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The quantitative measurement of structural alterations at the nanoscale level is important 

for understanding the physical states of weakly disordered optical mediums such as cells/tissues.  

Progress in certain diseases, such as cancer or abnormalities in the brain, is associated with the 

nanoscale structural alterations at basic building blocks of the cells/tissues. Elastic light 

scattering, especially at visible wavelengths range provides non-invasive ways to probe the 

cells/tissues up to nanoscale level. Therefore, a mesoscopic physics-based open light scattering 

technique with added finer focusing, partial wave spectroscopy (PWS), is developed to probe 

nanoscale changes. Then, molecular-specific light localization technique, a close scattering 

approach called inverse participation ratio (IPR) is proposed that is sensitive to nano to 

microstructural cell/tissue alterations.  

In this dissertation, we have introduced the further engineered PWS system with the finer 

focus for precise volume scattering and molecular-specific light localization IPR techniques. As 

an application of PWS, we first probe precise scattering volume in commercially available tissue 

microarrays (TMA) tissue samples to standardize the existing cancer diagnostic methods by 

distinguishing the cancer stages. We also apply the PWS technique to probe chemotherapy drug-



 

 

treated metastasizing cancer patients by xenografting prostate cancer cells using a mouse model 

and identify drug-sensitive and drug-resistance treatment cases. On the other hand, as an 

illustration of another mesoscopic physics-based molecular specific light localization technique, 

Confocal-IPR, we study the effects of a probiotic on chronic alcoholic mice brains by targeting 

the molecular specific alteration in glial cells, astrocytes and microglia, and chromatin of the 

brain cells through staining with appropriate dyes/proteins. Using structural disorder of IPR as a 

biomarker, the results show that probiotics in the presence of alcohol are beneficial and help 

overall brain health. Finally, a TEM-IPR study was performed using nanoscale resolution TEM 

imaging to support the optical IPR method by studying the anti-cancerous drug effect in ovarian 

cancer cells. The result shows that we can quantitatively measure the effect of anti-cancerous 

drugs in cancer treatment and the level of tumorigenicity far below the diffraction limit, and it 

has a similar effect and supports the optical IPR method.  
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CHAPTER I 

INTRODUCTION: MESOSCOPIC PHYSICS BASED SPECTROSCOPIC SYSTEMS 

Optical probing of tissue microarchitecture and cell nanoarchitecture could provide 

tremendous information which is important for both diagnostic and therapeutic purposes 

especially for deadly diseases like cancer. This is because the structural alterations are associated 

with the progress of these diseases that result in the rearrangement of the basic macromolecules 

in cells/tissues. With the progress of time, different biomedical optical techniques such as optical 

coherence tomography (OCT), Mie scattering, fluorescence spectroscopy, diffusion 

spectroscopy, Raman spectroscopy, elastic light scattering spectroscopy, etc. are in use and have 

shown promising success to probe weakly disordered optical medium such as cells/tissue 

architectural properties, to study/quantify abnormalities by probing the structural alterations [1–

10]. Among these techniques, elastic light scattering spectroscopy provides a non-invasive, 

prompt, and cost-effective tool that is sensitive enough to probe the cells/tissues structures. The 

photons scattered from any structure exhibits characteristics patterns based on scattering angle 

and wavelength to provide the signature properties of scatter’s shape, size, density, refractive 

index, etc. However, all these scattering methods: OCT, Mie scattering, fluorescence 

spectroscopy, diffusion spectroscopy are based on the bulk spatial structural changes in 

cells/tissues. Now, it is shown that probing the fluctuating part of the cells/tissues will provide 

more sensitive information of the physical state of the system relative to the bulk changes. 
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Furthermore, the existing literature showed that the elastic back-scattering signal is 

extensively sensitive to the refractive index fluctuations and their alterations  [11]. Based on this 

sensitivity of the back-scattering light, we can probe the tissue nano to microarchitectures in a 

wide range of scales  [3,5,12–14]. In the conventional elastic scattering experiments, before the 

light exits tissue samples, it undergoes multiple scattering resulting in decreased sensitivity to 

probe nanoscale cells/tissue architecture. At the same time, it is shown that progression of cancer 

or any other abnormalities results in nano to submicron scale structural alterations in cells/tissues 

due to the rearrangement of macromolecules  [15–18]. However, the sensitivity of existing light 

scattering techniques to probe refractive index fluctuations reduces significantly when the size of 

the scattering structure falls below the scattering light wavelength (~500nm). The resolution of 

conventional microscopy is ranged around 0.5m which is way below the size of 

macromolecules  [11]. On the other hand, confocal microscopy and single-molecule localization 

microscopy which are sensitive up to 200nm to 10nm are highly dyed dependent. Likewise, we 

can probe samples up to 1 A0 or a fraction of nm using a transmission electron microscope 

(TEM) which requires complicated sample preparation and has huge and expensive setups. Since 

the measurement of sub-wavelength refractive index fluctuation discloses the tremendous 

information useful in diagnosis and therapies and has a significant interest in recent days. Here, 

we apply mesoscopic light transport theory  [19–21]. Using this, we can probe change in the 

refractive index fluctuations of any length scale below the wavelength within the diffraction limit 

if: (i) the object is weakly disordered and scattering medium, and (ii) analyze the multiple 

interferences of 1D reflected signal within the object  [15,16]. Therefore, we combine 

mesoscopic physics with imaging techniques in order to increase the sensitivity of the existing 
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imaging technique and probe change in the refractive index fluctuations that happen at a 

nanometer length scale. 

 In this dissertation, we have applied two different mesoscopic physics-based elastic 

scattering techniques: (i) partial wave spectroscopy (PWS)-an open scattering approach and (ii) 

inverse participation ratio (IPR)-a closed scattering approach. These techniques are capable of 

probing changes in cells/tissue nano to microarchitecture and quantifies the statistical properties 

of nanoscale refractive index fluctuations  [15–17,22,23]. The recently developed and further 

engineering added finer focusing PWS can probe precise scattering volume in tissue and 

sensitive enough to detect the microarchitecture in tissue microarrays (TMA) and anti-cancerous 

drug-treated xenografted tumors. And, molecular specific light localization technique, IPR, using 

transmission electron microscopy (TEM) and confocal images enables us to detect of nano to 

submicron scales structural alterations in cell and their components to quantify cancer, drug-

effect in cancer treatment, and probiotic effect in the treatment of alcoholic’s brain.  

 In this introductory section, we will describe the instrumentation and mesoscopic 

formulations for the PWS and IPR techniques. Then we will describe the samples that we have 

probed using these techniques. Furthermore, to support the optical experiments, we have also 

performed experiments using nanoscale sensitive TEM imaging, describe in short. 

1.1 Partial wave spectroscopy (PWS) optical technique 

Elastic light scattering spectroscopy is a very powerful and commonly used technique to 

probe cells/tissue architecture [5,10]. The spatial variation of the concentration of intracellular 

components in cells such as DNA, RNA, lipids, etc. due to diseases or cancer results in changes 

in mass density fluctuations, in turn, spatial refractive index fluctuations. However, the size of 
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these macromolecular components falls below the diffraction limit of the existing optical 

imaging technique which is 200nm. Therefore, in partial wave spectroscopy (PWS) we combine 

mesoscopic physics with the imaging technique to probe the spatial refractive index fluctuations 

in the weakly disordered medium, within the diffraction limit. PWS technique records 1D 

backscattered signal in the far-field from cells/tissues and quantifies the refractive index 

fluctuations at sub-diffraction length scale. According to the mesoscopic light transport 

theory  [19,20,24–26], the 1D reflected signal is the multiple references of light waves reflected 

from reflective index fluctuations, which is non-self-averaging for all length scales in a weak 

refractive index fluctuation  [24–27]. And the importance of a non-self-averaging system is the 

standard deviation and mean of a relative parameter increases with the increase in system size, 

with full interference prominence. That means the reflected signal is sensitive to refractive index 

fluctuations at any length scale even below the wavelength range  [28–31]. This, therefore, 

provides an opportunity to probe cell nanoarchitecture by characterizing 1D backscattered light 

wave which is the most sensitive way. The experimental setup and theoretical details of the PWS 

setup are explained below.  

1.1.1 Partial wave spectroscopy (PWS) instrumentation 

The developed finer focusing experimental setup for the partial wave spectroscopy 

system in the Bionanophotonics laboratory in the Department of Physics and Astronomy at MSU 

is as shown in fig. 1.1. A spatially low coherence broadband white light source (Xenon lamp, 

150W, Newport) is used to illuminate thin samples using Kohler Illumination. The white light is 

reflected by a silver coated mirror (2 inches, Thorlabs) towards the 4f combination of the 

converging lenses (2 inches, f=30cm, Thorlabs) and gets collimated. The 4f combination of  
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Figure 1.1 The schematic diagram of the finer focusing PWS system. 

Experimental layout of the Partial Wave Spectroscopy (PWS) setup with nanoscale sensitivity. 

The green color represents broadband white light from the source and the red color after the 

dichroic mirror is the backscattered signal. The collimated beams from the 4f combination of 

lenses are focused on the sample using a highly sensitive motorized XYZ stage. Backscattered 

signals are recorded in CCD passing through the liquid crystal tunable filter.  

converging lenses along with the apertures (2inches, Newport) helps to minimize the diffraction 

effect and preserve the high-frequency effect to enhances the sharpness of an image. The 

collimated light is reflected by a right-angle prism (1 inch, Thorlabs) towards 40X objectives 

(NA = 0.65, Newport) and focuses on the sample. A finer focusing is important to scatter the 

precise volume of the sample. A highly sensitive 3D electronic motorized stage (X-Y axis 40nm 

and Z-axis 100nm, Zebar Tech.) is used to focus the sample within the working distance of the 

low numerical aperture objective. This high-resolution motorized 3D stage is considered 
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revolutionary to the microscopic setup for its extreme accuracy and finer focus. A finer focus is 

essential for correctly defining the effective scattering volume/length of a sample. The 1D 

backscattered signal from the sample is reflected towards the thick collecting lenses (3 inches, 

Thorlabs) by a 50:50 dichroic mirror (1 inch, Thorlabs). The collected backscattered signal is 

then recorded in a CCD camera (1460×1920, Retiga 3) after filtering the signal through a liquid 

crystal tunable filter i.e. LCTF (KURIOS-WB1, Thorlabs) in the visible range of light. The 

LCTF has a resolution of 1 nm in the wavelength range of 420 nm to 730 nm. Here, the CCD 

camera and LCTF are coupled together with the LCTF controller in such a way that for every 

wavelength signal filter by the LCTF in the visible range of light the backscattered signals are 

recorded by the CCD camera. Finally, all 1D backscattered signals from the sample are recorded 

in the CCD camera as a 3D data matrix I(x,y,) for the PWS analysis. 

1.1.2 Theoretical model using the mesoscopic physics-based approach  

The recorded backscattered intensity I(x,y,) are further analyzed to calculate the 

fluctuating component, R(x,y,) of backscattered spectra arises from the interference of photons 

reflected from refractive index fluctuations of a scattering object. Unlike the conventional light 

scattering experiments where a scattering signal is formed by the interference of all waves 

propagating within scattering particles in the far-field, in PWS backscattered spectrum analyzed 

is formed by a subset of waves propagating in 1D. Low spatial coherence, high spectral 

resolution, weak refractive index fluctuations, and small radius of curvature within the medium 

are the conditions in which light propagates through a complex 3D structure and can be 

approximated as a combination of several spatially independent parallel 1D channels, with less 

mixing among the scattering channels. Here, the interference among different 1D channels is 
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negligible and can be further prevented by low coherence illumination. The flow chart of how 

the PWS technique works is presented in the following figure.  

 

Figure 1.2 The schematic of PWS data acquisition from thin samples. 

Each pixel of the image is treated as an individual channel and the refractive index fluctuations 

are recorded throughout the thickness of the sample (L). And hence, the degree of structural 

disorder is quantified for every pixel of the image. 

As mentioned, PWS expresses a 3D disordered medium into different parallel and 

spatially independent 1D channels, acquiring the fluctuating components as R(k), where k is 

obtained from the interference of light wave propagating in 1D backscattered channels (k=2π/λ). 

For each pixel (x,y), the variance of the refractive index fluctuation (n) is computed as 

sqrt(n2). And k is computed from the intensity vs wavelength measurement of I(k) at each pixel 

(x,y). From the signal I(k) the high-frequency noise is filtered out using a low order Butterworth  
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Figure 1.3  The 3D data acquired for PWS analysis. 

Scanning the wavelength in the visible range of light from 430 to 720nm 3D spectroscopic data 

cube is recorded where XY represents the frame of the image(camera) and Z is the wavelength in 

the visible range using PWS microscopy. 

filter to obtained R(k). Further, variation in light source spectrum, instrumental artifact, sample 

roughness, etc. are filtered-out fitting with a low order polynomial Ip(k) to I(k). Finally, the 

fluctuating part of the reflection coefficient is obtained as R(k)= I(k)- Ip(k). Now the question is 

how the fluctuating component R(k) is related to the properties of samples like average refractive 

index (n0), sample thickness or length of light penetration in the medium (L), the variance, and 

the correlation length of the refractive index fluctuation (<n2> and lc).   

In a weakly disorder scattering medium i.e. R<<1, for every length scale the probability 

density distribution of R follows a lognormal distribution. Thus, for length L the ensemble 

average of R distribution over the ensemble of 1D independent parallel disorder channels is 

given by: 

⟨𝑅⟩ =
1

2
[exp (4𝑘2𝐿𝑑

𝐿
𝑛0

2⁄ ) − 1] 
(1.1) 
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Since average refractive index for biological cells/tissues is n0 = 1.38 we assume that 4k2LdL/n0
2 

<< 1, in the above equation, therefore can be approximated as: 

⟨𝑅⟩ 
1

2
(

4𝑘2𝐿𝑑𝐿

𝑛0
2 ) 

2𝑘2𝐿𝑑𝐿

𝑛0
2 , (1.2) 

In a regime with the valid 1D independent channel, R(k) can be characterized using 1D 

mesoscopic light transport theory  [19–21], and the root mean square average of R(k) can be 

written as: 

⟨𝑅⟩ = 𝐿𝜉−1, 
(1.3) 

Where 𝜉−1 is the scattering coefficient of the 1D channel simplified for klc<< 1:  𝜉−1 

2𝑘2𝐿𝑑𝐿/𝑛0
2 with Ld = <n2> lc. Therefore,  

𝜉−1 (
2𝑘2⟨𝛥𝑛2⟩𝑙𝑐

𝑛0
2 ). (1.4) 

To eliminate L, and only use intrinsic properties of the sample, we introduce an 

autocorrelation function ⟨𝐶(𝛥𝑘)⟩: 

⟨𝐶(𝛥𝑘)⟩ =
⟨𝑅(𝑘)𝑅(𝑘 + 𝛥𝑘)⟩

⟨𝑅(𝑘)𝑅(𝑘)⟩
, 

(1.5) 

Based on mesoscopic theory, ⟨𝐶(𝛥𝑘)⟩ can be expanded as  [19]: 

⟨𝐶(𝛥𝑘)⟩   𝑒𝑥𝑝(−(𝛥𝑘)2𝑓(𝐿𝑑) 𝐿). (1.6) 

Where 𝑓(𝐿𝑑) is a slowly varying function for realistic values of the disorder strength which may 

be considered as constant for a range of k, and  is a constant with a unit of length. Thus,  

𝑙𝑛(⟨𝐶(𝛥𝑘)⟩) = −(𝛥𝑘)2𝑓(𝐿𝑑)𝛼𝐿;  𝐿 = −
1

𝛼𝑓(𝐿𝑑)

𝑙𝑛(⟨𝑐(𝛥𝑘)⟩)

(𝛥𝑘)2
. (1.7) 

Using the above equation, the mean reflectance fluctuation can be obtained as: 
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⟨𝑅⟩  −
2𝑘2𝐿𝑑

𝑛0
2

𝑙𝑛(⟨𝑐(𝛥𝑘)⟩)

𝛼𝑓(𝐿𝑑)(𝛥𝑘)2
. (1.8) 

Hence, for slowly varying functions knowing ⟨𝑅⟩ and 𝐶⟨𝛥𝑘⟩ for each channel in the sample one 

can calculate disorder strength (𝐿𝑑) as: 

𝐿𝑑 =
𝐵𝑛0

2⟨𝑅⟩

2𝑘2

(𝛥𝑘)2

− 𝑙𝑛(⟨𝐶(𝛥𝑘)⟩
. (1.9) 

Where B is a calibration constant determined experimentally, k is the wavenumber (k=2/)and 

(𝛥𝑘)2/𝑙𝑛⟨𝐶(𝛥𝑘)⟩ is obtained by performing a linear fit of 𝑙𝑛⟨𝐶(𝛥𝑘)⟩ vs (𝛥𝑘)2. 

For the Gaussian color noise of the refractive index at position r and r’, then spatial 

correlation is defined as: <dn(r)dn’(r’)> = dn2 exp(-|r-r’|/lc), it can be shown that Ld=<𝛥n2>lc. 

Thus, the disorder strength quantifies the variability of the local density of intracellular material 

within the samples, and hence the average and standard deviation of the Ld is calculated to 

characterize the structural abnormalities of the system. 

1.1.3 Applications of the finer focusing PWS technique on cancer tissue samples 

As applications of the developed nanoscale sensitive PWS system, we first quantify the 

nanoscale changes in mass density or refractive index fluctuations using commercially available 

TMA tissue samples in progressive cancer. Then we employ this sensitive technique to probe the 

refractive index fluctuations in 3D tumor structure grown from 2D drug-sensitive and drug-

resistant prostate cancer cells using a xenograft model, to differentiate the difference in structural 

changes in 2D and 3D growths. Following are the details. 

In chapter II, we use the developed highly sensitive PWS technique to quantify the 

nanoscale refractive index fluctuations using commercially available paraffin-embedded tissue 

microarrays (TMA) samples with the goal to standardized early to late cancer stages detection 
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and possible application in the future to study drug effect in cancer treatment. Recently the use of 

these scientific TMA tissue samples has gained research interest in diagnosing different diseases 

and drug-effect in treatment since they allow high throughput analysis and are easily accessible. 

Fractal dimension study of TMA sample shows that fractal dimension increases with the increase 

in cancer stages. Also, cancer is an epidemic worldwide, early, and accurate detection, as well as 

the study of drug effects in cancer treatment, are always in demand. Therefore, in this study, we 

mainly focused on deadly cancer tissue samples such as pancreatic, prostate, breast, and colon 

cancer TMAs containing multiple cores of different stages for each cancer. These are analyzed 

using the PWS technique and the degree of disorder strengths Ld were quantified and 

distinguished the stages of cancer successfully. The promising application of the TMA-PWS 

technique will be explored in detail. 

In chapter III, we are mainly interested to study the structural properties of the tumor 

tissues that are developed from drug-sensitive and drug-resistive prostate cancer cells inside the 

body using the PWS technique. Other than cancer detection, the effects of cancer drug treatment 

are also an important field in cancer study. One of the questions addressed here is to see the 

difference between the 2D and 3D growth structures in cancerous cells for detection/estimation 

of cancer by cell/tissue cultures. At this point, a PWS study of the drug-sensitive and drug-

resistive prostate cancer cell lines 2D model showed that drug-resistive cancer cells have higher 

structural disorders relative to drug-sensitive cancer cells, at the single-cell level. In this chapter, 

using a further engineered PWS, we characterize tumor 3D structure developed from the 

docetaxel chemotherapy drug-sensitive and drug-resistant different prostate cancer cells by a 

xenografted model, to study the structural properties of these cancer single cells grown in 2D 
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slides to 3D tissues in xenografting technique. The result obtained is important and hence, the 

potential applications of the technique to access chemo drug effectiveness in the treatment of 

human cancer patients will be discussed. 

1.2 Inverse participation ratio (IPR) photonics technique 

Light localization arises due to the interference of light waves within the optical 

disordered medium. In condensed matter physics, the light localization method which we defined 

as the inverse participation ratio (IPR) technique has been well studied for characterizing the 

degree of disorder of homogeneous and heterogeneous media in a single parameter  [32–34]. 

