
Mississippi State University Mississippi State University

Scholars Junction Scholars Junction

Theses and Dissertations Theses and Dissertations

5-1-2020

Authoritative and Unbiased Responses to Geographic Queries Authoritative and Unbiased Responses to Geographic Queries

Naresh Adhikari

Follow this and additional works at: https://scholarsjunction.msstate.edu/td

Recommended Citation Recommended Citation
Adhikari, Naresh, "Authoritative and Unbiased Responses to Geographic Queries" (2020). Theses and
Dissertations. 819.
https://scholarsjunction.msstate.edu/td/819

This Dissertation - Open Access is brought to you for free and open access by the Theses and Dissertations at
Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of
Scholars Junction. For more information, please contact scholcomm@msstate.libanswers.com.

https://scholarsjunction.msstate.edu/
https://scholarsjunction.msstate.edu/td
https://scholarsjunction.msstate.edu/theses-dissertations
https://scholarsjunction.msstate.edu/td?utm_source=scholarsjunction.msstate.edu%2Ftd%2F819&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsjunction.msstate.edu/td/819?utm_source=scholarsjunction.msstate.edu%2Ftd%2F819&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholcomm@msstate.libanswers.com

Authoritative and unbiased geographic services

By

Naresh Adhikari

A Dissertation
Submitted to the Faculty of
Mississippi State University

in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

in Computer Science
in the Department of Computer Science and Engineering

Mississippi State, Mississippi

May 2020

Authoritative and unbiased geographic services

By

Naresh Adhikari

Approved:

Mahalingam Ramkumar
(Major Professor)

Eric Hansen
(Committee Member)

Maxwell Young
(Committee Member)

Tanmay Bhowmik
(Committee Member)

T. J. Jankun-Kelly
(Graduate Coordinator)

Jason M. Keith
Dean

Bagley College of Engineering

Name: Naresh Adhikari

Date of Degree: May 1, 2020

Institution: Mississippi State University

Major Field: Computer Science

Major Professor: Dr. Mahalingam Ramkumar

Title of Study: Authoritative and unbiased geographic services

Pages of Study: 170

Candidate for Degree of Doctor of Philosophy

Trust in information systems stem from two key properties of responses to queries

regarding the state of the system, viz., i) authoritativeness, and ii) unbiasedness.

That the response is authoritative implies that i) the provider (source) of the re-

sponse, and ii) the chain of delegations through which the provider obtained the

authority to respond, can be verified. The property of unbiasedness implies that no

system data relevant to the query is deliberately or accidentally suppressed. The

need for guaranteeing these two important properties stem from the impracticality

for the verifier to exhaustively verify the correctness of every system process, and the

integrity of the platform on which system processes are executed. For instance, the

integrity of a process may be jeopardized by i) bugs (attacks) in computing hardware

like Random Access Memory (RAM), input/output channels (I/O), and Central Pro-

cessing Unit(CPU), ii) exploitable defects in an operating system, iii) logical bugs

in program implementation, and iv) a wide range of other embedded malfunctions,

among others.

A first step in ensuing AU properties of geographic queries is the need to ensure

AU responses to a specific type of geographic query, viz., point-location. The focus

of this dissertation is on strategies to leverage assured point-location, for i) ensuring

authoritativeness and unbiasedness (AU) of responses to a wide range of geographic

queries; and ii) useful applications like Secure Queryable Dynamic Maps (SQDM) and

trustworthy redistricting protocol. The specific strategies used for guaranteeing AU

properties of geographic services include i) use of novel Merkle-hash tree- based data

structures, and ii) blockchain networks to guarantee the integrity of the processes.

Keywords: point-location, cryptography, security, regional delegation, block-chain,
trusted-computing-base, TCB, congressional redistricting, SQDM

TABLE OF CONTENTS

LIST OF TABLES .. vii

LIST OF FIGURES .. viii

CHAPTER

1. INTRODUCTION .. 1

1.1 Motivation .. 1
1.2 Research Topics... 2

1.2.1 Assured Point Location .. 3
1.2.1.1 Property of Authoritativeness 3
1.2.1.2 Property of Unbiasedness...................................... 4

1.2.2 Attack/Threat Model(s) ... 4
1.2.3 Applications of Assured Point Location 6

1.2.3.1 Authoritative and Unbiased Geographic Delegation 7
1.2.3.2 E-Governance... 9
1.2.3.3 Trustworthy Congressional Redistricting Protocol.. 10

1.2.4 Information System Security Models............................... 11
1.2.4.1 Active Defense Model ... 11
1.2.4.2 Transaction-based State-transition Model 12

1.3 Research Contributions.. 14
1.4 Organization of the Dissertation... 14

2. BACKGROUND .. 16

2.1 Preliminaries on 2D Geometry ... 17
2.1.1 Polygon Decomposition .. 18

2.2 Classical Algorithms for Point Location Problem 20
2.3 Preliminaries on Cryptographic Algorithms 22

2.3.1 Security Assurances ... 22
2.3.2 Digital Signature Schemes .. 24
2.3.3 Cryptographic Hash Functions.. 25
2.3.4 Hash accumulator .. 27

2.4 Data Structures ... 28

2.4.1 Dictionary ... 28
2.4.2 1D-Look-up-table (1D-LUT)... 29
2.4.3 2D-Look-up-table (2D-LUT)... 31
2.4.4 Merkle Hash Tree... 33
2.4.5 Ordered Merkle Tree (OMT) .. 35

2.4.5.1 Prover-Verifier Protocol .. 37
2.5 Information System Security Models .. 39

2.5.1 Hardware-Based Trusted Computing Base (TCB) 40
2.5.2 Consensus-based Blockchain Network 42
2.5.3 Consensus Protocols... 45

2.5.3.1 Proof of Work (PoW) ... 47
2.5.3.2 Proof of Stake (PoS)... 48

2.5.4 Explicit and Implicit Process States and Forking............. 48
2.5.5 A Hardware TCB versus Blockchain Network.................. 49

3. TRUSTWORTHY EXECUTION OF SHAMOS-HOEY ALGORITHM
FOR DETECTING A SIMPLE POLYGON .. 51

3.1 Introduction .. 51
3.2 Shamos-Hoey Algorithm .. 52
3.3 Trustworthy Execution of Simplified Shamos-Hoey Algorithm .. 54

3.3.1 Sub-Process P1 .. 57
3.3.2 Sub-Process P2 .. 58
3.3.3 Sub-Process P3 .. 61

3.4 Related Works, Applications and Conclusion 67

4. SECURE QUERYABLE DYNAMIC MAPS .. 68

4.1 Introduction .. 68
4.2 Sub-processes in SQDM Protocol ... 70

4.2.1 Pre-Processing P0 .. 73
4.2.1.1 SQDM Map Construction 75
4.2.1.2 Types of BBs ... 79

4.2.2 Segment to BB Mapping P1 ... 81
4.2.3 Resolving Queries P2.. 83
4.2.4 Map Construction By Slab Decomposition Method 84
4.2.5 Constrained Mapping ... 86
4.2.6 Necessity and Sufficiency.. 89

4.2.6.1 Reducing Group-II blocks 91
4.3 Related Work, Result and Conclusion....................................... 92

4.3.1 SQDM of the USA States... 94

5. GEOGRAPHIC REGIONAL DELEGATION PROTOCOL 98

5.1 Introduction .. 98
5.2 Definition of GRDP... 101
5.3 Conventional Delegation Workflow ... 103
5.4 Blockchain-based Delegation Workflow 104
5.5 Sub-processes in a Blockchain-based Delegation Process............ 106

5.5.1 Validation Criteria of a Delegation Transaction 108
5.5.2 Simplified Illustration of a Delegation Protocol 110
5.5.3 Region OMT ... 114

5.6 Surrendering/Rolling-back a Delegation.................................... 115
5.7 Related Works, Results, and Conclusions.................................. 116

6. BLOCKCHAIN-BASED REDISTRICTING PROTOCOL 120

6.1 Introduction and Motivation .. 120
6.2 Overview: Blockchain-based Redistricting Protocol (BREP)...... 122

6.2.1 An Analogy to an Online Auction Process 124
6.2.2 Security Assumptions... 127
6.2.3 Contributions... 127
6.2.4 Metrics for Evaluating District Plans 128
6.2.5 Area, Perimeter and Centroid of a Closed Geometric Fig-

ure .. 128
6.3 An Illustration of a State Redistricting Problem 132
6.4 BREP: Data and Transactions ... 136

6.4.1 State Redistricting Structure (SRS) 136
6.4.1.1 Block OMT TB ... 137
6.4.1.2 Region OMT TR ... 138
6.4.1.3 District OMT TD .. 139
6.4.1.4 Constraint OMT TD ... 139

6.4.2 State Districting Plan (SDP).. 140
6.4.2.1 Plan OMT TP .. 141

6.4.3 District Plan Metric Structure (DPMS) 142
6.5 BREP: Macro-Transactions.. 143

6.5.1 Macro-Transactions for Sub-Process Psc......................... 143
6.5.1.1 Micro-Transactions ... 144

6.5.2 Macro-Transactions for Sub-Process Ppc......................... 145
6.5.3 Macro-Transactions for Sub-Process Ppe......................... 145

6.5.3.1 Micro-Transactions ... 146
6.6 Trustworthy Verification of a Simple Polygon: Using Modified

Shamos Hoey Algorithm .. 148
6.6.0.1 Event OMT TE ... 149
6.6.0.2 Active Segment OMT TA 150

6.6.1 Blockchain µ-Transactions .. 151

6.7 Trustworthy Verification of a Simple Polygon: Bounding Box
Method ... 153

6.8 BREP: Blockchain States... 156
6.9 Evaluation Tools and the Methods ... 157

6.9.1 GIS Development Tools.. 158
6.9.2 Cryptographic Tools and Protocols 159

6.10 Related Works, Results, and Conclusions.................................. 159

7. CONCLUSIONS... 162

REFERENCES ... 165

LIST OF TABLES

3.1 Formal description of the trustworthy execution of the modified Shamos-
Hoey Algorithm with preconditions and postconditions for the sub-
process P2. ... 60

3.2 Formal description of the trustworthy execution of the modified Shamos-
Hoey Algorithm with preconditions and postconditions for the sub-
process P3 .. 64

3.3 Formal description of the trustworthy execution of the modified Shamos-
Hoey Algorithm with preconditions and postconditions for Intersection
Procedure. ... 66

4.1 The sizes of the input maps of different US states and the number of
white and blue BBs in the respective map’s SQDMs. 96

LIST OF FIGURES

1.1 Given a query point q(x, y), a point location algorithm reports region R1. 2

2.1 A y-monotone polygon ABCDEFGHIJKLA with reference line L1. 19

2.2 Different polygon types. (a) is a self-intersecting polygon, (b) is a reg-
ular polygon with six sides, (c) an outer polygon contains an inner
polygon called hole, (d,e) simple, irregular polygon) 19

2.3 Intervals of a 1-D OMT collection with (a) 3 intervals/leaves and (b) 1
interval/leaf ... 30

2.4 Rectangular regions represented by three 2D-LUT entries in B. 32

2.5 A binary hash tree with 8 leaves. For the data element L1, nodes on the
path up to the top ancestor are p = {L1, v

3
1, v

2
0, v

1
0} (dark filled). The

values stored in the nodes are the hash function of the values in the
child nodes beneath one level. The sibling nodes of the nodes on the
path p form a set of complementary nodes VOLi = {v3

0, v
2
1, v

1
1} (thick

circled nodes), also called complementary hashes to record L1. 34

2.6 The general architecture of a TCB consists of i) Secure Processor, ii)
Persistent Memory of limited size, and iii) Non-persistent Memory with
limited size. The secure Input/Output channels facilitate communicat-
ing critical data with the process outside the TCB................................. 41

2.7 A process executed in a blockchain network is a sequence of state tran-
sitions. Each state transition (e.g, Sn−1 → Sn) is initiated by an
atomic operation called transaction (e.g, Tn−1). A process, thus, in a
blockchain network can be seen as a sequence of committed transactions
T0, T1, .., Tn−1, Tn .. 45

2.8 A blockchain network uses state transition functions to trigger the pro-
gression of the system state. ... 46

2.9 Blockchain Network uses consensus algorithms to create an immutable
ledger called blockchain or state log. ... 47

3.1 OMT structures in a trustworthy execution of the simplified Shamos-
Hoey Algorithm.. 56

4.1 A set of polygons on a map. Polygon ABC..NA contains an island
polygon A′E ′D′..B′A′. .. 69

4.2 Left: A polygon ABCD..MNA on the map whose interior region has an
island polygon A′E ′..C ′B′A′. Right: The map on the left is transformed
into a mesh of bounding blocks which captures the bounding segments
of the polygons... 72

4.3 (Left): An input polygon is a sequence of points. (Right): All the
points in the input polygons are added to a 1D-OMT Tp that represents
a dynamic polygonal object. ... 74

4.4 An input polygon ABC...MA is divided into a mesh of bounding blocks
called BB. A strategic selection of split axis (horizontal or vertical)
produces the minimal number of blocks that sufficiently represent the
region enclosed by boundary points. .. 77

