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Field studies conducted in Missouri and Mississippi, in 2017 and 2018, 

respectively, indicated no droplet size effect on PRE herbicide efficacy, regardless of the 

herbicide, weed, soil, crop residue and weather conditions during spraying. Nozzle type 

enhanced herbicide efficacy for one location and herbicide. The TTI60 dual fan nozzle 

increased pendimethalin weed control, up to 91%, in a high organic matter (OM) soil 

with large clods and substantial weed pressure. Pendimethalin efficacy was reduced 

under high OM soils (> 2%) while metribuzin efficacy was reduced under low OM (< 

0.7%), low cation exchange capacity (<13.1%) soils and 12.2 mm of rain three days after 

application. The greenhouse studies indicated that increasing crop residue levels reduced 

velvetleaf control by 7%. Simulated rainfall eight days after herbicide application 

decreased johnsongrass dry weight reductions by 29% in comparison to two day rainfall.  
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CHAPTER I 

INTRODUCTION 

Pre-emergence herbicides 

Weed control is of great importance to achieve optimal crop yields. By definition, 

weeds are every plant that causes ecological damage or economical losses, creates health 

problems for humans and animal or is undesirable where it grows (WSSA, 2016). Weeds 

compete for light, nutrients and water in the same space as cultivated plants, impacting 

crop development, yield and harvest. Gantoli et al. (2013) observed up to 65% yield losses 

in corn (Zea mays L.) due to weed competition.  In soybeans (Glycine max (L.) Merr.), 

Soltani et al. (2017) estimated a 52% crop loss due to weed interference with a potential 

economic loss of $16.2 billion dollars in the US. Integrated Weed Management (IWM), an 

ideal weed management program, integrates all possible methods to optimize control. 

Examples include soil conservation practices, crop rotation, variety selection, seed purity, 

crop establishment and nutrition, biological control and herbicide applications (Naylor et 

al., 2002). Chemical weed control is the most commonly used method use by farmers 

worldwide due to its effectiveness. A herbicide demand and adoption review by Hossain 

(2015) showed yield increases of 20% in corn and 62% in soybeans when using herbicides 

in the US. 
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 Craigmyle et al. (2013) observed that, prior to glyphosate-resistant (GR) crops, 

farmers used to apply pre-emergence herbicides (PREs) like the dinitroanilines (e.g. 

trifluralin and pendimenthalin) and the imidazolinones (e.g. imazaquin and imazethapyr) 

every year. In 1990, the top four herbicides applied were PREs: trifluralin, metribuzin, 

imazaquin and pendimethalin accounting for 37, 19, 16 and 14% of applied US soybean 

hectares respectively (USDA, 1991). After the launch of GR soybeans in 1996, farmers 

quickly adopted a strategy relying almost entirely on glyphosate alone (Figure 1.1). 

Although chemical control is the most efficient weed management tool, use of the same 

mode of action over time leads to weed resistance to that particular mode of action 

(Gazziero et al., 1998; Gelmini et al., 2001).  The repetitive use of glyphosate over many 

years accelerated observation of GR weeds (Knezevic, 2007). By 2017, 37 weed species 

were documented as resistant to EPSP synthase inhibitors (Heap, 2017). 

 
Figure 1.1 Sum of PREs applied (e.g. % of planted acres of PRE A + % PRE B) and 

the total glyphosate applied as percentage of planted hectares per crop year 

(USDA, 2017). 
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 Although glyphosate applications covered 98% of US soybean hectares in 2012, 

applied hectares of PRE herbicides, after a 12 year decline, began to increase in 2006. In 

2015, the total use of PRE herbicides surpassed the total glyphosate usage as shown in 

Figure 1.1 (USDA, 2017). The usage of PRE herbicides are important to control 

troublesome weeds and lessen weed resistance, especially when combined with other 

products and herbicide mode of action rotation. Prince et al. (2012) conducted a survey 

with 1,299 farmers in the US regarding crop practices to manage glyphosate resistant 

weeds from 2006 to 2009. The researchers observed increased crop scouting, crop 

rotation, herbicide applications at their maximum labeled rate, and number of 

applications using both post-emergence (POST) and PRE herbicides. The positive aspects 

of PRE herbicides include: source of alternative herbicide mode of action (MOA); 

decreased weed pressure as well as cost and time savings eliminating the need for future 

POST applications (GRDC, 2015). In Australia, the New South Wales Department of 

Primary Industries, NSW DPI (2012), calculated an average return of investment of 

1084% from the use of PRE herbicides in five different locations. Kapusta (1979) found 

that using PRE herbicides alone or as tank-mixtures of alachlor, metribuzin, linuron, 

metolachlor, pendimethalin obtained sufficient control for weeds like large crabgrass 

(Digitaria sanguinalis L.), fall panicum (Panicum dichotomiflorum Michx.), giant foxtail 

(Setaria faberi Herrm.), redroot pigweed (Amaranthus retroflexus L.) and horseweed 

(Erigeron Canadensis L.).  When proposing a series of management options to fight 

weed resistance, Cerdeira et al (2011) included the application of PRE herbicides to 

enhance cropping systems. Knezevic et al. (2009) evaluated soybean weed control of 



 

4 

 

glyphosate tank-mixtures with PRE herbicides in Nebraska and found that tank mixtures 

provided over 80% control of troublesome weeds. Ellis and Griffin (2002) observed a 

decreased weed density and increased growth in soybeans over three years when PRE 

herbicides were adopted. They concluded that using PRE herbicides could reduce 

glyphosate usage to one application instead of two or three. Mahoney et al. (2014), 

showed that when using a tank-mixture of flumioxazin and pyroxasulfone in soybeans, 

the POST herbicide application could be omitted. 

A wide range of variables influence PRE herbicide efficacy: photochemical 

decomposition, temperature, chemical breakdown, microbial decomposition, soil 

adsorption, product evaporation, and soil moisture. Some of these environmental pathways 

can be understood through specific herbicide physicochemical properties given as 

adsorption, volatility and solubility. 

Adsorption 

Herbicide adsorption is the adhesion of the herbicide in its liquid phase with the 

surface of solid soil particles (Vieira et al., 1999; Peterson et al., 2015), indicating how 

tightly a herbicide will bind to the soil. Herbicide adsorption is influenced by organic 

matter (OM) content where soils with high OM may require higher rates of a herbicide 

while a sandy or low organic matter soil will have greater product availability. According 

to Linde (1994), most pesticides are hydrophobic, non-polar, and are attracted to the 

lightly charged surface of the organic matter. Herbicide adsorption is positively correlated 

with soil moisture. Surface soil and organic matter particles are distributed between water 
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and herbicide molecules. Under dry soil conditions, herbicides are strongly adsorbed onto 

soil and OM fragments. Because of that, plant uptake is minimal. In order to quantify 

adsorption a coefficient Koc is used. The Koc is the soil organic carbon-water partitioning 

coefficient and measures the chemical binding force and mobility of soil organic carbon. 

High Koc values indicate low mobility and low Koc values indicate high mobility in the soil 

(Vogue et al., 1994; EPA, 2012). With a lower Koc more herbicide will be available in 

soil-solution (Schreiber, 2012). The standard mobility classification is given as the 

logarithm of Koc due to its wide value range (Table 1.1). 

Surface residues, like crop stubble and straw, also affect chemical adsorption.  

Hodges and Talbert (1990) studying the adsorption of diuron, terbacil and simazine on 

blueberry mulches, concluded that herbicide adsorption in mulches was up to five times 

greater than soil alone. Thus, crop residue may capture the herbicide through adsorption 

resulting in reduced soil deposition and reduced weed control (GRDC, 2015; Borger et al. 

2013). Herbicides with high adsorption may bind tightly to crop residue and not be 

available for plant uptake. Toth and Milham (1975) observed similar surface residue 

effects on herbicide adsorption and plant uptake with diuron. 

Table 1.1 Classification of herbicide mobility (FAO, 2000). 

Log Koc Classification 

> 4.5 Very strong sorption to soil 

3.5 – 4.4 Strong sorption to soil 

2.5 – 3.4 Moderate sorption to soil 

1.5 – 2.4 Low sorption to soil 

< 1.5 Negligible sorption to soil 
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Volatility 

The volatilization process is another way a herbicide is degraded and dispersed in 

the environment. Vapor drift of volatile herbicides may rapidly occur once released in the 

atmosphere. Vapor drift, the off-target pesticide movement as a gas (Hanson et al., 2016), 

which may result in herbicide losses and plant injury. Studying the effect of dicamba 

volatility, Behrens and Lueschen (1979) observed soybean injury and yield losses due to 

vapor drift with increased damage in applications during high temperatures and low air 

humidity conditions. Egan et al. (2014) observed the same influence of weather 

conditions when studying the effects of 2,4-D and dicamba on cotton and soybeans. In 

addition to weather conditions, the product’s physicochemical properties, its formulation 

type and the presence of crop residue on soil also affects the degree of losses to the 

atmosphere. Alachlor and atrazine applications in no-tillage corn had lower volatilization 

losses when compared to conventional tillage systems (Wienhold and Gish, 1994).  

Additionally, Glotfelty and Schomburg (1989) observed that greater surface area and 

crop residue increased herbicide volatilization. Schreiber et al. (2015) observed less 

phytotoxicity from volatilization for microencapsulated formulations of clomazone. Less 

loss from encapsulated formulations was also observed by Wienhold and Gish (1994). 

 Vapor pressure is an important measurement to evaluate volatilization and 

estimate the probability of a pesticide to change from a solid or liquid phase to the 

gaseous phase (Hornsby et al., 1996). Vapor pressure is commonly provided in 

millimeters of mercury (mmHg) at 25°C. Low values of vapor pressure indicate low 

volatility and high vapor pressure values indicate high volatility (Table 1.2). 
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 Soil applied herbicides with high vapor pressure values, like trifluralin (1.1 x 10-4) 

and ethalfluralin (8.2 x 10-5) require soil incorporation after application to avoid product 

degradation. Other PRE herbicides (e.g. S-metolachlor; pendimethalin; pyroxasulfone; 

metribuzin and clomazone) require water activation through rain or irrigation soon after 

application to ensure optimum herbicide efficacy. Generally, PRE herbicides have better 

plant uptake under adequate soil moisture conditions due to reduced soil colloid 

adsorption and greater herbicide availability (Loux et al., 2015).  Soil moisture has the 

opposite effect for volatile herbicides. Schneider et al. (2013) studied the volatilization of 

trifluralin and triallate at different soil moistures and observed up to an 8x increase in 

volatilization when controlled humidity within the soil was increased. When simulating a 

rain event, the same author observed a 3x increase in volatilization after the rain event 

compared with the volatilization before the rain event. The same trend was observed by 

Smith et al. (1997) where the authors observed increased volatility fluxes of ethalfluralin, 

trifluralin and triallate during rain events and no volatility from the dry surface soil. 

Under high soil moisture, organic molecules (such as herbicide molecules) are not 

adsorbed on mineral surfaces due to greater attraction from water molecules. Thus, 

volatilization is lower at lower soil moistures (Goss, 2004; Reichman et al., 2011; 

Schneider et al., 2013). Additionally, temperature influences vapor pressure as 

temperature increases vapor pressure increases. When temperatures increased from 15 to 

35°C, volatility increased for both alachlor and atrazine (Wienhold et al., 1993). Atrazine 

volatilization doubled while alachlor volatility increased by 10x at 35°C compared 
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to15°C.  Henry’s Law constant is another way to estimate volatility by considering the 

relationship between volatility and solubility. 

Table 1.2 Classification of volatility based on vapor pressure from water (Silva, 

2004). 

Vapor Pressure (mm Hg) Classification 

> 10-2 Very volatile from water 

10-4 – 10-3 Moderately volatile from water 

10-7 – 10-5 Slightly volatile from water 

< 10-8 Non-volatile 

Solubility  

Among the known physicochemical characteristics affecting the herbicide 

environment pathway, the solubility of herbicides helps to understand the availability, 

breakdown, plant uptake, movement and persistence of herbicides in the soil. Weed 

control, for example, is affected by the interaction between the product solution and the 

solid soil phase in which the solubility of herbicides and their adsorption to soil particles 

are directly related. Low solubility herbicides are strongly adsorbed to the soil colloids 

and are less likely to leach than highly soluble herbicides (Carter, 2000). Adsorption and 

solubility are inversely related, where high sorption corresponds to low solubility and low 

sorption corresponds to high solubility (Hartley, 1976).  Thus, the solubility in water is 

used to evaluate the herbicide interaction with adsorption. Schwarzenbach (1993) 

explains that when a substance is broken down and perfectly divided in two (absolute 

pure material and aqueous solution) the aqueous solution is the same as water solubility. 

This represents the maximum value that a herbicide concentration can be added to pure 

water and still be dissolved at any temperature. Consequences of highly soluble 
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molecules may include rapid herbicide dissipation to the water cycle resulting in ground 

water contamination potential through leaching and herbicide runoff (Lavorenti, 1996). 

The classification of herbicides by solubility in water is given in mg L-1 (Table 1.3). 

Water lipophilicity also influences solubility and a coefficient is adopted to estimate the 

lipophilic forces of a given solution. The n-octanol/water partition coefficient (Kow) 

represents the relation of n-octanol concentration with the water concentration. Higher 

Kow values indicate greater lipophilic properties such as affinity to the organic matter in 

the soil solution while low values are related to low adsorption and greater availability 

(Oliveira Jr. and Bacarin, 2011). The polarity of substances are directly correlated with 

solubility, where high polarity commonly indicates high solubility while non-polar 

substances often indicates low solubility (Schreiber, 2012).  

 

Table 1.3 Classification of herbicide solubility in water (FAO, 2000). 

Solubility (mg L-1) Classification 

> 10,000 Highly soluble 

1,000 – 10,000 Readily soluble 

100 – 1,000 Moderately soluble 

0.1 – 100 Slightly soluble 

< 0.1 Negligibly soluble 

 

Modes of Action 

The research and technology development in chemical weed control accelerated 

with new molecule discoveries beginning in 1950s. Atrazine, trifluralin and ametryne 

were some of the first identified herbicides in the years of 1959, 1963, and 1964 
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respectively (Timmons, 2005). New herbicides and modes of action (MOA) were 

discovered through the years and currently, according to the Weed Science Society of 

America (Senseman, 2007), seventeen MOAs are available. Among all seventeen MOA 

available, twelve include pre-emergence herbicide products.  