Further, quantification of light localization in weakly disordered optical disorder mediums such 

as polymers, thin dielectric films, cells, and tissues, etc. is a major interest of research to 

characterize the degree of structural disorder of that medium. The characterization of these 

optical disordered mediums using standard methods is more complicated if the system involves 

spatial heterogeneity involving many kinds of spatial correlation decay length scales within the 

sample like cells/tissues  [35,36]. In the present day, significant research has been performed in 

quantifying structural disorders of cells/tissues by analyzing the light transportation and 

localization properties  [15–17,22,23,37]. This research has shown that analysis of light 

localization properties of cells/tissue is a useful technique to understand the intramolecular 

tumorigenicity levels, by probing their structural disorder. The light localization technique was 

explored to study nano to submicron scale structural disorder in cells/tissues with a potential 

application in cancer diagnostics  [22]. Consequently, this novel approach of using mesoscopic 

physics-based optical localization analysis  [28,32,33], to understand disease processes in 

cells/tissues has created a new avenue in medical diagnostic technologies. In ref  [22], it is shown 
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that the degree of structural disorder in heterogeneous biological samples can be quantified as a 

single mixed parameter via IPR analysis of the light wavefunctions of these systems. In a weakly 

disorder system, the degree of structural disorder relates to the mass density or refractive index 

fluctuation which is linearly proportional to the IPR value of the system  [32,33]. In this 

technique, transmission electron microscopy (TEM) or confocal fluorescence microscopy 

micrographs are used to construct optical lattices from the sample which represents 2D refractive 

index map corresponding to the spatial mass density distribution of specific molecule within the 

cell; subsequently light localization properties were analyzed  [22,23,38]. Last few decades the 

disorder analysis of the optical media has been well studied using light localization 

properties  [28–30,32,33,39]. In a closed disordered optical medium, the light wave 

eigenfunctions are localized due to the multiple interference effects within the disordered 

sample. The main length scale associated with the problem, in IPR technique is the localization 

length or the scattering mean free path, which is related to the physical properties of the system, 

refractive index fluctuations and its correlation. Light localization effect is strong in 1D and 2D 

systems and the average IPR value of uniform lattice in 2D is universal number ~2.5, but the 

value increases with an increase in degree of disorder of the lattices  [32].  

1.2.1 Confocal microscopy imaging 

Confocal laser scanning microscopy is a powerful optical imaging technique that offers 

significant advantages over conventional microscopy to view the biological samples with high 

optical resolution and contrast of a micrograph  [40–42]. In laser scanning microscopy the 

specimen is scanned by the diffraction-limited spot of laser and the light reflected by the in-focus 

illuminated volume element of the specimen is focused onto a photoreceptor. It uses a spatial 
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pinhole to block out-of-focus light to form an image, on the image plane. Confocal microscopy 

enables capturing of multiple 2D backscattered photons at different depths of a sample and 

constructs a 3D structure. Therefore, the ability to control the depth of field, eliminate or reduce 

information from the focal plane, and collect serial optical sections of thick samples has 

enhanced advantages in optical microscopy. The fluorescence emitted by the molecule from a 

small volume around the excitation center is collected by the objective into the photodetector 

using a spatial pinhole. The schematic of how the confocal microscopy work is presented in the 

following Fig. 1.4.   

As shown in Fig 1.4, confocal microscopy consists of the laser source, scanning mirror or 

dichroic mirror, objective lens, pinholes, and a detector. The backscattered signals from the 

samples are collected by the objectives and recorded into a detector through a confocal pinhole 

that blocks the out-of-focus light. Thus, confocal pinhole rejects out-of-focus light resulting in 

high optical resolution and contrast image and have made confocal microscope a powerful 

technique in obtaining 3D optical resolution. 

 



 

15 

 

 

Figure 1.4 A schematic ray diagram of confocal microscopy.  

Schematic ray diagram based on the principle of recently developed laser scanning confocal 

microscopy. In confocal imaging, samples are treated with different dyes/proteins targeting 

different cells/components of the cells using different excitation sources.    

1.2.2 Transmission electron microscopy (TEM) imaging 

Transmission electron microscopy uses de Broglie wavelength of electrons from a 

micrograph that has a significantly higher resolution than any existing fluorescence microscopy. 

In TEM microscopy high-energy electrons (80-200kev) are transmitted through electron 

transparent samples (~100nm thickness) and probe up to ~1nm to identify the nanoscale 

architectural alterations inside the cells due to progressive cancer or any other abnormalities. 

That means a beam of the electron is transmitted through the ultrathin specimen to form a TEM 
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image. The image is magnified and focused onto an imaging device known as a fluorescent 

screen. Hence, TEM and scanning TEM techniques can provide imaging, diffraction, and 

spectroscopic information with an atomic or sub-nanometer spatial resolution and contribute a 

major analytical tool in the physical, biological, and chemical sciences  [43–45].   

The schematic diagram for the TEM micrograph formation is shown in Fig. 1.5. In brief, 

TEM components include electron source, condenser lenses, objective lens system, intermediate 

or projector lenses, and a detector. They produced high energy and coherence electron source 

necessary for diffraction pattern is passed through condenser lenses which control the spot size 

and illumination area of the specimen. An objective lens system is used to images the specimen 

and intermediate or projector lenses change the modes from diffraction to imaging. Finally, 

highly sensitive and low quantum efficiency detectors of various configurations are used to 

collect the secondary signals produced by the high-energy electron beam.  
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Figure 1.5 A schematic ray diagram of transmission electron microscopy (TEM). 

Schematic ray diagram of TEM in image mode where electron beam passes through the thin 

sample to produce micrograph in fluorescent screen. Therefore, a TEM micrograph can represent 

the mass density of the thin cell sample.  

1.2.3 The theoretical model for analysis of confocal/TEM micrograph using mesoscopic 

light localization approach 

The optical lattices of cells/tissues are constructed using TEM or Confocal micrograph to 

study the molecular specific light localization properties. It is found that optical refractive index 

n(x,y) is linearly proportional to the local density ρ(x,y) of intercellular macromolecules such as 

DNA, RNA, lipids, or protein present in cells. The refractive index of a cell can be expressed as 
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n(x,y)=n0 + dn(x,y), where n0 is the average and dn(x,y) is the fluctuation of refractive index at 

(x,y) [22,23]. In the case of the thin sample, a voxel of area dxdy the transmission or scattered 

intensity: I(x,y) = I0exp(-dz/z0); or I(x,y) I0(1-dz/z0)= I0 - I0d(z), where  is a constant 

depends on the mass of voxel. That means, image intensity at any voxel point (x,y) for a thin 

sample dxdy defined as I(x,y) given by I(x,y) = I0+ dI(x,y), where I0 is the average pixel intensity 

and dI(x,y) is the fluctuation part of the pixel intensity. The fluctuation of intensity dI(x,y) is less 

than the average intensity I0: I0=<I(x,y)>(x,y) and dI(x,y)=I(x,y) - <I(x,y)>(x,y). Similarly, the 

fluctuation of refractive index dn(x,y) is less than the average refractive index n0. 

We assume that image intensity is linearly proportional to the total mass present in the 

thin cell voxel. Therefore, it is observed that (i) image intensity I(x,y) is linearly proportional to 

the mass density of the voxel M(x,y), and (ii) the refractive index of the voxel n(x,y) is 

proportional to the mass density M(x,y), then we can write: 

𝐼(𝑥, 𝑦) ∝ 𝑀(𝑥, 𝑦)  ∝ 𝑛(𝑥, 𝑦), (1.10) 

𝐼0 + 𝑑𝐼(𝑥,𝑦)  ∝  𝑀0 + 𝑑𝑀(𝑥, 𝑦)  ∝  𝑛0 + 𝑑𝑛(𝑥, 𝑦). 
(1.11) 

Consequently, it can be shown that the effective(average) optical potential or optical 

lattice, εi, for the voxel around the point (x,y) is  

𝜀𝑖 ∝
𝑑𝑛(𝑥, 𝑦)

𝑛0
=

𝑑𝐼(𝑥, 𝑦)

𝐼0
. 

 

(1.12) 

The schematic of the disorder optical lattices of size LL of TEM/Confocal image where 

each dot in the optical lattice is determined from the pixel intensity values in recorded images as 

shown in the figure below.  
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Figure 1.6 Construction of a disorder optical lattices from TEM/Confocal micrograph.  

A typical example of z-stack confocal micrographs from which one micrograph is selected and 

optical/refractive lattices are constructed for a small close region.   

Tight-binding model: To quantify the disorder properties of TEM or Confocal images, 

Anderson disorder tight-binding model (TBM) calculation was employed. The TBM is a good 

model for describing single-optical states of the system of any geometry and disorder  [28–30], 

where the Hamiltonian is defined as: 

𝐻 = ∑ |𝑖 >< 𝑖|𝑖 + 𝑡 ∑ (|𝑖 >< 𝑗| +⟨𝑖𝑗⟩ |𝑗 >< 𝑖|) , 
(1.13) 

where |i> and |j> are the optical wave function or eigenvectors at i-th and j-th lattice sites, <ij> 

indicates the nearest neighbors, εi(x,y) or simply εi is the i-th lattice site optical potential energy 

and t is the overlap integral between sites i and j. The eigenfunctions (Ei’s) can be obtained by 

diagonalizing above the Hamiltonian. For a sample length L in the image, we have L×L sample 

area. The average IPR at sample length L is calculated where L=NL×dx (dx=dy). Since there are 

N=NL×NL numbers of lattice points, thus, there will be N eigenvalues and the same number of 

eigenvectors. Now substituting the value of εi in Hamiltonian and solving for average IPR value 

of the sample of length L defined as  [22,23,32,33,46,47]: 
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< 𝐼𝑃𝑅(𝐿) >𝐿×𝐿 =
1

𝑁
∑ ∫ ∫ 𝐸𝑖

4(𝑥, 𝑦)𝑑𝑥𝑑𝑦,
𝐿

0

𝐿

0

𝑁

𝑖=1  

 (1.15) 

Where Ei is the i-th eigenfunction of the above Hamiltonian equation of optical lattices of size 

L×L, and N is the total number of potential points on the refractive index matrix (i.e., 

N=(L/dx)2). That means if there is LL sample length or N number of image pixels, this will 

provide one pixel of the IPR image of length L, as <IPR(L)>LL. 

It has been shown that the ensemble average of IPR value i.e. averaged of similar type of 

cells: <<IPR(L)>>=<<IPR(L)>L×L> or (<IPR(L)>, is proportional to the degree of structural 

disorder Ld=dn×lc, where dn is the std of all n(x,y) point of cell samples/ensemble and lc is the 

spatial correlation decay length of the average n(x,y) over the sample  [22,23]. Thus, 

⟨⟨𝐼𝑃𝑅(𝐿)⟩⟩ =  ⟨⟨𝐼𝑃𝑅(𝐿)⟩𝐿×𝐿⟩𝑐𝑒𝑙𝑙 ∼  𝐿𝑑 = 𝑑𝑛 × 𝑙𝑐, (1.16) 

𝜎(⟨𝐼𝑃𝑅(𝐿)⟩) =  𝜎(⟨𝐼𝑃𝑅(𝐿)⟩𝐿×𝐿)𝑐𝑒𝑙𝑙 ∼  𝐿𝑑 = 𝑑𝑛 × 𝑙𝑐. (1.17) 

The < 𝐼𝑃𝑅(𝐿) >𝐿×𝐿is the average value of one IPR pixel of length (L) constructed from 

the L×L area of the TEM or Confocal image. After this, statistical analysis involves calculating 

the average and standard deviation of the disorder strength of IPR values, i.e. Ld values over the 

cell for the length of a given sample. Using this structural disorder strength <<IPR(L)>> or 

(<IPR(L)>) or Ld as a biomarker, we quantify the nanoscale structural abnormalities in 

cells/tissues due to cancer or any other abnormalities. A typical schematic of the steps involved 

in the quantification of structural disorder to study the drug effect in cancer treatment using a 

TEM micrograph is shown in figure 1.7.  
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Figure 1.7 Schematic flowchart for calculating and comparing the <IPR> using TEM images. 

In summary, the main steps involved in the calculation of <IPR> using a TEM micrograph are 

presented in the schematic flowchart.  

1.2.4 Steps involved in the IPR calculation 

In brief, we want to summarize the steps involved in the calculation of IPR explained in 

above Section 1.2.3. Fig. 1.7 roughly shows the steps involved in the calculation of the average 

or std of IPR and IPR images from the confocal or TEM micrograph. However, the steps 

involved in the IPR calculation can help you better understand how we quantify disorder strength 

(Ld) using the IPR technique and confocal or TEM micrograph: 

Step I: Confocal or TEM micrographs are collected from the cells/tissues. 

Step II: Using the pixel intensity values of the micrographs, a pixel intensity was obtained in the 

form of a matrix as: I(x,y) = <I0> + dI(x,y). 

Step III: Based on pixel intensity matrix of micrograph optical refractive index lattices/matrix is 

obtained which correspond to the one-to-one micrograph pixel intensity expressed as: dn(x,y)/n0 

∝ dn(x,y)/<I0>. And hence the optical lattice system of the micrograph is obtained such that 
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every point in the optical lattice is defined as optical potential represented by ε(x,y) = dn(x,y)/ n0. 

Now the micrograph intensities are replaced by the optical potential matrix which in turn 

represents the refractive index or mass density fluctuation of the sample. Hence the optical lattice 

depicts the refractive index variation of the 2D plane to calculate the disorder strength inside the 

sample. 

Step IV: Now if 2D lattices have M×M pixels with the pixel size a, then the total pixel size of 

the 2D micrograph is Ma×Ma. For instance, we choose a small sample size L×L, with m×m 

optical lattice points with L = ma (M>m). Applying Anderson Tight Binding Model on this 

sample size using optical lattice we will calculate the eigenfunction Ei of the small close system.   

Step V: Once the eigenfunction of the close system L×L is obtained we calculate the <IPR>L×L 

using the equation (1.15). Here it represents the unit block or the IPR pixel of the IPR image. 

That means we repeat this process throughout the micrograph and the distribution of <IPR>L×L is 

obtained, which is represented in the IPR image. For Ma×Ma confocal 2D micrograph Ma/m × 

Ma/m IPR pixels are constructed.  

Lastly, the ensembled average or standard deviation of <IPR>L×L is obtained from 

<IPR> distribution of IPR image at L×L by averaging or calculating std of all micrographs of 

the cells/tissues for the particular case study as <IPR(L)>= <<IPR>L×L > or σ(<IPR>) = 

σ(<IPR>L×L).  

1.2.5 Applications of confocal-IPR and TEM-IPR techniques 

IPR is a very powerful technique to quantify the molecular-specific disorder present in 

the weakly disorder optical medium based on the light localization on the closed system and has 

numerous applications. Mainly in this dissertation, we will apply IPR techniques combined with 
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confocal and TEM imaging to quantify nano to submicron scale mass density or refractive index 

fluctuations to study probiotic effects in chronic alcoholic brain cells and anti-cancerous drug 

effect in ovarian cancer cells using a mouse model.  

In chapter IV, using a confocal-IPR technique we will quantify the molecular specific 

structural alteration in glial cells and chromatin of the alcoholic brain cells and study the 

probiotic, Lactobacillus Plantarum treatment on chronic alcoholic brain cells/tissues at the 

submicron level. Previously, confocal imaging using IPR has shown tremendous success in 

distinguishing cancer stages now we want to explore its applications in determining brain 

abnormalities. Based on the close scattering technique, we probe overexpression of astrocyte and 

microglial cells, and chromatin structures of brain cells, and quantify the molecular-specific 

overexpression by staining the cells with appropriate dye/proteins and calculating the degree of 

spatial molecular mass density structural disorder (Ld). Our technique has successfully detected 

the effect of the probiotic in alcoholic brain cells and components. The potential application of 

this novel approach to diagnosing the alcohol effect and probiotic treatment in the alcoholic brain 

is explored. 

In chapter V, combing the IPR technique with TEM images we quantify the efficacy of 

the anti-cancerous drug treatment in ovarian cancer treatment using a mouse model. Here, we 

also want to know how the IPR technique is useful with nanoscale resolution, especially in 

cancerous cells. The TEM imaging on thin cell, sections are performed to obtain their nanoscale 

structures up to 1 nm. Therefore, using TEM-IPR we can probe up to a few nanometers to 

quantify the structural alterations of tumorigenic cells and anti-cancerous drug-treated 

tumorigenic ovarian cancer cells which are initially effective at the nanoscale level. Results are 
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interesting and support that the effect of anti-cancerous drugs in cancer treatment can be 

quantified by using the degree of nanoscale fluctuations of the cells via TEM imaging. Potential 

applications of the TEM-IPR technique for cancer treatment are also discussed. 

Lastly, in chapter VI, conclusions of the close and open scattering spectroscopic 

techniques PWS and IPR, respectively are presented and their near-future applications are 

explored in detail.     

1.2.6 Advantages of PWS and IPR techniques over the existing other spectroscopic 

scattering technique 

Despite the tremendous achievement in the development of different biomedical optical 

techniques such as optical coherence tomography (OCT), fluorescence spectroscopy, diffusion 

spectroscopy, coherence enhanced backscattering, etc. [1–10,48] the optical sensing of the 

nanoscale structure remains an open problem due to the fundamental principles of diffraction-

limited resolution. These techniques are mainly based on the change in the scattering signal 

when the bulk properties of a sample are changed (n(x)=n0+dn(x), <n(x)>=n0). In the case of 

cancer detection, these methods are useful in the later stages of cancer when there is a prominent 

change in the bulk properties. But it is recently proven that fluctuations (dn(x)) part of the 

refractive index are more sensitive and vital information about the system even when the bulk 

properties do not change. By using nonlinear techniques, spatial-frequency evanescent waves, 

metamaterial-based lenses, and grating assisted tomography have enhanced a resolving power 

beyond the diffraction of a light [49,50]; however, the super-resolution is confined to the 

transverse plane which limits its ability to characterize sub-diffraction structure in 3D [51,52] 

and allows only the spatial distribution of particular molecular species. This demands the 

exploration of non-invasive, label-free, cost-effective, and elastic scattering spectroscopic 
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microscopy techniques to characterize the endogenous properties of the medium based on the 

spectral content of diffraction-limited microscopic images such as PWS. The PWS and IPR 

technique is pioneering in probing the fluctuation part of the RI to probe the physical state of 

cells or tissues. The theory behind the PWS technique involves strong assumptions that 1D 

backscattered signals are sensitive to refractive index fluctuations at any length scale including 

far below the wavelength range [11]. Using both open (PWS) and close (IPR) scattering we 

probe the particular structure in a weakly disordered medium in terms of the refractive index 

fluctuations where 1D scattered signals are sensitive to any length scale. The important aspect of 

these mesoscopic physics-based PWS and IPR techniques is a quantification of the Ld parameter 

which linearly depends on lc for klc< 1. Thus, in principle, there is no limitation on the minimum 

correlation length that can be assessed by the means of spectral analysis of 1D propagating 

photon. In practice, the sensitivity of lc is limited by the signal-to-noise ratio and other technical 

parameters. That means the sensitivity of these spectroscopic techniques is not limited by 

fundamental physical limits. Besides this advantage, PWS is simple, cost-effective, fast, and 

portable, on the other hand, the IPR technique is simple, effective, and robust to probe inner 

fluctuations at the nano to submicron level using confocal and TEM imaging.
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CHAPTER II 

OPTICAL DETECTION OF CANCER STAGES VIA PWS USING TISSUE MICROARRAYS 

(TMA) SAMPLES 

This chapter is adapted from the author’s published article with copyright permission 

from the publishers. Ref [61] P.Adhikari, F. Alharthi, and P. Pradhan, “Partial Wave 

Spectroscopy Detection of Cancer Stages using Tissue Microarrays (TMA) Samples,” in 

Frontiers in Optics + Laser Science APS/DLS (2019), Paper JW4A.89, OSA 2019; and    

Ref [94] P. Adhikari, and P. Pradhan, “Optical detection of cancer stages via partial wave 

spectroscopy using tissue microarrays (TMA) samples”. arXive 2012.14194, 2020.  

The developed finer focusing added mesoscopic physics-based imaging technique, PWS 

can probe the precise scattering volume in cells/tissue to detect changes in refractive index 

fluctuation with the progression of cancer. Here, we employ this highly sensitive PWS technique 

to quantify the nanoscale refractive index fluctuations using commercially available paraffin-

embedded TMA samples with the goal of the standardized early and accurate detection of stages 

of different cancers. The uses of scientific TMA samples have gained research interest in 

diagnosing different diseases and drug treatment since they are commercially accessible. Mainly, 

deadly cancer such as pancreatic, prostate, breast, and colon cancer TMAs containing multiple 

cores of different stages for each cancer are analyzed using the PWS technique and the degree of 

disorder strength (Ld) was quantified. The potential application of the developed TMA-PWS 
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technique to enhance and standardize early and accurate cancer diagnosis modalities are 

discussed.  

