
Mississippi State University Mississippi State University 

Scholars Junction Scholars Junction 

Theses and Dissertations Theses and Dissertations 

12-13-2019 

Flexural bending test of topology optimization additively Flexural bending test of topology optimization additively 

manufactured parts manufactured parts 

Mohammed Afify 

Follow this and additional works at: https://scholarsjunction.msstate.edu/td 

Recommended Citation Recommended Citation 
Afify, Mohammed, "Flexural bending test of topology optimization additively manufactured parts" (2019). 
Theses and Dissertations. 2311. 
https://scholarsjunction.msstate.edu/td/2311 

This Graduate Thesis - Open Access is brought to you for free and open access by the Theses and Dissertations at 
Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of 
Scholars Junction. For more information, please contact scholcomm@msstate.libanswers.com. 

https://scholarsjunction.msstate.edu/
https://scholarsjunction.msstate.edu/td
https://scholarsjunction.msstate.edu/theses-dissertations
https://scholarsjunction.msstate.edu/td?utm_source=scholarsjunction.msstate.edu%2Ftd%2F2311&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsjunction.msstate.edu/td/2311?utm_source=scholarsjunction.msstate.edu%2Ftd%2F2311&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholcomm@msstate.libanswers.com


Template C with Schemes v4.0 (beta): Created by L. Threet 2/5/19 

Flexural bending test of topology optimization additively manufactured parts 

By 

TITLE PAGE 

Mohammed Afify 

A Thesis 

Submitted to the Faculty of 

Mississippi State University 

in Partial Fulfillment of the Requirements 

for the Degree of Master of Science 

in Aerospace Engineering 

in the Department of Aerospace Engineering 

Mississippi State, Mississippi 

December 2019



 

 

Copyright by 

COPYRIGHT PAGE 

Mohammed Afify 

2019 



 

 

Flexural bending test of topology optimization additively manufactured parts 

By 

APPROVAL PAGE 

Mohammed Afify 

Approved: 

       _________________________________ 

Davy M. Belk 

(Major Professor) 

         ________________________________ 

                                                                    Bian Linkan 

(Committee Member) 

 

         ________________________________  

Haley R. Doude 

(Committee Member) 

       _________________________________ 

Yeqing Wang 

(Committee Member) 

       _________________________________  

David S. Thompson 

(Graduate Coordinator) 

       _________________________________ 

Jason M. Keith 

Dean 

Bagley College of Engineering 



 

 

Name: Mohammed Afify 

ABSTRACT 

Date of Degree: December 13, 2019 

Institution: Mississippi State University 

Major Field: Aerospace Engineering 

Major Professors: Davy M. Belk 

Title of Study: Flexural bending test of topology optimization additively manufactured parts 

Pages in Study: 104 

Candidate for Degree of Master of Science 

The aim of this work is to model, manufacture, and test an optimized Messerschmitt-Bölkow-

Blohm beam using additive manufacturing. The implemented method is the Solid Isotropic 

Material with Penalization of a minimum compliance design. The Taubin smoothing technique 

was used to attenuate geometric noise and minimize the formation of overhanging angles and 

residual stresses due to the thermal activity of the selective laser melting process. The optimized 

model required examination and repair of local errors such as surface gaps, non-manifold vertices, 

and intersecting facets. A comparison between experimental and numerical results of the linear 

elastic regimes showed that the additively manufactured structure was less stiff than predicted. 

Potential contributors are discussed, including the formation of an anisotropic microstructure 

throughout the layer-by-layer melting process. In addition, the effect of selective laser melting 

process on the mechanical properties of stainless steel 316l-0407 and its influence on structural 

performance was described. 
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NOMENCLATURE 

 

𝜌                                             Density 

𝑢                                             Displacement 

𝐾                                             Global Stiffness matrix 

𝐹                                              Global Load vector 

𝑝                                              Penalization 

𝐸                                             Young Modulus Elasticity 

𝑣                                              Poisson’s ratio 

𝑈                                              Space of admissible displacements 

𝐸𝑒
0                                            Original material elastic modulus 

𝐸𝑎𝑑                                           Class of allowable stiffness tensors 

𝐾𝑒                                             Element stiffness matrix 

 𝐸𝑚𝑖𝑛                                         Stiffness of void material 

 𝜌𝑒
𝑝
                                            Artificial density at power p 

 𝜌(𝑥)                                        Density function 

 𝐸𝑒                                             New artificial elastic modulus of the eth element 

𝑉(𝜌)                                          Available material volume 

𝑉0                                               Volume of the design domain. 

𝑉𝑓                                               Volume fraction. 
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CHAPTER I 

BACKGROUND 

1.1 Introduction 

Nowadays, additive manufacturing has become a necessary industrial process showing a 

tremendous capacity in printing complex models within a predefined timeslot. Additive 

manufacturing grasped its importance based on its involvement in a variety of applications such 

as automotive, aerospace, and biomedical engineering. Additive manufacturing uses 3D-printing 

process in order to get the desired products. This technology operates using a layer-by-layer 

deposition; it is a superposition of a binder material onto a powder bed. The models before printing 

are on either STL or FDM format depending on the technology used. The integration of topology 

optimization concept into the additive manufacturing process improved the rate of 

manufacturability and enhanced the accuracy of the designed models by reaching optimal shapes 

of structures via weight reduction. The actual aerospace industry implements the additive 

manufacturing process throughout the fabrication of mechanical parts, which constitute the main 

subparts of aircrafts such as wings, fuselages. Additive manufacturing builds mechanical parts 

using a variety of metallic powders [1] (Gibson et al. 2015). The primary concern of structural 

optimization is to achieve an optimal material distribution within a predefined design domain of 

the optimization problem that would support a specific load aiming to maximize the overall 

stiffness within the structure. Also, structural optimization is composed of three categories based 

on the established parametric configuration of the design. The material distribution method enables 
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the integration of the three optimization categories concurrently within the design process. 

Topology optimization problem includes design specifications of the solid such as the number and 

the size of the holes within the domain. Also, it involves the connectivity of the domain [2] 

(Christensen et al., 2008). Topology optimization is widely spread within the aerospace industry 

in the improvement of intricate designs enabling engineers to examine multiple approaches. Since 

topology optimization enables engineers to manufacture complex structures, it has become 

necessary to integrate this tool within the additive manufacturing process. Multiple difficulties 

could encounter an additive manufacturing process, such as overhang and anisotropy [3] (Clausen, 

2016). 

1.2 Objectives 

The main goals of the thesis are the following: 

•    Optimize and manufacture a Messerschmitt-Bölkow-Blohm beam combining SIMP 

topology optimization method and additive manufacturing using the selective laser melting 

process. 

•    Apply Taubin mesh smoothing technique to the optimized models to minimize the 

formation of overhang angles and residual stresses as well as illustrate its effect on the structural 

performance of the smoothed models in terms of geometry preservation. 

•    Evaluate the bending mechanism of additively manufactured parts using a three-point 

bending test. 

•    Discuss the anisotropic behavior of additively manufactured parts and compare between 

numerical and experimental results as well as emphasize the effect of the selective laser melting 

process on mechanical properties such as Young’s modulus, hardness, and yield strength. 
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1.3 Outline 

The thesis project is composed of seven parts; each part focuses on a specific topic. The 

first chapter invokes an illustration of topology optimization and additive manufacturing as well 

as the outcome of their combination. A brief description of the finite element method is mentioned 

to highlight its importance regarding structural optimization. Throughout the second chapter, a 

detailed study of topology optimization characteristics is cited to elucidate the primary function of 

the method and its conditions — an explanation of the solid isotropic material with penalization 

through its theoretical formulation and its physical interpretation as well as the concept of the 

minimum compliance design. Besides, optimization algorithms such as optimality criteria method, 

method of moving asymptotes and sequential quadratic programming are illustrated using 

mathematical formulations and algorithms. Both the checkerboarding problem and the gray-scale 

filter are emphasized. In the third chapter, the optimization code is presented by defining its 

characterizing features and the steps of the optimization process. Results of the optimization code 

are analyzed under the applied boundary conditions and external loads. The objective function is 

discussed as well as the number of iterations that lead to the result. In the fourth chapter, the Taubin 

smoothing method is illustrated using both mathematical overview and physical characterization 

of the scheme. The smoothing technique is applied to the optimized model using defined 

parameters. In the fifth chapter, local errors within the resulting mesh, such as surface gaps, non-

manifold vertices, and intersecting facets are repaired. In the sixth chapter, a detailed finite element 

analysis is used to show the behavior of the optimized model prior mechanical testing comprising 

the assigned mesh, boundary conditions, applied load and material properties as well as the 

obtained results such as stress distribution, deformation, and the occurred deflection. In the seventh 

chapter, a detailed description of the three-point bending test showing the apparatus and the 
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supports used throughout the experiment. The internal supports of the printed models are cleaned 

and prepared for the test. After the execution of the three-point bending test, the load-deflection 

data are gathered from the testing machine for further analysis. Based on the results obtained from 

the numerical model using a static linear elastic simulation, the slope of the load-deflection 

analysis is used to set a comparison between the numerical model and the experimental model. 

The comparative analysis showed a significant difference in flexural stiffness between the 

numerical and experimental results; this difference is discussed in detail for a profound 

understanding of the flexural bending behavior of additively manufactured parts.  

Potential contributors are discussed, including the formation of an anisotropic 

microstructure throughout the layer-by-layer melting process. Also, the effect of selective laser 

melting process on the mechanical properties of stainless steel 316l-0407 and its influence on 

structural performance was described.  

 

 

Figure 1.1 Workflow of the thesis 
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1.4 Finite Element Method 

Finite element method is a numerical technique well known for solving structural 

engineering problems; the formulation of the method is expressed through a multiplicity of an 

algebraic set of equations, which depicts the behavior of certain variables throughout a design 

domain. The finite element method is employed to determine the objective function of the topology 

optimization problem as a function of the design variable. It is necessary to determine the 

displacement corresponding to the specified design variable [4]. In the finite element method, the 

design domain is subdivided into small components called finite elements [5]. After discretizing 

the domain, each element is supposed to have a set of results that describe the behavior of the 

problem locally. Finally, the results obtained at each finite element are gathered into a set of 

equations that models the entire behavior of the problem [6]. In most engineering problems, it is 

inevitable to implement numerical approaches to solve topology optimization structures. Hence, 

most optimization algorithms use the finite element method, such as SIMP and BESO. It is 

perceivable that the finite element method is implemented within topology optimization codes. 

Although the finite element method has multiple advantages, still it has some significant 

drawbacks such as stability and boundary representations. 
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Figure 1.2 Finite element analysis workflow [6] 
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CHAPTER II 

 INTRODUCTION TO TOPOLOGY OPTIMIZATION 

Topology optimization aims to find an optimal material distribution for a defined volume 

fraction in a design domain. The optimality of material distribution is quantified by its overall 

stiffness, meaning that a high stiffness structure possesses an optimal material distribution within 

its design domain. Throughout this approach, design specifications such as internal and external 

boundary configurations are included within the optimization process. Moreover, topology 

optimization applies to both continuum and discrete structures. Since the material distribution 

method is the foundation of topology optimization, the objective is to develop structural designs 

by minimizing objective functions under specific boundary conditions and volume constraints. 
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Figure 2.1  Steps of topology optimization [7]         

 

Furthermore, structural optimization is composed of three categories, such as sizing optimization, 

shape optimization, and topology optimization. Each structural optimization is defined as follow: 

•   Sizing optimization: Optimizes the material’s distribution within the thickness of elastic 

structures. Furthermore, the sizing problem is characterized by the fact that the design domain of 

the model and its state variables are deduced and specified within the optimization process. 

•   Shape optimization: Aims to obtain an optimal shape of the design domain. In this kind 

of problems, the design domain is taken to be the design variable, which converges to an optimized 

shape domain at the end of the process. 

• Topology optimization: This type of optimization problem includes design 

specifications of the solid such as the number and the size of the holes within the domain. Also, it 

involves the connectivity of the domain. 
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Figure 2.2 (a) Sizing optimization, (b) Shape optimization, (c) Topology optimization [8] 

 

Optimizing designs in terms of stiffness requires an objective function that minimizes the total 

strain energy within a predefined domain under the application of body forces (Bendsøe,1998) [9]. 

In multiple topology optimization problems, it is necessary to specify both structural 

parameterizations of the design domain and the state variables related to the objective function. 

