
Mississippi State University Mississippi State University 

Scholars Junction Scholars Junction 

Theses and Dissertations Theses and Dissertations 

11-25-2020 

Development of a new instrument to assess the performance of Development of a new instrument to assess the performance of 

systems engineers systems engineers 

Niamat Ullah Ibne Hossain 

Follow this and additional works at: https://scholarsjunction.msstate.edu/td 

Recommended Citation Recommended Citation 
Ibne Hossain, Niamat Ullah, "Development of a new instrument to assess the performance of systems 
engineers" (2020). Theses and Dissertations. 1421. 
https://scholarsjunction.msstate.edu/td/1421 

This Dissertation - Open Access is brought to you for free and open access by the Theses and Dissertations at 
Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of 
Scholars Junction. For more information, please contact scholcomm@msstate.libanswers.com. 

https://scholarsjunction.msstate.edu/
https://scholarsjunction.msstate.edu/td
https://scholarsjunction.msstate.edu/theses-dissertations
https://scholarsjunction.msstate.edu/td?utm_source=scholarsjunction.msstate.edu%2Ftd%2F1421&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsjunction.msstate.edu/td/1421?utm_source=scholarsjunction.msstate.edu%2Ftd%2F1421&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholcomm@msstate.libanswers.com


Template C with Schemes v4.1 (beta): Created by L. Threet 11/15/19 

Development of a new instrument to assess the performance of systems engineers 

By 

TITLE PAGE 

Niamat Ullah Ibne Hossain 

Approved by: 

Raed M. Jaradat (Major Professor) 

Junfeng Ma 

Michael A. Hamilton 

Charles B. Keating 

Linkan Bian (Graduate Coordinator) 

Jason M. Keith (Dean, Bagley College of Engineering) 

A Dissertation 

Submitted to the Faculty of 

Mississippi State University 

in Partial Fulfillment of the Requirements 

for the Degree of Doctor of Philosophy 

in Industrial & Systems Engineering 

in the Department of Industrial & Systems Engineering 

Mississippi State, Mississippi 

November 2020 



 

 

Copyright by 

COPYRIGHT PAGE 

Niamat Ullah Ibne Hossain 

2020 



 

 

Name: Niamat Ullah Ibne Hossain 

ABSTRACT 

Date of Degree: November 25, 2020 

Institution: Mississippi State University 

Major Field: Industrial & Systems Engineering 

Major Professors: Raed M. Jaradat 

Title of Study: Development of a new instrument to assess the performance of systems 

engineers 

Pages in Study: 228 

Candidate for Degree of Doctor of Philosophy 

System engineering (SE) is a structured systematized methodology that deals with designing, 

managing, and optimizing systems performance. System engineers use the perspective of system 

thinking to make the successful use and retirement of engineering systems. Since the role of system 

engineers ranges widely from technical support to customer interaction, system design to 

management, there is a demand to develop a cadre of effective systems engineers. However, two 

critical questions are not well-defined in the extant body of SE literature: (1) What are the 

fundamental attributes of systems engineering that would influence the performance/effectiveness 

of individual systems engineer? (2) What are the corresponding leading indicators for appraising 

the performance of an individual systems engineer? To respond to these questions, this study 

proposes a new instrument to evaluate the system engineers' performance and subsequently 

identify their strengths and weaknesses within the complex system domain. The instrument is 

based on the set of performance indicators examining six fundamental system engineering 

attributes. The implication of this study would assist systems engineers in strengthening their 

system skills and reflects a state that can be improved through training, workshops, and education 

to prepare them to face the complex situations originating from the problem domain.  
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CHAPTER I 

INTRODUCTION 

Modern systems are designed and develop to fulfill needs or provide solutions for bettering 

organizations and overcoming persistent challenges stemming from increasing complexity. 

However, systems and their derivative problems are not likely to be settled in the near future rather, 

they are more likely to intensify in complexity. Perhaps, revolutions in technologies and 

proliferation of information are indicative of the future, which must be dealt with by systems 

engineers. Thus, there is a need to employ a “systemic approach” to better manage and navigate 

these complex system problems (Alfaqiri et al., 2019; Hossain & Jaradat, 2018). In response, 

Systems Engineering (SE) has developed as a distinctive discipline to address these challenges and 

concerns by using a systemic approach to ensure that individual elements, sub-elements, and 

associated phenomena are functioning harmoniously in a given operational environment to achieve 

an effective performance of the overall system. 

Dated back to World War II, there was a fundamental operational transformation in 

industrial and construction sectors around the world. During the war, a new engineering discipline 

is known as “Systems Engineering (SE)” evolved as a major new paradigm to countervail the 

complexities associated with newly emerging processes and systems(Gorod et al., 2008). Systems 

engineering has continued and developed as a distinctive specialized discipline since its inception. 

There have been rapid and continuing advances in this area in the last two decades ultimately 

targeted to address the intricacies stemming from increasingly sophisticated and diversified 
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complex systems permeating every aspect of society. Unlike traditional engineering, systems 

engineering is not grounded by a set of rigidly defined basic theorems anchored in science related 

to physical properties. Instead, SE has evolved as a set of best techniques for managing the ill-

structured complex problems based on circumstances (Hallam, 2001; Hossain and Jaradat, 2018). 

At the most basic level, SE is the implementation of systematized methodologies to guide the 

design, analysis, execution, and development of systems that addresses needs and resolve problems 

(Hossain and Jaradat, 2018). Systems engineering addresses the life cycle of product systems from 

conception to disposal, and it operates to trace and satisfy customer requirements within 

constraints of the system. In other words, from a fundamental perspective, systems engineering is 

an iterative process to ensure that the embedded elements and subsystems constituting the system 

are designed, balanced, and function in the most effective manner while integrating appropriate 

“ilities” (i.e., maintainability, sustainability, reliability, maintainability, supportability) and other 

attributes into the total engineering effort (Blanchard et al., 1990; Buede & Miller, 2016; Hossain 

& Jaradat, 2018; Shishko & Aster, 1995). 

System Engineering offers unique approaches to solve complex engineering problems 

where the traditional engineering approach fails to perform. As a result, system engineer performs 

different process, tools, and technologies at an organization to make the system efficient and the 

organization better. There are different role areas of the system engineers, and the role of system 

engineering must be understood at the commercial level to uplift the organization (Sheard, 1996). 

The different roles of the system engineer may include system designer, system analyst, technical 

manager, process engineer, and much more. As the different positions and roles can be critical, it 

becomes necessary to analyze the deficiencies of performances of the individual systems 

engineers. In this research, we develop a new instrument based on the text mining approach called 
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“grounded theory” coding. Sociologists Barney G. Glaser and Anslem L. Staruss’s in 1967 had 

initially developed Grounded theory. In “The Discovery of Grounded Theory” book, authors 

characterized the approaches related to the grounded theory and described a significant way to 

derive a hypothesis using qualitative data analysis.  

This chapter demonstrates an overview of the research by describing the objective of the 

study. Afterwards, the research questions and hypotheses are presented to address the existing gap 

in the literature. Finally, this chapter ended up with discussing the implication of the study from 

different standpoints to fully appreciate the research. 

1.1 Research Purpose 

In years past, each engineering discipline was seen as a self-contained domain. As systems 

and technologies increase in complexity, the need for interdisciplinary teams and engineers who 

can consider the system in a holistic way have become a standard requirement for any systems 

development activity. Systems engineers fill this role to lead interdisciplinary teams and consider 

the entire life cycle of the system during the development, operation, and disposition of a system 

(Hossain & Jaradat, 2018; Hossain et al., 2020). The International Council for Systems 

Engineering (INCOSE) developed a vision of system engineering for 2025 (INCOSE, 2014), in 

which an imperative includes “Enhancing education and training to grow a system engineering 

workforce that meets the increasing demand.” Education can either cover the breadth of systems 

engineering knowledge or be targeted based on the needs of the individual or organization. 

Building an effective workforce is not just attaining the quantity to meet the demand, but the 

quality of these engineers is even more important. INCOSE also publishes a Systems Engineering 

Handbook (INCOSE, 2015) and Systems Engineering Body of Knowledge (SEBoK) (SEBoK 

contributors, 2020)outlining the processes and core competencies of systems engineers. 
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Besides the processes and technical knowledge, what differentiates a great or successful 

systems engineer needs to be addressed. A study by Davidz & Rhodes (2005) looked at how to 

accelerate the development of senior or highly skilled systems engineers. It was posited that 

systems engineers would need to be quickly developed in order to handle the increasing 

complexity in the field of engineering. Frank & Carlo (2007) studied the characteristics of 

successful systems engineers. This study resulted in a list of 38 characteristics of a successful 

systems engineer. In 2008 the National Aeronautics and Space Administration (NASA) launched 

the Systems Engineering Behaviors Study to determine what qualities are shared by highly 

regarded systems engineers. The study involved interviewing and shadowing 38 highly regarded 

systems engineers in order to find common attributes. The researchers concluded that among the 

three axes of the Systems Engineering competency model – process knowledge, technical 

knowledge, and personal behaviors – the latter component was the most important determinant for 

the highly regarded systems engineers (Derro & Williams, 2009). 

While identifying the characteristics of a successful systems engineer is critical, training is 

one way to develop these skills. Systems engineering is a mix of art and science (Ryschkewitsch, 

Schaible, & Larson, 2009). The art of systems engineering involves creativity, leadership, 

communication, and engineering instinct referred to as technical leadership. In contrast, the science 

is implementing a disciplined, systematic engineering approach, process definition and control, 

and a clear understanding of the system and its interconnectivity. 

The studies discussed the need for highly skilled systems engineers and the characteristics 

of these engineers. While this is a start to building a highly-skilled systems engineering workforce, 

there is a gap in assessing the current workforce’s ability to perform the systems engineering work. 

For example, NASA has documented the capabilities that a systems engineer at NASA must have 
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at each performance level (Ryschkewitsch et al., 2009), but they have not developed a tool for 

assessing the capabilities of the systems engineers. Additionally, Frank & Carlo (2007) 

recommended the use of the identified characteristics of the successful systems engineer to develop 

a “test for assessing the Capacity for Engineering Systems Thinking” that could be used for 

“selection, filtering, screening, placement, and classification of candidates for a systems 

engineering position.”  

To address the current gap in the literature,  this study will provide an overview of 

performance measurement tools, the development of an instrument for assessing a systems 

engineer's performance, review the assessment and interpretation of the results, and then finally 

provide implications and conclusions. The outcome of this instrument would provide a unique 

profile for individual systems engineers and help the systems engineers to understand their 

weaknesses and strengths. Figure 1.1 illustrates the structure of the research inquiry. The research 

purpose is anchored by research questions and supports the research significance. 

 

Figure 1.1 Structure of the Research Inquiry 
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1.2 Research Questions 

Over the years, many issues have complicated the tasks of systems engineers. These 

include evolving legacy and off-the-shelf components, contextual specificity, extensively large 

structures, and lack of clarity in multiple expectations and outcomes (Sousa-Poza et al., 2014). 

Thus, there is a need to develop an effective system engineering workforce that can efficiently 

work in complex system problem domains. Mark Schaeffer, the former Principal Defense Systems 

and Director, Systems Engineering for the Office affiliated with Secretary of Defense (ATandL) 

made a statement to emphasize the importance of developing qualified systems engineers. He 

stated that “degreed workforce is a shrinking pool” and that we “need new ways to attract and 

develop system engineers (Schaeffer, 2005).” He also added, “An experienced, trained workforce 

is in short supply (Schaeffer, 2005).” This again stresses the importance of organizations 

developing a cadre of skillful systems engineers. This also suggests two important questions that 

are not well defined in the existing body of literature: 

(1) What are the fundamental attributes of systems engineering that would impact the 

performance of individual system engineers?  

To answer this question, the researcher applied Grounded Theory Coding (GTC), which is 

a qualitative data analysis methodology with the help of Nvivo 12 (QSR International) software in 

organizing, analyzing, and synthesizing the qualitative data. This leads to derive the six 

fundamental attributes of systems engineering. Based on these six attributes, the performance of 

the systems engineers can be assessed. 

(2) What are the leading indicators for appraising the performance of an individual 

systems engineer?  
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To answer this question, we conducted an extensive review (qualitative approach) on 

systems engineering literature to identify the corresponding performance indicators for each 

fundamental attribute. This review supports the development of a novel systems engineering 

performance measurement tool that captures and assesses the performance of individual systems 

engineers. This performance is based on assessing the leading indicators of the fundamental 

systems engineering attributes 

To summarize, the aforementioned two underlying themes were investigated with systems 

engineers, stemming from the questions that were phrased along the following sentence: how to 

develop an effective systems engineer? The in-depth analysis and justified response to these 

questions will provide a set of systems engineering attributes and corresponding performance 

measures, which can provide a strong ground to support the rationale of this instrument. In other 

words, there is no established empirical evidence that demonstrates to assess the performance of 

systems engineers, or at least it is not prevalent research discussed in the existing SE literature. 

This research investigates only the systems engineering population. 

1.3 Research Hypotheses 

The hypotheses have developed an attempt to explore the relationship of the systems 

engineering attributes to the level of performance for an individual system engineer. Following 

two hypotheses were developed to pursue the objective of the research: 

 

H1: There is a statistically significant relationship between the proposed systems engineering 

attributes and the state of performance of the individual systems engineer while engaging in 

systems engineering activities.  

Which is tested against the null hypothesis:  
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H0: There is no statistically significant relationship between the proposed systems engineering 

attributes and the state of performance of the individual systems engineer while engage in systems 

engineering activities. 

1.4 Research Significance 

1.4.1 Theoretical 

• The study addresses a critical gap in the existing academic literature. There is no instrument 

that is available in the current literature that could assess the performance of the systems 

engineers. This study provides a framework for how to develop an instrument to measure 

the performance of systems engineers. Therefore, the purpose of the framework is to lessen 

the confusion with respect to the fundamental attributes of systems engineering.  

 

• Although there is a wide gamut of theoretical and empirical studies focused on the analysis 

and characterization of performance measurement systems tools, there is scant research 

that has attempted to quantify the performance of individual systems engineers based on a 

unique set of determinants. To address this gap, this instrument assesses the skill of systems 

engineering based on the set of performance measurement indicators of six fundamental 

SE attributes. 

1.4.2 Methodological 

• Served as a ‘baseline snapshot” to assess the performance of systems engineers measuring 

in complex systems and their symptomatic problems.  

• This research offers a starting point to better understand what the skills are required to be 

effective systems engineers. 
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• Another contribution the research added from a methodological dimension is that the 

proposed instrument provided a set of different profiles that determine the state of 

performance for systems engineers. Each profile gives a clear description of how an 

individual would perform systems engineering activities. Although there are several 

methods, techniques, and tools attempted to talk about the performance of system 

engineering; however, these methods have not been able to measure the performance of 

individual system engineers. 

1.4.3 Practical 

• Appreciation of this framework will also serve as a benchmark to trace out the weakness 

of individual systems engineers. Once ‘weak’ areas are identified, they can serve to: 

➢ Support developmental areas for system engineers,  

➢ Identify potential vulnerabilities in performance of work assigned to systems 

engineers that may be performing ‘systems’ engineering activities for which they 

are not sufficiently prepared, and  

➢ Identify where additional/different skill sets might need to be added to supplement 

systems engineering activities. 

• The systems engineering instrument can be applied at multiple levels: individuals, 

organizations, teams, and others. It helps individuals/ cadre of systems engineers to 

strengthen their weak area and fit themselves to face the complexities stemming from the 

problem domain in where they are anticipated to be deployed.  
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• Further, this instrument could serve as “a point of comparison “to inform the development 

of individual and organizational development programs and training programs to increase 

systems skills in systems engineering. 
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CHAPTER II 

LITERATURE REVIEW 

Traditional Systems Engineering (TSE) deals with single complex system problems in 

order to optimize the performance of the system. Currently, the representation of SE consists of 

different interpretations, including life-cycle based approaches, management technology 

paradigms, process-problem archetypes, discipline-oriented paradigms, and systems thinking and 

non-systems thinking approaches (Kasser & Hitchins, 2011). While this suggests a somewhat 

fragmented discipline, more rigorous development of the historical roots and evolution of 

development might serve to better understand two central issues. First, how this discipline arrived 

at its present state. Second, what this historical basis portends for future development of the 

discipline. 

Although SE has been introduced in the defense and space industries, efforts are being 

made to extend the application of the discipline to different fields as well (Shenhar and Bonen, 

1997). However, regardless of having diversified applications of SE, many scholars and 

practitioners continue to publish their research under the domain of the SE discipline. The state 

of art of SE literature is a somewhat fragmented compilation of apparently modified perceptions 

of related domains. The main purpose of this chapter is to trace the chronological development of 

SE from 1926-2017. To achieve this purpose, the chapter will explore the evolution of the SE 

field by segmenting the discipline development timeline into three different intervals and 

examining the significant developments within those intervals. It is anticipated that this view will 
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offer the reader a comprehensive map of the development of SE and highlight the involvement of 

past contributors to the progression of SE. The objectives of this chapter are as follows: 

• Trace the historical development of SE from 1926-2017 based on insights derived 

from a histogram analysis. This would provide a comprehensive overview of SE domain. 

• Discuss the roles of systems engineers prevalent in SE literature. This would serve 

as a baseline snapshot to invoke a dialogue that possibly contributes to fruitful to the future 

advancement of SE field and unified the roles and responsibilities of the systems engineers 

in order to derive common language about roles, which might aid prevalence of discussion 

about the context and nature of systems engineering. 

• Lessen the confusion pertaining to SE and its derivative terms. This would allow 

the practitioners to understand the applicability of SE terminology and how these 

nomenclatures are embedded in SE definition. 

• Discusses the limitations and challenges of the systems engineering. 

To achieve the objectives of the chapter, more than one hundred and fifty different 

resources have been coded and analyzed. The spectrum of sources includes scholarly journal 

articles, conference proceedings, letters, technical papers, special features, books, and book 

chapters. Since it is difficult to trace all works pertaining to SE, related works that contributed 

most significantly to the field of SE (based on the frequency of citations) are used as a primary 

criterion for the selection of publications for inclusion in the analysis. To trace the progression 

history of SE, we considered Ferris (2007 a,b,c), Gorod et al., (2008), Brill (1998) as grounded 

references where Ferris (2007 a,b,c) explored the early history of SE during pre and post-world 

war era. Gorod et al. (2008) and Brill (1998) traced the history of SE from 1950-1995. This 
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research provides a comprehensive review of SE history from 1926-2017 and traces the 

development of SE discipline over the years. 

Although not all SE works are included, the underlying overview originating from this 

synthesis will provide a good understanding of the field as a whole. Even though there is not a 

detailed discussion of all the references, all 150+ sources are incorporated into the analysis. 

Grounded Theory Coding (Charmaz & Belgrave, 2012) techniques were employed with the use 

of Nvivo 12 (QSR International, 2018) software that helped in structuring the large dataset. 

The construction of the histogram analysis, consisting of three main intervals, is presented 

below. The examination of the intervals is followed by the progression history of SE pertaining 

to those three intervals. From the results of the analysis, this section concludes with a discussion 

of the implications of the analysis for the SE discipline along with the avenue of future research. 

2.1 Progression Trajectory of SE Discipline and Relevant Analysis 

2.1.1 Historical Perspective on the Development of Systems Engineering Discipline 

In this section, the design and execution of the histogram analysis are developed (results 

summarized in Figure 2.6). The following topical areas were selected to guide examination of the 

literature to comprehend the histogram analysis: (1) definitions of SE, (2) characteristics for SE, 

(3) principles and axioms for SE, and (4) different perspectives and methodologies supporting SE. 

The histogram analysis provides a comprehensive discussion of different aspects of SE on a 

chronological development scale, rather than other potential organizing constructs (e.g. sector, 

geography, theme, etc.). Chronological tracing of the SE discipline development is offered as a 

path to potentially different insights and future implications based on the time-based development 

of the SE discipline. To create a histogram analysis, a time range of 91 years was used, the 

difference between the highest value (2017) and the lowest value (1926). This range would cover 
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the historical context of SE from its inception to 2017 through three intervals, namely, (SE 

introductory, SE development, and SE revolutionary periods). Figure 2.1 provides the interval 

classifications for the histogram. 

 

 

 

Figure 2.1 Classification of SE Interval for Histogram Analysis 

The purpose of the histogram plot is (1) to provide quantitative information about the 

underlying frequency distribution of literature spanning the SE discipline history from 1926-2017 

and (2) to discuss the main themes and challenges for the SE discipline that are derived from each 

interval. The horizontal axis in the histogram signifies the timeline of the study (classes), whereas 

the vertical axis embodies the relative frequency of contribution activity for each class (see Figure 

6). This organization offers one of many possible ways in which the literature might be organized 

and examined. However, although not absolute, the inclusion of both frequency and content 

themes provides a clearer picture of the discipline development from the perspective sought in 

this paper. 

2.1.2 Intervals 

Based on the histogram analysis and the grounded theory coding, three main intervals 

were derived. Each interval reflects the development of SE history during that period of time. The 

first interval, labeled as the ‘SE Introductory’ interval, is from 1926-1960, the second from 1961-
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1989 labeled as ‘SE Exploratory’ interval, and the third labeled as ‘SE Revolutionary’ interval is 

from 1990-2017. For each of the intervals, an interpretation of the major contributions to the body 

of SE is identified and discussed. 

2.1.2.1 Interval I (1926-1960): Introduction of SE 

SE is entrenched in older management archetypes that were used during the construction 

of numerous ancient projects. Among these projects were the pyramids in Egypt, the water 

distribution and irrigation systems in Mesopotamia, and the infrastructure expansion in Greece 

and Rome, as well as the more modern 19th-century canals and railroads (Kasser, 2002). The 

construction of John Ericsson’s iron-clad battleship from the Civil War era presented another 

example of historical evidence of the use of SE (Engstrom, 1957). The earliest foundations of SE 

can be traced to Smuts (1926), who first coined the term “holon” to describe the “wholeness or 

the integration of the elements of a system.” The concept of holism, which developed from this 

term, is still considered to be one of the fundamental attributes of SE. 

Prior to World War II, military weapons and equipment were not as complex as those in 

use and development today; thus the reliability of equipment was not as central of a concern. 

However, during World War II, electronic equipment became so sophisticated that reliability 

became a serious concern. For instance, due to poor radar reliability, numerous battleships were 

sunk at the beginning of the war in the Pacific. Along the same line, during the Korean War, 

bombing missions were halted due to the inability to effectively operate the complex electronic 

weapon systems (Brown, 1953). The complexity of the equipment exceeded the capabilities of 

service operators to maneuver the apparatus properly during operation, resulting in reliability 

becoming a prime concern of military applications (Romig, 1956). In order to address this issue, 

the American military sought help from large numbers of engineers and scientists to develop a 
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technique to deal with these increasingly complex problems. This joint military-civilian endeavor 

was named Operation Research. The accumulated knowledge and experience that resulted from 

World War II stimulated the application of the systems approach in different domains. A 

noteworthy example of the invention during World War II were “black boxes” used on aircraft. 

Demand for multiple types of electronic gear essential for airborne operations triggered the 

development of widespread types of elemental devices, commonly known as “black boxes” 

(Engstrom, 1957). These inventive avionic architectures included multiple systems that were 

synchronized with the aircraft system to perform individual functions (Tolk et al., 2011). 

During the 1930s and 1940s, a rapid advancement took place in the field of technology, 

especially in space and control engineering, power distribution, and communication systems. 

Reflections of these technological advances led to thinking about building structures that could 

be made even more robust by combining different interdisciplinary engineering approaches. This 

interdisciplinary systematic approach was actively incorporated in radio, telephone, and 

television industries during the late 1930s and ushered in the evolution of modern 

telecommunications networks. For instance, the Radio Corporation of America (RCA) and Bell 

Telephone Company aimed to expand the television transmission domain and long-distance 

telephone network using new broadband technologies. However, these experimental projects 

failed to progress due to the interruption caused by World War II. Consequently, in place of the 

telecommunications industry leading the SE discipline development, the Department of Defense 

(DoD) was placed ‘front and center” in leading SE development. 

World War II was arguably the first-time practitioners realized the importance of 

managing and synchronizing various complex systems to achieve long-term objectives. As an 

outcome, “quantitative management” techniques were developed out of World War II. In the post-
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war era, many perceived that the techniques developed during the war could be extrapolated and 

applied to other fields as well. For instance, after World War II, the scientists and researchers 

from RAND (research and development) corporation, Bell Telephone Laboratories, and RCA 

capitalized on the war-time experiences in advancement and expanded the technology of modern 

telecom and electrical power systems (Tolk et al., 2011). The RAND Corporation, which 

originated in 1946 by the United States Air Force, developed a “systems analysis” methodology, 

which is still considered to be one of the fundamental concepts of SE. RCA also deployed the 

“systems approach” for the advancement of electronically scanned, black, and white television 

(Engstrom, 1957). In 1943, to further advance the Aircraft Warning Communication Service, the 

National Defense Research Committee (NDRC) formed a systems committee in conjunction with 

Bell Laboratories to conduct a project named C-79 (Buede and Miller, 2016). Bell Laboratories 

was comprised of three different groups; systems engineering, design and development, and pure 

research (Keller, 1950). Bell Telephone Laboratories was perhaps the first organization to coin 

the phrase “systems engineering” (Schlarger, 1956). 

The first operational intercontinental ballistic missile (ICBM) program, known as the 

Atlas ICBM program, also bears significance to the inception of SE. Before the Atlas ICBM 

program, the prime airframe manufacturers were only contractors accountable for designing 

military aircraft and supervising all the subcontractors under the authority of the U.S. Air Force. 

As a result, there was a scarcity of resources to produce the military weapons for the U.S. Air 

Force. In the early 1950’s, when further development of an ICBM capability became necessary, 

the Air Force again looked to enlist the services of the airframe manufacturers. Subsequently, the 

Strategic Missile Evaluation Committee (codenamed Teapot Committee) was formed to assess 

various missile development projects all over the U.S (Hallam, 2001). The primary charge of this 
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committee was to track the duplication of the implementation strategy and to appraise the 

competence of airframe prime contractors in order to develop a system requiring substantial 

electronic and computational capabilities. Several thousand skilled engineers, scientists, 

contractors, subcontractors and specialists were involved in the Atlas program. The Teapot 

committee (lead by Simon Ramo) contributed to the establishment of SE as a discipline by 

developing an administration responsible for monitoring and coordinating all the necessary 

activities for subcontractor design, development test, integration, verification, and validations 

(Hallam, 2001). Following the success of the Atlas program, scholars from different disciplines 

extrapolated the technique followed in the military program to management science, and SE 

evolved as a budding discipline at that time. 

After World War II, MIT Radiation Laboratory, known as Rad Lab, published a series of 

books, which discussed the application and evolution of radar systems during the war. Although 

the series did not cite the term “systems engineering”, they did highlight how a holistic approach 

could be applied to an engineering system (Ferris, 2007c). In 1950, the first formal endeavor to 

teach SE was made by G. W. Gilman, who was the Director of systems engineering at Bell 

Laboratories at Massachusetts Institute of Technology (MIT) (Hall, 1962). In 1955, the biologist 

Ludwig Von Bertalanffy along with economist K.E. Boulding, physiologist R.W. Gerard, and the 

mathematician A. Rappoport developed the idea of generalizing ‘Systems Thinking’ or ‘Holistic 

Thinking’ to any kind of system; their ideas became known as “General Systems Theory (GST)” 

(Bertalanffy, 1968). This theory emerged due to the inadequacies of science alone to offset the 

challenges of complexity and confronted the effectiveness of reductionist based approaches for 

increasingly complex systems. 



 

19 

They presented the applicability of general system theory for any kind of system and 

suggested a universal language and laws that could be used in different areas with the objective 

of global acceptance. GST also engender the concept of systems thinking (ST) that facilitated 

higher levels of cognitive skills to better understand the context of complex problems. Some of 

the GST objectives included: 

• To formulate a theory that represents underlying principles for all systems, irrespective of 

the context of the system. 

• To explore the identical principles, laws, and models in many disparate fields, and to aid 

the successful transformation of these axioms from one field to another, and assimilate these 

understandings to avoid unnecessary duplication and ambiguities between fields. 

• To encourage the harmony of science through enhancing communication among the 

practitioners (Checkland & Howell, 1993:93) 

There are some other theories, such as Game Theory and Information Theory (Shannon 

and Weaver, 1949) that somewhat resemble or are related to the themes of general system theory, 

and these theories were widely adopted during this period of time. During and after World War 

II, a number of projects were undertaken in the U.S. to defend its people and protect its borders, 

such as the Analyze air defense system (1937) and Nike-line-of-sight -anti-aircraft missile system 

(1945-1953). The complexity and stochastic nature of the projects necessitated a systemic, 

holistic approach to successfully accomplish the project goals. 

Schlarger (1956) was the first person to formalize a brief outline of the SE process 

encompassing planning, analysis, optimization, integration, and testing. He also suggested the 

adaptation of different types of systems analysis methods such as game theory, decision theory, 

linear and dynamic programming, probability and statistics, information theory, symbolic logic 
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in system analysis and optimization process. Ramo, Engstrom, and Schlager portrayed SE as a 

significant method to deal with challenges in identifying and satisfying customer needs. The 

principle behind their proposition was that the integration of satisfactory components does not 

always produce a satisfactory system to achieve the desired goal. Engstrom (1957, p. 1) provided 

a basic definition of SE writing that “This method is best described by stating the two major 

requirements for its success: first, a determination of the objective that is to be reached; and 

second, a thorough consideration of all factors that bear upon the possibility of reaching the 

objective, and the relationships among these factors.” Although Engstrom first introduced the 

concept of “interdisciplinary approach” in the SE process, he did not explicitly use the phrase 

“interdisciplinary approach” but rather coined the term “collaborative work.” He amplified the 

idea of “interdisciplinary approach” by mentioning that a system project needs a wide range of 

expertise from disparate fields so that the system can be adequately assessed from different 

perspectives. 

Olthuis (1954) probably was one of the early advocates who introduced the idea of a 

holistic perspective of top-down approach to design, emphasizing the need to draft the conceptual 

design of the entire system prior to explicit details or knowledge of the constituent elements. For 

instance, most of the communications missile subsystems of military systems were designed from 

a holistic perspective (Spanke, 1954). Likewise, in the area of acoustics, the necessity for a 

holistic approach was recognized for the proper dissemination of acoustic energy in the audible 

space to have a better performance of audio reproduction. By the same token, a holistic view of 

acoustic communication was also identified in the development of voice communication devices 

for incorporating in an aircraft system, where all the necessary components and communication 

channels were integrated together (Hawley, 1956). In another case, the invention of jet aircraft 
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challenging air traffic control systems emerged in response to the need for complex system 

versatility (Krishner, 1956). This versatility created a need for a holistic approach to integrating 

ground to ground, ground to air, and air to air communication systems to enable a trouble-free air 

traffic channel. In this SE development interval, a number of articles (Speaks 

1956, Okress et al. 1957) were published that illustrate the necessity of considering the 

engineering work in a holistic technical manner (i.e., consider the technical environment of the 

operating system as a whole instead of focusing on particulars). Steiner (1959) described the need 

for a systemic, holistic approach to elicit the design requirement and necessary solutions for 

Boeing commercial aircraft. 

The first book on SE was written by Goode and Machol in 1957 and was titled Systems 

Engineering – An Introduction to the Design of Large-Scale Systems. This book follows a theme 

that shows how systems thinking and approaches facilitate the design of equipment. The overlap 

between management and engineering was also acknowledged by Goode and Machol in early 

1959 when they wrote: “Management has a design and operation function, as does engineering 

(Goode and Machol 1959, p. 514).” The commonality and dissimilarity between the roles of SE 

and project management have also been discussed in various publications, which will be discussed 

in the third interval (SE Revolution). 