4.5 Types of BBs ... 79

4.6 An input polygon ANM...BA is divided into a mesh of bounding blocks
(BBs) using the slab decomposition technique. Three types of blocks
are represented by gray shaded, blue shaded, and red shaded rectangles. 85

4.7 Left: Effect of Ordering Boundary Points on Validity of a Region.
Right: Two input polygons ABC...MA and A′E ′..C ′E ′A′ are divided
into a mesh of bounding blocks called BBs. The mesh is in deed an
SQDM for the two polygons.. 88

4.8 (a)-(c) Necessity and Sufficiency of “red” BBs with 2 line segments.
(d)-(e) a red BB split into 3 BBs... 90

4.9 A Type 12 block in an SQDM is reduced to few Type 0, Type 1, and
smaller Type 12 blocks. .. 91

4.10 A Type-8 BB is clipped horizontally through y1. It produces {BB0, BB1}.
Block BB0, when clipped vertically through x1, produces smaller BBs
{BB3, BB4}. Block BB1 contains 3 splits, it is clipped horizontally
through y0 produces {BB5, BB4}. BB5 contains two splits, which will
be split vertically through x1 and x0 produces {BB6, BB7, BB8}. Block
BB4 is a rotated version of initial block BB, which can be clipped first
vertically and then horizontally recursively. ... 92

4.11 The majority of segments have less than 100 splits (left). More than 95
percent of original segments are split into less than 100 points (Middle).
(Right) Number of splits and numbers of the bounding boxes for each
vertical slab in the US map... 94

4.12 Top (left): SQDM for MS state. Top (right): SQDM for Yazoo county. .. 97

5.1 A parent entity Up draws a partition C in the parent region P over her
control to transfer the authority over the division to child entity Uc. 103

5.2 A regional delegation is a transaction (T0) that permits an owner (Up)
to divide a region (P) (owned by Up) into child-region (C) to transfer
the authority over the child region to a child authority (Uc). 105

5.3 Intersecting polygon is invalid for an SQDM process due to ambiguity
in assigning a point to an interior to a sub-division................................ 108

5.4 Invalid partition segments for three types of BB in an SQDM. (a) shows
the partition segments in Type 0 block; (b) shows child-division in a
typical Type 1 block; and (c) shows sub-division in a typical Type 7
block.. 109

5.5 (i) Input polygon ANM...CBA has interior region P (under control
of authority Up), and the exterior region φ. (iii) SQDM for P is a 2D-
OMT T p

B with root σc
B. (ii)Ui draws a child-division C = A′B′C ′..E ′A′

inside P to delegate it to the second entity Uc. SQDM for C is a 2D-
OMT T p

B with root σp
B. (iv)-(vi) Partition segment A′B′ is rarrified to fit

inside an existing BB 17, which is again split to fit the rarefied fragment
A′P of A′B′ completely. (vii) Rarefied segments in child-division C are
inducted into the parent SQDM to complete the delegation process........ 111

5.6 Top (left): SQDM for MS state. Top (right): SQDM for Yazoo county.
Bottom: After the delegation of Yazoo county by MS. 118

6.1 Left: a region R contains ten census blocks (B0, B1, ..B9) allocated for
redistricting into three districts D0, D1, and D2. Right: P-I, where
the ten blocks are grouped to form 3 sub-regions, (say) congressional
districts as depicted by gray, green, and red shade areas. 123

6.2 In a BREP, a map redistricting problem is defined and broadcast over
a blockchain network. A set of independent computing nodes submits
a set of redistricting plans to the blockchain network. The potential
plans are evaluated by executing transactions corresponding to standard
metrics. The evaluation results are validated in blockchain and finally
committed to a ledger... 126

6.3 Blocks B0, B1, ..B9 are used to construct 3 districts gray (D0), green
(D1), and red (D2). Four arbitrary redistricting plans are constructed:
P-I, P-II, P-III and P-III. ... 133

6.4 BREP as a set of Macro-Transactions ... 135

6.5 (a): A simple polygon ABC..HGA; (b): A self-intersecting polygon
IJK..PI. ... 144

6.6 (a): A simple polygon ABC..HGA; (b): A self-intersecting polygon
IJK..PI. ... 148

6.7 (a) A simple polygon B0{A,B, ..H,A} where no non-adjacent segments
intersect with each other. (b)Polygon with vertices {I, J, ..P, I} is not
a simple polygon because two non-adjacent segments PO/(MN) and
LM intersect. (c) A set of BBs, TBB={01, 02, 03..07′, 09′, ..15} built to
map segments in polygon B0. (d) Segments in B0 is mapped to a BB
in TBB ... 155

CHAPTER 1

INTRODUCTION

We can only see a short distance
ahead, but we can see plenty there
that needs to be done..

Alan Turing, 1950

This chapter introduces the problem of point location, and the motivation for the

proposed research for securing geospatial data and the services based on them. We

define and solve what is known as Assured Point Location Problem (APL) to achieve

security assurances desired for geospatial data and services.

1.1 Motivation

A planar point location problem is a classical problem in combinatorial compu-

tational geometry [17]. As shown in Figure 1.1, let us consider a planar region R

with n vertices and k sub-partitions. The polygonal partitions Ri and Rj are created

by drawing a series of straight lines forming the boundary of the partitions. For a

point location problem, we report the partition R that contains a given query point

q(x, y). If q lies on a vertex, or on the edge of R, then that vertex or edge is reported.

Based on the application, a Point Location Problem (PLP) can be of two broad

types: 1) Static (Off-Line), and 2) Dynamic (On-Line). Static PLP permits no

1

modification to the polygonal structure. Dynamic PLP allows changes like addi-

tion/deletion of edges.

PLP has numerous applications in computer graphics, path planning in robotics,

Geographic Information System (GIS), computer network management, map and

navigation systems, database queries, data classification, and among others.

(x, y)

R2

R1

R1

R3 R4

Figure 1.1

Given a query point q(x, y), a point location algorithm reports region R1.

Over thirty years, several variants of point location algorithms have been purposed

and analyzed towards optimizing time and space requirements [5, 17, 30, 29, 51, 16,

50, 48, 26, 8, 40, 15]. However, a significant limitation of the existing algorithms lies

in difficulty in guaranteeing the integrity of their execution. This is the motivation

behind proposing Assured Point Location (APL) algorithms and protocols.

1.2 Research Topics

The broader scope of this research is securing spatial data assets, guaranteeing

correctness of protocols for far-reaching applications and services that use geo-spatial

data as chief commodities, and ensuring integrity of execution of such protocols. A

2

broad approach, 'transaction-based state machine' [70], is adopted to secure such

applications/services. The method will be elaborated in section 2.5.

1.2.1 Assured Point Location

Assured Point Location redefines a classical point location problem from the

perspective of the security of an information system. Unlike classical PLP algorithms

(see Section 2.2), APL provides trustworthy means to ascertain two critically essential

properties of a process output, viz. Authoritative (A), and Unbiasedness (U).

1.2.1.1 Property of Authoritativeness

The property of authoritative ensures that the source of a response and the chain

of trust through which the source obtained an authority of responding queries can be

well-established. For instance, consider an Internet domain-name resolving service

such as a Domain Name System (DNS). The top-level operator, also called root (/)

of a DNS zone hierarchy can yield an authority of resolving NS queries to different

Top Level Domain (TLD) zones such as com, org, net, gov, etc; TLD operators can

themselves delegate authorities to different sub-domain zones. In doing so, an upper-

level zone authority must sign the public key of the lower-level zone authorities, thus

creating a chain of assigned trust. For instance, ‘com’ zone authority signs a public

key of Verisign to yield ownership of all names ending in ‘.com’. Verisign controls all

the namespaces under the ‘.com’ zone. It can sign the public key of Google Inc. to

yield all names ending with ‘google.com’ to create a lower-level zone called ‘google’.

In this fashion, an authority transfer vertically to the lowest level possible. It is easy

3

to establish the chain of delegation for any authority up to the root (/) in a DNS

hierarchy. DNSSSEC [36] protocol allows to authoritative delegation of namespaces;

and also provides authoritative denial of services.

1.2.1.2 Property of Unbiasedness

The property of unbiasedness ensures that no valid answer instances have been

deliberately or accidentally omitted/suppressed. It means that neither a malicious

responder nor an attacker should be able to partially or entirely hide correct instances

of a solution set, without being detected. For instance, a database select query

must return all the rows that satisfy a given search criteria. A map service, for

example, must return all instances for a query such as “n gas-stations near any point

(x, y)” must return complete answer instances; without hiding or suppressing any

information. Similarly, a point location query must produce unbiased responses,

otherwise, it should provide an ability to detect as such.

Having defined an APL, it is vital to understand the context of execution of

classical algorithms – details of which are discussed in Section 2.2.

1.2.2 Attack/Threat Model(s)

A process in a digital (computer) system is a program in execution on a general-

purpose computing platform. Its major components are i) a central processing unit

(CPU), ii) input and outputs (I/O) channels, and iv) a temporary memory called

Random Access Memory (RAM) [65]. Naturally, the reliability of a process output

depends on 1) a level of isolation of the computing platform, and 2) the correctness

4

of the implemented programs. These are points where the reliability of a program

output can be jeopardized. Malicious tampering of a computing platform (tampering

CPU, RAM, CPU or I/O) can adversely impact program output, in the same way, it

does when introducing deliberate (or inadvertent) program bugs [44, 60], [59], [38],

[49], [69], [66], [60]. Given the fact that an application runs on top of a multitude of

system programs, possibly having millions of lines of codes, it is virtually impossible

to verify the correctness of such a complex operating system. Nevertheless, system

developers and end-users have no choice but put trust in the integrity of an existing

computing environment.

It safely leads to conclude that several lines of attacks that can lead a program

to produce an incorrect solution for a point location problem too. A real-world point

location program feeds on polygons, possibly with thousands of sides, enclosing planar

regions. An attack on the integrity of the stored map data could adversely affect the

reliability of a program output. The malicious or accidental bugs in the program

implementation can produce subtly incorrect/incomplete output [44]. The potential

forgeries by a point location process raise an acute need for guaranteeing authoritative

and unbiased location query response. It can be served by a trustworthy system that

embodies the ability to attest the source of response to point location queries and

establish the chain of trust (authorities) that leads to the source. The goal of the

proposed research is to design a transaction-based state-machine model that enables

users to evaluate the integrity of the point location process and services that depend

on the process.

5

Naresh et al. [1] proposed to secure queryable dynamic maps (SQDM) as a passive

security model for a point location problem. The model is based on system-specific,

rule-based certified state transitions that guarantees a specific relationship between

input and output parameters. The model is an integration of a simple tamper-

proof hardware that serves as a Trusted Computing Base (TCB), authenticated data

structures (ADS), and a set of procedures exposed to facilitate and certify point

location queries. It exposes limited operations that can be safely executed inside

the TCB; it is unaffected by tampering of code/data that may reside outside the

TCB. However, a significant limitation originates from the impracticality of the wide

adoption of trusted hardware [6]. It also demands stringent design procedures to

keep it highly tamper-proof. The limitations, nevertheless, can be addressed by

translating the idea of the minimality of software and hardware to a system of peer-

to-peer network sharing a universally verifiable distributed ledger – a blockchain

network[12, 46, 70, 47]. Subtle differences between execution of APL protocols and

GIS services on hardware-based TCB versus blockchain networks will be introduced

in later chapters.

1.2.3 Applications of Assured Point Location

A conventional PL algorithm has utility in numerous applications such as com-

puter graphics, database queries, autonomous vehicle tracking, and robotics, among

others. There are other applications which call for a scalable and distributed secure

point location protocols. For instance, secure biometrics, data classification, navi-

6

gation and positioning systems, digital watermarking, and copyright management,

to name a few [68]. Among others, its applications in services that leverage spatial

data are also in demand. We refer to them as secure GIS services, which are sub-

systems that use spatial data as useful commodities. Solutions to a secure (assured)

point location problem open avenues to a wide range of secure geographic services.

For instance, their utility can be extended to unmanned aircraft system navigation;

GIS-based terrestrial navigation; autonomous vehicle tracking; real-estate transac-

tion services without trusted third parties (like government agencies); authoritative,

reliable, and unbiased geography-based information look-up services, etc.

1.2.3.1 Authoritative and Unbiased Geographic Delegation

Akin to transferring money from one’s bank account to another or like transfer-

ring balance using cryptocurrency like Bitcoin on the Internet, delegating authority

of geographic area without the involvement of any third party is an essential step to-

wards fully automating transactions of land or property through the web. However,

this seemingly trivial process has the following challenges to overcome.

1. Securing underlying geo-spatial data for region boundaries, feature locations,
etc.

2. Ensuring an authority has the rightful authority over a 2D space.

3. Enforcing utmost trust in partition of a 2D region.

4. Secure and trustworthy transfer of authority over a sub-division to another
authority.

A secure, reliable, and trustworthy system of delegating geographic region must ad-

dress above mentioned challenges, as well as it must fulfill following prerequisites:

7

1. An authority holds proof of authority over a 2D space.

2. Such service must circumvent a sophisticated distributed denial of service (DDoS)
and must ensure the data volume does not scale with the size of the problem.

A Domain Name System (DNS) [52] is a good example of how a delegation is

transferred from one authority to another. DNS is a distributed system for a del-

egation of authority of resolving Internet domain names to different DNS servers.