2.1 Minimum compliance design 

The minimum compliance problem aims to obtain design variables that minimize the structure’s 

deflection using specific boundary conditions and loads. The general form of compliance is 

formulated as follows [10]:  

                                                     𝐶(𝜌) = 𝐹𝑇𝑈(𝜌)                                                              (2.1) 

𝐹: vector of nodal force. 

𝑈: vector of nodal displacement. 

ρ: density distribution. 

The formulation of the minimum compliance problem is as follows: 

    𝑚𝑖𝑛𝜌  𝐶(𝜌) = 𝐹𝑇𝑈(𝜌)                                              
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constraints:                                            
𝑉(𝜌)

𝑉0
= 𝑉𝑓                                                                      (2.2 ) 

𝐹 = 𝐾𝑈 

          0 < 𝜌𝑚𝑖𝑛 ≤ 𝜌𝑒 ≤ 1 

𝑉(𝜌): available material volume. 

𝑉0: volume of the design domain. 

𝑉𝑓: volume fraction. 

𝐾: stiffness. 

Based on the relation between the nodal force and the compliance: 

                                                                  𝐶(𝜌) = 𝐹𝑇𝑈                                                              

                                                              𝐹 = 𝐾𝑈                                                                       (2.3) 

𝐶(𝜌) = 𝑈𝑇𝐾𝑈 

 

Based on the equation (2.3), the global compliance is formulated as follows: 

                                   𝐶(𝜌) = ∑ 𝑢𝑒
𝑇𝐾𝑒𝑢𝑒

𝑁
𝑒=1                                                            (2.4) 

𝑢𝑒: element displacement vector. 

𝐾𝑒: element stiffness matrix. 

 𝑁: number of elements of the discretized design domain. 

2.2 Solid Isotropic Material with Penalization – SIMP 

A common optimization technique called solid isotropic material with penalization uses a density-

based approach to reach an optimal material distribution within a design domain. This method is 

based on the developed work of Bendsøe and Kikushi [11] on the homogenization method.  

The SIMP method depends on the following relation: 
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                               𝐸𝑒(𝜌𝑒) = 𝜌𝑒
𝑝

(𝐸0),              0 < 𝜌𝑚𝑖𝑛 ≤ 𝜌𝑒 ≤ 1                                           ( 2.5 ) 

ρe: relative element density. 

Ee: element Young’s modulus of the solid material. 

ρmin: relative element density of the void material. 

𝑝: penalization power, 𝑝 > 1. 

The relative element density ρmin is different from zero to prevent singularity of the element 

stiffness matrix. 

The modified SIMP is formulated as follows: 

              𝐸𝑒(𝜌𝑒) = 𝐸𝑚𝑖𝑛 + 𝜌𝑒
𝑝(𝐸0 − 𝐸𝑚𝑖𝑛),        𝜌𝑒 ∈ [0,1]                                          ( 2.6) 

Emin: Young’s modulus of the void material.  

The Young’s modulus of the void material Emin is different from zero to prevent singularity of the 

element stiffness matrix. 

The global stiffness matrix 𝐾 is formulated as follows: 

                             𝐾(𝜌) = ∑ 𝐾𝑒(𝜌𝑒)𝑁
𝑒=1                                                                     (2.7) 

Also, the element stiffness matrix 𝐾𝑒 is formulated as follows: 

                                  𝐾𝑒(𝜌) = 𝐸𝑒(𝜌𝑒)𝑘𝑒
0                                                                    (2.8) 

𝑘𝑒
0: element stiffness matrix of an element with a unit Young’s modulus. 

Based on the formulation, 𝑘𝑒
0 do not depend on the relative element density ρe but it is related to 

Poisson’s ratio and the type of element.  
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Figure 2.3 Workflow of the SIMP method [12]. 

 

2.3 Optimization Algorithms 

Since minimum is a non-linear programming problem, it can be solved using sequential convex 

approximations such as the method of moving asymptotes and the sequential quadratic 

programming [13]. The objective of these methods is to obtain an enhanced design 𝑥𝑘+1 using a 

convex approximation based on an initial problem 𝑥𝑘. The most used algorithms are optimality 

criteria method, sequential quadratic programming and the method of moving asymptotes. These 

methods were implemented in the topology optimization code used throughout this work.            
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2.4 Checkerboard Patterns 

The checkerboard filtering is implemented to refine the converged topology optimization 

result by avoiding the formation of alternating solid-void regions. The checkerboarding pattern is 

generally induced throughout the conservation of higher stiffness elements based on the finite 

element analysis generating an alternation of relative densities [14]. In terms of fabrication, these 

patterns cause geometric non-linearities lowering the overall structural integrity of solid models. 

In order to solve this issue, higher order finite elements are used in the optimization problem to 

attenuate the formation of severe checkerboarding patterns.        

 

Figure 2.4 Checkerboard pattern [15]. 

 

2.5 Gray-scale Filter 

A new method is introduced to achieve white-black regions in 3D topology optimization 

applications by (Groenwold and Etman, 2009). (Liu and Tovar, 2014) implemented the filter in 

their MATLAB optimization code. The filter uses an exponent q to attain the white-black regions 

in the optimization problem. The standard optimality criteria method used is a special case of q=1. 
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Figure 2.5 Left optimized design using density filter, right optimized design using density 

filter and gray scale filter [16]. 
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CHAPTER III 

NUMERICAL IMPLEMENTATIONS OF SIMP METHOD USING MATLAB 3D CODE  

A topology optimization code for 3D structures, using a fastidious approach to solve minimum 

compliance problems based on the modified SIMP. This latter is employed to optimize predefined 

design domains based on specific boundary conditions and external loads. In this part, a minimum 

compliance problem is established to obtain optimal material distribution. The optimization code 

uses a density-based approach instead of the homogenization method. The density-based approach 

uses a power-interpolation function to determine mechanical properties such as stiffness tensor 

within a design domain [17]. In fact, it is difficult to manufacture optimized models using the 

homogenization theory, since the “gray” regions obtained within the optimized designs have 

microscopic length-scale holes that are complex to produce [18]. Moreover, the optimization code 

uses a density filter to mitigate numerical problems such as checkerboard patterns, mesh-

dependency, and local minima [19]. The following part describes the steps accomplished 

throughout the optimization process such as degrees of freedom of a discretized domain, boundary 

conditions at specific nodes, and the location of the applied load. In addition, the objective function 

of the beam is discussed based on the number of iterations prior convergence. The used code is 

courtesy of (Liu and Tovar, 2014). 
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3.1 SIMP Approach 

As mentioned in the previous chapters, the topology optimization method used is SIMP. This 

method implements a density-based approach to solve structural optimization problems. The SIMP 

method is widely used in most topology optimization applications. 

 

Figure 3.1 SIMP workflow [20] 
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3.2 Initialization Parameters 

Throughout the SIMP algorithm implemented within Liu and Tovar’s code, several parameters are 

set by the user to define the requirements of the optimization problem. The command line used in 

MATLAB is the following: 

top3d14(nelx, nely, nelz, volfrac, penal, q, rmin) 

 

 nelx: number of elements in the x-direction. 

 nely: number of elements in the y-direction. 

 nelz: number of elements in the z-direction. 

 volfrac: volume fraction; the amount of volume that is preserved from the initial structure 

prior optimization. 

 penal: the penalization factor of the SIMP method, p =3. 

 q: gray-scale penalty factor, q =2. 

 rmin: filter radius, the distance between two neighboring elements that is considered by 

the sensitivity [21]. 

The elemental densities 𝜌𝑒 are initiated using the same value, which the volume fraction. Using 

the modified SIMP approach, the virtual densities are converted to physical material properties. 

The defined material properties are: 

 𝐸𝑚𝑖𝑛: elastic modulus of the void material [22]. 

 𝐸0: elastic modulus of the applied material. 

The elastic modulus and Poisson’s ratio are used in the finite element analysis.  
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3.3 Node Coordinates 

Throughout the optimization code, the coordinates of each node within the discretized domain 

must be defined to assign both boundary conditions and loads. The nodal configuration used in the 

code obeys a systematic approach allowing the supports and external loads to be easily defined. 

Each node within the discretized domain has three degrees of freedom in accordance with the 

displacements along with x-y-z directions [23]. The discretized domains are partitioned to multiple 

eight-noded cubic elements based on the volume of the design domain. The location of the nodes 

is specified using a Cartesian coordinate system. The cubic elements are composed of eight-nodes, 

which are arranged in a counter clock-wise manner. 

        

Figure 3.2 Left cubic element, right discretized domain [24]. 

 

A relationship between nodal elements is established throughout the optimization process. Since 

the nodes are related to each other using a mapping configuration, the identification of the nodal 

coordinates can be deduced from the assigned volume of the design domain (𝑛𝑒𝑙𝑥 × 𝑛𝑒𝑙𝑦 × 𝑛𝑒𝑙𝑧) 

and the coordinates of the node 𝑁1(𝑥1, 𝑦1, 𝑧1).  
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The coordinates of the remaining nodes are obtained using the following relationships: 

Table 3.1 Relationships between nodes [25]. 

 
 

From the previous table, it is apparent that all the node coordinates depend on 𝑁1. The 

identification of a node depends on the boundary conditions and the load application within the 

design domain. In the optimization code, the node coordinates are arranged using a connectivity 

matrix edofMat throughout the following lines [26]: 

 

Figure 3.3 Arrangement of nodal coordinates [27]. 
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nele: total number of elements. 

nodegrd: comprise the node ID of the x-y plane (z=0) of the first grid nodes. 

edofVec: consists of the ID nodes at each element. 

The connectivity matrix edofMat of size nele×24 comprises the node IDs of each element. 

3.4 Boundary Conditions and External Loads 

 

Figure 3.4 Lines of fixed boundary conditions related to the MBB-beam configuration [28]. 

jf , kf : coordinate of the fixed nodes. 

fixednid : node IDs. 

fixeddof : location of the degrees of freedom. 

 

Figure 3.5 Lines of load degrees of freedom related to the MBB-beam configuration [29]. 

 

The chosen nodes of both boundary conditions and external loads are important during a topology 

optimization problem. The optimization code defines both active and passive elements that are 

essential in the process of density removal throughout the iterative SIMP algorithm. Generally, the 

defined boundary conditions are considered as passive elements meaning that the local densities 

near the boundary are kept untouched to preserve the main function of the initial geometry. 

Meanwhile, the active elements are included within the density removal process to reach an 
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optimal load-carrying path of the structure. A bad definition of the boundary condition of the 

topology optimization problem would alter the intended function of the initial design domain.  

   

Figure 3.6 External loads within different design domains [30]. 

 

3.5 Results 

The objective of this section is to examine the optimized model and describe the variation 

of compliance throughout the optimization process. 

3.5.1 Case Study: Messerschmitt-Bölkow-Blohm (MBB-beam) 

In this case study, an MBB-beam is subjected to structural optimization using four planar 

joints as boundary conditions, whereas the load is applied in the middle of the upper side of the 

structure. Using mechanical properties of stainless steel 316l: Young’s modulus 𝐸 =  190 𝐺𝑃𝑎 

and Poisson’s ratio 𝜈 = 0.265.  
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Figure 3.7 MBB-beam size 120 × 20 × 20 [31]. 

 

 

Figure 3.8 Value of parameters. 

 

To solve the minimum compliance problem, the chosen volume fraction is 0.2 and the filter radius 

is 1.5 whereas the penalization factor is 3.  

 

Figure 3.9 Final topology. 

 

The optimization problem needed 30 iterations to reach the optimal solution. 
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Figure 3.10 Variation of compliance. 

 

3.5.2 Objective function per Iteration 

Topological changes of the optimization iterations for MBB-Beam:  
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Figure 3.11 Topological behavior 

 

The optimization problem needed 30 iterations to reach the optimal solution. 
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3.5.3 Influence of the Volume Fraction 

 

Figure 3.12 Effect of the volume on the final topology. 

Volume fraction                     0.3

Volume fraction                     0.1

Volume fraction                     0.2

Volume fraction                     0.05

Volume fraction                     0.4
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The volume fraction is an important factor in a topology optimization problem. Based on the final 

topologies of each volume fraction it is apparent that a big volume fraction results in a stiff 

structure. The material is exploited in full density.   

3.5.4 Influence of the Filter Radius 

 

Figure 3.13 Effect of the filter radius on the final topology. 