A survey of the literature from (1926-1960) shows that: (1) World War II and several pre-

war government projects had a significant impact on the inception of SE, (2) late in the 1950s, the 

focus toward holistic approaches to deal with increasingly complex systems and their fundamental 

problems became apparent and (3) several pervasive concepts pertaining to SE such as “system 

analysis” techniques, “systems engineering process” and “system thinking” were introduced. 

Figure 2.2 highlights the main themes in the interval I. 
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Figure 2.2 Main Themes for the 1926-1960 SE Development Timeline 

 

2.1.2.2 Interval II (1961-1989): Exploration of SE 

In the 1960s-1990s, SE had significant growth along with the widespread application. 

During this interval, the diversified characteristics of this discipline encountered some successes 

as well as failures and gave rise to debates based on the subjective application of the discipline. 

Various aspects of SE and its process can be better understood from the literature of Arthur Hall. 

In 1962, Hall introduced a concept of “systems engineering methodology” or “process of systems 

engineering” through three fundamental principles. First, SE definition is composed of diverse 

paradigms such as management technology, process-oriented approach, and problem-solving 

methodology. Second, to have a better understanding of complex system problems, a systems 

engineer has to appraise a system from three different perspectives: the physical or technical, the 

business or economic, and the social (Gorod et al., 2008; Hall, 1962). Third, SE is designed 

specifically to fulfill customer requirements in the most effective way based on available 

information. Hall’s SE methodology consists of five phases: 1) system studies or program 

planning; 2) exploratory planning, which embodies problem definition, determining the 

objectives, synthesizing and analyzing the system followed by selecting the best system and 
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communicating the output; 3) development planning, which is replications of phase 2 in a more 

comprehensive way; 4) studying the development, integration, and testing of the system; 5) 

current engineering which refers to the operational activities while the system is functioning and 

being refined (Buede & Miller, 2016, p. 7). 

Shinners (1967) recommended that to solve a system-oriented problem, a systems 

engineer must grasp the fundamentals of the system problem, elicit the overall requirements and 

objectives of the system, and understand the comprehensive knowledge concerning the 

constraints inherent in the system. Shinner’s problem formulation and solving methodology are 

somewhat aligned with the earlier advice recommended by Chestnut (1965). Chestnut 

emphasized that to explicate the problem, systems requirements must be derived from the user-

specified need. While Shinners offered a set of seven general strategies in conjunction with the 

concept of a feedback loop to explore a large complex system, Chestnut proposed an optional 

feedback process to compare results being attained to meeting the customer’s requirements. 

Jenkins (1969) provided a basic definition of SE that somewhat refers to the system 

integration or holistic perspective of a system. He defined SE as “the science of designing 

complex systems in their totality to ensure that the component subsystems making up the system 

are designed, fitted together, checked and operated in the most efficient way.” Jenkins explained 

that the SE approach deals with local authorities, organizational norms, whole organizations, and 

hardware systems to weave together. His definition served as a grounded reference for further 

advancement regarding all aspects of SE. 

In the 1970s, several SE theories and models were introduced in the SE literature. 

Following Von Bertalanffy’s work on GST, Ackoff in 1971 opposed the idea of analyzing 

systems by segregating the systems into sub-elements. Rather, he proposed that the entire system 
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should be treated as a whole. He asserted that the interdependencies among the elements within 

systems should be considered aggregately. Thus, he concluded that reductionist-based approaches 

are not adequate for understanding these overall interactions and interdependencies. In addition, 

Ackoff addressed several caveats and limitations in reductionist approaches whenever they are 

applied to real-life complex situations. Similarly, Beer (1972) introduced the term “meta-system” 

to designate the integration of systems by means of a cybernetic perspective. He developed the 

viable system model (VSM), which consisted of five main functions, including the productive 

function, coordination function, operation function, development function, and identity function. 

Beer felt these functions were indispensable when ascertaining the viability (continued existence) 

of a complex system and that together they deliver a broad understanding of the mutual 

interdependencies among the elements of the systems. The insights drawn from Beer’s concept 

provided a noteworthy contribution to realize the structure of a complex system. 

At the beginning of 1971, a series of ten lectures titled “Systems Concepts for the Private 

and Public Sectors” was presented at the California Institute of Technology by several scholars, 

with a primary purpose to criticize the many perspectives of the reductionist approach (Ramo, 

1971). Ramo articulated that the systems approach focuses on analyzing and designing a system 

from a holistic perspective while considering all possible parameters from both societal and 

technological standpoints rather than dealing with different individual elements or parts. Miles 

(1971) stated that system approaches work well when the objectives of the system are clearly 

defined, and the necessary technologies are adequately developed. The lectures were later edited 

and published by Miles in 1973. Miles identified the following steps needed for the systems 

approach: (1) goal definition or problem statement (2) objectives and criteria development 
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(3)systems synthesis (4) systems analysis (5) systems selection (6) systems implementation 

(Brown, 1953). 

A year later, Chase (1974) emphasized the importance of the development of proper 

semantics and lexicology for the systems concept. He asserted that language difficulties might 

cause barriers to effectively communicate on topics pertaining to the system concept and that 

work was needed in this area. A remarkable contribution came from Blanchard and Fabrycky 

(1981), who introduced the concept of “System Development Life Cycle (SLDC).” The concept 

is based on Hall’s (1962) methodology (problem identification; problem definition; planning and 

designing of a system; construction and disposal). They described the steps of the system life-

cycle as “starting with the initial identification of a need and encompassing the phases (or 

functions) of planning; research; design; production or construction; evaluation; consumer use; 

field support; and ultimate product phase-out (Blanchard & Fabrycky, 1981, p. 19).” This concept 

is still upheld as one of the underlying principles of SE. 

In 1974, The Defense Standard of the United States (Military Standard) introduced the 

concept of “Systems Engineering Management Plan (SEMP).” They described SE as practical 

use of scientific effort that incorporates all the “ilities” to meet the technical objectives of the 

system. This observation can be mapped into the management-oriented paradigm. According to 

MIL-499A (1974), SE is defined as “engineering efforts to:(1) transform an operational need into 

a description of system performance parameters and a system configuration through the use of an 

iterative process of definition, synthesis, analysis, design, test, and evaluation; (2) integrate 

related technical parameters and ensure compatibility of all related, functional, and program 

interfaces in a manner that optimizes the total system definition and design; (3) integrate 

reliability, maintainability, safety, survivability, human, and other such factors into the total 
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technical engineering effort to meet cost, schedule, and technical performance objectives (MIL-

499A (1974), p. 9).” 

Wymore (1976) indicated that an interdisciplinary approach is an essential component of 

the SE discipline, which is governed by three fundamental attributes “modelling human 

behaviour, dealing with complexity and largeness-of-scale, and managing dynamic technology” 

(Wymore, 1976, p. 78]. Wymore also extended the application of SE by adding the education, 

health, and legislative systems to the paradigm along with the existing systems of communication 

and construction (Checkland, 1981). In 1984, M’Pherson (1986) brought another dimension to 

the SE definition by proposing the term “hybrid methodology.” He stated that SE is “a hybrid 

methodology that combines policy analysis, design, and management. It aims to ensure that a 

complex man-made system, selected from the range of options on offer, is the one most likely to 

satisfy the owner’s objectives in the context of long-term future operational or market 

environments” (IEEE P1220 1994, p. 130-133). 

In 1984, Jackson and Keys (1984) made a notable contribution by classifying the problem- 

solving methodologies of SE based on unitary (pursuit of a definite set of objectives) and pluralist 

(pursuit of multiple, potentially diversified goals) approaches. Unitary approaches are applicable 

for simple systems where the context of the problem is static and can be solved by a predetermined 

set of techniques. For unitary problems, SE tools, hard system methodologies and operation 

research techniques can be applied. However, pluralistic problems are more dynamic, uncertain 

and complex in nature, and thus new techniques are needed. Clemson’s (1991) writings in the 

same year underscored the importance of exploring complex system problems from different 

standpoints that are mutually supportive of the axioms derived from cybernetics. In 1986, Perrow 
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(1984) made a contribution to the SE field by exploring the stochastic nature of failure in large 

complex systems. 

A survey of the literature within this interval (1961-1989) indicates that: (1) there was a 

clearly recognized need and the corresponding shift in paradigms to holistic-based thinking and 

approaches to address complex system problems, (2) several definitions were proposed that 

embodied numerous characteristics of SE, (3) some fundamental models were developed 

recognizing SE life-cycle and management-oriented concepts, and (4) several problem-solving 

methodologies were developed to address the SE problem domain. The timeline in Figure 2.3 

below shows the main themes in interval II. 

 

Figure 2.3 Main Themes for the 1961-1989 Timeline 

 

2.1.2.3 Interval III (1990-2017): Revolution of SE 

This interval witnessed the widespread advancement of SE. Several perspectives and 

concepts were articulated, and the field was in full progress during this period. Many studies and 

investigations were tempted to synthesize the definitions of SE from different standpoints and 

tried to establish the objectives of SE. Another stream of research focused on developing a SE 

body of knowledge encompassing different SE methodologies, unifying the systems theories, 
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developing various models/processes, and building standardized frameworks. A significant 

number of presentations, conferences, articles, symposiums and journals pertaining to SE were 

also made available. To disseminate the SE principles and practices and provide better solutions 

to complex societal and technical challenges, a non-profit organization, The International Council 

on Systems Engineering (INCOSE), was established in 1990. In 1998, a dedicated SE journal 

titled “Systems Engineering” started its proceedings to cover the full spectrum of research 

germane to SE and System of Systems (SoS). The following themes can be derived from SE 

during this period: 

• Management grounded technology 

• Requirement driven process and SE process (life-cycle) 

• Interdisciplinary approaches 

• Problem-solving 

2.1.2.3.1 Theme I: Management Grounded Technology 

Although many works have been published that brought about a sense of management 

technology in SE processes, Sage (1995) was the first who explicitly incorporated the term 

“management technology” in the definition of SE. Based on his definition, “SE is the management 

technology that controls a total life-cycle process, which involves and which results in the 

definition, development, and deployment of a system that is of high quality, trustworthy, and cost-

effective in meeting user needs” (Sage 1995, p.3). His definition was based on three fundamental 

levels: SE management, SE methodology, and SE methods and tools. The three fundamental 

levels involved three key points: structure, objective, and function. 

Sailor (1990) stated that SE comprises both technical and management processes that 

transform the customer’s need into the desired system design. In distinction, whereas technical 
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processes involve the systemic transformation of the consumers’ operational needs, management 

processes coordinate different design and configuration control groups and encompass handling 

risk, schedule, and budget associated with the task. Similar to Sage’s definition of SE, the 

Department of Defense used the term “management” in their SE definition, but they also 

incorporated the concepts of “interdisciplinary approach” and “life cycle process.” 

2.1.2.3.2 Theme II: Requirement Driven Process and SE Process (Life Cycle) 

Forzberg and Mooz (1992) described SE as “The application of the system analysis and 

design process and the integration and verification process to the logical sequence of the technical 

aspect of the project life-cycle.” In 1994, Shenhar (1994) introduced the ideas of “management” 

and “interdisciplinary” in the definition of SE. He mentioned that SE is a technology-oriented 

management process that encompasses a sequential order of activities, including 1) identifying 

the customer need and convert it into system performance parameters and ultimate system design, 

2) tracing and allocating the functional requirements, 3) selecting the appropriate system concept 

and design, 4) integrating and testing the system architecture and finally 5) evaluating the 

system’s performance. Another process-oriented SE definition came from Shishko (1995), who 

wrote that SE is “iterative” in nature. The iterative nature assists in compensating for undesirable 

consequences and ensuring higher level qualities of the system (Shishko,1995; p. 4].‘Iterative 

process’ is used in many SE definition (ECSS-E-10-01, 1996). Martin (1996) called SE a system 

development process that works to achieve optimal system balance among all sub-elements. 

Skyttner (1996) defined “SE as a method by which the orderly evolution of man-made systems 

can be achieved.” Gardy (2000) described SE as a process-oriented approach that transforms a 

set of intricate technical needs into feasible solutions via detailed design and manufacturing 

processes. In his work, Arnold (2000) mentioned that every organization must follow a standard 
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SE process, and SE is traditionally associated with a single process, standardized objectives and 

a course of development actions. A simple definition of SE came from Hitchins (2003, p. 309) 

“the art and science of creating systems.” NASA handbook described SE as a decomposition 

(design), recomposition (creation/integration), and operation of a system (Kapurch, 2010). 

A somewhat different SE definition came from Hallam (2001) who used the term “pull 

process” and mentioned that SE is a customer requirement driven “pull process” where a customer 

demands influence the flow of system development activities. In the updated version of the 

military standard handbook MIL-STD-499B, SE was defined in terms of standard processes, 

system analysis, and control. According to MIL 499B, systems engineering is an interdisciplinary 

approach including the set of technical endeavor to develop and verify an integrated set of system 

people, product, and process solutions in order to meet customer need” Kossiakoff et al.,(2011, 

p. 3) used the term “guide” in his definition: “The function of SE is to guide the engineering of 

complex systems,” where “to guide” means direct and lead towards achieving the best solution. 

This definition stresses the aim of SE as a process of selecting the optimal solution out of many 

possible alternatives. 

Wymore brought a new terminology in the definition of SE. He defined SE as a “discipline” 

instead of a process. Wymore (1994, p. 5) argued that SE is not only a process but also a distinctive 

discipline, where existing recognized SE processes are only applications of the SE discipline. His 

definition included “the intellectual, academic, and professional discipline, the principal concern 

of which is to ensure that all requirements for bioware/hardware/software systems are satisfied 

throughout the life-cycles of the systems.” To support his argument, Wymore illustrated the 

definition of SE discipline provided by Kline (1995, p. 3):“a discipline possesses a specific area 

of study, a literature, and a working community of paid scholars and/or paid practitioners.” 
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Hazelrigg (1996) provided a more specific definition of systems engineering and introduced the 

term “information-based approach.” He emphasized that mathematical intensity in the systems 

engineering approach fostered better decisions pertaining to system design and synthesis. The 

general threads running through these definitions are that SE is a top-down approach that 

encompasses both technical and managerial efforts to integrate the diversified processes to 

optimize system performance. Additionally, SE is a requirement driven process where a 

customer’s need is transferred into a requirements statement in order to develop the fundamental 

attributes of a functional physical design. 

2.1.2.3.2.1 Theme III: Interdisciplinary Approach 

Several other SE definitions developed in this interval that echo the theme of 

“interdisciplinary approach.” IEEE P1220 (1994, p. 12) defined SE as “an interdisciplinary 

collaborative approach to derive, evolve, and verify a life-cycle balanced system solution that 

satisfies customer expectations and meets public acceptability.” The Capability Maturity Model 

Integration (CMMI, 2001) described SE as an interdisciplinary collaborative approach that 

encompasses technical and managerial efforts to transfer the customer requirement into product 

solutions. Jerome Lake asserted that “systems engineering is an interdisciplinary, comprehensive 

approach to solving complex problems and satisfying stakeholder requirements (Martin, 1997, p. 

244).” Abdallah et al. (2014) provided a more contemporary definition of SE, mentioning that SE 

integrates all the disciplines to pursue a well-structured technical effort and governs the design, 

development, and verification of a system to satisfy the customer need. Grasler and Yang (2014) 

also pointed out the attribute of an interdisciplinary approach in the SE process to fulfill the 

stakeholder need. Shenhar (1994) added another layer to the definition of SE by including the 

concept of the interdisciplinary approach, holistic perspective, and management process. SE deals 
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with identifying the operational needs of customers, forecasting operational and technological 

processes, developing new concepts, and design by considering the overall system life cycle. 

Rechtin and Maier (2000) emphasized that there is a close link between SE and decision making, 

suggesting that SE is a multidisciplinary design-oriented process where decisions are made based 

on their impact on the system as a whole. A comprehensive definition of SE came from INCOSE 

(2006) as follows: “Systems Engineering is an interdisciplinary approach and means to enable the 

realization of successful systems. It focuses on defining customer needs and required functionality 

early in the development cycle, documenting requirements, then proceeding with design synthesis 

and system validation while considering the complete problem.” The thrust of this movement was 

recognition of the interdisciplinary nature of the SE approach. 

2.1.2.3.2.2 Theme IV: Problem Solving 

Hitchins-Kasser-Massie (2007) developed a framework that clarified the reasoning behind 

overlapping SE and management and offered a concept for planning fundamental problem-solving 

to offset the challenges associated with a complex system. This framework also paved the way to 

having a broader understanding of the SE body of knowledge. The framework consists of three 

dimensions. The vertical dimension encompasses five layers: socioeconomic, industrial systems 

engineering, business systems engineering, project or system level, and project or system level, 

whereas the horizontal dimension signifies the sequential phases of the system life cycle. Activities 

are grouped based on the corresponding vertical layer and horizontal life cycle to represent the role 

of the systems engineer. The third dimension is still under development, which describes the 

problem-solving activity. 

Literature shows that there are overlap and correlation between systems engineering 

processes (SEP) and the generic problem-solving processes. However, the set of activities of the 
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SEP and problem-solving processes are fairly distinct in nature. For instance, the steps involved 

in the generic problem-solving processes (OVAE, 2005; GDRC, 2009) are different in contrast to 

the general SEP approaches such as ANSI/EIA-632 (1994), generic V-model and SIMILAR 

(Bahill & Gissing, 1998). This common misunderstanding between problem-solving and SEP can 

be resolved by understanding the SE emphasis on the holistic perspective of generating a human-

made system as a solution to a defined problem. A common meta-SEP can be developed by uniting 

the Hitchins (2007), and Mar (2009) approaches into the following 10-step sequence. This 

sequence combines the problem-solving process and the solution recognition process together. 

This 10-step sequence is feasible if we consider the systems engineering activity as a project (see 

Figure 2.4). 

In 2005, Hitchins (2005) pointed out an interesting analogy between “soft system 

methodology (Checkland, 1981)” and the general problem-solving paradigm. For a better solution 

to the ill-structured problem, Hitchins, in his model, combined two different paradigms: an 

exploration of the initial problem and development of the technological solution. The model 

consists of a set of activities that address the background of the problem and develops the 

technological solution by considering the systems from a holistic perspective. 
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Figure 2.4 10-step Problem Solving Process 

Another contribution came from Vencel and Cook, 2005. They explore the typology of 

complex system problems, defined the entire problem space, and categorized it based on seven-

dimensional problem attributes the problem of interest, the nature of the problem, level of the 

problem, phase of the problem, problem complexity, structuredness, and dynamicity (Vencel and 

Cook, 2005, p.8). The importance of identification of the appropriate problem space also 

discussed in the literature by Stevens et al., (1998). Flood and Jackson (1991) also made a 

noteworthy contribution through the development of a systemic meta-methodology named as 

Total Systems Intervention (TSI). TSI directs the stakeholder through a systemic process to select 

the appropriate problem-solving procedure based on the context and situation of the problem, 

following through phases of creativity, choice, and implementation. To address the formulation 

of the problem, Ford (2010) proposed a framework that traces the difference between subjective 

and objective complexity and categorizes the problem by 

• Level of difficulty of the problem. (Easy, medium, ugly, and hard) 

• Structure of the problem. (well structured, ill-structured, wicked) 
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• Level of complexity of the problem. (Depends on the number of variables and the 

types of interdependency among the variables associated with the problem) 

For more in-depth exploration of the problem-solving approach, interested readers are 

referred to study the nine-system model by Kasser et al. (2014), seven principles for systems 

engineering solution system developed by NASA and summarized by Hitchins (2007, p.85). 

Another stream of research during this period focused on investigating the similarities and 

dissimilarities between systems engineering and project management. In many cases, systems 

engineering and project management are considered to be different disciplines. Mooz and 

Forsburg (1997) recognized some significant reasons for this distinction: 

 

• INCOSE expertise is concerned with technical solutions, whereas PMI consultants are 

oriented towards schedule and cost management. As a consequence, project managers 

are more concerned about managing cost and schedule without taking into account the 

technical aspect, while system specialists, who always pursue the superior feasible 

solutions, rarely address budget and schedule. 

• The nomenclature and terminology of INCOSE and PMI are different. 

• INCOSE and PMI work autonomously and rarely participate in each other’s 

conferences. PMI members are seldom affiliated with INCOSE and vice versa. 

Further discussion of the above arguments is illustrated by Roe (1995). He indicated that 

tech specialists observe the systems from the inside, and they are not concerned about other 

systems elements unless they affect their own design task. The project managers, on the other 

hand, consider the system from outside with a broader viewpoint acting as the advocate for the 
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system. Project managers deal with all systems elements that would impact overall system 

performance/budget/schedule. They are also concerned about how to offset the constraints of 

system elements to ensure that projects reach their goals in an economical way within stipulated 

time limits. However, in reality, project management and systems engineering are not 

independent disciplines. 

We have identified this interval as a “revolutionary interval,” acknowledging that there was 

a significant generation of new concepts, approaches, frameworks, and formal organizations 

established with a view to disseminating the knowledge of SE. Several applied fields, such as the 

system of systems (SoS), and MBSE, also evolved during the revolutionary interval. These fields 

are especially pertinent to most engineering-governed approaches. The main contributions of the 

1990-2017 timeline are shown in Figure 2.5. 

 

Figure 2.5 Main Contributions of 1990-2017 Timeline 

The next section presents the histogram analysis of SE development through three main 

intervals, with each interval representing a particular stream in the development trajectory of SE. 

Following the histogram analysis, based on the Ground Theory Coding (GTC) approach, the main 
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characteristics of SE are derived, which will be broadly discussed in chapter III (research and 

methods). The GTC application was comprised of three levels of coding: open coding (free form 

coding of ideas), axial coding (clustering of codes into a hierarchy of relationships), and selective 

coding (a reformulation of coding into higher-level core categories) to derive the central theme 

from the large unstructured dataset. It is also imperative to mention that we collected the 

frequency of the publication from “Scopus” database by inserting input as “systems engineering” 

in the search field and filtered the number of publications based on the timeline. Scopus database 

is more comprehensive than any other databases as others include only ISI indexed documents 

(Yong-Hak, 2013. The Scopus database covers almost twelve million different types of research 

documents from a variety of publication houses. 

2.1.2.3.3 Histogram Analysis 

Figure 2.6 shows the histogram analysis of SE. The horizontal axis in the histogram 

signifies the timeline of the study, and the vertical axis displays the frequency of publications 

pertaining to SE for that time period. 

It is evident from the histogram analysis that the final interval (1990-2017) possesses the 

highest frequency and the highest cumulative value signifying that this interval experienced the 

peak of SE development. A larger number of presentations, conferences, journals, symposiums, 

and research work related to SE was published in this interval. One of the most significant events 

was the establishment of the International Council on Systems Engineering (INCOSE). INCOSE 

was founded in an effort to unite the research germane to diversified branches of SE under the 

same umbrella and to disseminate knowledge from the field of SE. Many universities and schools 

introduced systems engineering into their academic curriculum as well. There will be many future 
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opportunities where the knowledge and information gained during this interval will be used to 

explore and solve various complex system challenges. 

The (1961-1989) interval is identified as an exploratory interval. This interval is considered 

to be a transition from a discussion of fundamental theories to the development of real-world 

applications, tools, processes, and approaches. The advancement resulting from this interval set 

the foundation to support further development of systems engineering. The concept of SE became 

the focus of attention and achieved widespread acceptability across the world. The histogram 

shows that the frequency of publications increased in this interval compared to interval 1; even 

though there is some fluctuation, a strong growth trend is still apparent. The first interval (1926-

1960) is recognized as the introductory interval of SE. In this interval, practitioners began thinking 

beyond the traditional engineering discipline to solve complex problems and moved towards more 

holistic and integrated approaches. 
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Figure 2.6 Histogram Analysis of SE (1926-2017) 

2.1.2.3.4 Co-Citation Analysis 

Co-citation analysis visualizes the relationships between sources/documents based on 

their citations (Barnett, 2004). This bibliographic coupling is conducted based on graph theory 

(Saukko, 2014). A co-citation map comprises of a set of nodes representing different research 

sources/documents (e.g., articles, conferences papers, letters, and technical reports) and a set of 

edges signifying the cooccurrence of nodes listed in different sources of the corresponding map 
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(Barnett, 2011). More precisely, co-cited sources/documents appear together in the reference lists 

of other documents (Fahimnia et al., 2015). 

In order to perform co-citation analysis, a .NET file contained 278 sources was developed 

and imported into Gephi for the visual representation. The visual output didn’t show any 

discernible pattern due to the random characteristics of the coordinate. To better represent the map, 

we further ran a Fort Atlas driven algorithm and adjust the values of repulsion strength, node size, 

gravity, speed, and other embedded graphical properties. Fort Atlas driven algorithm is well known 

for its clear and legible graphical output. Figure 2.7 depicts the Force Atlas layout of the co-citation 

map of 278 nodes. The co-cited articles are linked with each other, while the poorly connected 

nodes deviate from the center and move toward the periphery (Mishra et al., 2017).  

 

Figure 2.7 The Force Atlas Layout of the 278-node Network 
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2.1.2.3.5 Data Clustering: Literature Classification 

The nodes in the map can be further clustered by using the data clustering technique. Data 

clustering technique is conducted based on modularity tool in Gephi, that groups the same kind of 

articles with respect to interrelation and collaboration pattern (Radicchi et al., 2004; Mishra et al., 

2017). The foundation of the modularity tool is anchored in the Louvain algorithm. The modularity 

index of a partition ranges from -1 to +1, which illustrates the density of the links between clusters 

and inside the clusters (Fahimnia et al., 2015). The equation for measuring modularity index is 

streamlined in the following equation (Fahimnia et al., 2015). 

𝑍 =
1

2𝑛
∑ [𝑋𝑎𝑏 −

𝑝𝑎𝑝𝑏

2𝑛
] 𝛿(𝑟𝑎, 𝑟𝑏) (2.1) 

 

where Xab signifies the weight of the edge between nodes a and b. pa represents the sum of 

the weights of the edges attached to node a (pi = P
b Xab), ra is the cluster community to where 

vertex a is assigned. δ(ra,rb) is equal to 1 if s = t and 0; otherwise . After running 

the algorithm for 278-network nodes, three major clusters were identified, as reported in Figure 

8. 

The description of each cluster provided in Table 2.1 
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Figure 2.8 Structure of the Network with Three Clusters 

 

Table 2.1 Three Major Clusters and their Area of Research 

Cluster Area of research 

Cluster 1 (yellow circle) SE theory, axioms, and conceptual studies 

Cluster 2 (green circle) SE methodologies, processes, and policies 

Cluster 3 (blue circle) SE application and implementation 

  

2.1.2.3.6 Other Analysis 

Scopus is a well-recognized database (Scopus, 2017). The application of SE in each 

discipline is depicted by the bar chart in Figure 2.9. It is apparent from the figure that SE has the 

widest application in the engineering discipline, followed by computer science and mathematics. 

The length of each bar represents the number of publications which appeared in 1926-2017. The 

bar chart's total percentage value is above 100 percent because, in some cases, the same 
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publication may belong to different disciplines. The 41 definitions from 1926-2017 were also 

analyzed using Qiqqa (2017) – a tool to generate a fit model that connects the common themes 

based on the coding analysis. Figure 2.10 shows the interconnectivity between the generated eight 

common themes and the pertinent definitions stated by several researchers. 

 

 

Figure 2.9 Discipline Wise SE Publications 
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Figure 2.10 Common Themes of SE Definitions 
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2.2 Roles of Systems Engineer 

During the Helix Project in 2013-2015, extensive interviews were conducted with systems 

engineers who nearly all noted that SE had only been defined as a separate discipline for the 

previous 15-20 years, though its functions had been performed for much longer (Pyster et al., 

2014). The systems engineers participating in this study were largely members of the Department 

of Defense and Defense Industrial Base community, where SE has been most prevalent due to the 

complexity of systems involved in projects. SE functions and system engineers’ roles within other 

organizations have generally been less clearly defined for an even shorter time, owing to the lack 

of consensus about what they entail. Sheard, 1996 noted that “No two authors have the same 

definition of what roles systems engineers have.” Engineers, organizations, and researchers over 

the past 60 plus years have contributed to a continually evolving understanding and practice of SE 

(Souza et al., 2009). Because of the recognition of SE as a critical role in the future of the fast-

growing hi-tech organizations, this confusion has been addressed from different perspectives in 

the literature by several authors. 

Considering SE through the education paradigm, Shenhar, 1994 describes it as a 

“multidisciplinary function of design element integration.” The research was conducted through 

interviews with project managers, experienced systems engineers, and engineering managers to 

aid in the design of academic curricula in SE. Common themes, such as inconsistencies in 

definitions and systems engineers’ roles being holistic in nature, are identified and addressed. The 

author notes a distinction on the latter point that a holistic view is “multidisciplinary in nature, 

rather than disciplinary or interdisciplinary (Shenhar, 1994)”.  

The roles of program managers and systems engineers are discussed as being closely 

related to the point of being components of a single career, potentially resulting in executive 
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positions in large laboratories and systems institutions. Acknowledging this fact leads to defining 

the roles of systems engineers as both technical and managerial, eventually defining SE 

management as the application of scientific, engineering, and managerial efforts towards the 

following sequence of activities: identify operational need > transform into system description > 

integrate technical parameters and components > integrate factors into total engineering effort > 

validate with clients. 

Shenhar’s analysis identified the systems engineer’s need for close customer contact in 

operational need identification and system validation. This need is present in the systems 

engineer’s role as need identifier and system marketeer. With this as the first role outlined in the 

paper, the second is architect and chief conceptual designer. This role integrates a manager’s 

leadership component into a high-level system conceptualization combining customer and system 

requirements with system configuration. The third role is integrator in which the systems engineer 

coordinates the interdisciplinary input of various engineers and team members and evaluates 

overall system performance and feasibility. Role number four is analyst and data processor. This 

role mandates the collection of a wide variety of data to be used in decision making. Problem-

solving and decision-maker is role number five. With complex systems comes the need for 

compromises and resolution of conflicts that arise from disparate interests involved in system 

creation (Nur et al., 2016; 2020c). The sixth and final role described by Shenhar (1994) is that of 

manager and administrator, in which the systems engineer must leverage excellent interpersonal 

skills to elicit the performance and requisite work products from system contributors. 

In another study, Roe (1995) considered SE from the perspective of the project manager. 

This perspective arises from the counterintuitive, sometimes view that the project manager 

impedes the systems engineering process and is, therefore, to be avoided or overcome in pursuit 
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of project completion. This view may be the product of the friction between the “hyper-focused” 

reductionist concerns of specialist engineers and the generalist systems perspective concerns of 

the project manager. The deep subject knowledge of the engineering specialist is needed for 

individual component performance; however, in the interest of delivering a balanced system, the 

project manager must integrate components into the whole.  

Being a more ubiquitous position than systems engineers, especially outside the defense 

and aerospace industries, project managers may perform SE activities as they work to build 

cooperation and inherently have a whole-enterprise view. Roe, 1995 noted that “SE provides the 

technical glue that makes separate design disciplines and subsystems function together,” that it 

bridges system development implementation and validation. The author goes on to note that while 

the project manager may perform SE activities in lieu of the systems engineer position being filled, 

the two positions often exist simultaneously. In this case, it is important to understand the 

distinction. Here it is noted that the two have similar technical knowledge breadth, that the systems 

engineer has substantially more technical knowledge depth, and the project manager has 

substantially more management expertise. This distinction suggests the development of an 

interdependent relationship where the responsibilities of the two roles overlap. Requirement 

engineering verification and validation engineering would fall under project management, while 

system design and technical management would fall under SE (see Table 2.2 for role descriptions). 