ALS inhibitors 

 Inhibitors of acetolactate synthase ALS/AHAS (WSSA Group 2) are a common 

mode of action for PRE herbicides. This group of herbicides, first discovered in 1975, 

(Green, 2007), inhibits the acetolactate synthase (ALS) also known as the 

acetohydroxyacid synthase (AHAS) which is an essential enzyme in the production of 

branched-chain amino acids (BCAA) such as valine, leucine and isoleucine (Senseman, 

2007).  According to Corbett and Tardif (2006), ALS affects BCAA production in two 

ways, first by condensing two pyruvates molecules into acetolactate and secondly by 

condensing α-ketobutyrate and pyruvate into acetohydroxybutyrate. These herbicides will 

bind and inhibit ALS, leading to a reduction in cell division and consequently, plant death 

(Corbett and Tardif, 2006). The main stages affected by the ALS inhibitors are plant 

growth development and reproduction, with almost no influence on germination of seeds 

(Blair and Martin, 1988; Fletcher et al., 1993). Symptomology on plants include growth 

reduction, necrosis, chlorosis, internode shortening, leaf deformations and abscission, leaf 

purpling and root growth inhibition (Whitcomb, 1999) – all directly related to reductions 

in cell division rate.  Zimdahl (1999) observed lateral root growth inhibition and purpling 

of vein symptoms. The ALS inhibitor herbicides are divided in five different chemical 
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families: the sulfonylureas, imidazolinones, triazolopyrimidines, 

pyrimidinylthiobenzoates and the sulfonylamino-carbonyl-triazolinones (Green, 2007). 

Each group differs in rates and ways of absorption, translocation and metabolism. Li et 

al. (2016) observed higher absorption and translocation of halosulfuron (sulfonylurea 

group) in adzuki beans (Vigna angularis) compared to white beans (Phaseolus vulgaris). 

Besançon et al. (2017) testing the same herbicide, halosulfuron, in cucumber (Cucumis 

sativus) and summer squash (Curcubita pepo), observed greater basipetal translocation in 

velvetleaf (Abutilon theophrasti Medik.) than acropetal translocation. Another finding 

was the different rates of absorption, 45% in summer squash and 80% in pitted morning-

glory (Ipomoea lacunosa L.) and low absorption in the root system, regardless of weed 

species. Imazethapyr (imidazolinone group) in contrast is quickly absorbed by roots and 

leaves as it transported by the phloem and xylem to young plant tissues (Plaza et al., 

2006). Other examples of common ALS inhibitor herbicides include nicosulfuron, 

chlorimuron-ethyl (sulfonylureas); imazapic, imazapyr (imidazolinones); cloransulam-

methyl, diclosulam (triazolopyrimidines); bispyribac-sodium (pyrimidinylthiobenzoates) 

and flucarbazone-Na (sulfonylamino-carbonyl-triazolinones). 

Mitosis inhibitors 

Both the microtubule assembly inhibitors (WSSA Group 3) and the mitosis 

inhibitors through the very long chain fatty acids (VLCFA) (WSSA Group 15) are modes 

of action affecting mitosis. Group 3 herbicides were first discovered in 1959 with DCPA 

(chlorthal dimethyl) followed by trifluralin in 1963 (Timmons, 2005). Microtubule 
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assembly inhibitors are products that inhibit the polymerization of the microtubules 

resulting in the absence of the spindle apparatus and therefore, blocking the alignment 

chromosome separation during the mitosis process. Cell wall synthesis may also be 

affected leading to poor root tip formation (Senseman, 2007). These microtubules 

structures are formed by tubulin proteins and are important to cellular mitosis and plant 

development. The microtubules are related to cellular differentiation and its structure 

maintenance, cellulose fiber arrangement, cell wall synthesis and plasma transport 

(Fernandes et al., 2013). According to Hansen et al. (1998), when studying herbicides 

such as amiprophos-methyl, trifluralin, pronamide and oryzalin, the microtubule 

polymerization was blocked due to these herbicides binding to the tubulin protein. 

Moreover, Fernandes et al. (2013) indicated that microtubule inhibitors may also affect 

Ca2+ concentrations in the cytoplasm and therefore disturb cell membrane permeability, 

polymerization and mitochondrial activities. This group includes the following 

chemicals: ethalfluralin, pendimethalin, trifluralin and oryzalin (dinitroaniline family); 

amiprophos-methyl (phosphoroamidate family) and the dithiopyr and thazophyr (pyridine 

family). The main plant symptoms from application of these herbicides are swelling and 

cracking of hypocotyls, and base callus formation after emergence. In grasses, common 

symptoms are stunted plants with incomplete emergence, lateral rooting, and increased 

thickening and decreased length of roots (Gunsolus and Curran, 2002). As a consequence 

of reduced root systems in susceptible plants, additional drought and nutrition deficiency 

symptoms may occur. Dinitroaniline herbicides will mainly inhibit root and shoot 
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development and are absorbed by the roots; pronamide herbicide uptake is also by roots 

and may be absorbed by leaves to some extent (Ware and Whitacre, 2004).  

Group 15 herbicides inhibit VLCFA synthesis, typically chain lengths of 20 or 

more carbons, with consequential effects prior to weed emergence (Senseman, 2007). 

Schmalfuß et al. (1998) stated that this group affects germination, and controls mostly 

annual grasses and some small-seeded broadleaves. According to Böger et al. (2002) 

allidochlor was one of the first VLCFA inhibitors to be discovered in 1958 followed by 

diphenamid in 1963 and propachlor in 1965 (Timmons, 2005). The VLCFA are very 

important in plants as they are precursors and components of epicuticle waxes, 

membranes and lipids stored in plants. Metolachlor in rapeseed (Brassica napus) reduced 

wax synthesis, alcohol and long chain alkanes concentrations inhibiting plant embryos 

(Matthes et al., 1998). Schmalfuß et al. (1998), studying the effect of chloroacetamides in 

green algae (Scenedesmus acutus) observed the phytotoxicity of VLCFA inhibitors was 

caused by the breakdown of oleic acid and fatty acid elongases being inhibited and then 

resulting in the degradation of crucial cellular structures and biomembranes. Moreover, 

this group inhibits the protein synthesis in meristematic regions in leaves, shoots and 

roots, blocking plant growth and development (Oliveira Jr. and Bacarin, 2011). Examples 

of VLCFA inhibitors are alachlor, acetolachlor, flufenacet, dimethenamid-p, S-

metolachlor and pyroxasulfone, each of which are absorbed by the root and shoot tissues. 

Injury symptoms in plants include poor leaf formation with incomplete leaf formation, 

crinkling and shortening of the mid vein (Gunsolus and Curran, 2002). Tanetani et al. 

(2009) studied the mechanism of action of pyroxasulfone in rice (Oryza sativa), barnyard 
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millet (Echinochloa esculenta) and Italian ryegrass (Lolium perenne ssp. multiflorum) 

and confirmed that the herbicide inhibits shoot growth and inhibits the activity of the 

VLCFAs. 

Carotenoid Biosynthesis Inhibitors 

The carotenoid biosynthesis inhibitors also called the bleaching herbicides 

(WSSA Group 13 and Group 27) are an important herbicide mode of action including 

several important PRE herbicides. In the WSSA Group 13, clomazone was first 

discovered in 1986 (Witschel et al., 2012). Clomazone is metabolized to an active form, 

the 5-keto clomazone, which inhibits an important precursor of plastid isoprenoids, the 

deoxyxylulose 5-phosphate synthase (DXP synthase) (Ferhatoglu and Barret, 2006; 

Senseman, 2007). Studying the effect of clomazone on corn mutants, Vencil et al. (1989) 

discovered the influence of clomazone on gibberellin (GA) biosynthesis when comparing 

dwarf mutant corn (lower ent-kaurene – gibberellin conversion) to normal corn. Duke et 

al. (1991) when studying the effects of clomazone on cotton observed the reduction of 

carotenoid production by inhibiting the synthesis of terpenoids followed by the 

production of farnesyl pyrophosphate. Norman et al. (1990) observed clomazone 

inhibiting the production of chlorophyll and plastoquinones. In the same study, the 

authors also discovered the site of clomazone activity, between the geranylgeranyl 

pyrophosphate (GGPP) and mevalonate (MEV) pathways. Classical symptoms of this 

group include whitening, bleaching and/or yellowing of leaves sometimes initiating in 

between the leaf veins (Bauman et al., 2008; Schreiber et al., 2015).  
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Inhibitors of Photosynthesis at the Photosystem II 

In 1958, simizine was the first herbicide discovered that inhibits photosystem II 

(WSSA Group 5). Atrazine followed in 1959 and bromacil in 1969 (Timmons, 2005). 

This mode of action stops the production of ATP and NADPH2 and the fixation of CO2, 

halting plant growth. These are consequences of a blockage on electron transports from 

QA to QB due to the herbicide binding on a D1 protein present in the chloroplast thylakoid 

membranes of the photosystem II complex. Plant death is often associated with 

chlorophyll and carotenoid loss and weakening of cell membranes resulting in rapid 

disintegration and cell water loss and its structures. This loss is the result of triplet state 

chlorophyll forming a singlet oxygen that produces a lipid radical driving to a chain 

reaction of lipid peroxidation. This peroxidation will end on the oxidation of proteins and 

lipids (Senseman, 2007). As Trebst (2008) indicated, the first mechanism of action leads 

to the second and principal one: the singlet oxygen formation is the reason of the final 

interruption in the system and causes the chlorophyll bleaching; but the main reason of 

photosynthesis shutdown is the plastoquinone replacement at the QB. The majority of 

herbicides are absorbed by roots and leaves; the main transport is through xylem and the 

CO2 absorption rates decline after a few hours of application in susceptible plants 

(Oliveira Jr. and Bacarin, 2011). Differences in the metabolism and conjugation 

processes are the principal way of increased tolerance in plants (Trebst, 2008). 

Phytotoxicity varies depending on the herbicide and plant species but generally the 

typical symptomology includes leaf and mid vein chlorosis such as general yellowing, 

slow growth and necrosis (Trebst, 2008). As Gunsolus and Curran (2002) elucidated, 
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herbicides of this group will not prevent plant emergence and germination and symptoms 

occur after cotyledon and leaf formation. Dayan et al. (2009) compared weed control 

with atrazine and amicarbazone and observed the same classical symptoms in susceptible 

plants and the ready absorption through leaves and root when applied as a PRE or as a 

POST application. Common herbicides within the mode of action are divided in five 

chemical families: triazines, including herbicides like ametryne, atrazine, simazine; 

triazinones with hexazinone, metamitron and metribuzin; triazolinone family with 

amicarbazone; the uracils such as bromacil and terbacil; the pyridazinones with 

chloridazon and finally the phenyl-carbamates like desmedipham. 

Droplet size effect on pesticide control 

Pesticide spray efficacy is influenced by numerous factors which may or may not 

be controlled. Uncontrolled variables in spray applications include, for example, the 

weather, the environment and the distribution and incidence of pests.  Among the 

characteristics that can be managed, nozzle selection, spray pressure and tank-mixture 

formulation are examples that directly affect droplet size. The influence of droplet size on 

pesticides has been studied for a long time by several authors. With insecticides, for 

example, the effect of droplet size on tobacco budworm (Heliothis virescens) sprayed 

with bifenthrin and oil was observed by Womac et al. (1994). Two droplet sizes were 

selected, 96 and 337 μm (DV0.5), with coarser droplets increasing larvae mortality and 

accelerating its process. Reed and Smith (2001) observed, however, that increasing 

droplet size indicated reduced midcanopy tobacco budworm mortality when spraying 
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lambda-cyhalothrin in cotton. Lešnik et al (2005), compared the control of codling moth 

(Cydia pomonella), green apple aphid (Aphis pomi) and apple leaf miner (Leucoptera 

malifoliella) using air induction and standard nozzles. Despite many variables affecting 

the control of these pests, the authors observed lower control with coarser droplets (air 

induction nozzles) than with finer ones. 

Similarly to insecticides, the general recommendation for fungicides is to adopt 

finer sprays for contact products and medium to larger sprays for systemic ones. That is 

what Prokop and Veverka (2006) observed when studying the influence of droplet size on 

both contact and systemic fungicides on Phytophthora infestans. Six droplet sizes were 

selected, from 183 to 939 μm (DV0.5) and greater contact fungicide control efficacy with 

finer than the coarser droplets was observed. Washington (1997), working with aerial 

application of fungicides to control Mycosphaerella fijiensis, used different droplet sizes 

and concluded the need of sprays with  DV0.5 between 300 to 400 μm and deposit of 30 

droplets cm-2, to provide adequate pest control and drift reduction. 

Numerous authors have also shown the influence of spray droplet size on 

herbicide control, especially for POST herbicides (Ennis and Williamson, 1963; Douglas, 

1968; McKinlay et al., 1972; McKinlay et al., 1974; Wolf et al., 1992; Knoche, 1994; Liu 

et al., 1996; Etheridge et al., 1999; Smith et al., 2000; Shaw et al., 2000; Ramsdale and 

Messersmith, 2001; Etheridge et al., 2001; Feng et al., 2003; Brown et al., 2007; Creech 

et al., 2016; Ferguson et al., 2018; Butts et al., 2018). Usually the effect of droplet size on 

POST herbicide weed control depends on the weed species and the herbicide used. 

