An economic evaluation of alternative methods of beef production in the prairie area of Mississippi

Tramel E. Thomas
Donald L. Mott
C. E. Lindley

Follow this and additional works at: https://scholarsjunction.msstate.edu/mafes-bulletins

Recommended Citation

Thomas, Tramel E.; Mott, Donald L.; and Lindley, C. E., "An economic evaluation of alternative methods of beef production in the prairie area of Mississippi" (1960). Bulletins. 213.
https://scholarsjunction.msstate.edu/mafes-bulletins/213

This Article is brought to you for free and open access by the Mississippi Agricultural and Forestry Experiment Station (MAFES) at Scholars Junction. It has been accepted for inclusion in Bulletins by an authorized administrator of Scholars Junction. For more information, please contact scholcomm@msstate.libanswers.com.

An Economic Evaluation of

Alternative Methods Of Beef Production

In The Prairie Area of Mississippi

Information on when to sell calves and how to manage them until sale is provided in this Experiment Station study.

AGRICULTURAL EXPERIMENT STATION

STATE COLLEGE CLAY LYIE, Director

An Economic Evaluation of Alternative Methods of Beef Production in the Prairie Area of Mississippi

By THOMAS E. TRAMEL, DONALD LEE MOTT,
and C. E. LINDLEY*

In recent years there has been a decided trend in Mississippi toward diverting land from cash crops to pasture and feed crops. This has been brought about by governmental restrictions on basic cash crops, improved technology in the livestock industry, and an increased demand for livestock and meat products. It seems quite likely that the trend will continue.

Cattle numbers in Mississippi have almost doubled in the last decade, with most of the increase being in beef cattle.

Forage from permanent pasture is a primary resource for beef cattle in Mississippi. There are several alternative systems or methods of beef production by which permanent pasture forage may be utilized (Appendix Tables 1, 2, and 3). Which of these methods is likely to return the greatest profits is an important question facing beef producers of the state. In addition, they face the problem of determining the best level of pasture improvement.

It was the purpose of this study to help answer these questions. Specifically, the objective was to determine the net returns per acre of permanent pasture which might be expected from alternative systems of beef production for two levels of pasture improvement.
Fourteen different methods of beef production were studied for each of two levels of pasture improvement. Each method was of the cow-calf type, relying upon a high quality breeding herd to raise all calves and replacement heifers; only bulls were purchased. Methods of production were classified on the following basis: (1) spring or fall calving, (2) age at which calves were marketed, (3)
type of winter ration, and (4) whether calves received concentrate feeding in addition to permanent pasture prior to marketing.

An annual budget, including grazing requirements for the entire herd, costs, and returns, was prepared for each of the 14 alternative methods for each of the two levels of pasture improvement.

The two levels of pasture improvement considered were (1) native pastures, and (2) pastures improved to the average level of all improved pastures found in a recent survey. ${ }^{1}$ Carrying capacities per acre and annual pasture improvement costs were obtained from the survey just mentioned. To correspond to these pasture costs, prices for all other items were adjusted to the $1951-56$ average. Costs included were: feed, permanent pasture costs, temporary winter pasture when needed for a particular system, iabor, marketing, bull replacement, and miscellaneous.
Grazing available from permanent pastures, April to October, after harvesting the amount of hay needed was considered as the one factor limiting the size of the beef enterprise for each 100 acres.

Grazing available from permanent pasture in other months was considered as supplementary to the feeding program.

[^0]Table 1. Summary of costs and returns per 100 acres of native open permanent pasture, 14 methods of handling cow-calf beef herds, Prairie Area