Further research widened the scope of SE roles to encompass, for example, those ascribed 

to the project manager by Roe (1995). Six years after the founding of INCOSE, Sheard (1996) 

produced a paper proposing a set of SE roles based on a review of the content of Systems 

Engineering, the Journal of INCOSE inaugural issue, and the Washington Post newspaper’s “High 

Tech” classified advertisement section. The author explored questions such as whether systems 
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engineers are specialists or generalists, whether SE might be a set of life-cycle roles or a program 

management discipline, and even whether it is a discipline or simply an attitude. The latter question 

addresses the issue of whether a systems engineer must be trained and appointed as such or if any 

engineer performing SE activities is a system engineer. 

Sheard’s research produced a set of 12 roles filled by systems engineers. These roles were 

later adopted and supplemented by Pyster et al. (2014). The full list can be seen in Table 2.2. The 

twelfth role on the initial list was “classified ads” system engineer as a result of being a “catch-

all” for a wide variety of computer systems-related roles listed in the aforementioned newspaper 

classified section. The author posits this “…May have developed from the need for programmers 

to adopt broader viewpoints, first as software engineers and later looking at whole computer 

systems” (Sheard, 1996). Regardless of the source, this further illustrates the depth of confusion 

surrounding the roles of systems engineers. 

Table 2.2 Roles of Systems Engineers (Pyster et al., 2014) 

 Role Description 

1 Requirements Owner 

Individual responsible for translating customer 

requirements to system or sub-system 

requirements; or for developing the functional 

architecture. 
 

2 System Designer 

Individual responsible for owning or 

architecting the system; common titles may 

include chief systems engineer or systems 

architect. 
 

3 System Analyst 

Individual who provides modeling or analysis 

support to system development activities and 

helps to ensure that the system as designed 

meets the specification. 
 

4 
Verification & Validation 

Engineer 

Individual who plans and conducts verification 

and validation activities such as testing, 

demonstration, and simulation. 
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Table 2.2 (continued) Roles of Systems Engineers (Pyster et al., 2014)  

 Role Description 

5 
Logistics/Operations 

Engineer 

Individual who performs the ‘back end’ of the SE 

lifecycle, who may operate the system, provide support 

during operation, provide guidance on maintenance, or 

help with disposal. 

 

6 Glue Among Subsystems 

Individual who is responsible for a holistic perspective 

of the system; this may be the ‘technical conscience’ or 

‘seeker of issues that fall in the cracks’ – particularly, 

someone who is concerned with interfaces. 
 

7 Customer Interface 

Individual who is responsible for coordinating with the 

customer, particularly for ensuring that the customer 

understands technical detail and that a customer’s 

desires are, in turn, communicated to the technical 

team. 
 

 

8 
Technical Manager 

Individual who is responsible for controlling cost, 

schedule, and resources for the technical aspects of a 

system; often someone who works in coordination with 

an overall project or program manager. 
 

 

9 
Information Manager 

Individual who is responsible for the flow of 

information in a system development activity; specific 

activities may include configuration management, data 

management, or metrics. 
 

10 

Process Engineer 

Individual who is responsible for the systems 

engineering process as a whole, who also likely has 

direct ties into the business. 
 

11 Coordinator 

Individual who is responsible for coordination amongst 

a broad set of individuals or groups who help to resolve 

systems related issues. 
 

12 
Systems Engineering 

Evangelist 

Individual who promotes the value of systems 

engineering to individuals outside of the SE community 

- to project managers, other engineers, or management. 
 

13 Detailed Designer 

Individual who provides technical designs that match 

the system architecture; an individual contributor in any 

engineering discipline who provides part of the design 

for the overall system. 
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Table 2.2 (continued) Roles of Systems Engineers (Pyster et al., 2014) 

 Role Description 

14 
Organizational/Functional 

Manager 

Individual who is responsible for the personnel 

management of systems engineers or other technical 

personnel in a business – not a project or program – 

setting. 

 

15 Instructor/Teacher 

Individual who is responsible for providing or 

overseeing instruction of SE discipline, practices, 

processes, etc. 
 

16 Program/Project Manager 

Individual who performs program or project 

management activities, who is not directly responsible 

for the technical content of a program,but works 

closely with technical experts and other systems 

engineers. 
 

Roles 1-11 from (Sheard, 1996) 

Roles 13, 14, and 16 from Helix (Pyster et al., 2014) 

Roles 12 and 15 (Sheard, 2000) 

 

As the SE roles have become more clearly defined, other research delved into abstract 

questions such as what sort of individual will excel in these roles and if this indicates predisposition 

or if such traits can be instilled through education and experience. One such research was 

conducted by Frank (2000). The three-stage method, because of this research’s presence in two 

other referenced works in this literature review, is described here in detail.  

1. Pilot study: 11 in-depth, open, non-structured interviews were held with key figures 

in the Israeli hi-tech industry 

2. Observer-as-participant, on-site observations in two hi-tech companies, 17 semi-

structured interviews, and content analysis of 14 SE related lectures 

3. Survey—pilot questionnaire (N=31) and final questionnaire (N=276) 
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According to Frank (2000), “The method by which a complex problem is dismantled to 

components allegedly facilitates handling complex assignments and questions, but when doing so, 

we lose the perception of the larger whole.” Engineering systems thinking is the term ascribed to 

the trait that enables an engineer to perceive and manage the whole; therefore, succeeding as a 

system engineer. 

Frank’s study began with no hypothesis and no definition of systems thinking, but rather 

the assumptions that senior systems engineers possess systems thinking capability and supervisors’ 

opinions are a valid information source. Hypotheses as to the definition of systems thinking were 

built and updated based on these assumptions through content analysis (i.e. defining categories 

based on repeated elements and examination of frequencies). 

The research resulted in eighty-three categories that break down as follows: 10 categories 

refer to the definition of engineering systems thinking. Four categories deal with various types of 

systems thinking. Fifteen categories related to the knowledge required by systems engineers. 

Thirty-one categories cover the skills demanded of systems engineers. Fifteen categories explore 

personal aptitudes demanded from systems engineers. Eight categories examine processes by 

which the system thinking capability is developed. These results, while significant, do little to offer 

a concise, clear understanding of engineering systems thinking. 

To further this research, Frank (2006) combined his previous work on engineering systems 

thinking with two more studies to develop the idea of capacity for engineering systems thinking 

(CEST), which consists of the knowledge, abilities, cognitive characteristics, and personal traits 

of successful systems engineers. The second study consisted of interviews with and observations 

of mechanical engineering students and teachers in a “creative intro to mechanical engineering” 
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course. The third study was a second phase of the original study in which the survey questionnaire 

was delivered as an interview to 46 systems engineers. 

Employing triangulation in the analysis, this research resulted in a refined list of 31 

interconnected and interrelated abilities, characteristics, and traits that accompany high CEST. To 

illustrate the relative characteristic, the author references two items from the list: “not getting stuck 

on details” and “ambiguity tolerance” which are related in that a lack of details may create 

ambiguity. Other items from the list include “understanding the whole system,” “thinking 

creatively,” “requirements analysis,” “using simulations and systems engineering tools,” 

“management skills,” and “ask good questions.”  

The significance of the study lies in the conclusion that CEST may be acquired or 

developed through relevant SE experience (e.g. job rotation, training, systems work roles) over the 

long-term in the career of a systems engineer. It is, however, noted that this may not necessarily 

be the case in that the author found instances of veteran engineers who never attained CEST, 

suggesting that “talent” may be a factor. In conclusion, Frank (2006) acknowledges the lack of a 

quantitative tool for assessing CEST and the need for its development. 

Frank (2006) was once again employed as the first study in a combined study of three 

works; this time in Frampton et al., (2007) where a list of cognitive characteristics, aptitudes, 

personality traits, and experiences of successful systems professionals operating in different 

organizational and national cultures was developed. The three studies are conducted in different 

parts of the world: USA, Australia, and Israel. This large dataset brings diversity to the study and 

suggests the characteristics of successful systems engineers are global constants rather than 

regional variables.  
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The second study, conducted in Australia, analyzes interviews of IT architects with a 

minimum of five years’ experience selected for their involvement in highly regarded, sufficiently 

large-scope projects. The research questions in the second study were as follows: What do IT 

architects think makes them and other IT architects good at their job? What do IT architects look 

for when choosing to train and hire other IT architects? The third study, which serves as a contrast 

to the preceding two, focuses on whole brain thinking and its effects on the performance of systems 

professionals. The author describes the research method as “…a process of truth estimation in the 

face of incomplete knowledge which blends information known from experience with plausible 

conjecture” (Frampton et al., 2007). In other words, the relevant information is extracted from 

literature reviews, colloquia, and personal experience. 

Triangulation was used to analyze the results of all three studies and determine the most 

significant characteristics. The authors note the asymmetry of some portions of the three studies 

as challenging, not overwhelming. Multiple passes were made through results until consensus 

could be reached between all three authors, generating a combined list of 38 characteristics of 

successful systems engineers, systems architects, and IT architects. As other authors have noted, 

it is unlikely that a single person will possess all 38 characteristics. Given that a systems engineer 

is likely to possess a portion of the identified characteristics and be employed based on such, 

command of a portion of the list is sufficient in being considered “successful.” The list is shown 

in Table 2.3. The authors note that this list is not necessarily comprehensive, nor does it indicate 

which characteristics are “necessary” or if excess amounts of one may compensate for lacking 

another. 
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Table 2.3 38 characteristics of successful systems engineers, systems architects and IT 

architects (Frampton et al., 2007) 

1 
Understanding the whole system and seeing 

the big picture 
20 Management skills 

2 Understanding interconnections 21 Building and controlling the work plan 

3 Thinking creatively 22 Defining boundaries 

4 
Understanding systems without getting stuck 

on details 
23 

Taking in consideration non-engineering 

factors 

5 
Understanding and seeing implications of 

proposed changes to the system 
24 Good human relations 

6 
Understanding a new system/idea/concept 

immediately upon presentation 
25 Autonomous and independent learner 

7 
Understanding analogies and parallelisms 

between systems 
26 

Curious, innovator, initiator, promoter, 

originator 

8 Understanding systems synergy 27 Willing to deal with systems 

9 
Understanding the system from multiple 

perspectives 
28 See failures not as “the end of the road” 

10 Analyzing the need 29 Integrity 

11 
Analyzing and/or developing the concept of 

operations 
30 Self confidence 

12 Requirement analysis 31 Discipline 

13 
Generating the logical solution functional 

analysis 
32 Analytical 

14 Generating the physical solution 33 Outgoing/extrovert 

15 “seeing” the future 34 Interdisciplinary knowledge 

16 Using simulation and SE tools 35 Conceptualizing the solution 

17 Optimizing 36 Ask good questions 

18 Using systems design considerations 37 Broad experience 

19 
Conducting trade studies and providing 

several alternatives 
38 Education 

 

In 2007 NASA’s Jet Propulsion Laboratory (JPL) published a paper detailing both the 

importance of systems engineers to NASA missions and the criteria by which they could be hired 

and cultivate their SE workforce (Jansma & Derro, 2007). In what the authors describe as a 

competency model, three axes, including Technical Knowledge, Process Knowledge, and Personal 

Behaviors, are presented for the measurement of systems engineer performance.  
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The Technical Knowledge Axis is demonstrated by engineers with an appreciation for and 

grasp of the technical details of systems engineering at all levels. They have a wide breadth of 

technical understanding with the deep knowledge of a specialist in one or two relevant product 

domains.  

The Process Knowledge Axis encompasses ten SE functions as follows in Table 2.4. 

Table 2.4 The Process Knowledge Axis of Systems Engineers 

Life-Cycle Dependent Activities Management and Oversight Activities 

1.Develop System Architecture 

2.Develop and Maintain Requirements 

3.Develop and Maintain Interfaces 

4.Analyze and Characterize the Design 

5.Verify and Validate 

1.Conduct Technical Reviews 

2.Manage Technical Resources 

3.Participate in Risk Management 

4.Manage and Control the Design 

5.Manage the SE Task 

 

The Personal Behavior Axis was defined by a trained psychological and organizational 

behavior professional, observing nine highly regarded systems engineers. Information gathered 

during the observation was analyzed to isolate common themes. The resulting behavior list is 

shown below in Table 2.5. 
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Table 2.5 The Behavioral Axis of Systems Engineers 

1. Leadership Skills 
 

a. Ability to influence 

b. Ability to work with a team 

c. Ability to trust others 

d. Communicates vision and 

technical steps needed to reach 

implementation 

e. Mentors and coaches less 

experienced systems engineers 

 

2. Attitudes and Attributes 
 

a. Intellectual self-confidence 

b. Intellectual curiosity 

c. Ability to manage change 

d. Remains objective and 

maintains a healthy skepticism 

3. Communication 
 

a. Advances ideas and fosters 

open two-way discussions 

b. Communicates through 

storytelling and analogies 

c. Listens and translates 

information 

4. Problem Solving and 

Systems Thinking 
 

a. Manages risk 

b. Thinks critically and penetrates 

a topic in a methodical manner 

 

The development of NASA missions is one of the most severely complex system 

environments faced by organizations today. Owing to this fact, NASA researchers have produced 

several papers in the pursuit of a better understanding of SE and better programs for the 

development of systems engineers. In another such example, Bay et al. (2009) admitting a 

“common understanding of systems engineering [is needed]” describes SE as being both an art 

and a science. The authors relate the art aspect to technical leadership or life cycle-spanning 

management of the system’s technical aspects and integrity. This idea is elaborated to include a 

mix of “broad technical domain knowledge, engineering instinct, problem-solving, creativity, 

leadership, and communication (Bay et al., 2009)”.  

Systems management, related to the science of SE, is noted to be more concerned with 

efficient system development and operation. NASA Systems Engineering and Integration Manager 

Chris Hardcastle describes his job as being to “bring order from chaos.” In addition to great 
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complexity, NASA systems life cycles have the potential to span decades, thus requiring the 

systems engineer to appropriately manage extensive technical documentation for his or her 

successor. 

The specific roles described by Bay et al. (2009) are divided into three system life cycle 

phases: concept, development, and operations. While working within each phase, the system 

engineer’s roles change to fit the specific needs. The concept phase entails systems architecture 

and design as well as planning for the operation. Validation and verification are emphasized in the 

development phase as the systems engineer works to ensure the technical requirements are met 

and carried into system operation in the final phase. This is when the systems engineer’s role 

changes to focus on mission success.  

Another NASA SE study conducted by Lumpkin (2009) at Kennedy Space Center centered 

on five systems engineers being interviewed and observed to ascertain the behaviors and attributes 

that make them successful. The interview questions in three groups—context, relation to self and 

personal awareness, and the future of systems engineering—were asked in an initial and follow-

up interview. The resulting five behaviors were validated by the interviewees and mirror the 

Personal Behavior Axis of the JPL results to which it adds Technical Acumen. This dimension of 

technical competence and diverse experience is accounted for in the JPL paper under the Technical 

Knowledge Axis. 

The final NASA study addressed in this literature review builds on the previous three. In 

this study, Derro and Williams (2009) examine the behaviors of some of the agency’s top-

performing systems engineers. Each of these individuals was identified as being a “go to person.” 

In total, 38 systems engineers were identified, interviewed, and shadowed by other NASA 
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personnel with backgrounds in either engineering, psychology, organizational behavior, human 

resources, or training development. 

The previously developed three-axis SE competency model is employed to guide the study. 

The findings are thus similar to those of Jansma and Derro (2007), emphasizing the personal 

behaviors axis. The authors claim this is “where maximum leverage is gained…[what] separates 

the merely good SEs from the highly successful SEs.” These personal behaviors are divided into 

the same five themes as in Lumpkin 92009). The component competencies: however, are either 

slightly different or unique as the list is expanded from containing 21 to 40. 

Another perspective of systems engineer success is produced in a paper investigating the 

relationship between years of experience and proficiency in SE tasks (Souza et al., 2009). In what 

the authors describe as “a discipline that applies holism to understand and solve problems,” there 

are components, referred to as artifacts, of education and experience that contribute to the 

maturation of each systems engineer. The authors compile through triangulation qualitative data 

on the various artifacts from interviews, relevant literature, and job listings. A Fuzzy Logic model 

is used in the comparison of system engineer traits with years of experience and annual salaries. 

This paper produces two exponential learning curves that plot three different SE skills 

against time. The first curve represents requirements analysis and project management skills; the 

second, cost management skills revealing a doubling in effectiveness with system engineers 

experienced from 10 to 15 years. Several other SE roles are mentioned and displayed in a SE career 

maturity model that places, for example, specialist skills on the low end, quality management, 

mentoring and simulation in the middle, and analysis, system evaluation, and cost management on 

the high end. It is also noteworthy that oral and written communication skills span the entire model 
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suggesting that while they are present in the early career of the systems engineer, they are 

developed and strengthened over time (Souza et al., 2009).  

Intentionally disregarding the time aspect of competency development, Kasser and Frank 

(2010) create a model that focuses instead on maturity levels. This work is noteworthy for an 

attempt to aggregate the skills, traits, behaviors, and knowledge identified in the preceding 

literature. The authors note, “…the lesson learned from behavioral psychology indicates that the 

production of a long list is an important and necessary intermediate stage in the process, but once 

developed, the list should be aggregated to some small set of common generic characteristics” 

(Kasser & Frank, 2010). Many of the works discussed in this literature review are included and 

compiled into what the authors simply describe as “knowledge,” though it features knowledge, 

cognitive characteristics, and individual traits.  

With “knowledge” in the vertical dimension and five “types” of systems engineers along 

the horizontal dimension, it may be seen in the model what is required for a systems engineer to 

exist at each suggested level of competency maturity. For each category, individual traits are binary 

yes/no, while knowledge and cognitive characteristics categories feature a tertiary descriptor set. 

These are as follows: 

• Declarative – knowledge that can be told 

• Procedural – knowledge that must be demonstrated 

• Conditional – knowing when and why to employ declarative and/or procedural 

knowledge 

As with many other SE inquiries, (Kasser & Frank, 2010) consider how a systems engineer 

behaves, thinks, and acts. The authors say little directly about what a systems engineer does in 

terms of roles within an organization. Inferences about these roles may be made by considering 
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what the authors write about pairs of knowledge, traits, and characteristics. Noting system 

engineers have a SE knowledge commensurate to their level of domain-specific engineering 

knowledge combined with a management trait, and it is, therefore, reasonable to conclude the role 

of technical manager would be appropriate. 

In some instances, systems engineers may perform roles that require opposing paradigms. 

This is described in a paper discussing the challenges faced by systems engineers where the authors 

consider the roles of configuration manager and system designer (Sousa-Poza et al., 2014). In this 

example, the configuration manager is responsible for integrating the work of specialist engineers 

in a manner conducive to system realization. This role requires a macro view that is inherently 

unconcerned with specific system details. The system designer, in contrast, is responsible for 

details down to the component level. The authors list several examples of the challenges that arise 

from the ever-increasing complexities of modern systems to illuminate the necessity that SE 

satisfies a micro/macro dual functionality (Sousa-Poza et al., 2014). Author role mapping is 

illustrated in the following Table 2.6.  
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Table 2.6 Author-Role Mapping Table 

 

 

Atlas: The Theory of Effective Systems Engineers (Pyster et al., 2014) was mentioned 

briefly at the beginning of this literature review. This report, being one of the most rigorous and 

comprehensive recent investigations into nature or SE and systems engineers, is used as the basis 

of comparison for the other works. In the Atlas report, a grounded theory-based approach is used 

to aggregate similar information in relevant data sources and produce 16 roles commonly 

performed by systems engineers (see Table 2.6). 
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2.3 Performance Measurement System Tools 

Several studies (e.g., Chenhall, 2005; Kaplan and Norton, 1996; Epstein and Manzoni, 

1998; Lynch and Cross, 1992) used comprehensive performance measurement systems to better 

understand all aspects of an organization’s value chain and to connect these measures to the 

strategy to make the organization stronger. These studies used different performance measures 

tools, including the balanced scorecard, Tableau de bord, and performance hierarchies, to evaluate 

firms’ performance. For example, the balanced scorecard is an accepted performance measurement 

system that uses various perspectives such as financial, customer, internal business, and innovation 

and learning perspectives to show a holistic view of an organization’s performance (Kaplan & 

Norton, 2001; Kennerley & Neely, 2002). As Pun and White (2005) mentioned, a performance 

measurement system “must link to the achievement of strategy via (1) greater focus on creating 

stakeholder value; (2) the vogue for moving away from functional management and towards 

business process management; (3) delighting the stakeholder and motivating people; and (4) 

making improvements and innovations to services and products.” (p.67). Additionally, Hall’s 

(2008) study was one of the initial works that investigated the behavioral outcome of a 

comprehensive performance measurement system on managerial performance based on empirical 

studies. He concluded that a “comprehensive performance measurement system influences 

managers’ cognition and motivation, which, in turn, influence managerial performance” (p. 141). 

Gregory (2007) highlighted the importance of a systemic approach to performance measurement 

systems, especially with respect to the performance of interaction of systems’ components because 

the behavior of a system is a result of interaction between its components, not solely its 

components. In sum, all the aforementioned studies indicated that a holistic performance 

measurement system is needed to capture the actual behavior of a system and the role of individuals 
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in complex systems within larger organizations. Although there is a wide gamut of theoretical and 

empirical studies focused on the analysis and characterization of performance measurement 

systems tools, there is scant research that has attempted to quantify the performance of individual 

systems engineers based on a unique set of determinants. To address this gap, this instrument 

assesses the skill of systems engineering based on the set of performance measurement indicators 

of fundamental SE attributes. 

2.4 Defects of Systems Engineering 

In systems engineering, it is critical to identify and eliminate defects from a system as soon 

as they are identified in order to reduce the cost of both acquiring and maintaining these systems. 

For systems engineering, there are eight clearly defined defects that can be infecting a system.  

These deadly defects are derived by Kasser (2007) and are discussed below: 

The first is the selection of independent alternative solutions. Essentially this problem 

comes down to an assumption that one of the solutions that is presented is in fact, the optimal 

solution. In reality, this is not the case always, as design teams will consistently have varying 

strengths and weaknesses, so certain aspects of the system design will be stronger than others. So, 

if three choices are to be considered and one has the most efficient time out of the three, it is not 

the case that the most efficient of the three is the most efficient possible. This problem at its core 

is an example of the psychological factor of confirmation bias.  

The second defect is the V-Model lacks a feed-forward or prevention component. The V-

Model only takes in one view of systems engineering and so it can be quite limiting in its testing 

and evaluation in the several steps of the System Development Lifecycle. There is no section of 

the V-Model that incorporates the prevention of defects. In order to better use the V-Model, it 

needs to be changed in order to account for the explicit addition of preventing defects.  
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The third is the lack of a standard process for planning a project. Although systems 

engineering itself is typically described as a process, there is no standard way for conducting the 

planning phase of a task. To correct this, a standard flow must be established. For example, once 

the task is started, a single “architect” identifies the goals and resource limitations. 

The fourth is the abandonment of the Waterfall model. Overall, it has been well established 

that the waterfall method is a failure due to the need for iterative development cycles. This could 

not be bad if the requirements remained static throughout the product development. However, due 

to the lengthy development time requirements often changed before development was completed. 

This left room for the spiral model to fill the new gap that had been created. The spiral model 

works similarly to the waterfall model except for the fact that it places emphasis on risk 

management. Unfortunately, the spiral does not delve deep enough and therefore is limited in its 

ability to enact quality change on the system.  

The fifth is unanswered and unasked questions. The two major questions to consider are, 

what is the exact percentage of completion of the system currently, and what is the probability it 

will be completed on time and on budget. Due to the uncertain nature of these questions, they are 

impossible for the systems engineer to answer fully and accurately. 

The sixth is a lack of measurements for the goodness of requirements. The issue of 

requirements is critical for a system to be able to get off the ground and be implemented. However, 

not all requirements are necessarily impactful for the quality of the system or for the system to 

reach its desired outcome. These requirements must be identified and removed in order for 

smoother creation and implementation of the system. Without a metric to directly measure these 

systems, it is a process that must be done carefully and thoroughly. 
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The seventh defect is a focus on technology solutions. Typically, systems engineers 

gravitate towards technology changes as a way to create solutions in problematic systems. This 

unfortunately, does not always prove to be an effective case. By not addressing the real problem, 

more optimal solutions are passed over as it is not considered a “modern” method for solving the 

problem. 

The eighth and final defect is there is a strong need to focus on people as well as the process. 

When focusing on the creation of a system, what is often overlooked is the quality of the people 

who are both managing and creating the system. This leads to issues such as not placing people in 

the roles in which they would succeed, which can cause the system to suffer due to a lack of skills 

being properly utilized. 

2.5 Limitations of Systems Engineering  

Although systems engineering can be used in a multitude of situations, there are still three 

major shortcomings. These need to be identified in order to ensure that the systems engineer is not 

attempting a task that cannot be properly addressed through systems engineering. 

The first limitation is the traditional tools that lay the foundation for systems engineering 

have not been optimized to solve complex systems problems at a high level when they come with 

a great deal of uncertainty (Keating & Katina, 2011). These traditional tools cannot adapt to 

dynamic requirements or problems that are inadequately structured. When looking to the future, 

this limitation becomes more of a problem as it would be foolish to think that problems and 

requirements of systems will not become more dynamic. 

The second problem is that the context of problems solved with engineering are not put in 

the forefront of decision making and tend to be in the background when it comes to developing, 

analyzing, and implementing the systems. As systems have evolved and will continue to evolve, 
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there has been a trend in the increasing amount in which the problem context has become integral 

in providing a quality solution to the given problem. This is due to the context of the problem 

creating further constraints that need to be fulfilled by the developed system in order to provide 

proper success (Keating & Katina, 2011). 

The third and final problem is the increase in demand to deploy advanced systems that 

offer partial or incomplete solutions to certain problems. The need for these types of solutions has 

been due to limitations of resources (such as technology constraints) or constraints due to 

deadlines. Traditionally systems engineering has been able to consistently provide positive results 

when providing a complete solution after rigorous planning, developing, and implementing; 

however, this process cannot always be completed to the fullest (Keating & Katina, 2011). 

Due to modern-day challenges, it has become imperative that systems be deployed at an 

incomplete state and then iterated upon after it has already been deployed. Moving in this direction 

is very different from the traditional linear approach to system design but could remove this 

limitation in the future. 

 Traditionally systems engineering has been structured around solving singular 

systems problems. The entire process from development to implementation is conducted to fit a 

specific need or problem. Through focusing more on creating a metasystem, a system of systems 

would allow for there to be more flexibility in solving problems that do not necessarily have a 

singular focus. 

2.6 Systems Engineering Challenges 

Through the writings of Cook and Ferris (2006), Koen (2003), and de Weck et al. (2011), 

One can understand that for systems engineering to be used in an effective way, there are four 

critical conditions that must be fulfilled (Souza-Poza et al., 2014). First, there is a specific system 
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with clearly defined rules and boundaries that will fulfill a specific purpose. Next, the stakeholder’s 

necessities for the way this system may function can be clearly outlined. After which, a critical 

technical component is planned to be used in the solution. Lastly, there is clearly an application of 

methods/processes that are engineering in nature created to address the problem illustrated by 

stakeholders. The four requirements are broadly applicable to most problems that are approached 

with an engineering 1st solution. Though there may be and almost loosening of the four critical 

conditions, due to their nature, the manner in which it can be done is incredibly limited (Souza-

Poza et al., 2014). As an example, using spiral development approaches, it has been shown to 

create room to allow stakeholder expectations to be described throughout the design development 

cycle, rather than needing to be clearly outlined before the design process has begun. There is the 

clear limitation of these expectations to be relatively unchanging needs, as large changes that are 

done in an extreme manner cannot be accounted for (Souza-Poza et al., 2014).  

It is crucial that for the future systems engineering becomes more aware of the various 

areas that its methods and principles are applied to. This is due to the fact that different areas may 

require different elements or approaches in order to be useful in those said areas. As systems 

Engineering is expanding to include many problems from all different aspects of society such as 

transportation networks, smart grids, or the Internet of things, it is crucial that systems engineering 

as a discipline takes one of two actions. Firstly, systems engineering could incept formal 

management governed approaches to deal with rapidly changing end highly reactive systems. This 

would act as a way to formalize these systems engineering `processes across many different 

discipline domains regardless of the specific task. Or systems engineering could research and 

identify the exact limitations of engineering govern solutions as well as the limits of systems 

engineering itself. These limits would give greater insights on how to integrate governance 
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capabilities and external management in two systems engineering methods (Souza-Poza et al., 

2014). The decision between these two options could possibly already have been overcome as 

numerous recent initiatives have begun to focus highly on management governed principles. There 

are many approaches that already follow management covered principles such as CSE, enterprise 

systems engineering, many systems of systems engineering efforts as well along with many others. 

2.6.1 Integration of New Development 

To better organize Systems engineering as a discipline, more nuance and detail is needed 

to distinguish minute differences between approaches, methods, tools, and other items that are 

invented and considered uses of systems engineering (Souza-Poza et al., 2014). The only constant 

throughout systems engineering is not its purpose; unlike other fields, systems engineering is not 

a single homogenous field. The ideas in this paper provide insight 2 examine many of the nuances 

between methods that have been created and are continuing to be developed as well as creating a 

way to organize the new methods and processes that will be developed in the future. This paper 

was not intended ;however, to identify methods of categorization for new systems engineering 

methods that are to be developed. It is the belief of this researcher that further investigations must 

be conducted in this area (Souza-Poza et al., 2014). Without further research in this area, systems 

engineering runs the risk of becoming Ineffective due to a lack of clearly defined methods. 

2.6.2 Integrity of Design, Process, and Governance 

It is conceivable to categorize new methods and procedures that are created as being both 

engineering-governed, and management governed, Currently there seems to be a concentrated 

focus on advances that are occurring more upon the management-oriented process side of 

engineering methods As well as approaches. However, there is a possibility of an exception to this 
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notion, which may appear in the form of model-based systems engineering that has the potential 

to become more prevalent and powerful with its design capabilities. At first glance, there appears 

to be a missing link when considering how these concepts work in conjunction with each other. 

Currently, there is a lack of sharing information and ideas between researchers and professionals 

working within the balance of these concepts, as researchers from various organizations or 

institutions tend to focus on either or rather than a way to mesh the two concepts together. To be 

used effectively, it must be recognized that systems engineering has to incorporate both the design 

and process-based branches of engineering governed methods. Changes to one side of the balance 

can affect the other side, and without a concerted effort to incorporate both, the system cannot be 

designed or implemented to its full capabilities. 
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CHAPTER III 

RESEARCH DESIGN AND METHODS 

Research design is a paramount topic in numerous disciplines, including science, 

engineering, and social science, to name a few. A research design is a layout or blueprint for 

conducting the research study (De Vaus, 2011). The fundamental objective of the research design 

is to address the research problem rationally and as clearly as possible (Crewell & Creswell, 2017; 

Leedy & Jeanne; 2005). Luck and Rubin (1997) provided a broad definition of research design. 

According to Luck and Rubin (1997), “A research design is the determination and statement of the 

general research approach or strategy adopted for the particular project. It is the heart of planning. 

If the design adheres to the research objective, it will ensure that the client’s needs will be served.” 

Aside from declaring the initial topic of interest for the research, developing the proper 

design and method for conducting that research is crucial to the overall project. There is a great 

deal of literature discussing a multitude of approaches to research design; however, this plethora 

of information can cause confusion for aspiring researchers and students. There is a lack of clarity 

and conciseness contained in the literature about research design, methodology, and methods 

within the systems engineering literature.  