In a DNS, delegation starts from top-level authority called “root” (/). It delegates

namespaces to various zone authorities such as com, org, net. The zone authorities

can delegate different names in their zone to other child-level zones. For example,

the zone com can create child zones such as google.com; yahoo.com; and so on. This

hierarchy of zone authorities construct the DNS namespace. The DNS hierarchy,

along with a DNS security protocol (DNSSEC) [36], guarantees authoritative and

unbiased delegation of services function in one-dimensional property. However, a se-

cure delegation of a 2D regional space is a more involved and complex process. Thus

this seemingly trivial process has the following requirements to meet.

1. To secure underlying geospatial data of geographic boundaries and associated
features (domains) like area, physical structures like restaurants, banks, etc.

2. To prove that an authority has a specific authority over a space to securely
delegate partial or complete authority over the region, ensuring i) no overlap
between delegated regions; ii) no double-delegation; and iii) no unsolicited re-
vocation of a delegated space.

3. To avoid a trusted third party during delegation to bring greater automation
for a 2D space delegation.

4. Securely and safely surrender (rollback) delegation once desired.

Details of a protocol for a domain-specific spatial delegation is discussed in Chapter

5.

8

1.2.3.2 E-Governance

E-governance is a service where a governing body or an organization uses in-

formation technology to deliver different services such as like issuance of citizenship,

birth, migration certificates to its citizens. Other regular services that a governing

body might serve to its citizens include health insurance, education allowance, and

unemployment benefits, among others. In doing so, people registered for different

services might be associated with a geographic location. In a demographically and

geographically diverse country like the USA, efficient e-governance must embrace in-

dividual privacy of data assets; secure transaction of services, among others [34]. An

attribution of a geographic location to entities such as city dwellers, disaster relief

centers, voting booths, and so on could be helpful in identifying rightful and authen-

tic entities. It would also add value in realizing greater transparency of government

services. It is crucial to build secure, reliable services that facilitate an authorized

and unbiased geography-based look-up services to embody spatial information with

e-governance services. As an instance, a trustworthy attribution of a spatial coor-

dinate to personal identity can serve as proof of residency in a particular political

region such as State, county, city, or congressional or school district.

Similar to a Domain Name System (DNS) that binds useful information like IP

address to domain names, geography-based services can be used to attach (link) a

geographic location to different features such as gas stations, banks, streets, lanes,

and even dynamic data like temperature, pressure, traffic, road closures, resident-

related data, etc. Apart from being authoritative, responses should also be unbiased.

9

For instance, a query such as 'return n closest, cheapest or highest-rated gas-stations

at/around a geographic location q(x, y),' must not deliberately omit any gas stations

that satisfy the query.

1.2.3.3 Trustworthy Congressional Redistricting Protocol

In the context of political demarcation of a country, redistricting is a task of

decomposing a political division (such as State or city) into sub-divisions (such as

congressional districts, school district, etc.) to the extent that the sub-divisions meet

a defined criteria such as similarity in population distribution, diversity of race or

ethnic diversity, etc. Every ten years, congressional redistricting is performed to

incorporate changes in population. Ideally, it should be undertaken to avoid partisan

advantage or unbalanced distribution of population or race or ethnicity. Several

other criteria may guide a redistricting project: compactness and contiguity of a

region/division; preservation of existing political communities partisan and racial

fairness [22], among others. However, as illustrated by [53], redistricting is often

mired by political and legal contentions between political parties. In most cases, the

problem arises from the fact that a committee of (biased) political representatives

perform the task of redistricting. Redistricting performed to introduce a partisan

advantage is popularly termed as gerrymandering [22, 3, 19]. Computer-assisted

redistricting can alleviate such issues. However, relying on sophisticated computer

system(s) to generate fair, unbiased congressional districts also raises valid questions

10

regarding process integrity – for the same reason that execution of classical point

location algorithms can not be guaranteed.

On a different facade, given building blocks such as census blocs (or counties)

for a redistricting purpose, choosing a set of blocks to be assigned to each district

is an NP-hard problem [4]. Such algorithms do not lend themselves to be assured

elegantly. In this dissertation, we propose a novel, trustworthy framework called

Blockchain-based Redistricting Protocol (BREP) for achieving universal consensus

on an (optimal) redistricting plan (among potentially thousands of districting plans).

The framework is also based on the principles of the transaction-based state-transition

model discussed in Chapter 2.5. Further details of the protocol will be discussed in

Chapter 6.

1.2.4 Information System Security Models

Information security can be broadly classified under two security models: 1)

Active Defense Model, and 2) Transaction-based state-transition Model

1.2.4.1 Active Defense Model

The active defense model approach [57, 56] is an proactive method for securing an

information system. Under this model, an adversary always poses serious threats to

an information system. Such threats (risks) can result in compromising key desired

security assurances such as confidentiality, authenticity, and integrity of the informa-

tion system. Some of the other threats can be tampering data in their storage or in

11

insecure channels; mal-ware or spy-ware injection in an information system; theft of

credentials or critical data; or denial of service, among others.

To counter such attacks, system designers or architects attempt to design an infor-

mation system that is more resistant to malware or spyware. The software engineers

implement a system using robust tools. Test engineers execute test cases stringently

to alleviate errors or bugs or attack points. The security engineers develop tools

such as firewalls, anti-malware, and anti-virus programs. However, in times, a sys-

tem might itself be behaving incorrectly. It may be due to inadvertent hardware

or program bugs dormant in the platform or software modules. For example, secu-

rity experts reported Meltdown and Spectre bugs in Intel microprocessors [13], and

tamper vulnerable memory [27] in the recent past. Hence, a system attack model

encompasses detection, identification, and removal of undesired functionality in soft-

ware or hardware or intrusions in the network of an information system. This model,

though, an effective as the first line of securing and defending a system, ignores issues

associated with misplaced trust in hardware, personnel, complex software, etc.

1.2.4.2 Transaction-based State-transition Model

The transaction-based state-transition model [70] is a passive approach to the

security of an information system. It assumes that a secure and trustworthy informa-

tion system must be minimal in both software and hardware structures [54, 57]. The

minimality of software and hardware provides two crucial abilities: i) an ability that

12

any malicious and unintended behavior would get easily detected, and ii) an ability

that everyone can exhaustively verify and audit such system.

This model also principally treats an information system as a progression of a

discrete set of valid system state (SS) transitions. It means that a secure system

boots from universally accepted genesis SS and only verified (certified) transactions

can stir consequent SS changes of the system. It implies that, under this model, an

information system is a sequence of dynamic states due to permitted transactions

(or invocations). A system state at time t is a snapshot of processes P, data D, and

system specific rules R. Securing an information system is the task of fulfilling the

desired security assurances for the dynamic set of states composing a system. The

major assumptions under this model are i) the correctness of P, D, and R, and ii)

the integrity of P, D, and R throughout the life an information system.

We identify two variants of a transaction-based state transition model for realizing

secure and trustworthy geospatial services. The first variant uses a minimal hardware

and software platform known as Trusted Computing Base (TCB) [44, 37, 33]. Another

variant ubiquitously called blockchain network (BN), is more scalable that facilitates

minimal verification of transactions in an information system. Under that model,

we execute an information system on top of a tamper resistant append-only ledger

(database) and distributed consensus protocol. The details of both models will be

discussed in Section 2.5.

A transaction-based state-transition model, when used in conjunction with an

attack model, amplifies the trust and security of an information system. More specif-

13

ically, in a transaction-based state-transition model, active approaches to secure com-

ponents can afford to focus entirely on a minimal TCB that validates state-transitions.

1.3 Research Contributions

The research is directed towards making the following contributions:

1. Securing GIS Data Assets: The first task is to examine and implement security
protocols build on transaction-based state transition models to secure GIS data
assets. This task includes organizing spatial data for the USA states, counties,
congressional districts, and even parcels in selected counties in specially defined
structures called Ordered Merkle trees (OMTs). Some useful properties of
OMTs are leveraged advantageously to implement secure, authoritative, and
unbiased GIS services.

2. Assured Point Location: Design and implement an efficient data storage frame-
work and state transition functions for the implementation of secure point loca-
tion algorithms. It includes the design of blockchain state transition functions
to securely manipulate secure GIS data, such as editing geographic boundary
maps; and other functions for responding point location queries.

3. Authoritative Geographic Delegation: Design and develop state transition func-
tions, and data storage framework, for geography-based delegation protocol to
enable authenticated, and unbiased geographic property delegation. For ex-
ample, such a protocol has utility in securely transferring ownership of land
parcels, and control over geo-tagged properties such as apartments, stores, gas
stations, etc.

4. A system state (SS) transition based protocol to select an optimal redistricting
plan among any number of plans based on trustworthy evaluation protocols
executed on a blockchain network.

1.4 Organization of the Dissertation

The rest of the dissertation is organized as follows: Chapter 2 discusses key con-

cepts in computational geometry, scholarship on classical point location algorithms,

useful concepts in cryptography, information security assurances, and some useful

14

cryptographic protocols. In the latter section of Chapter 2, we also outline two

important system security models that are foundational to the proposed research.

Chapter 3 details a trustworthy execution of the Shamos-Hoey algorithm for de-

tecting self-intersecting polygons, which is later used in a Secure Queryable Dynamic

Map (SQDM) protocol. The SQDM protocol has been elaborated in Chapter 4. As

an application of an SQDM protocol, a trustworthy geographic delegation protocol is

discussed in Chapter 5. Chapter 6 outlines a secure protocol for evaluating congres-

sional redistricting plans on a blockchain network. Conclusion is offered in Chapter

7

15

CHAPTER 2

BACKGROUND

Fools ignore complexity.
Pragmatists suffer it. Some can
avoid it. Geniuses remove it.

A Perils on Epigrams of
Programming

Modern computing is characterized by graphical user interfaces, simulating and

visualizing complex phenomena, and designing sophisticated systems. Computational

geometry has greater application in other similar applications, and it has taken leaps

and bounds in its development. Applications and services that rely on geographic

information also exploit data and algorithms that fall into the realm of computational

geometry. The field of robotics, aerial navigation, self-driving vehicular systems,

and aerodynamics are the emerging fields that have much more to use of it. From

abundant use cases of computational geometry, we choose the domain of geographic

information and relevant services for this dissertation. We view such services from

the security point of view. We propose and evaluate secure and trustworthy protocols

for securing such services.

The approach for securing an information system depends on what we “wanted

to secure.” The models used for security solely depends on the required security

assurances. For instance, active security measures focus on developing and deploying

16

tools to mitigate the threats on the confidentiality and integrity of a database system.

Whereas, passive security approaches such as “isolating database” form a broader

network that can be useful in other contexts. In this chapter, we introduce concepts

of planar geometry and algorithms that are relevant to this research. It is followed

by a discussion of algorithms for a planar polygon decomposition. This chapter also

introduces algorithms for a classical point location problem, which is fundamental

to this dissertation. In the midst of the chapter, we discuss some of the essential

cryptography primitives that will be useful in later chapters, and the final section

of this chapter elaborates two different information system security models that are

contextual to this research.

2.1 Preliminaries on 2D Geometry

The fundamental feature in representing a geometric feature in two dimensional

(2D) plane is a point feature. A point is a zero-dimensional representation of a relative

location of a minuscule object. All other two dimensional objects is an assemblage

of two or more point features. For instance, the two points, namely A and B, can be

connected to give a one-dimensional (1D) feature called a line segment (straight) or a

curve. Two dimensional (2D) polygons are closed by a set of line segments connected

at their endpoints [45, 18]. By Jordan Curve Theorem [45], a polygon divides a plane

into an interior, exterior, and boundary. An infinite length segment divides a plane

or a polygon into two planes/polygons.

17

By properties, polygons can be of different types. General classes of polygons are

1) regular polygons and 2) irregular polygons. The regular polygons are bounded by

equal-length segments that form a certain angle with adjoining line segments. For

example, pentagon, octagon are regular polygons. All the interior angles in regular

polygons are the same. The irregular polygons have no easy pattern in terms of

shape or structure. They have no consistent interior or exterior angles. In both of

the cases, the boundary is a sequence of line segments, not any curve. Other groups

of polygons are:

• Simple Polygons: A simple polygon is enclosed by a sequence of segments
that do not intersect other segments except the adjoining segments at their
endpoints. Some operations like triangulation are possible in simple polygons.
A simple polygon can be monotone or a non-monotone polygon.

• Intersecting Polygons : They are complex shaped polygon; the chain of the
boundary segments intersect at different positions. Other common types are of
polygons are convex, star-shaped polygons with holes, and so on. Figure 2.2
shows the structures of different types of polygons.

• Monotone Polygons: Formally, a polygon is monotone with respect to a line
segment L if NO line l′ perpendicular to L (l′ ⊥ L) intersects the chain of the
polygon at more than two points. If L is y-axis and a polygon P is monotone
with respect to L, then the polygon is called y-monotone. The x-monotone
polygon follows the reverse definition. A y-monotone polygon has:

– a top vertex, see vertex A in Figure 2.1.

– a bottom vertex, see vertex I in Figure 2.1.

– two y-monotone chains that form the complete boundary of the polygon.
In the same Figure, polygon ABC..LA is a y-monotone polygon with two
y-monotone chains ABCDEFGH and ALKJIH.