Fall calves						Spring calves								
Item		pary pue amased wiad			$\text { Blu!uezm Je } \mathrm{PloS}$									
Brood cows (No.)	25	24	23	21	25	21	20		14	15	20	18	25	23
Ages at which calves sold (mos.)	7.5	11.5	19.0	23.0	7.5	19.5	19.5	24.0	31.5	31.5	27.0	31.5	15.0	19.5
Weight of calves sold (lbs.)	450	700	750	1,000	350	900	800	750	900	1,000	900	1,075	700	850
Price per cwt. for calves (dol.)	20.18	23.81	20.70	23.85	16.56	23.07	18.40	19.96	18.51	23.85	20.67	23.85	20.70	23.76
Returns from calves, steers and heifers (dol.)	1,467	2,450	2,142	3,018	995	2,647	1,784	1,713	1,387	2,127	2,229	2,744	2,187	2,818
Returns from cull cows and cull bulls (dol.)	572	549	526	481	572	481	458	435	320	343	458	412	572	526
Total returns (dol.)	2,039	2,999	2,668	3,499	1,567	3,128	2,242	2,148	1,707	2,470	2,687	3,156	2,759	3,344
Feed costs (dol.)	948	1,582	873	1,590	599	1,355	642	824	604	1,201	643	1,245	598	1,303
Permanent pasture costs (dul.) ${ }^{1}$	81	81	81	81	81	81	81	81	81	81	81	81	81	81
Temporary winter pasture costs (dol.)	0	0	650	594	0	0	0	U	0	0	601	541	536	493
Labor costs (dol.)	171	186	193	202	181	227	212	235	190	209	233	229	207	216
Marketing costs (dol.)	75	103	93	116	61	105	79	75	59	82	92	106	97	113
Other costs (dol.)	211	210	206	196	213	194	184	181	138	149	191	178	221	211
Total costs (dol.)	1,486	2,162	2,096	2,779	1,135	1,962	1,198	1,396	1,072	1,722	1,841	2,380	1,740	2,417
Net returns per $100 \mathrm{ac}$. (dol.)	553	837	572	720	432	1,166	1,044	75°	635	748	846	7761	1,019	927

Table 2．Summary of costs and returns per 100 acres of open permanent pasture improved to the average level of improvement for 1956 ， 14 method，
раә pue anused unad pue

～

$\underset{\sim}{\sim} \quad \underset{\sim}{\sim}$ ｜ o
か．
か
－ サ

 $6 N$
6 on
m N
\qquad

 ッボ にす
рәәғ pue ammsed

 \circ
\sim
0

$\hat{1}$	n	0
y_{n}	$\hat{}$	0
m		m

m
m No $\left\lvert\, \begin{array}{ll}6 \\ 0 & \\ 0 & \\ \text { N }\end{array}\right.$ \square
n
n
\sim ∞
∞
m

an $8 \underset{y}{\infty}$
min

$\stackrel{\infty}{\sim}$	∞	n
$\underset{\sim}{n}$		

$\left\lvert\, \begin{array}{ll}N & n \\ \infty & \infty \\ & 0 \\ m & =1\end{array}\right.$
ヲ
 ir preparation，fertilization，and seeding． pəy̧ono』 pue anizsed u uวd

$\begin{array}{r}\text { วanısed eusวd pue } \\ \text { aəu！} \\ \hline\end{array}$ рวə pue aınısed $u \ldots$ pue

$\begin{array}{ll}n & n \\ i n & \sim \\ \sim\end{array}$	n	0
n	∞	
n		＋ 0

8u！ueวm te Plos

annsed＇uıวd pue aıņsed

0
$\underset{n}{n}$

∞	$\stackrel{+}{\infty} \infty$	∞
\sim	$\underset{\sim}{\sim}+\infty$	+

？

1 mo
8 돛
$\begin{array}{ll}8 & 9 \\ m & 1\end{array}$
$\left\lvert\, \begin{aligned} & m=\square \\ & \underset{\sim}{\square} \underset{\sim}{m} \\ & m\end{aligned}\right.$

 of
preparation, fertilization,

$$
\begin{aligned}
& \begin{array}{c}
\text { on } \\
\text { N } \\
\text { a }
\end{array}
\end{aligned}
$$

．

Temporary winter pasture, when needed for a particular system of production, was assumed to be planted in the ratio of two acres on permanent pasture sod to one on cropland.