Brown et al. (2007) concluded that not only nozzle but carrier volume and spray pressure 
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are herbicide and weed specific. Etheridge et al. (1999), for instance, compared weed 

controls of glufosinate, glyphosate and paraquat using two air induction nozzles with 

coarse droplets (RU and AI) and a standard flat-fan with finer droplets (XR) applied to 

broadleaf signalgrass (Urochloa platyphylla) and common cocklebur (Xanthium 

strumarium). The AI nozzle with DV0.5 of 450 μm and the XR with DV0.5 of 175 μm had 

similar herbicide efficacy while the larger DV0.5 produced by the RU nozzle had lower 

weed control.  Feng et al. (2003), found that increasing droplet size increased glyphosate 

absorption and translocation in corn leaves. Using three droplet sizes (Fine, Medium and 

Coarse) to spray glyphosate in corn, the authors observed great retention but low 

absorption and translocation with fine droplets. According to the study, the absorption on 

leaves was higher with coarser droplets due to larger disrupted cuticle areas produced 

with those droplets. Shaw et al. (2000) studied the effect of droplet sizes and spray 

volume on acifluorfen deposition and control of common cocklebur. Three droplet sizes 

of 250, 350 and 450 μm and three carrier volumes of 56, 112 and 169 L ha-1 were used. 

Similar weed control was achieved for both the 250 and the 450 μm droplets. The authors 

hypothesized that finer droplets had better spray coverage while the 450 μm droplets had 

greater local leaf injury, just as Feng et al. (2003) observed. Creech et al. (2016) and 

Butts et al. (2018) studied the effects of droplets sizes on common POST herbicides such 

as 2,4-D, atrazine, cloransulam-methyl, dicamba, glufosinate and saflufenacil. Creech et 

al. (2016) observed different droplet size responses depending on the herbicide and weed 

species. In that study, coarse droplets increased weed control with 2,4-D while weed 

control with cloransulam-methyl increased almost 80% when changing from Extremely 
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Coarse to Fine sprays. Butts et al. (2018) observed improved weed control with Ultra 

Coarse droplets (900 μm) for dicamba and Extremely Coarse droplets (605μm) for 

glufosinate. Additionally, the leaf morphology of different weed species on droplet size 

can affect herbicide control. Smith et al. (2000) studied those effects on pesticide 

deposition. The study included droplet sizes of 140, 280, 420, 560 and 720 μm sprayed 

with spinning discs on 6 different weed species. The authors concluded significant leaf 

morphology effect on spray deposition and predicted up to 16% decrease of spray deposit 

for every 100 μm increase on droplet size. The effects of leaf morphology over deposition 

can be explained by factors like the leaf angle, hydrophilicity and the presence of 

trichrome. Therefore, spray droplets can bounce or shatter depending on the target but, as 

observed by Dorr et al. (2014), other physical and spray properties are crucial for 

optimum leaf spray retention.  A model developed by Dorr et al. (2014) predicted the 

interception, shatter, bounce and retention of droplets on cotton, wheat and common 

lambsquarters (Chenopodium album L.) leaves. The authors concluded that, generally, as 

tank-mixture surface tension, static contact angle, droplet size and droplet velocity 

decreased, leaf retention increased.  

Despite many studies showing the different responses of POST herbicide for 

droplet sizes, only a few authors have conducted research showing the influence of 

droplet size on PRE herbicides efficacy (Merry, 1986; Derksen et al., 2012; Borger et al., 

2013). For instance, Merry’s (1986) study on the influence of droplet size and application 

methods on PRE herbicide activity was one of the first to connect spray droplet sizes to 

PREs, soil type, soil moisture, spraying methods and weed control. The study compared 
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different application methods and the droplet sizes produced by each system regarding 

weed control. The spraying systems were: controlled application method (CDA), 

Electrodyne (electrostatic sprayer) and conventional hydraulic.  Among the systems 

tested, the hydraulic nozzle system was the one that provided improved and more 

consistent weed control. Finer sprays did not result in improved weed control even with 

reduced carrier volume compared to coarser sprays. According to the author, as long as 

the full herbicide dose was delivered on the target under appropriate weather conditions, 

suitable weed control should be achieved. Despite its importance, the study compared 

droplet size within different spray systems, pressures and volumes instead of comparing 

under same conditions. Additionally, only two PRE herbicides were studied, isoproturon 

and atrazine. Thus, including different nozzles, droplet sizes and herbicides with distinct 

physicochemical properties is necessary to better address the importance of droplet size 

on PRE herbicide efficacy. Borger et al. (2013), conducted a research on PRE herbicides 

control of rigid ryegrass (Lolium rigidum) with increased carrier volume in no-till 

systems. Two nozzles were used, a TT110015, producing Medium droplets and a 

TTI110015, producing Extremely Coarse droplets. No nozzle effect on rigid ryegrass 

control was observed. The PRE herbicides used were trifluralin, and pyroxasulfone. 

According to the author, it would be more advantageous to adopt the Extremely Coarse 

spray since it would better reduce drift when compared with finer sprays. In another 

study conducted by Derksen et al. (2012), the spray deposit on the canopy of potted 

hydrangeas spray deposit on the and ground were assessed using droplet sizes (DV0.5) 

ranging from 188 to 440 μm with the TeeJet® nozzles XR and AI. The coarser the 
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droplets, the greater the ground deposit and the better the delivery through plant canopy.  

In addition, nozzles and droplet sizes were compared in different herbicide programs for 

peanuts (Arachis hypogaea), including PRE and POST herbicides, using the TTI11002 

(Ultra Coarse), AIXR11002 (Coarse) and DG11002 (Medium) nozzles by Carter et al. 

(2017). Grass control was reduced by 6%, using the TTI compared to the other nozzles 

but no significant difference for Palmer amaranth (Amaranthus palmeri) control and 

peanut yield was observed. 

Thereupon, limited data are available regarding the influence of droplet sizes on 

different PRE herbicides in comparison with POST herbicides, fungicides or insecticides. 

The few studies that tried to better understand its relation failed to include more nozzles, 

herbicides, soil types and environmental conditions. The recommendation and adoption 

of coarser sprays for PRE herbicides is, however, common among applicators and nozzle 

manufacturers even without conclusive research showing better weed control with 

coarser sprays (Klein and Kruger, 2011; Teejet®, 2011; Hypro®, 2016; Greenleaf 

Technologies, 2018).  

This study intends to show the effect of droplet sizes on PRE herbicide weed 

control efficacy through different herbicides based on physicochemical characteristics 

(adsorption, volatility and solubility), spray nozzle type, soil types, crop residues and 

precipitation. 
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CHAPTER II  

DROPLET SIZE MEASUREMENTS FOR DIFFERENT HYDRAULIC NOZZLES 

AND PRE-EMERGENCE HERBICIDES 

Abstract 

Herbicide efficacy depends on numerous factors, including nozzle type and 

droplet size. However, little information is known regarding the effect of droplet size on 

pre-emergence herbicide efficacy. Four nozzle types and six pre-emergence (PRE) 

herbicides were selected for droplet size measurement in wind tunnel and to further 

support herbicide efficacy studies. The nozzles XR11002, ULD12002, TTI6011002, and 

TTI11002 and the herbicides pendimethalin, metribuzin, clomazone, imazethapyr, 

pyroxasulfone and S-metolachlor were selected. The TTI had the coarsest spray quality 

while the XR had the finest. Herbicide tank-mixtures affected droplet formation where the 

TTI had the highest variation among herbicides followed by the TTI60. Among all tank-

mixtures, the nozzles sprayed with imazethapyr solution produced largest droplet sizes. 

Additionally, herbicide concentration affected droplet size where the concentrated S-

metolachlor tank-mixture increased droplet size for all nozzles except the XR. 
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Introduction 

Understanding atomization of spray droplets produced by hydraulic nozzles is 

fundamental to ensure effective pesticide applications and to reduce spray drift potential. 

According to the American Society of Agricultural and Biological Engineers (ASABE, 

2013), droplet size classification ranges from Extremely Fine (< 60 μm) to Ultra Coarse 

(> 665 μm) spray quality (Table 2.1.)  

Table 2.1 ASABE S572.1 droplet size classification category, symbol, nozzle color 

code and approximate DV0.5 in microns (μm). 

Spray Quality Symbol Color Code 

Extremely Fine XF Purple 

Very Fine VF Red 

Fine F Orange 

Medium M Yellow 

Coarse C Blue 

Very Coarse VC Green 

Extremely Coarse XC White 

Ultra Coarse UC Black 

 

Several authors have studied many aspects of nozzle types that affect spray 

quality, ranging from droplet velocity studies, product formulation effects on surface 

tension, nozzle spray angle alteration, spray droplet air inclusions and spray pressure 

influence on drift potential studies (Butler Ellis et al., 2002; Czaczyk et al., 2012; Dorr et 

al., 2013; Fritz et al., 2014; Ferguson et al., 2015; Ferguson et al., 2016; Henry et al., 

2016).  Dorr et al. (2013), for example, compared the spray characteristics of a standard 
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flat-fan nozzle, XR, a non-Venturi anvil nozzle, TT, and three air-induction nozzles, the 

AI, TDCFFC and TTI. They observed a negative correlation between nozzle droplet size 

and droplet velocity. The XR produced the smallest droplets and highest velocity while 

the air induction nozzle produced the coarsest droplets and the lowest droplet velocity. 

The study also demonstrated the influence of spray tank-mixture on droplet size. The 

nozzles tested with glyphosate at 1%, when compared with water alone and non-ionic 

surfactant plus water, produced smaller droplets, reduced spray angle and low liquid 

density, due to lower surface tension when compared to water only. Similarly, another 

study included three nozzles: XR, AIXR and TTI; two pressures: 207 and 414 kPa; three 

pesticide formulations: soluble liquid concentrate, emulsifiable concentrate and water 

dispersible granules; and three adjuvant formulations: microemulsion, high surfactant oil 

concentrate and crop oil concentrate. Nozzle type had the greatest influence on droplet 

size but spray tank-mixture and nozzle pressure also affected droplet size (Henry et al., 

2016). Miller and Butler Ellis (2000) observed the same formulation effect on droplet 

size, but they also observed a reduced nozzle type effect. Air induction nozzles were 

more sensitive to liquid physical property changes than standard hydraulic nozzles due to 

the air inclusion mechanism, found in these Venturi nozzles. The Venturi process creates 

an internal pressure drop with different chamber diameters and once combined with air 

induction ports creates an air suction, incorporating air into the nozzle and eventually in 

the droplets (Dorr et al., 2013). Larger droplets are formed with these air inclusions when 

compared to other standard flat-fan nozzles, producing fewer droplets prone to drift and 

consequently reducing the drift potential. This has been observed by many authors 
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(Johnson et al., 2006; Sikkema et al., 2008; Ferguson et al., 2015; Ferguson et al., 2016, 

Alves et al., 2017) 

In order to better understand the effect of droplet size on pesticide efficacy, it is 

necessary to measure the droplet size produced by the nozzles using actual spray tank-

mixtures. Womac et al. (1994) observed that droplets of 337 μm increased tobacco 

budworm (Heliothis virescens) larvae mortality in comparison with 96 μm droplet sizes 

when spraying bifenthrin and oil. In another study, six droplet sizes ranging from 183 to 

939 μm were adopted when spraying contact and systemic fungicides on Phytophthora 

infestans and the fine sprays provided better fungicide control than the coarser ones 

(Prokop and Veverka, 2006). Attempting to maximize herbicide efficacy and mitigate 

drift with dicamba and glufosinate, Butts et al. (2018) observed acceptable control results 

using Ultra Coarse droplets for dicamba and Extremely Coarse droplets for glufosinate. 

The objective of this study was to compare the droplet size of nozzles and PRE 

herbicides to support subsequent field and greenhouse studies. 

Materials and Methods 

Droplet size measurements were obtained in a low speed wind tunnel in July, 

2017 in North Platte, Nebraska, USA, in the Pesticide Application Technology Lab (PAT) 

at the University of Nebraska-Lincoln West Central Research and Extension. A SympaTec 

Helos Vario (SympaTec Inc., Clausthal, Germany) laser diffraction instrument with an R7 

lens with particle size range of 0.5 to 3500 µm was used. Following the standard droplet 

size classification methodology by ASABE (2013), reference nozzles with water at pre-
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determined spray angles, flow rates and pressures were used in order to develop the 

classification category threshold (Table 2.2). The nozzles tested were the XR11002, 

TTI6011002, TTI11002 (Turbo Teejet® Induction, Spraying Systems Inc. Wheaton, 

Illinois, USA) and the ULD12002 (Ultra-Lo Drift, Hypro LLC, New Brighton, Minnesota, 

USA). Each nozzle was sprayed using the following herbicides: pendimethalin, (Prowl 

H2O
®, BASF Corp., Florham Park, NJ, USA) at 1062 g a.i. ha-1, metribuzin (Sencor®, 

Bayer CropScience, Research Triangle Park, NC, USA) at 701 g a.i. ha-1, clomazone 

(Command 3ME®, FMC Corp., Philadelphia, PA, USA) at 1122 g a.i. ha-1, imazethapyr 

(Pursuit®, BASF Corp., Florham Park, NJ, USA) at 70 g a.i. ha-1, pyroxasulfone (Zidua®, 

BASF Corp., Florham Park, NJ, USA) at 179 g a.i. ha-1 and S-metolachlor (Brawl®, 

Tenkoz, Inc., Alpharetta, GA, USA) at 1421 g a.i. ha-1. Three S-metolachlor 

concentrations were used to simulate herbicide concentrations at three volumes: 47, 94 

and 140 L ha-1. 

The wind tunnel was equipped with a traversing arm positioned inside the section 

of 1.25 m2 with the nozzle attached at the end. The nozzle was located 0.3 m from the 

diffraction laser beam. An electric motor drive was used to traverse the nozzle allowing 

the entire spray plume to pass through the beam. Compressed CO2 air cylinders provided 

the air pressure, and a calibrated pressure gauge with a capacity of 2500 kPa was located 

near the nozzle to measure spray pressure through a capillary. Solenoid valves were used 

to start and stop spraying. The internal wind speed was maintained at 6.7 s-1 for all the 

laser diffraction measurements. Droplet size measurements were collected at 276 kPa. The 

spray system was cleaned between each tank mixture to limit contamination. Droplet 
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diameters at which 10, 50 and 90% of the spray volume was contained in smaller droplets 

were given in values as DV0.1, DV0.5 and DV0.9, respectively, in µm. The percent of droplets 

smaller than 150 µm and the relative span (RS) were also measured. RS is a dimensionless 

value of the distribution of the droplet spectra and is calculated: 

𝑅𝑆 = (𝐷𝑣0.9 − 𝐷𝑣0.1)/𝐷𝑣0.5 

Data Analysis 

 Droplet size and RS data were submitted to an analysis of variance in SAS v.9.4 

(SAS Institute, Cary, NC, USA) using least squares means to fit the general linear model 

(PROC GLM) at *P<0.05 using Sidak’s multiple comparison test. Run replication was 

treated as a random effect. Tank mixture, nozzle and its interaction were treated as fixed 

effects.  