In this research, a mixed-method (quantitative and qualitative) research design developed 

by Earl R. Babbie is followed. This framework has consisted of seven phases, which are presented 

in detail in the following discussion. These seven phases of the research design were the blueprint 

that the researcher used to develop a new instrument to measure the performance of the system 
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engineers. The objective of this chapter is to provide a clear understanding of Earl R. Babbie’s 

approach to research design and how it helps to pursue and attain the objective of our research. 

3.1 Babbie’s Approach 

Babbie’s work provides a firm groundwork for research from all walks due to its 

comprehensive research design, theory, and statistics. In his work, Babbie considered the research 

design is a sort of plan that the researcher needs to fully flesh out. This includes the careful 

planning of what to observe, along with how the observations will be conducted and why these 

observations need to be conducted in order to aid the research. Though the scope and topic may 

vary from project to project, Babbie created two major goals for any research design. Goal one is 

to be absolutely specific about what exactly the researcher wishes to learn from the work. The 

second goal is to figure out the best method to gather said information. In Babbie’s work, he stated 

that the clearer goal number one is, the easier it is to accomplish goal number two creating better 

results and more accurate conclusions. Babbie’s recommendation in his findings is for the 

researchers to take great notice of three aspects “your interests, your abilities, and the available 

resources” (Babbie, 2020).  This is in order to focus the researcher, as the process of topic selection 

can become a constant cycle of having the head turned in the directions of other ideas, thus 

preventing work from being started. Paramount to these three is the amount of resources at one’s 

disposal. A great idea and plan are meaningless if the work can never come to fruition. Specifically, 

for developing a new instrument or theory, validating the research design can be a colossal task 

due to a shortage of open-source data available to the researcher. The work of Babbie has been 

boiled down into seven steps for designing a research project, as illustrated in Figure 3.1. These 

seven steps are to be dissected in the following sections of the chapter. 
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Figure 3.1 Babbie’s 7-Stage Framework 

 

3.2 Defining the Purpose of Research 

This step is the beginning of the researcher investigating their topic of choice. The research 

may begin studying public literature on the said topic in order to familiarize themselves with it, as 

well as the work that has already been conducted in that area of interest. Once sufficient surface 

reading has been completed, the all-important step of defining both the purpose and focus of the 

project must come next. The purpose of the project will be the answer to the question of why the 

research is being conducted. 

3.2.1 Developing Quantitative and Qualitative Research Questions 

For example, bearing in mind the objective of the research, the following main questions 

were formulated. These important research questions are not well defined in the existing body of 

literature and needed to be addressed. The in-depth analysis and justified response to these 
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questions will provide a set of systems engineering attributes and corresponding performance 

measures which can provide a strong ground to support the rationale of this instrument. 

Question (1): What are the fundamental attributes of systems engineering that would impact the 

performance of individual system engineers?  

To answer this question, the researcher applied Grounded Theory analysis, which is a qualitative 

data analysis methodology with the help of Nvivo 12 (QSR International) software in organizing, 

analyzing, and synthesizing the qualitative data. This lead to derive the six fundamental attributes 

of systems engineering. Based on these six attributes, the performance of the systems engineers 

can be assessed. 

Question (2): What are the leading indicators for appraising the performance of an individual 

systems engineer?  

To answer this question, we conducted an extensive review of the literature (qualitative 

approach) on systems engineering literature to identify the corresponding performance indicators 

for each fundamental attribute. To conduct this approach, the researcher studied, analyzed, and 

coded more than one hundred different resources, including peer-reviewed conference 

proceedings, peer-reviewed journal papers, technical papers, technical reports, and book 

chapters. 

Question (3):  How the performance of the systems engineers can be assessed based on the leading 

indicators of the systems engineering attributes? 

We hypothesize that there is a significant relationship between the proposed instrument 

and the state of performance for the individual systems engineer. To answer this last question, the 

researcher will use a quantitative approach to analyze and synthesize the hard dataset based on the 
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participant response; and check the reliability and validity to demonstrate the effectiveness the 

new performance measure instrument. 

The focus, in this case, requires an extensive and systemic review of existing systems 

engineering literature and if they impact the performance of the systems engineers. On top of this, 

what kind of study also needs to be decided. One option is an exploratory study, which delves into 

better understanding a problem rather than trying to discover a solution for said problem. The 

researcher may also consider a descriptive study in order to look into characteristics of a 

phenomenon or a population, allowing for a better definition of the ‘what’ of said phenomenon or 

population. Lastly, an explanatory study can be conducted in order to find the root cause or 

explanation of a phenomenon. Babbie states that “Usually, your purpose for undertaking research 

can be expressed as a report” (Babbie, 2020). What this means is that it is best to create a formal 

outline to dissect exactly what the purpose of the study is, as well as what type of study will be 

conducted. In this research, both exploratory and descriptive studies are conducted. 

3.3 Conceptualization 

After the purpose has been defined clearly, and the researcher has a great understanding of 

potential outcomes, the next step of the process can begin. This part, known as conceptualization, 

may seem benign to the researcher, but the step is very critical for carryout the research as well as 

generating consistent results. During this process, the specific terms and ideas need to be very 

carefully defined. For the example in the last section, one of the concepts that would have to be 

clearly defined would be, what a are the attributes and corresponding performance indicators of 

systems engineering? If the concept is not clearly defined, then inconsistencies can occur that 

would drastically throw off data. In Babbie’s own words, “Conceptualization, then, produces a 

specific, agreed-on meaning for a concept for the purposes of research” (Babbie, 2020, p.169). 
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Through the process of conceptualizing, two sets of information are also defined: the indicators 

and the dimensions of the study. In terms of research, an indicator would be either a sign of 

presence or absence of the concept that is being studied. Using the example, this could be evidence 

of low well the past studies are correlated with the present study or no correlation as that would be 

a sign of absence. A dimension is a specifiable aspect of a concept. Dimensions allow the 

researchers to group entries that fit under the same general aspect of a concept, in our case the 

concept would be assessing the performance of the systems engineers ( i.e., the skill levels of the 

systems engineers). The specific definitions, indicators, and dimensions allow for the smooth 

conduction of the research down the line, and as stated are paramount for quality research to be 

conducted by the researcher. 

3.4 Choice of Research Method 

This stage deals with the researcher evaluating and selecting exact methods of conducting 

the research. There are various observational techniques that Babbie outlines in his work, each 

coming with their own advantages and disadvantages it is up to the research to carefully way the 

following options in order to properly ascertain the information required in their study. The first 

method is one that has been historically used in the literature for centuries, and that is the act of 

surveying. This simply means to ask a population a series of questions in order to gain insight 

about the topic. Surveys can be used for all three types of research, making them a very dynamic 

option for the researcher. The survey technique tends to be used in studies where individual people 

are the units of analysis. Two major pitfalls of this method according to Babbie are open-ended 

questions, as well as internal bias in the question itself. Open-ended questions need to be 

categorized for the information to be of use, this can be difficult depending on question complexity 

and can breed inconsistency if not coded properly. Questions must be thoroughly constructed so 
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that the diction does not lead the respondent to choose one answer over another. Another tool for 

the researcher to consider is the use of experiments. According to Babbie, “Experiments are 

especially well suited to research projects involving relatively limited and well-defined concepts 

and propositions” (Babbie 2013, p.271). This is due to experiments creating explanatory results. 

This fact; however, does limit the usage of this method to creating quantifiable results rather than 

more exploratory ones. The third option is the unobtrusive methods. What this means is using 

historical data and existing statistics to study the topic. For our example, this would be a great 

option due to the past playing a major role in the topic. This also allows the researcher to observe 

without interfering with social life. This option will not fit every topic, nor will there be the needed 

data for each topic; however, it is a powerful tool if available to the researcher. Next is qualitative 

field research. Qualitative field research is the act of observing social life in its natural habitat, 

simply put, going, and observing life. Babbie discusses how a major advantage to this type of 

research is how comprehensive it is. By going and directly observing the phenomenon, the 

researcher gains a very clear and exact understanding of what is going on, an advantage to studying 

topics that do not appear to be simply quantifiable. Also, this method lends itself to be great for 

studying social processes that develop over time, as they would be hard to recreate in a laboratory 

environment. The last method Babbie presents is evaluation research. As the name suggests, this 

is the evaluation of the impact or success of a phenomenon. Babbie’s example of this is, “When 

the federal government abolished the selective service system (the draft), military researchers 

began paying special attention to the impact on enlistment. As individual states have liberalized 

their marijuana laws, researchers have sought to learn the consequences, both for marijuana use 

and for other forms of social behavior.” (Babbie 2013, p.360) This type of research gives way to 

evaluate many different topics and is quite flexible in that sense. A problem with this method is 
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the intervention that comes with it. The process is quite intrusive and can cause the subjects to act 

differently than if they were not being observed. This additional phenomenon must be considered 

and dealt with in order for proper conclusions to be met. 

In this research, Mixed method has been adopted which discussed in detail in the 

following subsections. 

3.4.1 Mixed-Method 

Mixed methods (MM) research is a methodology for conducting research in which 

researchers integrate qualitative and quantitative research approaches (e.g., qualitative and 

quantitative standpoints, data collection, synthesize, analysis, interpretation techniques) to 

comprehend the overall goal of the research (Schoonenboom & Johnson, 2017). 

The overarching purpose of mixed methods research is to combine qualitative and 

quantitative research approaches and justify the conclusion of the study. The mixed-method 

approach also answers the fundamental research questions and contribute to heighten the body of 

knowledge and validity of the research. In the following subsection, every step of the research 

design is discussed in detail. 

3.4.1.1 Determine the Feasibility of the Mixed Method Approach 

In order to determine the feasibility of the mixed-method approach, the feasibility of the 

combination of both quantitative and qualitative research is presented below: 

Qualitative research relies on the use of participants' views, the behavior of the people, 

general questionaries’, observations, video recording, case study, documents, and interviews to 

collect, extract, and analyze the data. The gathered data are subjective, lacking rigor, biased, but 

more exploratory in nature (Anderson, 2010). On the other hand, quantitative research is the 
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structured way of collecting numeric data (hard data) from specific and narrow questions from the 

participant groups and analyze the gathered data through statistical and unbiased manner to pursue 

the interest of the research topic (Whittemore & Melkus, 2008; p.108). The underlying goal of 

quantitative research is to quantify the problem statement and interpret in objective manner.  

In order to pursue the objective of the research, the researcher found the mixed approach 

would be the most suitable in terms of the design and context of the research. Mixed methods 

approach is also feasible because both quantitative as well as qualitative designs are required to 

address the research problem and answer the research questions.  

3.4.1.2 Rationale of the Mixed methods 

The rationale for the selection of the mixed method design is presented below: 

• Subscribing the one type of research (qualitative or quantitative) is not sufficient to 

comprehend the research problem or answer the research questions. In addition, neither the 

qualitative or quantitative methods alone decide to accept or reject the research hypothesis 

(Greene et al., 1989; Jaradat et al., 2014).  

• Combination of both approaches will aid in to transform and analyze the data robustly, 

examine from multiple levels, and finally provide a boarder understanding of research 

problem that one method is not capable of producing (Greene et al., 1989; Jaradat el al., 

2014; Morse, 2016).  

• The mixed-method is sequential (explanatory/ exploratory), concurrent (triangulation 

and nested), and transformative (sequentially and concurrent). Therefore, there is a flexibility 

of data analysis procedure, and research can be designed either way based on the objective 

of the study (Greene et al., 1989; Caracelli & Greene, 1997; Palinkas et al., 2011; Jaradat el 

al., 2014) 
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3.5 Operationalization 

After the selection of the research, the method has concluded, the researcher must then 

begin operationalization. This is the development of specific procedures to measure and quantify 

observations that represent the concepts being studied. The variables in the study are in part defined 

by how they are exactly measured. This step is the crux of creating the experiment. An important 

factor is consistency, for example, if a survey is given, the question order, questions, and delivery 

method should all be the same in order to properly compare individual results. If this step is not 

conducted properly, the variable may have a different practical meaning than the one that was 

initially established inside the conceptualization stage. For example, interdisciplinary is a concept 

that if not carefully defined in the experiment, can take on a different meaning depending on the 

experiment. If this terminology is well defined, these differences in perspective could lead to a 

conflict in the definition of the variable that is being tested. 

To conduct the operationalization and establish the initial theoretical concept, researchers 

employed qualitative method (grounded theory coding), later to check the reliability and validity 

of the instrument various quantitative approach such as exploratory factor analysis (EFA), 

confirmatory factor analysis (CFA), one-way analysis of variance  (ANOVA), multiple group 

analysis, and factors analysis was conducted.   

3.6 Population and Sampling 

Population and sampling is a two-step process that narrows down the groups that the 

researcher is planning on investigating. Firstly, the population in question needs to be decided 

upon. The population is the large group (usually of people) that are involved within the topic and 

that the conclusions of the research are going to be based upon. This population can be large, small, 

and made up of any specific demographic that fits the topic at hand. If the population is too large 
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to all be included, a sample is taken of the population at large. Selecting subjects for a sample is a 

critical and delicate step. If not done properly, there can be major biases in the data causing results 

to be skewed and the research meaningless. Babbie thoroughly discusses how to select a sample 

in his works and divides sampling into two methods: nonprobability sampling and probability 

sampling. The first, nonprobability sampling, is used in cases where the population does not have 

large scale social surveys to extrapolate results through probability. This could be for example 

homeless people, as there is not a national registry for homeless people, nor would it be possible 

to construct one. This method requires the researcher to know the population in question rather 

well, as they will have to judge whether an individual would be a typical case of the population 

and, therefore, a good respondent. In addition, the researcher may have to rely on respondents to 

discover more respondents in the case of hard-to-find populations. Probability sampling; however; 

selects samples in accordance with probability theory and typically involves some random-

selection method. The key to this method is to ensure that the sample coincides with the probability 

technique that is selected in order to prevent a selection bias from occurring. 

 Sampling is the crux of creating a reliable and scalable study over a generalized population. 

What this means essentially is that since studying an entire population is infeasible, a researcher 

must select a smaller portion of that group, that acts as a representation. In order for this sample to 

provide accurate results; however, it must consist of the same makeup of the general population 

that is being studied. There are two main ways of generalizing a population according to Trochim 

(2000); these methods are proximal similarity and sampling model. 

 The proximal similarity is conducted by selecting different generalizable groups, then 

choose the group that best fits the study. In layman’s terms, what this is stating, is that the process 

considers multiple different ways of organizing the population based off different traits, and from 
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there the group that fits best with the intended goal of the research is chosen. By using this method, 

a systematic approach is given to selecting the group and allows for multiple options to be 

considered. Sampling is simply done by generalizing the population and then using that overall 

generalization to create trends and analyses over the entire population. It is key to select an even 

mix of representative demographics that could affect results, otherwise, the conclusions that are 

drawn may not be accurately scalable to the entire population. In the case of this study, a 

nonprobability sampling selection was conducted in order to remove the possibility of bias in the 

sample selection. This means that the sample selected was not intended to be used for a 

generalization over an entire population but as an individual slice to be observed within its own 

merit. 

 As previously noted, the systems engineering instrument is crafted to be usable in multiple 

disciplines due to the fact that systems skills are paramount in a field of study and therefore, the 

instrument has to be flexible. In this case, the population of study is individuals who consistently 

engage in systems engineering activities in large complex problems or at least has experience 

working in the systems engineering field in the past or students who has conducted a systems 

engineering project as a part of their coursework. The chosen sample for this particular study was 

heterogeneous in composition, in the fact that those included in it came from different educational 

levels, experience levels, as well as different fields.  

 The style of nonprobability sampling that was used for curating the sample is known as a 

convenience sample. Although this form of nonprobability sampling was chosen, the researcher 

feels this was out of feasibility rather than being able to use the best possible option. Due to the 

breadth of size in the population, it is impossible to survey everyone in the population (people in 

all fields who deal with complex problems), as well as the difficulty recruiting for the survey, and 
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it is impossible to obtain an exact response rate. Therefore, the sample that was selected is a mostly 

homogenous one containing practitioners engineers, leaders from different government and federal 

agencies/industries such US Army, US Navy, Boeing, and NASA; and graduate and undergraduate 

students from specific universities. The exact demographics for the sample are outlined further in 

Chapter IV. 

 The rationale behind selecting such a homogenous sample falls into two main points. The 

first deals with the core concept of a systems engineering instrument. A system engineering 

instrument is designed in such a way that it is inherently specific to a systems engineering focused 

group. Lastly, the research conducted consisted of an inductive approach to data collection and 

analysis to determine the systems engineering performance of the individual being surveyed. Over 

one hundred respondents to part in the research phase of the project. An invitation was sent through 

e-mail to invite potential respondents from various areas to take part in an online survey tool- 

Qualtrics.  

3.7 Observation and Data Processing  

This is a twofold step that deals with the conducting and processing of collected 

experimental data. Observations are made during the experiment and are the foundation for 

establishing data. These can be individual survey results, events the researcher visited, or other 

various recorded results from experiments. It is expected the researcher will amass a large volume 

of observations in a form that is not immediately usable for interpretation. This is when the step 

of data processing occurs. Data typically fall into one of two categories: qualitative or quantitative. 

Qualitative data is nonnumerical information that is recorded and studies to understand underlying 

relationships. The processing of this data may lead to coding results and organizing observations 

depending on choices selected or actions that occur. According to Babbie, the coding of results is 



 

83 

as much an art as science, and there are no cut and dry solutions to success, so it is important to 

proceed with caution. Quantitative data is converting observations into numerical information, 

such as statistics in order to gain insight. This is a more scientific approach, but in terms of the 

relationships and patterns of social science that can be observed, there are limitations to it. 

In the mixed-method research design, two types of data collection strategy, namely: 

sequential design and concurrently design, are mainly applied. Sequential design can be further 

split into three types: sequential explanatory design, sequential exploratory design, and sequential 

transformative design, whereas concurrent design strategy has three forms: concurrent 

triangulation design, concurrent embedded design, and concurrent transformative design. Different 

Data Collection Strategy in mixed-method approach is illustrated in Figure 3.2 (Creswell and 

Creswell, 2017). 
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Figure 3.2 Different Data Collection Strategy in Mixed Method Approach (Creswell and 

Creswell, 2017) 

 

In this research, the sequential exploratory design(b) research strategy has been applied. 

The sequential exploratory strategy is described by an initial phase of qualitative data collection 

and analysis, with the second phase of quantitative data collection and analysis to follow, which is 

conducted based on the findings of the first qualitative phase. This research design is very useful 

in exploring an emergent theory or developing a new instrument concept along with its quantitative 

findings. Morgan (1998) stated that “sequential exploratory design is appropriate to use when 

testing elements of an emergent theory resulting from the qualitative phase and that it can also be 

used to generalize qualitative findings to different samples.” 
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3.8 Analysis and Application 

 In the final step, the researcher takes the data that has been processed and analyses it to 

draw conclusions. For the data analysis, different methods are going to be used depending on if 

the data is quantitative or qualitative. For quantitative data, Babbie lists numerous options such as 

univariate analysis, subgrouping analysis, and bivariate analysis. The univariate analysis involves 

describing a case with a single variable. The most basic form of this consists of distributions and 

basic statistics. Visualizations such as pie and bar charts are great for displaying this type of 

information. Subgrouping analysis is taking slices of the overall data in order to look at trends 

based off of a part of the sample. Lastly, bivariate analysis is used when there is a case of two 

variables. Some good options for the visualization of this data are scattered plots and tables as they 

allow for the easiest readability. For qualitative data, Babbie focuses on discovering patterns, 

grounded theory method, semiotics, and QDA programs. Discovering patterns entails looking at 

six major factors (frequency, magnitudes, structures, processes, causes, consequences) to see if 

there is a particular order they tend to follow. Grounded theory methods are theories that are 

created solely through the examination of the data. This means they are not put through any set 

method but simply the observations of the researcher. Semiotics is the breakdown of signs their 

meaning. This could be a group using the cross to symbolize suffering or a family using a bell to 

signify dinner time. Lastly, QDA programs are computer programs that will take in a spreadsheet 

of qualitative data and form results based upon those inputs. This is oftentimes more efficient than 

having the researcher study the data. Once an analysis has been completed and results are finally 

uncovered, the researcher must formalize their results, explain their methods, and present what has 

been discovered. This process can be done typically in the form of a presentation at a conference 

or the publishing of their own unique publication. 
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Since analysis occurred within both type of data: qualitative (text mining) and quantitative 

(descriptive and inferential numeric analysis), data analysis in mixed methods is somewhat 

different than the traditional research design approach. Some of the common mixed-method 

approaches, include, but not limited to data transformation, explore outliers, instrument 

development, examine multiple levels, develop a matrix, and test the reliability and validity of the 

instrument (Creswell and Creswell, 2017). 

3.8.1 Qualitative Data 

In this study, qualitative data gathering, analysis, and documented conducted by applying 

grounded theory coding. 

3.8.1.1 Grounded Theory Coding 

After an extensive review of the SE literature from 1925-2017, a set of SE attributes was 

derived based on grounded theory coding. Grounded theory, which is basically a text mining 

approach, was originally developed by sociologists Barney G.Glaser and Anslem L. Staruss’s in 

1967. In their book “The Discovery of Grounded Theory,” they described the strategies pertaining 

to grounded theory and demonstrated how meaningful hypotheses could be derived from the 

qualitative data analysis. Grounded theory coding is a qualitative coding technique to separate, 

classify, analyze, and synthesize the data. In coding, a label is assigned to identify or classify the 

segments of the data according to what each segment is about. The analysis starts with the 

generation of a series of codes that are directly related to the data and end with the production of 

theoretical ideas or meaningful emerging concepts from the synthesized data. Data does not 

necessarily have to be textual; it could be in the form of observations, experimentation, videotapes, 

interviews, documents or historical archives. Grounded theory is particularly beneficial when the 
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existing theory about a phenomenon is either inadequate or non-existent (Cresswell, 2005). The 

strategies involved with grounded theory practices are outlined below (Corbin, Strauss, & Strauss, 

2014), and a simple representation of the stages of the grounded theory technique is illustrated in 

Figure 3.3.  

• Conduct data collection and synthesize simultaneously. 

• Generate analytical codes from a corpus of data, not from preconceived inference, 

prejudices, or association of ideas. 

• Group the similar codes in order to form the category. 

• Derive inductive theory is based on the constant comparison and relationship among the 

different categories. 

 

Figure 3.3 Stages of Grounded Theory Coding 

In order to collect, gather, analyze, and document the data, we have studied, analyzed, and 

coded more than one hundred different resources including peer-reviewed conference 

proceedings, peer-reviewed journal papers, technical papers, and book chapters. We have 

applied Grounded Theory Coding (GTC) with the help of Nvivo 11 (QSR International) 

software that aided in collecting, analyzing, and synthesizing the qualitative data. Grounded 

theory coding is an established qualitative data analysis methodology that generates a theory 

directly from the large unstructured data set, including surveys, interviews, literature reviews, 

and others. Thus, it helps in building up a more general theoretical concept from the collected 

information from the available resources. 
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It is important to mention that the resources studied for this analysis are considered on the 

basis of three disparate standpoints: the perspective of the defense industry, the organizational 

perspective, and the space science perspective. We have selected the seminal works that 

discussed and synthesized the definitions of SE and contributed most to the related field as 

evidenced by the frequency of citation for the work. 

The grounded theory approach was adopted in this research as it does not presuppose 

any particular theory/concept or offer any hypotheses at the beginning of the research. 

Grounded theory is a text mining approach that fundamentally ties to social sciences as a 

method to generate an emerging theory that is grounded in data that are systematically collected, 

organized, and synthesized during the different phases of coding (Goulding, 2002). This 

approach compensates for any bias that might be induced by the researchers, rather allowing 

the large unstructured data chunk from different resources through the research phase to derive 

a new emerging theory. Unlike the traditional research approach, where researchers initiate a 

theoretical framework and apply to the phenomenon/case study to be studied, this approach 

initiates with collecting qualitative data without having any particular hypothesis/concept in 

mind.  

3.8.1.1.2 Coding 

A primary task in most of the qualitative projects is to accumulate information by subject or 

coding. It gravitates towards to be a collective process rather than a single step process, while the 

connotation and structure of codes are varying with time. In other words, one of the methods for 

getting meaningful insights from data is coding- one can incorporate it alongside annotating, 

writing memos, linking, and generating maps. Considering the methodology and research design, 
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one has to manage coding. The following ways describe how coding the content of files can 

subscribe to research: 

• The method of coding is essential because it not only takes one closer to data but also 

concentrates on materials-question such as what is this about? is it just about one thing? 

how does it assist me to respond to my research question?- are asked. 

• All the insights corresponding to a subject can be accumulated using coding (for instance, 

what did researchers contend about systems engineering attributes?). For this reason, it 

becomes easier to comprehend the patterns, conflicts, and to generate theories. 

• By incorporating queries and visualization, coding helps to search for links between themes 

and to validate one's understanding. For instance, one might have a feeling that 

interdisciplinary skill might affect the performance of systems engineers - by utilizing 

coding query to collect materials coded as interdisciplinary skill adjacent to materials 

coded as performance and then discover the links. In later lessons, coding queries will be 

described. 

• Not only to exhibit rigor in data analysis, retrieval, and reporting but also to notify audit 

trail a “codebook” is very convenient. 

3.8.1.1.3 Inductive Vs. Deductive Reasoning 

With reasoning, two primary types dictate the process in which humans draw conclusions. 

These processes are known as inductive and deductive reasoning. Learning these processes 

thoroughly can offer insight into a researcher’s frame of mind and allow for said research to adjust 

their method of approaching a given research question. 
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 Inductive reasoning can be likened to the traditional idea of pattern recognition due to its 

intrinsic method of problem-solving. This form of reasoning first begins by making a series of 

observations, such as measuring the heights of college students. From these observations, a broad 

conclusion is drawn, using patterns within the observations. This form of methodology is a bottom-

up process. 

Deductive reasoning is the opposite of inductive reasoning in that the conclusions that are 

drawn are very specific. The process is also reversed; it requires the researcher to start with broad 

premises and drill down into more specifics. This form of the methodology is a top-down process, 

as shown in Figure 3.4. 

 

Figure 3.4 Inductive and Deductive Reasoning 

 

In terms of research, an inductive approach is used to build a theory that is tested through 

deductive methods. This rationale of research design works in a cycle allowing the inductive and 
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deductive sides to fuel each other until a proper conclusion is achieved. This cycle is illustrated in 

Figure 3.5 below. 

 

Figure 3.5 Cycle of Inductive and Deductive Reasoning (Jaradat et al., 2014) 

 

Inductive reasoning according to Lee and Baskerville (2003, p.224), “Begins with 

statements of particulars and ends in a general statement.” Since the initial phase of research design 

was qualitative in nature, the researcher moved more towards the general theory that was being 

investigated diverging from the initial particulars that were being considered. Fiebelman 

recommended to begin with a more inductive approach as it lends itself to creating a more 

generalizable theory, which could then further aid in the development of more research. There 

were four major reasons that the researcher chose an inductive approach. The first of these reasons 

is due to the overall goal of the researcher. This goal it's the develop a general instrument that 

could be used in various areas of interest, such as military, industrial, and health care to just name 

a few. Next, the researcher did not have any specific premises about systems engineering 

characteristics. Due to this starting point, the process that needed to be undertaken lent itself to be 

more inductive in nature. Thirdly the researcher was aiming to sift through the data for patterns. If 

the researcher took a deductive approach, this would not be possible, yet this need fits perfectly 
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within the inductive method. Thus, allowing for the researcher to decipher patterns that may have 

appeared from the 150+ different sources under study. Lastly the inductive approach, Became the 

clear appropriate choice for the nature of this study due to its core concept of building deliberate 

understanding from data.  

 After conducting a thorough literature review on systems engineering, a common concept 

among many studies was that they show and propose personal characteristics of a quality systems 

engineer. It is widely considered that personal characteristics can be grouped into two major 

categories. The first category being those that are core competencies of systems engineering, those 

are related to the fundamental characteristics of systems engineering such as systems design & 

integration, requirement engineering, and life cycle assessment. The other category is management 

competencies, which pertain to business and technical skills of the system engineers such as 

interdisciplinary, hierarchical view of a system, and management roles.  

3.8.1.2 Phase 1: Open Coding 

Glaser and Strauss (1967) referred to the procedure for developing initial categories as 

open coding. At this phase, we keep assigning the codes to distinct elements in order to label a 

phenomenon (see Figure 3.5). Initial coding is impermanent, fundamentally related to the text or 

data mining, and conducive to pointing out the gaps in the analytical process (Charmaz & 

Belgrave, 2007). Open coding is a procedure for generating categories of information, and it 

possesses direct ties to the data sources. Open coding could be word by word coding, line-by-line, 

paragraph by paragraph, or whole document coding. During the analysis, we attained theoretical 

sensitivity through deliberative involvement in the dataset using the sentence by sentence and line 

by line approaches along with the flip-flop technique, the red-flag technique, and saturation 

specified in Corbin & Strauss (1990). It is important that at the beginning of this procedure, the 
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researcher has no preconceived ideas about what would emerge from the dataset. However, during 

the open coding, the researcher kept the following question in mind; what are the patterns 

emerging from the data sources, through the open coding process, that support development of 

new theory? A snapshot of open coding (line by line coding) of a document in the Nvivo interface 

is shown in Figure  3.6 and 3.7, respectively. 

 

 

Figure 3.6 Sample Nodes of Open Coding 
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Figure 3.7 Demonstration of Line by Line Coding 

 

Different kinds of analyses were performed during the open coding, such as flip-flop, 

waving red-flag, and saturation techniques. These analyses helped to manage the bias. Flip-flop 

technique is a procedure that answers the questions related to the six W’s; who, what, when, where, 

why, and how in the analyzing text. According to Corbin et al. (2014) “Flip-flopping consists of 

turning a concept ‘inside out’ or ‘upside-down’ to obtain a different perspective on a phrase or 

word.” It also enables us to think analytically rather than descriptively”. Flip-flop technique 

focuses on analytical thinking rather than descriptive by comparing the extremes of one-dimension 

Table 3.1 provides a sample demonstration of the flip-flop technique that we conducted in our 

research. The waving red-flag technique provides a reminder to the researcher not to assume 

too much. This approach encourages avoiding the use of sensitive phrases such as often, more, 

rarely, never, and always. Waving the red flag is sensitive to the phases like ‘Never,’ ‘couldn’t 

possibly be that way’ and must know what might happen when things occur. This technique is 
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advantageous at the initial stage or interview or puzzled. Saturation is the process that guided the 

researcher in making a decision regarding the right time to stop coding and move to the next 

procedure, axial coding. Saturation occurs when new coding doesn’t provide further theoretical 

insights. A summary of open coding is illustrated in Table 3.2. 

Table 3.1 A Sample Demonstration of Flip-flop Technique 

Source: <Files\\18. Towards a Grand Unified Theory of SE> - § 1 reference coded  [0.15% Coverage] 

Text: the science of designing complex systems in their totality to ensure that the component 

subsystems making up the system are designed, fitted together, checked and operated in the most 

efficient way 

Flip-flop technique: What are the stages of the system integration? Is there any overlapping among the 

stages? 