2.1.1 Polygon Decomposition

Any polygon can be partitioned into two or many constituting polygons. For in-

stance, two opposite vertices of a hexagon can be connected to construct two quadri-

18

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

L1

L2

Figure 2.1

A y-monotone polygon ABCDEFGHIJKLA with reference line L1.

(a) (b) (c) (d) (e)

Figure 2.2

Different polygon types. (a) is a self-intersecting polygon, (b) is a regular polygon
with six sides, (c) an outer polygon contains an inner polygon called hole, (d,e)

simple, irregular polygon)

19

laterals inside a hexagon. Similarly, two opposite pairs of vertices can be connected

to construct four non-overlapping triangles inside the polygon. This task of disinte-

grating a bigger polygon into smaller polygons, however, does not always produce an

applicable decomposition. We discuss some decompositions that are useful to solve

the point location problem in the following section.

• Monotone Polygon Decomposition: The process of dividing a simple poly-
gon into a set of non-overlapping monotone polygonal pieces is called monotone
polygon decomposition. Decomposing a simple polygon into a set of monotone
polygons. A monotone polygon can be optimally decomposed into more finer
polygons like a triangle. Algorithms such as sweep-line efficiently decompose a
simple polygon in O(nLogn) time and using up O(N) space.

• Polygon Triangulation: Filling a polygon by maximal non-overlapping pieces
of triangles is called a polygon triangulation. A set of non-intersecting diagonals
are inserted between suitable polygon vertices to insert triangles inside a poly-
gon. Such diagonals fall entirely inside the interior of the polygon. As different
sets of diagonals can be inserted to fill up the same polygon, triangulation is not
unique to a polygon. However, any triangulation is aimed to reduce complex
shapes to a collection of simpler triangles [24]. Some of the areas for application
of triangulation include 1) Visibility and resource optimization, graph coloring,
2) robotics and path planning, 3) generation, 4) point location, among others.

Every simple polygon can be decomposed into non-overlapping triangles. Al-
gorithms to triangulate a monotone polygon can run in O(nlogn)[24].

2.2 Classical Algorithms for Point Location Problem

The algorithms for solving classical point location problem use two fundamental

techniques: 1) Polygon Decomposition, and 2) Search. Having discussed fundamental

concepts on 2D polygons and 2D polygon decomposition techniques, let us discuss

on different classical point location algorithm for a polygon with n vertices.

1. Slab-Decomposition Method: It is a simple algorithm for the point location
problem. With this technique, we divide a polygon into vertical slabs whose
vertical sides passes through each of the vertexes of the polygon. To locate a
point, first, a vertical slab that contains the point is identified. Second, all the

20

segments that fall inside the segments are sorted in increasing y-ordinates of
the end-point. Finally, the region between the two segments, which encloses the
y-value of the query point, is identified as a solution. This algorithm has query
complexity of O(logN), and space complexity of O(n2). Sarnak and Tarjan
improved this technique to achieve O(n) space using a dynamic search tree
called persistent search tree [5].

2. Triangular Refinement Method: Point location by triangular refinement tech-
nique was invented by D.G Kirkpatrick in 1983 (as cited in [5]). In this method,
a simple polygon is repeatedly decomposed into non-overlapping triangles. This
means that finding a triangle that contains a query q(x, y) solves the point lo-
cation problem. A rooted search tree known as a directed acyclic graph (DAG)
is maintained, which helps to narrow the search for a triangle that contains the
query point. With this method, a query time of O(logN), space complexity of
O(n) is obtained.

3. Incremental Trapezoid Decomposition Method: It was developed by Mulmu-
ley [5]. In this method, a polygon is decomposed into non-overlapping O(N)
trapezoids with two parallel edges. However, a search tree DAG with expected
depth O(logN) is a trapezoidal map that is incrementally built up as a polygon
is decomposed into trapezoids. A top-down traversal in the DAG is made to
locate a leaf node (a trapezoid) containing the query point to solve a point
location problem.

4. Segment Tree Method: Dynamic point location allows the insertion and deletion
of vertices or edges to change the subdivisions. Algorithms for such problems
must optimize insert time, delete time, storage requirement, and query time.
Overmars [17] reported a method that uses O(nlogn) space and O(log2n) query
and update time. The method used a segment tree for storing the segments of
a map, and a collection of balanced trees, called boundary trees, representing
the boundaries of the regions of the map.

5. Chain Method: Fries and Mehlhorn [30], used an approach based on the static
chain method to create a data structure that has O(n) space, O(log2n) query
time and O(log4n) amortized update (insert and delete edges or isolated ver-
tices) time. Insertion only time is O(log2n). Tamassia and Preparata provide
two methods for a dynamic point location in monotone and convex subdivisions
[29, 51]. The first method [29] is for a monotone subdivision based on the chain
method [39]. The data structure requires O(n) space. The update operations
(insertion of monotone chains of edges and vertices on edges) can be performed
in O(logn), and O(log2n + k), k is a number of inserted/deleted edges. The
query time is O(logn). The second method is for convex subdivision based on
the trapezoid method. Their method achieved space O(N+nlogN), query time
O(logn + logN), and update time O(lognlogN), where N size of fixed set of
horizontal lines where each vertices lie.

21

2.3 Preliminaries on Cryptographic Algorithms

This section introduces the key concept of modern cryptography. During the

discussion, we follow useful notations and shorthands as: M is an n-bit message such

that M ∈ {0, 1}0, an encrypted version of a message M is denoted by C ∈ {0, 1}∗;

acronym PRF for a pseudo-random function; symbols '·' or '‖' between two

operands indicates concatenation operation of the operands; assume that Alice and

Bob are entities that communicate through an insecure channel; Eve is an adversary

who attempts to tamper or sniff the messages (data) that transfer between Alice and

Bob. The pronouns she refers to Alice, and he is used to refer to both Bob and Eve.

2.3.1 Security Assurances

Unlike the classical practice of cryptography, modern cryptography work is not

just about hiding information. It provides ways to construct advanced tools, and

strategies to achieve well -defined security goals or assurances [55]. In modern times,

computer systems consume large data storage, and data processing works. People

use a digital communication network to exchange information through a computer

network like the Internet. Both computer systems and a digital communication net-

work must provide information security requirements such as data privacy, integrity,

origin authorization, among others. Depending upon applications and services, other

security goals such as response completeness, and non-repudiation are also key secu-

rity requirements. An information system and a communication network must abide

by certain rules in processing data and in exchanging information between parties

22

(e.g., users, network-node, external process, etc.) to deliver specific security require-

ments. The set of rules that processing nodes (such as computer, services, routers,

switches) and communicating parties follow to meet the defined set of information

security requirements constitute a security protocol. The building blocks of a secu-

rity protocol consists of a set of cryptographic tools, underlying non-cryptographic

assumptions, and cryptographic protocols [55]. The underlying tools that confirm

certain relations about input and output can be termed constitute cryptographic pro-

tocols. Essential cryptographic protocols are provided by cryptographic primitives.

These non-cryptographic assumptions provides context to the input and output of

the cryptographic protocols. Before presenting details on cryptographic primitives,

let us elaborate on some of the critical security requirements of digital systems and

the communication as defined in [35, 42].

• Confidentiality: Let us assume that Bob and Alice exchange messages through
an insecure channel. The property of their message confidentiality means that
the content of messages that relay between Alice and Bob is not seen or known
by any third party (example, adversaries to Alice or Bob or both; public au-
dience, etc.). This property is synonymous with privacy or secrecy of com-
munication and storage of data. In other words, confidentiality affirms: ”The
content of data in storage or in the communication channel is known only by
the owners of the data.”

• Integrity: The property of data integrity also extends to the data in a storage
and the data in a communication channel. This property ensures that the orig-
inal data is not altered or tampered by unauthorized parties. To assure data
integrity, an authorized owner must have an ability to detect any unautho-
rized data modification (such as insertion, deletion , or substitution can alter
data)[42, 35].

• Authentication: Let us consider that Alice and Bob are communicating through
an insecure channel. Alice must ensure that she is indeed in communication
with Bob she knows, and no other entity is emulating Bob. The same applies
to Bob as well. Thus Alice must authenticate her destination entity before and

23

during her communication with Bob. The property of origin authentication al-
lows sender and receiver to identify each other before initiating communication.

• Completeness: Assume that Alice makes a query q to Bob. Alice expects to
receive a complete set of valid responses, r. However, Bob might malfunction
to send only a partial response to Alice’s query. The property of completeness
allows Alice to verify if she receives a complete set of valid responses from Bob.
For instance, a database range query must result in complete tuples inside the
query range.

• Non-repudiation: The property of non-repudiation ensures the identity of the
origin of information without leaving a chance to deny the act in the future. For
instance, if Alice repudiates sending a message to Bob, an independent third
party, possibly a judge in a court, must generate proof that affirms if Alice
indeed sent the message to Bob.

2.3.2 Digital Signature Schemes

A digital signature scheme of G, Sign(·)(·), Verify(·)(·) is a suite of three al-

gorithms that ensures three critical properties of message integrity, authentication,

and non-repudiation [32]. Let us suppose that Alice wants to disseminate a message

to Bob. Bob must be able to verify that the message comes from Alice. The digital

signature provides a credible system for the purpose.

1. G is a probabilistic polynomial-time key generation algorithm. Similar to G in
public-key cryptography, it establishes a private key KA

r and a public key KA
u

associated with the private key. Alice uses G to obtain a private key KA
r , and

a public key KA
u . Alice publishes her public to sign a message M she sends to

Bob.

2. Sign(·) is a signing algorithm. Alice computes a digital signature σA ← Sign(M,KA
r

). She then transmits (M , σA) to Bob (or other potential recipients.)

3. Verify(·)(·) a verification algorithm. Upon receiving (M ,σA) from Alice, Bob
uses algorithm {0, 1}1 ← Verify(M,σA) to verify the authenticity of M by
checking that σA is a legitimate signature on M with respect to the public key
KA

u .

24

Popular schemes for digital signature are RSA Digital Signature, ElGamel Digital

Signature, Elliptic Curve Digital Signature Algorithm (ECDSA), among other. How-

ever, GOST R 34.10-2012, ECDSA is a popularly used digital signature algorithm

with several merits over other algorithms.

Security Aspect of a digital signature: A digital signature is analog to a phys-

ical handwritten signature. It is a binding that represents a document to its signer.

Two properties of a digital signature ascend its high value. Firstly, nobody except a

document owner can sign the document. Secondly, anyone can verify the validity of

a signature, and associate a signature to its signer. It is similar to the MAC protocol.

However, it has more merits than MAC protocol. Unlike MAC, a digital signature

can be shared to multiple recipients without sharing a secret key. The digital signa-

ture scheme also provides a very important property of non-repudiation. It means

that once Alice signs and publicizes her public key, and then signs a message, she

cannot later deny that she sent. Digital signature algorithms are not expensive, and

it is infeasible to determine a private key KA
r , given the corresponding public key

KA
u . In this research, we will denote Alice’s signing a message M with her private

key KA
r by SignKA

r
(M), and Bob’s verifying a signature with corresponding public

key KB
u by VerifyKB

r
(M).

2.3.3 Cryptographic Hash Functions

A hash function is a one-way function, H, that maps an input string M of any

size to a fixed size value h, commonly called hash value or a digest for M . H is a

25

deterministic function that can efficiently compute a digest for an input string of any

size [55, 31]. Ideally, a cryptographic hash function must satisfy the following three

properties:

1. Collision resistance: Two messages m1 and m2 that map to the same hash-
value h = H(m1) = H(m2) identify a collision for a hash function. For a
collision-resistant hash function, it is hard to find a collision. Given d bit digest
h = H(m1) of a message m1 produced by hash function H; it takes 2d attempts
to find a pre-image m2 6= m1 such that h = H(m2). Thus it is impractical to
find collision resistance for a hash function H that produces a higher bit digest.

2. Pre-image resistance: Given a hash value h for a message m, it should be hard
enough to find other message m′ 6= m such that h = H(m′). The only way
to determine two colliding pre-images must be brute-force, where two random
messages m and m′ are chosen to verify (H(m) == H(m′)). For a function
H that outputs d bit digest (hash value), the minimum of 2d/2 brute-force
attempts are required to find the colliding pre-images. This property makes a
cryptographic hash function purely a one-way function. This property is also
known as the data hiding property of a hash function.

3. Second Pre-image resistance: Given an input message m1, it is computationally
infeasible to find a different input message m2 such that H(m1) = H(m2).
Given n-bit hash values, the time-bound for second pre-image resistance is 2n.
The functions that do not confirm this property are prone to the second pre-
image attack.

Cryptographic hash function has utility in many applications such as digital

signature and verification, message authentication codes (MACs), database search-

ing/indexing, data corruption detection, (integrity), error checking, duplicate file

identification, document time stamping, among others. Popular hash functions in-

cludes MD5SUM, SHA-1, RIPEMD-160,WHIRLPOOL, SHA-2, SHA-3, BLAKE2,

among others.