Results and Discussion 

A classification category threshold was plotted using reference nozzles in order to 

classify the spray quality of four selected nozzles. Based on the reference nozzles, a spray 

quality (DV0.5) over 140 μm is categorized as Fine and a spray quality greater than 645 μm 

is categorized as an Ultra Coarse (Table 2.2). 

 As expected, the XR nozzle produced the finest droplets with a DV0.5 of 207 μm, 

while the TTI produced the coarsest droplets with a DV0.5 of 704 μm (Table 2.3). The 

nozzles producing the coarsest droplets to the finest droplets were: TTI > TTI60 > ULD > 

XR across tank-mixtures. Henry et al. (2016) observed similar results, especially for the 

TTI and XR nozzles where the TTI had the largest and the XR had the smallest droplet 
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size spectra. The XR had the highest droplet size distribution across nozzles, represented 

by the RS value (Table 2.3). 

Additionally, herbicide tank-mixture influenced droplet size and RS. The DV0.5 

and RS values differed across herbicides within the same nozzle. The TTI sprayed with 

pyroxasulfone had DV0.5 of 794 μm while when sprayed with pendimethalin, a DV0.5 of 710 

μm (Table 2.2). The RS also differed across herbicides.  Miller and Butler Ellis (2000) 

observed that air induction nozzle droplet size formation would respond differently than 

standard flat-fan nozzles with different tank-mixture, especially for inhomogeneous 

mixtures like emulsions and dispersions, due to changes in the air induction ports of those 

nozzles. The XR sprayed with metribuzin and pendimethalin had a RS of 1.28 and 1.18, 

respectively (Table 2.3) while, for the TTI60 nozzle, for example, with metribuzin and 

pendimethalin had a RS of 0.94 and 0.91, respectively.  

Comparing the herbicide effect on droplet size across nozzles, imazethapyr had 

larger droplet size, excluding the XR, than other solutions. S-metolachlor at 140 L ha-1 had 

the smallest droplet size distribution. 

Herbicide concentration also affected droplet size. S-metolachlor was tested at 

three concentrations due to different carrier volumes used. The TTI60 droplet size, for 

example, was 494 μm at the highest concentration (47 L ha-1) while it was 518 μm at the 

lowest concentration (140 L ha-1). Increasing the carrier volume and decreasing the 

herbicide concentration led to finer sprays for all nozzles except for the XR.  

It is important to evaluate droplet size and spray quality changes among nozzles, 

and tank-mixtures to mitigate drift and increase herbicide efficacy. Great droplet size 
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reduction can increase drift potential, droplet evaporation, reduce spray coverage and 

reduce weed control.  

Table 2.2 Droplet size spectrum and percent of droplets smaller than 150 μm for the 

reference nozzles and the spray quality classification based on the reference 

nozzlesa.  

Nozzle Pressure DV0.1 DV0.5 DV0.9 % < 150 μm Classification 

 kPa ----------------- μm -----------------   

11001 450 63 140 244 55.55 Fine 

11003 300 109 246 412 19.87 Medium 

11006 200 157 355 594 8.93 Coarse 

8008 250 183 420 718 6.40 Very Coarse 

6510 200 222 508 857 4.11 Extremely Coarse 

6515 150 296 645 1039 1.84 Ultra Coarse 
a Measurements were collected according to the ASABE 2572.1 guidelines. 

 

 

Table 2.3 Droplet size (DV0.5) per nozzle and herbicide and classification according to 

the reference nozzle threshold at 276 kPaab.  

Herbicide Formulationc XR11002 ULD12002 TTI6011002 TTI11002 

  ------------------------------- μm ------------------------------- 

clomazone ME 201 s F 474 m VC 626 h XC 721 d UC 

imazethapyr  SC 204 s, r F 479 m VC 663 e UC 782 b UC 

metribuzin DF 197 s F 470 m VC 639 f, g XC 740 c UC 

pendimenthalin  CS 213 q, r F 451 n VC 610 i XC 710 d UC 

pyroxasulfone DF 204 s, r F 468 m VC 646 f UC 794 a UC 

S-metolachlord  EC 205 s, r F 419 o VC 518 j XC 639 f,g XC 

S-metolachlore EC 213 q, r F 402 p C 506 k VC 625 h XC 

S-metolachlorf  EC 219 q F 399 p C 494 l VC 628 h,g XC 

a LS-means followed by same letter are not significantly different at P ≤ 0.05. 
b F – Fine, C – Coarse, VC – Very Coarse, XC – Extremely Coarse, UC – Ultra Coarse. 
c CS – capsule suspension, DF – dry flowable, ME – microemulsion, SL – soluble concentrate, EC – emulsifiable 

concentrate. 
d Herbicide rate for 47 L ha-1, e Herbicide rate for 94 L ha-1, f Herbicide rate for 140 L ha-1. 
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Table 2.4 Relative span (RS) per nozzle and herbicide at 276 kPaa. 

Herbicide Formulationb XR11002 ULD12002 TTI6011002 TTI11002 

clomazone ME 1.27 a,b 0.97 i,j,k 0.93 m,n 0.94 l,m,n 

imazethapyr  SC 1.24 b 1.06 e,f 0.94 l,m,n 0.93 m,n 

metribuzin DF 1.28 a 0.99 h,i 0.94 k,l,m 0.94 l,m,n 

pendimenthalin  CS 1.18 c 0.98 i,j 0.91 n 0.93 m,n 

pyroxasulfone DF 1.24 b 1.03 f,g 0.94 l,m,n 0.93 m,n 

S-metolachlorc  EC 1.18 c 1.09 e,d 0.95 j-m 1.02 g,h 

S-metolachlord EC 1.16 d 0.94 l,m,n 0.96 j,k,l 1.04 f,g 

S-metolachlore  EC 1.09 e,d 0.95 j-m 0.94 k,l,m 1.04 f,g 

a LS-means followed by same letter are not significantly different at P ≤ 0.05. 
b CS – capsule suspension, DF – dry flowable, ME – microemulsion, SL – soluble concentrate, EC – 

emulsifiable concentrate. 
c Herbicide rate for 47 L ha-1. 
d Herbicide rate for 94 L ha-1. 
e Herbicide rate for 140 L ha-1. 

Conclusion 

Droplet size was influenced by nozzle type, tank-mixture and herbicide 

concentration. The air induction nozzles had a smaller droplet size distribution while the 

XR nozzle had the largest RS values among herbicides and nozzles. The TTI nozzle had 

the largest droplet size across herbicides, followed by the TTI60, ULD and XR. 

Distinguishing droplet size differences among nozzles and herbicides will help to support 

future PRE herbicide efficacy and nozzle studies involving the same nozzles and 

herbicides. 
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CHAPTER III 

EFFECT OF DROPLET SIZE, VOLATILITY, SOLUBILITY AND ADSORPTION ON 

HERBICIDE EFFICACY OF PRE-EMERGENCE HERBICIDES IN SOYBEANS 

Abstract 

Unlike post-emergence herbicides, little is known about droplet size effect on pre-

emergence herbicide (PREs) efficacy. Four nozzle types were used to spray different 

PRE herbicides on eight soybean fields in Missouri and Mississippi in 2017 and 2018, 

respectively. Pendimethalin, metribuzin, clomazone, imazethapyr and pyroxasulfone 

were selected based on their physicochemical characteristics (adsorption, volatility and 

solubility) and were sprayed with the XR11002, ULD12002, TTI6011002 and TTI11002 

nozzles. The XR nozzle produced the smallest droplet size (DV0.5), 204 μm, followed by 

the ULD, TTI60 and TTI with DV0.5 of 468, 646 and 794 μm, respectively. Droplet size, 

spray coverage, nozzle type or physicochemical characteristics did not affect PRE 

herbicide efficacy, except in the Monroe County, MS, field, with pendimethalin. The 

TTI60 twin fan nozzle enhanced pendimethalin weed control (up to 91%) in comparison 

with pendimethalin sprayed with the TTI nozzle (64%), in a high organic matter (OM) 

soil comprised of large clods and high weed pressure. This was due to improved 

herbicide penetration assisted by the TTI60 dual fan pattern increasing herbicide-

moisture contact and clod coverage by the herbicide. Under soils with higher OM content 
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(> 2%) pendimethalin weed control was reduced. In soils with low OM (< 0.7%), low 

cation exchange capacity (< 13.1%) and rainfall of 12.2 mm within 3 days after 

application, metribuzin also resulted in reduced weed control. The results indicate that 

droplet size does not affect PRE herbicide efficacy. 

Introduction 

Pre-emergence herbicides (PREs) are an important tool for an optimal weed 

control program (Palmer et al., 1999; Hasty et al., 2004). Among the variables affecting 

herbicide efficacy, nozzle selection is critical due to direct impacts on droplet size, spray 

coverage and deposition, drift control and herbicide efficacy. The influence of droplet size 

on pesticides, especially for post-emergence herbicides (POSTs), has been studied by 

several authors (Ennis and Williamson, 1963; Douglas, 1968; McKinlay et al., 1972; 

McKinlay et al., 1974; Wolf et al., 1992; Knoche, 1994; Liu et al., 1996; Etheridge et al., 

1999; Smith et al., 2000; Shaw et al., 2000; Ramsdale and Messersmith, 2001; Etheridge 

et al., 2001; Feng et al., 2003; Brown et al., 2007; Creech et al., 2016; Butts et al., 2018; 

Ferguson et al., 2018). The droplet size effect on POST herbicide efficacy depends on the 

herbicide used and the weed species. In a non-selective herbicide control comparison with 

glufosinate, glyphosate and paraquat, two air induction nozzles (RU and AI) and a 

standard flat-fan (XR) were used for broadleaf signalgrass (Urochloa platyphylla) and 

common cocklebur (Xanthium strumarium) applications (Etheridge et al., 1999). The AI 

nozzle with DV0.5 of 450 μm and the XR with DV0.5 of 175 μm had similar herbicide 

controls while the RU nozzle with DV0.5 of 650 μm had lower weed control (Etheridge et 
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al., 1999). Creech et al. (2016) and Butts et al. (2018) studied droplet size effects on weed 

control of common POST herbicides like 2,4-D, atrazine, cloransulam-methyl, dicamba, 

glufosinate and  saflufenacil. Creech et al. (2016) observed different droplet size responses 

depending on herbicide and weed. Coarse droplets tended to increase weed control with 

2,4-D while application of cloransulam-methyl resulted in nearly 80% weed control 

increase when droplet size decreased from Extremely Coarse (DV0.5 of 637 μm) to Fine 

(DV0.5 of 228 μm). Butts el al. (2018) observed reduced drift and greater weed control for 

dicamba and glufosinate with droplet sizes of 900 μm and 605 μm (DV0.5) respectively. 

Despite all the research with POST herbicides, few studies have shown the 

droplet size effect on PRE herbicide efficacy (Merry, 1986; Borger et al., 2013). Merry 

(1986) compared application methods (CDA - Controlled Application Method, 

electrostatic sprayer and hydraulic nozzle system) and droplet sizes produced by each 

system and the impact they had on weed control. The hydraulic nozzle system provided 

better and more consistent weed control and the finer sprays reduced control when 

compared to coarser sprays. According to the author, ensuring the correct herbicide dose 

on the target under appropriate weather conditions should provide suitable weed control. 

Borger et al. (2013) conducted a study on PRE herbicide control of rigid ryegrass (Lolium 

rigidum) in no-tillage systems using TT110015 and TTI110015 nozzles producing 

Medium and Extremely Coarse droplets, respectively. For both the herbicides used, 

trifluralin and pyroxasulfone, no nozzle effect on rigid ryegrass control was observed and 

according to the authors, adopting Extremely Coarse sprays would be wiser since it 

would reduce drift more when compared to the Medium spray. Derksen et al. (2012) 
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using droplet sizes (DV0.5) ranging from 188 to 440 μm with the TeeJet® nozzles XR and 

AI, observed that the coarser the droplets, the greater the ground deposit and better 

delivery through the plant canopy resulted. 

Herbicide efficacy is also directly related to the environment. Variables affecting 

herbicide environment fate include photochemical decomposition, chemical breakdown, 

microbial decomposition, soil adsorption, product evaporation and soil moisture. 

Physicochemical characteristic like adsorption, volatility and solubility are important 

herbicide properties to estimate its environment fate. The adsorption coefficient Koc is the 

partitioning between soil organic carbon and water and is interpreted as the binding force 

of a chemical to the soil. A high Koc indicates low soil mobility (Vogue et al., 1994; EPA, 

2012), while a low Koc indicates greater herbicide availability in the soil-solution 

(Schreiber, 2012). Variables like soil organic matter (OM) and crop residue also affects 

herbicide adsorption. Crop residues can capture herbicides through adsorption and 

physical obstruction resulting in reduced spray coverage, deposit and weed control 

(GRDC, 2015; Borger et al., 2013). The vapor pressure is another important tool to 

estimate the probability of a pesticide changing from the solid/liquid to the gaseous phase 

(Hornsby et al., 1996). Several authors have observed greater herbicide volatilization 

under higher soil moisture and higher temperature conditions (Wienhold et al., 1993; 

Goss, 2004; Reichman et al., 2011; Schneider et al., 2013). The solubility of products also 

influences the availability, breakdown, plant uptake, movement and persistence of 

herbicides in the soil. Highly soluble products can rapidly dissipate through herbicide 
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runoff and leaching, potentially causing ground water contamination and reduced weed 

control (Lavorenti, 1996).  