Code at: Sub system design and integration 

Table 3.2 Summary of Open Coding Procedure 

Purpose Development of a set of categories from the data chunk 

Treatment of the dataset Fragmentation of the raw data by assigning several codes 

Approaches Used 
Word by word coding, line-by-line, paragraph by 

paragraph 

Techniques used Flip-flop, Waving the red-flag, and Saturation 

Output 
2498 codes 

 

During the first phase of coding, analysts have no bigotry objective with respect to the 

resultant dataset. The Summary of open coding: 

➢ The data is divided, examined, compared, gestated, and categorized (Strauss and 

Corbin) 

➢ The data is being questioned with a consistent or specific set 

➢ The data is analyzed 

➢ Theoretical notes are written by interrupting the coding often 

 

Open coding can also be referred to as temporary, typically associated with data mining or 

text, and suitable for diagnosing the defect in the analytical process. It uses a Constant comparative 

file://///130.18.123.16/dandavis/Downloads/d7272da4-97dc-47fb-95d4-6a0f94e88f40
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approach to saturate the data and iterative process. 

3.8.1.3 Phase 2: Axial Coding 

Open coding is followed by the Axial Coding phase. Axial coding describes the studied 

experience by answering the questions such as ‘When, where, how, who, and what consequences 

(Creswell, 2005). Axial coding is the second stage of the coding analysis technique that discovers 

the connections among the multiple codes. Strauss and Corbin have grouped the statements into 

components of schemes to answer the questions. One scheme includes Conditions, 

Actions/Interactions, and Consequences answering to: 

➢ Conditions: Why, Where, How, and When questions 

➢ Actions/Interactions: Whom and How questions 

➢ Consequences: What happens because of questions. 

Axial coding explores the interconnection among the categories and relates the categories 

to the subcategories. The object of axial coding is to sort, analyze, and organize a large amount of 

data and convert it into rational categories after open coding (Creswell, 2005). Axial coding 

consists of three main stages: explore the causal conditions, develop a central phenomenon, and 

delineate the consequence. In this research, axial coding was used to: 

➢ Synthesize the fragmented data, 2498 codes to assign them to categories and subcategories. 

➢ Connect and relate the categories to subcategories. 

➢ Assemble the categories based on the underlying attributes of their interconnection. 

➢ Generate a theory based on the relationship. 

In this phase of coding, the researcher explored the interconnection among the 2498 codes 

(child nodes) and delineated them into 29 main categories (parent nodes). In order to develop the 

29 main categories, the context and intervening conditions were explored, central phenomena were 
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developed, and interconnection was created to visually display the link between categories and 

subcategories. The 2498 child nodes are linked to parent nodes in such a way that the parent node 

can comprehensively describe the aggregate meaning of the child nodes. Different kinds of 

analysis such as coding query analysis, project map analysis, and model coding analysis were 

performed during this phase to explore the causal relationship between subcategories and main 

categories.  

In Figure 3.8, a snapshot of axial coding is illustrated. 

Axial coding builds a ‘paradigm’ coding to 

➢ Identify a central phenomenon, 

➢ Analyze Casual conditions, 

➢ Identify the context and intermediary conditions, and 

➢ Depict the consequences. 



 

98 

 

Figure 3.8 A Snapshot of Axial Coding 

 

3.8.1.3.2 Project Map Analysis 

Project maps are essentially a visual illustration of the various items in a project. The 

project map helps not only to explore but also to show the links in data.   

In project maps, the various items in a project are depicted by different shapes. The 

connectors are used to demonstrate the relationship among items. That is why researchers need 
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some data beforehand to formulate a project map. The first step for the project map is to determine 

what question to be asked regarding the project data. For instance, the questions can be the way 

these files are coded, the particular cases allotted to this classification, the definition of the 

attributes for this classification. After that, to draw a graphical illustration of the inquiry, project 

items that are essential to the query must be included in the canvas. In order to facilitate illustrating 

the answer, other related items must be included in the project map. Project maps are used for the 

following purpose: 

 

• Exploring and organizing data, 

• Developing ideas, building theory, and making decisions, 

• Identifying emerging patterns, theories, and explanations, 

• Visualizing the links between project items, and 

• Providing a record of stages in a project. 

After a project map is generated, it can be saved as an image in the project journal, and 

also observation and ideas must be noted. Figure 3.9 demonstrates the example of project map 

analysis where “management-oriented ( management role)” is considered as the main category 

(parent node) and “organizing,” “lead,” “staffing,” “controlling,” and “directing” are some of the 

subcategories (child nodes). 
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Figure 3.9 Project Map Analysis in Axial Coding (Management Oriented/Management Role) 
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In the same vein, the project map analysis of the “stakeholder need” node is graphically 

presented in the following Figure 3.10. 

 

Figure 3.10 Project Map Analysis in Axial Coding (Stakeholder Need) 
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3.8.1.3.3 Word Clouds Analysis 

A word cloud can be generated from a code or file in a detailed view. By running a word 

recurrence query on that item, NVivo generates a world cloud inside a file. Figure 3.11 and 3.12 

demonstrates the word cloud analysis of “interdisciplinary knowledge/approach” and life cycle 

phase” theme. 

 

Figure 3.11 World cloud Analysis of “Interdisciplinary knowledge/approach” Theme 
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Figure 3.12 Word Cloud Analysis of “life cycle” Theme 

 

3.8.1.3.4 Mind Map Analysis 

A convenient outline of the variation among the different types of other visualizations 

accessible in NVivo is provided by the map of visualizations. One can incorporate these at every 

phase of their project, considering the type of thinking they want to do. Mind Maps in NVivo 

facilitate concentrating on the project, which is similar to other mind-mapping tools such as 

Mindjet, XMind, Cogglea and Freemind. In order to brainstorm a code hierarchy and to convert 

those insights into codes, Mind Maps are often used. The mind map analysis of the 

“interdisciplinary” theme generated in the Nvivo interface is graphically represented in Figure 

3.13. 
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Figure 3.13 Mind Map Analysis of Interdisciplinary Theme 

 

3.8.1.3.5 Hierarchy Chart of Codes/ Tree Map Analysis 

Hierarchy charts/ Treemaps illustrate a hierarchy as it assists user to view or demonstrate 

patterns in coding. Using the hierarchy charts/ tree map analysis, researchers are able to evaluate— 

do any codes have much more coding references compared to others? Hierarchy charts facilitate 

not only to depict important themes in any project but also to isolate areas that require further 

investigation or research. The tree map analysis of “management role” and “stakeholder need” 

theme, generated in the Nvivo interface, is shown in Figure 3.14 and 3.15, respectively. 
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Figure 3.14 Tree Map Analysis of Management Role 
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Figure 3.15 Tree Map Analysis of Stakeholder Need 

 

3.8.1.3.6 Explore Diagram 

Explore diagram let researchers step forward and back through project data while 

surveying the relationship between items, it is considered as a dynamic diagram. Starting with a 

chosen project item in the center of attention, all related items are presented around it. In other 

words, one can create a novel diagram presenting all its related items just by selecting any of the 

connected files, codes or cases, and realign the diagram on that project item, which shows the 
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dynamic characteristic of this diagram. Figure 3.16 represents the explore diagram of “holistic 

approach” theme across different articles.  

 

Figure 3.16 Explore Diagram of “Holistic Approach” Theme 
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Table 3.3 Summary of the Axial Coding Procedure 

Purpose 
Analyse the codes generated during the open coding and relate them to 

convert into rationale categories. 

Treatment of the 

dataset 
Compare the codes generated during the open coding 

Approaches Used Causal conditions => Central phenomenon => Consequences. 

Techniques used 
Project map analysis, Word cloud, Explore diagram, Mind map, 

Hierarchy Chart/ Tree Amp Analysis 

Output 29 categories 
 

3.8.1.4 Phase 3: Selective Coding 

Selective coding integrates all the categories developed during the axial coding phase and 

transforms them into core categories or main phenomena. The process of selective coding involves 

developing the central theme to generate a theory by summarizing all the categories and memos 

created during the previous coding phase. At this phase: 

 

➢ The core category is selected,  

➢ Other categories (including sub-categories) are connected systematically,  

➢ Relationship between categories are validated, and  

➢ Categories that require clarifications and development are loaded in selective 

coding. 

The theoretical explanation of the data is grounded or confirmed by “Theoretical 

Sampling.” The core category is selected based on frequent appearance, being a central 

phenomenon rather than the peripheral, logical, and comfortable fit of data, and with great 

explanatory power.  
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In Figure 3.17, if “management approach” is selected to be code number 1 and “management 

element” is labelled as code number 2, then the selective coding procedure would identify code 

number 1 to be the core category, and all other correlated codes (code 2) will be related to the core 

category. 

 

Figure 3.17 Sample Nodes of Selective Coding 
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3.8.1.4.2 Cluster Analysis 

For illustrating patterns in any project through clustering files or codes that contain the 

same keywords, alike attribute values, or are coded similarly by codes, cluster analysis is an 

exploratory technique can be incorporated. The graphical illustration of files or codes provided 

by the cluster analysis diagrams facilitates to discern the similarities and differences (see Figure 

3.18). 

 

Figure 3.18 Demonstration of Cluster Analysis  
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Based on the coding procedure, a theoretical model was derived that describes the set of the 

systems engineering attributes (6 core-codes). These six codes include Interdisciplinary, Holistic, 

Requirement Engineering, Design & Integration, Life-Cycle Focused & Management (see Figure 

3.19). Six fundamental systems engineering attributes were derived based on the highest frequency 

of coding from the literature during the GTC analysis (Figure 3.20 and Table 3.5). A summary of 

selective coding is presented in Table 3.4. 

 

Figure 3.19 Fundamental Attributes of SE 
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Table 3.4 Summary of Selective Coding 

 

Purpose Derivation of the core categories 

Approaches Used Conceptualization of the entire analysis 

Techniques Used Cluster analysis, coding strip 

Output 
6 main systems engineering 

attributes 
 

 

 

Figure 3.20 Total Number of Coding Reference of 6 Core Codes ( attributes)  
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Table 3.5 Coding Frequency of Main 6 SE Characteristics 

Systems Engineering Attributes (SEA) 6 Core-Codes Coding Number 

Interdisciplinary 445 SEA1 

Hierarchical View 166 SEA2 

Requirement Eng. 653 SEA3 

Design and Integration 1263 SEA4 

Life-Cycle 272 SEA5 

Management/ SE Mgt. 504 SEA6 

 

 

Below is a comprehensive definition for each of the SE attributes based on the literature 

coding analysis.  

3.9 Validation of the Instrument (Qualitative) 

3.9.1 Synthesis of the Definitions of SE 

 

Today, the term systems engineering encompasses many different meanings and interprets to 

mean different things to different practitioners. This lack of clarity has resulted from the SE 

literature, which is a fragmented compilation of the use of the term “systems engineering” by 

practitioners from different fields and domains who define the term from different perspectives 

based on the nature of their workplace (Kasser et al., 2009; Jaradat et al., 2014). Because of this 

lack of standardized usage of the term SE, a study of the semantics and terminology related to SE 

is needed (Jaradat et al., 2017). To meet this purpose, we review the existing definitions from 
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different scholars to provide different perspectives with respect to SE and explore a set of terms 

that can advance the understanding of the SE domain.  

There are many diverse definitions of SE in the current literature. All the definitions are 

difficult to incorporate here; however, we attempt to demonstrate a summary of SE definitions 

provided by different scholars that significantly contribute to understand different perspectives of 

SE. Table 3.6 provides an overview of the existing definitions and the current dialogue of SE. 

 

Table 3.6 An Overview of the Existing Definitions and the Current Dialog of SE 

 

Author(s) Holistic 

Approach 

Interdisciplinary 

Approach 
Requirement 

Driven 

Integration 

& Design 
Life-

Cycle 

Iterative 

Process 

Management 

Oriented 

Engstrom (1957)  x      

Hall (1962)   x x    

Jenkins (1969) x   x    

Military Standard 499A (1974)   x x  x x 

Wymore (1976)  x  x    

Blanchard & Fabrycky (1981)   x x x x  

P.Mpherson (1986)   x x    

Forsberg & Mooz (1992)    x x   

Wymore, (1993)    x  x   

MIL-STD 499B (1993)  x x x x   

INCOSE (1994)  x x x x   

Shehnar (1994)   x x   x 

Shishko (1995)   x x  x  

Sage (1995)   x x x  x 

NASA S.Eng Handbook (1995)    x    

Skyttner (1996)     x   x 

ECSS-E-10-01 (1996)    x x x x  

Hazelrigg (1996)     x    

Jerome Lake (1997)   x x     

Grady (2000)    x x    

Rechtin and Maier (2000)  x x  x    

Arnold, 2000.         

DoD System Mgt. (2001)  x x x x   

CMMI (2001)   x x  x  x 

Ferris (2006) x  x x   x 

Kossiakoff et al., (2011) x   x    

Gräßler & Yang (2016)   x     x 

        

 

This is further supported by the work of Buckle-Henning et al. (2012), where the authors 

describe systems thinking comprised of 5 major themes. The themes can be mapped to the 6 

attributes of systems engineering in Exhibit 6. The themes described are: 1) use of tools, 2) use of 
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cognitive competencies, 3) possession of worldview, 4) holding particular ethics, and 5) sense of 

belongingness (Buckle-Henning et al., 2012) with the mapping provided in Table 3.7.  

 

Table 3.7 Attributes Mapped to Buckle-Henning et al. (2012) Themes 

Attributes Use of 

Tools 

Cognitive 

Competencies 

Worldview Ethics Belongingness 

Interdisciplinary   ●     ● 

Hierarchical View   ●   

Requirements ●         

Design & Integration ●     

Life Cycle     ●     

Management    ● ● 

 

 

In addition to the themes previously discussed, the INCOSE Systems Engineering 

Principles Action Team reviewed systems postulates, principles, and hypotheses identified in the 

literature, with a focus on the NASA Systems Engineering Research Consortium works. These 15 

principles can be found in the work of Watson titled “Systems Engineering Principles and 

Hypotheses” (Watson, 2019). These principles are accepted truths that apply throughout the 

systems engineering discipline and guide the application of systems engineering practices. The six 

attributes put forth in Figure 3.19 can be mapped to the principles set forth by Watson. The 

mapping is shown in Table 3.8. While the principles identified are related to each attribute, the 

bolded principles map directly to the attributes as shown. For example, Principle 13 states 

“Systems engineering integrates engineering disciplines in an effective manner” (Watson, 2019), 

which is a direct mapping to the interdisciplinary attribute.   
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Table 3.8 Attributes Mapped to Watson (2019) Systems Engineering Principles 

Attributes Systems Engineering Principles 
Interdisciplinary 5, 6, 9, 10, 13 

Hierarchical 

View 

2, 6, 10, 15 

Requirements  1, 2, 4, 6, 7, 10 

Design & 

Integration 

1, 2, 5, 6, 10 

Life Cycle 1, 6, 7, 10, 11 

Management 3, 4, 6, 7, 8, 9, 10, 12, 14, 15 
 

*Digit represents the state number of the principles 

All the above discussions boiled down to the theme that systems engineering is inherently 

interdisciplinary in nature because it integrates several disciplines to create a new product or 

system to meet stakeholder needs.  Taking a holistic perspective is fundamental to fully meeting 

customer requirements across the entire system life cycle. Requirement engineering is an essential 

aspect of the process of fulfilling customer demands from the identification of the need to final 

execution. Integration, design, and optimization refer to the iterative process of designing, 

evaluating, verifying, and refining a system to optimize its performance. A lifecycle view of a 

system considers the various sub-phases that fall into one of the two broad phases of acquisition 

and utilization. Along with technical skills, management acumen is critical to ensure the planning, 

development, and execution of an effective system. These core components form the basis of the 

definition of systems engineering as “a management-based holistic interdisciplinary approach that 

addresses the entire product life cycle, which involves designing and integrating the system 

elements in order to meet customer demand” (Hossain & Jaradat, 2018).  So, described succinctly, 

the synthesis of the SE attribute literature is consistent with our aforementioned six fundamental 

SE attributes that were derived from the grounded theory approach.  



 

117 

There are few new disciplines such as systems of system (SoS), families of systems, 

model-based systems engineering concept, and cognitive psychology have been evolved over 

the years and converge with TSE. System of Systems (SoS), which is grounded in general 

systems theory, treats the problem domain problem from the holistic perspective and deploys 

the efforts by considering the common goal of the entire complex systems (Jaradat et al., 2017, 

Jaradat & Katina, 2011, Keating & Katina 2011, Katina et al., 2003). Groupings of SoS can 

be further characterized by the Federations of system (FoS)(Adcock, 2015). In the past decade, 

model-based systems engineering (MBSE) has appeared as a modern SE tool that covers all 

the SE approaches, including requirement analysis, architectural design, product 

development, verification and validations, and documentation and configuration management 

in order to make the job easy for the systems engineers (Elakramine, 2020; Kerr, 2020; 

Hallqvist, 2016).  

3.9.2 The Development of Instrument (Summary) 

As we discussed before, the instrument was developed using a mixed approach method by 

scrutinizing both qualitative and quantitative data for analysis. In order to pursue the objectives of 

the research, we have studied, analyzed, and coded more than three hundred different resources, 

including letters, conference proceedings, scholarly presentations, peer-reviewed journal papers, 

technical papers, and book chapters. The criterion that leads the selection of more than one hundred 

and fifty seminal works that contributed most to the domain of systems engineering as identified 

by the frequency of citation for the work. The grounded theory approach was applied with the help 

of Nvivo 12 (QSR International) software in organizing, analyzing, and synthesizing the 

qualitative data. Grounded theory coding is an established qualitative data analysis methodology 

that generates a theory or visual model by employing explicit coding and analytic procedures to 
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organize a large unstructured data set including surveys, interviews, literature reviews, videos, and 

others into a coherent representation (Glaser & Strauss, 1967, p.103 ). Thus, this technique helps 

in developing a more general theoretical concept (or hypothesis) from the available resources.  

After completion of the final stage of coding, a theoretical model has been developed, and 

a new theory is obtained. This theory represents the set of systems engineering attributes (6 core-

codes) and the corresponding performance indicators for each attribute. The six core codes were 

derived after examining the patterns in the dataset using three main progressive stages of coding: 

open coding, axial coding, and selective coding. We further conducted an extensive review of the 

literature to derive the corresponding performance indicators for each attribute (please see the list 

of appropriate references on page 120). The description of the six attributes and the corresponding 

performance indicators for each attribute are presented in Table 3.9 and Figure 3.21, respectively.  
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Table 3.9 Definition of Six Main Attributes of Systems Engineering 

Attributes Description 

Interdisciplinary 

Integration of diversified disciplines in order to deal with complex system 

problems and to provide top-notch solutions during the design and 

development stages of a system. 

Hierarchical View 

Perception about a problem, its environment, and solution. The viewpoint of 

a systems engineers, whether he/she is considering the entire system  as a 

whole or only focusing on a set of disconnected parts. 

Requirement Engineering 

Refers to a series of actions, including identification of stakeholder need, 

eliciting requirements, modeling and analyzing requirements, agreeing on 

requirements, and communicating the requirements in order to fulfill 

customer expectation. 

 

System Design and 

Integration  

 

Represents design, integration, verification of sub-elements/elements 

through a logical sequence to optimize the performance of the system. 

System Life Cycle 

Defines the stages involved in bringing a system from inception to phase 

out. 

 

Management/Systems 

Engineering Management 

 

Technical skill set in conjunction with a broad understanding of business 

principles to oversee the system processes in order to enhance system 

performance. 
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Figure 3.21 Performance Indicators of the Corresponding SE Attributes 

 

The anatomy of the SE performance measurement instrument with its two extremes is 

illustrated in Table 3.10.  To begin a detail foray into the performance indicators of SE attributes, 

readers are directed to study the works of the followings: 
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Interdisciplinary 

• Integration (Gräßler & Yang, 2016; Green & Andersen, 2019; Topcu et al., 2020)  

• Coordination and Collaboration (Silvia Mazzetto, 2018; SILVIA Mazzetto, 2017; Topcu et al., 2020) 

• Hybrid Thinking (Guenther, 2012; Hopfe & McLeod, 2020; Hossain et al., 2020) 

• Common understanding of core problems (Alpcan et al., 2017; Bielefeld et al., 2019; Naidoo, 2017) 

• Tolerance of ambiguity(Khan, 2020; Shima et al., 2019; Tsirikas et al., 2012) 

• Application (Eigner et al., 2012; Kernschmidt & Vogel-Heuser, 2013; Legner et al., 2017) 

• Adaptability (Albers & Lohmeyer, 2012; Graessler et al., 2018; Sheard et al., 2015) 

• Leadership (Legner et al., 2017; Niine & Koppel, 2015; Pineda et al., 2012) 

Communication and Listening (Costa et al., 2019; Gilbert et al., 2015; Silvia Mazzetto, 2018) 

 

Hierarchical View 

• Holistic (Königs et al., 2012; Locatelli et al., 2014; Madni & Sievers, 2018b) 

Reductionist (Bakshi, 2019; Jaradat, 2015; Rebovich Jr & White, 2016) 

 

Requirement Engineering 

• Context and groundwork (Dutta et al., 2013; Hossain et al., n.d.; Martins & Gorschek, 2016) 

• Flow-down activities  

(requirement elicitation, analysis, definition (define constraint) and specifications, modeling, validation, 

and verification) (Salado & Nilchiani, 2017; Tabassam & Al-Qahtane, 2019; Yasseri, 2014) 

• Requirement traceability and management (Osman, 2018; Shah & Patel, 2014; Shukla et al., 2012) 

 (Change management, evolving requirement 

 

System Design and Integration 

• ConOps (the concept of operation) (Flores et al., 2012; Mindock et al., 2017; Watson et al., 2020) 

• System design and integration (Retho et al., 2014; Seo & Park, 2018; Twomey, 2017) 

• Subsystem design and integration (Madni & Sievers, 2018b; Reilly et al., 2017; Seo & Park, 2018) 

• Unit design and testing (Alblawi et al., 2018; Flores et al., 2012; Rutishauser et al., 2019) 

• Coding (V&V) (Akeel & Bell, 2013; Carrozza et al., 2018; Hossain & Jaradat, 2018) 
 

System Life Cycle 

• Knowledge of “concept development” (Fleming & Leveson, 2015; Haberfellner et al., 2019; London, 2012) 

• Broader knowledge of “ engineering development” (Buede & Miller, 2016; Frank, 2012; Schumacher et 

al., 2013) 

Knowledge of “post-development” phase (Bocciarelli et al., 2014; Hossain et al., 2020; Lester, 2018) 

Management/Systems Engineering Management 

• Management planning and control  (De Graaf et al., 2017; Hirshorn et al., 2017; Wognum et al., 2019) 

• Risk management (Fomin et al., 2017; Galli, 2020; Rebentisch & Prusak, 2017; Hossain et al., 2019e) 

• Configuration management  (Lopez et al., 2020; Madni & Sievers, 2018a; Xue et al., 2017) 

• Decision management  (Cilli & Parnell, 2016; Martin & Minnichelli, 2020; Schindel & Dove, 2016) 

• Project management  (Haberfellner et al., 2019; Hodges, 2018; Lachhab et al., 2017) 

• Quality management (Brown et al., 2019; Carrozza et al., 2018; Hodges, 2018) 

Informantaion management (Chen & Jupp, 2019; Cui & Li, 2018; Legner et al., 2017) 
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Table 3.10 Summary of SE Performance Measurement Instrument  
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3.9.3 Quantitative Data 

 

 Quantitative data collection, gathering, analyzing, and documenting consists of the following 

steps: 

1. Survey design 

2. Sample selection 

3. Measure and procedure for data documenting 

4. Interpretation of result 

5. Data analysis 

 

3.9.3.1 Survey Design  

 

In this study, survey design will be considered as a primary research method. Survey 

Design provides a detailed description of developing surveys to fulfill the research goal.  It allows 

an administrator(s) to run a survey(s) to a sample or the entire population of people to describe 

different demographics. The survey administrator will collect the quantitative data via an online 

survey tool or using ready-made questionnaires’ or interviews.  

 In this study, a cross-section survey will be conducted via an online survey tool- Qualtrics. 

The cross-sectional study is also known as  transverse study to analyze the data in order to measure 

a particular outcome from the study participants at one given point of time.  

3.9.3.2 Sample Size and Data Collection  

In this study, the performance measure survey instrument was used to collect data during 

the testing phase of the research. Primary data for the research was collected in two phases.  During 

the first phase, data were collected from the participants who took part in the pilot test. The pilot 
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test was deployed due to its ability to reduce the systematic and random errors in the instrument 

and to gather feedback and suggestions from experts in the field.  

In the second phase, data was collected from the target group for this study that includes 

the systems engineers focused group. For data collection purposes, an invitation letter will be sent 

via e-mail to invite all participants who were working in systems engineering problem domains. 

Upon their written consent, a web-link with instructions and survey scenarios was sent via 

Qualtrics to the participants. The participant includes the practitioners from NASA, Boeing, US 

Army, US Navy; and undergrad and graduate students who have completed at least one SE project 

as part of their coursework.  The participant will be asked to record the following demographics 

during the survey: age, gender, race, educational qualifications, employer type, job title, work 

experience, managerial experience, type of organization, and size of the organization.  

 

3.9.3.3 Measures and Procedures for Data Documenting 

The data reported here will be collected to assesses the skill of systems engineering based 

on the set of performance measurement indicators of six fundamental SE attributes. The proposed 

instrument consists of 29 scenarios with binary response question options. These scenarios were 

developed based on the extensive literature review pertaining to performance indicators for each 

SE attribute to assess the performance of an individual’s systems engineering skills. As an 

example, the scenario for the Requirement Engineering dimension is presented below: 

 

**Suppose you are a requirement engineer, working in an inflight entertainment (IFE) 

industry. Recently you have a meeting with XYZ airlines who are excited to launch their new 

aircraft Boeing 777 with most-updated, feature-rich, display system for customers to enjoy 

onboard.  

After successful conversation with the stakeholders, we assume that you have properly 

elicited the requirement for the inflight display features. Based on your requirement elicitation 

statement, design team will start designing the inflight monitor. As you are bridging the gap 
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between stakeholders (customers) and design team, so your elicitation performance matters, i.e, 

whether you have properly extracted or discovered the requirement information from the 

stakeholders (customer). 

 

1. Based on the discussion with XYZ stakeholder, the requirement of the inflight passenger 

monitor could be elicited as: 
 

 

• The inflight monitor display must be user friendly 

• The inflight monitor display shall provide dual mode view, superior viewing angles, LED 

backlit LCD for the user 

2. Based on the scenario, proceeding requirement can be written elicited as follows:  

1) For the setback monitor, temperature unit shall be displayed in U.S format and for central 

dropdown(overhead) monitor; temperature unit shall be displayed in European format. 

2) The unit of the temperature shall be displayed based on the format of the destination 

country for both types of monitors. 
 

2. Based on the scenario (RQ#1), one of the features of the display system can be written as 

follows 
 

• The seat back monitor display shall never be in sleep mode during the long-haul flight. 

• The seat back monitor display shall be in sleep mode in every 10 minutes if its multimedia 

system is inactive during the long-haul flight. 

 

3. Based on the scenario (RQ#1), one of the features of the display system can be written as 

follows 
 

• All the monitors for the aircraft shall be configured with 4k resolution, 21:9 aspect ratio 

and 34-inch flat screen monitor. 

• The central dropdown (overhead) monitors for the aircraft shall be configured with 4k 

resolution, 21:9 aspect ratio and 34-inch flat screen monitor. 

 

5. In order to make a concise requirement statement, requirement should be elicited as: 

• On the seatback screen, the user can only view one record 

• Stored Flight screen, the system shall display only destination time zone 

 

6. It won’t happen often, but sometimes the display of the seatback monitor get frozen or 

appears with a black or blank screen. To provide the solution for this problem, you are 

developing user guide for the inflight seatback monitors. The instruction could be written 

as: 
 

• If screen becomes frozen and unresponsive, press and hold the "Power" button for a 

short period. 
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• If screen becomes frozen and unresponsive, press and hold the "Power" button for 30 

seconds. 

 

7. The stakeholders provided multiple specifications for the user awareness such as during 

the high turbulence, warning light will flash out, and seatbelt sign will blink in the display. 

These elicited requirement should be easily traced through to the specification, design and 

testing phase. As a requirement engineer, which of the following statement is correct you 

think for better requirement traceability. 
 

• High turbulence warning light shall flash out and seatbelt sign will blink in the display 

when the plane is travelling in turbulence zone 

• The high turbulence warning light shall flash out in the display when the plane is travelling 

in turbulence zone. 

 

8. Nowadays, the act of traveling is much more luxurious than it has ever been before. 

Therefore, XYZ airline like to upgrade the collection of inflight entertainment system by 

offering different films, musics, television programs, and games for different age group 

and tastes of people. To enhance collection of entertainment system, they are planning to 

store user information and browsing history while a user is watching and playing different 

things during the flight time. And they want to store this information in a text format. 
 

As a requirement engineer, you have elicited the above need from the XYZ airlines and 

passing this information to the design team. Your statement to the designing team shall be: 
 

• User information and their browsing history information shall be stored in a text file. 

• User information and their browsing history information shall be stored in a text file 

by using Java script. 

 
*red text shows the correct systemic answer. 

 

Participants engage with each scenario in order to select the best options based on their 

systems engineering knowledge. For our scoring purpose, we have coded one point for a systemic 

response and zero points for each non-systemic response. Then, the sum of the individual response 

points is divided by the number of total questions for each attribute to obtain the cumulative score 

for the respective attribute. This score represents the weighted performance for an individual 

systems engineer’s skill state for that corresponding attribute. Finally, the cumulative score will 

be converted into a percentage scale, which ranges from 0 to 100. The resulting score is then 



 

127 

translated into a performance profile that contains six main letters. This translation is done based 

on the score obtained for the respective attribute. For instance, for the interdisciplinary attribute, 

if an individual scores more than 50, his/her letter tag is I+ (I-plus), which represents that the 

individual possesses above-average interdisciplinary skill. On the other hand, if an individual score 

less than 50, his/her letter tag is I-(I-minus). This means that the individual has below average skill 

on the interdisciplinary attribute. If an individual’s score is equal to 50, he/she gets the letters I (I-

plain), which entails that the participant has average knowledge on the interdisciplinary attribute. 

The performance profiles (6-letters) represent an individual performance in the domain of system 

engineering. The results of the instrument’s application are instructive for systems engineers as 

well as the organization/teams to which they are assigned. For systems engineers, the results 

provide a professional development framework of areas that they may need to focus on to enhance 

their systems engineering skill sets. For organizations/teams, the results of the team members 

assigned to a particular effort can suggest the diversity of skills that exist on a team. This can be 

compared to the particular effort to identify potential skill set vulnerabilities that may need to be 

‘compensated’ such that the effort will have a better chance for success. While the instrument 

results are not the ‘definitive’ guide to skills, they do provide a valuable indicator to suggest areas 

of deeper inquiry. 

3.9.3.4 Result Interpretation/ Outcome of the Profile 

The outcome of the proposed instrument will provide a profile that presents the systems 

engineering skill held by an individual. Each profile consists of six letters that entail the state of 

skill for each individual system engineer, and thus determine their level of performance to deal 

with problems emanating from complex systems domain. The systems engineering instrument will 

guide every individual to identify their strength and weakness on systems engineering knowledge 
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and assess their potential capacity to successfully engage complex system problems. Additionally, 

while a systems engineer has a particular systems engineering profile, it should be noted that: (1) 

a profile can be modified through development activities such as training and (2) a particular 

profile can identify the degree of congruence between demands of a particular assignment and the 

degree to which an individual possesses skills demanded. An example of an individual systems 

engineer’s profile is depicted in Figure 3.22, and the two extremes of each attribute are shown in 

Table 3.11.  

