Duncan's New Multiple Range Test. Values across row widths, within a date and within a variety are not different if followed by the same letter (x or y).
2/
Not harvested because of poor stand.
3/ New source of Hill seed.

Appendix Table 5. Yield of soybeans, by planting date, variety and row spacing, MAFES Brown Loam Branch, 1976-79.				
$\begin{array}{\|c} \text { Planting } \\ \text { Date } \\ \hline \end{array}$	Variety	Yield*		Average
		Row Width (inches)		
		7	40	
1976				
4/19	-------- bushels/acre- ${ }^{\text {l/ }}$------------			
	Kent	$33.5 \mathrm{a}^{1 /}$	28.3 a	30.9
	Hill	35.0 a	36.6 a	35.8
	Forrest	39.8 a	39.8 a	39.8
	Tracy	44.2 a	41.3 a	42.8
	Lee 74	41.1 a	37.0 a	39.0
	Bragg	33.6 a	34.5 a	34.0
5/05	Average	37.9	36.2	37.1
	Kent	43.7 a	29.2 c	36.4
	Hill	32.3 a	39.2 abc	35.8
	Forrest	38.3 a	31.5 bc	34.9
5/19	Tracy	48.1 a	41.2 ab	44.6
	Lee 74	42.1 a	46.6 a	44.4
	Bragg	43.0 a	36.8 abc	39.9
	Average	41.2	37.4	39.3
	Kent	45.3 a	35.3 b	40.3
	Hill	39.9 a	40.2 ab	40.0
	Forrest	46.3 a	47.0 a	46.6
6/04	Tracy	36.0 a	39.5 b	37.8
	Lee 74	44.9 a	38.9 b	41.9
	Bragg	39.2 a	35.2 b	37.2
	Average	41.9	39.4	40.6
	Kent	12.5 a	10.4 c	11.4
	Hill	23.6 a	17.0 b	20.3
	Forrest	24.3 a	16.2 b	20.2
	Tracy	17.4 a	20.3 ab	18.8
	Lee 74	22.1 a	22.2 a	22.2
	Bragg	23.0 a	22.1 a	22.6
	Average	20.5	18.0	19.3
		continued		

3/ Hill seed was of poor quality and, although planting rate was increased, the resulting yield may be artificially low. Hill was therefore excluded in the data analysis.

Was not harvested because of poor stand.

*Adjusted to 13% moisture.
Within each row width and planting date, values followed by the same letter (a, b, c or d), are not different at a probability of equal to or less than 0.05 as determined by Duncan's New Multiple Range Test. Values across row widths, within a date and within a variety, are not different if followed by the same letter (x or y).

2/ Data in the June 2 planting were not included in analysis because drilled plots were not harvested due to poor stands caused by severe drought at planting. The data reported in this planting are averages of 3 replications.

Hill seed was of poor quality and, although planting rate was increased, the resulting yield may be artificially low. Hill was therefore excluded in the data analysis.
Appendix Table 7. Rainfall (inches) by weeks, months, years and
Month Week Verona Starkville Brooksville Newton Raymond Poplarville

$\begin{array}{lc}\text { April } & 1-7 \\ & 8-14 \\ & 15-21 \\ & 22-28 \\ & 29-30 \\ & \\ & \text { Monthly Total } \\ & 1-7 \\ & 8-14 \\ & 15-21 \\ 22-28 \\ 29-31 \\ \text { June } & \\ & \text { Monthly Total } \\ & 1-7 \\ & 8-14 \\ 15-21 \\ 22-28 \\ 29-30\end{array}$
$\begin{array}{lc}\text { April } & 1-7 \\ & 8-14 \\ & 15-21 \\ & 22-28 \\ & 29-30 \\ & \\ & \text { Monthly Total } \\ & 1-7 \\ & 8-14 \\ & 15-21 \\ 22-28 \\ 29-31 \\ \text { June } & \\ & \text { Monthly Total } \\ & 1-7 \\ & 8-14 \\ 15-21 \\ 22-28 \\ 29-30\end{array}$
$\begin{array}{lc}\text { April } & 1-7 \\ & 8-14 \\ & 15-21 \\ & 22-28 \\ & 29-30 \\ & \\ & \text { Monthly Total } \\ & 1-7 \\ & 8-14 \\ & 15-21 \\ 22-28 \\ 29-31 \\ \text { June } & \\ & \text { Monthly Total } \\ & 1-7 \\ & 8-14 \\ 15-21 \\ 22-28 \\ 29-30\end{array}$
1976

$$
\begin{aligned}
& 0 \\
& 0
\end{aligned}
$$

$$
10
$$

i
en
$\begin{array}{lc}\text { April } & 1-7 \\ & 8-14 \\ & 15-21 \\ & 22-28 \\ & 29-30 \\ & \\ & \text { Monthly Total } \\ & 1-7 \\ & 8-14 \\ & 15-21 \\ 22-28 \\ 29-31 \\ \text { June } & \\ & \text { Monthly Total } \\ & 1-7 \\ & 8-14 \\ 15-21 \\ 22-28 \\ 29-30\end{array}$

$$
5.0
$$

Appendix Table 7. (Continued)

 -

Month

4.9
hes-

$$
1 r
$$ T --

Appendix Table 7. (Continued)

Appendix Table 7. (Continued)

Appendix Table 7. (Continued)

Appendix Table 7. (Continued)

 $1-7$
$8-14$
$15-21$
$22-28$
$29-31$ Monthly Total Monthly Total
$1-7$
$8-14$
$15-21$
$22-28$
$29-30$

Appendix Table 7. (Continued)

Appendix Table 7. (Continued).
Month Weak Verona Starkville Brooksville Newton Raymond Poplarville

$$
\begin{aligned}
& \text { July } \\
& \text { August } \\
& \text { September }
\end{aligned}
$$

$$
\begin{gathered}
\text { Month1y Total } \\
1-7 \\
8-14 \\
15-21 \\
22-28 \\
29-31 \\
\\
\text { Month1y Total } \\
\\
1-7 \\
8-14 \\
15-21 \\
22-28 \\
29-31 \\
\text { Month1y Total } \\
1-7 \\
8-14 \\
15-21 \\
22-28 \\
29-30 \\
\text { Month1y Total }
\end{gathered}
$$

$$
\begin{aligned}
& 3.3 \\
& 4.9 \\
& 2.3 \\
& 0.1
\end{aligned}
$$

$$
\begin{array}{r}
2.3 \\
1.4 \\
7.8 \\
1.1 \\
1.8 \\
0.3 \\
12.3 \\
\\
0.0 \\
0.1 \\
0.0 \\
0.0 \\
0.4 \\
0.5 \\
0.7 \\
4.0 \\
5.3 \\
0.0 \\
0.0 \\
10.0
\end{array}
$$

Appendix Table 7. (Continued)

1/ Rainfall not recorded.

[^0]: 1/ Results are from only three years of data (1977-79).
 2/ Percent maximum yield at each location is percent of yield at the planting date with the highest average.
 3/ Within each column, values followed by the same letter are not different at a probability level equal to or less than 0.05 as determined by the Student-Newman-Keul's Test.