The effects that physicochemical herbicide properties on droplet sizes and their 

effect on PRE herbicide efficacy is not clear. It is known, though, that particle size 

influences the rate of dissolution of substances. Reducing a particle size results in surface 

area increase and consequently dissolution rate increase (Florence and Attwood, 1981; 

Richards, 1988; Chu et al., 2012). Droplet sizes will also affect the evaporation rate of a 

volatile solution.  According to Raoult’s Law, the partial vapor pressure of each 

component in the solution is directly proportional to its mole fraction.  Dalton’s Law, for 

instance, states that the total pressure of a mix of gases is the sum of the partial pressures 

of each gas (Freed et al., 1967).  Therefore, a solution consisting of water and a volatile 

herbicide (with higher vapor pressure than water) will have a combined single vapor 

pressure, greater than the vapor pressure of water or herbicide alone. Yu et al. (2009a) and 

Holterman (2003), for example, observed faster evaporation of smaller droplets and spray 

mixtures with lower surface tension. Merry (1986) also did not observe increased efficacy 

from smaller droplets with isoproturon. Additionally, droplet size affects the adhesion, 

bouncing, and shattering on solid surfaces (Dorr et al., 2014; Cock et al., 2017) Therefore, 

droplet physical processes could affect herbicide efficacy, for example, through droplet 

contact on hydrophilic surfaces as on plant residues. 

Thus, this research aims to better address nozzle and droplet size recommendations 

for PRE herbicide applications based on different environmental and physicochemical 

characteristics. 
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Materials and Methods 

Studies were conducted in 2017 and 2018, respectively, across eight locations in 

two states, Missouri and Mississippi. In 2017, four fields were selected in three different 

counties in northwest Missouri: Nodaway, Atchison and Gentry Counties. In 2018, four 

fields were selected in four different counties in Mississippi: Washington, Oktibbeha, 

Noxubee and Monroe Counties. The experimental design was a randomized complete 

block design with four replications. Each plot measured 2.25 by 3 m in 2017 and 3 by 9m 

in 2018. Soil samples were collected in all fields and soil analyses were conducted by the 

Mississippi State University Soil Testing Laboratory. Crop residue quantification was only 

conducted for the fields with a minimum amount of residue, all four fields in Missouri and 

none in Mississippi. The quantification of crop residue was conducted using a 1 square 

meter frame and by randomly selecting three points in the field and collecting all the 

residue from within those three points. Residues were dried at 55oC for 3 days and 

weighed using the methodology in Al-Kaisi & Yin (2005) and Brye et al. (2007). Field 

location, soil type, organic matter, cation exchange capacity, pH, plant residue quantity 

and rainfall for each field is shown in Table 3.1. All fields in Missouri were sprayed with 

glyphosate (Roundup PowerMax®, Monsanto Co., St. Louis, MO, USA) at 351 g a.i. ha-1 

one to two days prior to soybean (Glycine max (L.) Merr.) planting. In Mississippi a 

shallow soil cultivation was conducted prior to planting for all locations. Pre-emergence 

herbicides were selected from those labeled for soybeans based on the attribute values of 

adsorption, volatility and solubility. Herbicide rates and physicochemical properties and 

classification are listed in Table 3.2.  An untreated control treatment was included in each 
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block at each field location. The nozzle types selected for comparison were the XR11002, 

TTI6011002, TTI11002 (Turbo Teejet® Induction, Spraying Systems Inc. Wheaton, 

Illinois, USA) and the ULD12002 (Ultra-Lo Drift, Hypro LLC, New Brighton, Minnesota, 

USA). 
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Droplet size measurements for all nozzles and herbicides were obtained in a low 

speed wind tunnel in July, 2017 in North Platte, Nebraska, USA, in the Pesticide 

Application Technology Lab (PAT) at the University of Nebraska-Lincoln West Central 

Research and Extension. Because spray coverage was collected with pyroxasulfone tank-

mixture, the droplet spectrum data is given for the measurements with the same 

herbicide. Data readings of the droplet diameters at which 50% of the spray volume was 

contained in smaller droplets were given in values as DV0.5 in µm. Herbicide treatments 

were applied one to two days after soybean planting with a 4 nozzle boom, CO2 sprayer 

calibrated to deliver 140 L ha-1 at 276 kPa with boom height of 0.5 m. Wind speed, air 

humidity and temperature were collected using a WeatherFlow WEATHERmeter 

(WeatherFlow Inc., CO, USA). Spraying dates and average meteorological conditions at 

the time of application for each field are listed in Table 3.3. 

Spray Coverage Measurement  

Spray coverage assessment was conducted at all field locations, in Missouri and 

Mississippi, in 2017 and 2018, respectively. Before treatment applications Syngenta water 

sensitive papers, 52 mm x 76 mm, (Spraying Systems Inc. Wheaton, IL, USA) were placed 

in the center of the treatment plots. Water sensitive papers were collected in individual 

plastic bags after spraying to ensure cards were completely dry, preventing humidity 

contamination. Cards were then scanned (Figure 3.1) and analyzed using Image J (National 

Institute of Health Washington DC, USA) (Rasband, 2008). Following same methodology 

as in Ferguson et al. (2016), the image was cropped removing the background, image scale 
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was set to the real dimensions, converted in 8-bit grayscale, transformed in binary black & 

white and analyzed in percent coverage and droplet density per cm2.  

Weed Control Rating 

Weed control ratings were conducted at 7, 14, 21 and 28 days after application 

(DAA). The untreated checks were the first plots to be rated followed by the treated plots. 

Due to the selectivity of each herbicide used, the ratings consisted of counting weed plants 

by species on the center of each plot. The treated plot ratings would then be based on the 

untreated treatments as: 

Weed control = 100 – ( 
𝑇

𝑈
 x 100) 

where T is the weed count for a treated individual experimental unit and U is the mean 

weed count for the untreated control replicates. If a herbicide treatment had the same or 

higher count number as the untreated plots for one weed species, 0% control would be 

rated for that particular species. If the determined species was absent in a herbicide 

treatment, 100% control would be rated. Each herbicide label was examined to ensure 

only the weeds controlled at the applied herbicide rate were included in the control rating. 

Therefore, a weed species would not be included in the control rating if it was not listed 

on the herbicide label. In addition, only weeds emerged after application were considered 

in the control ratings. 
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Data Analysis 

 Weed control and spray coverage data were submitted to an analysis of variance 

in SAS v.9.4 (SAS Institute, Cary, NC, USA) using least squares means to fit the general 

linear mixed-model (PROC GLIMMIX) at *P<0.05 using Tukey’s multiple comparison 

test. Field location was treated as independent variable and run replication was treated as 

a random effect. Intending to see the overall herbicide and nozzle effect on weed control 

and spray coverage across sites, field location was intentionally pooled. 

Results and Discussion 

Spray Coverage 

            The largest droplet size was produced by the TTI11002 nozzle (DV0.5 794 μm) 

followed by the TTI6011002 (DV0.5 646 μm), ULD12002 (DV0.5 468 μm) and the 

XR11002 produced the smallest droplet size (DV0.5 204 μm) as observed in previous 

studies (Wolf, 2009; Dorr et al., 2013; Ferguson et al., 2015; Henry et al., 2016). The XR 

nozzle produced the greatest water sensitive coverage and droplet density while the TTI 

had the least (Table 3.4; Figure 3.1). Borger et al. (2013) observed similar coverage 

improvements with nozzles producing Medium sprays compared Extremely Coarse 

sprays but without PRE herbicide efficacy improvement. In all field locations, both the 

TTI and TTI60 nozzles had similar weed control results, but not similar droplet size 

results. Among the air induction nozzles, the ULD produced the greatest spray coverage 

and droplet density as also observed in Wolf (2009). Application conditions (Table 3.3) 

had a direct effect on coverage and density. The field with lowest wind speed during 
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herbicide application, the Monroe County field, had better results when compared to 

other locations, even under high temperatures and low relative humidity. 

The XR nozzle for example, had 43% coverage and 161 droplets cm-2. At the 

Gentry County field, however, which had the strongest winds during application, both 

coverage and density were low, for all nozzles. The XR nozzle had 27.5% coverage and 

77 droplets cm-2. The wind speed effect on drift has been widely studied by the Spray 

Drift Task Force (STDF, 1997) with over 300 application studies and Arvidsson et al. 

(2011) with 67 field studies, showing the wind speed as the most decisive factor 

impacting drift and consequently spray coverage. 

 

 

Figure 3.1 Water sensitive papers showing the spray coverage for nozzles XR11002 

(A); ULD12002 (B); TTI6011002 (C) and TTI11002 (D). 

B A 

C D 
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Droplet Size Effect 

Droplet size had no effect on weed control for all PRE herbicides (P value = 0.66) 

regardless of the herbicide physicochemical characteristics, soil texture, OM, crop 

residue levels, weed species and rainfall across the eight locations.  Location was 

intentionally pooled in order to evaluate the overall effect of changing droplet sizes for 

PRE herbicide applications. Therefore, despite of the PRE herbicide’s solubility, 

volatility or adsorption, herbicide efficacy was not be affected by droplet size changes.   

Pendimethalin 

Nozzle type was not different for pendimethalin efficacy and weed control for all 

sites. Borger et al. (2013) observed similar results with trifluralin where droplet size did 

not affect herbicide efficacy and weed control. In the Monroe County, MS, the TTI60 

nozzle had higher weed control than the TTI nozzle, 91% to 64% control respectively, at 

28 DAA, as observed in Table 3.7. Both nozzles produce large droplets, similar spray 

coverage and both had similar weed control across all other locations. The Monroe 

County field, however, was a pasture for several years and it had exceptionally high weed 

pressure, mostly composed of goosegrass (Eleusine indica), broadleaf signalgrass 

(Urochloa platyphylla), southern crabgrass (Digitaria ciliaris), yellow foxtail (Setaria 

pumila), velvetleaf (Abutilon theophrasti) and spotted spurge (Chamaesyce maculata). 

The TTI60 nozzle was the only dual fan nozzle used in the study, and even though its 

water sensitive paper coverage and droplet density did not differ among nozzles, the dual 

fan pattern improved the deposit under the soil clods, increasing the pendimethalin 

contact surface area through the hidden seedbank (Figure 3.2). The Monroe County 

location also had the highest OM concentration of all fields, 2.3%. As a strongly 
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adsorptive herbicide, pendimethalin is highly affected by the OM and soil moisture 

(Linde, 1994). Under dry soil conditions, pendimethalin adsorption to soil colloids is 

enhanced and herbicide activity reduced. Because the moisture below soil clods was 

higher compared to the top soil surface, spraying pendimethalin under the clods as 

assisted by the twin fan nozzle increased the herbicide availability in comparison to 

spraying on top of drier soil particles.  

The OM content effect was also significant on pendimethalin weed control for 

other locations. This effect was more apparent when nozzle type was pooled for all 

locations to emphasize the herbicide effect. When the OM content was close to 2%, weed 

control would drop from 90% to below 80% (Table 3.5). Similar results were observed 

by several authors (Sparks, 1995; De Jonge et al., 2000; Đurović et al., 2009). Crop 

residue, however, did not influence efficacy to the same extent. The location with the 

highest residue, Atchison County, MO field with 9.573 kg ha-1, for example, had 

satisfactory control (92%). Additionally, pendimethalin had the lowest weed control 

when compared with the other herbicides when locations and nozzles were intentionally 

pooled. In both Nodaway County, MO fields and the Noxubee County, MS field 

pendimethalin control was the lowest (Table 3.6 and 3.7). 
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Figure 3.2 Pendimethalin application with the TTI60 dual fan nozzle in the Monroe 

County, MS, field with large soil clods (A), weed emergence between (B) 

and under (C) the clods. 

Table 3.5 Pendimethalin weed control at 28 DAA and organic matter content per sitea. 

Site Organic Matter Weed Control 

 --------------------------------- % --------------------------------- 

Oktibbeha County, MS 0.60                    94 a 

Atchison County, MO 1.59                    92 ab 

Washington County, MS 0.70                    92 ab 

Gentry County, MO 1.49                    91 abc 

Nodaway County, MO 1.94                    79 bdc 

Monroe County, MS 2.30                    78 dc 

Nodaway County, MO 2.02                    77 d 

Noxubee County, MS 2.10                    72 d 
a Abbreviations: DAA, days after application. 
b LS-means within followed by same letter are not significantly different at P ≤ 0.05. 