 

 

Figure 3.22 An Example of a Systems Engineer’s Profile  
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Table 3.11 Two Extremes of Each SE Attribute 

 

 

3.9.3.5 Interpretation of Profiles 

The first attribute, interdisciplinary skill (I), describes whether an individual has the ability 

to work in a collaborative environment or not.? The second, skill on the hierarchical view (H), 

indicates the way individual approaches  solving system engineering problems. The third pair, skill 

on requirement engineering (R), describes an individual’s proficiency in the requirement 

engineering discipline. The fourth attribute, systems design and integration skill, indicate an 

individual’s dexterity on understanding the fundamentals of systems design and integration.  The 

fifth attribute, skill on system lifecycle, describes an individual’s knowledge on systems life cycle 

management.  The final attribute, skill in SE management, specifies the way an individual 
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approaches managing systems engineering problems through their business, technical, and 

interpersonal skill. Based on the profile depicted in Figure 1, an individual has strong knowledge 

(more than average) on interdisciplinary, hierarchical view, and design and integration aptitude, 

whereas his/her proficiency level, is below par in management dimension. Additionally, there is a 

scope of improvement for the requirement engineering and life cycle attributes. The illustration of 

an example profile as depicted in Figure 3.22 is represented as a scale in the following  Figure 

3.23. The cross mark – “X” sign shows an individual’s skill/performance on each attribute. 

 

 

Figure 3.23 SE Performance Measurement Scale 

A detailed description of each attribute along with their indicators, is presented below. 
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3.10 Interdisciplinary 

Interdisciplinary is the integration of diversified disciplines in order to deal with complex 

system problems and to provide top-notch solutions during the design and development stages of 

a system. To effectively engage in complex systems problems in the systems engineering field, we 

need knowledge and expertise from disparate areas such as, technical, social, organizational, 

managerial, and administrative. (Gorod et al., 2008; Jaradat et al., 2018). Thus, measurement 

becomes an effective gateway to understand the particular capacity of an individual, and team, to 

engage the entire spectrum necessary to perform systems engineering. The mentioned 

interdisciplinary performance measurement approach should evaluate the capability of a systems 

engineer in diverse areas, including (1) integration, (2) coordination and collaboration, (3) hybrid 

thinking, (4) common understanding of core problems, (5) tolerance of ambiguity, (6) application, 

(7) adaptability, (8) leadership, and (9) communication and listening. This particular set provides 

a deep understanding of the capacity of an individual/team to address the holistic spectrum of 

dimensions essential to more holistically addressing complex systems.  

 

The interdisciplinary characteristic is one that is defined by the engineer’s ability to 

incorporate multiple engineering disciplines into their system, so that they can work in 

coordination with one another. This characteristic allows the engineer to create unique solutions 

to problems that may not have been clear to those without this characteristic, creating a valuable 

asset to any engineering team. 

 All characteristics have unique performance identifiers that present themselves in systems 

engineers. For the case of the interdisciplinary characteristic, there is a large amount of these 

performance identifiers. The first of the identifiers is adaptability, which is presented as the ability 

to change solutions and methods as the requirements for the system change. This relates to 
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interdisciplinary as the systems engineer will be able to seamlessly integrate multiple disciplines 

in their improvised solution. In order to take charge and make use of all these domains, a strong 

competency in the indicator of leadership must be present. By having this trait, the systems 

engineer will be able to properly include the multitude of disciplines as well as coordinate their 

various feedback. One indicator that may not be as obvious is the ability to tolerate ambiguity in 

the system design process. With coordinating a multitude of engineering teams, there are going to 

be a large number of unknowns, it is important that the systems engineer is comfortable with this 

as their working environment. Being able to include multiple disciplines also within itself contains 

ambiguity as there is overlap between disciplines, allowing for different engineering disciplines to 

accomplish the same tasks within the system. Paramount to any systems engineer with the 

interdisciplinary category is the ability to communicate and listen effectively. Without this 

indicator, proper collaboration cannot be achieved, and more harm than good will be done to the 

system. Another indicator is that of hybrid thinking. Hybrid thinking is the ability to iteratively 

developing and implementing innovative systems through the use of human-centered experiences. 

Indicators that may not be a surprise, are integration as well as coordination and collaboration. 

With a characteristic that heavily involves multiple engineering domains and teams, the ability to 

organize those teams and integrate those domains,  

The extreme of an engineer having a low-level competency in this attribute, would best be 

described as a sense of autonomy. What is meant by this is that the systems engineer would more 

than likely prefer to work alone or in a small group that has a specific focus on one aspect in 

particular about the system. On the opposite end, a system engineer with high competency would 

be described as collaborative. This engineer would look to involve many engineers from different 

aspects of engineering to cooperate with a diverse group. 



 

133 

3.11 Hierarchical View 

The hierarchical view represents the perception about a problem, its environment, and the 

solution. More precisely, the viewpoint of a system engineer whether he/she is considering the 

entire system life cycle as a whole or only focusing on a set of disconnected parts. Jaradat (2015) 

defined the level of hierarchical view as a personal tendency to view complex problems from either 

a holistic or reductionist perspective. Keating et al. (2018) posited that “In addition to 

technical/technology aspects of a system, consideration for the entire influencing spectrum of 

human/social, organizational/managerial, policy, political, and information aspects central to a 

more complete (holistic) view of a system. Behavior and performance as a function of interactions 

in the system – not reducible or revealed by understanding individual constituents” (Keating et al., 

2018). By the same token, Gasparatos et al. (2009) stated “our recent awareness of economies, 

societies, and ecosystems as complex adaptive systems that cannot be fully captured through a 

single perspective further adds to the argument. Failure to describe these systems holistically 

through the synthesis of their different non-reducible and perfectly legitimate perspectives 

amounts to reductionism. An implication of the above is the fact that not a single sustainability 

metric at the moment can claim to comprehensively assess sustainability” (p. 245).  

 The holistic characteristic can be described as looking at the system as more than just a 

series of elements, instead of looking at the themes that tie the overall system together. An engineer 

with this characteristic would focus on the coordination of the different elements and figuring out 

how they can support each other throughout the system process. This characteristic would be 

evident regardless of whether the systems engineer was in a position to make decisions regarding 

the entire system, a subsystem, or a singular element. Although depending on their level of control 

over design and implementation will impact their ability to utilize the holistic characteristic. 
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 This characteristic has few but clearly defined performance indicators. This means an 

engineer’s ability to think both the reduction and holistic mindsets. This is so that the engineer can 

view the system as a series of parts, as well as be able to focus on one of the parts in order to 

provide fixes to any problems that may arise. Having both sides at their disposal makes this 

engineer able to zoom in and out of the design process as needed, meaning that issues at a lower 

‘level’ of the design should be identified for their impact on the entire system. Lastly, the systems 

engineer should have an overall sense of the hierarchal view of the project. With this performance 

indicator, the systems engineer will be able to note which parts of the proposed system is a larger 

combination of subsystems or a single element. Having this sense is crucial to identifying parts of 

a system to ensure the flow of the system is properly taken into account, allowing for the impact 

of the system to be as meaningful to the client as possible. A hierarchal view can also be conveyed 

to individual teams or engineers in order to ensure that everyone working on the system is aware 

of exactly how their work impacts the other teams on the project. 

An engineer who is deficient in this area would be described as a reductionist. This systems 

engineer would focus on breaking down each element individually and analyze them as a singular 

unit. By having a narrow focus, the engineer would not look to see how their work affects other 

elements, but purely towards making their element function the best possible regardless of the 

impact to the overall system. A very competent engineer in this attribute would be unsurprisingly 

considered holistic. They would strongly focus on the interaction between the elements in the 

system and how they interact together as a cohesive unit. 

3.12 Requirement Engineering 

Requirements engineering (RE) is considered one of the mainstays of systems engineering. 

RE is concerned with series of activities pertaining to eliciting, analyzing, modeling, documenting, 
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and maintaining stakeholder’s requirements (Malviya, 2017; Nuseibeh & Easterbrook, 2000). 

Although a plethora of different tools, techniques, and methods exist, still developing system 

requirements in complex circumstances remains a difficult task. The successful accomplishment 

of this task heavily depends upon the performance of a requirement engineer or business analyst. 

More precisely, how the requirement engineer retrieves, collating, and combing information for 

diversified sources such as interview notes, scripts, observations, and business artifacts (Katina et 

al., 2014; Malviya, 2017). 

The requirement engineering characteristic is defined by the ability for the systems 

engineer to focus directly on the needs of the client and ensure that those needs are met. This 

characteristic specializes in the ability to define and analyze the stakeholders needs and 

communicate those effectively to the various teams working on the project. 

 The performance indicators of this requirement engineering characteristic are very direct. 

The first is whether or not the systems engineer has the ability to discern the groundwork and 

context of the system from the given requirements. Ensure that the foundation of the system is 

solidly within the constraints right from the get-go is important to ensure as the system is built 

within the client's means. Another key indicator is the systems engineer’s ability to trace the 

requirements throughout the system. To ensure the system meets the client’s expectations, every 

element as well as a combination of elements, must fit within the requirements of the system. An 

engineer with a strong requirement engineering characteristic should be able to see that these 

requirements hold true under any conditions. Lastly, the performance indicator of flow-down 

activities must be considered. These activities are actions such as modeling, defining, and 

validating the requirements, be it with the various engineering teams or with the client themselves. 
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This ensures that all parties involved with the system have a clear and agreed-upon understanding 

of what the constraints of the system will be. 

A system engineer who is not proficient in this area would be focused more on internal 

forces, such as short-range fixes and plans, and they tend to settle issues rather than taking on 

multiple perspectives. When an engineer has shown a high ability in this area, they tend to ensure 

they take in multiple perspectives as well as very specific requirements. Allowing for such 

openness creates a stronger sense of collaboration, keeping all interested parties invested within 

the overall outcome of the system. This engineer would also incorporate long term plans and keep 

their options open. This systems engineer would best showcase their abilities in a dynamic 

environment, with the opportunity to create order out of the chaos of constant change. 

3.13 System Design and Integration 

The fundamental purpose of SE is to integrate and design the sub-elements of the system 

to achieve optimal system performance. It assembles and synchronizes the possible technical 

inputs and checks the compatibilities among the different interfaces of the system to achieve 

maximum performance. System design from a systemic perspective emphasizes a holistic frame 

of reference. This frame must cross not only the technical aspects of design but also the 

organizational/managerial, policy/political, and human/social dimensions of a complex system. 

Additionally, integration is focused on making the system perform as a ‘unity’, not simply an 

aggregate of parts. Therefore, a more ‘systemic’ perspective of integration is focused on 

performance as unity across the entire perspective of the dimensions of a system.   

When an engineer is considered to have the sub-element integration, design, and 

optimization trait, they possess the ability to discern the various elements of a system and 
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incorporate them to have a strong sense of synergy. This allows for a strong and high-quality flow 

to the system allowing for the best results to occur. 

 With the sub-element integration, design, and optimization, there are performance 

indicators to see if the systems engineer in question has this specific trait. The first of these 

performance indicators is if the engineer shows strong system/subsystem design and integration 

abilities. This means the engineer has the ability to design elements that work in conjunction with 

each other to establish efficient systems or subsystems regardless of the scope or requirement of 

said systems. This performance indicator also is important in demonstrating the creative thinking 

of the engineer, as it allows for new and unique methods of combing subsystems and elements. In 

order to ensure this, another strong performance indicator is the ability to perform unit testing. 

This is to validate the elements and make sure that they function as intended, as well as provide 

the desired outcome. Checking the flow of the system as early as possible allows for adjustments 

to be made before time becomes a critical factor within the design or implementation phases. Next, 

there is the performance indicator of the concept of operation. This is the ability to view the system 

from the angle of someone who will be using the system, either the client or the client’s employees. 

If the design is not viewed from this angle, it is possible that the system will not make sense to any 

of the operators and therefore be useless as a final product to the client. Lastly is the performance 

indicator of validation and verification. Validation and verification are conducted towards the end 

of the project and is done so in order to ensure the system design is feasible and running smoothly 

to the client’s liking. This process is conducted through all layers of the hierarchy of the system as 

a method of checking every possible shortfall of the system before the client receives the final 

version of the system. 
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An engineer without competence in this area would focus on local design. This meaning 

they would focus on the integration and optimization of elements and subsystems at a local level. 

This can range from only viewing specific elements to individual subsystems with a ‘tunnel vision’ 

approach. A highly competent systems engineer would focus on the global outlook of the system. 

This would be the integration of multiple subsystems as well as considering the global outcome 

when making decisions to ensure harmony within the final system. 

3.14 System Life Cycle 

System engineering life cycle follows sequential activities that involve concept 

development through production and on to operation and ultimate disposal (Kossiakoff & Sweet, 

2003; Hossain & Jaradat, 2018). Derivation and development of a life cycle model depends upon 

the experience and performance of a system engineer as iterative reviews and decisions are part 

and parcel of the system development life cycle (SLDC) process. To be a competent system 

engineer, an individual should have a comprehended grasp of knowledge on every phase of SDLC; 

however, knowledge on separate phase might also lead to be an effective systems engineer for that 

specific phase only.  

 A system engineer with the lifecycle characteristic is one who takes into account the broad 

lifecycle of the entire system. This includes the design phase all the way to phasing out the system, 

as well as the long-term impact the system will have. 

 As with the other characteristics, the lifecycle characteristic has its own unique 

performance indicators as well. The first of said performance indicators is the systems engineer 

must have an understanding of the post-development stage. This stage occurs once the system has 

been implemented and is being used by the client. It is very important to note as if the client 

receives a system with a poor post-development result, they will not receive the value intended 
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from the system. The systems engineer must also show competency in the performance indicator 

of having knowledge of concept development. This is the development of the concepts that will 

dictate the creation and implementation of the system. Having new and unique concepts as well as 

using tried and true ones will result in a robust system that feels cohesive to the client. These 

concepts can be ones that range from individual element concepts or even span the entirety of the 

system, depending on the need of the client and system. Lastly, when evaluating a system engineer 

for the lifecycle characteristic, it is important to note their intuition for the performance indicator 

of broad knowledge over-engineering development. The performance indicator will manifest itself 

as the ability to understand a wide variety of development methods to ensure the best method for 

the system’s goal is being used, rather than the first method the engineer can think of. Having more 

‘tools’ in their ‘toolbox’ will benefit the client as well as the system as a whole. 

One who is not well versed in this attribute would focus on the individual phases, and how 

exactly they are managed. On the opposite end of the spectrum, a highly skilled systems engineer 

in this attribute would focus on the complete life cycle. They would use iterative sequence 

methodologies staring with the creation of the product all the way to the completion of the lifecycle 

of the product. 

3.15 Management/Systems Engineering Management 

Management or systems engineering management is described as a technical skill-set in 

conjunction with a broad understanding of business principles to oversee the system processes in 

order to enhance system performance. From the management perspective, a systems engineer 

should develop and maintain excellent performance in diverse managerial facets such as (1) 

technical skill, (2) understanding of team dynamics and relationship management, (3) motivating 

people and develop others, (4) self-development, (5) communication, (6) guiding people and 



 

140 

managing conflict, (7) problem-solving from a systems engineering perspective, (8) creative 

thinking, and (9) personal effectiveness.  The aforementioned skills can be categorized into two 

sections- personal and team skillsets. The first category (personal skills) is relevant to the 

individual/personal capacities of a systems engineer and includes technical skills, self-

development, problem-solving, creative thinking, and personal effectiveness. In addition to 

personal skills, a systems engineer should have team-skills inclusive of understanding of team 

dynamics and relationship management, motivating people and develop others, communication, 

and guiding people and managing conflict. The combination of personal and team-skills would 

complete the managerial skills of a systems engineer in dealing with complex systems. In other 

words, a systems engineer should have an appropriate level of personal and team skills to be able 

to manage complex systems problems.  

 The management characteristic is defined as having the technical and business skills to 

oversee a large system engineering effort. This characteristic focuses on the ability of a systems 

engineer to lead and organize the entire project through ensuring that both the goals and 

requirements are met in a timely manner. A system engineer with this characteristic is valuable at 

any level of the system design and implementation as effective leaders at all levels will make the 

process run efficiently. 

 Similar to the other characteristics, the management characteristic has its own performance 

indicators. When undertaking a project, a key indicator is risk management. It is very important to 

weigh the pros and cons of various elements and methods when creating a system, being able to 

manage these risks is an important aspect of the management characteristic (Hossain et al., 2016; 

Lawrence, 2020a; Hossain et al., 2019a,d; 2020b,d). Another key performance indicator is 

information management. The system works as a large combination of smaller more intricate 
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elements. If the various elements and their engineers do not have proper information such as the 

deadline, goal, or even budget of the project, it will be impossible for the project to be able to be 

finished. Therefore, the direct and proper flow of information is key to a successful project. On 

top of that, the systems engineer must be proficient in planning and controlling the project. This 

has to do with laying out the order in which elements are to be completed, as well as ensuring the 

project sticks to that proposed schedule. Along these lines are also the indicators of configuration 

and decision management. Both of these indicators evaluate the planning process and have to do 

with ensuring that the proposed schedule fits all the various constraints that both the client and 

teams have developed. Lastly, the performance indicator of quality engineering must also be 

considered in the systems engineer. Quality engineering in this case is referring to the effectiveness 

of the various elements as well as the system as a whole. It falls to the responsibility of the manager 

to ensure the project is completed to the client’s preferred precision level (Hossain et al., 2013; 

Hossain & Jaradat, 2018). 

An engineer with low managerial skills could be described as having low interpersonal 

skills, which effects the ability to properly convey business and technical ideas. A system engineer 

with high managerial skills would use their exceptional interpersonal to easily convey business 

and technical ideas. Application of SE attributes are described in Table 3.12.  
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Table 3.12 Application of SE Attributes 

Systems Engineering Attributes 

(6-SEA) 
Application Process 

Interdisciplinary 

• Be knowledgeable about the abilities that different 

groups working on the system have. 

• Identify points in the system in which different 

engineering disciplines will need to be used together. 

• Utilize different disciplines to create an optimal system. 

• Meet with team members of different disciplines to 

ensure their discipline is being utilized to the fullest 

extent. 

Holistic 

• Identify the overall goal of the project. 

• Focus on the overall concepts that are dictating the 

creation of the system as a whole. 

• Utilize abstract concepts in order to enhance the overall 

productivity of the system. 

• Conceptualize the system during the design phase to 

allow for top-down tools to be implemented properly 

Requirement Engineering 

• Develop a concise list of what constraints are critical for 

the system to follow. 

• Itemize external forces that may affect the system once 

deployed. 

• Be reactive to changes that may occur and allow for 

room to make said changes to either the system or 

requirements. 

• Integrate multiple perspectives on solving the problem 

in order to ensure the best system is created. 
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Table 3.12 (continued) Application of SE Attributes 

 

Systems Engineering 

Attributes (6-SEA) 
Application Process 

Sub-Element Integration 

and Design  

• Focus on how individual parts of the system will work to 

improve each other. 

• Avoid focusing too much attention to a singular element 

within the system. 

• Base decision making to a global project scale. 

• Use verification tools to ensure the proper cohesion of the 

system. 

Lifecycle • Develop a clear understanding of how the system will evolve 

over time. 

• Focus on the long-term impact of the project. 

• Identify methods to allow for smooth transitioning between 

stages in the life cycle. 

• Be conscious of the current stage of the lifecycle and what the 

next stage is going to require in order to plan in advance. 

Management • Delegate tasks to each team member based upon their 

individual skills. 

• Develop and maintain a schedule to reach the appropriate 

deadline. 

• Keep track of costs in order to ensure the project is completed 

within the allotted budget. 

• Have the technical knowledge to help team members with 

problems that arise at any point in the life cycle of the system. 
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CHAPTER IV 

DATA ANALYSIS, RESULTS, AND INTERPRETATION 

4.1 Descriptive Statistics 

In this section, patterns of the dataset are explored, which is the first step in analyzing a 

dataset (Field, 2013). The main theme of the descriptive statistics is to gather not only insights 

about the distribution of the sample but also garner ideas of various characteristics of the sample 

structure. There were 12 demographic questions designed in the survey instrument (see Table 4.1). 

The survey was carried out on a focus group in which participants were from academic/ research 

background including  systems engineers/practitioners working in space and defense industries; 

and the students who have taken systems engineering courses as  a part of their course project. A 

total of 102 respondents participated during the survey, while 69 complete responses were 

considered for further analysis. The formula for measuring central tendency: mean is shown below. 

�̅� =
∑ 𝑦𝑗

𝑛
𝑗=1

𝑛
 (4.1) 

where           n = sample size 

                        �̅�  = Mean 

  yj = value of each observation 

The equation for measuring data variation: variance is also in equation 4.2: 
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𝑑2 =
∑ (𝑥𝑗 − �̅�)2𝑛

𝑗

𝑛 − 1
=  

∑ (𝑥𝑗)2 −
(∑ 𝑥𝑗

𝑛
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𝑛 − 1
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𝑗=1

𝑛 − 1
  

(4.2) 

 

In equation 4.2,  

d2 = variance 

xj = all the items in the sample 

�̅� = the mean 

n = total number of samples 

Table 4.1 Descriptive Statistics 

Demographics N 

Gender 
69 

Highest Level of Qualification 
69 

Filed of Highest Degree 
69 

Current Employment Status 
69 

Course/Certificate Related to Systems Engineering and/or 

have an Institutional Degree on Systems Engineering 
69 

Type of Employer 
69 

Level of Decision-Making Authority 
69 

Work Environment 
69 

Years of Overall Work Experience 
69 

Years of Managerial Experience 
69 

Years Working in Current Organizations 
69 

Role as a Systems Engineer 
69 
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Details of the Demographics 

To graphically illustrate the patterns in the dataset and meaningful insights, graphs and 

figures are used. The bar graphs shown below depicts the distribution of the gender of the 

respondents. The vertical axis represents the number of respondents and on the horizontal axis, the 

type of gender is placed. From Figure 4.1 it is clear that the number of male respondents was 51 

and female respondents were 17. 

 

Figure 4.1 Demographic Details based on Gender 

 

The pie chart shown in Figure 4.2 illustrates the proportion of respondents having a 

different level of qualification. From this diagram, it can be seen respondents having only a 

bachelor and masters degree adds up to more than half of the total respondents. Other groups 

constitute only 37% of the total participants. 
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Figure 4.2 Highest Level of Qualification 

 

In Figure 4.3, the field of qualification is presented graphically in a way to easily interpret 

the sample distribution. The highest number of respondents are from applied science background, 

and the business graduates come in the second position with nine respondents. Aside from these 

rest of the groups have the relatively same number of respondents; however, there are no 

respondents from the basic science group.   
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Figure 4.3 Field of Qualification 

 

The bar chart in Figure 4.4 shows the current employment status of the respondents. From 

this diagram, we can see that the maximum number of respondents have a full-time job, which 

constitutes 30 respondents. Students come in second with 20 respondents. The rest of the groups 

have around 1 to 7 respondents. 

 

 

Figure 4.4 Current Employment Status 
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From Figure 4.5 it can be interpreted that more than twice the number of participants have 

either have a course/certificate related to systems engineering and/or have an institutional degree 

in systems engineering.  

 

 

Figure 4.5 Course/Certificate Related to Systems Engineering and/or have an Institutional 

Degree in Systems Engineering 

 

Figure 4.6 illustrates the type of employer of the respondents. It is evident from the bar 

chart that the highest number of employers are local, state, or government employers. The group 

of respondents that come in second are the private for-profit with 19 respondents.  
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Figure 4.6 Types of Employer 

 

The level of decision-making authority of participants is shown in Figure 4.7. The 

maximum number of respondents have significant decision-making authority. Among all the 

respondents, 18 have the final decision-making authority, and they come in the second position 

according to the number of participants.  
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Figure 4.7 Level of decision-making Authority 

 

The proportion of respondents according to the type of work environment is displayed in 

Figure 4.8. The highest percentage of respondents are from an academic/research environment, 

which accounts for 35%. More than half (68%) of the respondents are either from the 

academic/research or from the defense environment, which is clear from Figure 4.8. The lowest 

number of respondents are from the space industry, only 2%. 

 

 

Figure 4.8 Work Environment 
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The overall work experience of the respondents is shown in Figure 4.9. It is evident from 

the diagram that the highest number of respondents have below 5 years of experience. The rest of 

the experience interval groups comprise of only 14 respondents.  

 

 

Figure 4.9 Years of Overall Work Experience 

From Figure 4.10, we get an insight regarding the years of managerial work experience of 

the respondents. Same as the previous one, the maximum number of respondents have less than 

five years of experience. Employees having greater than 25 years of experience add up to 22 

respondents who are in the second position. 
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Figure 4.10 Years of Managerial Work Experience 

 

Figure 4.11 illustrates the years of employment of the participants. As we can see most of 

the employees have less than 5 years of employment which comprises 38 respondents. 

 

Figure 4.11 Years of Employment 
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The various roles that respondents play as a system engineer in an organization are 

summarized in Figure 4.12. Here we can see that systems engineers are mostly assigned as 

logistics/operations engineers and system analysts. 

 

 

Figure 4.12 Role as a Systems Engineer 

4.2 Validation of the Instrument 

In any scientific experiment, measurement plays a predominant role, and for this reason, 

there is a widespread acknowledgment of the significance of ‘good’ measurement. Measurement 

is defined as “ The assignment of a number to a characteristic of an object or event, which can be 

compared with other objects or events (Pedhazur & Schmelkin, 2013)”. This definition makes it 

clear that measurement reflects the characteristics of the measured object or event. But how can 

researchers ascertain that measurements actually represent the measured characteristic, 

particularly when it is concerned with abstract concepts? In addition to that, it is also needed to 

quantify the degree to which a measured quantity in fact, represents the characteristics. Since 
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researchers do not just necessarily assume that their measurements woks- they search for evidence 

in support, the evaluation of measurement is extremely significant. For this reason, two general 

dimensions are often considered while evaluating measurement methods: reliability and validity.    

4.2.1 Reliability 

Reliability of the data and results is one of the key requirements of any research project. It 

is defined as the extent to which a measurement of a phenomenon provides stable and consistent 

results (Carmines & Zeller, 2008). So, in essence, an experiment can only be attributed as reliable 

only when it can be utilized by a variety of researchers in controlled settings with a consistent 

result and the results don't differ. For instance, a weight scale can only be ascertained as reliable 

if, under similar conditions, it consistently gives the same results. Moreover, reliability is also 

concerned with repeatability. A reliable instrument must yield the same consistent result on 

repeated trials (Moser & Kalton, 1985).  

Reliability is one of the fundamental concepts of research design that refers to the 

consistency of the measures. For any instrument to be reliable, the reading it produces must 

characterize some true state of the variable being measured.  More precisely, the readings (score) 

generated by the instrument should remain the same unless there has been any genuine change in 

the variable that the instrument is intended to measure. Develis (2016) defined that “reliability can 

be measured as a ratio of the estimated true score to the observed score.” 

𝑅𝑒𝑎𝑙𝑖𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒 𝑆𝑐𝑜𝑟𝑒

𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑆𝑐𝑜𝑟𝑒
 (4.3) 

 

Although the goal of every scientific experiment is to obtain error-free measurements, there 

is always a certain amount of chance error in the measurement. For example, in a school 
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examination, if it is reliable, it is expected that a particular student who scored well for the first 

time would have the same score every time he takes the test. However, in reality, in repeated trials 

under the same condition, identical results are rarely observed in an experiment. There is always a 

certain amount of chance error in the measurements.  

4.2.1.1 Inter Consistency Reliability 

When researchers are more concerned with the question of internal consistency of the data 

rather than the stability across time, internal consistency reliability is assessed. In a reliable 

experiment, the results might not be identical, but they must be close to each other, or the values 

must ‘hang together’ (Huck et al.,1974). As a result, the data of the measurements which lie close 

to each other is attributed to having high internal consistency reliability. Among different methods 

of assessing the degree of internal consistency reliability, Cronbach's Alpha is most widely used 

(Streiner, 2003; Whitley & Kite, 2013). It is just a way of calculating the strength of the consistency 

of the data (Cronbach, 1951). The value of Cronbach’s Alpha is always a number between 0 and 

1. Though there is no hard and fast rule regarding the Cronbach's Alpha value and the internal 

consistency, it is generally accepted that a value of 0.7 and above is considered a good reliability 

score (Whitley & Kite, 2013). So, if the data are correlated with each other, they have a higher 

Cronbach’s Alpha value. However, a high Cronbach’s Alpha value doesn't necessarily ensure high 

internal consistency reliability because the Alpha value is influenced by the length of the test 

(Streiner, 2003). 

According to Nunnally and Benstein (1994), a minimum of 0.7 is acceptable at the 

exploratory stage, and 0.8 or higher is required at the later stage of the instrument development. 

The equation of Cronbach’s alpha (Cronbach,1951) can be streamlined as follows: 
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                                              Α =N/(N-1) {1-∑ϴ2(Y1) ϴx
2}                                               

 

(4.4) 

Where N refers to the number of items, ϴx
2 variance of the total composite, and ϴ2(Y1) 

refers to the sum of item variance.  

Table 4.2 Reliability Statistics of Alpha Cronbach 

 

Reliability Statistics 

 

Cronbach's 

Alpha 

Cronbach's 

Alpha Based 

on 

Standardized 

Items N of Items 

0.668 .709 27 

 

The alpha coefficient for the twenty-seven items is 0. 668, suggesting that the items have 

relatively shy of its threshold value of 0.70 (acceptable), which may be due to the low sample size. 

4.2.1.1.2 Alpha if Item is Deleted 

The equation of Cronbach’s Alpha can also be written as follows (Kopalle & Lehmann, 

1997). 

 

𝛼 =
𝑘 �̅�

1 + (𝑘 − 1)�̅�
 (4.5) 

 

Here, �̅� represents the average inter-item correlation among k items while assuming the 

item variances are equal. So, Cronbach’s Alpha becomes a function of both the average inter-item 

correlation and the number of items to calculate the inter-item correlation. 
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There is a considerable impact on the Cronbach’s Alpha value if some items are eliminated 

from a set of items while keeping only those that correlate highly. The effect is even more 

substantial when the sample size is small (Kopalle & Lehmann, 1997). The results of the 

simulation of (Kopalle & Lehmann, 1997) corroborate the previously held analysis of (Churchill 

Jr. & Peter, 1984), which concluded that there is a negative relationship exist between the sample 

size and Cronbach’s Alpha value. The reason behind this negative connection is that when the 

sample size expands the average of k largest items (From equation 4.4) total correlation, thus 

decreasing the mean inter-item correlation and ultimately lowering the Cronbach’s Alpha value. 

In addition, there is a positive relationship between the total number of items and the value 

of Cronbach’s Alpha. It is because as the number of items increases, the �̅� (average inter-item 

correlation) in equation (4.4) also increases, which in terms ameliorates the Cronbach’s Alpha 

value (Kopalle & Lehmann, 1997). For instance, if we consider two identical distributions from 

which a set of 10 items and another set of 20 items will be drawn, the alpha value from the set of 

10 items will be less than the alpha value calculated from the set of 20 items. 

To sum up, the Cronbach’s Alpha value can be inflated by both increasing the number of items 

and also by deleting items. 

Table 4.3 Reliability Statistics of Alpha if item is deleted 
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If “Cronbach alpha if item is deleted” for a component is higher than the overall reliability 

of the instrument, deleting that component from the instrument will increase the overall reliability 

of the instrument, which is favorable. On the other hand, if “Cronbach alpha if item is deleted” for 
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all the components are less than the overall reliability, this is very desirable for the instrument, 

which shows all the components are contributing to the overall reliability and there is no need for 

removing any components from the instrument. The latter is the case in our instrument, which 

indicates there is no need for dropping any components of the instrument. “Cronbach alpha if item 

is deleted” immediately following discussion imply that reliability of each of the components is 

under original alpha Cronbach value of 0.668. It means all the components are adding to overall 

reliability of the instrument (that is, 0.668). 