 

The main function of the filter radius is to eliminate the checkerboarding pattern resulting in a 

clear solid-void portioning of the elemental densities. Based on the obtained results in figure 3.16, 

the optimal filter radius in this case is 2. A filter radius higher than 2 affects the compliance of the 

Filter radius                  2 Filter radius                       3

Filter radius                       4
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structures by eliminating most of the intermediate densities which are not completely 

dysfunctional.   

 

3.5.5 Influence of the Gray-scale Penalty Factor 

 

Figure 3.14 Effect of the gray-scale penalty factor. 

 

The effect of the gray-scale factor is to lower the formation of intermediate densities to obtain a 

better compliance design as well as reach an optimum manufacturable topology without 

checkerboarding problems. A penalty factor equal to 1 diminishes the effect of the factor by 

producing more intermediate densities resulting in irrelevant solid-void regions.     

 

  

 

 

 

Penalty factor q                   1 Penalty factor q                   3
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CHAPTER IV 

TAUBIN SMOOTHING METHOD AND POST-OPTIMIZATION OF MESH ERRORS  

Geometric inconsistencies within meshes are difficult for 3D-printers. A denoising 

algorithm called Taubin smoothing method is used to filter high frequencies and smooth the 

optimized model. The smoothing method helps reduce the formation of residual stresses by 

eliminating angles prone to the overhang limit. In the meantime, the smoothing method succeeded 

in preserving both the shape and the geometric characteristics related to the topology optimization 

problem. 
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4.1 Mathematical Formulation 

            Taubin smoothing presented a new alternative instead of using the two-scale factors of 

opposite signs, which implements the negative factor of larger magnitude within the Laplacian 

smoothing approach.  

Such implementation eliminates the high frequencies within the umbrella operator of the 

Laplacian smoothing while conserving the low frequencies. The rule that governs the Taubin 

technique is expressed as follow [32]: 

                                                            𝑃𝑛𝑒𝑤 → (1 − 𝜇𝒰)(1 + 𝜆𝒰)𝑃𝑜𝑙𝑑                                      (4.1)  

                                                 =  𝑃𝑜𝑙𝑑 − (𝜇 − 𝜆)𝒰(𝑃𝑜𝑙𝑑) − 𝜇𝜆𝒰2(𝑃𝑜𝑙𝑑), 

Where  𝒰2 is the squared umbrella operator: 

                                              𝒰2(𝑃) =  
1

∑ 𝑤𝑖𝑖
∑ 𝑤𝑖𝒰(𝑄𝑖) − 𝒰(𝑃)𝑖                                             (4.2) 

According to Taubin, the best smoothing occurs when 𝒰 =  𝒰0 or𝒰 =  𝒰1. The filtering scheme 

used by the method provides good performance results. 

4.2 Mesh Smoothing of the Optimized Model 

After achieving the final optimized form of the MBB beam problem, we import the STL 

file of the optimized part in Mesh LAB software. Both operators 𝜇 and 𝜆 are defined to obtain an 

optimal mesh smoothing without shrinkage of the optimized model. The following smoothing 

method preserved the shape and the geometric characteristics related to the boundary condtions 

implemented throughout the topology optimization problem. Moreover, the Taubin technique 

provided a smooth CAD representation of the optimized model by filtering geometric profiles 

prone to the overhang limit. The smoothing technique enabled an optimal additive manufacturing 

of the parts by reducing the formation of residual stresses within the structure.      
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Figure 4.1 Smoothed mesh of the optimized model. 

 

4.3 Post-optimization of Mesh Errors 

            After getting the final STL file of the optimized beam through MATLAB, we found 

multiple deficiencies in the design such as invalid faces and gaps. At this phase the changes must 

be done manually using two approaches either ‘tracing’ the optimization result or using a form of 

recognition feature [33]. This both techniques are not efficient in terms of geometry preservation. 

The main purpose of this section is to describe the common errors within the boundary 

representation of CAD models such as surface gaps, non-manifold vertices, degenerate facets and 

intersecting facets. These errors commonly exist in solid models due to imprecise arithmetic 

resolutions of geometries and programming inconsistencies. These types of errors obstruct critical 

analyses of solid models such as finite element analysis and rapid prototyping. The repair process 

used throughout the project is the import diagnostics feature provided by SOLIDWORKS manual.  
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Furthermore, the import diagnostics feature reveals surface issues using the following process [34]: 

 Running checks on overlapping surfaces. 

 Replace unsimplified surfaces with equivalent analytical surfaces to improve the 

performance of the CAD model. 

The import diagnostics feature repairs the geometric errors using the following steps: 

 Redesign omitted surfaces based on the surrounding geometry of the model.   

 Omit irrelevant portions within faces. 

 The gap repair algorithm is used to fill the resulting voids due to removed faces. 

In addition, the import diagnostics eliminates the gaps between adjacent faces by doing one or 

more of the following: 

 Unify two close but nonintersecting edges. 

 Add surfaces to fill the existing gap. 

 Eliminate gaps by extending two adjacent faces into each other. 

Additional functionality: 

 Transform unsimplifed surfaces into analytic surfaces. 

 Use the knit feature to merge repaired faces into the surface body. 

 Transform the body into a solid if the surface body is closed. 
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Figure 4.2 Steps of post-optimization steps. 

 

4.3.1 Mesh Errors 

After getting the numerical results via optimization codes in STL format, comes the part 

where the resulted meshes must be investigated in order to correct the problems that could occur 

when generating the results through MATLAB.  
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The most common problems that could be encountered in this case are [35]: 

1. Surface gaps or misplaced facets. 

2. Non-manifold vertices. 

3. Degenerate facets. 

4. Intersecting facets. 

 

Figure 4.3 Illustration of gaps within meshes [36]. 

 

 

Figure 4.4 Degenerated facets [37]. 

 

During the tessellation of surfaces with large curvature, a lot of errors can occur in the 

overlapping of surfaces, engendering gaps within the edges of the part [38]. For a manifold edge 

of being valid, it has to have one edge shared by two facets only. In fact, a non-manifold edge is 
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generally shared by four different facets. In order to fix the non-manifold edge problematic, each 

facet has to have one neighbor facet along each edge. Types of non-manifold errors: 

•    Non-manifold edge. 

•    Non-manifold point. 

•    Non-manifold face. 

 

Figure 4.5 Types of non-manifold errors [39]. 

 

4.3.2 Mesh Repair 

After importing the STL file on SOLIDWORKS, the import diagnostics feature is launched 

to run an analysis on the mesh. The depicted errors were corrected using both the import 

diagnostics feature and a manual approach on SOLIDWORKS. The existing errors are the 

following:           



 

35 

 

Figure 4.6 Errors within the mesh of the optimized model. 

 

Based on the import diagnostics scan, the mesh had several intersecting surfaces as well as internal 

surface gaps especially at the center of the model. The denoising approach of the umbrella operator 

of Taubin smoothing converted the surface of the optimized model to a smooth representation 

allowing the triangular faces of the mesh to have approximately the same level of curvature, which 

made the knitting feature and the gap filling easier. 
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Figure 4.7 Example of connected pattern of intersecting faces. 

 

 

Figure 4.8 Example of a surface gap. 
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CHAPTER V 

FINITE ELEMENT ANALYSIS 

In the following chapter, a numerical model is set to simulate the bending mechanism of 

the CAD model. Throughout the analysis, a three-point bending test was modeled using the same 

boundary conditions and external loads observed during the experimental tests. The mechanical 

properties implemented in the simulation are based on previous researches made on stainless steel 

316l since the value of Young’s modulus depends on the build orientation as well as the induced 

residual stresses through the selective laser melting process. The reason behind adopting the 

findings of the specific research is to obtain results capable of predicting the behavior of stainless 

steel 316l accurately. The built parts have a different microstructure compared to the CAD model; 

they exhibit an anisotropic behavior, which is not the case for the numerical model. The software 

used throughout this section is ABAQUS.    
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5.1 CAD Model 

The model was imported in ABAQUS FEA software to investigate the deformations of the 

structure; the analysis simulates the three-point bending test that was similar to the boundary 

conditions used during the experiment. The supporting feet were added in order to fit the structure 

throughout the 3 points bending test apparatus. 

 

Figure 5.1 Designed model. 

 

5.2 Material Properties 

Based on the mechanical properties in [40], we have the values of Young’s Modulus in 

three different build orientations. The reason behind choosing the young’s modulus from the table; 

because the measurements of the parameter took into considerations the anisotropic behavior of 

additively manufactured stainless steel 316l as well as the effects of both build orientation and 

residual stresses induced throughout the printing process.  
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This approach allows us to simulate a more realistic young’s modulus in an anisotropic 

point of view to depict the flexural behavior accurately. From the data of (Merkt et al., 2015), we 

choose the minimum value of Young’s modulus which is 160 GPa in order to evaluate the lowest 

case scenario possible for our printed models. Moreover, the chosen value of Young’s modulus is 

45°, which is the same build orientation used throughout the printing process of the models. The 

material properties assigned to the model are chosen based on previous researches done on the 

behavior of stainless steel 316l under the effect of selective laser melting technique such as the 

print orientation, heat treatment, and residual stresses. 

 

Figure 5.2 Variation of Young’s Modulus with respect to the build orientation [41]. 

 

The graphs below illustrate the variation of young’s modulus under different printing angles, the 

choice of Young’s modulus is based on the results of (Merkt, et al., 2015). 
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Figure 5.3 Build orientation of the printed models. 

 

The finite element model uses a linear isotropic material behavior of the CAD model assuming 

perfect bonding between the layers.   

5.3 Boundary Conditions  

A finite element analysis was conducted on the CAD model of the printed beams in order to 

examine the flexural behavior of the parts and set a comparative analysis between the numerical 

and the experimental results. The numerical model was simulated using ABAQUS. 
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Figure 5.4 Boundary conditions and external loads of the model. 

 

The mechanical behavior at each boundary condition (interaction with supports of the simulation) 

is explained as follow: 

 

1.    For the left-hand side: X translation allowed, rotation along Y-axis is not permitted 

UY=0, but rotations UZ and UX are preserved.   

2.    For the right-hand side: RY=0 along the line of contact and the rotation is permitted 

along the Z-axis and X-axis whereas UY=0. Translation allowed in the X-axis.  

3.    Displacement at the upper surface of the model.  

 

In order to obtain an accurate numerical model of the three-point bending test, the boundary 

conditions were applied in accordance to the observed behavior of the specimens throughout the 

experiment; this approach enabled us to model the flexural bending test and get satisfying results 

compared to the experiment.  
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Figure 5.5 Step static-general. 

 

 

Figure 5.6 Contact interactions. 
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Figure 5.7 Displacement boundary condition. 

 

 

Figure 5.8 Supports boundary condition. 
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5.4 Mesh Generation 

A curvature-based method is used to mesh the curved regions of the model. It determines the radius 

of curvature of each region in order to set a mesh that fits the geometric inclinations of the model. 

If sharp corners are in the load path, they are susceptible to high-stress concentrations. Based on 

this fact, the curvature-based technique generates tight meshes in these regions to provide accurate 

stress results. In addition, the curvature-based method is able to generate more mesh elements in 

case of meshing sophisticated models, which is not always possible for the standard method. 

Moreover, the curvature-based mesh performs well using a multi-core meshing [42]. 

 

 

Figure 5.9 Meshed model. 
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Figure 5.10 Region of displacement. 

 

 

Figure 5.11 Side-view of the supporting feet. 
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Based on the mesh of the model, most of the regions have tight mesh, and that is due to the topology 

optimization problem since the main objective of structural optimization is to find an optimal load-

carrying path, which is associated with the highest stress distribution. 

5.5 Results of the Numerical Model 

 

Figure 5.12 Von Mises stress distribution. 

 

Based on the results of the Von Mises stress distribution, the feet of the model are exposed to 

higher stress concentrations compared to the remaining regions. The observed flexural behavior 

throughout the numerical simulation exhibited similar deformation as the built model during the 

experimental test.      
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Figure 5.13 Deformation form. 

 

Figure 5.14 Displacement results.



 

48 

CHAPTER VI 

ADDITIVE MANUFACTURING 

The term rapid prototyping signifies the production of 3D Models using 3D printing 

process; models are designed through 3D CAD software. Additive manufacturing uses 3D-printing 

process in order to get the desired product. This printing method superposes material in form of 

cross-sections using the layer-by-layer technique. In fact, printing thinner layers provides an 

accurate result compared to the designed model on the CAD software. Moreover, the layer-by-

layer technique helps minimize both the printing duration and cost, in the meantime it could 

operate using multiple metallic and plastic materials. 