2.1 Introduction 

The optical detection of structural changes in biopsy samples due to progressive cancer 

has achieved tremendous success in detecting the stages of cancer when developed into a 

tumor  [53]. The standard pathological method of detection of cancer stages includes 

microscopic examination of the morphological changes using stained biopsy samples. However, 

due to the diffraction-limited resolution of conventional microscopy, the structural alterations in 

healthy tissue before the development of a tumor or early stages are still a mystery. These 

structural alterations of healthy cells/tissue are due to the rearranging of macromolecules such as 

DNA, RNA, lipids, etc. whose size ranges from 100-200 nm. It is recognized that genetic and 

epigenetic alterations occur not only at the neoplastic focus but more diffusely in the field of 

cancerization. The abnormalities are present in the tissue surrounding the cancerous region or 

transformed cell primary tumor due to field cancerization  [54,55], which are initially at the 

nanoscale level before tumor formation and migration. This effect is observed in almost every 

type of cancer that is diagnosed in the later stages with less survival rates. Therefore, a highly 

sensitive optical method to detect such structural abnormalities before the development of a 

tumor for all cancer is paramount for decreasing lethality  [56]. With the progress of time, 

several microscopic imaging techniques were employed, and regardless of their drawbacks, 

significant success was achieved  [57]. Unfortunately, most of these methods are still not 

sensitive enough to probe the nanoscale structural changes. In light of this scenario, the versatile 

approach of using recently developed PWS to probe change in the refractive index fluctuations in 

commercially available tissue microarray (TMA) samples could standardize the cancer 
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diagnostic modalities. The recently developed finer focusing PWS technique is sensitive enough 

to probe nanoscale refractive index fluctuation in paraffin-embedded TMA samples. The PWS 

combines interdisciplinary approaches of mesoscopic physics and optical imaging techniques to 

quantify the degree of disorder strength (Ld) based on the change in refractive index fluctuations 

within the cells/tissue  [15–17,58]. The backscattered signal at any point within a weakly 

disordered medium contains the spectral fluctuations which are proportional to the local density 

of macromolecules or refractive index fluctuations, in fact, independent of chemical 

composition. Thus, once the refractive index fluctuations of the medium are known, the spatial 

variations of macromolecular density can be measured using the disorder strength (Ld) measure 

as Ld =<dn2>lc, where <dn2> is the square of rms and lc is the correlation length of the refractive 

index fluctuations  [16,17]. This potential biomarker, the Ld parameter has shown tremendous 

success in distinguishing stages of cancer, drug-effect in cancer treatment, and quantifying any 

other type of abnormalities in the brain  [17,58–61]. In addition to this, structural alterations in 

biological cells/tissue due to cancer or any other abnormalities are quantified using mesoscopic 

physics-based molecular specific light localization technique in terms of the degree of disorder 

strength  [23,38,62–64].  

 With the availability of such a powerful approach to quantify the nanoscale structural 

alterations in cancerous tissue, the next challenge was in the use of an almost identical tissue 

sample that allows high-throughput analysis to standardize diagnostic techniques. For this, the 

recently developed commercially available TMAs have been used which significantly facilitate 

and accelerates tissue analyses using a highly sensitive PWS technique. The TMA is a scientific 

form of condensed histopathology where the tissues are kept in a single glass slide to provide a 

miniature multiplex platform for the analysis of ~10 to ~200 tissue samples  [65]. Multiple cores 
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of paraffin-embedded tissue in a TMA allow high-throughput assessment of macromolecules in 

PWS analysis that standardize the diagnostic technique reducing the variability seen on the assay 

of individual samples. This uniformity of assay has reduced the drawbacks in specimen handling 

and their impact on data acquisition  [66]. Besides these facts, TMA samples are easily 

accessible to perform any scientific experiments which require more than one similar sample. 

Also, we believe the use of the PWS technique in the TMA sample could be a new direction to 

explore to study the drug effect in cancer or any other abnormalities that are in demand. This can 

be noted that we want to probe change in RI fluctuations in tissue samples that are embedded in 

paraffin. 

 In this chapter, we will analyze four different deadly cancer TMA samples: pancreatic, 

breast, colon, and prostate, and generalize the efficacy of developed finer focusing PWS to 

detect the cancer stages. Cancer is a common disease and with no surprise, these four different 

cancers are the major cause of death in the U.S. Because of lethality, prevalence, and almost no 

prominent physical change or symptoms until the later stages. We focus on studying the 

nanoscale structural changes in these cancerous tissues by quantifying the degree of structural 

disorder (Ld) as a potential biomarker. In this sense, we explored the potential possibilities of the 

PWS technique in TMAs for the early stage of cancer detection.    

2.2 Methods 

2.2.1 Experimental development of the PWS 

The engineered finer focusing PWS system used to probe the precise scattering volume 

developed in the Bionanophonics laboratory is as shown in Fig. 2.1. The experimental details of 

the PWS setup are presented in Chapter I Section 1.1.2 [58–60,67]. We will present a 3D view of 

the PWS system presented in Chapter I. In brief, the developed PWS system consists of a low 
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coherence broadband stable white light source Xenon lamp which is reflected toward the 4f 

combination of lenses by a mirror and gets collimated. Collimated beams are reflected towards 

the objectives and focus on the sample with the help of a highly sensitive XYZ motorized 

scanning stage (XY-axis 40nm and Z-axis 100nm). Then, the backscattered signal from the 

sample is directed towards the CCD camera through the liquid crystal tunable filter (LCTF) with 

the help of a dichroic mirror. Here, LCTF is coupled with a CCD camera in a way that for every 

wavelength in the visible range, images are recorded in the CCD camera for the PWS analysis.   

 

Figure 2.1 The 3D schematic of further engineered finer focusing PWS system. 

The schematic 3D layout of the finer focusing partial wave spectroscopy (PWS) system was 

developed in the Bionanophotonic laboratory. The collimated beam (green color) from the 

broadband stable white light source (Xe lamp) is focused on the sample and the backscattered 

signal (red color) from the sample is collected using the CCD camera for PWS analysis.  
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2.2.2 Calculation of the disorder strength (Ld) 

In the PWS technique, the backscattered spectrum of a weakly disorder medium is 

recorded in the visible range of light to quantify the degree of disorder strength (Ld) based on the 

refractive index fluctuations (n) within the cells/tissue. It is shown that at each pixel position 

(x,y) within the cell, the refractive index (n) is proportional to the local mass density and 

practically independent of chemical composition at that point. Therefore, the spatial variation of 

macromolecular mass density at every pixel position can be expressed in terms of refractive 

index fluctuations, assuming that these random fluctuations are within a correlation length (lc). 

The recorded backscattered spectrum R(x, y; ), is the interference between the intercellular 

volume scattering and reflection from the surface of the sample. That means the measured 

spectra from each pixel of an image is a 1D weakly disordered medium that acts as a subset of 

the scattered waves.    

The step-wise quantification of backscattered signals using the PWS technique is shown 

in Chapter I Section 1.1.2. In 1D weakly disorder medium, the probability density distribution of 

reflectance fluctuations R, follows a log-normal distribution for all the sample length scale L, 

reflected from the scattering medium. As mentioned, PWS collects the backscattered signals 

propagating along the 1D trajectories since in a quasi-1D approximation the sample is virtually 

divided into many parallel channels within the diffraction-limited transverse size. Then, by 

applying mesoscopic light transport theory and making use of refractive index fluctuations, the 

degree of disorder strength is calculated. In particular, the rms value of the reflection intensity 

<R(k)>rms and the spectral auto-correlation of the reflection intensity C(Δk) for a given pixel at 

position (x,y), are combined to define the degree of disorder strength as [16,17,68] discussed in 

Chapter I Section 1.1.2: 
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Where B is the normalization constant, n0 is the average refractive index of the weakly 

disordered medium, k is the wavenumber (k = 2/), and (Δk)2/ln(C(Δk)) is obtained by 

performing a linear fit of ln(C(Δk)) vs (Δk)2. 

2.2.3 Tissue microarrays (TMA) samples 

TMA is a rapidly growing commercially available tissue sample that consists of generally 

numerous different cases of 5μm thick tissue cores in diameter 1.5mm placed on the same glass 

slide for simultaneous analysis. These paraffin-embedded TMA samples allow the high-

throughput analysis of tissue samples since different cases of samples have exact experimental 

conditions and batches of reagents. TMAs are therefore scientific, cost-efficient, and offer an 

unprecedented degree of standardization for the conduction of an experiment such as optical 

imaging  [69]. 

Here, using the PWS, we quantify the structural properties of paraffin-embedded TMAs 

from US Biomax of the pancreas (T142b), breast (BR248a), colon (T054c), and prostate (T191a) 

cancer samples, due to progressive carcinogenesis. Each TMA consists of different cores of 

normal, stage I, stage II, and stage III cancer tissue samples. Different cores of each TMAs are 

from individual patients of varying ages and sex. However, for each stage of each cancer, at least 

two different cores of the same age and sex were analyzed to calculate the degree of structural 

disorder.  
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2.3 PWS result of structural disorder and discussions  

To develop a standardized diagnostic clinical research test for early and effective 

detection of cancer stages of varying types of the deadliest cancers, the structural alterations 

were quantified using a finer focusing PWS technique of TMAs. Here, the degree of disorder 

strength (Ld) for different stages of pancreatic, breast, colon, and prostate cancer TMAs were 

computed and compared. The results show that structural alterations increase with the 

progression of cancer stages in each type of progressive cancer. Since the disorder strength (Ld) 

is the product of the variance and spatial correlation length of the refractive index fluctuations, 

these results indicate that the progression of cancer increases more mass 

rearrangement/accumulations in the tissue results in increasing the refractive index spatial 

fluctuations increasing the Ld. In addition to the earlier findings, this work explores the 

application of the developed, highly sensitive PWS technique to detect the nanoscale fluctuations 

in paraffin-embedded TMA tissue samples of four different deadly cancers. 

 For each type of cancer TMAs: pancreatic, breast, colon, and prostate tissue 

spectroscopic images were recorded in the visible range (450-700nm) of light from three 

different cores of the same type. From each core tissue sample, at least 5 different realizations 

were made for the PWS analysis. Using this powerful spectroscopic technique, the pixel-wise 

refractive index fluctuations of tissue were computed and first represented in the 2D Ld 

map/image, averaged over the depth of the sample. Then, the ensemble average and standard 

deviation (std) of the disorder strength (Ld) were computed and presented in a bar graph for all 

cancerous TMAs studied.  
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2.3.1 Pancreatic cancer (PC) TMA samples 

Pancreatic cancer is a lethal condition worldwide due to poor outcomes and a rising 

incidence rate. It is the 3rd leading cause of cancer deaths in the US common in both men and 

women and often presents at an advanced stage which contributes to a poor five-year survival 

rate [70]. Because of its physical orientation and lack of early symptoms, a better understanding 

of the symptoms associated with PC and its risk factor is essential to both health professionals 

and individuals.  Therefore, we focus our research with added finer focusing on the existing 

PWS technique for the early diagnosis and to understand the structural properties of pancreatic 

tissue with progressive carcinogenesis using TMA tissue samples. The results show that mass 

density or refractive index fluctuations increase with the increase in the PC stage.  Fig 2.2. (a)-

(b) and (a’)-(b’) are the representative bright-field and their corresponding Ld images of normal 

and stage III PC tissue. The Ld map, which is a 2D image average along the z-axis represents the 

refractive index fluctuations at that point. The Ld map shows stage III pancreatic cancer sample 

has more red spots which indicate higher refractive index fluctuations in the color map. Further, 

the average and std of the degree of disorder strength were calculated and represented in the bar 

graph, Fig. 2.2. (c)-(d). Both the average and std of Ld value increase from normal, to stage I, 

stage II, stage III with a significant difference (Students t-test p-values<0.001). This result, 

therefore, suggests that the developed finer focusing PWS technique is sensitive enough to detect 

nanoscale changes in refractive index fluctuation and to distinguish the different stages of cancer 

in paraffin-embedded pancreatic TMA samples. 
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Figure 2.2 PWS study of pancreatic cancer TMA samples. 

(a) and (b) are the representative bright-field images of normal and stage III PC TMA tissue 

while (a’) and (b’) are their corresponding L
d 

images. (c) and (d) are the bar graph representation 

of the average and std of disorder strength (L
d
) for normal and different stages of PC TMA. The 

PWS analysis of TMA tissues shows that both the average and std of L
d
 value increase from the 

normal to higher stages of PC. In reference to the normal, the std of L
d
 value of cancer stage I is 

23%, stage II is 36%, stage III is 69% higher (Student’s t-test p-values < 0.001, n=15). 

 



 

36 

2.3.2 Breast cancer (BC) TMA samples 

Breast cancer is the most common cancer in women and a challenging cause of cancer 

death in the world. This metastatic cancer is transferable to different organs such as the bones, 

lungs, liver, and brain with almost incurability. Early diagnosis of BC is only the best method of 

prevention. Although the five-year relative survival rate of an early detected BC patient is more 

than 80% nowadays, oncologists and scientists are still struggling to develop a technique that can 

identify early symptoms and distinguish the nanoscale structural changes in breast cancer 

cells/tissue  [71]. BC is the second leading cause of cancer death in women in the US. In the 

existing scenario, the finer focusing PWS technique was applied to characterize the structural 

properties of BC TMAs tissue at the nanoscale level due to progressive carcinogenesis. The 

result shows that the structural disorder (Ld) increases from the normal to stage III significantly 

as shown in Fig. 2.3. The representative Ld images Fig. 2.3. (a’)-(b’) for normal and stage III 

cancer were presented which shows that the refractive index or mass density fluctuations are 

higher in stage III BC. Also, the average and std of Ld value increase significantly from stage I, 

stage II, to stage III about the normal with Student’s t-test p-values < 0.001 as represented in Fig. 

2.3 (c)-(d). This increase in the degree of disordered strength due to progressive carcinogenesis 

indicates that the refractive index fluctuations increase with the stages of cancer which was 

successfully detected by finer focusing PWS using TMAs.  
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Figure 2.3 PWS study of breast cancer TMA samples. 

(a) and (b) are the bright-field images while (a’) and (b’) are the L
d 

images of the normal and 

stage III BC of TMA tissue, respectively. (c) and (d) are the bar graphs of average and std of 

disorder strength (L
d
)for the normal and different stages of BC TMA samples. The PWS result 

using TMA tissue shows that both the average and std of L
d
 value increases from normal to 

higher stages of cancer tissue. In reference to the normal, the std of L
d
 value of cancer stage I is 

16%, stage II is 21%, stage III is 38% higher (Student’s t-test p-values < 0.001, n=15). 
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2.3.3 Colon cancer (CC) TMA samples 

Colorectal cancer is predominant cancer accounting for approximately 10% of all cancer 

mortality in the world. Colorectal cancer is the 3rd leading cause of cancer-related death in men 

and women in the US. Population aging, improper dietary habits, smoking, low physical activity, 

and obesity are the main reasons for annually increasing metastatic CC cases [72,73]. Until 

modern times, laparoscopy surgery has played a vital role in controlling or treatment for primary 

and metastatic colorectal cancer. Despite advances in surgical and medical therapies, the long 

survival rate of colorectal patients has changed very little in recent times. This demands 

standardization in screening or imaging techniques to detect the early stages of CC. Therefore, to 

understand the structural changes in cells/tissue at the nanoscale level due to progressive CC we 

apply the PWS technique to distinguish different stages of CC TMAs tissues. The averages and 

std of the degree of disorder strength (Ld) increase from the normal to stage III with a significant 

difference (Student’s t-test p-values<0.005). As cancer increases, mass density accumulation 

increases which in turn increases the change in refractive index fluctuations resulting in 

increased Ld value for higher cancer stages. In addition to this, the Ld images were also 

constructed to visualize how the refractive index fluctuations increase with the increase in cancer 

stages in colon TMAs as shown in Fig. 2.4. (a’)-(b’). The bar graphs show that the average and 

std of Ld value increases in stage I, stage II, and stage III cancer tissues compared to normal, and 

this result is presented in Fig. 2.4 (c)-(d).  
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Figure 2.4 PWS study of colon cancer TMA samples. 

(a) and (b) are the bright-field images of the normal and stage III CC TMA tissue and (a’) and 

(b’) are their respective L
d 

Images. (c) and (d) bar graphs of the average and std of disorder 

strength (L
d
) for the normal and different stages of CC TMA samples. The PWS result of TMA 

tissue shows that the average and std of L
d
 value increases from normal to higher stages of colon 

cancer. In reference to the normal, the std of L
d
 value of cancer stage I is 23%, stage II is 32%, 

stage III is 40% higher (Student’s t-test p-values < 0.001, n=15). 
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2.3.4  Prostate cancer (PC) TMA samples 

Prostate cancer is common cancer among men, especially elderly ones, and 1 in 9 men 

will have prostate cancer during their lifespan. Ceasing to smoke, proper exercise, and weight 

control are good health practices that may reduce the risk of developing PC. Although 

remarkable progress has been achieved on characterizing risk factors and identifying therapeutic 

options. Screening for and diagnosing the early stages of PC is still one of the most challenging 

issues across the globe in medicine  [74,75]. At this point, the study of structural properties of PC 

tissue at the nanoscale level using a precise volume scattering technique, PWS of TMA tissue 

could help to characterize the structural change in their stage. The results obtained using the 

PWS technique to study the commercially available prostate TMA is presented in Fig 2.5. The 

representative Ld images i.e. Fig. 2.5 (a’)-(b’) show that stage III Prostate cancer has more red 

spots in the color map because it has higher mass density or refractive index fluctuations than 

normal. To quantify the structural abnormalities, the average and std of the degree of disorder 

strength (L
d
) were computed and represented in the bar graph, as shown in Fig. 2.5 (c)-(d). As 

can be seen from the figure, both the average and std of Ld value increase in stage I, stage II, and 

stage III compared to normal. This increase in the Ld is due to the increase in refractive index 

fluctuations with the increase in the stages of PC.  
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Figure 2.5 PWS study of prostate cancer TMA samples. 

(a) and (b) are the representative bright-field images of the normal and stage III PC TMA tissue 

while (a’) and (b’) are their corresponding L
d 

images. (c) and (d) are bar graphs of the average 

and std of disorder strength (L
d
) for the normal and different stages of PC TMA samples. The 

PWS analysis of TMA tissue show both the average and std L
d
 value increases from the normal 

to higher stages of cancer tissue. In reference to the normal, the std L
d
 value of cancer stage I is 

32%, stage II is 46%, and stage III is 65% higher (Student’s t-test p-values < 0.001, n=15). 
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2.4  Conclusions 

In summary, as an alternative method in cancer diagnostic research of applying the 

mesoscopic physics-based PWS technique using commercially available TMAs has been reported. 

This technique makes the use of the recently developed finer focusing PWS technique which can 

scatter precise volume to detect the nanoscale structural changes in paraffin-embedded tissue and 

distinguishes the stages of four different cancer cases. To validate the purpose method, the degree 

of disorder strength (Ld) of different tissue with the progression of cancer stages of different TMAs 

are quantified. The PWS results obtained for some of the deadliest cancer TMAs: pancreatic, 

breast, colon, and prostate show that the average and std disorder strength (Ld) increases 

significantly as cancer progresses through the different stages. However, the more prominent 

changes were found in the std of the degree of Ld value for all case studies. The results obtained 

by the purposed method were following the earlier studies  [17,59] and therefore, the Ld parameter 

acts as a potential biomarker to distinguish and standardize the cancer stages which seems almost 

impractical. In addition to this, the use of the PWS technique and commercially available TMAs 

could provide easy and clinically accessible samples to study the drug effect in cancer treatment. 

In particular, this finding invites the research communities to work with a common goal to 

standardize early and accurate detection of the cancer stages of different types of deadly cancer 

cases. Further validation in distinguishing the stages of cancer of TMA tissue can be performed 

using other quantitative approaches such as fractal, IPR, etc.  [62,76,77]. Lastly, the flexibility 

provided using the spectroscopic technique such as PWS in commercially available TMA samples 

to distinguish the early to late stages of cancer cases opens a broad way to explore and generalize 

the structural changes in progressive cancer for effective diagnosis and drug treatment in the future. 
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CHAPTER III 

OPTICAL QUANTIFICATION OF STRUCTURAL PROPERTIES OF TUMOR TISSUES 

GENERATED BY XENOGRAFTING OF CANCER CELLS USING PWS  

This chapter is adapted from the author’s published article with copyright permission 

from the publisher. Ref. [53] P. Adhikari et. al., “Optical detection of the structural properties of 

tumor tissue generated by xenografting of drug-sensitive and drug-resistant cancer cells using 

partial wave spectroscopy (PWS)”. Biomedical Optics Express, BOE. 2019 Dec 1;10(12):6422–

31. The PWS technique has been successfully used for the detection of cancer stages by probing 

nanoscale structural alterations in cells/tissues as discussed in Chapter II. However, the 

development of drug-resistant cancer cells/tissues during chemotherapy is a major challenge in 

cancer treatment, especially to know the drug is working or not. In this chapter, using a mouse 

model and developed PWS technique, the structural properties of tumor tissues grown in 3D 

structures by xenografting drug-resistant and drug-sensitive human prostate cancer cells having 

2D structures are studied. In particular, we probe the difference in the structural disorder of cells 

grows on 2D slides or cells grown in a 3D environment inside the body. This may provide us an 

indirect way to study the effects of drugs on the cancer cells/tissues. The promising aspect of the 

proposed study to establish insight into advancing the understanding of the physical state and 

drug effectiveness on cancerous cells/tissues at the nanoscale level is explored. 
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3.1 Introduction 

Elastic light scattering, especially in the visible range of light, is an important method for 

probing structural morphologies of the biological cells/tissues. It is now shown that probing the 

structural alteration at the nano to submicron scales enables the prediction of several properties 

of the physical conditions of cells/tissues in normal and disease/abnormal states.  Recent studies 

have shown that the progression of carcinogenesis results in nanoscale structural alterations due 

to the rearrangement of the basic building blocks, in particular, macromolecular components 

inside the cells. These nanoscale structural alterations, in terms of the degree of disorder 

strength, have been shown as an important biomarker in the determination of cancer 

stages  [22,23].  However, the histopathological examinations of cells/tissues, conventionally, are 

based on a large degree of changes in the cellular architecture, mainly nuclear size, during the 

disease process  [78–81].  Also, the sensitivity of the existing pathological optical microscopic 

techniques used to detect such nanoscale alterations is restricted by the diffraction-limited 

resolution (>~200nm). 