Native Pastures

For this level of pasture improvement, selling spring calves at weaning results in lower net returns per 100 acres of pasture than any of the 14 alternative methods studied (Table 1).
The best alternatives appear to be: (1) roughing spring calves through the first winter and feeding out on permanent pasture the second summer, (2) roughing spring calves through the first winter and grazing permanent pasture the second summer, (3) grazing spring calves on temporary winter pasture the first winter and selling, or (4) grazing spring calves on temporary winter pasture the first winter and feeding out on permanent pasture prior to sale.
Net returns from the 14 alternative methods of production ranged from $\$ 432$ per 100 acres to $\$ 1,166$ per 100 acres.

Improved Pastures

Selling spring calves at weaning appears to be the least profitable of any of the 14 alternatives for this level of pasture improvement also (Table 2). Likewise, the same four alternatives as for
native pastures appear to be the best. Net returns per 100 acres ranged from $\$ 480$ to $\$ 1,736$.

Comparison of Net Returns
 for the Two Levels of Improvement

Difference in net returns per 100 acres depend upon the manner in which the grazing is utilized. For each of the 14 methods of beef production studied, the added cost of pasture improvement (\$263 annually per 100 acres) more than paid for itself. However, for both spring calves sold at weaning and fall calves sold at weaning, the rate of return was rather low, $\$ 48$ and $\$ 74$ per 100 acres, respectively. Net returns per 100 acres for the added cost of pasture improvement range up to $\$ 692$ for spring calves roughed through the first winter and grazed on permanent pasture the second summer.

Utilization of Grazing

The proportion of the total grazing used which is required for the brood herd and replacements appears to be one of the primary factors influencing profits from the beef enterprise. About 90 percent of the total grazing is required for the brood herd and replacements when calves are sold at weaning. In contrast, for the four most profitable alternatives the percentage ranged from 66 to 74 .

Summary and Conclusions

Beef producers are faced with a choice of many alternative systems or methods of production, as well as the question of whether pasture improvement pays.

This study was made for the purpose of determining which of 14 methods of beef production of the cow-calf type that were considered feasible would likely be most profitable for two levels of pasture improvement. The two levels of improvement considered were (1) native pastures and (2) pastures improved to the average level of all pastures which were found to be improved in a recent survey of the Prairie Area of the state.

For both levels of pasture improvement, selling spring calves at weaning appeared to be the least profitable of any of the 14 alternatives considered. On the other hand, for both levels of pasture improvement, the best alternatives appeared to be:
(1) Roughing spring calves through the first winter and feeding out on permanent pasture the second summer,
(2) Roughing spring calves through the first winter and grazing permanent
pasture the second summer,
(3) Grazing spring calves on temporary winter pastures the first winter,
(4) Grazing spring calves on temporary winter pasture the first winter and feeding out on permanent pasture,

Net returns per 100 acres ranged from $\$ 432$ to $\$ 1,166$ for the native pastures and from $\$ 480$ to $\$ 1,736$ for the improved pastures.

Additional labor and additional investment in the beef herd is required for carrying calves beyond the weaning age. However, the added net returns would seem to be ample reward for doing so.
Net returns from pasture improvement depend upon the manner in which the forage is utilized. Net returns from pasture improvement would be only about $\$ 48$ and $\$ 74$ per 100 acres for spring calves sold at weaning and fall calves calves sold at weaning, respectively. On the other hand, net returns from the added $\$ 263$ per 100 acres annual improvement cost ranged up to $\$ 692$ for spring calves roughed through the first winter and grazed on permanent pasture the second summer.
Appendix Table 1.
. Alternative methods of beef production from a fall calving system.
Breeding Herd
Calves - born November 1
Sold from TW June 1
Sold at weaning, June 15
1/PP denotes permanent pasture. $\quad 2 /$ CSM denotes cottonseed meal.
and cottonseed meal, 100 pounds.
equivalent on sod-seeded npmmanont noatino pasture - the acreages listed refer to acres on cropland or its

Appendix Table 3. Method of raising replacement heifers from spring and fall calves. $1 /$

[^0]: *Agricultural Economist, Research Associate, and Head of the Department of Animal Huscandry, respectively.

 This project was financed in part from regional funds under S-27.
 ${ }^{1}$ Thomas E. Tramel, D. W. Parvin, and J. E. Betts, Farm Pastures of the Prairie Area of Misissippi, Mississippi Agricultural Experiment Stacion Bulletin 585.