A 

B C 
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Metribuzin 

Nozzle type and droplet size was not different across fields. For some locations, 

however, metribuzin weed control was lower than other herbicides. In the Oktibbeha 

County, MS, field, for example, metribuzin resulted in lower weed control compared to 

clomazone and pyroxasulfone (Table 3.7). The Oktibbeha County field had the least OM 

content and the least cation exchange capacity (CEC) across all fields and the first rain 

event (12.9 mm) only one day after application. Metribuzin is very mobile in soils 

because it is readily soluble in water (1100 mg L-1) with low adsorption (Log Koc of 

1.77). The low OM concentrations, CEC and rainfall within less than 24 hours of 

application enhanced the product mobility in the soil, moving it under the seedbank layer 

and reducing the weed control. Liu and Cibes-Viadé (1973) observed, for instance, that 

CEC and OM were the main variables affecting metribuzin adsorption. Sharom and 

Stephenson (1976) also observed reduced metribuzin weed control in low organic soils 

with considerable rainfall as explained by the soil adsorption capacity affecting herbicide 

leaching potential and the rainfall amount. For that reason, metribuzin is widely known 

for contamination risks in surface and ground water (EPA, 1992; Dores et al., 2008; 

Jacobsen et al., 2008). The Washington County, MS, field, second lowest in OM 

(0.70%), CEC (13.1) and with 12.2 mm of rain 3 DAA had weed control under 90% for 

all nozzles when compared to other herbicides and fields. The sites with higher CEC and 

OM had over 90% control, regardless of the rainfall amount, reinforcing the CEC and 

OM influence on metribuzin efficacy as observed by Liu and Cibes-Viadé (1973). 
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Table 3.6 Weed control at 28 DAA by herbicide and nozzle per site location in 

Missouri, 2017.a 

Site Herbicide Nozzleb 

  XR11002c ULD12002d TTI6011002c TTI11002c 

  ----------------------------- % ---------------------------------- 

Atchison 

County, 

MO 

pendimethalin 82 a 95 a 92 a 86 a 

metribuzin 95 a 97 a 97 a 94 a 

clomazone 97 a 97 a 97 a 94 a 

imazethapyr 97 a 97 a 97 a 97 a 

pyroxasulfone 85 a 95 a 75 a 97 a 

Nodaway 

County, 

MO 

pendimethalin 77 c 87 c 75 c 76 c 

metribuzin 94 ab 99 ab 93 ab 99 ab 

clomazone 95 a 98 a 100 a 97 a 

imazethapyr 95 ab 87 ab 92 ab 88 ab 

pyroxasulfone 89 bc 83 bc 90 bc 88 bc 

Gentry 

County, 

MO 

pendimethalin 92 a 96 a 86 a 97 a 

metribuzin 92 a 99 a 92 a 84 a 

clomazone 100 a 100 a 100 a 100 a 

imazethapyr 92 a 90 a 89 a 99 a 

pyroxasulfone 98 a 100 a 100 a 95 a 

Nodaway 

County, 

MO 

pendimethalin 78 c 77 c 72 c 75 c 

metribuzin 93 a 97 a 99 a 97 a 

clomazone 91 ab 91 ab 87 ab 89 ab 

imazethapyr 97 ab 96 ab 88 ab 92 ab 

pyroxasulfone 89 b 88 b 88 b 87 b 
a 

Abbreviations: DAA, days after application. 
b 

LS-means within same location and same herbicide followed by same letter are not significantly different 

at P ≤ 0.05.
 

c
 Spraying Systems Inc. Wheaton, IL, USA. 

d Hypro LLC, New Brighton, MN, USA. 
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Table 3.7 Weed control at 28 DAA by herbicide and nozzle per site location in 

Mississippi, 2018.a 

Site Herbicide Nozzleb 

  XR11002c ULD12002d TTI6011002c TTI11002c 

  ---------------------------- % ----------------------------------- 

Washington 

County, 

MS 

pendimethalin 89 ab 87 ab 81 ab 77 ab 

metribuzin 87 ab 88 ab 88 ab 88 ab 

clomazone 92 a 92 a 92 a 92 a 

imazethapyr 80 b 84 b 71 b 80 b 

pyroxasulfone 89 ab 91 ab 80 ab 89 ab 

Oktibbeha 

County, 

MS 

pendimethalin 85 ab 95 ab 88 ab 92 ab 

metribuzin 83 b 90 b 90 b 85 b 

clomazone 95 a 95 a 96 a 96 a 

imazethapyr 91 ab 95 ab 95 ab 92 ab 

pyroxasulfone 95 a 95 a 96 a 94 a 

Noxubee 

County, 

MS 

pendimethalin 75 c 69 c 75 c 63 c 

metribuzin 95 a 98 a 96 a 96 a 

clomazone 95 ab 83 ab 94 ab 79 ab 

imazethapyr 79 b 78 b 88 b 87 b 

pyroxasulfone 80 ab 88 ab 94 ab 91 ab 

Monroe 

County, 

MSe 

pendimethalin 74 bc 83 bc 91 ab 64 c 

metribuzin 96 ab 95 ab 95 ab 100 a 

clomazone 90 ab 62 c 100 a 95 ab 

imazethapyr 92 ab 95 ab 95 ab 93 ab 

pyroxasulfone 99 a 98 a 100 a 100 a 
a 

Abbreviations: DAA, days after application. 
b 

LS-means within same location and same herbicide followed by same letter are not significantly different 

at P ≤ 0.05.
 

c
 Spraying Systems Inc. Wheaton, IL, USA. 

d Hypro LLC, New Brighton, MN, USA. 
e LS-means across herbicides and nozzles followed by same letter are not significantly different at P ≤ 0.05. 

Clomazone 

Nozzle type and droplet size did not differ for clomazone efficacy and weed 

control for all locations, except in the Monroe County, MS. The use of the ULD12002 

nozzle resulted in reduced weed control, 62%, in comparison with the XR11002, 

TTI11002 and TTI6011002, with 90, 95 and 100% control respectively (Table 3.7).  The 

ULD nozzle produced Very Coarse sprays and consistent spray coverage and droplet 
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density for air induction type nozzles as observed by Wolf (2009). The ULD produces a 

wider spray angle of 120° in comparison with the other 110° nozzles, but this 

characteristic did not affect the weed control with clomazone in other fields. Analyzing 

the control mean values from 7 to 28 DAA for each Monroe County, MS, field plot 

treated with clomazone (Table 3.8), it was observed a gradual weed control reduction 

from the first to the last ULD nozzle sprayed plot, while the other nozzles had 

consistently higher control. The hypothesis is that an application issue like clogged 

nozzles or pressure drop occurred and reduced the correct herbicide rate and distribution 

on soil.  

The moderately volatile herbicide clomazone, was not affected by nozzle type, 

application conditions or field characteristics, since over 90% control was obtained for 

almost all locations, regardless of OM, CEC, rainfall, temperature, humidity and wind 

speed. 

Imazethapyr 

Neither nozzle type nor droplet size affected weed control. Imazethapyr 

application resulted in low control for two locations, the Washington and Noxubee 

County, MS, fields (Table 3.7). In the Washington County, MS, located in the 

Mississippi Delta, the mean weed control was lower due to spotted spurge, with poor 

control for all nozzles. Spotted spurge is not considered a noxious species but its 

dispersion, dormancy and germination capacity makes it a troublesome weed throughout 

the US (Elmore and McDaniel., 1986; Asgarpour et al., 2010; McCullough et al., 2016). 

Elmore and McDaniel (1986) identified spotted spurge populations in 15 of the 17 

counties in the Mississippi Delta in 1983 and 1985, when conducting that survey.  
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Table 3.8 Clomazone weed control mean value per plot and control rating date after 

application at the Monroe County field, MS, 2018. 

Nozzle Plot number 

Weed Controla 

7 DAAb 14 DAA 21 DAA 28 DAA 

  --------------------------- % --------------------------- 

XR11002 

1 100 100 100 88 

2 100 85 84 72 

3 100 100 100 100 

4 100 100 100 100 

ULD12002 

1 100 76 69 33 

2 100 67 62 72 

3 100 83 67 58 

4 100 100 83 83 

TTI6011002 

1 100 100 93 100 

2 100 100 99 100 

3 100 83 83 83 

4 100 98 98 98 

TTI11002 

1 100 100 100 100 

2 100 100 100 98 

3 100 100 98 100 

4 100 100 96 100 
a 

Mean control value for barnyardgrass (Echinochloa crus-galli), bermudagrass (Cynodon dactylon), 

broadleaf signalgrass (Urochloa platyphylla), goosegrass (Eleusine indica), prickly sida (Sida spinosa) and 

velvetleaf (Abutilon theophrasti). 
b 

Abbreviations: DAA, days after application. 

Spotted spurge competiveness is assured by its seed dormancy, sporadic 

germination and its temperature and water requirement adaptability (Hope, 1982). 

Imazethapyr is an imidazolinone herbicide and inhibits acetolactate synthase 

ALS/AHAS. Its constant use has led to several cases of weed resistance and tolerance 

(Saari et al., 1994; Bernasconi et al. 1995). Several weed species are resistant to ALS 

herbicides in Mississippi, including pigweed species (Amaranthus spp.), barnyardgrass 

(Echinochloa crus-galli), large crabgrass (Digitaria sanguinalis), Italian ryegrass (Lolium 

perenne ssp. multiflorum), annual bluegrass (Poa annua) and common cocklebur 

(Xanthium strumarium) (Heap, 2018). Therefore, ALS herbicide overuse could have 
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caused spotted spurge to develop imazethapyr tolerance or resistance in the Washington 

County, MS, as already observed in Georgia by McCullough et al. (2016). Further 

research should be conducted to confirm tolerance or resistance cases in the Mississippi 

Delta. Similarly, the reduced mean weed control in the Noxubee County, MS, was mostly 

caused by poor tall waterhemp control (Amaranthus tuberculatus), possibly due to ALS 

resistance, where less than 75% waterhemp control was obtained for all nozzles at 28 

DAA. Pigweed species resistant to ALS herbicides in Mississippi include tall waterhemp 

(Amaranthus tuberculatus), Palmer amaranth (Amaranthus palmeri), redroot pigweed 

(Amaranthus retroflexus) and spiny amaranth (Amaranthus spinosus) Heap (2018). No 

herbicide physicochemical properties and environmental characteristic affected 

imazethapyr weed control. 

Pyroxasulfone 

Weed control was not affected by nozzle type and droplet size. Borger et al. 

(2013) observed similar results in Australia using the XR and AI nozzles to spray 

pyroxasulfone for rigid ryegrass control. Pyroxasulfone application resulted in reduced 

control compared to other herbicides in both Nodaway County, MO fields (Table 3.6). 

For both locations, the weeds with reduced control were yellow foxtail, tall waterhemp 

and barnyardgrass (Echinochloa crus-galli). Hausman et al. (2013) observed similar 

pyroxasulfone waterhemp control at 30 DAA, below 90%. Yamaji et al. (2016) observed 

reduced green foxtail (Setaria viridis) and giant foxtail (Setaria faberi) control, less than 

62%, with rainfall under 12.5 mm within 7 DAA, and observed control over 88% with 

rainfall over 12.5 mm within 7 DAA. Both locations had up to 12.5 mm of rain within 7 

DAA and yellow foxtail control was still less than 80%. Other studies showed improved 
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barnyard and Amaranthus spp. control (Yamaji et al. 2014; Yamaji et al. 2016). 

Pyroxasulfone adsorption and efficacy is also affected by soil OM content (Tidemann et 

al., 2014). As observed by Odero and Wright (2013), the labeled rate of 214 g a.i. ha-1 for 

high OM soils was enough to provide sufficient control. The rate of 178.5 g a.i ha-1 

followed the label recommendations for both Nodaway County, MO locations, with 1.94 

and 2.02% OM, respectively, and yet, did not provided acceptable control for yellow 

foxtail, barnyard and tall waterhemp, while in the Monroe County, MS field with 2.30% 

OM, the weed control was over 98% for all nozzles.  

Conclusion 

The results of field experiments indicate that PRE herbicide weed control is not 

affected by droplet size, spray coverage and nozzle type regardless of physicochemical 

herbicide properties like adsorption, volatility and solubility. Merry (1986) and Borger et 

al. (2013) observed similar results. The TTI60 twin nozzle, however, increased 

pendimethalin weed control in specific field conditions (high OM content, large-sized 

soil clods, high weed pressure) due to better herbicide deposit on moist soil surfaces and 

greater herbicide clod coverage. Further research should consider herbicide soil deposit 

and weed control studies with twin-fan nozzles with the potential to enhance PRE 

herbicide efficacy. Environmental factors affected pendimethalin and metribuzin 

efficacy. Pendimethalin control was reduced (< 80%) in high OM content soils as 

observed in other studies (Sparks, 1995; De Jonge et al., 2000; Đurović et al., 2009). 

Under high OM content soils (> 2%), additional pendimethalin tank-mixture combination 

should be considered. Metribuzin weed control was reduced due to increased soil 

mobility in low OM and low CEC soil with >12 mm rain within 3 DAA as described in 
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Liu and Cibes-Viadé (1973) and Sharom and Stephenson (1976). Based on the results, 

metribuzin applications should be avoided in low OM (< 0.7%) and CEC soils (< 13.1%) 

with chance of rain of (12.2 mm) within three days after application. Overall, clomazone, 

imazethapyr and pyroxasulfone provided acceptable weed control independent of soil 

type, OM, CEC, pH, crop residue and rainfall. Imazethapyr, however, provided reduced 

spotted spurge and tall waterhemp control (< 90%) in two locations in Mississippi, 

possibly due to ALS tolerance or resistance as recorded by Heap (2018) and McCullough 

et al. (2016). Further investigation is necessary to confirm ALS tolerance or resistance in 

both locations.  
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CHAPTER IV 

RAINFALL TIMING AND CROP RESIDUE EFFECT ON PRE-EMERGENCE 

HERBICIDES EFFICACY FOR DIFFERENT SPRAY NOZZLES 

Abstract 

Pre-emergence (PRE) herbicide weed control success is affected by 

environmental factors including rainfall and herbicide-plant residue interaction. Two 

greenhouse experiments were conducted in 2017 and will be continued in 2018, studying 

the effect of crop residue amounts (2500 and 5000 kg ha-1) and the effect of simulated 

rain at two, four and eight days after herbicide application (DAA). Applications were 

made over weed species treated with five PRE herbicides and sprayed with four different 

nozzle types. The preliminary results have shown no nozzle type effect across plant 

residue amounts. With rain at eight DAA, however, the use of the XR nozzle provided 

reduced johnsongrass weight, up to 17% weight reduction increase in comparison to the 

TTI nozzle. Johnsongrass and velvetleaf were affected by crop residue amount where 

5000 kg ha-1 of residue decreased johnsongrass fresh weight reduction and 2500 kg ha-1 

increased velvetleaf control and weight losses. Pendimethalin consistently provided low 

velvetleaf and johnsongrass control throughout the studies. The 5000 kg ha-1 residue 

amount increased pendimethalin control of johnsongrass while rain at eight DAA 

decreased johnsongrass fresh and dry weight reductions. Rain at 2 DAA decreased 

velvetleaf response to pendimethalin in comparison to 4 and 8 DAA. 
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Introduction 

The fate and efficacy of herbicides in the environment is directly affected by 

variables like herbicide volatilization, leaching, microbial decomposition, chemical 

breakdown and soil adsorption (Toth and Milham, 1975; Hodges and Talbert, 1990; 

Borger et al., 2013; GRDC, 2015).  Rainfall, for example, influences soil applied 

herbicide performance by activating and distributing the active ingredient throughout the 

soil. Generally, pre-emergence herbicides (PREs) are better available for plant uptake 

when soil moisture is present (Loux et al., 2015). Most herbicides are hydrophobic and 

are attracted to low charged organic matter (OM) particles and the soil colloids. Under 

dry soils, herbicide adsorption to soil and OM particles is increased, reducing herbicide 

activity and weed control (Linde, 1994). On the other hand volatile herbicides may have 

the opposite effect.  Schneider et al. (2013) observed trifluralin and triallate volatilization 

increasing up to eight times when controlled humidity within the soil was increased and 

up to three times when a rain event was simulated. Smith et al. (1997) observed similar 

results with increased ethalfluralin, trifluralin and triallate volatility during rain events 

and no volatility with a dry soil surface.  Additionally, rain may affect highly soluble 

PRE herbicide efficacy through herbicide runoff and leaching, potentially contaminating 

ground water and reducing control (Lavorenti, 1996).  