Furthermore, additive manufacturing operates using multiple technologies that differ from 

each other in terms of performance, duration and cost. The most known technologies are 

stereolithography (SLA) and fused deposit modeling (FDM). Before the development of the layer-

by-layer technique, the fabrication of models consisted of using a process called subtractive 

manufacturing which produces models by discarding materials from existing metallic specimens 

to obtain the desired shapes [43]. 

In fact, additive manufacturing process reduces the possibility of additional tooling and 

controls the production accurately compared to the conventional technique. Although, additive 

manufacturing has ameliorated tremendously the manufacturing process, still it suffers from 

multiple limitations regarding the design such as the chamber’s dimension of the machine which 

constraints the dimensions of the desired design. In addition to that both surface finish and 
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dimensional precision are less accurate than the results obtained using the conventional technique 

[44]. Additive manufacturing process can operate using multiple technologies such as 

Stereolithography (SLA), Direct Metal Laser Sintering (DMLS), Selective Laser Sintering (SLS) 

and Selective Laser Melting (SLM). Each technology has a different method to achieve the desired 

printings, these techniques affects majorly both the performance and cost of the manufacturing 

process. For instance, Stereolithography uses a laser beam that scans over specific surfaces that 

are constituted of photopolymers; the beam follows a predefined pattern that assures the formation 

of the desired models. Moreover, Selective Laser Melting uses a laser beam to melt metals by 

fusing thin layers of metallic powders. Both Direct Metal Laser Sintering and Selective Laser 

Sintering use the sintering technique as in Selective Laser Melting, but they differ regarding the 

melting degree of the metal. The building process of additive manufacturing depends on multiple 

parameters. Most of these factors, affect the mechanical properties and the quality of the printed 

parts. Since we are interested in testing additively manufactured parts, it is essential to illustrate 

the impact of these parameters on the microstructure and the material of the manufactured 

structures.  

 

Figure 6.1 Steps of 3D printing [45]. 
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6.1 Additive manufacturing constraints 

The major concern of topology optimization is to obtain an optimal material distribution 

within a predefined design domain. In fact, the material distribution result that is obtained through 

topology optimization is unconstrained by the domain connectivity which allows it to produce 

innovative designs. Nowadays, structures are more complex than before, they require accurate 

manufacturing approaches. Furthermore, classical manufacturing processes are overpriced and 

time consuming whereas additive manufacturing provides higher performance within a predefined 

time slot and it is less expensive. Moreover, coupling topology optimization with additive 

manufacturing seems to be efficient. Indeed, additive manufacturing provides a tremendous 

flexibility towards designing complex structures. Additive manufacturing is having two types of 

constraints which are classified as directional and non-directional regarding the nature of the 

design. For instance, the directional constraint is related to the printing direction of designed 

structure. Whereas, the non-directional constraint concerns both enclosed voids and minimum 

feature size [46]. Examples of directional constraints such as the overhang support and the layer 

induced anisotropy.   

6.1.1 Directional Constraints 

Since the printing direction is a crucial component that affects majorly the quality of 

designs, it is vital to ameliorate it. Moreover, there are multiple directional constraints that should 

be taken into consideration while improving the print direction such as layer induced anisotropy, 

thermal warping and overhang support. Furthermore, these constraints should be improved to 

enhance the orientation which is necessary to the print direction [47]. As a result of the thermal 

activity within the additive manufacturing process; residual stresses are induced due to local 

melting and nonuniform cooling of the manufactured design. Indeed, support structures are 
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implemented because of residual stresses and heat dissipation; in order to reduce these effects 

through the manufacturing process. Moreover, new methods were introduced to anticipate residual 

stresses in the designed parts [48]. Based on the layer induced anisotropy constraint some additive 

manufacturing methods proved that the in-plane print direction is more efficient than the print 

direction. In 2014, a new method was proposed that adjusts the theoretical model of optimization 

for additive manufacturing related to the overhang problem. The idea behind this method is to 

partition the inclination angle to three regions such as: robust zone (40° ≤ 𝜃), compromised zone 

(40° ≤ 𝜃 ≤ 30°) and failed zone(30° > 𝜃). The obtained results showed that the support material 

was not used during the manufacturing process [49].  In 2017, a new method was presented that 

can be incorporated in conventional density-based topology optimization. The mesh has elements 

that are associated with a blue print-density; the elements that are sufficiently supported get printed 

[50]. The presented method focalizes on both SLM and EBM technologies. In case of a two-

dimensional design problem an element within the design domain is supported via three elements 

underneath it. 

6.1.2 Non-directional constraints 

Some additive manufacturing technologies encounter the enclosed voids problematic while 

in process. For instance, during the SLM printing process the metallic powder stuck inside the 

voids of structures. In case of the fused deposition modeling, it is necessary to employ support 

structures within the designed part. These support structures are eliminated from the part after the 

achievement of the manufacturing process. In 2015, a method called virtual temperature method 

was introduced as a solution to the enclosed voids problem. The main idea behind this method is 

to fill the voids within structures using a virtual heating material characterized by high heat 

conductivity. Meanwhile, the solid regions are filled with a low heat conductivity material [51]. 
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This approach enables the possibility of integrating the temperature constraint in topology 

optimization. Moreover, a new method called virtual scalar field method proposed that the 

temperature could be a scalar field in topology optimization [52]. In 2003, a scheme was 

introduced in order to integrate the minimum length scale feature within topology optimization 

[53]. Moreover, a newly proposed method demonstrates the possibility of attaining the minimum 

length scale by implementing geometric constraints within a filtering-threshold scheme of 

topology optimization; this concept implements both a density filter and a projection scheme [54]. 

6.2 Manufacturing Materials 

Throughout the additive manufacturing there are multiple materials that can be used during 

the printing process such as metals, polymers and ceramics. These materials are categorized as 

follow: 

Table 6.2 Types of materials used in the additive manufacturing process [55]. 

 
 

These materials operate on most commercial additive manufacturing machines. Each technology 

has a specific preference in terms of quality and cost.  
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Table 6.3 Mechanical properties of stainless steel 316l-0407 [56] 

 
 

6.3 Manufacturing Process 

The additive manufacturing process is composed of eight steps: 

  

Figure 6.2 Steps of the additive manufacturing process [57]. 
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6.4 Printed Models 

 

Figure 6.3 Front view of the printed models.  

 

 

Figure 6.4 Upper view of the printed models. 
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CHAPTER VII 

THREE-POINT BENDING TEST 

             This chapter presents the flexural bending tests of the printed structures. The 

smoothed designs were additively manufactured using the selective laser melting process; those 

structures are tested using the same boundary conditions of the three-point bending problem. The 

bending test employs a specific test fixture using a universal test machine. The three-point bending 

test is set based on the ASTM D790 standards for both material properties and dimensions.  

In the three-point bending test, tensile stress is applied in the convex side of the specimen, 

whereas compressive stress is applied in the concave side inducing local shear stress through the 

midline of the structure. To make sure that the failure is due to the applied tensile stress or 

compressive stress, the induced local shear stress should be minimal. The flexural strength, which 

is the material’s stiffness, is determined throughout the gathered data of the load-deflection curves. 

The flexural bending test provides essential data that describes the bending mechanism of the 

printed models based on load-deflection curves. Also, it allows determining the modulus of 

elasticity based on the bend test data. In beam theory, the three-point bend test is a classical 

problem used to study the bending mechanism of elastic structures. Flexural stiffness is related to 

Young’s modulus via the maximum deflection formula at the midline of the beam. This test is 

conducted until reaching plastic deformation of the printed models.                              

 

                                                         𝛿𝑚𝑎𝑥 =
𝑃𝐿3

48𝐸𝐼
                                                                       (7.1) 



 

56 

 

Figure 7.1 Three-point bending problem [58]. 

 

7.1 Experimental Set-up 

The printed specimens were tested using INSTRON 5882 equipment with a capacity of 100 KN. 

The vertical displacement was measured using INSTRON’S extensometer. In order to have 

accurate bending results, the flexural behavior should be is induced either by tensile or 

compression stress, as mentioned before. This hypothesis is ensured based on the shear span to 

depth ratio of the tested structure [59]. 

 

Figure 7.2 INSTRON 5882 [60] 

 



 

57 

The bending test is conducted using a vertical displacement of 0.01 mm/sec. The 

supporting feet (figure 7.3) were designed to test the printed parts appropriately since the contact 

regions between the optimized beam models are too small to ensure a stable flexural bending test. 

The deflection of tested beams was measured using INSTRON’s extensometer at the midline of 

the specimens. In the meantime, the load-deflection curves were recorded simultaneously 

throughout the test. 

 

Figure 7.3 Illustration of the bending test. 
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The figure below illustrates the configuration used during the three-points bending test showing 

the contact regions of the specimen as well as the location of the applied load. The contact regions 

between the supports and the specimen were marked at the middle of the supporting feet to obtain 

an accurate flexural bending pattern as well as a precise measurement of deflection at the midline. 

The supports interact with the specimen at four locations; two in each side to stabilize the beam 

during the test. 

7.2 Numerical Results 

In this section, the results obtained from the finite element analysis related to the linear 

elastic regime are illustrated since we are interested in the linear elastic behavior of the printed 

models. The boundary conditions implemented in the numerical simulation are pinned-end contact 

at the left-hand side and a roller contact at the right-hand side; this approach illustrates well the 

behavior of the specimens like the ones observed during the experiment. 

Since the numerical model is set to simulate the linear elastic behavior, the maximum stress 

does not exceed the elastic limit. The optimized model exhibits compressive stress at the upper 

part of the optimized beam, whereas the tensile stresses are situated at the lower part. Both 

observed stresses have significant effects on the flexural behavior of the optimized MBB-beam; 

which have to be taken into consideration while setting the optimization problem to obtain an 

optimized model capable of sustaining loads in a realistic environment. 

Based on the linear behavior of the three-points bending equation, a straight line is plotted 

using the following formula: 

                                                    
𝑑𝑃

𝑑𝛿
=

48𝐸𝐼

𝐿3                                                                          (7.2) 

E: Young’s modulus 
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I:  Moment of inertia 

P: Load 

            L: Distance between supports 

           𝛿 : Deflection 

To plot the curve, we use the applied load of the numerical model as well as the obtained maximum 

deflection from the finite element analysis to determine the slope based on the numerical 

simulation. From the simulation, the deflection reached is 0.25 mm.  

                                          
𝑃

𝛿𝑚𝑎𝑥
= 26.452 𝑘𝑁/𝑚𝑚                                                    (7.3) 

For further analysis, the linear elastic curve of the numerical model is added to the graphs 

containing the experimental curves and compare the obtained results in terms of flexural stiffness 

of each specimen.  

 

Figure 7.4 Load-deflection slope of the numerical model. 
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7.3 Experimental Results 

 

Figure 7.5 Load-deflection curves of the first experiment. Specimen I 

 

Throughout the first experiment, three bending tests were conducted on the same specimen.  

Based on the graph of the first experiment, there are three regions: 

 Region A: During this phase of the test, the specimen was seated on the testing platform 

and the vertical load application was initiated. The non-linear behavior in this region is 

explained by the effect of stability on the bending performance of the specimen. 

 Region B: The linear elastic behavior of the specimen. 

 Region C: The plastic deformation of the specimen.     

The following experiment is divided into three sections by varying the applied load at different 

regimes to depict the behavior of the specimen. These tests intend to obtain the linear elastic zone 

and the plastic zone. The variation of the applied load rate established from a slower rate to a 

higher rate enabled the specimen to respond differently throughout the flexural bending tests. 
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During Test I, the specimen was incrementally subjected to a vertical load at the upper 

surface. The applied load reached a value of 18.03 KN equivalents to 2.15 mm in deflection; the 

specimen was unloaded when attaining its elastic limit prior deformation. 

During Test II, the specimen was unloaded, allowing it to regain its initial shape since we 

have not exceeded the elastic limit of the specimen. At this level, the load is incremented at a 

different rate and exceeds the elastic limit of the specimen, allowing it to deform plastically. After 

reaching its maximum bending load of 25.99 KN, the load started decreasing almost in a linear 

form, whereas the deflection increased, reaching a value of 5 mm.  

During Test III, the specimen was unloaded once more for a while before starting the test. 

The third test started nearly at 2.1 mm of deflection; the amount of deflection reached was induced 

by the plastic deformation observed within the second test. The applied load of the third test has 

not reached a higher value compared to test II. The deflection corresponding to the maximum 

applied load is 5.05 mm. After reaching its maximum value, the load started decreasing linearly, 

whereas the deflection increased, reaching a value of 6.9 mm. 