 A recently introduced spectroscopic microscopy technique, partial wave spectroscopy 

(PWS), combines the interdisciplinary approaches of mesoscopic condensed matter physics and 

microscopic imaging, to quantify the degree of change of the nanoscale structural disorder of 

weakly disorder medium like biological cells/tissues  [15–17,59,60,67]. The statistical 

quantifications of the reflected intensities due to the nanoscale refractive index fluctuations of 

the biological cells/tissues are carried out using the PWS analysis. In the PWS technique, the 

backscattering signals from thin weakly disordered cell/tissue samples are divided into many 

parallel scattering quasi-one-dimensional reflections to calculate the structural disorder strength 

of the samples. Further, the spatial variation of the intracellular components such as DNA, RNA, 
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lipids, and extracellular matrices (ECM) gives rise to spatial mass density fluctuations in terms 

of the refractive index fluctuations of the cells/tissues. This spatial refractive index fluctuations 

can be quantified in terms of the degree of structural disorder.  The degree of structural disorder 

parameter Ld, called the disorder strength, can quantify nanoscale alterations and distinguish 

different cancer stages with higher accuracy. For a quasi-1D approximation, the disorder strength 

can be expressed as Ld =dn2×lc, where dn is the standard deviation (std) of the onsite refractive 

index fluctuations dn(r) and lc is its spatial correlation length. The efficiency and application of 

the PWS technique in measuring nanoscale alterations,  i.e. the Ld parameter, to diagnose 

diseases like cancer has been developed and explored  [15,17,59,60,67,82]. The detection of 

molecular-specific structural disorder in submicron scales of control and cancer/abnormal cell 

nuclei are also studied by the light localization technique using confocal microscopy, which 

supports the increase in the molecular-specific structural disorder in progressive cancer  [38,83–

85].         

 After the diagnosis of cancer, the cancer patient generally goes through chemotherapy 

drug treatment. Resistance to cancer cells/tissues to chemotherapy drugs is one of the obstacles 

in cancer treatment. Recently, the PWS technique was successfully used to study the effect of 

chemotherapy drugs on prostate cancer cell lines and to quantitatively measure the structural 

disorder strength of drug-sensitive and drug-resistant prostate cancerous cells  [59]. The results 

show that the chemo-resistant cells have a higher degree of structural disorder than that of the 

chemo-sensitive cells. Drug-resistant cancerous cells are able to survive chemotherapy drug 

treatment, as the different mechanisms responsible for drug resistance and the development of 

different morphological structures. These different morphological structures in drug-resistant 

cancer cells may be due to the rearrangements of macromolecules, increase in the sizes of 
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membrane pores, architectural differences of the cytoskeletal network, etc., which result in 

increasing aggressiveness and the disorder strength. 

 Prostate cancer is one of the most prevalent types of cancer with one of the highest male 

mortality rates in the USA. The American Cancer Society (ACS) estimates about 174,650 new 

cases of prostate cancer will appear and account for a total of 31,620 deaths for 2019. Across the 

globe, the statistical data on prostate cancer suggests that among every 9 men, one individual 

will develop this cancer during his lifespan. Therefore, it is necessary to explore early and 

effective diagnosis and treatment methods for prostate cancer. At present, chemotherapy is the 

only way to treat metastasized prostate cancer, however, it is often found ineffective due to an 

individual patient’s chemo-resistance that leads to tumor progression  [59,86–90]. The PWS 

studies of cancer cell lines have shown some promising success in distinguishing the hierarchy 

and drug effectiveness based on the measurement of the biomarker, the structural disorder 

strength Ld  [59].   

 These PWS studies of drug resistance cells for different cell lines were mainly focused on 

cancer cells that were grown in 2D on glass slides. However, in reality, a metastasizing cancer 

cell grows into a tumor with a 3D structure when grown within the body, and these tumor cells 

may have different structural properties due to their grown 3D tissue structures. This leads to a 

demand for the development and quantitative characterization of 3D tumor tissues that are grown 

from drug-sensitive and drug-resistant cancer cells. This could establish a correlation between 

isolated cells of 2D structure which is grown into tissue in 3D structure, based on the structural 

disorder. In particular, we want to verify the structural properties of 3D tissues generated by 

xenografting of cancer cells, and to understand any relationship between the 3D tissue structures 

with their original 2D cell structures, using the Ld parameter. Human cancer cases have been 
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studied by innumerable murine methods and the determinants responsible for malignant 

transformation, invasion, and metastasis, as well as the examination of the response to therapy, is 

investigated with the aid of these murine models. Xenografting of human cancer cells in a mouse 

model is one of the most extensively used models to study the development of tumors from 

cells  [91,92]. Cancerous human cells were subcutaneously injected in immunocompromised 

mice. Based on the number of cells injected, the tumors will develop over 1-8 weeks and reaction 

to the proper therapeutic regimes can be studied in vivo  [91,93] or ex vivo. At the same time, the 

structural properties of growing xenografted cancer cells are not well studied.   

 In this work, using a further engineered PWS technique, we explore the structural 

properties of the 3D tumor tissues obtained by xenografting drug-sensitive and drug-resistant 

human prostate cancer cells’ 2D structure using a mouse model. We study structural properties 

of tissues obtained by xenografting two types of human prostate cancer (PC) cell lines, namely 

DU145 and PC3, whose drug-resistant and drug-sensitive structural properties were studied 

earlier by the PWS technique  [59]. From the results, a correlation between the 3D structural 

disorder of tissues originally grown from chemotherapy drug-sensitive and drug-resistance cells 

and the original cells will be performed. Finally, we will also discuss the potential applications of 

the technique in cancer diagnostics. 

3.2 Method 

3.2.1 PWS experimental setup 

We perform the structural disorder measurement using a recently developed partial wave 

spectroscopy (PWS) experimental technique, with added engineering of finer focusing as 

mentioned in Chapter I Section 2.1.1  [59,60,67]. The actual experimental PWS setup developed 

in the Bionophotonics laboratory is as shown in Fig.3.1.  It consists of a Xenon Lamp, a source 
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of stable broadband white light to illuminate tissue samples of micron thickness using Kohler 

Illumination. This collimated light from the 4f combination is focused on the sample through the 

objective. The use of a highly sensitive 3D electronic motorized stage (100nm on Z-axis and 

40nm on the X-Y axis) provides the finer focusing of the sample within the working distance of 

the objective. Then the backscattered signal gets reflected by a dichroic mirror towards the 

detector through a liquid crystal tunable filter (LCTF) coupled with CCD.  

 

Figure 3.1 Actual PWS experimental setup developed in Bionanophotonics laboratory, MSU. 

The table-top optical instrumentation of PWS setup. It consists of a board band white light 

source collimated through the 4f combination of the lenses. The nanoscale sensitive 3D 

motorized scanning stage is used for the precise focusing of the sample to capture the 

spectroscopic image using CCD.  

3.2.2 Calculation of the structural disorder or disorder strength (Ld) 

The backscattered images are recorded in the CCD camera at every wavelength () at the 

spatial pixel position (x,y) in the wavelength range 450-700nm, and the reflected data cube, R(x, 
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y; ), is acquired by the PWS system. In a quasi-1D approximation, the collected backscattered 

data at each (x,y) from R(x,y;) is fitted with a polynomial of the 5th order. The fitted polynomial 

is then extracted from the signal to remove the systematic errors. In the next step, the R(k) signal 

for each pixel position (x,y) is obtained after applying a 5th order low-pass Butterworth filter with 

a suitable normalized cutoff frequency to remove the high-frequency noise components from the 

reflected signals of micron size samples. Here, calibration of the system is done by matching the 

reflected intensity pattern using a non-disordered system, NIST-traceable microspheres with the 

reflected signal from a thin film slab model.  

The fluctuating part of reflection signals R(x,y;) arises due to the multiple interferences 

of the photons reflected from the disordered medium. Since in a quasi-1D approximation, the 

sample is virtually divided into many parallel channels within the diffraction-limited transverse 

size, and the backscattered signals propagating along the 1D trajectories are collected. The 

statistical properties of nanoarchitecture are quantified at the nanoscale level by analyzing the 

fluctuating part of the reflected intensities. The refractive index fluctuation information is 

collected from these spectral fluctuations originated from the multiple scattering of the sample at 

any length scale below the diffraction limit. The degree of structural disorder Ld can be derived 

from the rms value of the reflection intensity <R(k)>rms and the spectral auto-correlation decay of 

the reflection intensity C(k) ratio. That means, for a given pixel at position (x,y), the degree of 

structural disorder is expressed as shown in Chapter I Section 1.1.2 [16,17,59,60,67]: 

𝐿𝑑 =
𝐵𝑛0

2⟨𝑅⟩𝑟𝑚𝑠

2𝑘2

(𝛥𝑘)2

− 𝑙𝑛(𝐶(𝛥𝑘))
|𝛥𝑘→0 (3.1) 

where B is the normalization constant, n0 average refractive index of the biological cells, and k is 

the wavenumber (𝑘 = 2𝜋/𝜆). 
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Therefore, the disorder strength quantifies the variability of the local density of 

intracellular material within the samples, and hence the average and standard deviation of the Ld 

values are calculated to characterize the structure of the system. 

3.2.3 Sample preparation 

Freshly collected prostate cancer (PC) cells from two different cell lines were used to 

develop a prostate xenograft, mouse model. For the generation of tumor xenograft mouse 

models, 6–8 weeks old male nude mice were implanted with PC3 (docetaxel-sensitive and 

docetaxel-resistant) and DU145 (docetaxel-sensitive and docetaxel-resistant) human PC cell 

samples (2 × 106 cells per mice), by subcutaneously injections. After tumors reached beyond the 

critical size of 1000 mm3, they were excised from euthanized mice. The excised tumors were 

further paraffin-embedded and sectioned using microtome in 4μm thickness and placed on glass 

slides. Further, these slides were processed for the antigen retrieval process as described 

previously  [94]. The resultant tumor sections were subject to imaging studies.     

3.3 Results 

PWS detects the nanoscale structural alterations in the cells/tissues and can distinguish 

the different levels and effects of the drug in the tumorous cells/tissues  [16]. Among the 

different types of cancer, prostate cancer is a major concern of public health at present because 

of its low survival rate. Further, drug-resistant cancer cells are a prominent problem currently in 

cancer treatment. Therefore, we focus our research to characterize the structure of tumor tissues 

generated by the xenografting of chemotherapy drug-sensitive and drug-resistant prostate cell 

lines, DU145, and PC3. For this, human drug-sensitive and drug-resistant prostate cancer cells 

were subcutaneously injected into mice and allowed to grow and achieve a tumor size of 
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~1000mm3. After that, mice were euthanized, and tumors were excised then subsequently 

processed to 4 µm thick tumor sections on slides for PWS imaging analyses.  

 PWS experiments, as described earlier, were performed on xenografted prostate tumor 

tissues for each category on at least 3 different mice. All tumor tissue was obtained from 

different prostate cancer cell lines xenografted into mouse models. For each tissue sample, PWS 

experiments were performed on 7 different spots. In particular, for each category of a tumor, ~60 

different spots are experimented with PWS and analyzed. The spectroscopic PWS experiments 

are performed in the wavelength range 450-700nm. The backscattered data matrix R(x, y; ) are 

imported and the disorder strength for each tissue is calculated using the PWS technique as 

described in section 3.2. The disorder strength is calculated as the product of the variance and the 

spatial correlation length of the refractive index fluctuations. The average and standard deviation 

of the disorder strength for each category are calculated in order to understand the physical 

properties of a tumor developed as a 3D structure from a cell. The detailed PWS analysis of a 

tumor obtained from a xenografted model of drug-sensitive and drug-resistant cell lines DU145 

and PC3 are explained below:  

3.3.1 Structural disorder in the xenografted DU145 tumor tissue type 

In Fig. 3.2, the PWS analysis of tumor tissues obtained from xenografting drug-sensitive 

and drug-resistant prostate human cancer cell lines of DU145 type are shown.  From the PWS 

experiment R(x,y,) data matrixes were obtained. At every pixel point (x,y), R(k)rms value and 

corresponding C(k) were obtained, and from these two values, and the Ld value was calculated 

using Eq.(2.1). The bright-field images, as shown in Fig. 3.2(a)-(b), the thin tissue samples 

developed from drug-sensitive and drug-resistant cancer cell lines appear indistinguishable, 
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whereas the Ld images are noticeably distinguishable. The red spots in the Ld image represent a 

higher disorder strength, i.e. the Ld value of that pixel. It can be seen in the bar graphs that there 

is an increase in the degree of structural disorder of tumor tissue generated from xenografting 

drug-resistant cancer cells, compared to the tissues obtained from xenografting drug-sensitive 

cancer cells. The average Ld value of a tumor obtained from a drug-resistant cancer cell line is 

9% higher than the tumor obtained from a drug-sensitive cancer cell line and the standard 

deviation std(Ld) is 8% higher. This result is in strong agreement with the disorder strength 

calculated for drug-resistant and drug-sensitive cell lines earlier  [59]. The disorder strength of 

the prostate cancer cell line calculated using PWS has shown that the average and standard 

deviation of Ld value is higher in drug-resistant cells compared to the drug-sensitive for DU145 

type cells. The results confirm that the xenografted tissue structures also have similar trends to 

original cell structures.  
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Figure 3.2 The structural abnormalities in tumor xenografted from DU145 cells lines. 

(a) and (b) are the bright-field images while (a’) and (b’) are the disorder strength or Ld 

images of tissue obtained by xenografting drug-sensitive and drug-resistant PC cells line of 

DU145 type respectively. (c) and (d) are the graphical representation of the mean and standard 

deviation of Ld of the xenografted tumor, respectively. Result shows a 9% higher mean Ld and 

8% increase in the std Ld in a tumor developed from drug-resistant PC DU145 type cells line 

than the drug-sensitive cells. P-values < 0.05. 
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3.3.2 Structural disorder in the xenografted PC3 tumor tissue type 

Fig 3.3 (a)-(b) shows the bright field and Ld images of tumor tissues originated from 

drug-sensitive and drug-resistant PC PC3 type cells. Based on the intrinsic properties of the 

tissue, the disorder strength Ld at each pixel of the individual tissue image is calculated and 

represented by 2D color maps. In the color map, red spots correspond to the higher structural 

disorder strength present in the thin tissue structure (averaged along the z-direction of the 

sample). The bar graphs, 3.3(c) and (d) are the representation of the average and standard 

deviation of Ld values with the standard error bars. The result shows a 12% difference in the 

average local disorder strength Ld and a 15% difference in the std (Ld), between tumors obtained 

from drug-sensitive and drug-resistant cell lines. The increment in the mean and standard 

deviation of Ld for tissues collected by the xenografting of drug-resistant PC PC3 cells compared 

to the drug-sensitive PC PC3 cells are consistent with the original cell structures. It is clear from 

the plots that the disorder strength increases from drug-sensitive to drug-resistant xenografted 

tumor tissues. Earlier results using PWS analysis show that PC PC3 cells are more aggressive 

than other cell lines and in the same way drug-resistant PC cell lines have higher disorder 

strength than drug-sensitive cells. Figs. 3.2 and 3.3 show the results obtained using xenografted 

tissue samples also have the same kind of disorder strength hierarchy as that of the original PC 

cells. In particular, a comparatively higher structural disorder strength Ld for tumors obtained 

from drug-resistant PC PC3 cell lines than PC DU145 cell lines are in strong agreement with 

their original PC cell line disorder strength. This confirms that the degree of disorder strength Ld 

can be used as a marker to detect the cancer stages or drug effects using 3D cancer tissue 

structure, similar to that of a cell line that is easy to study.  
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Figure 3.3 Structural abnormalities in tumor xenografted from PC3 cells lines. 

(a) and (b) are the bright-field images and (a’) and (b’) are the disorder strength or Ld images of 

tissues obtained by xenografting of drug-sensitive and drug-resistant PC cells line of PC3 type 

respectively. (c) and (d) are the bar graph representation of the mean and standard deviation of Ld 

of a tumor, respectively. Result shows a 12% higher mean Ld and 15% increase in the std Ld in 

tumors developed from drug-resistant PC PC3 type cells line than the drug-sensitive cells. P-

values < 0.05.  
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3.4 Conclusions 

The results indicate that tumor tissues grown by xenografting of PC cells resistant to 

docetaxel have a higher disorder strength Ld than the same tissues from drug-sensitive PC cells. 

Since the disorder strength increases with the increase in the level of tumorigenicity, which 

implies chemotherapy-resistant cells are more aggressive than drug-sensitive cancerous cells. 

Cells from the prostate or any other cancerous region that survived through drug exposure are 

more aggressive and develop with the cell line’s hierarchy as PC3 > DU145  [59]. As an 

application of the developed finer focusing PWS technique, we have studied the structural 

alteration in the xenografted tissue morphology that is grown in a 3D environment from single 

cells that mainly have 2D structures. The results show metastasize isolated 2D cancer cells 

grown to 3D tumors in the body have similar structures and characteristics. The PWS analysis of 

3D tissue slices confirm xenografted tissues from drug-resistant tumors have a higher average 

and standard deviation of disorder strength (Ld) than the drug-sensitive counterparts. Also, the 

obtained results follow a similar hierarchy of the cell lines that are studied earlier, reported in 

ref [59].  

 Probable cause of structural properties of drug resistance cells/tissues and higher 

structural disorder (Ld): Studies have shown that the progress of cancer disturbs the regular 

growth as well as the structure of cells/tissues. Further, cells/tissues that survive through the 

chemotherapy adapt themselves to the situation and develop different morphological structures 

resulting in higher mass density fluctuation due to the rearrangement of macromolecules, larger 

pore sizes, changes in cytoskeleton nanoarchitecture, etc. This results in a higher structural 

alteration in drug-resistant PC cells than drug-sensitive ones. The different mechanisms such as 

tumor-derived exosomes biogenesis and composition, DNA and histone damage/repair, anti-
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cancerous multidrug inactivation, alteration in drug targets treatment, heterogeneity in cancerous 

cells/tissues, death inhibition of cells/tissue, epithelial-mesenchymal transition, and metastasis, 

etc.  [95–99] are making the cancerous cells/tissues drug-resistant  [59]. Xenografted tumor 

tissues that are obtained using cells from drug-resistant and drug-sensitive PC cell lines, main the 

same types of structural hierarchy properties when they are grown into 3D structures. This 

supports a strong correlation in structural properties in 2D and 3D structures.  

 Applications of the developed technique for cancer treatment: The PWS study of 

xenografted tissues obtained from drug-sensitive and drug-resistant PC cells line could establish 

a new insight into advancing the understanding of the physical state and drug effectiveness on 

cancerous cells/tissues at the nanoscale level, by knowing their structural properties. The 

xenografted tissue structure replicating the structural properties of cancer cells explained 

statistically in terms of the disorder strength Ld parameter could be a reliable, easy, and 

quantitative approach to diagnose chemoresistance. This result seeks the potential application to 

monitor the effect of chemotherapy drugs on cancerous tissues and to study the different levels 

of tumorigenicity which can be obtained both, in-vitro and in-vivo methods. In summary, this 

method will help in understanding the drug-resistant and drug-sensitive cells/tissues and their 

different stages in the body, by examining their structural disorder properties. 
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CHAPTER IV 

PHOTONICS TECHNIQUE TO QUANTIFY PROBIOTICS EFFECT ON CHRONIC 

ALCOHOLIC BRAIN CELLS VIA MOLECULAR-SPECIFIC CONFOCAL-IPR 

This chapter is adapted from the author’s published article with copyright permission 

from the publisher. Ref [58] P. Adhikari et al., “Photonics study of probiotics treatment on brain 

cells exposed to chronic alcoholism using molecular specific light localization properties via 

confocal imaging”. arXive. 1912.11777, 2019. And Ref [59] P. Adhikari, et al., "Quantification 

of light localization properties to study the effect of probiotic on chronic alcoholic brain cells via 

confocal imaging," in Imaging, Manipulation, and Analysis of Biomolecules, Cells, and 

Tissues XIX (SPIE), 2021, Vol. 11647, p. 1164716. 