The amount of crop residue covering the soil surface can also affect PRE 

herbicide efficacy from reduced spray coverage, herbicide deposit interception and 

herbicide adsorption, reducing its availability for plant uptake (Borger et al., 2013; GRDC, 

2015). Studying the adsorption of diuron, terbacil and simazine on blueberry (Vaccinium 

ssp.) residue, Hodges and Talbert (1990) observed up to a five times greater herbicide-
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residue adsorption than herbicide-soil adsorption. Highly adsorptive products may bind to 

the residue thereby reducing availability for plant uptake. The volatilization process may 

also be enhanced or reduced with crop residue depending on conditions. Wienhold and 

Gish (1994) observed lower alachlor and atrazine volatility losses in no-till corn (Zea 

mays) in comparison to a conventionally tilled corn field. Erbach and Lovely (1975), 

however, observed no significant corn residue effect on weed control for alachlor but, 

observed increased velvetleaf (Abutilon theophrasti) and foxtail millet (Setaria italica) 

control when simulated rain was conducted after herbicide treatment. 

The weed control herbicide efficacy, which is affected by complex interactions 

between herbicide pathways and environment variables, is a result of satisfactory spray 

coverage and correct active ingredient deposits. Correct nozzle selection, for instance, 

will impact spray quality, spray coverage and deposit, drift control and consequently, 

herbicide efficacy. Few authors have, however, studied the effects of nozzle type 

selection on PRE herbicides efficacy (Merry, 1986; Derksen et al., 2012; Borger et al., 

2013), when compared to spray nozzle studies on post-emergence (POST) herbicides 

influence over weed control (Ennis and Williamson, 1963; Douglas, 1968; McKinlay et 

al., 1972; McKinlay et al., 1974; Wolf et al., 1992; Knoche, 1994; Liu et al., 1996; 

Etheridge et al., 1999; Smith et al., 2000; Shaw et al., 2000; Ramsdale and Messersmith, 

2001; Etheridge et al., 2001; Feng et al., 2003; Brown et al., 2007; Creech et al., 2016; 

Butts et al., 2018; Ferguson et al., 2018). Therefore, this study aims to evaluate the weed 

control of PRE herbicides at different rainfall timings and crop residue amounts with 

different nozzles types.  
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Materials and Methods 

Two greenhouse studies were conducted at the Rodney Foil Plant Science 

Research Center, Starkville, MS in December, 2017 and will be replicated in November, 

2018. Herbicides were selected based on the physicochemical characteristic of each 

product, specifically for adsorption, volatility and solubility. The herbicides, rates, 

formulations and physicochemical properties of each product used in both studies are 

listed in Table 4.1. Both experiments were conducted in a factorial arrangement of 

treatments in a completely randomized design with four untreated control trays per 

treatment. Herbicide applications were applied with a two boom research spray chamber 

generation III (DeVries Manufacturing Inc., Hollandale, MN) calibrated to deliver 140 L 

ha-1 at 276 kPa and a nozzle height of 0.5 m. Nozzles selected for comparison were:  

XR11002, ULD12002, TTI6011002 and the TTI11002. The weed species selection was 

conducted through examining each herbicide label and by choosing three weeds species 

commonly controlled by all herbicides and one controlled specifically by each herbicide 

treatment, as listed in Table 4.2. Each tray had twenty manually selected seeds per weed 

species, including the three common weeds and the herbicide-specific one, totaling eighty 

seeds planted per tray. Marestail (Erigeron canadensis) seeds, however, were the only 

species weighed, where 1 gram of seed was added to the pyroxasulfone treatment. The 

seeds were planted in trays measuring 24 cm x 24 cm x 6.3 cm with potting mix Sungro 

Horticulture® (Sun Gro Horticulture Ltd., Agawam, MA) consisting of ingredients like 

Canadian sphagnum peat moss, composted pine bark, vermiculite and dolomitic 

limestone. Field corn residue was collected in October, 2017, in a field near Egypt, MS 
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and in September, 2018, in Starkville, MS. Weed emergence and weed control ratings 

were collected at 7, 14, 21 and 28 days after application (DAA).  

Weed emergence per species was calculated based on twenty planted seeds and 

the number of plants emerged per tray (N) as: 

Weed emergence = 
𝑁

20
 x 100 

except for marestail which the emergence was visually estimated based on the untreated 

trays. The emergence equation was used to calculate the weed control rating per species 

based on the untreated and treated weed emergence values where T was the mean weed 

emergence for a treated experimental unit and U was the mean weed emergence for the 

untreated control replicates as: 

Weed control = 100 – ( 
𝑇

𝑈
 x 100) 

Zero control was rated for the treatments with same or higher emergence as the untreated 

trays for the specific weed. Complete control (100%) was rated for the treatments with no 

weed emergence. Fresh matter weight data were at 30 DAA while dry matter weight was 

collected after drying plants at 65°C for 72 hours. Fresh weight reduction (FWR) and dry 

weight reduction (DWR) were both calculated based on the untreated weight results of 

each species and converted in percent of weight reduction as shown in Creech et al. 

(2016). Johnsongrass and velvetleaf were the only species included in the control results 

and the fresh and dry weight reduction results due to regular and higher plant emergence 

across treatments than the other weed species. 
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Rainfall Study 

Corn residue was placed on top of the potting mix at the amount of 2000 kg ha-1 

(11.64 g tray-1). On December 11th, 2017, trays were weed-planted in the top 2 cm of the 

soil surface and watered with 10 mm. Herbicide treatments were applied with each nozzle 

type two days after planting (DAP). The XR11002, ULD12002 and TTI11002 nozzles 

were used in the study. The rainfall treatments included 10 mm of simulated rain at two, 

four and eight days after application (DAA) and were conducted using the two boom 

research spray chamber III (DeVries Manufacturing Inc., Hollandale, MN) with the 

Combo-Jet® UR 11010 nozzle (Wilger Inc., Lexington, TN) producing Ultra Coarse 

spray quality as in Figure 4.1. After the simulated rainfall treatment, trays were watered 

every ten days until harvest.  

Crop Residue Study 

Two corn residue quantities were used as treatments: 5000 kg ha-1 (29.11 g tray-1) 

and 2500 kg ha-1 (14.55 g tray-1) as shown on Figure 4.2. Weed seeds were planted on 

December 10th, 2017, in the top 2 cm of the soil surface, then the corn residue was evenly 

distributed across each treatment, followed by tray watering with 10 mm. Herbicide 

treatments were sprayed with each nozzle type at two DAP and trays were watered at two, 

twelve and twenty-one DAA with 10 mm. The XR11002, ULD12002, TTI6011002 and 

TTI11002 nozzles were used in the study. 
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Figure 4.1 Rainfall timing experimental units being treated in the rain simulator. 

 

Figure 4.2 Corn residue treatments of 5000 kg ha-1 (Left) and 2500 kg ha-1 (Right). 
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Data Analysis 

 In each study, weed control, FWR and DWR results were submitted to an analysis 

of variance in SAS v.9.4 (SAS Institute, Cary, NC, USA) using least squares means to fit 

the general linear mixed-model (PROC GLIMMIX) at *P<0.05 using Tukey’s multiple 

comparison test. Weed species was treated as independent and run replication was treated 

as a random effect. A factor would be considered random effect if it was not statistically 

significant in the primarily model. 

Results and Discussion 

Crop Residue Effect on Velvetleaf 

The amount of crop residue impacted velvetleaf response to herbicides. Velvetleaf 

control, fresh weight, and dry weight reductions were greater under low crop residue, 

2500 kg ha-1, than under 5000 kg ha-1, despite the nozzle type or herbicide used (Table 

4.3). Velvetleaf DWR increased 8% from the low to high residue level. Cardina et al. 

(1995) observed similar results when studying the competition of velvetleaf in corn under 

no-till and conventional tillage systems. The authors observed greater velvetleaf 

competitiveness in the no-till system when compared to the bare soil conventionally tilled 

system. Correia and Durigan (2004) also observed an emergence increase of the large-

seeded weed cypressvine (Ipomoea quamoclit) when increasing sugarcane residues from 

5000 kg ha-1 to 15000 kg ha-1. 

Velvetleaf control, FWR and DWR were also affected by herbicide treatment as 

listed in Table 4.4. Pendimethalin and imazethapyr followed by pyroxasulfone provided 

reduced control and little FWR and DWR regardless of the residue amount and nozzle 

type. Walsh et al. (2015) also observed lower velvetleaf controls with imazethapyr 
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sprayed alone in comparison to additional tank-mixture herbicides. Similarly, Belfry et al. 

(2015) observed reduced pyroxasulfone control on velvetleaf (< 32% control).  Reduced 

pendimethalin efficacy can be explained by its strong adsorption to the soil organic 

matter (OM). Pendimethalin is an adsorptive herbicide (log Koc of 4.23) and can strongly 

bind to OM and residue.  The decrease in control and weight reduction for velvetleaf with 

pendimethalin can be accounted for due to the high OM concentration of the potting mix. 

The potting mix contained high concentrations of peat moss among other highly 

concentrated OM ingredients which decreased the pendimethalin availability for weed 

uptake due to OM adsorption. Several authors have observed reduced pendimethalin 

weed control under elevated OM content soils (Sparks, 1995; De Jonge et al., 2000; 

Đurović et al., 2009). Clomazone and metribuzin provided complete velvetleaf control 

and weight reduction regardless of the residue amount or nozzle type. 

Nozzle type did not affect velvetleaf control and weight reductions, regardless of 

the residue level or herbicide used. Borger et al. (2013) also observed no droplet size and 

nozzle type influence on PRE herbicide efficacy in wheat fields containing 1573 and 

2267 kg ha-1 of crop residue respectively. Merry (1986) also did not observe droplet size 

and nozzle effects in PRE herbicide weed control. 

Crop Residue Effect on Johnsongrass  

Johnsongrass fresh weight reduction was reduced at the 5000 kg ha-1 level, a 78% 

reduction in comparison with 71% reduction under 2500 kg ha-1 of residue (Table 4.3). 

Oliveira el al. (2001) observed similar results in an experiment including corn residue 

levels ranging from 0 to 12000 kg ha-1 treated with a tank-mixture of metolachlor and 

atrazine. Herbicide control of the grass species increased with the higher residue levels. 
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The different amounts of residue will directly impact soil surface light interception. 

Therefore, the reduced light penetration under greater residue amounts may affect the 

germination and emergence of small-seeded weeds such as johnsongrass (Crutchfield et 

al., 1986; Mohler, 1996). 

Johnsongrass FWR and DWR were affected by herbicide treatment specifically 

for pendimethalin, regardless of the residue amount and nozzle type (Table 4.4). 

Pendimethalin reduced activity is accounted for due to the strong herbicide binding to the 

potting mix OM particles as similarly observed in previous studies (Sparks, 1995; De 

Jonge et al., 2000; Đurović et al., 2009). Clomazone and metribuzin provided the greatest 

johnsongrass weight reduction (FWR of 87%, DWR of 90%) across nozzle type or 

residue amount. 

Crop residue and herbicide treatment interacted to increase johnsongrass control 

and weight reductions (Table 4.5). Under 2500 kg ha-1 of residue, clomazone provided 

greater control than both metribuzin and pendimethalin. Pendimethalin weight reductions 

were reduced with the low residue amount (2500 kg ha-1), a 28% reduction on dry 

weight, in comparison to the high residue treatments (5000 kg ha-1) with 74% of dry 

weight reduction despite the nozzle type used to spray pendimethalin.  Pendimethalin 

activity was enhanced under greater corn residue levels due to increased soil moisture. 

The plant residue tended to decrease temperature and increase moisture in soil (Van Wijk 

et al., 1959) increasing the herbicide availability for plant uptake under greater moisture 

(Loux et al., 2015). 

Nozzle type did not affect johnsongrass FWR and DWR when treated with the 

same herbicide despite the crop residue level. However, clomazone sprayed with the XR 
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nozzle provided greater johnsongrass control than imazethapyr sprayed with the TTI60 

nozzle, 71% and 15% controls, respectively, when nozzle type and herbicide interacted 

(Table 4.6). 

Table 4.3 Johnsongrass and velvetleaf responses to different crop residue amounts 

across all nozzles and herbicides used in the studya. 

Species Crop Residue Controlbc FWRcd DWRcd 

  ---------------------- % ----------------------- 

johnsongrass 
2500 kg ha-1 44 a 71 b 76 a 

5000 kg ha-1 47 a 78 a 77 a 

velvetleaf 
2500 kg ha-1 58 a 72 a 64 a 

5000 kg ha-1 51b 63 b 56 b 
a No significant interaction among crop residue, nozzle and herbicide was observed. 
b Control at 28 days after application. 
c LS-means within each species and column followed by same letter are not significantly different at P ≤ 

0.05. 
d Abbreviations: FWR, fresh weight reduction; DWR, dry weight reduction. 

 

Table 4.4 Johnsongrass and velvetleaf responses to different herbicide treatments 

across all nozzles and crop residue amounts used in the studya. 

Species Herbicide Controlbc FWRcd DWRcd 

  ------------------------- % -------------------------- 

johnsongrass 

pendimethalin 38 a 44 b 51 b 

metribuzin 46 a 82 a 89 a 

clomazone 55 a 87 a 90 a 

imazethapyr 42 a 80 a 75 a 

pyroxasulfone 47 a 81 a 75 a 

velvetleaf 

pendimethaline 4 c 12 d 7 d 

metribuzin 100 a 100 a 100 a 

clomazone 100 a 100 a 100 a 

imazethapyre 14 c 49 c 25 c 

pyroxasulfonee 57 b 76 b 68 b 
a No significant interactions among crop residue, nozzle and herbicide was observed 
b Control at 28 days after application. 
c LS-means within each species and column followed by same letter are not significantly different at P ≤ 

0.05 
d Abbreviations: FWR, fresh weight reduction; DWR, dry weight reduction. 
e Suppression or partial control (Anonymous, 2017a; Anonymous, 2017b; Anonymous, 2017c). 
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Table 4.5 Johnsongrass response to different herbicides at two crop residue amounts 

across all nozzle types used in the study. 

a Control at 28 days after application. 

b LS-means within each column followed by same letter are not significantly different at P ≤ 0.05. 
c Abbreviations: FWR, fresh weight reduction; DWR, dry weight reduction. 