Both experiments II and III were tested using the same following data inputs: 

Table 7.2 Data inputs of experiment II and III. 

Inputs Specimen label Values  

Dimension Support span 137.19 mm 

Dimension Thickness 60.24 mm 

Dimension Width 72.66 mm 

Test Rate 1 0.01 mm/sec 
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For experiments II and III, the test was conducted under similar conditions of the first experiment. 

Although, the rate of the applied load was kept the same throughout the test until reaching its 

maximum bending load. 

 

Figure 7.6 Load-deflection curve of the second experiment. Specimen II 

 

 

Figure 7.7 Load-deflection curve of the third experiment. Specimen III 
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Throughout the analysis, the curves of specimen I are the results obtained from test II of the first 

experiment.  

The following experimental data were obtained from the INSTRON testing machine. Based on 

these results, the maximum bending load and the deflection at maximum bending load were 

extracted from the load-deflection curve. 

Table 7.3 Results obtained from the three tests. 

Specimen Type Maximum 

Bending Load (kN) 

Deflection at maximum 

bending load (mm) 

Taubin smoothing – 

specimen I 

25.99 kN 3.3515 mm 

Taubin smoothing – 

specimen II – Test II 

26.21 kN 3.8122 mm 

Taubin smoothing – 

specimen III 

26.002 kN 4.2819 mm 

 

For the maximum bending load, it is noticeable based on the values of the table that the 

specimens have reached nearly the same range of the maximum load with slight differences 

especially specimen II which has the highest load of 26.21 kN exceeding specimen I with 220 N 

and specimen II with 208 N. For the deflection at maximum bending load, it is apparent from the 

table that specimen III has the most considerable amount of deflection followed by specimen II 

whereas specimen I has the lowest amount of deflection. Although the printed models are 

replicates of the same mesh smoothing method, their mechanical behavior throughout the flexural 

bending unveiled different structural properties. These differences are caused by the printing 

process; which influences the quality of the designed models since the relative density used during 
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the printing phase affects the flexural strength. Based on the flexural behavior of the parts, the 

load-deflection curve is composed of two mechanical regimes; a linear elastic regime which 

enables the specimen to regain its initial shape when unloaded as long as it has not exceeded the 

elastic limit and a plastic regime in which an irreversible deformation occurs. 

 

Figure 7.8 Deformed part. 

 

The apparent flexural deformations are due to the transition from the linear elastic regime 

to the plastic regime; these deflections occur mainly at the supporting feet and the midline section 

of the specimen. After exceeding the linear elastic regime, the applied load increases in the form 

of a parabola to reach its peak attaining the maximum deflection at the midline section. In fact, the 

occurred transition engendered a loss of stiffness, which can be interpreted by a significant 

compression at the upper surface as well as a high tension at the lower surface mostly at the 
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supporting feet. From the load-deflection curve, the plastic regime can be divided into two 

sections: a parabolic zone comprising fluctuations and an almost linear curve at the end.  

The observed fluctuations are due to the vibrations resulting from the contact with the supports.  

The flexural behavior generated at the plastic regime increased significantly inducing high 

compression stress at the upper side and high tensile stress at the lower side, causing the supporting 

feet to slide on the supports. After the load drop, the specimen continued to sustain the applied 

load less than the peak. The non-linear behavior is due to the compressive yielding of the 

anisotropic microstructure of the layers. 

 

Figure 7.9 Bending angle of the feet. 

 

After attaining the maximum load of 25 KN, a critical compressive effect observed, causing the 

bending angle between the feet and the central part of the body to increase massively. Throughout 

the experimental test, the models have not reached the fracture point remaining close to the linear 
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elastic regime. Accordingly, a linear elastic analysis was conducted due to the incompleteness of 

the non-linear behavior of the specimen at the plastic regime based on the load-extension curve.  

Several mechanical properties of the tested samples were deduced such as energy absorbed till 

maximum load and energy absorbed till maximum deflection. The energy absorbed by each 

specimen was determined by integrating the area under the load-deflection curve.  

Table 7.4 Experimental data of the three experiments. 

Specimen Type Deflection at Maximum 

bending load (mm) 

Energy absorbed till 

maximum load (J) 

Taubin smoothing – 

specimen I 

3.3515 mm 0.006662848 

Taubin smoothing – 

specimen II 

3.8122 mm 0.013118 

Taubin smoothing – 

specimen III 

4.2819 mm 0.013085 

 

Based on the obtained results, it is apparent that specimen II has absorbed more energy than both 

Specimen I and specimen II.  Throughout the optimization process, the optimal material 

distribution is obtained by minimizing the overall compliance of the structure within a predefined 

design domain. Since compliance is the inverse of stiffness, the minimization of compliance within 

a structure increases stiffness. Moreover, the compliance of a structure is measured in strain energy 

within the linear elastic regime. In elasticity, it is called elastic strain energy. Strain energy is 

defined as the internal work done in deforming the body by the action of externally applied forces; 

it is the amount of potential energy stored due to deformation.  
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Figure 7.10 Illustration of strain energy [61]. 

 

Using the load-deflection curves, the linear elastic regime of each specimen. From the linear elastic 

regime, the elastic strain energy is determined by integrating over the load-deflection area within 

the elastic limit.  

Table 7.5 Elastic strain energy of each specimen. 

Specimen Type Elastic strain energy 

(kN.mm) 

Specimen I 8.99893 

Specimen II 8.21572 

Specimen III 7.62255 

 

The purpose of this plot is to compare the value of flexural stiffness at the linear elastic 

regime of each specimen. The flexural stiffness measures the resistance of a specimen when 

subjected to bending deformation. A high value of the flexural stiffness factor means that the 

structure has fewer tendencies to deflect or bend. 
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Table 7.6 Flexural modulus of the three tested specimens. 

Specimen Specimen I Specimen II Specimen III 

Flexural Stiffness 

(kN/mm) 

20.51 15.21 16.3 

 

7.4 Discussion    

A comparative analysis is set between the linear-elastic curve of the numerical model and the 

experimental data. For further examination, the linear-elastic portion of the numerical model was 

added to the previous load-deflection plots. The purpose of this analysis is to examine the flexural 

behavior of the printed beams throughout the bending tests and assess the main causes behind the 

difference in flexural stiffness.   

 

Figure 7.11 Numerical and experimental curves of the comparative analysis. 
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Table 7.7 Values of flexural stiffness of the numerical and the experimental model. 

 Numerical model 

 

Experimental model 

Flexural stiffness (kN/mm) 26.452 20.51 

 

For the experimental models, we have considered the highest flexural stiffness value, which is 

20.51 kN/mm; since the slope (flexural stiffness) is not the same within the elastic region due to 

the obtained non-linearity. Based on the curves, specimen I have the highest flexural stiffness 

compared to specimen II and specimen III. The high flexural stiffness of the experimental model 

can be explained by the anisotropic microstructure, which is not the case for the CAD model. The 

CAD model is assumed to have an isotropic behavior. Also, the modeled supports did not have the 

exact same effect as the one observed during the experiment. Since the numerical model is 

considered isotropic several geometric imperfections are not considered throughout the finite 

element analysis. In addition, the printed models suffered from residual stresses and porosity. The 

numerical model considered the variation of Young’s modulus throughout the selective laser 

melting process; based on previous researches done on the behavior of the mechanical properties 

of stainless steel 316l. Since the printed parts used a specific build orientation, the Young’s 

modulus used was in accordance to the build angle. The obtained results showed that the finite 

element analysis predicted the range of the flexural stiffness.      

 The apparent difference between specimen I, II, and III is the energy dissipated due to 

material internal friction. It is noticeable that the flexural stiffness of the three tests is slightly 

different even though the tested specimens are replicates; this hypothesis is clear when we compare 

both specimens I and III. One of the reasons behind the difference in flexural stiffness is the change 
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in the line of the applied load during the yielding of the parts. In fact, as the tested part started 

deflecting downwards; the perpendicular application of the load shifted slightly at the upper 

surface.  

The main reason behind the difference in flexural stiffness between the experimental and 

numerical model is related to the dissimilarity of the mechanical properties within the 

microstructure. In fact, the additive manufacturing process is affected by several parameters that 

affect the mechanical properties of the printed parts. The manufactured parts were sliced using 

specific parameters; each slice has a predefined height that influences the infill percentage of the 

superposed layers. In addition, the layer-by-layer build induces road gaps and air-voids within the 

microstructure. The layered raster imposed a specific direction during the building process that 

orients the stainless-steel 316l molecules within the microstructure, which impacts the flexural 

resistance of the parts in certain directions [62].   
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Figure 7.12 Apparent layers. 

 

Several parameters did affect the flexural stiffness during the building process of the optimized 

models such as the laser power, laser scan speed as well as the relative density. These factors 

influence the mechanical properties of the printed specimen throughout their microstructure, 

surface quality and toughness. The breaking stress, hardness, lengthening and the elastic yield 

point are majorly affected by the printing process [63]. 



 

72 

 

Figure 7.13 Remaining supports. 

 

The following figure shows the remaining supports of the part. These supports are used to 

print complex regions within the structure. The built supports did affect the flexural behavior of 

the specimens by inducing an asymmetry because most of them were located the right-hand side 

of the parts. This asymmetry appeared clearly throughout specimen I, which exhibited a flexural 

bending towards the left-hand side. These supports require additional machining to be subtracted 

from the surface. Moreover, the supports had different impacts on the geometry of the 

manufactured parts. For instance, the specimen I had an apparent formation of residual stresses at 

the supporting feet.  

Also, the thickness of the supports induced shape deformations at the sharp corners of the 

parts. Observing the manufactured parts, some minor supports were built in the middle of the 

structures; linking multiple regions. The links engendered additional flexural resistance to the 

parts.         
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Figure 7.14 Minor bridge. 

 

The observed bridges influenced the bending mechanism by restraining the linked regions, 

which required a consistent load application to force the tensile behavior. These geometric 

inconsistencies induced additional local shear stresses within the structures. The Local shear 

stresses accentuated the effect of the geometric non-linearity by inducing small oscillations due to 

the vibrational effect of the bending load.        

 

Figure 7.15 Multiple bridges. 

 



 

74 

The infill percentage affects the stiffness of the built layers since it controls the amount of material 

melted following the laser’s path. The infill engenders local porosity within neighboring layers. 

The induced porosity causes the microstructure to lose its strength and behave in a non-linear 

manner [64]. The transformation of energy and mass during the melting process is manifested 

through absorption and scattering of laser radiation. The selective laser melting process exhibit 

high thermal behavior that engenders shape distortions and residual stresses. The accumulation of 

the high-temperature process generates fatigue failure due to the reduction in the geometrical 

accuracy of the printed parts [65].    

  

Figure 7.16 Shape distortions. 

 

The shape distortions induced geometric non-linearity throughout the bending test.     
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Figure 7.17 Variation of the layer’s height [66]. 

 

During the layer-by-layer building process, it is essential to define the height of each melted 

layer. Based on the chosen height, the slicing feature characterizes each region by its estimated 

number of layers. Since the infill percentage plays a major role on the formation of highly porous 

layers, it is critical to find an optimal number of layers to reduce the void gaps that encounter the 

layering process [67]. Increasing the number of layers induces more microstructural discontinuities 

that weakens the layer adherence within the structure, which affects the tensile strength. In fact, 

the gap between the layers should be minimized to obtain a highly bonded microstructure 

providing optimal mechanical properties of the melted material. The contact between the layers 

during the melting process engenders inter-molecular diffusivity due to the heat transfer within the 

build chamber [68]. Furthermore, the selective laser melting process uses a laser scanning strategy 

that controls the grain orientation within the microstructure. Throughout the melting process, both 

rapid heating and cooling affects the flowability of the melted material preventing the formation 

of a uniform density distribution. The powder flowability is vital during the melting process it 

affects the quality of the built layers [69]. Also, the inter-molecular forces between the molecules 

influence the distribution of particles within the microstructure.  
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Figure 7.18 Influential parameters of additive manufacturing [70].  