Recently IPR technique using confocal images has shown success in distinguishing molecular-

specific structural alterations targeting DNA to quantify cancer, radiation effect, or any other 

abnormalities in cells/tissues [38,100]. The advantage of the IPR technique relative to the PWS 

technique is that we can probe structures of an isolated cell within the tissue without disturbing 

them by confocal imaging, which is not possible using the PWS technique. PWS technique 

provides statistical properties of the region averaged over light propagation direction and it 

cannot probe separately a cell that is situated inside the tissue. It was found that chronic 

alcoholism introduces abnormalities in brain cells/tissue that result in behavioral and 

psychological disorders. On the other hand, probiotics such as Lactobacillus Plantarum enhances 

brain functions in chronic alcoholism. Therefore, in this chapter, using the close scattering based 
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on light localization technique, IPR combined with confocal imaging we probe the molecular 

specific structural alterations present in chronic alcoholic brain cells with or without probiotic 

treatments in a mouse model. The potential application of this novel approach to diagnose the 

alcohol effect and probiotic treatment in the alcoholic brain is explored. 

4.1 Introduction 

Photons/light are an important probe for the characterization of the structural properties 

of biological cells. It is known that the structural properties of cells and tissues change with the 

progress of disease or abnormalities such as cancer, stress, drugs, etc. Cells and tissue are weakly 

disordered dielectric media; therefore, their structure and any change in the structural properties 

can be characterized using light, which happens at the length scale of micron size. The light 

probing is generally done by measuring the scattering signals and quantifying the optical 

parameters of the samples. Different types of structural changes can happen in a cell with the 

progression of diseases such as carcinogenesis or due to the effect of drugs  [23,22,58]. These 

changes in a cell may range from bulk structural change to nanoscale molecular-specific 

structural alterations. The nanoscale structural changes in cells and tissues due to diseases or 

abnormalities are associated with the molecular-specific structural alteration and, in turn, its 

mass density fluctuations. Recently, the refractive index fluctuations are experimentally 

measured to quantify the structural abnormalities in cells and tissues using the recently 

introduced mesoscopic physics-based sensitive imaging technique called, the 

PWS   [16,17,58,60,67,68,101]. Although the microscopic changes in a cell/nucleus have been 

studied for a long time by probing structural properties, however, these changes appear almost at 

the advanced stages of diseases or abnormalities, which would be too late for treatment. At the 

same point, the PWS technique can probe full structural changes of a cell or tissue, and it was 
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recognized that minuscule changes occur at the early stages of the diseases or abnormalities 

where the molecular specific nanoscale structural changes occur due to the rearrangements of the 

macromolecules present in a cell. Therefore, probing molecular-specific structural changes will 

be more efficient and important for the detection of abnormalities or disease progression in a 

cell. This is the primary interest of the present study. Therefore, we hypothesize that probing the 

molecular-specific structural changes can measure the physical state of cells/tissues and the 

organs. The concept of characterizing the molecular-specific structural alterations was 

introduced recently to quantify the nano to microscale changes in cells in abnormalities and has 

shown success in several studies  [22,23,61,83]. The initial case studies ranging from cancer to 

abnormalities in brain cells due to chronic alcoholism have shown promising results in the 

characterization of the physical state of the cell  [38,61,83,102].  

Alcohol-related disorders and organ-specific damage are significant global concerns. 

Alcohol and its metabolites play a significant role in neuroinflammation, however, the existing 

evidence indicates that interactions at the Gut-Microbiome-Brain axis are a crucial part of the 

alcohol-related behavioral disorder  [103,104]. Among the multidirectional alcohol interactions 

with the human body, initially, chronic alcoholism affects the brain from the cellular to the 

molecular level. It has been shown by TEM imaging that structural properties of the cells change 

in chronic alcoholism at the nanoscale level, and alterations are prominent at the length scales of 

~100nm, which is around the length scales of the building blocks of cells  [18]. Glial cells such 

as astrocytes and microglia, as well as the chromatin of the cell nuclei present in the cerebral 

cortex of the brain, which totals the vital portion of the central nervous system (CNS), are 

profoundly affected by chronic alcoholism. Chronic alcoholism can produce sustainable damage 

in the brain on different length scales. This structural damage can bring neuropathological 
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disorders such as memory loss and dysfunction of the brain resulting in cognitive and behavioral 

deficits  [105–107]. 

In the brain cells, the star-shaped astrocytes and microglia are the most abundant glial 

cells present in the CNS and mostly serve as a regulator of the CNS’s immunity and tissue 

transplantation. In the same way, chromatin in all brain cells plays an important role in genetic 

inheritance. In humans, it is reported that a single astrocyte interacts with two million neurons at 

a time  [108]. These astrocytes perform various tasks such as axon guidance, synoptic support, 

controlling blood flow, and blood-brain-barrier function. Along with regulating behavior, they 

play a vital role in neuroinflammation in both beneficial and detrimental ways depending on the 

stimuli they receive from their inflamed environment. Similarly, microglia act as the role of 

tissue macrophages which are involved in immune response, removing damaged neurons, tissue 

transplant, and other neurological mechanisms and diseases. However, alcohol is one of the most 

well-known adverse incentives for neuroinflammation. Pathogenesis of many CNS disorders and 

several neurodegenerative diseases are crucially caused by brain inflammation  [109]. This 

inflammation activates the glial cells, specifically the microglia and astrocyte, and liberates the 

free radicals, cytokines, and inflammatory mediators that can damage normal brain 

function  [110]. A recent study showed that alcohol treatment in the microglial cells and 

chromatin altered their morphology  [111]. 

In some cases, these structural alterations may be reversible to a good degree through 

different types of treatments. It was reported that probiotic treatment has a good effect on brain 

health. In particular, it can soothe human brains and reduce structural abnormalities in brain 

cells/tissue to a certain extent  [112,113]. Immunofluorescence results also show that probiotic 

treatment such as Lactobacillus Plantarum, when administered after a chronic alcohol-induced 
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injury can rescue the alcohol-induced systemic inflammation and neuroinflammation resulting in 

improving the physical state of human brains  [114]. L. Plantarum is a Gram-positive lactic acid 

bacterium present in fermented food and anaerobic plant matter which has ample applications in 

the medical and biomedical fields. In particular, L. Plantarum blocked alcohol-induced gut 

barrier dysfunction, endotoxemia, and liver damage which are directly associated with the well-

functioning of the brain  [115]. Therefore, we are using the recently developed mesoscopic 

physics-based light localization technique, IPR, which can quantify the molecular specific mass 

density fluctuations in cells/tissue as the degree of structural disorder due to diseases or any other 

abnormalities  [22,23,38,102]. In the IPR technique, an optical disordered refractive index matrix 

is constructed based on the pixel intensities via confocal imaging and solved for optical 

eigenvalues and the eigenfunctions using the closed boundary conditions. Based on the 

mesoscopic theory, these eigenfunctions are used to quantify the molecular specific light 

localization properties of samples, that can be represented by the average of IPR, <<IPR>>, and 

the standard deviation (std) of IPR, (<IPR>), of these eigenfunctions. The earlier IPR study 

results show that the degree of disorder strength i.e., Ld = <dn>×lc is proportional to <<IPR>> 

or (<IPR>)  [38,83]. This technique has been used to quantify the extent of aggressive cancer 

in biological cells, especially to detect the progress of carcinogenesis in drug 

treatment  [38,62,83]. Here, we want to extend this method to probe the molecular-specific 

spatial structural changes in brain cells and organelles to study the effect of probiotics in chronic 

alcoholism. 

In this work, using the IPR technique via confocal imaging, we report the effects of 

alcohol in glial cells, and molecular DNA/chromatin structure in nuclei of mice brain cells in the 

cortex region by probing molecular specific structural changes. Then, the effect of probiotic 
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treatment in the glial cells and nuclei of the brain cells for the following cases: control, only 

alcohol fed, only probiotic fed, and simultaneously alcohol and probiotic fed were studied to see 

the effect of probiotics on the chronic alcoholic brain, using a mouse model.  

4.2 Methods 

4.2.1 Molecular specific structural disorder via confocal imaging and IPR technique 

Confocal imaging is a technique that captures images with high optical contrast and 

resolution ranging in the submicron length scales. The confocal microscopy and its schematic are 

briefly explained in Chapter I Section 1.2.2. In confocal microscopy imaging, a spatial pinhole is 

used which blocks out-of-focus light to acquire a controlled depth of field and reduce 

background lights in images. For a confocal image, the amount of fluorophore dye that binds a 

molecular mass is proportional to the molecular mass density at any point or a small voxel. In 

general, dyes are independent of each other, and treating a cell with different molecular binding 

dyes at the same time and probing them with appropriate wavelengths can provide us the various 

molecular specific spatial structural mass density fluctuations in a cell using the IPR technique. 

The submicron scale mass density fluctuations are quantified by calculating the degree of 

structural disorders in confocal images using the IPR technique. In the IPR technique, an optical 

lattice is formed using the pixel intensities of the confocal images which represent the ‘mass 

density fluctuations’ that were scanned voxel-wise. Based on the light localization strength, the 

average IPR or the disorder strength is computed. A higher value of the <IPR> represents an 

increase in the mass density fluctuation in the cell or molecule. Henceforth, the average of 

<<IPR>> or (<IPR>) ultimately quantifies the degree of structural disorder in the medium. 

The theoretical model of the IPR technique has been reported earlier in Chapter I Section 

1.2.3 [22,23,38,62,83] in detail; however, in this chapter, we will describe the technique in short. 
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As mentioned in  [38,83], let us consider a pixel intensity I(x,y) of the confocal image at 

position r=(x,y) and ρ is the density of the molecule at voxel dV of the image is I(r)=dV(). 

It was shown in  [38,116] that the local refractive index of the cell slice is directly proportional to 

the local mass density of the cell at that point (x,y) which is directly proportional to the confocal 

image intensity at any voxel that point.  

The refractive index n(x,y) of thin scattering substances such as biological cells has a 

linear relation to the mass density  [116,117], and are correlated with the confocal image’s 

intensity, I(x,y), which is linearly proportional to the mass density, M(x,y), and refractive index, 

n(x,y), at the voxel as obtained in Section 1.2.3 equations (1.10, 1.11).  

From this, we obtain the optical potential as i(x,y) and construct a representative 

refractive index matrix using the pixel intensity value [30] given as Section 1.2.3 equation (1.12). 

The optical potential, 𝜀𝑖(𝑥, 𝑦) which is a representation of the spatial refractive index fluctuation 

relative to the average of the fluorescent molecules inside the sample  [33,116].  

Then the Hamiltonian of Anderson's Tight Binding model [28,30,118] is obtained as 

explained in Section 1.2.3 equation (1.13) of the closed system. We can generate the 

eigenfunctions (Ei’s) from the Hamiltonian (H) of the system by diagonalization. Using these 

eigenfunctions (Ei’s) we calculate the average IPR value, <IPR>, of the entire sample images as 

defined in  [22,23,32,46,47]: 

< 𝐼𝑃𝑅(𝐿) >𝐿×𝐿 =
1

𝑁
∑ ∫ ∫ 𝐸𝑖

4(𝑥, 𝑦)𝑑𝑥𝑑𝑦,
𝐿

0

𝐿

0

𝑁

𝑖=1  

 
(4.1) 

Where Ei is the ith eigenfunction of the Hamiltonian H of the optical lattice size L×L, and N is the 

total number of lattice points on the refractive index matrix. 
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It can be shown  [38,83] that the average IPR value <IPR>=<IPR(L)> is directly 

proportional to the structural disorder strength, and can be expressed as:                                                          

⟨⟨𝐼𝑃𝑅(𝐿)⟩⟩ =  ⟨⟨𝐼𝑃𝑅(𝐿)⟩𝐿×𝐿⟩𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 ∼  𝐿𝑑 = 𝑑𝑛 × 𝑙𝑐, (4.2) 

 

 

𝜎(⟨𝐼𝑃𝑅(𝐿)⟩) =  𝜎(⟨𝐼𝑃𝑅(𝐿)⟩𝐿×𝐿)𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 ∼  𝐿𝑑 = 𝑑𝑛 × 𝑙𝑐. (4.3) 

 

 Lastly, the <<IPR(L)>LL>ensemble =<<IPR>> and (<IPR(L)>LL)ensemble =(<IPR>) 

which is directly proportional to the disorder strength (Ld) of the sample and acts as potential 

biomarkers of the of biological cells to quantify any types of abnormalities in glial cells and 

chromatin of the brain cells.  

4.2.2 Brain tissue sample preparation using an alcoholic mouse model 

We study the effects of probiotics on chronic alcoholic brain cortical cells and nuclei 

using a mouse model. In particular, we will study the glial cells: astrocytes and microglia, and 

the DNA/chromatin of the nuclei from cells of the cerebral cortex region of the brain which 

includes the major portion of the CNS. The brain sections were incubated with glial fibrillary 

acidic protein (GFAP) antibody, the microglia cells with anti-TMEM119 transmembrane protein 

antibody, and the chromatin in the nuclei of brain cells with DAPI for confocal imaging  [114].   

The effects of alcohol and probiotics in the brain cells were studied using 8-10 weeks old 

mice (C57BL/6, Harlan, Houston, TX) divided into 4 different groups of 6 mice per group. All 

mice were housed in an institutional animal care facility with 12/12 of the light-dark cycle which 

have easy access to regular laboratory chow and water until the start of the experiment. To be 

more specific, for (1) Control (PF), (2) Ethanol Fed (EF), (3) Probiotic Fed (PF+LP), (4) 

Probiotic and Ethanol Fed (EF+LP), we observed glial cells and nuclei of the brain cells, namely: 

(I) Astrocytes, (II) Microglia, (III) Chromatin.  
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A recent study based on immunofluorescence confocal microscopy showed that alcohol 

elevates the expression of different proteins or dyes as an activation marker in different brain 

cells and components to explain the alcohol effect  [114]. The rationale for choosing the glial 

cells and chromatin to probe the abnormalities in alcohol and probiotic treatment are: (I) 

Astrocytes and anti-GFAP antibody staining: These cells represent a significant portion of the 

CNS and can interact with millions of neurons at a time. They get exposed to external simulators 

such as alcohol and probiotics. For confocal imaging, these cells can be easily tagged by the glial 

fibrillary acidic protein (GFAP) antibody marker. GFAP protein is encoded by the GFAP gene in 

humans. GFAP antibody targets type-III intermediate filaments. Intermediate filaments are 

overactive/expressed in astrocytes in the CNS when the brain is exposed to a chemical such as 

alcohol. Therefore, the molecular-specific type-III intermediate filament can be probed by GFAP 

for confocal imaging to probe the activeness of astrocytes. (II) Microglia and anti-TMEM119 

transmembrane protein antibody staining: Microglia cells are also considered as the 

macrophages of the CNS and include a major portion of the CNS system, which clean up the 

cellular debris and participate in neuroinflammation. These glial also easily get exposed to 

alcohol or drug treatment similar to astrocytes. It is now known that overexpression or 

upregulation of transmembrane protein TMEM119 in microglia due to the presence of 

stimulators like alcohol/probiotic can be tagged by anti-TMEM119 transmembrane protein 

antibody for the molecular specific confocal imaging. (III) Chromatin and DAPI staining: In 

all brain cell nuclei, chromatin is highly abundant. Chromatin is the primary DNA molecular 

component of the cell nucleus. It has been shown that chromatin spatial structures altered with 

the progress of diseases and abnormalities. The chromatin can be easily stained by the standard 

DAPI dye. The nanoscale changes in these types of cells are shown well for the detection of 
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cancer stages. We want to probe the molecular-specific structural alteration of DNA mass 

density in chromatin in nuclei by DAPI staining and confocal imaging tissue sections of the 

cortex region. 

Bio-Marker: The primary marker is to probe the confocal images using the IPR 

technique and to quantify the molecular-specific nanoscale spatial mass density fluctuations as 

the degree of structural disorder, mentioned in Section 4.2.1. 

As described above, mice were randomly divided into 4 categories with 6 mice per group 

and fed with ethanol following a standard protocol in Leiber DiCarli liquid diet (ethanol: 0% for 

2 days, 1% for 2 days, 2% for 3 days, 4% for 1 week, 5% for 1 week, and followed by 6% for 1 

week) with or without L. Plantarum (strain 256, 106 cfu/ml) or isocaloric maltodextrin for 4 

weeks. Control and only probiotic fed animals were pair-fed with isocaloric substitution of 

ethanol with maltodextrin. Animals were pair-fed to maintain a similar diet intake in all groups. 

In the last week of experiments, the average diet intake per mouse per day was 0.7 ml which 

means the L. Plantarum intake by a mouse was about 0.7 ×106 cfu/day and grouped as (1) The 

first group was pair-fed with maltose dextrin in a liquid diet, (2) the second group was fed with 

ethanol liquid diet, (3) the third group was fed with the probiotic in a liquid diet, and (4) the 

fourth group was fed with probiotics in the presence of ethanol liquid diet.  

Brain tissues: When the mice were treated for 4 weeks, they were sacrificed following 

the protocol approved by the University of Tennessee Health Science Center (UTHSC) 

Institutional Animal Care and Use Committee, and their brain sections were removed. The brain 

tissue sections from the cerebral cortex region were then cryo-freeze and sectioned into 10µm 

slices by using a cryostat.                  
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Staining for fluorescence confocal imaging: The different sections of the brain were 

incubated with three different fluorescence agents: anti-GFAP antibody, anti-TMEM119 

antibody, and DAPI according to standard protocols.  

Confocal imaging: Brain cryosections (10μm thick) were fixed in acetone: methanol 

(1:1) at −20°C for 2 min and the sections were rehydrated in PBS (137mM sodium chloride, 

2.7mM potassium chloride, 10mM disodium hydrogen phosphate, and 1.8mM potassium 

dihydrogen phosphate). The tissue sections were permeabilized with 0.2% Triton X-100 in PBS 

for 10 min and blocked in 4% nonfat milk in Triton-Tris buffer (150mM sodium chloride 

containing 10% Tween 20mM and 20mM Tris, pH 7.4). It was then incubated for 1 hour with the 

primary antibodies (mouse monoclonal anti-Alexa Fluor 488-conjugated anti-GFAP and rabbit 

polyclonal anti-TMEM119 antibodies), followed by incubation for 1 hour with secondary 

antibodies Cy3-conjugated anti-rabbit IgG antibodies) and 10 min incubation with DAPI 

(Hoechst 33342 dye). The fluorescence was examined using a Zeiss 710 confocal microscope 

(Carl Zeiss GmbH, Jena, Germany) and images from x–y sections (1μm) were collected by LSM 

5 Pascal software (Carl Zeiss Microscopy). Images were stacked by ImageJ software (Image 

Processing and Analysis in Java; National Institutes of Health, USA) and processed by Adobe 

Photoshop (Adobe Systems, USA). All the images for tissues from the different groups were 

collected and processed under identical conditions.  

IPR analyses: The IPR analyses were performed using a confocal image to quantify the 

molecular-specific nano to microscale mass density fluctuations in the cells and nuclei, as 

discussed above. 
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4.3 Results 

Confocal images of the mice's brain cortex tissues stained with different proteins/dyes 

were obtained to study the effect of probiotics in chronic alcoholic glial cells and the chromatin 

of the nuclei. Then the IPR analyses were performed on individual confocal images at 0.8  

0.8µm2 area, as described. The degree of disorder strength or <IPR> at each point at length 

scales, L=0.8µm of cells, and molecular components of the mice brain cells were computed. On 

average, 6 mice per group were considered, and at least 30 confocal micrographs for each 

category: astrocytes, microglia, and the chromatin of mice brain cell nuclei were analyzed 

separately. From these, the std of the ensemble average IPR values were calculated as obtained 

in equations (4.2, 4.3). Finally, the computed (<IPR>) of astrocytes, microglia, and chromatin 

of the mice's brain cells for ethanol-fed (EF), probiotics fed (PF+LP), and probiotics fed with 

ethanol (EF+LP) were compared, relative to the control fed (PF) mice separately.   

The intensity variation in the IPR images represents mass density fluctuations which 

indicate the structural abnormalities present in different glial cells and the chromatin of mice 

brain cell nuclei. In the IPR images, a higher mass density fluctuation is represented by the red 

color, while the lower is represented by the blue color. As can be seen from the IPR images 

(Figs. 4.1,4.3,4.5), the mass density or refractive index fluctuations increase in astrocytes and 

microglia, and the chromatin of the brain cell nuclei when mice were treated with ethanol 

indicates that alcohol altered the brain cells at the submicron scale. However, the slight increase 

in the (<IPR>) value of the glial cells for mice fed with only probiotics might be due to the 

interaction of probiotics with the gut cells/tissues blocking barrier dysfunction and endotoxemia 

to some extent indirectly resulting in structural abnormalities in the brain. On the other hand, 

when the mice were treated with both probiotics and ethanol simultaneously, the (<IPR>) 
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reduced approximately back to normal or less than the normal in both cells and chromatin, which 

suggest that probiotics function well in the presence of alcohol, preventing gut barrier 

dysfunction and endotoxemia and results in an increase in the efficiency of brain functioning. 

Therefore, probiotics such as L. Plantarum are considered good for brain health and help to 

soothe and improve the cognitive function of the chronic alcoholic brain. The results are 

systematically described below. 