 

Table 4.6 Johnsongrass control with different herbicides and nozzles across all crop 

residue amounts used in the studyab. 

Herbicide 

Nozzle 

XR11002c ULD12002d TTI6011002c TTI11002c 

 ----------------------------------------- % --------------------------------------- 

pendimethalin 30 ab 47 ab 27 ab 49 ab 

metribuzin 34 ab 48 ab 68ab 36 ab 

clomazone 71a 68 ab 60 ab 24 ab 

imazethapyr 53 ab 49 ab 15 b 53 ab 

pyroxasulfone 48 ab 43 ab 56 ab 39 ab 
a Control at 28 days after application.  

b LS-means followed by same letter are not significantly different at P ≤ 0.05  

c Spraying Systems Inc. Wheaton, IL, USA. 
d Hypro LLC, New Brighton, MN, USA. 

 

Crop residue and nozzle type did not affect Palmer amaranth, waterhemp and 

marestail treated with pendimethalin, metribuzin and pyroxasulfone, respectively. The 

other weed species used in the study (common ragweed, barnyardgrass and 

Crop Residue Herbicide Controlab FWRbc DWRbc 

  ----------------------- % ------------------------- 

2500 kg ha-1 

pendimethalin 27 b 17 b 28 c 

metribuzin 31 b 81 a 89 ab 

clomazone 71 a 95 a 99 a 

imazethapyr 38 ab 79 a 79 ab 

pyroxasulfone 56 ab 84 a 82 ab 

5000 kg ha-1 

pendimethalin 50 ab 72 a 74 ab 

metribuzin 61 ab 82 a 89 ab 

clomazone 40 ab 78 a 81 ab 

imazethapyr 47 ab 82 a 72 b 

pyroxasulfone 37 ab 78 a 67 b 
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lambsquarters) were not included in the results due to low weed emergence in all 

treatments, including the untreated checks. 

Rainfall Timing Effect on Velvetleaf 

Velvetleaf FWR was affected by the timing of rainfall for the PRE herbicides 

used in the study. The eight day rainfall treatment resulted in reduced FWR compared to 

the two day rainfall (Table 4.7). 

Herbicide treatment affected velvetleaf control, FWR and DWR despite the 

rainfall timing after application and nozzle type selected. Pendimethalin control and 

DWR was the lowest across herbicides followed by imazethapyr (Table 4.8).  Low 

velvetleaf control and low DWR with pendimethalin was a consequence of high 

adsorption between OM potting mix particles and the herbicide. The decrease of 

imazethapyr control on velvetleaf was also observed by Walsh et al. (2015) where 

imazethapyr sprayed alone provided reduced control compared to imazethapyr plus 

additional herbicides. Clomazone and metribuzin provided complete weed control.  

Both rainfall timings and herbicides affected velvetleaf control and velvetleaf dry 

weight reduction as shown in Table 4.11. The pendimethalin and imazethapyr treatments 

provided reduced control and DWR for all rainfall timings. Pendimethalin control and 

weight reductions in velvetleaf were not significant among rainfall timings. Velvetleaf 

control and DWR at the two day rainfall were considerably reduced, 1% control and 8% 

dry weight reduction, possibly due better plant emergence under higher soil moisture, 

even though, pendimethalin adsorption should be reduced under soil moisture in 

comparison to dry soils. As observed by Taylor-Lovell et al. (2002) and Erbach and 
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Lovely (1975) where velvetleaf control with pendimethalin were increased with greater 

moisture availability. 

Rainfall Timing Effect on Johnsongrass 

The timing of rainfall after herbicide application affected johnsongrass control, 

FWR and DWR to the PRE herbicides used in the study. Johnsongrass control and dry 

weight reductions were decreased at the eight day rainfall application across nozzle types 

and herbicides (Table 4.7). Johnsongrass DWR decreased 29% from the two to eight day 

rainfall treatment. This reduced herbicide efficacy in johnsongrass at the eight day 

rainfall application is a consequence of less herbicide availability in the soil-solution 

(Loux et al., 2015), possibly due to soil surface temperature changes and increased water 

competition. Acciaresi et al. (2012) observed johnsongrass high water competition under 

low moisture soil conditions. Krenchinski et al. (2015) observed, for instance, that 

increasing soil temperatures to up to 30 °C increased germination of both species of 

johnsongrass (S. halepense and S. arundinaceum). The four day rainfall treatment 

reduced johnsongrass FWR and DWR in comparison to the two day rainfall. Defelice et 

al. (1987) also observed greater herbicide control in johnsongrass under no-till when 

moisture was available. 

Johnsongrass control, FWR and DWR were affected by herbicide treatments 

regardless of the rainfall timing after application and nozzle used. Pendimethalin 

provided the lowest FWR and DWR while johnsongrass control was reduced with 

pendimethalin, imazethapyr and metribuzin treatments (Table 4.8).  Reduced 

johnsongrass control with pendimethalin can be explained by the potting mix OM content 

(mainly consisted of peat moss) likely increasing the herbicide molecule adsorption. 
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Additionally, johnsongrass biotypes resistant to imazethapyr have already been reported 

in Texas and Arkansas, specifically in the Delta region of Arkansas (Johnson et al., 2014; 

Heap, 2018). Therefore, the possibility that imazethapyr-resistant johnsongrass seeds 

were included in the experiment, explaining the reduced imazethapyr efficacy, should be 

further evaluated. Clomazone provided greater johnsongrass control, FWR and DWR 

than the other herbicides (Table 4.8). 

Johnsongrass control was affected by nozzle type while no weight reduction 

effect was observed (Table 4.9). Based on previous field and wind tunnel studies 

(Chapter II and III) the TTI11002 nozzle produces Extremely Coarse spray quality (DV0.5 

794 μm) and spray coverage of 21% (average of water sensitive papers in eight field 

locations), producing the lowest coverage when compared to the ULD and the XR 

nozzles, with 27% and 34% of spray coverage, respectively. Therefore, even though no 

significant weight reduction was noticed, decreased johnsongrass control is possibly the 

consequence of reduced spray coverage. Several studies have shown the influence of 

spray coverage over weed control using POST herbicides (Oliver et al., 1983; McKinlay 

et al., 1974; Wolf, 2009; Knoche, 1994; Shaw et al., 2000; Etheridge et al., 2001) while 

no research has shown the same effect in PRE herbicides. Borger et al. (2013) did not 

observe improved rigid ryegrass (Lolium rigidum) control when spraying PRE herbicides 

with the TT and TTI nozzle, despite different spray coverages.  

When nozzle type and rain timing interacted, the spray coverage also seemed to 

impact johnsongrass fresh weight reduction (Table 4.10). With rain at eight days after 

application, the TTI nozzle provided the lowest weight reduction, 56% followed by the 

ULD nozzle with 58% and the XR nozzle with greater reduction of 73% regardless of the 
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herbicide used, producing up to a 17% increase in fresh weight reduction. At both two 

and four days after application, nozzle type had no effect. Therefore, the increase on 

spray coverage on soil with low moisture for extended periods had a significant impact 

on johnsongrass weight reduction. Based on these results, it is possible to presume that 

the smaller droplets produced by the XR nozzle were better distributed on top and 

throughout the corn residue in comparison with the ULD and TTI nozzles, ensuring 

herbicide activity when moisture became available. Even though small droplets are 

known to evaporate faster than larger droplets (Houghton, 1933; Holterman, 2003; Yu et 

al., 2009A; Yu et al., 2009B). Thus, further research will be conducted to investigate the 

effect of nozzle and droplet sizes on johnsongrass control. 

Table 4.7 Johnsongrass and velvetleaf responses to different rain timings after 

herbicide application across all nozzles and herbicides used in the studya. 

Species Rain timing Controlbc FWRcd DWRcd 

  ------------------------ % ---------------------------- 

johnsongrass 

2 DAAd 61 a 90 a 93 a 

4 DAA 57 a 70 b 59 b 

8 DAA 38 b 62 b 64 b 

velvetleaf 

2 DAA 64 a 77 ab 69 a 

4 DAA 70 a 80 a 75 a 

8 DAA 68 a 73 b 69 a 
a No significant interaction among rain timing, nozzle and herbicide was observed. 
b Control at 28 days after application. 
c LS-means within each species and column followed by same letter are not significantly different at P ≤ 

0.05. 
d Abbreviations: FWR, fresh weight reduction; DWR, dry weight reduction; DAA, days after application. 
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Table 4.8 Johnsongrass and velvetleaf responses to different herbicides across all rain 

timings and nozzles used in the studya. 

Species Herbicide Controlbc FWRcd DWRcd 

  ------------------------ % ---------------------------- 

johnsongrass 

pendimethalin 37 c 48 c 48 c 

metribuzin 45 bc 73 b 77 ab 

clomazone 74 a 93 a 93 a 

imazethapyr 42 c 80 ab 68 b 

pyroxasulfone 61 ab 77 ab 73 b 

velvetleaf 

pendimethaline 16 d 27 b 21 c 

metribuzin 100 a 100 a 100 a 

clomazone 99 a 100 a 100 a 

imazethapyre 38 c 65 b 45 b 

pyroxasulfonee 85 b 92 a 89 a 
a No significant interaction among rain timing, nozzle and herbicide was observed. 
b Control at 28 days after application. 
c LS-means within each species and column followed by same letter are not significantly different at P ≤ 

0.05. 
d Abbreviations: FWR, fresh weight reduction; DWR, dry weight reduction. 
e Suppression or partial control (Anonymous, 2017a; Anonymous, 2017b; Anonymous, 2017c). 

 

Table 4.9 Johnsongrass responses to different nozzles across all rain timings and 

herbicides used in the studya. 

Nozzle Controlbc Fresh Weight Reductionc Dry Weight Reductionc 

 --------------------------------- % ------------------------------------------ 

XR11002d 51ab 76 a 74 a 

ULD12002e 59 a 76 a 71 a 

TTI11002d 46 b 71 a 70 a 
a No significant interactions among rain timing, nozzle and herbicide was observed. 
b Control at 28 days after application. 
c LS-means within each column followed by different letter are significantly different at P ≤ 0.05. 
d Spraying Systems Inc. Wheaton, IL, USA. 
e Hypro LLC, New Brighton, MN, USA 
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Table 4.10 Johnsongrass fresh weight reduction for different nozzles at both rain 

timings across all herbicides used in the studya. 

a LS-means followed by same letter are not significantly different at P ≤ 0.05. 
b Spraying Systems Inc. Wheaton, IL, USA. 
c Hypro LLC, New Brighton, MN, USA. 
d Abbreviation: DAA, days after application. 

 

Table 4.11 Velvetleaf responses to different herbicides at both rain timings across all 

nozzle types used in the studya. 

a No significant interactions of rain timing and herbicide was observed. 
b Control at 28 days after application. 
c LS-means within each column followed by same letter are not significantly different at P ≤ 0.05. 
d Abbreviations: FWR, fresh weight reduction; DWR, dry weight reduction. 
e Suppression or partial control (Anonymous, 2017a; Anonymous, 2017b; Anonymous, 2017c). 
 

 

Rain timing Nozzles 

XR11002b ULD12002c TTI11002b 

 ----------------------------------- % ------------------------------------- 

2 DAAd 91ab 98 a 82 abc 

4 DAA 64 dc 71 bdc 76 a-d 

8 DAA 73  ab 58 dc 56 d 

Rain timing Herbicide Controlbc FWRcd DWRcd 

  --------------------------- % ---------------------------- 

2 DAA 

pendimethaline 1 e 22 8 cd 

metribuzin 100 a 100 100 a 

clomazone 99 ab 100 100 a 

imazethapyre 25 cd 64 37 bc 

pyroxasulfonee 96 ab 99 98 a 

4 DAA 

pendimethalin 23 de 37 32 bcd 

metribuzin 99 ab 99 100 a 

clomazone 98 ab 99 99 a 

imazethapyr 47 c 69 54 b 

pyroxasulfone 84 ab 93 88 a 

8 DAA 

pendimethalin 24 cde 22 21 cd 

metribuzin 100 a 100 100 a 

clomazone 100 a 100 100 a 

imazethapyr 41 cd 60 44 bc 

pyroxasulfone 75 b 83 81 a 
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Similarly to the crop residue study, rainfall and nozzle type did not affect Palmer 

amaranth, waterhemp and marestail control with the specific herbicides in Table 4.2. 

Common ragweed, barnyardgrass and lambsquarters results were also not included due to 

reduced plant emergence in all treatments, including the untreated checks. 

Conclusion 

The preliminary results have shown that the amount of crop residue affected PRE 

herbicide efficacy to both johnsongrass and velvetleaf, where johnsongrass showed 

increased FWR under higher crop residue while velvetleaf response to herbicides was 

reduced under low corn residue. Pendimethalin provided the lowest weed responses 

regardless of the residue amount when compared to other herbicides, and provided 

increased johnsongrass control under greater crop residue, possibly due to greater soil 

moisture. Nozzle type within the same herbicide did not affect weed response for both 

plant amounts of plant residue of 2500 and 5000 kg ha-1. 

Johnsongrass had reduced control and weight reduction in the eight day rainfall 

for all herbicides while pendimethalin provided the lowest control for johnsongrass and 

velvetleaf. The XR nozzle increased johnsongrass control in comparison with the ULD 

and TTI nozzles when rain timing was not considered. When rain timing was considered, 

the XR nozzle only improved FWR at the eight day rainfall. 

Based on these initial results, the influence of crop residue amount and rainfall 

timing on herbicide weed control depends specifically on the herbicide and weed species 

while nozzle type, generally, will not affect PRE herbicide efficacy regardless of the 

residue amount and rain timing.  
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