 

Several parameters did affect the flexural stiffness during the building process of the optimized 

models such as the laser power, laser scan speed as well as the relative density. These factors 

influence the mechanical properties of the printed specimen throughout their microstructure, 

surface quality and toughness. The breaking stress, hardness, lengthening and the elastic yield 

point are majorly affected by the printing process. 
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7.5 Potential causes 

In this part, multiple factors are discussed to elucidate the difference obtained in flexural bending 

stiffness between numerical and experimental results. It is essential to examine the main aspects 

that affected the flexural behavior of the numerical model as well as the built part. A modelling 

strategy is required to predict accurately the structural performance of additively manufactured 

parts. Thus, it is necessary to elaborate a concise methodology to model additively manufactured 

structures to achieve results capable of predicting the overall performance in real applications. The 

major causes are: 

 The experiment model was manufactured using layer-by-layer approach compared to 

the CAD model. 

 In the numerical model, the applied material does not take into consideration the 

microstructure’s anisotropy, which is induced throughout the selective laser melting 

process. 

 The build orientation affects the mechanical properties such as Young’s modulus, 

hardness and yield strength. The Young’s modulus depends on the build angle. 

 Due to the thermal activity of the selective laser melting process, residual stresses induce 

geometric inconsistencies and discontinuities within the manufactured parts. These 

anomalies engender a significant deviation in flexural stiffness between the built model 

and the CAD model.  
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7.6 Conclusions 

Throughout this work, an optimized MBB-beam was modeled, manufactured and tested to 

evaluate the bending mechanism and the effect of the selective laser melting process on the 

mechanical properties of additively manufactured parts. This framework integrates topology 

optimization into the additive manufacturing process, and it implements Taubin mesh smoothing 

technique within the design to attenuate geometric noises within meshes in order to reduce the 

formation of overhanging angles and residual stresses due to the thermal activity of the additive 

manufacturing process.  

 One of the most common optimization techniques is Solid Isotropic Material with 

Penalization (SIMP), this method uses a method of density penalization that guides 

the final solution to a significant formation (0 and 1) by eliminating irrelevant 

densities within the structure. Based on the SIMP MATLAB code, the optimization 

problem obeys a density-based approach using a modified SIMP interpolation 

method, which involves independency of the penalization power, and the minimum 

Young’s modulus. Since the density-based approach relies on relaxing the binary 

problem by implementing a continuous density value, the overall material 

distribution depends on the material density distribution. A minimum compliance 

analysis was applied to enhance the overall integrity of the structure by minimizing 

its total strain energy in order to obtain a stiff optimized model.  

 After solving the optimization problem, the optimized model was smoothed using 

Taubin method. The smoothed versions using the Taubin smoothing method were 

additively manufactured using selective laser melting technique.  
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 A flexural bending experiment was conducted using the three points bending test 

to validate the design requirements of the numerical model and depict the behavior 

of the optimized model in terms of strain energy and displacement. In fact, the 

bending test of the manufactured model unveiled satisfactory results that confirmed 

the design requirements of the obtained numerical optimization model. The 

performed design methodology allowed complex optimized models to be additively 

manufactured by integrating a powerful tool such as mesh smoothing technique, 

which reduced the formation of overhanging angles and residual stresses that could 

occur during the laser melting process.  

 After obtaining the numerical results via optimization codes in. STL format, comes 

the part where the resulted meshes has to be investigated in order to correct the 

problems that could occur when generating the final results through MATLAB. The 

most common problems that could be encountered in this case are surface gaps or 

misplaced facets, non-manifold vertices, degenerate facets and intersecting facets. 

These errors commonly exist in solid models due to imprecise arithmetic 

resolutions of geometries and programming inconsistencies. These types of errors 

obstruct critical analyses of solid models such as finite element analysis and rapid 

prototyping. The repair process used throughout the project is the import 

diagnostics feature on ABAQUS.  

 After resolving the geometric errors of the meshes, a finite element analysis was 

undertaken using the same boundary conditions and the load application 

implemented during the three points bending test. A comparison between the mesh 

smoothing techniques in terms of stress distribution though the overall smoothed 
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structures and the in meantime validate the designed supporting feet and evaluate 

their integrity before experimentally testing the models.  

 The Taubin smoothing operates using λ operator to adjust the inward diffusion and 

the μ operator to adjust the outward diffusion step also it uses a second order filter 

with a pass band gain to avoid the shrinkage of low frequency elements. In other 

means, the Taubin smoothing attenuates the mesh noises by preserving the same 

position of the smoothed surface.  

 During the additive manufacturing process, the directional constraints were taken 

into consideration such as the printing direction which affects majorly the design 

quality, it was important during the printing phase to define an optimal print 

direction. As a result of the thermal activity within the additive manufacturing 

process; residual stresses are induced due to local melting and nonuniform cooling 

of the manufactured design. Indeed, support structures are implemented because of 

residual stresses and heat dissipation; in order to reduce these effects through the 

manufacturing process.  
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MATLAB SCRIPTS 
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A.1 3D SIMP Matlab code courtesy of Liu and Tovar 2014. 

 

% AN 169 LINE 3D TOPOLOGY OPITMIZATION CODE BY LIU AND TOVAR (JUL 2013) 
function MOP = top3d14(nelx,nely,nelz,volfrac,penal,q,rmin) 
% USER-DEFINED LOOP PARAMETERS 
maxloop = 15;    % Maximum number of iterations 
tolx = 0.01;      % Terminarion criterion 
displayflag = 0;  % Display structure flag 
% USER-DEFINED MATERIAL PROPERTIES 
E0 = 190e9;           % Young's modulus of solid material 
Emin = 1e-9;      % Young's modulus of void-like material 
nu = 0.265;         % Poisson's ratio 
% USER-DEFINED LOAD DOFs 
il = nelx/2; jl = nely; kl = nelz/2;                 % Coordinates 
loadnid = kl*(nelx+1)*(nely+1)+il*(nely+1)+(nely+1-jl); % Node IDs 
loaddof = 3*loadnid(:) - 1;                             % DOFs 
% USER-DEFINED SUPPORT FIXED DOFs 
iif = [0 0 nelx nelx]; jf = [0 0 0 0]; kf = [0 nelz 0 nelz]; % Coordinates 
fixednid = kf*(nelx+1)*(nely+1)+iif*(nely+1)+(nely+1-jf); % Node IDs 
fixeddof = [3*fixednid(:); 3*fixednid(:)-1; 3*fixednid(:)-2]; % DOFs 
% PREPARE FINITE ELEMENT ANALYSIS 
nele = nelx*nely*nelz; 
ndof = 3*(nelx+1)*(nely+1)*(nelz+1); 
F = sparse(loaddof,1,-1,ndof,1); 
U = zeros(ndof,1); 
freedofs = setdiff(1:ndof,fixeddof); 
KE = lk_H8(nu); 
nodegrd = reshape(1:(nely+1)*(nelx+1),nely+1,nelx+1); 
nodeids = reshape(nodegrd(1:end-1,1:end-1),nely*nelx,1); 
nodeidz = 0:(nely+1)*(nelx+1):(nelz-1)*(nely+1)*(nelx+1); 
nodeids = repmat(nodeids,size(nodeidz))+repmat(nodeidz,size(nodeids)); 
edofVec = 3*nodeids(:)+1; 
edofMat = repmat(edofVec,1,24)+ ... 
    repmat([0 1 2 3*nely + [3 4 5 0 1 2] -3 -2 -1 ... 
    3*(nely+1)*(nelx+1)+[0 1 2 3*nely + [3 4 5 0 1 2] -3 -2 -1]],nele,1); 
iK = reshape(kron(edofMat,ones(24,1))',24*24*nele,1); 
jK = reshape(kron(edofMat,ones(1,24))',24*24*nele,1); 
% PREPARE FILTER 
iH = ones(nele*(2*(ceil(rmin)-1)+1)^2,1); 
jH = ones(size(iH)); 
sH = zeros(size(iH)); 
k = 0; 
for k1 = 1:nelz 
    for i1 = 1:nelx 
        for j1 = 1:nely 
            e1 = (k1-1)*nelx*nely + (i1-1)*nely+j1; 
            for k2 = max(k1-(ceil(rmin)-1),1):min(k1+(ceil(rmin)-1),nelz) 
                for i2 = max(i1-(ceil(rmin)-1),1):min(i1+(ceil(rmin)-1),nelx) 
                    for j2 = max(j1-(ceil(rmin)-1),1):min(j1+(ceil(rmin)-

1),nely) 
                        e2 = (k2-1)*nelx*nely + (i2-1)*nely+j2; 
                        k = k+1; 
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                        iH(k) = e1; 
                        jH(k) = e2; 
                        sH(k) = max(0,rmin-sqrt((i1-i2)^2+(j1-j2)^2+(k1-

k2)^2)); 
                    end 
                end 
            end 
        end 
    end 
end 
H = sparse(iH,jH,sH); 
Hs = sum(H,2); 
% INITIALIZE ITERATION 
x = repmat(volfrac,[nely,nelx,nelz]); 
xPhys = x;  
loop = 0;  
change = 1; 
% START ITERATION 
while change > tolx && loop < maxloop 
    loop = loop+1; 
    if loop <= 15, q=1;  
    else 
    q = min(2,1.01*q); 
    end 
    % FE-ANALYSIS 
    sK = reshape(KE(:)*(Emin+xPhys(:)'.^penal*(E0-Emin)),24*24*nele,1); 
    K = sparse(iK,jK,sK); K = (K+K')/2; 
    tolit = 1e-8; 
    maxit = 8000; 
    M = diag(diag(K(freedofs ,freedofs))); 
    U(freedofs,:)= pcg(K(freedofs ,freedofs) ,F(freedofs ,:),tolit,maxit,M);  
    % OBJECTIVE FUNCTION AND SENSITIVITY ANALYSIS 
    ce = reshape(sum((U(edofMat)*KE).*U(edofMat),2),[nely,nelx,nelz]); 
    c = sum(sum(sum((Emin+xPhys.^penal*(E0-Emin)).*ce))); 
    dc = -penal*(E0-Emin)*xPhys.^(penal-1).*ce; 
    dv = ones(nely,nelx,nelz); 
    % FILTERING AND MODIFICATION OF SENSITIVITIES 
    dc(:) = H*(dc(:)./Hs);   
    dv(:) = H*(dv(:)./Hs); 
    % OPTIMALITY CRITERIA UPDATE 
    l1 = 0; l2 = 1e9; move = 0.2; 
    while (l2-l1)/(l1+l2) > 1e-3 
        lmid = 0.5*(l2+l1); 
        xnew = max(0,max(x-move,min(1,min(x+move,(x.*sqrt(-

dc./dv/lmid)).^q)))); 
        xPhys(:) = (H*xnew(:))./Hs; 
        if sum(xPhys(:)) > volfrac*nele, l1 = lmid; else l2 = lmid; end 
    end 
    change = max(abs(xnew(:)-x(:))); 
    x = xnew; 
    % PRINT RESULTS 
    fprintf(' It.:%5i Obj.:%11.4f Vol.:%7.3f 

ch.:%7.3f\n',loop,c,mean(xPhys(:)),change); 
    % PLOT DENSITIES 
    if displayflag, clf; display_3D(xPhys); end %#ok<UNRCH> 
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end 
clf; display_3D(xPhys); 
end 

  

  
% === GENERATE ELEMENT STIFFNESS MATRIX === 
function [KE] = lk_H8(nu) 
A = [32 6 -8 6 -6 4 3 -6 -10 3 -3 -3 -4 -8; 
    -48 0 0 -24 24 0 0 0 12 -12 0 12 12 12]; 
k = 1/144*A'*[1; nu]; 