4.3.1 Structural alterations in astrocytes 

 Fig.4.1. (a)-(d) show the confocal image of astrocytes incubated with anti-GFAP 

antibodies, while Fig.4.1 (a’)-(d’) are their corresponding IPR images, respectively. In Fig 4.2, 

the bar graphs of relative change in the disorder strength (Ld) or (<IPR>) of brain astrocytes 

cells of ethanol-fed (EF), probiotic fed (LP), and ethanol with probiotic fed (EF+LP) mice with 

control fed (PF) mice are shown. As can be seen from Fig. 4.2, the relative study of (<IPR>) of 

astrocyte brain cells increases when mice were fed with ethanol. In contrast, it significantly 

decreases when mice were fed subsequently with probiotics and ethanol at the same time. It is 

found that probiotics interact with the intestine, which indirectly affects the brain due to the Gut-

Microbiome-Brain axis and may increase the molecular spatial structural disorder of astrocytes 

in the brain cells. Therefore, the (<IPR>) of astrocyte cells of mice fed with probiotics only 

(PF+LP) is relatively higher compared to the PF. Although probiotics were believed to reduce 

intestinal dysbiosis and enhance the gut-brain interaction, the result shows that probiotics may be 

reactive to some specific components of gut cells and hence increase the mass density 

fluctuations of the astrocytes. In particular, the bar graphs show that the (<IPR>) of astrocyte  



 

71 

 

Figure 4.1 Confocal and IPR images of astrocytes. 

Confocal and IPR images of astrocytes (PF, EF, PF+LP, EF+LP): (a)-(d) are the representative 

confocal images of control (PF), ethanol fed (EF), probiotics fed (PF+LP), and ethanol and 

probiotics fed (EF+LP) mice brain astrocytes cells while (a’)-(d’) are their corresponding IPR 

images respectively at length scale L=0.8µm which are distinct. The IPR images show that the 

molecular specific mass density fluctuation in astrocytes increases in the presence of ethanol as 

well as probiotics, but when treated together, they decrease the density fluctuation due to alcohol 

damage. 

cells of EF mice increased by 280% relative to PF. This increase in the Ld or (<IPR>) implies 

that ethanol-induced intestinal dysbiosis, which is a valid approach to dissect the gut-brain 

interaction. This results in an adverse effect in the brain cells, especially in astrocytes, which 

perform a variety of tasks such as axon guidance, maintenance of redox potential, regulation in 

neurotransmitter and ion concentrations, synaptic support, blood flow control, removal of toxins, 

and debris from the cerebrospinal fluid, etc.  [119]. Astrocytes, the most numerous cells within 

the CNS of the brain and can easily be exposed to alcohol. Therefore, chronic alcoholism may 

exacerbate neuronal dysfunction and advances mechanisms in potentiating or nullifying the 

pathway of neuropathologic injury  [120]. However, the (<IPR>) of astrocyte cells decreases 
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by 100% relative to EF when the mice were fed with probiotics and ethanol at the same time. 

This decrease in the (<IPR>) of astrocytes cell of EF+LP supports that probiotics in the 

presence of ethanol are highly efficient and blocked alcohol-induced gut barrier dysfunction and 

endotoxemia, which are indirectly good for brain cells and maintain proper brain functions. 

 

Figure 4.2 Bar graph representation of relative change in the disorder strength in astrocytes. 

Bar graph for the relative values of molecular specific light localization property quantified as 

(<IPR(L=0.8µm)>) or disorder strength (<IPR>~Ld) of astrocytes cells (total n~100 cells: 

aroud~20 cells per micrographs, ~5 micrographs per mouse) of control (PF) mice compared to 

ethanol fed (EF), probiotic fed (PF+LP), and ethanol and probiotics fed (EF+LP) mice. The IPR 

analysis of astrocytes shows that the (<IPR>) or Ld~dn×lc of EF mice increased by 280% 

relative to control. Also, the Ld value of astrocyte cells of PF+LP mice is relatively higher 

compared to the control. This increase in mass density fluctuations indicates some effect of 

probiotics on the astrocytes alone. However, the Ld value of astrocytes cells of EF+LP mice 

decreases by 100% relative to EF mice which implies probiotics get stimulated with ethanol 

decreasing the mass density fluctuations that are beneficial for brain cells. Student’s t-test 

obtained p-value for EF is 0.004, PF+LP is 0.03, and EF+LP is 0.001 compared to PF. (P-values 

<0.05). 
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4.3.2 Structural alterations in microglia 

 

Figure 4.3 Confocal and IPR images of microglia 

Confocal and IPR images of microglia (PF, EF, PF+LP, EF+LP): (a)-(d) are the representative 

confocal images of control (PF), ethanol fed (EF), probiotics fed (PF+LP), and ethanol and 

probiotics fed (EF+LP) of mice brain microglia cells while (a’)-(d’) are their respective IPR 

images at sample length L=0.8µm. The IPR images are distinct from the confocal images and 

show that the molecular-specific mass density fluctuations increase in the microglia brain cells in 

the presence of ethanol. Then the density fluctuation decreases when fed with ethanol and 

probiotics simultaneously. 

 

 

Fig. 4.3. (a)-(d), shows the confocal image of microglia incubated with the anti-

TMEM119 transmembrane protein antibody. Fig.3. (a’)-(d’) are their corresponding IPR images, 

respectively. Fig. 4.4, the bar graphs of relative change in the disorder strength (Ld) or (<IPR>) 

of microglial cells of control fed (PF) mice with ethanol-fed (EF), probiotic-fed (LP), and 

ethanol and probiotic-fed (EF+LP) are shown. Fig. 4.3 represents the confocal images and IPR 

images of the microglia cells, where IPR images are highly distinct from confocal images. The 

bar graph presented in Fig. 4.4 indicates the effect of ethanol and probiotics in mice brain 
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Figure 4.4  Bar graph representation of relative change in the disorder strength in Microglia. 

Bar graph for the relative study of molecular specific light localization property quantified as 

(<IPR(L=0.8µm)>) or disorder strength (<IPR>~Ld) of microglia cells (total n~100 cells: 

around ~20 cells per micrographs and ~5 micrographs per mouse) of control (PF) mice compared 

to ethanol fed (EF), probiotic fed (PF+LP), and ethanol and probiotics fed (EF+LP) mice. The 

IPR analysis of microglia shows that the (<IPR>) or Ld of EF mice increase by 120% in 

reference to PF mice. The Ld value of microglia cells of PF+LP mice is relatively higher than the 

control. This increase in mass density fluctuations represents some effect of probiotics in brain 

microglial cells. However, the Ld value of microglial cells of mice fed with EF+LP decreases by 

100% relative to EF mice which implies ethanol stimulates probiotics resulting in a decrease in 

the mass density fluctuations that helps in soothing the brain cells. Student’s t-test obtained p-

value for EF is 0.009, PF+LP is 0.03, and EF+LP is 0.01 compared to PF. (P-values <0.05). 

 

microglial cells based on the IPR analysis and shows a relative study induces changes in gut  

microbiota, and as a result of gut-brain interaction it may mitigate of mice for EF, PF+LP, and 

EF+LP with PF. The IPR analysis performed at the same sample length of all cases shows that 

the (<IPR>) of EF mice increases by 120% relative to PF. This increase in the disorder 

strength of microglia brain cells of EF mice suggests that alcohol neuroinflammation, destroying 
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the microglial cells or immune system of the brain. Microglia are considered as the macrophages 

of the CNS that clean up the cellular debris and participate in neuroinflammation to various 

intrinsic and extrinsic stimuli. In addition to well-established phagocytic function and innate 

immune function, microglia are involved in the development of CNS immunopathology  [121]. It 

was founded that alcohol enhances immunomodulatory molecules such as corticosterone and 

endotoxin, which degrade the neuroimmune cells of the brain and selectively modulate the 

intracellular signal transductions of microglia  [122]. Also, the IPR analysis shows that the 

(<IPR>) of microglial cells of mice fed with only probiotics (PF+LP) is relatively higher than 

PF. This higher disorder strength might be due to probiotics interacting with mice gut 

cells/tissues differently which results in microglia cells being more aggressive with the increase 

in mass density fluctuations. Therefore, probiotics used to soothe and strengthen the cognitive 

function of the brain may sometimes be reactive to the neuroimmune system of the brain cells, 

but we have yet to study this in detail. On the other hand, the (<IPR>) of microglial brain cells 

of mice fed with alcohol and probiotics simultaneously decreases by 100% relative to EF. This 

implies alcohol stimulates probiotics and blocked the ethanol-induced gut barrier dysfunction, 

endotoxemia, and liver damage resulting in increasing the efficacy of brain function and hence, 

reducing density fluctuations and in turn, decreasing the disorder strength (Ld) of microglia of 

brain cells. Therefore, this promising result suggests that probiotics with alcohol are good for 

brain cells and enhance the development of CNS immunopathology. 
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4.3.3 Structural alterations in chromatin 

 

Figure 4.5 Confocal and IPR images of chromatin 

Confocal and IPR images of chromatin of brain cells (PF, EF, PF+LP, EF+LP): (a)-(d) are the 

representative confocal images of control (PF), ethanol fed (EF), probiotics fed (PF+LP), and 

ethanol and probiotics fed (EF+LP) while (a’)-(d’) are their respective IPR images of chromatin 

of mice brain cells at the sample length L=0.8µm. The IPR images are distinct from the confocal 

images and show that the molecular specific mass density fluctuation increases in the chromatin 

of mice brain cell nuclei in the presence of ethanol which decreases when they were fed with 

alcohol and probiotics simultaneously.  

Fig.4.5. (a)-(d) show the confocal images of brain cell nuclei incubated with DAPI, while 

Fig. 4.5. (a’)-(d’) are their corresponding IPR images, respectively. In Fig. 4.6, the bar graphs 

relative change in the disorder strength (Ld) or (<IPR>) of nuclei in the brain cell of control 

(PF) mice with ethanol fed (EF), probiotic-fed (LP), and ethanol and probiotic-fed (EF+LP) are 

shown. The molecular-specific IPR analysis of DAPI stained confocal images of mice brain cell 

nuclei at sample length, L=0.8µm indicates that the mass density fluctuations or (<IPR>) of EF 

mice increases by 25% relative to PF. This is because of chronic alcohol-induced intestinal 

mucosal barrier dysfunction in the gut, which as a result induces an adverse effect in the brain 
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due to gut-brain interaction. This adverse effect is in some way related to an increase in 

submicron scale mass density fluctuation or the (<IPR>) in the chromatin of EF mice brain 

cells. Hence, the rise in DNA mass density fluctuations of the chromatin due to alcohol is 

responsible for an increase in the degree of disorder strength (Ld). Persistent alterations to the 

chromatin structure are factors for epigenetics inheritance and can have a long-lasting influence 

on the activity and connectivity functions of the brain  [123]. The (<IPR>) of chromatin in the 

brain cell nuclei of mice fed with only probiotics (PF+LP) is relatively lower compared to the 

PF, indicating that probiotics are good for the mice digestive system that is correlated with 

soothing and well-functioning of the brain especially in chromatin of nuclei. Further, the 

(<IPR>) value of chromatin in brain nuclei of mice fed with alcohol and probiotics at the same 

time decreases by 40% relative to PF. This decrease in the (<IPR>) of the chromatin of mice 

cell nuclei fed with alcohol and probiotics at the same time is because probiotics in the presence 

of ethanol get highly stimulated and attenuate alcohol-induced intestinal mucosal barrier 

dysfunction, which is good for the chromatin of the brain cell nuclei and allow the brain to 

soothe and function better. 

The molecular-specific structural quantification of probiotic's effect on alcoholic brain 

cells using the confocal image and IPR analyses shows that alcohol affects the digestive system, 

which indirectly damages the glial cells and the chromatin of the nuclei of the brain cells. We 

speculate that the gut-brain interaction associated with these findings involves endotoxin 

absorption due to intestinal barrier dysfunction and gut dysbiosis. The probiotic, L. Plantarum by 

itself caused a small increase in the degree in the disorder strength or (<IPR>) of astrocytes 

and microglia cells while a decrease in the chromatin of the brain cells. However, the obtained 
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result strongly supports that the probiotics L. Plantarum feeding very effectively blocked 

alcohol-induced changes in astrocytes and microglia.  

 

Figure 4.6 Bar graph representation of relative change in the disorder strength of chromatin.  

Bar graph for the relative study of molecular specific light localization property quantified as 

(<IPR(L=0.8µm)>) or disorder strength (<IPR>~Ld) of chromatin in nuclei (total cells n~400, 

around ~80 cells per micrographs and ~5 micrographs per mouse) of control (PF) mice 

concerning to ethanol fed (EF), probiotic fed (PF+LP), and ethanol and probiotics fed (EF+LP) 

mice. The IPR analysis of chromatin of the mice brain cells shows that the (<IPR>) or Ld of EF 

mice increases by 25% relative to control. The Ld value of chromatin in nuclei of mice fed with 

PF+LP is relatively lower compared to the control. This decrease in mass density fluctuations 

represents some effect of probiotics in chromatin of the brain cell nuclei. However, the Ld value 

of chromatin of mice brain cell nuclei fed with EF+LP decreases by 40% relative to PF mice due 

to the decrease in mass density fluctuations which implies probiotics in the presence of ethanol is 

more active and help in soothing the brain function. Student’s t-test obtained p-value for EF is 

0.01, PF+LP is 0.002, and EF+LP is 0.007 compared to PF. (P-values <0.05). 

 

4.4 Conclusions 

The molecular-specific light localization technique, IPR, is used to study the effect of 

probiotics in chronic alcoholism in glial cells, astrocytes, and microglia, and the chromatin of 

brain cell nuclei using a confocal image and a mouse model. Changes in the molecular specific 
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structural disorder were probed for: (i) upregulation of type III intermediate protein spatial mass 

density in astrocytes, (ii) upregulation of transmembrane protein anti-TMEM119 spatial mass 

density in microglia, and (iii) rearrangements of DNA mass density in nuclei of neural cells. The 

submicron scale mass density fluctuations quantified as the std of average IPR or (<IPR>)~Ld 

using a confocal image show an increase in disorder strength (Ld) of the molecular specific 

probing of astrocytes and microglia cells, as well as the chromatin of brain cell nuclei of alcohol-

treated mice. This increase in the disorder strength or mass density fluctuations in brain glial 

cells and chromatin is due to gut-brain interaction confirms alcohol-induced gut barrier 

dysfunction, endotoxemia, and liver damage and eventually leads to neuroinflammation, 

especially in glial cells and the chromatin of brain cell nuclei due to gut-brain interaction. On the 

other hand, probiotics fed control mice have a small increment in the disorder strength of brain 

glial cells, which may be due to the interaction of probiotics, L. Plantarum in gut cells/tissues 

differently increasing mass density fluctuations. Therefore, the Ld value increases in the 

astrocytes and microglia cells when fed with only probiotics invite a detailed study to elucidate 

plausible reasons for an adverse effect of L. Plantarum in glial cells, although probiotics are 

considered reasonable and used to improve the cognitive function of the brain. Interestingly, a 

decrease in the Ld value in glial cells and the chromatin of brain cell nuclei fed with ethanol and 

probiotics simultaneously relative to control and ethanol fed mice indicate that L. Plantarum in 

the presence of alcohol gets highly stimulated and increase the efficacy and well-functioning of 

the brain. That means, these probiotics first increase the efficacy of the digestive system and as a 

result of gut-brain interaction, which indirectly helps in soothing the brain's physical structure 

and enhances the multifunctionality of the brain. Therefore, this almost reversible effect of 

probiotics when it is given with the alcohol on the brain cells/components could be one of the 
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ways to mitigate neurological abnormalities in the brain cells due to alcohol or any other drug. 

As an illustration of the potential application of the recently developed mesoscopic physics-

based molecular-specific IPR technique via confocal imaging, we have successfully quantified 

probiotic effects on glial cells and chromatin of the brain cell nuclei based on the structural 

abnormalities present in brain cells/tissues.  
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CHAPTER V 

QUANTIFICATION OF NANOSCALE STRUCTURAL ALTERATIONS IN OVARIAN 

CANCER CELLS TO STUDY ANTI-CANCEROUS DRUG EFFECT USING TEM-IPR 

This chapter is adapted from the author’s published article with copyright permission 

from the publisher. Ref [57] P. Adhikari et. al., "Studying nanoscale structural alterations in 

cancer cells to evaluate ovarian cancer drug treatment, using transmission electron microscopy 

imaging," Physical Biology 17(3), 036005 (2020).  

Although, the main probing technique in this dissertation is optics/photonics that are 

within the diffraction limit (resolution ~200nm). However, it would be interesting to see the 

properties of the cell at nanoscale resolution, that can support the optical techniques. In this 

chapter, we have used TEM imaging to probe the structural disorder below 100nm and studies 

the effects of anti-cancerous drugs on ovarian cancer cells. 

Anti-cancerous therapies are intended for the growth inhibition of cancer cells which are 

initially at the nanoscale level; however, it is challenging to detect the efficacy of such drugs in 

the early stages of treatment. A unique method to assess the impact of anti-cancerous drugs on 

cancerous cells/tissues is to probe the nanoscale structural alterations. For this, TEM imaging on 

thin cell sections is performed to obtain their nanoscale structures where we can probe up to 1nm 

structure. In this work, we apply the IPR technique in TEM imaging (TEM-IPR) to study the 

effect of different anti-cancerous drugs on ovarian tumorigenic cells, using their nanoscale 

structural alterations as a biomarker. Based on the degree of disorder strength the efficacy of the 
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anti-cancerous drug and level of tumorigenicity are quantified. Hence the potential applications 

of the technique for cancer treatment and diagnosis are discussed. 

5.1 Introduction 

5.1.1 Why TEM imaging and probing nanoscale changes in cancer? 

TEM imaging is a method where we can probe ~1nm resolution within the sample, and 

this has been used for imaging of cells at the nanoscale to see the inner structures of the cells, in 

general, qualitatively. It has been established that cancer progression is associated with the 

nanoscale structural alteration in a cell due to rearrangements of the building blocks of the cell 

such as DNA, RNA, and lipids. Therefore, TEM imaging with spatial nano-resolution is a good 

modality to look at the nanoscale cell structures and measure cancerous changes in cells at the 

nanoscales. 

The structural alterations in cells have been characterized by visible-light microscopy 

techniques within the diffraction limit. For example, the newly developed spectroscopic 

microscopy technique has shown success in probing these alterations to some degree that are 

prominent in early carcinogenesis [16,17,58,124–126], and these nano morphologies are 

associated with the basic cellular building blocks. Therefore, TEM imaging is a good modality to 

probe cancerous changes in cells at the nanoscale level, very much beyond the diffraction limit 

of light. The details of the TEM schematics and application in scientific research are explained in 

Chapter I Section 1.2.1. Furthermore, the recently developed light wave localization technique, 

IPR using TEM imaging, has shown success in quantifying the degree of structural changes in 

one parameter, known as the degree of the structural disorder [22,23]. In particular, using the 

IPR method, a TEM image is used to construct a disordered 2D mass matrix, and from this, we 

generate a 2D refractive index matrix. Optical waves are then solved for their eigenvalues and 
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eigenfunctions using the refractive index matrix with closed boundary conditions. The light 

localization properties are measured by the average inverse participation ratio, <IPR>, and 

standard deviation of the IPR, σ(<IPR(L)>)cells, of the eigenfunctions of the light waves in these 

samples. It is shown that the degree of structural disorder is proportional to the <IPR> or 

σ(<IPR(L)>)cells  [32,33]. Therefore, the <IPR> can be used as a measure of the degree of 

nanoscale structural disorder, and to monitor structural change in cells under diseases condition. 

The IPR method is a very versatile approach. The IPR method, using TEM imaging, has been 

recently generalized to study the structural changes in brain and colon cells in chronic 

alcoholism  [127,128]. Furthermore, the IPR method also extended to study the molecular 

specific (DNA, histone, etc.) structural changes in cells by using molecular-specific fluorophores 

and confocal microscopy imaging  [38,83]. 

5.1.2 Ovarian cancer study 

Ovarian cancer (OC) ranks 5th in cancer-related deaths among women and accounts for 

more deaths than any other cancer of the female reproductive system. The American Cancer 

Society (ACS) estimated new cases of OC in the USA in 2019 would be 22,530, whereas 

estimated deaths would be 14,000. Most OC cases are diagnosed at a very late stage, of which 

51% are diagnosed as stage III and 29% are diagnosed as stage IV  [129]. The exact cause that 

triggers OC is not clearly understood but there are several risk factors such as fertility therapy, 

late pregnancy, family history, hormone therapy after menopause, etc. are associated with the 

development of OC. Metabolic alterations, suppression of tumor suppressor genes, and 

oncogenic activations are also considered as triggering factors for OC initiation and progression 

of the disease  [130,131]. Although initially sensitive to chemotherapy treatment, however, the 

majority of OC patients develop chemoresistance. 10 years survival rate for most patients of all 
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stages of OC is ~30%. Development of chemoresistance, widespread disease during the time of 

diagnosis, and tumor recurrence are the major challenges in the therapeutics of ovarian 

cancer  [132]. 