4.2.1.2 Composite Reliability (CR) 

Just as Cronbach’s Alpha value, composite reliability is just another method of assessing 

internal consistency (Netemeyer, Bearden, & Sharma, 2003). It can be expressed as the total sum 

of true score variance in relation to the summation of the scale score variance. The equation to 

calculate the composite reliability is shown below here. The composite reliability 𝜌𝑦 is of the p 

indicators Yi of a scale score Y= Y1+Y2+……….+Yp of the scale score (Brunner & SÜβ, 2005). 

 

𝜌𝑦 =
𝑉𝑎𝑟(∑ ∑ 𝜆𝑖𝑗𝜂𝑗

𝑘
𝑗=1

𝑝
𝑖=1 )

𝑉𝑎𝑟(∑ ∑ 𝜆𝑖𝑗𝜂𝑗
𝑘
𝑗=1   𝑝

𝑖=1 +  ∑ 𝐸𝑖)
𝑝
𝑖=1

 (4.6) 

 

Where 𝜆𝑖𝑗 represents the unstandardized pattern coefficient of indicator Yi on factor 𝜂𝑗 and 

the Ei term is the error indicator. The numerator in equation (4.5) stands for the summation of the 

true scale variance which is shown by the variances and covariances of the k common factors 

underlies the scale score Y, while the denominator denotes the scale score total variance. So the 

composite reliability is concerned with the assessment of the amount of variance recorded by the 

construct in the proportion of the amount of variance due to the error of measurement. 
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The composite reliability is different from the Cronbach’s Alpha in the sense that it 

overcomes the limitation of Cronbach’s Alpha measure. There is a certain restriction in Cronbach’s 

Alpha value due to the assumption that items are equally related to the construct, therefore, 

interchangeable, and also its application with multidimensional measures is restricted (Brunner & 

SÜβ, 2005). Composite reliability measure overcomes those restrictions and thus different from 

Cronbach’s Alpha. 

The CR shows the reliability and internal consistency of a latent factor. A value of CR > 

0.6 is required in order to achieve composite reliability for a construct (Field, 2018). The 6–factor 

model has achieved composite reliability because the CR value of the 6-factor model (that is, 

0.868536) is much greater than range of 0.6 as reported in Table 4.4. Additionally, the average 

variance explained (AVE) of the model (that is, 0.584) is much greater than value of 0.5 which 

shows additional reliability of the instrument (see Table 4.4). 

Table 4.4 Composite Reliability 

AVE 0.584 

CR 0.868536 

 

In sum, after gaining good EFA results, composite reliability, and AVE, the instrument 

result will be valid, generalizable, and reliable. 

4.2.2 Validity 

Instrument validity is defined as the degree to which an instrument measures what it claims 

to measure (Kelley, 1927). So in a sense, validity describes how well the gathered data reveal the 

actual area of inquiry (Ghauri & Gronhaug, 2005). Validity in a scientific study is predominant as 

it helps to assess which type of test to conduct so that it truly measures what is intended to measure 
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(Popham, 2008). It is the method of collecting evidence to bolster the empirical basis for evaluating 

the scores as suggested by the test creator. Thus the concept of validity is closely associated with 

the word ‘accuracy’ (Huck et al., 1974). As there are many ways to evaluate the measurements to 

be accurate, there are various statistical techniques proposed by different researchers to determine 

validity. Among those methods most frequently used are content validity, construct validity and 

criterion-related validity (Huck et al., 1974). Figure 4.13 summarizes different kinds of validity 

tests. 

 

Figure 4.13 Types of Validity Test 

 

4.2.2.2 Face Validity 

Face validity is defined as “subjective assessments of the presentation and relevance of the 

measuring instrument as to whether the items in the instrument appear to be relevant, reasonable, 

unambiguous and clear”(Oluwatayo, 2012). Therefore, in a simple sense, it is the measure of the 

extent to which the contents of a test appear to be appropriate in the eye of the person taking the 

test. Thus, it is a judgment procedure of the non-experts who evaluate the test on the basis of 
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viability, consistency of the format, clarity of the language being used and readability (Taherdoost, 

2016). To measure the face validity, a categorical option of ‘Yes’ or ‘No’ is incorporated to 

distinguish the favorable and unfavorable sections, respectively. This collected data is further 

analyzed by Cohen’s Kappa Index (CKI)(Gelfand et al., 1975). However, most of the researchers 

contend that Face validity is not really a measure of validity and should not be considered (Kaplan 

& Saccuzzo, 2017). In this research, face validity was conducted by a set of academic SE experts 

and experienced practitioners from reputed SE industries. 

4.2.2.3 Pilot Testing (External Validity) 

External validity refers to whether or not an observed correlation can be generalized across 

different measures, groups, persons, time, place, and settings. In other words, external validity 

answers the question regarding the applicability of the research in the real world. If the research 

can be used for other experiments and replicated in real-world problems, external validity is low. 

However, this is always not the case; therefore, external validity is often difficult type of validity 

to achieve.  Another reason is that different hidden and confounding variables/factors might the 

impact the experiment outcome once this research is applied across different individuals, groups, 

places, time, and settings. A follow-up research will be conducted to examine the external validity 

of the proposed survey instrument with its applicability across different domains. Pilot testing is 

one kind of external validity. 

It is defined as a ‘small study to test research protocols, data collection instruments, sample 

recruitment strategies, and other research techniques in preparation for a larger study (Stewart, 

2016). It is essential as it assists in pinpointing the flaws and the problems of the research 

instrument before implementing it in the full study.  When there is a large pool of items, it is very 

beneficial to eliminate some items from the list to get that in a more manageable form even before 
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estimating the reliability and validity of each item. Pilot testing is very helpful in this regard. It 

also often serves the purpose of a primary test for validity (Netemeyer et al., 2003). Four issues 

must be considered during pilot testing, which are: 

1. The sample sizes 

2. Composition of the sample  

3. Primary reliability estimates,  

4. The number and type of validity-related scales to include 

 

Firstly, the sample size of the pool matters, as a pool with a small sample size indicates a 

narrowly defined construct. There is a debate among the researchers regarding the sample size; 

some contend that it should be in the range of 300 (DeVellis, 1991). Others posit that it should be 

between 100 to 200 (Clark & Watson, 2016).  

Secondly, the issue of the composition of the sample. As the goal of pilot testing is to reduce the 

large pool to a more manageable form, it is always convenient to use samples from the appropriate 

population. Because a sample from a relevant population that also performs well will be more 

confidently assessed and have more chance to be included in the final list (Netemeyer et al., 2003).  

Thirdly, items might be assessed for internal consistency reliability before including them in the 

list. This is helpful as it allows us to analyze a large set of data.  Finally, a primary evaluation of 

validity can be tested for the instrument to get an initial insight.  

In this research, data and feedback were collected from 10 experts in the domain of Systems 

engineering through a pilot test to reduce the systematic and random error in the measurement. 

The researcher ran a pilot test on the instrument for two main purposes: (1) to reduce the random 

errors and systematic errors in the measurement and (2) to get feedback and suggestions. 
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4.2.2.4 Content Validity 

Content validity is defined as the extent to which elements of a measurement instrument 

are germane to and representative of the targeted construct for a particular assessment purpose 

(Haynes et al., 1999). So content validity is concerned with answering the question: the degree to 

which the test incorporates elements from the desired content domain (Huck et al., 1974). This 

approach ensures that an instrument contains all the significant elements and get rid of all the 

undesirable elements. This is why during the development of a novel instrument, it is highly 

recommended to assess content validity (Taherdoost, 2016). In order to determine the content 

validity of an instrument recognized expert opinion to ascertain whether the test contains the 

defined contents and also a rigorous statistical test. This is where it differs from face Validity 

because it only takes opinion from non-expert to superficially assess if the test ‘looks valid’.  

After deriving the underlying systems engineering attributes and in-person interviews with 

academic experts were conducted who specialized in systems engineering domains in order to 

validate the SE attributes generated from qualitative analysis (grounded theory coding). Follow-

up phone interviews were also conducted with different practitioners and industry experts in large 

organizations, including the U.S. Department of Defense, Boeing, and NASA.  In addition, also 

after developing the scenarios and prior conducting the survey, same feedback procedures had 

been collected from the field specialists.  

4.2.2.5 Construct validity 

Construct validity is defined as the extent to which an instrument measures what it claims 

to measure (Cronbach & Meehl, 1955). Therefore, it is just a measure of how well measurements 

represent the theoretical constructs. For instance, one might try to assess whether an educational 

program enhances leadership qualities among students. In this case, construct validity can be used 
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to assess if the research is actually measuring leadership qualities. Construct validity is 

predominant in psychological research area such as aptitude test (Cronbach & Meehl, 1955). 

Evaluation of the construct validity is a bit complex as one single assessment does not prove 

construct validity. It is a continuous process of evaluation, reevaluation, refinement, and 

development (Peter, 1981). One method of assessing construct validity is by examining the 

correlation among the measures that are already held as related to the construct. This is the same 

as the Multitrait-multimethod matrix proposed by (Campbell & Fiske, 1959) to assess the construct 

validity. There are other statistical methods to determine construct validity ; however, no approach 

has received widespread acceptance (Westen & Rosenthal, 2003). A method of quantifying 

construct validity using contrast analysis was proposed by (Westen & Rosenthal, 2003), which is 

beneficial in the sense that it provides a simple evaluation of validity and not being limited by the 

convoluted statistical processes. 

4.2.2.5.1 Exploratory Factor Analysis 

“Exploratory factor analysis is a data-driven approach, such that no specifications are made 

in regard to the number of factors or pattern of relationship between the common factors and 

dimensions the size and different magnitude of factor loading” (Develis,2016, p.11). During EFA, 

there is no prior restriction/observation are imposed on the type or pattern of relation between the 

observed variable and the latest variable. During EFA, factor loadings are presented as 

standardized estimates of regression slope in order to predict the indicators from the factors, thus, 

it can be used as tools for testing evidence of discriminant validity. If the cross-loading is higher 

than 0.4 and between loadings are less than 0.2, it violets the properties of discriminant validity, 

and on the other hand, if the factor loadings are higher than 0.7, then all the items successfully 

converge to the respective construct and meet the construct validity criteria. Along the same line, 
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EFA can measure the evidence of uni-dimensionality. If all items design to assess the one construct 

have factors loading with the same construct and lower cross-loading with other constructs, every 

set of constructs are considered as unidimensional.  

After conducting the EFA, the research will decide what kind of analytical approach should 

be conducted based on the designed scenario/ questions at hand, then research would finalize 

what indicators should be included in the analysis and determine the size of population for the 

survey. Principle component analysis is one of the well-accepted method to conduct the 

exploratory factor analysis. 

4.2.2.5.2 Principal Component Analysis 

One of the most popular methods of factor extraction among researchers is the principal 

component analysis (Westen & Rosenthal, 2003). This analysis not only assists in reducing the 

dimensionality of the dataset, thereby augmenting interpretability but also diminishes data loss. 

The main goal of this analysis is to reduce dimensionality while conserving as much statistical 

information as possible. So this is very beneficial while dealing with an enormous dataset for this 

reason, which is hard to comprehend (Jolliffe & Cadima, 2016). PCA starts with generating new 

uncorrelated variables, which are linear functions of the original dataset. These variables will in 

terms augment the variance of the dataset. So that it ends up an eigenvalue problem. The steps of 

PCA are described below (Jolliffe & Cadima, 2016). 

Step 1: Standardization: In this step, basically, the original dataset is transformed into a 

comparable scale by standardizing the range of initial variables. The primary reason behind 

this step is to ensure each element contribute uniformly to the analysis. If standardization is 
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not performed, then variables with a large variance will dominate over variables with a small 

range. The equation for step is 

𝑧 =  
𝑣𝑎𝑙𝑢𝑒 − 𝑚𝑒𝑎𝑛

 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 
 

 

Step 2: Covariance Matrix Calculation: The correlation matrix is incorporated in this step to 

indicate those variables that are highly correlated. It is performed because usually, those 

variables contain redundant values. 

Step 3: Calculating the eigenvectors and eigenvalues of the covariance matrix to isolate the 

principal component: As the eigenvectors and eigenvalue pairs indicate the direction of 

axes where the most variance lies in and the quantity of the variance, respectively, it helps 

to isolate the principal components. By arranging the eigenvalues and eigenvectors in 

descending order, one can get principal components in the order of importance.  

Step 4: Feature Vector: In this step, the decision to eliminate the values of less importance is 

made. The feature vector is the matrix that contains all the eigenvectors that are decided 

to be kept.  

Step 5: Adjust the data along principal component axes: In this step, the feature vector is used 

to reorient the original dataset to ones represented by the principal components. 

 

• Factor Extraction: Principal component analysis has been used as a factor extraction 

method for conducting EFA. It assesses the factorability of the instrument. In other 

words, it represents the derived attributes differentiae from each other and also have 

adequate expansibility power. 

• Total Variance Explained: Six factors could explain 83.28 percent of the variability in 

the model, as shown in Table 4.5. All factor loadings were greater than 0.7, which show 
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very good model explain-ability and validity, as shown in Table 4.6. Six attributes were 

extracted as the final factor-item structure of the instrument. 

Table 4.5 Total Variance Explained 
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Extraction Method: Principle Component Analysis 

Factor Rotation: Orthogonal (Varimax) was chosen as the factor rotation method. The Orthogonal 

rotation, in spite of non-orthogonal rotation methods, sperate the constructs/factors better from 

each other. This is very important for our instrument because each factor was designed to measure 

a different and separate dimension/aspect of a systems engineer’s skill set. A rotated component 

matrix was obtained to further enhance the decision of the factor-item structure of the EFA model. 

The rotated component matrix indicates the final component-factor structure of the instrument, as 

shown in Table 4.6. The instrument shows very good component-factor structure without any 

cross-loading, which proves the orthogonal rotation was a good choice in conducting PCA.   

4.2.2.6 Rotated Correlation Matrix 

Correlation is defined as the statistical relationship between two random variables (Dowdy 

et al., 2011). It is significant because it shows a causal relationship among the variables. If two 

variables increase or decrease simultaneously, then it is indicated there is a positive relationship. 

On the other hand, if one variable increase as the other one decrease, there is a negative 

relationship. The correlation coefficient is a statistical measuring tool that indicates the extent to 

which changes to the value of one variable predict changes to the value of another (Dowdy et al., 

2011). Among several correlation coefficients, the most widely used is the Pearson correlation 

coefficient, which assumes only a linear relationship among two variables (Croxton & Cowden, 

1939). This assumption limits the use of the Pearson coefficient. A more robust form of coefficient 

Spearman correlation coefficient is developed, which is sensitive to non-linear relationships 

(Croxton & Cowden, 1939). The Spearman coefficient is denoted as rs, and the value ranges from 

–1 to +1. A positive Spearman coefficient value suggests a positive relationship, whereas a 

negative coefficient value designates a negative relationship. Also, a value of +1 demonstrates a 
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perfect positive association, 0 implies no association and the value of -1 marks a perfect negative 

association. The equation to calculate the Spearman coefficient (rs) is shown below (Zar, 2005): 

𝑟𝑠 = 1 −  
6 ∑ 𝑑𝑖

2

𝑛(𝑛2 − 1)
 

 

(4.7) 

where n denotes the number of observations and d is the difference between two ranks of 

each observation.  

Researchers usually present their rs value within the text if they want to demonstrate the 

relationship between a small number of variables. However, when the bivariate association 

between many variables needed to be shown, it is expressed in a matrix format called correlation 

matrix (Huck et al., 1974). An example correlation matrix between 6 variables is shown from the 

study of Ellwood et al. (2009) in Table 4.6. 

 

Table 4.6 Rotated Component Matrix 

 

 

It is apparent from the Table 4.6 that all the attributes have excellent factor loadings. In 

addition, there is no cross leading for each factor (attributes) are different from each other and 

explain only specific details. Base on the result of the rotated component matrix, each of the 
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attributes can explain at least 50 percent (the least factor-loading in power of 2 = 0.6992) of that 

attribute within the instrument, which is desirable for a newly developed instrument.  Table 4.6 

indicates the final component-factor structure of the instrument, which shows very good 

component-attribute structure for the instrument.  

4.2.2.6.2 KMO and Barlett Test: 

To make sure that the sample size is adequate for factor analysis, the KaiserMeyer-Olkin 

measure of sampling adequacy (KMO-test) is conducted (Andale, 2017). In other words,  KMO 

and Barlett test demonstrate the adequacy of the sampling, which is supposed to be >0.50 ( see 

Table 4.7) , but for our case, it is 0.538 ( reported in Table 4.8), which entails that we require more 

sample to be tested and this statement is valid since our sample size is comparatively small that 

only include the SE focused group. 

Table 4.7 KMO test Values 
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Table 4.8 KMO and Barlett Test 

  

4.2.2.7 Model Fit 

A mathematical model is the illustration of a system that is usually represented by an 

equation of any kind. Model fitting is performed on a model to predict the future estimates of the 

data. Therefore, it refers to the capability of the model to propagate data. There are different ways 

to model fitting such as regression, least squares, gradient descent, and others. Whatever method 

is applied, it is always necessary how well the model fits the data. Another way of saying it to 

measure the "goodness of fit" (Kline, 2015). There are several indices to ascertain how well the 

model fit ; however, there is a significant dispute among researchers concerning the question of 

which indices must be used to evaluate (Brown, 2015). It is because the fit indices are influenced 

by sample size, type of data, model complexity, and estimation method. This makes the whole 

process of determining the model fit a complex process.  

Among the indices employed to determine the model fit, the majority of them compute the 

extent to which the covariance suggested by the data compared to the observed covariance of the 

data (Netemeyer et al., 2003). Chi-square test is the most widely used because it is shown through 

studies that it is statistically significant (Netemeyer et al., 2003). It is an adequate measure when 
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the sample size is between 75 to 200, but it always becomes statistically significant when the 

sample size exceeds 400 (Sharpe, 2015).  

There are 3 types of fit indices which are mentioned below (Netemeyer et al., 2003): 

I. Absolute fit indices 

II. Comparative fit indices 

III. Parsimony-based fit indices  

Without any adjustment for overfitting, the Absolute fit indices demonstrate the overall 

model fit. Adjusted goodness of fit and goodness of fit are two absolute fit indices whose value 

ranges from 0 to 1. Where values close to 1 indicate suggest a better fit compared to values close 

to 0. This should not be the only measure of fit because it is susceptible to sample size and model 

complexity (Hoyle, 1995). 

Comparative fit indices compare the proposed model with respect to a baseline model. The 

baseline model has no relationship in the data means the covariance is taken as zero. Thus, these 

indices are only appropriate when comparing the two models.     

With covariance structure analysis, parsimony-based indices determine the efficiency of 

the model. It is basically used to determine how the parsimonious model is. A parsimonious model 

is that which has just the right quantity of predictor to explain the model well. It can represent data 

with a minimum number of parameters. Models with low parsimony indices generally have a good 

fit compare to other models with high parsimony indices, so there exists a give-and-take between 

parsimony and goodness of fit (Williams & Holahan, 1994). The model fit indices of the 

instruments are presented in the following Table 4.9.  
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Table 4.9 Model-Fit 

 

All the model fit parameters illustrated in Table 4.7 meet the requirement/threshold. 

Moreover, Confirmatory Factor Analysis (CFA) concluded the instrument’s proposed model fits 

well to the data (CFI = 1.0, RMSEA = 0.060, and Chi-square/DF = 0.436). The Overall Cronbach 

α (0.668) and the Composite Reliability (all greater than 0.7) presented the reliability of the 

proposed systems engineering instrument. Overall, the instrument achieved final validity and 

reliability in the CFA stage. 
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4.2.2.8 Criterion validity 

Criterion validity is defined as the degree to which a measure is related to an outcome 

(Cohen et al.,1996). The goal of criterion validity is to express that real-life outcomes can be 

predicted through test scores. While determining criterion validity it is essential to assess 

measurements through statistical analysis with respect to either an independent criterion or a future 

standard (Bellamy, 2014).  

There are two types of criterion validity, which are described below 

 Concurrent validity: It is the degree to which the result of a novel test comparable to an 

already accepted measurement of the same construct (Taherdoost, 2016). So essentially, it is a kind 

of evidence that is used to justify the use of the test to predict future events. For instance, in order 

to ascertain the concurrent validity of a novel survey method, the researchers should conduct the 

novel survey and an established survey on the same group of respondents simultaneously. Now by 

comparing both of the responses, concurrent validity can be measured, which is done for this 

instrument. 

 Predictive validity: A measurement is predictively valid if the measurement accurately 

forecasts what it is supposed to forecast (Taherdoost, 2016). So, in essence, it is a tool that 

expresses the ability of a measurement to predict future performances. For example, to assess the 

predictive validity of an employability test, it must be conducted among the job applicants. After 

that, the measured test scores are evaluated whether they correlate with the future performance of 

hired employees or not. For this reason, it takes a substantial amount of time as well as a large 

sample size to conduct predictive validity studies.   For this instrument, in order to check the 

predictive validity of the instrument, multiple group analysis, and other relevant analyses were 

conducted to predict/assess the performance of the systems engineers. 
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4.2.2.9 Discriminant Validity 

It is a type of construct validity which tests if measurements that are not intended to be 

related are actually unrelated (Campbell & Fiske, 1959). So it just a way of determining that a 

measure does not correlate highly with measures from which it is supposed to differ (Churchill & 

Iacobucci, 2006). Discriminant validity aims to discriminate between measures of disparate 

construct. Due to the nature of the discriminant validity test, it is of utmost significance while 

assessing novel test methods. 

The discriminant validity can be calculated through the average variance extracted (Fornell 

& Larcker, 1981). It is a measure of the level of variance extracted by the construct compared to 

the level because of measurement error. The average variance extracted (AVE) is expressed as  

𝐴𝑉𝐸𝜉𝑗 =  
∑ 𝜆𝑗𝑘

2𝑘𝑗

𝑘=1

∑ 𝜆𝑗𝑘
2𝑘𝑗

𝑘=1 + 𝜃𝑗𝑘

 

 

(4.7) 

Here, 𝑘𝑗 denotes the number of indicators of the construct  𝜉𝑗 , 𝜆𝑗𝑘 are factor loadings and 

𝜃𝑗𝑘is the error variance of each indicator of the construct. 

The discriminant validity can be determined by comparing the AVE and the covariance with other 

constructs according to the Fornell-Larcker testing system (Fornell & Larcker, 1981).  

√𝐴𝑉𝐸𝜉𝑗  ≥ 𝜙𝑗  

Here, 𝜙𝑗 represents the shared variance. 

So, the square root of AVE must be greater than or equal to the covariance involved in the 

construct when doing a CFA. If your factors do not demonstrate adequate validity and reliability, 

moving on to test a causal model will be useless - garbage in, garbage out! There are a few 

measures that are useful for establishing validity and reliability: Composite Reliability (CR), 
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Average Variance Extracted (AVE), Maximum Shared Variance (MSV), and Average Shared 

Variance (ASV). The thresholds for these values are as follows: 

Reliability (we already succeed in this) 

  CR > 0.7 

Convergent Validity (we already succeed in this) 

     AVE > 0.5 

Discriminant Validity 

      MSV < AVE 

    ASV < AVE 

If you have convergent validity issues, then your variables do not correlate well with each 

other within their parent factor; i.e., the latent factor is not well explained by its observed variables. 

If you have discriminant validity issues, then your variables correlate more highly with variables 

outside their parent factor than with the variables within their parent factor; i.e., the latent factor is 

better explained by some other variables (from a different factor) than by its own observed 

variables. 

AVE = 0.584 (previously calculated) 

MSV is the square of the highest correlation coefficient between latent constructs.  

MSV = 0.552 (0.7342) 

MSV < AVE confirmed [I] 

ASV is the mean of the squared correlation coefficients between latent constructs.  

ASV = (0.6992 + 0.7342 + 0.7232 + 0.7092 + 0.7432 + 0.7352)/6 = 0.432 < AVE confirmed [II] 
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[I] and [II] →Discriminant validity achieved.  

4.3 Multiple Group Analysis 

4.3.1 Based on Gender 

Table 4.10 entails that gender doesn’t impact to an extensive extent in terms of performance of the 

systems engineers accept the lifecycle dimensions.  

Table 4.10 Gender Group Statistics 
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Table 4.11 Gender Group Independent Sample Test 
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4.3.2 Based on Current Organization 

It is apparent from Table 4.13 that practitioners with greater employment experience with their 

current organization have significantly higher requirement engineering, life cycle, SE 

management, and interdisciplinary scores than practitioners with less employment experience 

with their current organization (p-value is considering against 90% confidence interval).  

Table 4.12 Multiple Group Analysis based on Current Organization Experience  

 

4.3.3 Based on Managerial Experience 

Practitioners with higher managerial experience have significantly higher requirement engineering 

and life cycle management score than others who have comparative less managerial experience (p-

value is considering against 90% confidence interval). Results are reported in Table 4.13.  
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Table 4.13 Based on Managerial Experience 
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CHAPTER V 

CONCLUSION 

This chapter discusses a summary of this research, illustrates the practical implications of 

the research from different standpoints, presents the shortcoming of the study, and offers 

recommendations for future research avenues based on the results of the study.  

Chapter I highlighted the purpose of the study against the backdrop of the research 

questions and hypothesis. The framework was demonstrated by the structure of the research 

inquiry. This chapter also presented the contribution of the research from theoretical, 

methodological, and practical perspectives; and anchored the research as a genuine contribution to 

the systems engineering domain.  

Chapter II structured the boundary of the literature and reviewed the literature of the 

systems engineering domain. Particularly, this chapter traced the historical development of SE 

from 1926-2017 and presented a histogram analysis, citation analysis, and data cluster analyses to 

better illustrate the development of SE literature. This would provide a comprehensive overview 

of the SE domain. Besides this, to lessen the confusion pertaining to SE and its derivative terms, 

this chapter attempted to derive common themes of the SE literature.  This would allow the 

practitioners to understand the applicability of SE terminology and how these nomenclatures are 

embedded in SE definition. Finally, to shed light on the disagreement on the role of systems 

engineers, this chapter presented a broader discussion on the activities of systems engineers to 

unify the various roles of the systems engineers.  
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Chapter III presented rigorous research design and the method by adopting Earl Babbie’s 

framework, which includes phases of defining the purpose of research, conceptualization, choice 

of the research framework, operationalization, population and sampling, observation and data 

processing, and analysis and application. Defining the purpose of research talked about the 

objective of the study which was “development of an instrument to assess the performance of the 

systems engineers”. Conceptualization provided broader understanding of potential outcomes of 

the study against the backdrop of the research questions and hypothesis. Thus, this phase included 

developing quantitative and qualitative research questions. Choice of research framework 

discussed about the Mixed method approach that we have adopted for our study. This phase talked 

over feasibility of the Mixed method approach, followed by the rationale of the aforementioned 

approach. Operanatization phase described the observations that represent the concepts being 

studied. Population and sampling is a two-step process that narrows down the groups that the 

researcher considered to investigate, which was limited to systems engineering students and 

professionals for this research case. Observation and Data processing steps included different 

kinds of data collection strategies for the mixed-method approach. Finally, the analysis and 

application phase exhibited qualitative and quantitative approaches followed by validation and 

reliability assessment of the proposed new instrument.  

Chapter IV discussed the results of the study. The organization of this chapter was three-

fold. First, the descriptive statistics were demonstrated for different demographics of the study, 

followed by the different statistical analyses pertaining to reliability and validity of the study, 

including confirmatory and exploratory factor analysis. Finally, this chapter wrapped up by 

demonstrating the multiple group analysis to investigate the influences of different demographics 
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on the performance of the systems engineering activities through the application of the proposed 

instrument. 

The summary of the research is presented in Figure 5.1 below: 

 

Figure 5.1 Research Summary 

 

5.1 Implications of the Study 

In this research, we have provided a histogram analysis and corresponding synthesis of major 

themes, both historical and present, that demark the still very young SE discipline. We recognize 

the inherent limitations of organizing such an expanse of literature for an emerging discipline. 

However, this research is offered as ‘an’ organization as opposed to ‘the’ definitive organization 
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of the SE discipline. As such, the research is provided to encourage: 1) a deeper dialog for the SE 

discipline, 2) focus the substantive debate on the foundations, nature, and directions for the SE 

discipline, and 3) provide an invitation for a deeper examination and dialog concerning the 

implications for the future trajectory of the SE discipline. 

In conclusion, for this effort, we suggest two primary contributions. First, we provide a brief 

summary of major threads of continuity that stand out in the histogram analysis across the three 

time intervals in SE discipline development: Introductory, Exploratory, and Revolution. The 

significance of these themes concerning the current state of the SE discipline as a function of the 

historical development is examined. Second, we suggest the SE discipline implications for the six 

primary themes developed from the Grounded Theory data reduction. Implications are suggested 

for what is potentially ‘missing’ with respect to further development of the SE discipline in 

relationship to complexities of current and future systems. 

The examination of the three time intervals for SE discipline development is provided in the 

following summary points. Although these points are not suggested to be the definitive or absolute 

final set, they offer a range of perspectives for the historically based response to the question: How 

did the SE discipline get here?: 

• Introductory Time Interval for SE Discipline Development – This period was 

marked by the inception of SE. There were several important aspects from this beginning. First, the 

history of SE during this period has shown the originating emphasis on addressing difficulties in 

dealing with increasingly interconnected elements forming systems. The World War II impacts of 

trying to coordinate the confluence of men, material, and equipment to effectively engage hostile 

forces emphasized such underlying paradigms as ‘optimization’, ‘technology emphasis,’ and 

‘process emphasis’ experienced through such developments as standardized approaches to SE 



 

187 

following the wartime posture. Second, the post World War II developments in SE maintained the 

heavy technology emphasis as well as seeing the beginnings of search for universal understanding 

and explanation for system behaviors (e.g. General Systems Theory). Third, the forward movement 

of SE was heavily influenced by this early beginning, including the continuing emphasis of 

military/industrial applications and a strong process orientation. 

 

 

• Exploration Time Interval for of SE Discipline Development – This period of SE 

discipline development was marked by an explosive expansion of practice-based applications. In 

this sense, SE began to ‘come of age’ from the initial grounding influences found in the inception 

of the discipline. This further development of SE included several important points of departure 

from the previous introductory development stage. First, there was still a desire for pursuit of an 

‘optimization’ based paradigm for development of systems. However, there was also a recognition 

that, while this pursuit might be appropriate for well understood/bounded science-based problems, 

this paradigm was beginning to be called into question for increasingly complex systems that 

exhibited emergent behavior. Second, the heavy military and technology emphasis continued, 

although some fragmentation in different underlying paradigms for SE were beginning to emerge. 

The fragmentation in SE discipline development might have been inevitable. Especially since the 

underlying incompatibilities of the divergent paradigms (positivist/antipositivist, 

reductionism/holism) were quite pronounced. Nevertheless, development continued. Third, the 

domains and problem types for which SE was seen as potentially appropriate began to expand 

during this period. Along with this expansion were the different approaches, methods, and 

supporting tools to assist in providing improved SE capabilities. Unfortunately, the lack of 

development emphasis for the conceptual/theoretical foundations in the SE discipline were 

becoming pronounced during this period, as the practice orientation was dominant. 
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• Revolution Time Interval for of SE Discipline Development – This period of SE discipline 

leads us to the current state. During the revolutionary development period, there were several 

significant movements. These movements were both grounded in the rich history of SE, but also 

appreciative of the increasing difficulty related to application of the discipline. A notable influence 

was the increasing emphasis on the managerial aspects of SE, including casting SE as a 

‘management technology.’ This shift began to usher in a different trajectory for SE development. 