  
K1 = [k(1) k(2) k(2) k(3) k(5) k(5); 
    k(2) k(1) k(2) k(4) k(6) k(7); 
    k(2) k(2) k(1) k(4) k(7) k(6); 
    k(3) k(4) k(4) k(1) k(8) k(8); 
    k(5) k(6) k(7) k(8) k(1) k(2); 
    k(5) k(7) k(6) k(8) k(2) k(1)]; 
K2 = [k(9)  k(8)  k(12) k(6)  k(4)  k(7); 
    k(8)  k(9)  k(12) k(5)  k(3)  k(5); 
    k(10) k(10) k(13) k(7)  k(4)  k(6); 
    k(6)  k(5)  k(11) k(9)  k(2)  k(10); 
    k(4)  k(3)  k(5)  k(2)  k(9)  k(12) 
    k(11) k(4)  k(6)  k(12) k(10) k(13)]; 
K3 = [k(6)  k(7)  k(4)  k(9)  k(12) k(8); 
    k(7)  k(6)  k(4)  k(10) k(13) k(10); 
    k(5)  k(5)  k(3)  k(8)  k(12) k(9); 
    k(9)  k(10) k(2)  k(6)  k(11) k(5); 
    k(12) k(13) k(10) k(11) k(6)  k(4); 
    k(2)  k(12) k(9)  k(4)  k(5)  k(3)]; 
K4 = [k(14) k(11) k(11) k(13) k(10) k(10); 
    k(11) k(14) k(11) k(12) k(9)  k(8); 
    k(11) k(11) k(14) k(12) k(8)  k(9); 
    k(13) k(12) k(12) k(14) k(7)  k(7); 
    k(10) k(9)  k(8)  k(7)  k(14) k(11); 
    k(10) k(8)  k(9)  k(7)  k(11) k(14)]; 
K5 = [k(1) k(2)  k(8)  k(3) k(5)  k(4); 
    k(2) k(1)  k(8)  k(4) k(6)  k(11); 
    k(8) k(8)  k(1)  k(5) k(11) k(6); 
    k(3) k(4)  k(5)  k(1) k(8)  k(2); 
    k(5) k(6)  k(11) k(8) k(1)  k(8); 
    k(4) k(11) k(6)  k(2) k(8)  k(1)]; 
K6 = [k(14) k(11) k(7)  k(13) k(10) k(12); 
    k(11) k(14) k(7)  k(12) k(9)  k(2); 
    k(7)  k(7)  k(14) k(10) k(2)  k(9); 
    k(13) k(12) k(10) k(14) k(7)  k(11); 
    k(10) k(9)  k(2)  k(7)  k(14) k(7); 
    k(12) k(2)  k(9)  k(11) k(7)  k(14)]; 
KE = 1/((nu+1)*(1-2*nu))*... 
    [ K1  K2  K3  K4; 
    K2'  K5  K6  K3'; 
    K3' K6  K5' K2'; 
    K4  K3  K2  K1']; 
end 
% === DISPLAY 3D TOPOLOGY (ISO-VIEW) === 
function display_3D(rho) 
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[nely,nelx,nelz] = size(rho); 
hx = 1; hy = 1; hz = 1;            % User-defined unit element size 
face = [1 2 3 4; 2 6 7 3; 4 3 7 8; 1 5 8 4; 1 2 6 5; 5 6 7 8]; 
set(gcf,'Name','ISO display','NumberTitle','off'); 
for k = 1:nelz 
    z = (k-1)*hz; 
    for i = 1:nelx 
        x = (i-1)*hx; 
        for j = 1:nely 
            y = nely*hy - (j-1)*hy; 
            if (rho(j,i,k) > 0.5)  % User-defined display density threshold 
                vert = [x y z; x y-hx z; x+hx y-hx z; x+hx y z; x y z+hx;x y-

hx z+hx; x+hx y-hx z+hx;x+hx y z+hx]; 
                vert(:,[2 3]) = vert(:,[3 2]); vert(:,2,:) = -vert(:,2,:); 
                patch('Faces',face,'Vertices',vert,'FaceColor',[0.2+0.8*(1-

rho(j,i,k)),0.2+0.8*(1-rho(j,i,k)),0.2+0.8*(1-rho(j,i,k))]); 
                hold on; 
            end 
        end 
    end 
end 
axis equal; axis tight; axis off; box on; view([30,30]); pause(1e-6); 
end 

 

 

 

 

 

 

 
 

========================================================================= 
% === This code was written by K Liu and A Tovar, Dept. of Mechanical   === 
% === Engineering, Indiana University-Purdue University Indianapolis,   === 
% === Indiana, United States of America                                 === 
% === ----------------------------------------------------------------- === 
% === Please send your suggestions and comments to: kailiu@iupui.edu    === 
% === ----------------------------------------------------------------- === 
% === The code is intended for educational purposes, and the details    === 
% === and extensions can be found in the paper:                         === 
% === K. Liu and A. Tovar, "An efficient 3D topology optimization code  === 
% === written in Matlab", Struct Multidisc Optim, 50(6): 1175-1196, 2014, = 
% === doi:10.1007/s00158-014-1107-x                                     === 
% === ----------------------------------------------------------------- === 
% === The code as well as an uncorrected version of the paper can be    === 
% === downloaded from the website: http://www.top3dapp.com/             === 
% === ----------------------------------------------------------------- === 
% === Disclaimer:                                                       === 
% === The authors reserves all rights for the program.                  === 
% === The code may be distributed and used for educational purposes.    === 
% === The authors do not guarantee that the code is free from errors 
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A.2 STL conversion Matlab code (A simple STL writter for Top3d by Liu (Apr 2015) 

https://top3dapp.com [71]) 

function Top3dSTL_v3(fout, varargin) 
%Top3dSTL_v3   A simple STL writter for Top3d by Liu (Apr 2015) 
%   Top3dSTL_v3(fout) writes a STL file with name fout using cubic 
%   representation and binary file format if xPhys exists in Workspace. 
% 
%   Top3dSTL_v3(fout, xPhys) writes a STL file with name fout using cubic 
%   representation and binary file format 
% 
%   Top3dSTL_v3(___, Name, Value) writes a STL file with one or more Name, 
%   Value pair argments. Use this option with any of the input argument 
%   combinations in the prvious syntaxes. 
%       FORMAT     - File is written in 'binary' (default) or 'ascii' format. 
%       TITLE      - Header text (max 80 characters) written to the STL file. 
%       MODE       - Facets are generated using 'cube' (default) or 'iso'. 
%       CUTOFF     - Density cutoff value. default: 0.5 
%       FACECOLOR  - Face color. default: 'cyan' 
%       ALPHA      - Face alpha value. default: 1. 
%       UNITLENGTH - Vector of element unit length. default: [1 1 1] 
%       PLOT       - Logic flag to display structures. default: true 
% 
%   Example 1: 
%       Top3dSTL_v3('MyTop3d.stl') % when xPhys is in Workspace 
% 
%   Example 2: 
%       Top3dSTL_v3('MyTop3d.stl', density, ... 
%       'Format', 'ascii', 'Mode', 'iso', 'FaceColor', 'm', 'Plot', false) 
% 

  
% Determine input type 
if ~isempty(varargin) && (isnumeric(varargin{1}) || islogical(varargin{1})) 
    xPhys = varargin{1}; 
    options = parseInputs(varargin{2:end}); 
else 
    try 
        xPhys = evalin('base', 'xPhys'); 
    catch ME 
        switch ME.identifier 
            case 'MATLAB:UndefinedFunction' 
                error('xPhys is not input argument nor exist in workspace'); 
            otherwise 
                rethrow(ME) 
        end 
    end 
    options = parseInputs(varargin{:}); 
end 

  
% Generate faces and verts 
if strcmp(options.mode, 'cube') 
    [faces, verts] = getCube(xPhys, options); 
else 
    [faces, verts] = getISO(xPhys, options); 
end 
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% Facets 
facets = single(verts); 
facets = reshape(facets(faces',:)', 3, 3, []); 
% facets: (:,:,1) --> Vertices of face 1, 
% facets(:,1,1)   --> First vertice of face 1 
V1 = squeeze(facets(:,2,:) - facets(:,1,:)); 
V2 = squeeze(facets(:,3,:) - facets(:,1,:)); 

  
% Normal vectors 
normals = cross(V1, V2); 
clear V1 V2 
% Normal vectors normalization 
normals = bsxfun(@times, normals, 1 ./ sqrt(sum(normals .* normals, 1))); 

  
facets = cat(2, reshape(normals, 3, 1, []), facets); 
clear normals 

  
% Write STL 
if strcmp(options.format, 'ascii') 
    writeAscii(facets, fout, options.title); 
else 
    writeBinary(facets, fout, options.title); 
end 

  
end 

  
function options = parseInputs(varargin) 
OP = inputParser; 
defaultFormat    = 'binary'; 
expectedFormat   = {'ascii', 'binary'}; 
defaultMode      = 'cube'; 
expectedMode     = {'cube', 'iso'}; 
defaultTitle     = sprintf('Created by Top3dSTL.m %s',datestr(now)); 
defaultCutoff    = 0.5; 
defaultFcolor    = 'c'; 
defaultAlpha     = 1; 
defaultUnitLegth = [1, 1, 1]; 
defaultPlot      = true; 

  
OP.addParamValue('format', defaultFormat, ... 
    @(x) any(validatestring(x,expectedFormat))) 
OP.addParamValue('mode', defaultMode, ... 
    @(x) any(validatestring(x,expectedMode))) 
OP.addParamValue('title', defaultTitle, @ischar); 
OP.addParamValue('cutoff', defaultCutoff, @isnumeric) 
OP.addParamValue('facecolor', defaultFcolor, @ischar) 
OP.addParamValue('alpha', defaultAlpha, @isnumeric) 
OP.addParamValue('unitlength', defaultUnitLegth, ... 
    @(x) validateattributes(x, {'numeric'}, {'vector'})); 
OP.addParamValue('plot', defaultPlot, @islogical) 

  
OP.parse(varargin{:}); 
options = OP.Results; 
end 
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function [faces, verts] = getCube(xPhys, options) 
% Generate Mesh 
nx = options.unitlength(1); 
ny = options.unitlength(2); 
nz = options.unitlength(3); 
[nely, nelx, nelz] = size(xPhys); 
nele    = nelx*nely*nelz; 
nodegrd = reshape(1:(nely+1)*(nelx+1),nely+1,nelx+1); 
nodeids = reshape(nodegrd(1:end-1,1:end-1),nely*nelx,1); 
nodeidz = 0:(nely+1)*(nelx+1):(nelz-1)*(nely+1)*(nelx+1); 
nodeids = repmat(nodeids, size(nodeidz))+repmat(nodeidz, size(nodeids)); 
enodVec = nodeids(:)+1; 
enodMat = repmat(enodVec,1,8)+ ... 
    repmat([0 nely + [1 0] -1 ... 
    (nely+1)*(nelx+1)+[0 nely + [1 0] -1]],nele,1); 

  
% Faces connectivities 
enodidx = [... 
    1 3 2; 1 4 3; ... % back 
    5 6 7; 5 7 8; ... % front 
    1 5 8; 1 8 4; ... % left 
    6 2 3; 6 3 7; ... % right 
    8 7 3; 8 3 4; ... % up 
    1 2 6; 1 6 5];    % down 

  
faces = []; 

  
% Filter out Low density 
xPhys(xPhys < options.cutoff)  = 0; 
xPhys(xPhys >= options.cutoff) = 1; 

  
for f = 1:size(enodMat,1) 
    if xPhys(f) == 0 
        continue; 
    end 

     
    % Coordinates 
    [j, i, k] = ind2sub([nely, nelx, nelz], f); 
    eFace   = enodidx;      % element faces connectivities 
    idx     = [];           % element faces to be deleted 
    % Neighbor on back 
    if (k ~= 1 && xPhys(j, i, k - 1) == 1) 
        idx = [idx; [1 2]]; 
    end 
    % Neighbor on front 
    if (k ~= nelz && xPhys(j, i, k + 1) == 1) 
        idx = [idx; [3 4]]; 
    end 
    % Neighbor on left 
    if (i ~= 1 && xPhys(j, i - 1, k) == 1) 
        idx = [idx; [5 6]]; 
    end 
    % Neighbor on right 
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    if (i ~= nelx && xPhys(j, i + 1, k) == 1) 
        idx = [idx; [7 8]]; 
    end 
    % Neighbor on up 
    if (j ~= 1 && xPhys(j - 1, i, k) == 1) 
        idx = [idx; [9 10]]; 
    end 
    % Neighbor on down 
    if (j ~= nely && xPhys(j + 1, i, k) == 1) 
        idx = [idx; [11 12]]; 
    end 

     
    eFace(idx, :) = []; 
    tmp   = enodMat(f,:); 
    faces = cat(1, faces, tmp(eFace)); 

  
end 

  
% Vertices 
[xx, yy, zz] = meshgrid(0:nx:nelx*nx, ... 
    0:ny:nely*ny, ... 
    0:nz:nelz*nz); 
verts = [xx(:) nely-yy(:) zz(:)]; 

  
% Visualization 
if options.plot 
    dverts = [xx(:) zz(:) yy(:)]; 
    cla, hold on, view(30,30), rotate3d on, axis equal 
    axis([0 nelx*nx 0 nelz*nz 0 nely*ny]), box 
    set(gca,'YDir', 'reverse', 'ZDir', 'reverse', 'ZtickLabel', 

flipud(get(gca, 'Ztick')')); 
    patch('faces', faces, 'vertices', dverts, 'FaceColor', options.facecolor, 