In this study, we are focusing on analyzing the impact of novel anti-cancerous drug 

treatment in the tumor forming OC cell line in vitro. HSulf-1 knockdown OV202 cells are 

selected for this study for their aggressive tumor forming ability and high proliferation 

rate [133,134]. This method of analysis is aimed to understand the effect of anti-cancerous drugs 

on cells in the early phases of treatment. Here we propose a novel TEM-IPR approach to assess 

the impact of anti-cancerous drugs in cancerous cells by quantifying the degree of nanoscale 

structural disorder. 

5.2 Methods 

5.2.1 IPR technique using TEM images 

TEM experiment has a resolution of ~1nm and can identify the nanoscale architectural 

alterations inside the cells which take place in normal cells when affected by cancer. These 

nanoscale alterations happen in the cells due to the rearrangement of the basic building blocks of 

the cells, such as DNA, RNA, lipids, macromolecules, etc. This results in mass density 

fluctuations in the cells. Using a thin slice of a cell (~100nm), the mass density variations can be 

probed by TEM imaging. The detail of the TEM schematic and imaging is presented in Chapter I 

Section 1.2.1. The IPR calculation is an efficient technique to measure and quantify the 

cancerous level of aggressiveness in a cell through its mass density fluctuations. A higher 

<<IPR(L)>> or σ(<IPR(L)>) value indicates an increasing amount of the nanoscale mass 

density fluctuations in cells. The IPR technique is described in detail in Chapter I Section 

1.2.3  [22,23,32,33]. However, we will describe the IPR technique using TEM images in brief.    
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The refractive index of a thin cell slice at a point n(x,y) can be written as n(x,y) = 

no+dn(x,y), where no is the average refractive index and dn(x,y) is the fluctuation of refractive 

index at (x,y) indicated voxel. In the thin sample, a voxel of area dxdy at position (x,y) and 

thickness dz, the transmission TEM intensity: ITEM(x,y)=I0-I0αd(z), where α is a transmission 

related constant depends on the mass of the voxel as shown in Chapter I Section 1.2.3. TEM 

image intensity at any voxel point (x,y) for a thin cell sample can be expressed as ITEM(x,y) = 

I0TEM + dITEM(x,y), where I0TEM is the average pixel intensity and dITEM(x,y) is the fluctuation part 

of the pixel intensity. Here, the intensity fluctuation ITEM(x,y) <  I0TEM (average intensity), where 

I0TEM=<I(x,y)>(x,y) and dITEM(x,y)=ITEM(x,y) - <I(x,y)>(x,y) and dn(x,y) < n0.  

Therefore, the intensity of a TEM image is linearly proportional to the mass, M, and 

refractive index, n of the voxel as shown in Chapter I equation (1.10, 1.11), except ITEM is the 

intensity of the TEM image. From this, we can calculate the optical potential of the voxel point 

as εi(x,y) obtained in Chapter I equation (1.12) to generate an optical lattice. 

Knowing the optical potential at every point, the Anderson disordered tight-binding model TBM 

Hamiltonian [28,30,118] can be obtained as in Chapter I equation (1.13) for the TEM closed 

system. For a sample size of length L in the TEM image, we have L×L sample area in the TEM 

image. We calculate the average IPR at length L where L=NL×dx (dx=dy). As there are 

N=NL×NL numbers of lattice points, thus, there will be N eigenvalues, as well as the same 

number of eigenvectors. Finally, the average IPR value of the sample of length L or size L×L is 

defined as  [22,23,32,33,46,47]: 

  < 𝐼𝑃𝑅 >𝑁 =
1

𝑁
∑ ∫ ∫ 𝐸𝑖

4(𝑥, 𝑦)𝑑𝑥𝑑𝑦,    
𝐿

0

𝐿

0

𝑁

𝑖=1  

 
(5.1) 
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where Ei denotes the i-th eigenfunction of the Hamiltonian, N is the total number of potential 

points on the refractive index matrix (i.e., N=(L/dx)2). It has been shown that the ensemble-

averaged IPR value (i.e., ensemble-averaged of similar type of cells): <<IPR(L)>> = 

<<IPR(L)>L×L> or (<IPR(L)>, is proportional to the degree of structural disorder Ld. Then,  

⟨𝐼𝑃𝑅⟩ ≡< 𝐼𝑃𝑅 >𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒  ~ 𝐿𝑑 = 𝑑𝑛 × 𝑙𝑐 ,  (5.2) 

(< 𝐼𝑃𝑅 >) ≡ (< 𝐼𝑃𝑅 >)𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 
~ 𝐿𝑑 = 𝑑𝑛 × 𝑙𝑐 . 

 (5.3) 

Equation (5.1) presents the average value of one IPR pixel at length (L) that is 

constructed from the L×L TEM area or N pixels of the TEM image. Our statistical analysis 

involves calculating the average and standard deviation of the disorder strength of IPR values, 

i.e. Ld values over the cell samples for the length of a given sample. Using this structural disorder 

strength <<IPR(L)>> or (<IPR(L)>) or Ld as a biomarker, we study the structural properties of 

ovarian cancer cells with anti-cancerous drug treatments. 

5.2.2 Sample preparation and TEM imaging 

5.2.2.1 Ovarian normal and cancer cell lines 

 OV202 cell line is a low-passage primary ovarian cancer cell line established at the Mayo 

Clinic  [133]. OV202 NTC (expressing HSulf-1) and Sh1 cells (HSulf-1 deficient) are developed 

by Dr. Shridhar’s group at Mayo Clinic and are described earlier elsewhere  [134]. Subcutaneous 

injection of OV202 Sh1 cells resulted in tumor formation in nude mice, whereas HSulf-1 

expressing OV202 NTC cells did not form tumors  [133]. Both cells were grown in minimum 

essential medium alpha 1X (Cellgro) supplemented with 20% fetal bovine serum (Biowest) and 

1% penicillin-streptomycin (Cellgro). All cells were grown in the presence of 1 μg/ml puromycin 

as a selection marker for the HSulf-1 shRNA cells were treated with 10 µl of AACOCF3 or 
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MAFP (cPLA2 inhibitors; Cayman chemicals) for 24 hours. Following this treatment, cells were 

washed twice with PBS and then fixed in Trump’s fixative containing 4% formaldehyde and 1% 

glutaraldehyde in phosphate buffer pH ~7.3, post-fixed in 1.0% OsO4, dehydrated with ethanol 

gradation, and transitioned into propylene oxide for infiltration and embedding into super epoxy 

resin.  

5.2.2.2 TEM imaging 

Cell samples were fixed in Trump’s fixative (pH 7.2) at 4°C overnight, spun down and 

the supernatant removed. They were re-suspended in agarose which was cooled and solidified. 

The cells in agarose were then post-fixed in 1% OsO4, dehydrated through a graded series of 

ethanol, and embedded in Spurr resin. 100nm (or 0.1μm) ultra-thin sections were mounted on 

200-mesh copper grids, post-stained with lead citrate, and observed under a JEOL JEM-1400 

transmission electron microscope at 80kV. 

5.3 Results and discussions 

The TEM images of the ovarian cancer cells are obtained as described in the above 

section. IPR analyses were performed for the samples on different length scales of TEM images. 

The IPR averaging of a sample length L, <<IPR(L)>> over a single cell, then over the different 

cells, was performed for obtaining the ensemble averaging: <<IPR(L)>>=<<IPR(L)>L×L>. As 

discussed above, the <<IPR(L)>> value for each TEM image was calculated and provides the 

degree of the structural disorder strength at a defined length scale L. 

Fig. 5.1(a)-(d) are the representative grayscale TEM images of a thin section (~100nm) of 

a cell from the following ovarian control/cancer cell lines: (i) non-tumorous NTC, (ii) tumorous 

Sh1, (iii) Sh1 treated with drug AACOCF3 (Sh1-AACOCF3), and (iv) Sh1 treated with drug 



 

88 

MAPF (Sh1-MAFP). For each case (i.e. for a particular cell line) study, 8 different cells were 

taken from the cell line for averaging. Figure 5.1(a’)-(d’) are the corresponding (<IPR(L)>) 

images of  Fig. 5.1(a)-(d), at a length scale of 165nm and sample size of 165165nm2. It is 

reported that structural alteration in carcinogenesis happens around sample length  L~100nm or 

sample size LL  [127], which is around the basic building blocks of the cell. Therefore, we have 

taken a length scale of 165nm which is higher than 100nm. For a better understanding of the IPR 

images at different length scales, we have also added IPR images at two different length scales 

(one 82nm <100nm and another 206nm>100 and 165nm), in the Supplementary Documents. As 

can be seen from Figure 5.1, σ(<IPR(L)>) images represent different intensities of disorder 

patterns in the cell line which are distinct from conventional grayscale TEM images. In the IPR 

images, intensities patterns of higher fluctuations in the cells are represented by the red spots and 

lower intensities with blue. In the figure, it can be seen that the increasing fluctuation or 

(<IPR(L)>) value increases from the less proliferating NTC cells to highly proliferating Sh1 

cells and decreasing of the fluctuations or (<IPR(L)>) values decrease with the treatment of 

two different anti-cancerous drugs, AACOCF3 and MAFP. The drug effect can be distinctly 

visualized in the IPR images. 
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Figure 5.1 TEM and IPR images of anti-cancerous drugs treated ovarian cancer cells. 

(a)-(d) are the TEM images and (a’)-(d’) are their respective IPR images at the sample length 

(LL=165165nm2) from ovarian cells of the following:  non-tumorous (OV202 NTC); tumorous (OV202 

Sh1);  AACOCF3 treated tumorous Sh1, Sh1-AACOCF3; and MAFP treated tumorous Sh1 Sh1-MAFP. 

IPR images are distinct from the TEM images. 

 

TEM images and their corresponding IPR images for representative ovarian cancer cases 

(NTC, Sh1, Sh1-AACOCF3, and Sh1-MAFP) at two different sample lengths: one 82nm 

<100nm or 165nm and another 206nm>100nm or 165nm, are presented for the better 

clarification. It has been reported that structural changes are significant around 100nm and in this 

particular experiment as seen from Fig. 5.2 prominent changes start around 150nm. Therefore, 

we have taken sample length 165nm to study the anti-cancerous drug effect in ovarian cancer 

cells. Here, from the presented IPR image at different length scales it can be seen that IPR 

images show more fluctuations above ~100nm and lower for smaller length scales. 
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Figure 5.2 TEM and IPR images of ovarian cancer cells at different length scales.  

(a)-(d) are the TEM images, while (a’)-(d’), and (a’’)-(b’’) are their respective IPR images at the 

sample length (L) [LL=8282nm
2
, and LL=206206nm

2
] below and above the presented IPR 

image at sample length, L = 165nm respectively from ovarian cells of the following: non-

tumorous (OV202 NTC); tumorous (OV202 Sh1);  AACOCF3 treated tumorous Sh1, Sh-

AACOCF3; and MAFP treated tumorous Sh1 Sh1-MAFP. IPR images are distinct from the TEM 

images. 

  

 

Fig. 5.3 shows the length (L) dependent fluctuations with the sample size (L×L). We 

plotted, variations of the standard deviation  (<IPR(L)>) vs L with the increase of sample 

lengths: L = 41, 82, 123, 165, 206, 247, 288 nm. As the deviation started appearing in the mean 

and STD of <IPR(L)>L×L, at L=100nm, therefore we have plotted the σ(<IPR(L)>) vs L, 
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systematically well below and above 100nm. These lengths are for the cells from the following 

cell lines: non-tumorigenic (OV202 NTC); tumorigenic (OV202 Sh1); AACOCF3 treated 

tumorigenic Sh1 (Sh1-AACOCF3); and MAFP treated tumorous Sh1 (Sh1-MAFP). As can be 

seen from the figure that the deviation in the degree of nano-fluctuations between non-

tumorigenic cells NCT and tumorigenic cells Sh1 started becoming prominent around the length 

scale ~100nm. Interestingly, the degree of nano-fluctuations of anti-cancerous drugs treated Sh1 

tumorigenic cells reverse to that of the non-tumorigenic NTC cells. This confirms the efficacy of 

these two anti-cancerous drugs. 

  

Figure 5.3 Sample length scale (L) dependence of σ(<IPR(L)>). 

Variations of the standard deviation σ(<IPR(L)>) with the increase of sample length L, for cell 

lines non-tumorigenic (OV202 NTC); tumorigenic (OV202 Sh1); AACOCF3 treated tumorigenic 

Sh1 (Sh1-AACOCF3); and MAFP treated tumorous Sh1 (Sh1-MAFP). It can be seen that the 

deviation between NTC and Sh1 started to become prominent around the sample length/length 

scale ~100nm. Interestingly, the drug-treated Sh1 tumorigenic cells' fluctuation degrees reverse to 

the non-tumorigenic cells. 
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Figure 5.4 Bar graph representation of anti-cancerous drug-treated ovarian cancer cells 

Bar graph representation of the standard deviation of the degree of structural disorder strength Ld 

~σ(<IPR(L)>) calculated from the TEM images for: non-tumorous (NTC), tumorous (Sh1), 

AACOCF3 treated tumorous cells Sh1-AACOCF3, and MAFP treated tumorous cells Sh1-

MAFP. For the normal cells, IPR analysis was performed at the sample size 165×165nm
2
. The 

result shows Ld value increases from non-tumorous to tumorous cells, then it decreases when 

these tumorous cells are further treated with anti-cancerous drugs AACOCF3 and MAFP, 

interestingly the Ld value returns almost back to the same value of the non-tumorous cells (p-

values < .05). This may imply that anti-cancerous drugs are working well in ovarian cancer 

treatment. 

  

Figure 5.4 presents the bar graphs of the standard deviation of calculated (<IPR>) or 

(Ld) value, of the ovarian cells at the fixed-length scale of 165nm. The variations are similar at 

lower sample length scales >165nm, however, we have chosen 165nm to show a prominent 

difference. Statistically, the standard deviation is the more reliable marker than the average, as it 

only depends on the width of the distribution, irrespective of the mean position. The result shows 
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the standard deviation of the degree of structural disorder (<IPR>) value increased by 70% 

from NTC to Sh1 cells. Furthermore, when Sh1 cells were treated with 2 different anti-cancerous 

drugs, AACOCF3 and MAFP, the (<IPR>) values decreased by around 58% for AACOCF3 

and 54% for MAFP, relative to the (<IPR>) value of the Sh1 tumorous cells. In particular, with 

the treatment of the anti-cancerous drug, the structural biomarker parameter (<IPR>) or Ld 

value decreased nearly back to the normal value. The normalcy detection of these anti-cancerous 

drug-treated cancerous cells may require further investigations using different modalities. It has 

been earlier shown that AACOCF3 is a better anti-cancerous agent producing more anti-

cancerous effects in OC cells compared to MAFP [135]. It can be seen in Fig. 5.4 that similar 

trend of bar graphs which show a reduction in the degree of structural disorder (<IPR>) value 

for AACOCF3 (58%) > MAFP (54%), consistent with the known qualities of the drugs, in this 

length scale. Hence, the quantitative analysis technique, called IPR, quantifies the nanoscale 

structural disorder (<IPR>) or Ld, as an important biomarker to study the structural alterations 

at the nanoscale level and has the potential to detect the effect of anti-cancerous drugs in 

carcinogenesis ovarian cancer.   

5.4  Conclusions 

The nanoscale mass-density fluctuations are quantified with the progression of ovarian 

carcinogenesis, as well as the effects of two anti-cancerous drugs on non-tumor forming 

OV202NTC and tumor forming OV202Sh1 cells are studied using the TEM imaging and IPR 

technique. TEM experiment has a resolution of ~1nm and can identify the nanoscale 

architectural alterations inside the cells which take place in normal cells due to the rearrangement 

of the very basic building blocks of the cells, such as DNA, RNA, lipids, macromolecules, etc. 
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This results in nanoscale mass density fluctuations in the cells which can be probe using TEM 

imaging. The nanoscale fluctuations are quantified by the STD value of the <IPR(L)>L×L, 

(<IPR(L)>)cell, performed over similar types of cells or ensembles of the samples. Results show 

an increase in the nanoscale fluctuations or  (<IPR(L)>) value from non-tumorous NTC to 

tumorous Sh1 cells. The (<IPR(L)>) values for two different drugs treated tumorous cells, Sh1-

AACOCF3 and Sh1-MAFP, have reduced value from tumorous cells Sh1 and the reduced values 

are nearly the same to the NTC non-tumorous cells. Earlier IPR analysis of a different cell line 

has verified the increase of nanoscale structural disorder with the progression of cancer  [22,23]. 

Based on the results presented, we investigate the potential applications of the IPR technique in 

measuring and quantifying the effectiveness of different anti-cancerous drugs on ovarian cancer 

treatment. This quantification of the effectiveness of anti-cancerous drugs in ovarian cancer 

treatment could enhance better drug treatment modalities at their earliest and helps to control the 

deadly ovarian cancer. Although this study is based on ovarian cancer cells, however, the 

technique can be applied to the varieties of cancers to assess the effectiveness of different anti-

cancerous drugs in treatment. 

Our technique is based on the linear transmission of the TEM intensity through thin cell 

samples as described in the Method. The TEM intensity transmits well till ~500nm of thin cell 

samples, the technique works until that thickness of the samples. Because of the thin sample, this 

method can be applied to heterogeneous cell samples. 

A cell is around 5 microns thick, and the TEM sample thickness is around 100nm, 

therefore, 50 TEM slices per cell can be generated. Thus, it is important to consider ensemble 

averaging correctly by choosing similar types of TEM micrographs. For each cell, TEM 

micrographs are chosen around the middle of the cell by observing the maximum size of the 
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nucleus. The maximum changes in a cancerous cell can be captured by considering the largest 

portion of the cell or nucleus. Not considering proper ensemble averaging, results may vary. 

At present, the super-resolution optical microscopy techniques have achieved an order of 5-10nm 

resolutions targeting particular types of molecules in a cell  [136–138]. However, in the case of 

TEM imaging, we can target whole cells or nuclei with ~1nm resolution. This nanoscale 

resolution brings advantages of the TEM imaging for the quantification of structural disorder and 

its alterations at submicron to nanoscales in the nucleus/cell, in progressive carcinogenesis, or 

any other cell abnormalities. It would be interesting to compare the results of TEM-IPR analysis 

with the super-resolution microscopy in progressive carcinogenesis or abnormalities of a cell, in 

a near future. 
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CHAPTER VI 

CONCLUSIONS AND FUTURE WORK 

The elastic light scattering signal from cells/tissues can be recorded after propagating 

through the cells/tissues which carries tremendous information useful for cancer diagnosis and to 

study drug effects in cancer treatment or any other abnormalities. The 1D backscattered signals 

are sensitive to refractive index fluctuations at any length scale including way below the 

wavelength range. Furthermore, we have studied molecular-specific light localization techniques 

using TEM and confocal imaging, a powerful method to quantify molecular-specific changes in 

the mass density of refractive index fluctuation in cells/tissues. In this dissertation, using both 

PWS (open scattering) and IPR (close scattering) techniques, we probe the structural alteration of 

the cells/tissues and quantify the degree of structural disorder to study cancer stages, drug effects 

in cancer treatment, and chronic alcoholic brain abnormalities.  

With the addition of finer focusing using a highly sensitive 3D motorized scanning stage 

in the developed PWS technique (resolution ~40nm), we have shown that these backscattered 

signals from cells/tissues are sensitive to refractive index fluctuations below the wavelength 

within the diffraction limit and can distinguish the stages of progressive cancer in TMA. The 

result also demonstrates that the use of low NA illumination prevents interference between the 

1D adjacent channels, increasing the sensitivity of the technique to nanoscale refractive index 

fluctuations. Likewise, the PWS quantification of 3D structure tumor developed from cancer 

cells 2D structure reflects the unique ability of PWS to study the anti-cancerous drug effect in 
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cancer treatment. On the other hand, we quantify refractive index or mass density fluctuations in 

a closed weakly disordered heterogeneous optical system based on light localization technique 

using confocal and TEM imaging. In the case of carcinogenesis or any other abnormalities, DNA 

molecules inside the cells undergo structural alteration due to the mass density variation and 

rearrangements which result in the light wave eigenfunction localization. This results in nano to 

microscale structural alteration which can be detected based on a molecular specific light 

localization technique using a confocal image as demonstrated by quantifying probiotic effect in 

alcoholic brain cells. Our results also show that the TEM micrograph can be effectively used to 

quantify the molecular specific mass density fluctuations in terms of the degree of disorder 

strength using the IPR technique to detect carcinogenesis and drug effect in cancer treatment. 

In this chapter, a summary of the developed spectroscopic systems, in a bid to elucidate 

the promising applications of these techniques are reported. In addition to this near-future studies 

and recommendations using these techniques are presented.  