Security Aspect of hash functions: Let us consider that Alice wishes to check

the integrity of a large file she uploaded to cloud storage (e.g., Google Drive, Amazon,

26

Microsoft, etc.) A simple way she can do is to download the file locally and compare

it with the original file in her machine. This method obviously conflicts the purpose

of uploading files in the cloud. The collision-resistance property of a hash function

can solve Alice’s problem elegantly. The property allows one to safely assume that

a hash function produces a fixed-size digest h for an input message M . Alice can

compute and remember the hash value of her original document before she uploads

her document to the cloud. She can download the uploaded document and again

compute its digest. The two hash values can be compared if they match. This infers

that a message is uniquely related to its hash value. Moreover, knowledge of digest

h does not reveal an input message M . This property is useful in constructing a

commitment value for any message. For instance, assume that Alice sends a message

M and its digest d to Bob. On receiving a message M ′ and digest value d; Bob

computes his version of digest of the message and compares with Alice’s digest to be

confident that Alice committed to message M .

2.3.4 Hash accumulator

Given a hash function h(.) as defined in previous section, it can be applied in a

sequence to a list of growing values v0, v1, v2...vn. A hash accumulator αi for a hash

function h(.) applied sequence of i values in a given list is computed as:

α0 = v0, α1 = h(α0||v1), α2 = h(α1||v2), ...αn = h(αn−1||vn−1) (2.1)

27

The accumulated hash αi is a cryptographic commitment to all values in a sequence

v0, v1...vi. As discussed earlier, the property of a hash function h() ensures that

it is impractical to determine any sequence of values different from v0, v1, .., vi that

satisfies accumulated hash of αi. Bitcoin and Etherium ledger are suitable examples

of an accumulated hash. A sequence of blocks (containing multiple transactions) are

connected in a chain by using an accumulated hash, which is a commitment to all

previous blocks of transactions in the Bitcoin/Etherium ledger.

2.4 Data Structures

In this section, we discuss some of the data structures that are useful in most of

the secure protocols discussed as part of our researches.

2.4.1 Dictionary

A dictionary is an assemblage of key-value pairs, where keys are unique in face

value in a collection [11]. For example,

(2, 5), (4, 7), (456, 21), (5, 0), (32, 6)

is a collection of items in a dictionary where keys are: 2, 4, 456, 5, and 32; and values

are: 5, 7, 21, 0, 6. A dictionary entry (k, 0) with value 0 can be specially treated

as a placeholder entry. A dictionary such {(k0, 0), (k1, 0), .., (kn, 0)}, where all keys’

values set to zero, can be interpreted as a place holder dictionary. The value for

a specific dictionary key k can be modified at a later time, obeying some domain-

28

specific update rules. A sorted dictionary is a set {(k0, v0), (k1, v1), .., (kn, vn)}, where

keys k0, k1..kn are arranged according to temporal or numerical orders. It supports

the insertion or deletion of new entry (k′, v′) so that the dictionary always remains

sorted. In general, a dictionary D is a mapping {(k0, v0), (k1, v1), ..., (kn, vn)}, where

key ki is assigned to a value vi.

2.4.2 1D-Look-up-table (1D-LUT)

A one-dimensional Look-up-table (1D-LUT) is a collection of entries of the form

[k, kn, v][11]. The first element k is a key or index for which value is v, and kn is

key/index of the next following entry. However, all entries in an LUT collection

{[k0, k1, v0], [k1, k2], ..[kn, k0, vn]}

can be interpreted as a definition of a piecewise function f(k) over all k ∈ {k0, k1..kn}.

For example,

[5, 8, 256] [8, 13, 46] [13, 37, 0] [37, 45, 1234] [45, 5, 0]

is a 1D-LUT collection with key/index 5, 8, 13..45. The value of a function f(k) :

(5 ≤ k < 8) is v = 256; the value of function f(k) : 8 ≤ k < 13) is v = 46; and so on.

A collection is complete if a piece-wise function is also defined for an interval kn[, k0[,

where kn is maximum domain, and k0 is minimum domain value in the collection. A

value of such entry can be permanently set to 0, which implies that the functional

29

value of f(k) : kn < k; kn < k0 is undefined over that range.As the value of all keys

greater than 45; and all keys smaller than 5 is set to be 0, the above 1D-LUT is a

complete LUT.

[2, 9[[9, 22[[22, 2[[22, 2[

2 9 22(a)

(b)
y

[y, y[[y, y[

Figure 2.3

Intervals of a 1-D OMT collection with (a) 3 intervals/leaves and (b) 1 interval/leaf

Intuitively, a 1D LUT is a collection of intervals along a number line. Consider

a collection of items {[2, 9, u1], [9, 22, u2], [22, 2, φ]}. Together, the items represent

three intervals [2, 9[, [9, 22[and [22,2[in a number line as shown in Figure 2.3 (a).

The values u1, u2 and φ are the values associated with the intervals. Specifically,

these intervals define three different piece-wise functions u1 = f1(x) : 2 ≤ x < 9,

u1 = f2(x) : 2 ≤ x < 9; and u1 = f3(x) : 2 ≤ x < 9. We can notice the last interval

[22,2[which is a ’wrapped around’ interval that represents all the undefined values

exceeding 22 and less than 2. A complete collection must have one such interval.

An existing interval can be split into two to insert a new interval; and two adjoining

30

intervals can be merged if they satisfy certain conditions. In general, a complete LUT

L is an n-entry collection of the form:

{[k0, k1, v0], [k1, k2, v1], ..., [kj, kj+1, vj]...[kn, k0, 0]} (2.2)

However, a 1D-LUT can be interpreted as a simple dictionary collection with a linked

key for each key. In a dictionary definition of an entry (k, kn, v), the value v is

associated with unique point k on a number line, which will be followed by definition

of next point kn on the line. For instance, a dictionary interpretation of the entry

[5, 8, 256] in the above collection would be: A fixed point k = 56 on a number line is

associated with a value of 256, while the next point that follows it is kn = 8.

2.4.3 2D-Look-up-table (2D-LUT)

Similar to a 1D definition, an LUT can also be defined over a 2D space. It defines

a functional value over a uniform rectangular 2D-space bounded by xl on the left; xh

on the right (exclusive); yl on the bottom and yh on the top (exclusive). Syntactically,

it can be represented by a 5-tuple entry:

[xl, yl, xh, yh, v]

31

It can also be written as (xl, xr) × (yl, yh), v[, which is functional definition over a

rectangle (xl, xh)× (yl, yh). For example consider a collection, B, with three 2D-LUT

entries,

B = {[1, 1, 2, 2, R1], [1, 2, 2, 3, R2], [1, 3, 2, 1, R3], [2, 1, 1, 1, R0]}

It defines two piece-wise functions over two unit area rectangular regions (1, 2)×(1, 2),

and (1, 2)× (2, 3). The last entry [2, 1, 1, 1, R0] is a “wrap around” function definition

that completes definition over vertical column that extends before 1 and after 2 along

x-dimension.

x = 1 x = 2

y = 1

y = 2

y = 3

(1, 1, 2, 2, R1)
(1, 2, 2, 3, R2)
(1, 3, 2, 1, R3)
(2, 1, 1, 1, R0)

R1

R2

R3

R3

R0 R0

Figure 2.4

Rectangular regions represented by three 2D-LUT entries in B.

32

Intuitively, a value v for a 2D-LUT entry [xl, yl, yh, xh, v] represents value for every

point that falls in the region bounded by a rectangle (xl, xh)× (yl, yh). An entry such

as [x, y, x, y, v′] represents an entire 2D plane assigned a value v′.

2.4.4 Merkle Hash Tree

A Merkle (1987) hash tree [43] is a binary tree of hash values constructed on top

of data records in a collection. Consider a collection of records, C = {L0, L1, .., LN}.

A Merkle tree T for the collection C is constructed as firstly, apply cryptographic

hash functions to all N records in C to produce N hashes {v3
0, v

3
1...v

3
N} at level-3;

each of these hashes becomes leaf values in the tree T . These N hashes are paired

to produce N/2 hash pairs (vi, vi+1). Again, a cryptographic hash function is applied

to each of the pairs to produced N/4 parent hashes {v2
0 = h(v3

0, v
3
1), v2

1 = (v3
2, v

3
3), ...}

at level-2. This process is repeated until a single root value σ is produced at the top

level-0. The root value is called a cryptographic commitment to all the records in C.

Figure 2.5 describes the construction of an OMT for database records

{L0, L1, L2, L3..L7}

Mainly, a Merkle tree has utility in producing a single, succinct address to virtually

any number of data records. Any change in a data record can be detected by recon-

structing a root hash value to compare with the previously produced one. A Merkle

hash tree can produce two types of proofs about a record r in a collection:

33

1. proof of membership: Given a record L1, a minimal proof of membership that
L1 ∈ C can be efficiently produced using a Merkle tree. For example, as shown
in Figure 2.5 , to prove that L1 exists in C, it is sufficient to supply a verifi-
cation objects, VOs, containing hash values [v3

0, v
2
1, v

1
1]. The receiver computes

sequence of hash operations as: va = h(v3
0, v

3
1), and hence vb = h(va, v

2
1), and

ρ′ = h(vb, v
1
1) . If L3 ∈ C, then ρ = ρ′ must hold true. At the same time, one

can trust the integrity of the leaf L1 and its complementary values. Let fm be
a function that computes a sequence of hash operations on a verification object
VO〉 for a given input leaf node Li (data record), to produce a root value σ′. It
is given by:

ρ′ = fm(h(Li),VOi) (2.3)

From 2.3, the fact that fm(h(Li),VOi) produces root σ of a tree shows that
leaf Li and VOs must exist before the root σ was computed. Thus, VOLis is a
proof of membership of leaf record Li.

2. proof of integrity: If proof for (1) is established, then an integrity of record L
can be safely ascertained.

ρ

v1
0

v2
0

v3
0

L0

v3
1

L1

v2
1

v3
2

L2

v3
3

L3

v1
1

v2
2

v3
4

L4

v3
5

L5

v2
3

v3
6

L6

v3
7

L7

Figure 2.5

A binary hash tree with 8 leaves. For the data element L1, nodes on the path up to
the top ancestor are p = {L1, v

3
1, v

2
0, v

1
0} (dark filled). The values stored in the nodes

are the hash function of the values in the child nodes beneath one level. The sibling
nodes of the nodes on the path p form a set of complementary nodes

VOLi = {v3
0, v

2
1, v

1
1} (thick circled nodes), also called complementary hashes to

record L1.

34

Given N records in a collection, the height (number of levels) in a Merkle tree is

logN . The total number of hashes in the tree is (2N − 1) or (2logN+1 − 1); the size

of verification objects VOs is logN ; at most O(logN) hash operations are performed

to produce root of a Merkle tree given logN size verification object. For instance,

a Merkle tree with a billion records produces only 30 hash-values as VOs; 30 hash-

operations are required to reproduce a root of the tree to verify the existence of a

leaf record. A Merkle tree, however, does not support proof of non-membership in

a collection. However, different modifications of a Merkle tree such as an Ordered

Merkle tree permits to produce proof of non-membership of a record to a set.

2.4.5 Ordered Merkle Tree (OMT)

Similar to a general Merkle tree ,as cited by [44, 11], an OMT is a binary Merkle

hash tree whose leaf nodes are a collection of data items that are maintained in a

specific order. This means that the position of a data element in the tree is known.

The data elements can be typically ordered according to numerical ordering, lexico-

graphic ordering, and chronological ordering. Let C = {L0, L1, ...LN} be a collection

of data entries stored in leaf nodes of an OMT. Then, each leaf Li in an OMT can

take one of the 3 types of interpretations:

Interpretation Type 0: a simple dictionary entry (k, v) commonly denoted as
(k, v) with usual semantics discussed in section 2.4.1. It can also be commonly
denoted as (k, kn, v) or (k, v)kn with usual semantics discussed in section 2.4.2

Interpretation Type 2: an interval interpretation of 1D-LUT [k, kn, v], com-
monly denoted as [k, kn, v] or [k, v]kn with usual semantics in 1D discussed in
section 2.4.2

35

Interpretation Type 3: an interval interpretation of 2D-LUT [xl, yl, xh, yh, v],
commonly denoted as [xl, yl, xh, yh, v] or [xl, yl, v]xh,yh with usual semantics in
2D discussed in section 2.4.3

Altogether, every record key is unique in a collection, and all leaf nodes stores data

of a single leaf type. Since a collection in an OMT must be complete, there exists an

L(k′, k′n, 0) such that condition k′ > k′n identifies the lowest key k′n, and the highest

key k′. A singleton set C (cardinality |C| = 1) contains a lone leaf of any four types:

a Type I leaf (k, k, 0); a Type II leaf [k, k, 0]; and Type III leaf [xl, xl, yl, yl, 0]–with

usual interpretation.

Several permissible operations such as insertion of new leaf, updating the value

of an existing leaf, or deleting a leaf, checking enclosure, provided a dynamic state of

an OMT. The operations are performed using specific rules and verification protocol.

For instance, a leaf with key j can be inserted to an OMT only if no leaf such as

[j, kn, vj] currently exists in the OMT. It is performed by verifying proof of the non-

existence of such leaf. Actually, the proof for non-existence is a simple proof of the

existence of a leaf (i, in, vi) in the OMT such that:

• i ≤ j ≤ in; if in > i OR

• j < in ≤ i or in ≤ i ≤ j; if in ≤ i

For example, proof of the existence of (102, 120, v0) is a proof that a key-value

pair (102, v0), which also sufficiently proves that keys [103, 104...119] does not exist in

an OMT. Similarly, an existence of leaf such as (120, 102, v1) is proof that minimum

key in the collection is 120, and the maximum key is 102. A proof that key-value

(102, 102, v0) is proof of singleton item (with key 102) in the collection.