Some of the historical trends in moving beyond the more tightly bound technology-centric 

applications of SE continued to evolve. This evolution set the stage for the inclusion of a wider 

range of perspectives in grappling with increasingly complex, ambiguous, and contextually 

dominated systems. In addition, the strong military technology influence continued with the 

emphasis on ‘requirements’ as a central concern for SE. Finally, there was a noticeable emphasis 

on four focal aspects that would project the SE discipline into the future, including (1) recognition 

of the need for SE to be interdisciplinary, including multiple and diverse perspectives, (2) complex 

problem focus across a more holistic spectrum, beyond more narrow bounding in technology-

centric problem formulations, (3) increased formalization of the SE discipline by the development 

of more standardized processes, methodologies, tools, and professional bodies (e.g. International 

Council on Systems Engineering), coupled with increasing literature generated in the discipline, as 

well as more formal codification of the body of knowledge defining the discipline, and (4) extension 

into different variants, related but showing some distinction from the traditional SE discipline (e.g., 

System of Systems Engineering). 

The Grounded Theory coding effort identified several important themes that delineate the 

current state of the SE discipline. These themes and their significance included: 
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1. The interdisciplinary nature of the SE discipline. Suggesting that the breadth of SE is not 

bound as an independent discipline that exist as mutually exclusive of other disciplines. Instead, 

SE is truly a diverse discipline that can be inclusive of perspectives from multiple 

disciplines/fields. Consistent with the tenets of General Systems Theory, SE does provide for wide 

ranging inclusion of associated disciplines/fields and projection to a variety of interdisciplinary 

problem domains. 

2.    The holistic nature of the SE discipline. As SE evolved over time, so too did the types of 

problems consider. SE has evolved to also include consideration for not only the 

technical/technology aspects of complex problems, but also the organizational, managerial, 

human, social, policy, and political dimensions. In this sense, SE is truly evolving to be a holistic 

approach to addressing societies most vexing problems and needs. This also engenders a necessity 

to more rigorously ground the SE discipline in a more ‘theoretical’ basis found in the underlying 

tenets of Systems Science.  

3. Sub elements integration, design, and optimization. The drive to develop the best (optimal) 

solution of a systems based problem has been a historically built mainstay for the SE discipline. 

Inherent in this perspective is the notion that optimal solutions can be designed, and systems can 

be integrated such that optimal performance can be established. 

4. Life-cycle is a dominant perspective for the SE discipline. The consideration of system from 

inception through disposal has been, and continues to be, a hallmark of the SE discipline. 

Considerations across this ‘life-cycle’ dominate the processes, standards, and underlying paradigm 

that drives the SE discipline. 

5. Management is a central role in the SE discipline deployment. There is an important role to be 

played by the managerial nature of the design, execution, and development of complex system 
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solutions. Introduction of the management based paradigm in relation to SE invokes a different 

level of thinking and execution. This different level includes consideration for the planning, 

organization, coordination, controlling, and direction functions traditionally associated with 

management. This amplifies the evolving interdisciplinary nature of SE and the need for holistic 

approaches that move beyond technology-centric formulations of SE. 

In closing, based on this analysis, three perspectives concerning the challenges for future 

development of the SE discipline are offered. First, there is a need to more firmly ground and 

develop the underlying theoretical/conceptual underpinnings for the SE discipline. Although, there 

has been work done with respect to the systems nature of SE (e.g. General Systems Theory), this 

has not effectively permeated the SE discipline. On the contrary, there has been an over indulgence 

of SE on the application (tools, technique, methods, models) side of the development equation to 

the detriment of the conceptual (theoretical, philosophical, methodological) developmental 

emphasis. Sustainability of a discipline is held first at the base knowledge that is consistent, stable, 

and provides continuity. The opportunity for SE discipline development is to more rigorously 

anchor development in the underlying conceptual/theoretical foundations that have been to this 

point noticeably minimal in development. Second, continuation of the interdisciplinary inclusion 

of a wide breadth and depth of associated disciplines/fields for both development as well as 

application presents a significant opportunity for SE discipline evolution. These extensions can 

offer both body of knowledge expansion as well as increasing application opportunities to 

propagate the discipline to disparate domains. In this sense, SE has the opportunity to not only be 

interdisciplinary by inclusion of other fields/disciplines, but also interdisciplinary in application to 

other domains. This is the essence of the interdisciplinary nature of the SE discipline and represents 

a significant future developmental opportunity. Third, a continuation and extended emphasis on 
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the ability of the SE discipline to address an emerging class of complex systems and their 

problems. As society continues to experience increasingly complex, ambiguous, holistic, and 

contextually bound systems and problems, the SE discipline has a substantial opportunity for 

future impact. With increased emphasis on development and demonstration of SE capabilities 

(theory, methods, practice) to address societies most vexing problems and needs, the SE discipline 

can offer a substantial contribution for future societal prospects. 

 

The scope and application of SE continues to expand.  New SE methodologies, 

perspectives and applied fields are emerging to substantial reductions in budgets and schedules in 

everyday operation.  From the literature, it is clear there are numerous perspectives, definitions 

exist around SE. To lessen the confusion, we synthesized the definitions provided by scholars and 

institutions and derived terminologies (a set of attributes) based on grounded theory data reduction. 

We emphasize that these terms should be incorporated into the definition of SE. These 

terminologies along with the other terms would help in defining the body of knowledge of SE and 

providing a better understanding of SE discourse 

 

While there is a list of works that were specific to the characteristics of individual systems 

engineers, this study discusses the need for and presents an instrument to quantitatively measure 

the performance of systems engineers in the workforce. As shown by several studies the need for 

training and development of these systems engineers is paramount to the successful execution of 

projects. Additionally, as systems and technologies increase in complexity, the need to rapidly 

assess and assign task among the workforce will be more important than ever.  Given an instrument 

to accurately capture the performance of a systems engineer, organizational decisions will be 

supported by quantitative data. The implications of the research across theoretical, methodological, 

and practical dimensions are summarized as follows: 
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• This research fills the gaps in the literature and the need for an instrument to evaluate the 

systems engineering abilities for individual engineers. 

• The instrument provides a quantitative assessment of the performance of a system engineer 

based on identified characteristics of a successful systems engineer in the literature. 

• Further, this instrument could serve as a tool for engineering managers to support selection, 

training, evaluation, or hiring of personnel for complex systems engineering tasks. 

 

This instrument offers organizations several advantages by supporting organizational 

decision making on multiple levels. First, at the organizational level the instrument can provide 

assessment of systems engineering training or the need for additional training. Given the aggregate 

scores of the systems engineering staff, the organization can allocate resources efficiently to 

provide training targeted at the deficient attributes within the workforce. Additionally, as training 

is administered the instrument can provide rapid feedback on the effectiveness of the training. 

Secondly, given the performance assessed by the instrument, candidates can be classified based 

on their strengths and assigned to tasks that require specific attributes. If a systems engineer is 

strong in Requirement Engineering, this engineer could support the requirements analysis and 

definition phase of multiple projects providing their strengths across a broad portfolio of programs.  

Lastly, candidates can be screened and hiring decisions can be based on the candidate’s 

performance profile. Hiring and termination take a significant amount of resources to manage, 

therefore more confidence in the selection of a candidate for hire would help alleviate this 

unnecessary expense. The use of an effective performance assessment instrument can provide 

organizations yet another important tool for improving their operational efficiency. 
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5.2 Application of the Proposed Instrument in the Defense Industry 

A base center with a radar, data receiver, and transmitter with the secured link of satellite 

connection is being considered to see the application of SE in the defense industry. To ensure the 

seamless operation of base center, there is a need to develop an efficient group of systems 

engineers who can solve complex problems in a timely manner. The base center using radar 

monitors the sea to avoid unofficial entry of any kind of transport, they have a fleet with 

communication systems to alert the base of any suspicious entry into the national boundaries. As 

the ship from the fleet identifies any suspicious entry, it sends a signal to the base center via a 

secure link about the scenario and receives commands from the base center. The base center 

provides commands to the fleet with direction to act as a group or an individual depending on the 

level of severity to attack or scope. Like many scenarios in the defense industry, this system is 

complex. The system includes large ships, electronic communication equipment, radars, and 

command and control. Given the level of complexity and system-of-systems nature, system 

engineering plays a key role in the defense industry. 

The complex landscape of systems can be understood in three ways by the engineering 

managers and the developed tool is capable of assisting practitioners within defense industry. The 

three ways are: i) improvement of decision making which will lead to assigning appropriate work 

according to the capacity of the individuals for complex systems tasks. Although a higher score 

does not necessarily mean one individual is superior to another, it provides insight into the 

performance of the individual with respect to the systems engineering characteristics. Within the 

defense industry, many tasks involve very complex scenarios with many components that are all 

working together toward a common goal. This is the definition of a system, therefore systems 

engineering performance indicators could extend to this domain. ii) The scores expedite the team 



 

194 

building which introduces complementary perspectives in a quantifiable manner. Diversification 

of a group during the establishment of teams for projects and missions can be done by using 

knowledge of a variety of systemic perspectives possessed by individuals. iii) For determination 

if the capacity for system thinking is sufficient for engaging required activities for a unit in 

consideration, assessment is required. The system and its requirements are better understood by 

stakeholders on the basis of system thinking capacity.  

For engineering managers, the primary drivers for decisions revolve around schedule, cost, 

and performance. In utilizing this tool, the engineering managers can assess the personnel for their 

individual systems engineering profile. This will inform decisions related to training required, 

roles for the engineers within the project, and staffing needs of the team. Given a set of profiles 

within the team, the engineering manager can identify gaps in skills that need to be filled. The tool 

can be utilized to screen candidates joining the team to ensure the right engineer for the job is 

attained. The data generated from assessing the team and the actions taken to fill the gaps in 

systems engineering skills will improve all three drivers. Ensuring the team is balanced and 

includes a diverse group of engineers to perform the complex system design will lead to 

improvements in schedule, cost, and performance. 

 

5.3 Application of the Instrument in Managing Technical People in Different Industry 

 

Today’s technological environment is far from tranquil. The proliferation of disruptive 

technologies in science, engineering, and information technology and the speed of adoption of 

newly commercialized technologies by the public are increasing at an exponential rate. 

Discussions on artificial intelligence, robotics, the Internet of Things (IoT), data analytics, machine 

learning, renewable energy, lighter-weight composites, biodegradable materials, and innovative 
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therapeutic compounds abound at the highest levels, as organizations seek to remain abreast of 

dynamic developments in fields that have the potential to impact performance of their operations 

and better satisfy their customers.  

This revolution is placing an enormous amount of pressure on organizations to develop and 

continually adapt their technology strategies to meet the ever-changing needs of stakeholders. To 

remain competitive, organizations must be creative, agile, and effective in using new technologies 

to design and manage technological systems that deliver the right value, amidst trends of 

increasingly shorter product lifecycles. This is by no means a simple challenge as it requires 

organizations to have a well-developed cadre of individuals with the range of skills that are 

necessary to lead the development, implementation, operation, and management of technological 

systems that are becoming more and more complex. Since individuals oriented toward technical 

careers often find it easier to hone the requisite set of hard skills, it is incumbent upon the 

organization to determine the appropriate balance of both soft and hard skills needed to execute 

changes that serve the contextual needs of all stakeholders. 

Even highly skilled individuals can fail to achieve an organization’s desired technological 

objectives due to an incomplete skill set that lacks critical competencies required for innovation, 

collaboration, interpersonal communication, problem-solving, and decision-making in a rapidly 

changing environment. The role of technology managers is broad, encompassing a wide range of 

responsibilities that range from providing technical support to interacting with customers and other 

stakeholders. Thus, a fundamental approach to technology management should begin by asking 

and answering the following question: “What skills should an organization acquire to support the 

development and management of complex technological systems operating within an uncertain 

environment?” This is not an easy question to answer as consideration must be given to the manner 
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in which soft skills will need to complement technical skills to effectively design, develop, and 

support technology applications in different industries. In this regard, insights can be drawn from 

the work of some researchers in the fields of systems engineering and systems thinking. 

Systems engineering is a useful field for eliciting insights into the skills required of 

technology managers because it applies a structured approach to the design, management, and 

optimization of a system’s performance (Hossain et al., 2019c; 2020c,h). To achieve this goal, a 

systems-thinking approach, which takes an interdisciplinary perspective, is applied to evaluate a 

system’s performance characteristics over the life cycle of the system – that is, from conception, 

through utilization, and final disposition (Nagahi et al., 2019b, 2020b,d; Jaradat et al., 2019, 2020; 

Dayarathna, 2020). The overall goal of systems engineering is to design and optimize a system to 

meet the needs of stakeholders. Systems thinking provides the skillset to analyze and evaluate the 

design and operation of a system from different perspectives and to make predictions about its 

ability to perform in a manner that achieves a desired purpose (Karam et al., 2020; Lawrence et 

al., 2019,2020; Nagahi et al., 2019a,c; 2020b,d; Hossain et al., 2020e,g; Jaradat et al., 2015, 

2017a). 

 

Six (6) critical attributes required of technology managers to successfully navigate and 

operate in today’s technological climate to meet organizational goals are discussed below. These 

are (i) interdisciplinary knowledge, (ii) holistic thinking, (iii) proficiency in requirements 

engineering, (iv) sub-element integration, design, and optimization capabilities, (v) system 

lifecycle assessment, and (vi) leadership and management acumen. These attributes are applicable 

to a range of systems and sectors. A detailed discussion of each follows. 
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5.3.1 Interdisciplinary Knowledge 

Technical personnel cannot afford to be limited to a specific domain of knowledge, with 

only deep expertise in a single area. Technical individuals must be lifelong learners who actively 

seek out learning opportunities to master the dialogue and application opportunities relating to 

emerging technologies, while simultaneously gaining a general background in other disciplinary 

areas. The sheer number of interconnections and interactions that exist between parts of a system, 

sub-systems, and the system and its external environment require that individuals be conversant 

and comfortable in discussing a wide range of technological issues and implications. This learning 

approach is essential to be competent and versatile in the technological arena. The ability to 

integrate ideas from various disciplines, critically evaluate different perspectives, and synthesize 

new knowledge into novel applications for the organization’s competitive advantage are necessary 

skills for today’s technology manager. A technical individual who possesses cross-disciplinary 

knowledge and experience will be able to assess the value of new ideas more readily, think more 

innovatively, and be better at predicting systemic interactions and outcomes over time. 

There are several examples of situations in which the knowledge of technical individuals 

needs to be complemented by knowledge from other fields to support optimal decision-making. 

One example is in the area of aviation technology innovation, which has historically been driven 

by three factors1: (i) rising oil prices, (ii) increasing societal environmental awareness, and (iii) 

demand for convenient air travel options. Focusing on only one of these areas is likely to result in 

sub-optimization of stakeholder needs. Growth in one area is also likely to impact another, with 

potential implications. For example, as demand for air travel increases, the environmental impact 

of emissions will correspondingly increase (Lee & Mo, 2011). Furthermore, because innovation 

in the aviation sector, such as the development of new fuels, requires large outlays of capital and 
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long development timelines, technology managers must have the vision and analytical skills to 

consider alternative scenarios and the agility to adapt appropriately to potential future changes 

from strategic plans. To widen the scope of this vision, technology managers must seek to 

continually develop knowledge in new, relevant areas.  

 

5.3.2 Holistic Thinking 

One of the most essential skills required of individuals responsible for complex 

technology-based systems is holistic thinking. In the past, many technical fields sought to solve a 

problem by breaking down the system into its constituent parts and “trouble-shooting” to devise a 

solution. The problem with decomposing a system into its parts, also known as reductionism, is 

that the focus is on developing a part of the system without considering its integration into the 

system and the role of the sub-part in overall system performance. This happens because the 

dynamic relationships between parts of the system are excluded when reductionist thinking is 

applied. Technology managers need to understand recurring patterns of interactions within 

complex systems and the resulting consequences on system performance. This does not imply that 

a technical individual should not be knowledgeable of the functioning of the individual parts of a 

system, but rather, holistic thinking will ensure that the focus is placed on the ultimate output of 

the system as a whole. 

Technology managers must also be prepared to address the issue of emergence as a 

function of holism. Emergent properties or unexpected behaviors that result from interactions 

between the system’s constituent parts and the environment, and which produce outcomes beyond 

the collective capabilities of the individual parts, are risks encountered in complex technological 

systems. Emergence can be beneficial or adverse. In situations in which emergence results in 
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beneficial outcomes, technology managers must be creative and versatile in adapting the system 

to capitalize on the benefits. Technology managers must also have a plan for mitigating negative 

outcomes associated with emergence – for example, the unanticipated competition for  

resources between different sub-parts of the system (Zeigler, 2016). 

Modern day supply chain management is based on the idea of holism, where the constituent  

elements (such as suppliers, manufacturers, distributors, retailers, and transportation suppliers) are 

collectively considered to be a single enterprise  (Aghalari et al., 2020a,b; Nur et al., 2020a,b). The 

logic behind moving from a focus of individual entity performance to one that examines the final 

deliverables to the customer is based on the premise that performance of the whole is greater than 

the sum of performance of the parts. This approach has led many companies to spearhead 

collaborative solutions with partners upstream and downstream in the supply chain to minimize 

total cost, minimize risk exposure, and maximize profits for all partners in the supply chain 

(Hossain et al., 2020a). A simple example is the decision to offshore a production operation versus 

producing the product locally. A reductionist approach might look solely at the decreased cost of 

production in countries where low labor rates and taxes apply.  A holistic approach, on the other 

hand, would consider the overall impact on supply chain performance in terms of cost and 

customer satisfaction by making appropriate trade-offs between the cost of production and the 

costs of quality, transportation, inventory, and sustainability (Quddus et al., 2016). The impact of 

new technological solutions, such as robotic process automation, might also be considered in the 

quest to obtain the best overall performance of the supply chain. 

The COVID-19 pandemic has drawn into sharp focus the need for a holistic view of the 

supply chain in advancing technological solutions to solve complex global problems that have 

been previously ignored or subjected to myopic examination. With Industry 4.0 driving the next 
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supply chain revolution, the integration of new technologies, such as advanced robotics, the 

Internet of Things (IoT), additive manufacturing, cloud computing, and Big Data Analytics, will 

require a firm understanding of how these technologies facilitate or impede the interactions 

between supply chain entities and the resulting overall performance of the supply chain. A 

technology manager who can view both the “forest” and the “trees” will be an asset in leading 

such endeavors in organizations. 

 

5.3.3 Proficiency in Requirements Engineering 

Requirements engineering is an elaborate process that precedes the development of a technical 

product or complex technical system. It involves several sequential activities to ensure that the 

product created and delivered to the customer meets expectations. Technology managers are an 

integral part of this process, which involves several steps. These include (i) identifying stakeholder 

needs, (ii) extracting requirements that may not be easily determined without the input of the 

customer and other stakeholders, (iii) modeling and analyzing requirements, (iv) reaching 

consensus on requirements, (v) and disseminating requirements information to all relevant 

personnel to facilitate the design and deployment of the technical product or system. The ultimate 

goal is to capitalize on new technologies to develop a system that meets the needs of all 

stakeholders while making appropriate tradeoffs between risk, cost, and desired features and 

attributes. 

The need for capable technical individuals to manage the requirements engineering process 

exists in all aspects of society (Hossain et al., 2017). One example that is receiving increasing 

attention is the digitization of healthcare information systems to better facilitate robust, real time 

communication between practitioners, between practitioners and healthcare support personnel, and 

between healthcare personnel and patients.  The benefits of digitizing healthcare processes are 
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many and include reduction in medical errors; enhanced communication between patients, 

patients’ families, and healthcare providers; greater convenience for patients and their families; 

and decreased healthcare costs.  

Hospitals that are advanced in technology utilization have already implemented automatic 

identification and data capture (AIDC) technologies, such as radio-frequency identification 

(RFID), for tracking and tracing3. RFID is a wireless technology that is used to capture and 

disseminate information on a person or a thing. For example, RFID can be used to track the routing 

and progress of a patient through critical healthcare processes such as day surgeries. Using RFID 

tags, information on a patient undergoing surgery can be transmitted in real time or near real time 

and made available to healthcare support personnel to provide updates to patient families in 

waiting rooms. RFID tags are also used to ensure patient safety. One example is in tracking surgical 

instruments to ensure that all pieces are accounted for at the end of a surgical operation.  

There are many other areas in which emerging technologies, from machine learning to data 

analytics, are finding valuable applications in healthcare systems. The key to developing these 

advanced systems, however, is to thoroughly understand all stakeholder needs so that the system 

is developed with the customer requirements in mind. The need for individuals, who are not only 

conversant in the technical aspects of the job, but also effective in leading the process, is increasing 

exponentially as emerging technologies displace legacy systems. Failure to consider all 

stakeholder requirements prior to developing a complex technological system will not only result 

in a waste of financial resources but also tremendous disappointment and trust in the system. For 

example, a telehealth system that is designed to accommodate the delivery of healthcare solutions 

by a provider but does not appropriately accommodate patient needs by factoring in appropriate 

socioeconomic and demographical data will not provide the intended benefits to patients. While 
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the system may work for the provider, users might find it difficult to navigate, frustrating to use, 

or even obstructive in achieving the desired purpose. In the worst case, patients may feel more at 

ease in circumventing the system if only partial requirements are met.  

Effective technology managers must be capable of assessing customers’ needs and 

translating these needs into technology requirements in a manner that aligns with an organization’s 

strategic plan, while retaining sufficient flexibility to adapt to a constantly changing external 

environment. 

5.3.4 Sub-elements Integration, Design, and Optimization Capabilities 

Technological systems consist of many sub-parts and layers and are characterized by dynamic 

interactions between them and between users and the technology. The integration of all of these 

components must be performed in such a way as to deliver the greatest capability of the system. 

The technology manager must recognize these interactions and be knowledgeable about methods 

to optimize the interactions to achieve the maximum benefit possible. As socio-technology 

systems, integration and optimization must address both the human and technical dimensions of 

the interactions. The ultimate goal is to develop technological solutions that meet stakeholder 

requirements through effective and efficient application of technology within the imposed 

constraints. 

Technology managers must also be knowledgeable of best practices and how to apply the 

protocols, through repeated iterations, to optimize system performance. Optimization techniques 

can be applied to several aspects of a technological system to optimize factors such as usability, 

serviceability, maintainability, sustainability, resiliency, safety, traceability, quality, and 

productivity. Optimization requires the weak links in a system to be identified and strengthened to 



 

203 

the extent that they are balanced with other elements of the system to improve system performance 

(Duan et al, 2020; Nur et al., 2020a).  

Different technological strategies and methodologies can be applied to optimize a system. 

For example, a warehouse operation could be redesigned as a “smart warehouse” in which 

technologies such as mobile devices, automatic guided vehicles (AGVs), automated picking tools, 

smart glasses, and collaborative robots are integrated into the system to optimize productivity, 

reduce total cost, and improve service. Technology managers must be knowledgeable of issues 

such as work design, ergonomics, and cognitive capabilities of users to make the right adjustments 

to optimize interactions between users and the technology and to advocate for changes to achieve 

the same.  

Another example is the increasing use of blockchain technology to integrate supply chain 

entities and optimize the flow of information to enhance performance in areas such as traceability, 

safety, security, and ethical practices. Blockchain has found significant application in the 

pharmaceutical supply chain to mitigate counterfeit risks and in the food supply chain to ensure 

product safety and sustainability of natural resources.  

A technology manager with a sharp skillset that combines state-of-the art technologies with 

integration and optimization principles can have an immeasurable impact on the competitiveness 

of an organization. Technological systems can be optimized through repeated improvements 

during the development stage or through routine evaluation during the utilization phase. In the 

latter case, technology managers need to be on the lookout for new technologies that can help the 

organization achieve quantum leaps in performance. 
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5.3.5 System Lifecycle Assessment 

The development and operation of technology-based systems require full consideration of 

the entire life cycle of the system from inception of idea to phase out and retirement. During the 

development stage, due consideration must be given to issues such as usability, scalability, 

cybersecurity, reliability, serviceability, maintainability, interoperability, network topology, cost, 

sustainability, toxicology, legality, and other factors that are relevant to technology-based systems. 

After the system has been developed and prior to utilization, the system must be installed, 

configured, and rigorously tested to validate performance against stakeholder specifications. In 

many situations, it may also be necessary to operate outgoing and new systems concurrently to 

prevent disruptions in operations and to validate performance of the new system against the legacy 

system. During customer use, it will be imperative to manage the system’s operation and 

maintenance, and to perform regular technological updates to maximize performance. In the final 

stage of retirement, careful thought must be given to dismantling and disposing of the system to 

minimize adverse consequences to all stakeholders.  

When the useful life of a technological product or system is over, either due to wear and 

tear or obsolescence, the system must be retired and disposed of in a manner that is consistent with 

industry, state, federal, or country regulations. In recent years, the proper disposal of technology 

products, particularly electronic devices, has become a growing controversial issue as 

sustainability demands from a variety of stakeholders increase. Failure to take a full lifecycle 

approach to assess the potential ramifications of the technology during use and upon disposal can 

result in challenging, and even disastrous, situations for the organization. Technology managers 

need to anticipate potential problems ahead of time and plan for pain points that may arise during 

the lifecycle of systems, particularly those that employ new technologies. 
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The fifth-generation wireless network technology, 5G, is poised to radically change 

telecommunications by offering faster data transmission speeds, lower latencies, increased 

network capacity, seamless connectivity, greater consistency, and overall higher service quality at 

lower cost. In late 2018, telecommunications companies around the world began the process of 

commercializing and rolling out 5G phones. The general prediction is that within the next decade 

or two, significant worldwide adoption of the technology will occur across a variety of mobile 

devices and industries ranging from agriculture to defense. The Internet of Things and augmented 

reality are two applications that are expected to drive the use of this technology. With increasing 

adoption of 5G devices, lifecycle implications associated with the technology will also become 

increasingly evident. Technology managers will be required to take a central role in leading the 

technical issues of design and testing of network infrastructure, as well as less traditional activities 

associated with sustainability issues. For example, technology managers will have to contend with 

the upsurge in electronic waste that will result due to the vast numbers of 3G and 4G phones that 

will become obsolete, while simultaneously devising solutions to cope with increasingly stringent 

regulations on the disposal of toxic electronic devices in landfills. To address these challenges, 

technology managers will need to possess strong interpersonal and negotiation skills to motivate 

and influence the development of more efficient approaches for recycling of parts and harvesting 

of rare minerals from discarded devices. 

5.3.6 Leadership and Management Acumen 

Technology management involves the planning, organizing, coordinating, documenting, 

and controlling of tasks related to the development and operation of technological products and 

systems to meet an organization’s strategic goals. To be a successful technology manager in 

today’s rapidly changing technological climate, a powerful technical skillset, complemented by 
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broad knowledge of business fundamentals, and adroitness in managing interpersonal interactions 

and behaviors, is required. As a technical person moves up the organizational ladder and assumes 

greater responsibility for the leadership of technical support personnel, both soft and hard skills 

become essential for success. Exceptional interpersonal skills and a strong ethical compass have 

been identified among the most critical skills for technology managers. 

Planning for technology management is the initial and most critical step as it involves both 

strategic and operational decisions. The strategic planning process precedes tactical and 

operational planning. Its main purpose is to establish the organization’s priorities and set goals, 

determine the allocation of resources, and define important performance targets. The planning 

stage is characterized by intense interaction with key stakeholders, particularly with the customer. 

Technology managers need to have outstanding listening skills and the ability to skillfully 

negotiate tradeoffs between competing priorities when necessary. Once the strategic plan is 

created, tactical and operational plans can be developed to execute day to day activities in support 

of the strategic plan. Key decisions during operational planning include who does what, when, 

how, and accountability measures that will be used to measure conformance to these requirements. 

The ability to plan for contingencies is also a critical skill needed to address potential deviations 

that may occur from the strategic plan. 

Another key management responsibility is organizing, which involves the identification 

and categorization of key activities and tasks into logical sub-groups to facilitate the assignment 

of the technical staff. A major part of organizing is the recruitment of staff with the appropriate 

skillset to perform the technical work and support organizational goals in the short and long term. 

The technology manager must be capable of identifying skill gaps among existing employees to 
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determine which skills need to be acquired to build strong, competent, and cohesive teams. The 

technology manager is also responsible for effective delegation of responsibilities and supervision 

of the work performed without excessively micro-managing technical support staff. Along with 

hiring, the technology manager must be instrumental in motivating and training staff to deliver 

results on time, within budget, and to the required specifications with the minimum amount of 

conflict. Above all, technology managers need to be proficient in motivating staff and project 

teams and keeping the momentum to achieve desired outcomes, sometimes under long hours of 

intense activity to meet deadlines. Occasionally, the technology manager might be faced with the 

difficult task of employee termination if performance fails to meet expectations after attempts at 

training and coaching become futile.  

Documentation and control are other vital tasks performed by technology managers. 

Documentation of technology solutions, operational processes, maintenance procedures, tasks, and 

methods used to resolve recurring problems provide standard references for maintaining the 

ongoing operations of a technological system. The control process is provided through a feedback 

mechanism that allows the identification and evaluation of deviations from defined plans. As 

mentioned previously, complex technological systems may display unintended emergence 

properties in response to unforeseen external shocks or interactions of the sub-units. Technology 

managers must be capable of applying a methodological approach to address these problems with 

creativity, agility, and decisiveness. 

The organizational framework within which a technology manager operates is not uniform 

across organizations and will vary based on the mission of the organization and the type of 

technology involved. Having a strong managerial skillset to navigate the organizational structure 
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and collaborate effectively with unit managers, stakeholders, and staff is indispensable for 

effective technology management. A balanced set of technical, business, managerial, and 

interpersonal skills are crucial. Interpersonal skills, in particular, have been recognized as one of 

the most essential management skills for superior technology management. 

Organizations that take the lead in developing their technology management talent by 

implementing a robust system for recruiting, training, and continually developing technology 

management staff in the six areas discussed above will find that they are better positioned to 

traverse the dynamic technological landscape and strategically negotiate a course that leads to 

sustained improvement in technological competitiveness. 

5.4 Limitations and Future Study 

 

The proposed instrument which is developed to assess the performance of the systems 

engineers is completely new in the relevant literature. In addition, some of existing tools, 

competency models, and seminal works in the current literature talk about one or two 

measures/axis to assess the performance of the individual systems engineers while our instrument 

capture full spectrum of the systems engineering attributes and their corresponding performance 

indicators to evaluate the performance of the systems engineers when they engage in systems 

engineering activities. This inflicts a limitation in terms of institute an external validation for the 

‘new’ proposed instrument, since it has no other benchmark/ reference point against which it could 

be compared or gaged. In other words, although in this dissertation we used different kinds of 

techniques such as exploratory factor analysis and confirmatory factor analysis to demonstrate the 

level of validity and reliability of our instrument , but it is limited by the first instantiation of the 

instrument for the comprehensive testing. 
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Since this research is solely designed for the systems engineering focused group i.e., only 

who has knowledge on the systems engineering area, therefore sample size was limited.   In light 

of the findings developed from this current study, it is recommended that the following aspects 

might be considered to improve the results of the study. A larger number of participants with a 

more varied field of occupations could be appraised in future studies, ensuring that each domain 

has an equal sample size. The equal sizing will allow for the investigator to make better 

comparisons among the profile domains. These expansions will also help to better distinguish 

between the potential significant differences in the SE competency levels.  

 

 

Disclaimer:  Several parts of this   dissertation have already been published in different journals 

and conferences proceedings; and relevant citations of the published works are listed in the 

following reference list. 
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