6.1  PWS study conclusions 

The developed finer focusing mesoscopic physics-based imaging technique, PWS can 

scatter precise scattering volume to detect minute structural changes in terms of the refractive 

index fluctuations below the sub-diffraction length scale, within the diffraction limit. In this 

dissertation, the finer focusing PWS technique was successfully used to quantify the degree of 

disorder strength (Ld) and distinguished the stages of cancer in commercially available paraffin-

embedded deadly cancer TMAs. This result could help to standardized cancer diagnostic 

modalities and use these samples to study the drug effect in cancer treatment. With the validation 

of added finer focusing, our results demonstrate that PWS was able to differentiate different 

stages of cancer, especially for paraffin-embedded pancreatic, breast, colon, and prostate cancer 
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tissues. The PWS result shows that for each TMA cancer tissue, the degree of disorder strength 

increases significantly with an increase in cancer stages for each cancer type supporting the fact 

that mass density fluctuations or refractive index fluctuations increase in progressive cancer. 

Lastly, the flexibility provided by the highly sensitive PWS technique and commercially 

available TMA samples to distinguish the cancer stages opens a broad path to explore for 

generalizing the structural changes in progressive cancer and drug effect for effective cancer 

treatment/diagnosis. 

In addition to this, the structural properties of tumors developed by the xenografting of 

drug-sensitive and drug-resistive prostate cancer (PC) cell lines were quantified using the finer 

focusing PWS technique. The results indicate that tumor tissues (3D model) grown by 

xenografting PC cells (2D model) resistant toward docetaxel have a higher degree of disorder 

strength (Ld) than drug-sensitive PC cells. Cancerous cells that survived through drug exposure 

are more aggressive and develop different morphological structures resulting in higher mass 

density fluctuation due to the rearrangement of macromolecules, large pore sizes, changes in 

cytoskeleton nanoarchitecture. This result further concludes that xenografted tumors from the 

drug-sensitive and drug-resistant PC cell lines maintain the same type of structural properties 

when grown to 3D structures supporting a strong correlation in structural properties of cells 

grown on 2D glass slide structure surfaces. Therefore, the PWS study of xenografted tumor 3D 

structures that replicate the structural properties of cancer cells could be a reliable, easy, and 

quantitative approach to diagnose chemo-resistance for the future. This promising result seeks an 

application to monitor the effect of chemotherapy drugs on a different level of tumorigenicity by 

both in-vitro and in-vivo analysis.   
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6.2 Future work in PWS and its applications 

The PWS microscopic setup developed in this work is highly sensitive, fast, and cost-

effective. The results obtained from the engineered PWS technique may have profound 

biological and medical implications. In the fields of cancer biology and medicine, the PWS 

technique could help us to understand the structural properties of cancerous cells/tissues as well 

as chemotherapy or anti-cancerous drug effects in cancerous cells/tissues at the nanoscale level 

which need to be explored in detail. Monitoring the growth of cancerous cells/tissues with or 

without anti-cancerous drugs using the PWS technique and xenograft model for different types 

of cancer could play a crucial role in cancer control in the coming days. The quantification of 

structural changes in cells/tissues due to abnormalities such as radiation exposure, alcohol, stress, 

etc. might also be interesting to study next with PWS. At this point, it may not be possible to 

identify which specific structure is responsible for an increase in the degree of disorder strength 

(Ld) and associated with molecular mechanism, however, we can have some insight into how 

these nanoscale structural changes are associated with cancer progression and anti-cancerous 

drug treatments. And the improvement in the construction of the disorder map or Ld map with the 

reduced noise performance in the short interval of time could provide an opportunity to visualize 

which part is specifically affected by the diseases. Further, the flexibility provided by the 

spectroscopic technique using commercially available TMA samples to standardize the early 

cancer diagnostic and study the drug effect in cancerous treatment opens exploration for 

generalizing the structural change in progressive cancer for effective cancer treatment. With 

these promising applications of PWS in biomedical implications, we want to move forward with 

the PWS technique from clinical research to clinical trials especially to study drug-sensitive and 

drug-resistive different cancer treatment cases.  
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In addition to this, we can work on the PWS instrumentation to increase the sensitivity of 

the system and make it more compatible with the in-hospital application. For this, we can use a 

highly sensitive and compatible liquid crystal tunable filter with less than 1nm resolution and 

replace the existing CCD camera with a low cooling effect and high quantum efficiency (QE) 

CCD camera. Also, we can replace the existing 3D motorized scanning stage with a highly 

sensitive stage for precise focusing within the working distance of the low NA objective. To 

make this technique compatible with both in-vitro and in-vivo diagnostic we can replace the light 

source and combination of lenses as mentioned in Chapter I Section 1.1.1 with optical fibers and 

develop the system in a portable microscopic setup, that can be used in-vivo. We are planning to 

modify the existing BX61 bright field microscope replacing the existing light source with an 

optical fiber-based halogen lamp (100W) light source and mounting an LCTF filter coupled with 

a Retiga 3 CCD camera on the top of a microscope to capture the spectroscopic images. That 

means, we want to validate the possibility of using a spectrum of the averaged spatial 

information measuring the backscattered signal through an optical fiber. This will modify the 

table-top PWS system to a compact real-time diagnosis microscopic system. These changes can 

help to develop this system as a commercial product for early, effective, and real-time diagnosis 

of cancer or any other abnormalities in cells/tissue for the future.     

6.3 IPR study conclusions 

We have developed the novel approach based on mesoscopic physics-based light 

localization properties, IPR technique to quantify the nano to submicron scale mass density or 

refractive index fluctuations in a weakly disordered medium using TEM and Confocal imaging. 

The main advantage of the Confocal-IPR technique is that we can probe and quantify a 

molecular-specific spatial mass density structural change. In this work, we mainly use the 



 

101 

Confocal-IPR and TEM-IPR techniques to probe nanoscale mass density fluctuations in the 

cells/tissues to study cancer, drug effects, or and brain abnormalities using a mouse model. First, 

the confocal-IPR technique was used to study the effect of probiotics in chronic alcoholic brain 

cells/components targeting it with different dyes/proteins. Interestingly, the IPR result shows that 

the statistical parameter standard deviation of the average IPR, (<IPR(L)>) or the disorder 

strength (Ld) increase in chronic alcohol-treated glial cells and chromatin of mice brain tissues 

while decreasing gradually when treated with probiotics (L. Plantarum) simultaneously. Here, an 

increase in the molecular specific degree of disorder strength (Ld) of chronic alcoholic mice brain 

glial cells, and chromatin might be due to the adverse effect of alcohol in brain cells which 

initially shows effects on the submicron scale quantified by the Confocal-IPR technique. 

Whereas alcoholic brains see an improved cognitive function in the presence of probiotics, L. 

Plantarum, which may help in soothing the brain cell’s structure resulting in decreasing the 

disorder strength (Ld). In conclusion, the reversible effect of probiotics in alcoholic brain 

cells/components could be a useful way to mitigate abnormalities in the brain due to alcohol, 

stress, or any other sedative drugs that need to be explored using this molecular specific light 

localization technique.  

Further, using TEM imaging we can target whole cells or nuclei with ~1nm resolution 

which facilitates the real view of the cell structures at the nanoscale which cannot be performed 

by a standard optical microscope. Thus, with the TEM-IPR technique, the nanoscale mass-

density or refractive index fluctuations in ovarian cancerous cells, as well as anti-cancerous drug 

effects on non-tumor forming OV202NTC and tumor forming OV202Sh1 cells, are quantified. 

Results show an increase in the standard deviation of mass density fluctuations or  

(<IPR(L)>)cells value from non-tumorous NTC to tumorous Sh1 cells while the 
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(<IPR(L)>)cells for two different drugs treated tumorous ovarian cells, Sh1-AACOCF3 and 

Sh1-MAFP, reduces from tumorous cells Sh1 nearly the same to the NTC non-tumorous cells. 

This quantification of the effectiveness of anti-cancerous drugs in ovarian cancer treatment using 

TEM-IPR could enhance better drug treatment modalities at its earliest. Although this study is 

based on ovarian cancer, however, the technique can be applied to the different cancerous cells 

to quantify the effectiveness of different anti-cancerous drugs in cancer treatment. Also, this 

method shows the effectiveness of the developed IPR method at the nanoscale level. Therefore, 

the proposed model is completely based on quantitative analysis and could be the most reliable 

method to study the drug effect in cancer treatment in the future.  

6.4 Future work in IPR and its applications 

The proposed novel approach of mesoscopic physics-based molecular specific light 

localization technique, IPR, using the TEM and confocal images can quantify the nano to 

submicron scale mass density fluctuations and provides numerical means to distinguish cancer, 

drug-effect in cancer treatment, or brain abnormalities. The complication in sample preparation 

and huge instrumentation setup of TEM which can probe samples up to ~1nm shows a potential 

application for the future to quantify the structural properties of different types of cancerous cells 

and the efficacy of drug effect in cancer treatment combining with IPR technique. Also, a further 

improved molecular mass density specific IPR map with a reduced noise could help us locate the 

most affected region in cells with cancer or any other abnormalities. This quantitative IPR 

technique will be more useful to the pathologist who uses stained cells/tissues for cancer 

screening, grade classification, and study drug-effect visualizing constructed IPR images.  

The IPR technique is universal to probe the structural disorder. Initially, it was used for 

cancer diagnosis, however, now we have extended and used it to probe brain abnormalities due 
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to stress, Alzheimer's, or alcohol using confocal imaging. The novel approach of studying 

probiotics' effect in the alcoholic brain where probiotics are used to soothe and increase the 

cognitive function of the brain can be quantified using a confocal-IPR technique for different 

types of commercially available probiotics to understand their effect on the brain cells/tissues. 

This will help to select the right probiotics at their earliest to enhance the cognitive function of 

the alcoholic brain before being too late for treatment, at this clinical research moment. Based on 

the results obtained for alcoholic brain tissue, we can elaborate our study using the confocal-IPR 

technique to study the structural change in brain cells/tissues at the nanoscale level due to stress, 

depression, and Alzheimer's in a mouse model. Recently developed super-resolution microscopy 

has a significant interest in imaging nanoarchitecture which can reach the sensitivity up to 5 nm. 

In the near future, we want to develop an algorithm based on mesoscopic physics-based light 

localization technique to quantify the structural properties in cells/tissues using super-resolution 

microscopy images and compare the obtained result with the existing TEM-IPR and confocal-

IPR results. We believe that this might help us to better understand the structural properties in 

cells/tissue at the nanoscale level. 

In summary, this research presents a key finding that the quantification of spatial 

structural disorder of the weakly disordered medium such as cells/tissues based on mesoscopic 

light transportation and light localization approaches are a promising technique to characterize 

early carcinogenesis, drug-effect, or brain abnormalities. Of course, the main goal of this 

research will direct the improvements in these spectroscopic techniques to use them in a clinical 

setting in a hospital, and further with large-scale clinical trials. At this point, it demands further 

extensive studies in larger sample sizes and clinical trials to achieve the goal of cancer diagnosis 

and treatment in the future.
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APPENDIX B 

MATLAB CODE FOR CALCULATION OF THE DEGREE OF THE DISORDER 

STRENGTH FOR PWS AND IPR TECHNIQUES 



 

121 

B.1 PWS program to calculate disorder strength (Ld) 

clear all 
x_max=1460; %maximum pixel cover in x-axis 
y_max=1920; %maximum pixel cover in y-axis 
fname = 'Name_of_file'; 
info = imfinfo(fname); 
num_images = numel(info); 
for k = 1:num_images % total number of wavelength cover  
     A = imread(fname, k, 'Info', info); 
     for j=1:y_max 
    B(1:x_max,j,k)=A(1:x_max,j); % xyz matric with x,y pixel size of 
camera and z wavelength  
    k %[k j] %[k,i,j, A(j,i)]; 
     end 
end 
      
for i=1:1460 
for j=1:1920 
      kmin=1; 
      kmax=150; 
      xBB=kmin:kmax; 
      yBB1=BB(i,j,kmin:kmax); 
      yBB2=squeeze(yBB1); 
      yBB4=yBB2'; 
    
     [b,a] = butter(15,0.5);  % 6th order polynomial 
     yBB=filter(b,a,yBB4);   % finally extracted reflection data 
     
      yBB=double(yBB4); 
      pfBB=polyfit(xBB,yBB,3); 
      yfBB=polyval(pfBB,xBB); 
      s1=yBB-yfBB; 
      s_srt=sort(s1);    
      s_up= mean(s_srt(1:7)); 
      s2=s1+ abs(s_up); 
       %s2=s1; % 
      %s2=s1+ pfBB(1) + 0.000001; 
      %s2=s1./max(s1); 
      %s2=(smooth(s2))'; 
      
      BBrms(i,j)=rms(s2);  
       
      qmin=kmin+500; % Starting wavelength to cover in nm 
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      qmax=kmax+500; % Ending wavelength to cover in nm 
      q=qmin:qmax; %wavelength region covered 
      kd=(2*pi./q)*1000;  % k vector 
      kd1=floor(length(kd)/2); %mid length of wave vector 
      kdm=kd(kd1); %mid value of wave vector 
      n0=1.38;  %refractive index 
       
       
      xcr=xcorr(s2); 
      y_v=log(xcr(150:154)/xcr(150)); 
      x_v=(1:5)*0.01915; 
      xx_v=x_v.*x_v; 
      ck=polyfit(xx_v,y_v,1); 
      CKm(i,j)=ck(2); 
      % Structural Disorder to be calculated 
      LD(i,j) = abs(((n0^2)*rms(s2)*ck(2))/((2*kdm^2))); 
end 
end 
%save DU145_t 
figure(401) 
subplot(2,2,1) 
%imagesc(BB(1:690-400,1:250-100,1)) 
imagesc(BB(:,:,1)) 
subplot(2,2,2) 
imagesc(BBrms) 
subplot(2,2,3) 
imagesc((CKm)) 
subplot(2,2,4) 
imagesc(LD) 
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B.2 IPR program to calculate <IPR> using confocal images 

clear all 
t=1; 
e=1; 
m=4; %sample box size                       % input 
n=m*m; 
n_i_max=250; %total # of boxes in row       % input 
n_j_max=250; %total # of boxes in column    % input  
k=0; 
nf=250;   % histogram division 
for n_az=1:6        
    n_ct=0; 
    
if n_az==1 
az =imread('name_of_files.tif');      % change the name of the img 
***************** 
end 
if n_az==2 
az =imread('d2a.tif');    %input       % change the name of the img 
***************** 
end 
if n_az==3 
az =imread('d3a.tif');    %input       % change the name of the img 
***************** 
end 
if n_az==4 
az =imread('d4a.tif');    %input       % change the name of the img 
***************** 
end 
if n_az==5 
az =imread('d5a.tif');    %input       % change the name of the img 
***************** 
end 
if n_az==6 
az =imread('d6a.tif');    %input       % change the name of the img 
***************** 
end 
az = double(az); 
az = double(az(1:1000, 1:1000));   % input   (careful about the color)  
h2=az(1:1000,1:1000);             % dimension of the image   % input 
h1=(255-h2); 
for n_i=1:n_i_max 
for n_j=1:n_j_max 
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[n_az n_ct+1] 
k2=0; 
for i2=1:m 
for j2=1:m 
k2=k2+1; 
hu(k2)= h1(i2+(n_i-1)*m , j2+(n_j-1)*m); 
end 
end 
hu_sum = sum(hu); 
if(hu_sum==0) 
    hu_sum=1; 
end 
hu_N = (hu/hu_sum)*1*length(hu); 
hu_N=4*hu_N;                     % amplification factor   % input 
for ii=1:n 
 d1(ii,ii)=hu_N(ii); 
end 
for i=1:n 
for j=1:n 
 a(i,j)=0; 
end 
end %n 
for k=1:n       
   a(k,k)=d1(k,k); 
end%if 
for k=1:n 
     if((k-m)>0) 
     a(k,k-m)=t; 
     a(k-m,k)=t; 
      end 
       
      if((k+m)<=n) 
     a(k,k+m)=t; 
     a(k+m,k)=t; 
      end 
       
      if((k-1)>0) 
     a(k-1,k)=t; 
     a(k,k-1)=t; 
      end 
       
      if((k+1)<=n) 
     a(k+1,k)=t; 
     a(k,k+1)=t; 
      end 
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end %k   
  
[v,d]=eig(a); 
ipr_egfr(1,1:n) = sum(v.^4); 
[n1,x1]=hist(ipr_egfr*n,nf); 
%[n2,x2]=hist(ipr_ht29*n,nf); 
%[n3,x3]=hist(ipr_csk*n,nf); 
n1_s=sum(n1*(x1(4)-x1(3))); 
n1=n1/n1_s; 
%n2_s=sum(n2*(x2(4)-x2(3))); 
%n2=n2/n2_s; 
%n3_s=sum(n3*(x3(4)-x3(3))); 
%n3=n3/n3_s; 
x1av = sum(n1.*x1*(x1(4)-x1(3))); 
%x2av = sum(n2.*x2*(x2(4)-x2(3))) 
%x3av = sum(n3.*x3*(x3(4)-x3(3))) 
 %figure(2) 
 %plot(x1,n1,'-*b')%, x2,n2,'-*m',x3,n3,'-*r') 
% axis([ 1.5 5 0 1000]) 
n_ct=n_ct+1; 
d_sline(n_ct)=x1av;           % all ipr values in one array 
d_ipr(n_i,n_j)=x1av;          % ipr matrix 
[nn,xx]=hist(d_sline,200); 
%n_ct 
end 
end 
figure(100+n_az) 
subplot(2,2,1) 
imagesc(h1); 
colormap(gray); 
subplot(2,2,2) 
imagesc(d_ipr); 
colormap(jet); 
subplot(2,2,3) 
hist(d_sline,200); 
subplot(2,2,4) 
plot(xx,nn); 
if n_az==1 
save name_of_files.dat d_sline -ascii       % input saved file 
************************** 
end 
if n_az==2 
save d2a.dat d_sline -ascii       % input saved file 
************************** 
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end 
if n_az==3 
save d3a.dat d_sline -ascii       % input saved file 
************************** 
end 
if n_az==4 
save d4a.dat d_sline -ascii       % input saved file 
************************** 
end 
if n_az==5 
save d5a.dat d_sline -ascii       % input saved file 
************************** 
end 
if n_az==6 
save d6a.dat d_sline -ascii       % input saved file 
************************** 
end 
figure, imagesc(d_ipr); colormap(jet) 
end 
 

B.3 IPR program to calculate <IPR> using TEM images 

clear all 
n_sample=1; 
m=20; %number of grids 
n_ij_max=148; %(1000/40) 
n_ct=0; 
t=1; 
e=1; 
n=m*m; 
k=0; 
nf=250; 
%amp=3; %smplificstion modified 
for n_az=1:n_sample       
     
if n_az==1 
az =imread('name_of_file.tif'); 
end 
% if n_az==2 
% az=imread('control_11.tif'); 
% end 
% if n_az==3 
% az=imread('control_16.tif'); 
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% end 
% if n_az==4 
% az=imread('control_18.tif'); 
% end 
% if n_az==5 
% az=imread('5.tif'); 
% end 
az =double(az); 
h1=az; 
for n_i=1:n_ij_max 
 for n_j=1:n_ij_max 
      
[n_az n_ct+1] 
k2=0; 
for i2=1:m 
for j2=1:m 
k2=k2+1; 
hu(k2)= h1(i2+(n_i-1)*m , j2+(n_j-1)*m); 
end 
end 
hu_sum = sum(hu); 
if(hu_sum==0) 
    hu_sum=1 
end 
hu_N = (hu/hu_sum)*1*length(hu); 
for ii=1:n 
 d1(ii,ii)=hu_N(ii); 
end 
for i=1:n 
for j=1:n 
 a(i,j)=0; 
end 
end %n 
for k=1:n    
    a(k,k)=d1(k,k); 
    %a(k,k)=amp*d1(k,k); % amplification modified 
end%if 
for k=1:n 
     if((k-m)>0) 
     a(k,k-m)=t; 
     a(k-m,k)=t; 
      end 
       
      if((k+m)<=n) 
     a(k,k+m)=t; 
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     a(k+m,k)=t; 
      end 
       
      if((k-1)>0) 
     a(k-1,k)=t; 
     a(k,k-1)=t; 
      end 
       
      if((k+1)<=n) 
     a(k+1,k)=t; 
     a(k,k+1)=t; 
      end      
end %k   
  
[v,d]=eig(a); 
ipr_egfr(n_az,:) = sum(v.^4); 
[n1,x1]=hist(ipr_egfr*n,nf); 
%[n2,x2]=hist(ipr_ht29*n,nf); 
%[n3,x3]=hist(ipr_csk*n,nf); 
n1_s=sum(n1*(x1(4)-x1(3))); 
n1=n1/n1_s; 
%n2_s=sum(n2*(x2(4)-x2(3))); 
%n2=n2/n2_s; 
x1av = sum(n1.*x1*(x1(4)-x1(3))); 
%x2av = sum(n2.*x2*(x2(4)-x2(3))) 
n_ct=n_ct+1; 
d_sline(n_ct)=x1av; 
d_ipr(n_i,n_j)=x1av; 
%n_ct 
end 
end 
  
end 
save c1a 
save c1a.dat d_sline -ascii 
figure(101), hist(d_sline,nf); 
figure(102), imagesc(d_ipr); 
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