36

2.4.5.1 Prover-Verifier Protocol

In a two-party (prover-verifier) Merkle hash tree, an untrusted prover main-

tains a collection C of all N = 2d records; and a Merkle hash tree hash nodes

for the collection. To prove an existence of a leaf Lk : [k, kn, v] in an collection

C = {L0, L1, ..Lk, ...LN}; the prover supplies logN verification objects VOs produced

for the leaf Lk; the leaf Li to a potential verifier; and signed root ρ of the OMT for

C. The verifier computes a potential root value σ′ given by 2.3. An equivalence of σ

and σ′ would guarantee:

• existence of a leaf Li : [k, kn, v] in an OMT T ′ with dynamic root σ–which we
denote as [k, kn, v] ∈ T ′/σ or [k, v]kn ∈ T ′/σ or simply T ′/σ : [k, v]kn ;

• integrity of leaf [k, kn, v];

• integrity of logN verification objects VOs in an OMT T ′ with current root
σ–which we denote as VOLi ∈ T ′/σ.

Insertion and Deletion of a Leaf in an OMT

An insertion of a leaf node in an OMT is an iterative process. Initially an OMT

is considered to be an empty collection C = {}, with root of the OMT T ′ as σ = 0.

The first insertion occurs by inserting a leaf that defines first placeholder type II

leaf [k, k, 0], where k is an arbitrary key with an initial value of 0. All subsequent

new key-value pair (j, vj) (or new leaf [j, , vj]) can be inserted by taking the following

steps:

• verify that leaf [j, vj] /∈ T ′/σ;

• find an existing leaf Ls : [i, in, vi] such that

case-1: if i < in, i < j < in OR
case-2: if in < i; in ≤ i < j or j < in ≤ i

37

Intuitively, the new key j must be either enclosed by a split leaf, or fall/lie on
either exterminates of the existing OMT space.

• split Ls into two leafs Ll[i, j, vi] and Lr[j, in, vi] (a placeholder); in case of Type
I (dictionary interpretation) leaf, Lr is [j, in, 0]

• update placeholder leaf Lr as [j, in, vi → vj]

• update h(L) as: h(L) ← h(h(Ll), h(Lr); and update all ancestors of h(L) in
the OMT. The current root σ will be modified to σ′.

Example-1: Consider an OMT T with root value of σT and leaves of 1D-LUT

collection:

C ′ = {[21, 27, a], [27, 33, b], [33, 47, c], [47, 55, d], [55, 60, e], [60, 27, 0]} (2.4)

The existence of leaf [60, 70, 0] shows that collection C ′ is a complete 1D-LUT col-

lection, with the lowest key 27, and highest key 60. To insert a new key-value pair

(36, f) into the collection, the first we find and verify that an existing leaf that en-

closes new key 36 is Ls : [33, 47, d]. Secondly, we split Ls into two leaves: Ll[33, 36, d],

and Lr[36, 47, 0] (placeholder leaf). Thirdly, update leaf Lr’s value to 4 so that the

leaf becomes [36, 47, 0 → f]. Lastly, the hash value for original leaf Ls is updated

by hashes of two new child leaves, Ll and Lr: h(Ls) ← h(hLs , hLr). Finally, all the

ancestors of h(Ls) are updated by new hash values to update the old root σT of OMT

T to σ′T .

A similar suit follows for inserting Type I, and Type III leaf in an OMT for

collections of such types of leaf structures. By now, it is helpful to highlight the

significances of an OMT:

38

1. To produce a single content address for an unlimited number or size of records.
It is called Merkle Tree root hash, if signed by an owner, an integrity of under-
lying data records can be assured. Hence, OMT’s root facilitates to track the
records in a dynamic database of any size maintained by untrusted parties.

2. It can be used to produce proofs of integrity, existence, or non-existence of a
record in a data set. Any verifier can use the proofs to verify an assertion from
an untrusted server.

3. Incremental update to a leaf node in a Merkle tree can facilitate: i) updat-
ing an existing leaf L ← L′; ii) inserting a new leaf L′ to update h(L) ←
h(h(h(L), h(L′)); and iii) delete an existing leaf L′ to h(h(h(L), h(L′))← h(L).
All these operations must follow updating LogN hashes up the Merkle tree to
update an old root σ ← σ′. Hence it is evident that a Merkle tree can be used
to track the integrity of unlimited data records C.

Ordered Merkle tree or other derivatives of Merkle tree are the backbones of
distributed systems like Bitcoin, and BitTorrent, among others [12].

2.5 Information System Security Models

The security of an information system must be based on some fundamental

assumptions regarding a computing platform’s nature and operations. For instance,

it is assumed that in a general-purpose computing machine, its a temporary memory,

a central processing unit (CPU), and input/output channels are resistant to any

malicious attacks [44]. It is also assumed that any driver or system programs are

correctly implemented to produce an accurate output for an application program.

However, a litany of contemporary system failures and security breaches falter the

assumptions. It suggests that system security approaches must stretch beyond the

week assumptions. Of all passive security measures, a system integrity model based

on Trusted Computing Base (TCB) has been popularly investigated and used to cater

to the security requirements such as access control, privacy, and system integrity. A

39

TCB has been suggested to be essentially useful in securing systems with complex

parallelism, multi-threading, and connectivity [58].

2.5.1 Hardware-Based Trusted Computing Base (TCB)

Butler et al. [37] defined TCB as 'a small amount of software and hardware that

security depends on.' Trusted Computer System Evaluation Criteria (TCSEC), also

known as the Orange Book, recognizes TCB to have an ability “to enforce correctly

a unified security policy” for an information system [25]. The principal aim to have

a TCB with minimal hardware and software is to reduce the surface of malicious

attacks, and to minimize the probability of bugs or defective features [33]. A hardware

TCB is also viewed as a transparent computing module. It is reasonable because key

security assurances such as integrity and correctness can be verified and agreed upon

publicly. This implies that the computing platform’s strength and vulnerabilities can

be publicly assessed; its codebase can be exhaustively examined and audited. It is,

thus, anyone can place a higher level of trust in its operations and outputs. A TCB

has the following key features:

1. It operates on low complexity hardware.

2. It has a minimal write-proof and read-proof memory.

3. It has limited state registers that leverage for storing critical data elements such
as encryption and decryption keys, and private key(s).

4. The external sub-systems can invoke verifiable minimal operations (methods)
stored in a TCB for the sub-system. A TCB executes the operations only after
verifying pre-conditions defined for the invocation. The execution can result
in state changes, which can be certified by issuing certificates to the external
sub-systems. The TCB can optionally store the state change in its internal
registers to certify future method invocation.

40

Secure I/O

Endorsement
key

Storage Root
Key

Persistent
Memory

Random Number
generator

RSA Key
Generator

Hash Engine

Encryption/Decryption
Engine

Secure Processor

Platform
confirmation

Registers

Attestation
Identity Keys

Secure Storage

Non-Persistent
Memory

Figure 2.6

The general architecture of a TCB consists of i) Secure Processor, ii) Persistent
Memory of limited size, and iii) Non-persistent Memory with limited size. The
secure Input/Output channels facilitate communicating critical data with the

process outside the TCB.

41

The general architecture of a TCB is shown in Figure 2.6 As [67] posits, usage of

a TCB to amplify the security and reliability of a system comes with challenges of

minimizing its storage and computational requirements. It is, therefore, minimizing

a TCB for an information system that has been an emerging field of research in com-

puter science. Agencies like the National Institute of Science and Technology (NIST)

and the Department of Defense (DoD) recommended building a system confirming

the TCB requirements [25]. Microsoft Inc. has long been using its TCB architecture

to secure an operating system (OS) and the OS’s boot loader. Specifically, it uses

the module for access control and authentication. Doctorate level researches focus

on building secure systems based on TCBs [41].

2.5.2 Consensus-based Blockchain Network

A set of independent computing nodes in a distributed system can reach an agree-

ment on uniqueness and correctness of canonical initial state, S0, of an information

system I at time t0. An atomic state-transition function fi is invoked in a (an op-

tionally peer-to-peer) broadcast network to change the current state of the system

to a new state S1. The network nodes independently verify the validity of the in-

put transaction; and execute the function to produce an output. If not all, the

majority of them can again agree upon the correctness of the function’s final result

causing state change from S0 to S1. The new state S1 is added into an immutable,

append-only public ledger(record) B for consequent future state changes S2..Sn. In

this model, a single atomic function causes state change of an information system.

42

Thus a system can be considered as a sequence of valid, discrete state transitions.

The mechanism by which a distributed nodes concur upon state changes of a system

is a consensus protocol. The network protocol that uses an immutable ledger (also

called blockchain) is called a blockchain network (BN). Currently, blockchain network

protocols such as Bitcoin and Etherium are instances of consensus-based blockchain

networks [12, 58, 46]. They use Proof of Work (PoW) and Proof of Stake (PoS) to

reach a consensus on the integrity of process output. Let us explain more about this

infrastructure by an example. Consider Bob wishes to transfer some units of currency

to Alice living in other countries. Under the conventional system, Bob can use remit-

tance services such as Western Union or Paypal.com to transfer an amount x to Alice.

At this point, it is essential to understand why Bob has to use a remittance service for

transferring value across the country. The answer to this question lies in a principal

notion of trust. Both Bob and Alice put trust in a mediator like Western Union or

Payal. Both of their trust is due to the fact that the mediator grantee payment of

money to Alice. It also holds Bob’s and Alice’s accounts information centrally to

perform transaction verification such as: if x <= (
∑

Bob +c), where
∑

Bob is Bob’s

current account balance, and c is a small service charge. Several problems inherent

to this mode of value transfer process include

1. Existence of trusted third party authorities or intermediaries,

2. data centralization,

3. Higher service fees (given the minimal cost of Internet services), among others.

43

With blockchain network infrastructure [11, 46, 12], value transfer can be modeled

as a distributed, fail-safe service with minimal cost.

Let a process P be a miniature money transfer service that meets Bob’s pur-

pose. Bob’s account balance at a time t can be seen as a state St being stored in

a blockchain. To transfer a value of x to Alice’s account, Bob creates a transaction

message T : 〈t, Bob, Alice, x〉. The transaction T is broadcast over a broadcast net-

work that executes P . Upon receipt of T , certain nodes in the network work on to

verify if the transaction is a 'well-formed.' A well-formed transaction must sat-

isfy transaction validity conditions like: “It must be digitally signed by Bob,” and

“x <= (
∑

Bob +c) must be true.” When all or majority nodes reach a consensus upon

the validity of T , the transaction is stored in a decentralized, publicly verifiable ledger

B to complete the transaction. Upon completion of T , P ’s state progresses from cur-

rent state St to a globally accepted next state St+1. More generally, a blockchain

network for a process P comprises of m well-defined functions f1()...fn(); and a uni-

versally accepted initial state S0 stored in an immutable, publicly verifiable ledger

B. Execution of a function fi is triggered by a digitally signed transaction T j
i , which

is broadcast over a broadcast network at time tji . The network nodes interact with

each other before reaching a consensus on the validity of the transaction to commit

a transaction. A successful execution of function fi(T
j
i) causes the progression of

state from St to St+1. Figure 2.7 shows the transition of system states triggered by

transactions in a blockchain network.

44

S0

T0

S1

T1

S2

. . .

Tn−1

Sn

Figure 2.7

A process executed in a blockchain network is a sequence of state transitions. Each
state transition (e.g, Sn−1 → Sn) is initiated by an atomic operation called

transaction (e.g, Tn−1). A process, thus, in a blockchain network can be seen as a
sequence of committed transactions T0, T1, .., Tn−1, Tn

A blockchain network can be regarded as a universal, trusted platform [11]. The

integrity of a process P (f0, f1..fn) executed in the network is rooted in two assump-

tions: i) immutability of ledger entries, and ii) globally verifiable ledger. Because of

a consensus protocol, only globally accepted transaction entries are entered into a

blockchain ledger. Even if an invalid entry is made, it can be detected by some of the

participating network nodes. Thus, an information system in a blockchain network

can always be regarded as secure and trustworthy.

2.5.3 Consensus Protocols

Consensus protocol is a communication protocol by which a network selects a

non-faulty or non-malignant node to propose an output of a valid state initiated by

an input transaction [47]. Other network nodes verify the output to append it into

their local ledger. As shown in Figure 2.9, a node N1 executes a state transition

function fi(Tj); it purposes a value 40 for the transaction Tj. The peer nodes on

the network, N2, N3, and N4 verify the proposed output value; and if determined

45

0 0 44 0 44 55 0 44 55 55

()f1 T1 ()f2 T2 ()fn Tn

Consensus Protocol

Ledger Entries in a Blockchain

Figure 2.8

A blockchain network uses state transition functions to trigger the progression of
the system state.

valid, the output is stored to their local ledger B. Thus, the network always stores a

globally agreed-upon state of the system.