'FaceAlpha', options.alpha) 
    xlabel('x'), ylabel('z'), zlabel('y') 
end 
end 

  
function [faces, verts] = getISO(xPhys, options) 
nx = options.unitlength(1); 
ny = options.unitlength(2); 
nz = options.unitlength(3); 
[nely, nelx, nelz] = size(xPhys); 

  
aux = zeros(nely+2, nelx+2, nelz+2); 
aux(2:end-1,2:end-1,2:end-1) = xPhys; 

  
[X,Y,Z] = meshgrid(0:nx:nx*(nelx+1), ... 
    0:ny:ny*(nely+1), ... 
    0:nz:nz*(nelz+1)); 

  
[faces, verts] = isosurface(X-0.5, Z-0.5, Y-0.5, aux, options.cutoff); 

  
% Visualization 
if options.plot 
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    cla, hold on, view(30,30), rotate3d on, axis equal 
    axis([0 nx*nelx 0 nz*nelz 0 ny*nely]), box 
    set(gca, 'YDir', 'reverse', 'ZDir', 'reverse', 'ZtickLabel', 

flipud(get(gca, 'Ztick')')); 

     
    patch('Faces', faces, 'Vertices', verts,... 
        'FaceColor', options.facecolor, 'EdgeColor', 'none', 'FaceAlpha', 

options.alpha); 
    camlight, lighting gouraud; 
    xlabel('x'), ylabel('z'), zlabel('y') 
    drawnow 
end 
end 

  
function writeAscii(facets, fout, title) 
% Write ASCII STL file 
%{ 
FORMAT: 

  
solid name 
    facet normal ni nj nk 
        outer loop 
            vertex v1x v1y v1z 
            vertex v2x v2y v2z 
            vertex v3x v3y v3z 
        endloop 
    endfacet 
end solid name 

  
%} 
fid = fopen(fout, 'wb+'); 
fprintf(fid, [title, '\r\n']); 
fprintf(fid,[... 
    'facet normal %.7E %.7E %.7E\r\n' ... 
    'outer loop\r\n' ... 
    'vertex %.7E %.7E %.7E\r\n' ... 
    'vertex %.7E %.7E %.7E\r\n' ... 
    'vertex %.7E %.7E %.7E\r\n' ... 
    'endloop\r\n' ... 
    'endfacet\r\n'], facets); 
fprintf(fid, ['end ', title, '\r\n']); 
fclose(fid); 
fprintf('Wrote %d facets to %s\n',size(facets, 3), fout); 
end 

  
function writeBinary(facets, fout, title) 
% Write Binary STL file 
%{ 
FORMAT: 

  
UINT8[80] ? Header 
UINT32 ? Number of triangles 

  
foreach triangle 
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    REAL32[3] ? Normal vector 
    REAL32[3] ? Vertex 1 
    REAL32[3] ? Vertex 2 
    REAL32[3] ? Vertex 3 
    UINT16 ? Attribute byte count 
end 

  
%} 
fid = fopen(fout, 'wb+'); 
fprintf(fid, '%-80s', title);                  % Title 
fwrite(fid, size(facets, 3), 'uint32');        % Number of facets 
facets = typecast(facets(:), 'uint16');        % Convert to unit16 
facets = reshape(facets, 12*2, []); 
facets(end+1, :) = 0;                          % Add color(0) to the end of 

each facet 
fwrite(fid, facets, 'uint16'); 
fclose(fid); 
fprintf('Wrote %d facets to %s\n',size(facets, 2), fout); 
end 

 

A.3 Three point bending test simulation – INP file ( Material properties, Boundary 

conditions) 

**  

** MATERIALS 

**  

*Material, name="SS 316l" 

*Elastic 

 2.321e+07, 0.265 

**  

** INTERACTION PROPERTIES 

**  

*Surface Interaction, name=IntProp-1 

1., 

*Friction, slip tolerance=0.005 

 0.1, 
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*Surface Behavior, pressure-overclosure=HARD 

*Surface Smoothing, name=CP-1-Part-2-1-Taubin_Smoothing-new-1 

, _CP-1-Part-2-1-Taubin_Smoothing-new-1_msm_1, CIRCUMFERENTIAL, 1.22175, -

0.336883, -0.637795, 1.22175, -0.336883, 0.362205 

, _CP-1-Part-2-1-Taubin_Smoothing-new-1_msm_2, CIRCUMFERENTIAL, 1.22175, -

0.336883, -0.637795, 1.22175, -0.336883, 0.362205 

*Surface Smoothing, name=CP-2-Part-2-1-Taubin_Smoothing-new-1 

, _CP-2-Part-2-1-Taubin_Smoothing-new-1_msm_1, CIRCUMFERENTIAL, 1.22175, -

0.336883, -0.637795, 1.22175, -0.336883, 0.362205 

, _CP-2-Part-2-1-Taubin_Smoothing-new-1_msm_2, CIRCUMFERENTIAL, 1.22175, -

0.336883, -0.637795, 1.22175, -0.336883, 0.362205 

*Surface Smoothing, name=CP-3-Part-2-2-Taubin_Smoothing-new-1 

, _CP-3-Part-2-2-Taubin_Smoothing-new-1_msm_1, CIRCUMFERENTIAL, 6.63976, -

0.336883, -0.637795, 6.63976, -0.336883, 0.362205 

, _CP-3-Part-2-2-Taubin_Smoothing-new-1_msm_2, CIRCUMFERENTIAL, 6.63976, -

0.336883, -0.637795, 6.63976, -0.336883, 0.362205 

*Surface Smoothing, name=CP-4-Part-2-2-Taubin_Smoothing-new-1 

, _CP-4-Part-2-2-Taubin_Smoothing-new-1_msm_1, CIRCUMFERENTIAL, 6.63976, -

0.336883, -0.637795, 6.63976, -0.336883, 0.362205 

, _CP-4-Part-2-2-Taubin_Smoothing-new-1_msm_2, CIRCUMFERENTIAL, 6.63976, -

0.336883, -0.637795, 6.63976, -0.336883, 0.362205 

*Surface Smoothing, name=CP-5-Part-2-3-Taubin_Smoothing-new-1 



 

99 

, _CP-5-Part-2-3-Taubin_Smoothing-new-1_msm_1, CIRCUMFERENTIAL, 3.9517, 

2.31058, -0.496889, 3.9517, 2.31058, 0.503111 

, _CP-5-Part-2-3-Taubin_Smoothing-new-1_msm_2, CIRCUMFERENTIAL, 3.9517, 

2.31058, -0.496889, 3.9517, 2.31058, 0.503111 

**  

** BOUNDARY CONDITIONS 

**  

** Name: BC-2 Type: Displacement/Rotation 

*Boundary 

Set-4, 1, 1 

Set-4, 2, 2 

Set-4, 3, 3 

Set-4, 4, 4 

Set-4, 5, 5 

Set-4, 6, 6 

** Name: BC-4 Type: Displacement/Rotation 

*Boundary 

Set-5, 1, 1 

Set-5, 2, 2 

Set-5, 3, 3 

Set-5, 4, 4 

Set-5, 5, 5 

Set-5, 6, 6 
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**  

** INTERACTIONS 

**  

** Interaction: CP-1-Part-2-1-Taubin_Smoothing-new-1 

*Contact Pair, interaction=IntProp-1, type=SURFACE TO SURFACE, geometric 

correction=CP-1-Part-2-1-Taubin_Smoothing-new-1 

CP-1-Taubin_Smoothing-new-1, CP-1-Part-2-1 

** Interaction: CP-2-Part-2-1-Taubin_Smoothing-new-1 

*Contact Pair, interaction=IntProp-1, type=SURFACE TO SURFACE, geometric 

correction=CP-2-Part-2-1-Taubin_Smoothing-new-1 

CP-2-Taubin_Smoothing-new-1, CP-2-Part-2-1 

** Interaction: CP-3-Part-2-2-Taubin_Smoothing-new-1 

*Contact Pair, interaction=IntProp-1, type=SURFACE TO SURFACE, geometric 

correction=CP-3-Part-2-2-Taubin_Smoothing-new-1 

CP-3-Taubin_Smoothing-new-1, CP-3-Part-2-2 

** Interaction: CP-4-Part-2-2-Taubin_Smoothing-new-1 

*Contact Pair, interaction=IntProp-1, type=SURFACE TO SURFACE, geometric 

correction=CP-4-Part-2-2-Taubin_Smoothing-new-1 

CP-4-Taubin_Smoothing-new-1, CP-4-Part-2-2 

** Interaction: CP-5-Part-2-3-Taubin_Smoothing-new-1 

*Contact Pair, interaction=IntProp-1, type=SURFACE TO SURFACE, adjust=0.0,  

geometric correction=CP-5-Part-2-3-Taubin_Smoothing-new-1 

CP-5-Taubin_Smoothing-new-1, CP-5-Part-2-3 
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** Interaction: Int-1 

*Contact 

*Contact Inclusions, ALL EXTERIOR 

*Contact Property Assignment 

 ,  , IntProp-1 

*Surface Property Assignment, property=GEOMETRIC CORRECTION 

_Int-1_gcs0_1, Circumferential, 1.22175, -0.336883, -0.637795,  1.22175, -0.336883, 

0.362205 

_Int-1_gcs0_2, Circumferential, 1.22175, -0.336883, -0.637795,  1.22175, -0.336883, 

0.362205 

_Int-1_gcs0_8, Circumferential, 1.22175, -0.336883, -0.637795,  1.22175, -0.336883, 

0.362205 

_Int-1_gcs0_9, Circumferential, 1.22175, -0.336883, -0.637795,  1.22175, -0.336883, 

0.362205 

_Int-1_gcs0_18187, Circumferential, 6.63976, -0.336883, -0.637795,  6.63976, -

0.336883, 0.362205 

_Int-1_gcs0_18188, Circumferential, 6.63976, -0.336883, -0.637795,  6.63976, -

0.336883, 0.362205 

_Int-1_gcs0_18194, Circumferential, 6.63976, -0.336883, -0.637795,  6.63976, -

0.336883, 0.362205 

_Int-1_gcs0_18195, Circumferential, 6.63976, -0.336883, -0.637795,  6.63976, -

0.336883, 0.362205 
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_Int-1_gcs0_18201, Circumferential, 3.9517, 2.31058, -0.496889,  3.9517, 2.31058, 

0.503111 

_Int-1_gcs0_18202, Circumferential, 3.9517, 2.31058, -0.496889,  3.9517, 2.31058, 

0.503111 

_Int-1_gcs0_18208, Circumferential, 3.9517, 2.31058, -0.496889,  3.9517, 2.31058, 

0.503111 

_Int-1_gcs0_18209, Circumferential, 3.9517, 2.31058, -0.496889,  3.9517, 2.31058, 

0.503111 

** ---------------------------------------------------------------- 

**  

** STEP: Step-1 

**  

*Step, name=Step-1, nlgeom=NO, inc=10000 

*Static, stabilize=0.0002, allsdtol=0.05, continue=NO 

0.02, 1., 1e-08, 1. 

**  

** BOUNDARY CONDITIONS 

**  

** Name: BC-3 Type: Displacement/Rotation 

*Boundary, amplitude=Amp-3 

Set-6, 1, 1 

Set-6, 2, 2, -0.00984252 

Set-6, 3, 3 
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Set-6, 4, 4 

Set-6, 5, 5 

Set-6, 6, 6 

**  

** OUTPUT REQUESTS 

**  

*Restart, write, frequency=0 

**  

** FIELD OUTPUT: F-Output-1 

**  

*Output, field 

*Node Output 

CF, RF, RM, RT, TF, U, UR, UT 

V, VF, VR, VT 

*Element Output, directions=YES 

ALPHA, ALPHAN, BF, CENTMAG, CENTRIFMAG, CORIOMAG, CS11, CTSHR, E, 

EE, ER, ESF1, GRAV, HP, IE, LE 

MISES, MISESMAX, MISESONLY, NE, NFORC, NFORCSO, P, PE, PEEQ, 

PEEQMAX, PEEQT, PEMAG, PEQC, PRESSONLY, PS, ROTAMAG 

S, SALPHA, SE, SEE, SEP, SEPE, SF, SPE, SSAVG, THE, TRIAX, TRNOR, TRSHR, 

TSHR, VE, VEEQ 

VS 

**  
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** HISTORY OUTPUT: H-Output-1 

**  

*Output, history 

*Node Output, nset=Set-6 

RF2, U2 

*End Step 
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