In general, a blockchain network involves two types of computing users (nodes)

[47]: 1) Incentivised users and 2) Passive users. Incentivised users are also commonly

known as miners in the current blockchain networks such as Bitcoin and Etherium.

They listen to the broadcast network for incoming transactions. Once they process

the received transactions and make a motion about an output of the transactions.

Other incentivized users can either accept or reject a motion depending upon their

own transaction output. In case multiple incentivized make different motions about

the final state of the system, a fork in block-chain occurs. Lightweight computing

nodes are the passive users of the blockchain network. They do not always participate

in the network but can check sporadically about the integrity of a transaction in times

of conflicting motions from different incentivized nodes.

46

()fi Tj

90

40

40

Verif y(40)

90

4040

update

Verif y(40)

90

40

40

update

Verif y(40)

90

40
40

update

append

N1

N2

N3

N4

Ledger

Figure 2.9

Blockchain Network uses consensus algorithms to create an immutable ledger called
blockchain or state log.

2.5.3.1 Proof of Work (PoW)

Under this protocol, miners in a blockchain network compete to solve a crypto-

graphic puzzle before one proposes a valid transaction(s) [46, 12, 58, 47, 11]. The

first miner to validate the transaction and solve a cryptographic puzzle gets a chance

to append the block to its local ledger. Other miners in the network sync their local

ledger to that of the first miner if they find the solution to the puzzle is correct for

the valid transaction(s). Forking of a blockchain can occur if miners comes with two

conflicting correct solutions. For example, miners M1 and M2 distant apart in a net-

work can independently solve a puzzle and verify a transaction block. In this case,

both miners append to local ledger their own version of the transactions causing a

47

fork in the blockchain. On solving a cryptographic puzzle, miners expend certain

computational power, which renders this protocol as an energy-inefficient protocol.

2.5.3.2 Proof of Stake (PoS)

In PoS protocol, each miner initially stake some amount of value incommensurate

to the value of a transaction. A group of such miners are chosen to validate a

transaction, which will be finally appended to a blockchain ledger. Upon making a

correct motion about the correctness of a transaction and the miners are rewarded

value in proportion to their stakes [47, 11]. However, if incorrect motion is made, the

miner loses the stake as a penalty.

2.5.4 Explicit and Implicit Process States and Forking

Every blockchain transaction can be seen as a well-defined step in the execution

of a process, resulting in a change in the process state. For example, a transaction to

transfer an amount x from a wallet A to a wallet B results in a change of remaining

balances in both wallets. In some blockchain networks like Bitcoin [46], process states

are not made explicit (ledger entries are merely transactions). Nevertheless, given the

complete ledger, anyone can run through all transactions to determine the current

state – viz., the remaining balance in every Bitcoin wallet. On the other hand, in the

Etherium blockchain network, process (smart-contract) states are also made explicit.

Specifically, smart-contract data are captured as a set of key-value pairs. A succinct

cryptographic commitment to all key-value pairs, following every transaction, is ex-

plicitly specified in every ledger entry. The main advantage of explicit states is that

48

they act as convenient checkpoints after every transaction. Consider a scenario where

there is universal consensus on state ξn after the nth transaction Tn; assume that the

(n+1)th transaction Tn+1 results in conflicting motions (like ξ1
n+1, ξ

2
n+1, . . ., etc.,) from

different incentivized users. To resolve the correct fork, regular users merely have to

determine, that given consensus on ξn, i) if Tn+1 is well-formed, and if so, ii) How

does Tn+1 affect the state ξn (to change state to ξn+1). The easier it is for users to

verify the correctness of any transaction selectively, the riskier it is for incentivized

users to make (deliberate or otherwise) incorrect motions.

2.5.5 A Hardware TCB versus Blockchain Network

The information system security model investigated in this dissertation uses Blockchain

Network as a chief trustworthy process execution model. However, it is desired to

note the rationale of opting out TCB. Trusted Computing Base is by design a hard-

ware intensive solution. Ideally, TCB design require tamper-proof and read/write

proof hardware. These requirements are challenging to realize and can cause higher

costs. In addition, a TCB by design has low complexity hardware and software, which

makes it almost impossible to handle higher throughput and performance. On the

other hand, a blockchain network can be explained as a Null TCB computing plat-

form with scalable performance and reliability. Any computing nodes in a blockchain

network can join and participate in executing and verifying process outputs. The

design principle of a blockchain network is that the integrity of the process is guar-

anteed because at least some computing node behave honestly. Nonetheless, unlike

49

TCB, as a ledger is publicly shared by computing nodes, the issue of confidentiality is

not addressed by a blockchain network [47]. Nevertheless, several models of private

blockchain networks can provide the requirement of privacy. The most significant

merit of a blockchain network is the distribution of data and processes. It benefits by

evading the problem of a single point of failure, and data centralization [47]. In the

following Chapter, we discuss a trustworthy method for identifying simple polygons.

50

CHAPTER 3

TRUSTWORTHY EXECUTION OF SHAMOS-HOEY ALGORITHM FOR

DETECTING A SIMPLE POLYGON

We can only see a short distance
ahead, but we can see plenty there
that needs to be done..

Alan Turing, 1950

3.1 Introduction

A polygon is a closed figure bounded by a series of boundary line segments on

a two-dimensional (2D) plane. A polygon is non-intersecting (or simple) if no two

non-adjacent boundary segments on it intersect each other. Several algorithms exist

for detecting a simple polygon. For a polygon with N segments (sides/line-segments),

a naive algorithm works by testing at most N ∗ (N − 1) unique pairs for intersection.

Among other efficient algorithms, two different algorithms by Shamos and Hoey [62],

and Bentley and Ottomon [7] are popular ones with a reasonable time complexity of

O(NlogN).

Given a 2D polygon, a trustworthy execution of simplified Shamo-Hoey algo-

rithm is a protocol which safely attest if a sequence of connecting vertices form a

non-intersecting polygon. A trustworthy execution of an algorithm is intended to

51

minimize a Trusted Computing Base (TCB) for the algorithm. Minimizing a TCB

means that every operation in it can be verified with minimal size(number) proof

objects. At the termination, a trustworthy execution of Shamos-Hoey certifies if a

given sequence of points (segments) constructs a simple polygon; however, it does

not report intersection point(s).

3.2 Shamos-Hoey Algorithm

Shamos-Hoey algorithm is a sweep-line algorithm that processes a queue of lex-

icographically ordered (by x-values, and y-values) vertices of a polygon. At every

left vertex (xi, yi)l, the corresponding segment (current segment) is inserted in a

self-sorting structure called an active-event tree. The active-event tree maintains

the sorted order of segments by the y-value of the intersection of the existing seg-

ments and vertical line through the xi. A segment that is just above the current

segment; and another segment just below the current segment from the active-event

tree are determined. If either of the segment intersects with current segment, then

the algorithm reports detection of intersection. At every right vertex (xi, yi)r, the

corresponding segment (current segment) is looked up in the active-segment tree to

find segments SA and SB just above and below the current segment. An intersection

between SA and SB is checked as if an intersection is found. The algorithm returns

immediately; otherwise, the process is repeated for the next vertex in the queue.

Following outlines a simplified generic Shamos-Hoey algorithm [62] for detecting

a simple polygon.

52

Algorithm 1: Shamos and Hoey Algorithm [62]

Input : Set of vertices S = {S0, S1..SN} in a N sided-polygon; Si connects

left vertex Pi(x, y) and right vertex Pi+1(x, y)

Output: TRUE if any non-adjacent segment Si(Pi, Pi+1) and Sk(Pk, Pk+1)

intersects

1 ξ = {ei←Event(Si · Pi), ej←Event(Si · Pi+1)} ; // Event object ei

stores Pi, and segment Si

2 ξ = SORT(ξ) ; // Sort by event’s Pi · x-values and Pi · y-values.
3 T = {} ; // T is self height-balancing binary tree of Segments in

S, sorted by key:S · y

4 for i:=1 UNTIL 2N do

5 P := ξ[i] · P ; // vertex for this event ξ[i]

6 S := ξ[i] · S ; // Segment for this event ξ[i]

7 if P is the Left Vertex of S then

8 INSERT(S, T) ; // insert S into T

9 A:=Above(S, T) ; // A, Segment just above S in T

10 B:=Below(S,T) ; // B, Segment just below S in T

11 if Intersect(S,A) then

12 RETURN TRUE

13 end

14 if Intersect(S,B) then

15 RETURN TRUE

16 end

17 else

18 if P is the Right Vertex of S then

19 A:=Above(S, T);

20 B:=Below(S,T);

21 if Intersect(A,B) then

22 RETURN TRUE

23 end

24 DELETE(S, T) ; // Removes segment S from T

25 end

26 end

27 end

28 RETURN FALSE

In this section, we use the following set of symbols and operations to discuss a a

trustworthy execution of a simplified Shamos-Hoey algorithm.

• Operator ':=' is for a variable assignment, '=' compares two variables, '←'
is sets a value to a variable.

• h ← H(v) is a collision-resistant hash function that takes an input value v to
produce a fixed-size digest string h.

53

• UDIs is an acronym for Unconstrained Data Items, which is a set of data input
to a process. They are part of a transaction that trigger state transitions of
a process. Preconditions are a set of statements that must be verified against
UDIs of a transaction before executing a transaction or a procedure. Post-
conditions are the set of operations that must be executed for a procedure to
fix a state change of a system triggered by a transaction.

In the following section, we discuss operations of a trustworthy execution of the

simplified Shamos-Hoey algorithm.

3.3 Trustworthy Execution of Simplified Shamos-Hoey Algorithm

Let P be a polygon bounded by a counter-clockwise ordered segments, S =

{s0, s1, s2, ..., sn}. Each segment si ∈ S is a geometry in 2-dimensional plane con-

necting two distinct points A(x1, y1), and B(x2, y2) such that A is left endpoint and

B is the right endpoint satisfying if x1 6= x2, x1 < x2 and if x1 = x2, y1 < y2. A seg-

ments s connecting two points (x1, y1) and (x2, y2), and other segment s′ connecting

two distinct points (x′1, y
′
1) and (x′2, y

′
2) can be expressed using a parametric equation

as:

Ls =

x1

y1

+ t

x2 − x1

y2 − y1

 , L′s =

x′1
y′1

+ u

x′2 − x′1
y′2 − y′1

 (3.1)

Solving equations Ls, and L′s we get scalar values t and u as:

t =
(x1 − x′1)(y′1 − y′2)− (y1 − y′1)(x′1 − x′2)

(x1 − x2)(y′1 − y′2)− (y1 − y2)(x′1 − x′2)

u = −(x1 − x2)(y1 − y′1)− (y1 − y2)(x1 − x′1)

(x1 − x2)(y′1 − y′2)− (y1 − y2)(x′1 − x′2)

(3.2)

54

s and s′ intersects on the lines between two points if 0 ≤ t ≤ 1.0 and 0 ≤ u ≤ 1.0.

A merit of this formulation is that the conditions can be tested without actually

dividing the numerator by the denominator, which is a determinant of four points.

Thus permits faster determination of existence of any intersection before computing

actual intersection point [23].

A trustworthy execution of a simplified Shamos-Hoey algorithm is a protocol

stack of three major sub-processes, which are executed in sequence following stricter

preconditions and postconditions.

1. The first sub-process P1 takes a series of segments in a 2D polygon P =
{s0, s1, ...sn} to construct a special structure called segment tree TS, which
is an OMT with a static (computed only once) root σS. Each segment connect-
ing two endpoints (x1, y1) and (x2, y3) is stored as 3-tuple (k, kn, v) leaf node in
the tree. The key k is the segment’s positional index (ID) when segments are
ordered in a counter-clockwise (CCW); and value v is the segment’s endpoint
(x1, y1, x2, y2); and kn is the index of succeeding segment. The rationale behind
building an OMT for the input segments is that the leaf nodes are automati-
cally ordered by node’s key value k. It is also useful to look-up entry with the
lowest and the highest key among the leaves of an OMT.

2. The second sub-process P2 takes a series of segments from a segment tree TS to
construct an event tree TE, which is an OMT with a dynamic Merkle root σE.
To each segment in TS, the left endpoint (x1, y1) is inserted as an ESTART event
leaf node of the tree; and right endpoint (x2, y2) inserted as an ESTOP event leaf
node of the tree. Each ESTART leaf node is a 3-tuple entry (α, αn, v), where
α is x-value of an endpoint (x1, y1); and v is 5-tuple (x1, y1, x2, y2,ESTART)
containing segment’s endpoints, and event type ESTART; αn is the next higher
event entry in the tree. Similarly, an ESTOP leaf node is also stored as (α, αn, v)
for a right endpoint (x2, y2); where α = x2, and v = (x1, y1, x2, y2,ESTOP). All
leaf nodes in an event tree together is a collection of vertices in the polygon
extracted out of a segment tree TS. The vertices are lexicographically ordered
by x-ordinates from left to right on the plane. This tree also supports query
for a leaf node entry with the lowest key and the highest key.

3. The third sub-process P3 extract events from an event-tree TE in the or-
der of their occurrence, to construct an active segment tree TA, which is an
OMT with a dynamic Merkle root σE. If an input event e : (α, αn, v =

55

(x1, y1, x2, y2, {ESTART,ESTOP})) is of type ESTART; this event is entered
as an ’active-event’ leaf node of TA. Each leaf node is a 3-tuple (γ, γn, v) entry,
where γ is y-value (y1) of the left endpoint of the segment in the event e; γn is
the next higher leaf node in this tree. If an input event e is of type ESTART; a
segment corresponding to this event is looked up into the active-event tree TA
to determine the intersection between segments.

1, 2, AB 2, 3, BC 3, 4, CD 4,5, DE 5,6, EF 6,1, FA

��

Ax, {sAB, sAF} Fx,{eAF,sFE} Ex, {eFE,sED} Cx, {eBC,eDC}

��

1 2

3

45

6

A

B

C

D

E

F

Event Tree

Segment Tree ��

Active
Events
Tree

��

Figure 3.1

OMT structures in a trustworthy execution of the simplified Shamos-Hoey
Algorithm.

Figure 3.1 shows simplified structures that support a trustworthy execution of the

Shamos-Hoey algorithm for attesting (authorizing) a simple polygon. For simplicity,

we assume following cases regarding vertices of a given polygon P {s0, s1, s2, ..., sn}:

1. Segments s0, s1..sn are in counter-clockwise ordering in the polygon.

2. No two vertices in vertex sequence v0, v1..vn of the polygon share common X
and Y projection. We can always relax this restriction by protruding aligned

56

vertex by infinitely small change in both X and Y to produce uniqueness in X
and Y-ordinates.

In what follows, we describe each of the sub-processes P1..P3 in details:

3.3.1 Sub-Process P1

The first sub-process starts with an empty OMT known as a segment tree TS,

with initial root value σS. The process P1 executes on by taking a counter-clockwise

ordered segments S = {s0, s1, ..sn} of an input polygon P with n-sides. Each of

the input segment si ∈ S is processed in that order to construct a segment tree TS,

whose leaf nodes store information about the endpoints of the segment. Let an ith

input segment si ∈ S connects two distinct endpoints (x1, y1) and x2, y2). It is added

(inserted) as a leaf node in the segment tree TS. Each leaf node in the tree is a 3-tuple

entry of the form:

(k := i, kn : j, v := (x1, y1, x2, y2))

where, j is the index of the next higher order segment. An OMT insertion protocol

is followed to insert an item into the segment tree. After each insertion, the current

root σS ∈ TS is updated to reflect a change in the tree. After inserting nth segment

in P = {s0, s1, ...si...sn}; the leaf nodes (entries) of the segment tree is a collection:

{(k := 0, kn : 1, v := (x1, y1, x2, y2)s0), ...(k := n, kn : 0, v := (x1, y1, x2, y2)sn)}

57

The root of value is σS is a single commitment to all leaf nodes in the tree, which

are sides(segments) of an input polygon object. The utility of a segment tree TS is

that its root value σS is signed and published by an untrusted source/directory; and

a prover can verify membership of a segment in an input segments S = {s0, s1, ...sn}.

All that is needed to verify the existence of a leaf Li is a verification object VOi,

which is a set of complementary nodes (hashes) for the leaf node. The protocol for

such verification is explained in section 2.4.5.

3.3.2 Sub-Process P2

The sub-process P2 starts after completion of P1 that constructs a segment tree

TS. The process bootstraps by initializing an empty OMT tree called event tree

TE, with an initial root value of σE. Inputs to process P2 are the segments from an

ordered sequence segments in a segment tree TS and a signed root σS built by process

P1. It processes leaf nodes in a segment tree one by one, beginning from lowest key

entry; and expecting next higher key entry in the segment tree. Upon receipt of an ith

segment entry (i, j, v := (x1, y1, x2, y2))si corresponding to a segment si, the process

P2 executes AddEvent procedure to insert two leaf nodes into the event tree TE.

The left endpoint A(x1, y1) is inserted as a start event leaf node, ESTART; while the

right endpoint B(x2, y2) is inserted as an ESTOP event leaf node. More specifically,

58

for each left endpoint A(x1, y1) of a segment si, a leaf node/entry LE
i represents an

START event in tree TE is defined as:

(α := x1, αn, v := {x1, y1, x2, y2,ESTART}) (3.3)

,where, the key is α = x1; αn is the next higher key to this leaf; value v is a dictionary

containing segment’s endpoints and event type ESTART. Similarly, for the right

endpoint B(x2, y2) of the segment si, a leaf structure LE
i represents a STOP event in

TE is defined as:

(α := x2, αn, v := {x1, y1, x2, y2,ESTOP}) (3.4)

, where key is α = x2; αn is the next higher key to this leaf; value v is a dictionary

containing segment’s endpoints and event type ESTOP.

Insertion of a new endpoint A(x′, y′) for a new segment s′ is performed as follows:

• if a leaf node LE with key α = x′ exists in TE, then value v is updated by
5-tuple t:

t =

{
(x′, y′, x2, y2,ESTART), if A(x′, y′) is left endpoint of s′

(x1, y1, x
′, y′,ESTOP) otherwise

• otherwise, new entry is inserted is:

LE
s′ =

{
(α = x′, αn, v := {x′, y′, x2, y2,ESTART}), if A(x′, y′) is left endpoint ofs′

(α = x′, αn, v := {x1, y1, x′, y′,ESTOP}) otherwise

Every insertion or update of the items in an event tree TE causes an update of

the root value σE to reflect the change. The process can be algorithmically expressed

as in Table 3.3.2.

59

Table 3.1

Formal description of the trustworthy execution of the modified Shamos-Hoey
Algorithm with preconditions and postconditions for the sub-process P2.

Operation AddEvent

// endpoints of a segment are added as events to an event tree TE .

UDIs:

(xi, yi, xj , yj , TS/σ̂S , TE/σE)

//endpoints of a segment si, reference to TS , and TE ;

//this module will find the EventType for each endpoint

Preconditions:

ESTART← 0; ESTOP← 1

ks ← H(xi, yi, xj , yj); vs ← (xi, yi, xj , yj); // compute index/key, value

(ks, vs) ∈ TS/σ̂S //segment exists in a segment tree

// left endpoint @xi–right endpoint @xj

xi < xj : EventType1← ESTART

if(xi = xj and yi < yj) : EventType1← ESTART

else :RETURN

EventType2← ESTOP

eki ← xi; evi ← (xi · yi · xj · yj · EventType1); // first event

[eki, evi] /∈ TE/σE //event does not exist in event tree

ekj ← xj ; evj ← (xi · yi · xj · yj · EventType2); // second event

[ekj , evj] /∈ TE/σE //event does not exist in event tree.

Postconditions:

TE/σE ← InsertLeaf({eki, evi}); // new leaf node into event tree, and update its root.

TE/σE ← InsertLeaf({ekj , evj});

//delete a segment from segment tree and update MT root.

TS/σ̂S ← DelLeaf({ks, vs ← 0});

60

Preconditions for inserting a segment si : A(xi, yi)−B(xj, yj) into an event OMT

TE is that the segment-

i) exist in the segment tree TS. Given a segment’s endpoints as UDIs to this pro-
cess, it is implicit that verification objects VO for the existence of the segment
in TS is passed along with the UDIs, and

ii) does not exist in the event tree TE. It is also in implicit that verification objects
VO for the non-existence in TE is passed along with the UDIs.

Once the preconditions are verified, events are inserted in an event tree TE; and

ultimately, the segment is deleted from segment tree TS. The Merkle roots of both

OMT trees are updated to reflect the insertion and deletion of leaf nodes. This

process terminates by ensuring all segments in TS have been added as events in the

event tree TE, leading segment tree TS to be empty. On termination, this process

constructs an OMT tree whose leaf nodes represent the sorted events for an array of

endpoints of the segments in an input polygon. Listed below are interfaces of two

simple operations invoked.

• AddEvent(TE, σE, xi, yi, xj, yj); is an operation that adds two new events into
an event tree TE, with current root σE.

• DelEvent(α : x′, v′ = (x1, y1, x2, y2, {ESTART,ESTOP})); is an operation
that updates value v of an existing event entry LE ∈ TE defined as:

LE : (α = x′, αn, v = (x1, y1, x2, y2, {ESTART,ESTOP}))

such that if v′ = v, v → 0.

3.3.3 Sub-Process P3

The third sub-process P3 starts after completion of P2. It bootstraps by initial-

izing an empty OMT called an active event tree T A, with an initial root σA. It

61

processes events LE
i in order starting from the lowest key event leaf LE

0 and expects

next higher event leaf in event tree TE. Each of the event leaf LE
i ∈ TE, as expressed

by (3.3), is an entry

(α0 = x1, αn, v = (x1, y1, x2, y2, {ESTART,ESTOP}, x′1, y′1, x′2, y′2, {ESTART,ESTOP}))

where, the first 5-tuple (x1, y1, x2, y2, {ESTART,ESTOP}) represents an event for

a segment s and second 5-tuple (x′1, y
′
1, x
′
2, y
′
2, {ESTART,ESTOP}) represents an event

for second segment s′ where s and s′ are adjacent segments in a polygon sharing of

one the vertices (x1, y1).

Thus this process operates on two events encoded into a node of an event tree.

The first type of event is an ESTART event and the second type is an ESTOP event.

If LE
i is an event type START for a segment si, the following operations are

performed:

• insert a leaf LA
i for the segment si : (x1, y1, x2, y2) ∈ LE

i into an active event
OMT TA. A leaf entry LA

i is defined as:

(γ : y1, γn, v := (x1, y1, x2, y2)),

where, γn is the next higher key for an event.

• search in TA a leaf LA
bel just below current leaf LA

i . LA
bel contains a segment sbel,

which falls just below the segment si;

• search in TA a leaf LA
abv just above current leaf LA

i . LA
abv contains a segment

sabv, which is just below the segment si.

• return True if segment si intersects with either si or sabv); otherwise, accept
next higher event leaf

62

If LE
i is an event type ESTOP that contains segment si, the following operations

are performed:

• search in TA a leaf LA
bel just below current leaf LA

i . LA
bel contains a segment sbel

, which falls just below the segment si;

• search in TA a leaf LA
abv just above current leaf LA

i . LA
abv contains a segment

sabv which is just below the segment si.

• return True if segment sabv intersects with segment sbel.

• delete leaf LA
i containing segment si : (x1, y1, x2, y2) ∈ LE

i into an active event
OMT TA.

Algorithmically this process is explained in Table 3.3.3.

The first pre-condition to bootstrap this process P3 is an event with minimum key

in TE. This event must be verified against the minimum key in TE. It keeps track of

the next event expected in a register 'rmin' set to it by the next key index (αn) of

a current event. Register rmax is used to keep track of the last event leaf expected

when the process will terminate.

The other two preconditions verify that sabv is above the current segment si :

(xi, yi, xj, yj), and sbel is below segment si : (xi, yi, xj, yj) of an input event. It is

implicit that verification objects VO for these verifications are supplied along with

UDIs. Listed below are the operation definitions of required operations.

• sabv ← AboveActSeg(xi, yi, xj, yj); returns an active segment just above the
current segment whose leaf index is yi in TA. In case no segment exists above
the given segment, a Null is returned.

• sbel ← BelActSeg(xi, yi, xj, yj); returns an active segment just below the
current segment whose index is yi in collection whose OMT is TA. In case no
segment exists above the given segment, a Null is returned.

• {TRUE,FALSE} ← VerifyAbvSeg(si : xi, yi, xj, yj, sabv = {(x′i, y′i, x′j, y′j), Null})
returns TRUE if current seg scur in TA is above the given segment sabv in TA.

63

Table 3.2

Formal description of the trustworthy execution of the modified Shamos-Hoey
Algorithm with preconditions and postconditions for the sub-process P3

Operation: ProcessEvent // Process each event in the Event Tree in order.
UDIs:
(xi, yi, xj, yj,EventType, σE,TE)// current segment from event tree TE
(x′i , y

′
i , x

′
j, y

′
j ,TA) //segment below current segment in active event tree TA

(x′′i , y
′′
i , x

′′
j , y

′′
j ,TA)/ segment above current segment in active event tree TA

Preconditions:
// initialize registers
ESTART← 0; ESTOP← 1; rmin← 0; rmax← 0
eki ← xi; vi ← H(xi · yi · xj · yj · EventType)
curSeg← (xi, yi, xj, yj)
rmin = 0 :

rmin← OmtMinKey(TE);
rmax← OmtMaxKey(TE)

ELSE : CONTINUTE
rmin = eki :

rmin← NextKey(eki);
ELSE : RETURN
[eki, vi] ∈ TE/σS //event exists in event tree
TS/σ̂S = 0 //segment tree root value is 0
segAbv← AboveActSeg(TA, xi, yi, xj, yj)
segBel← BelActSeg(TA, xi, yi, xj, yj)
VerifyAbvSeg(scur, segAbv)
VerifyBelSeg(scur, segBel)

Postconditions:
EventType = ESTART :
aki = yi
AddActSeg(TA, xi, yi, xj, yj)
rmin← OmtMinKey(TE);
tmp← Intersect(curSeg, segAbv);
tmp = TRUE :

RETURN tmp
tmp← Intersect(curSeg, segBel);
tmp = TRUE :

RETURN tmp
ELSE :

TA/σA ← DelActSeg([aku, vi])
RETURN← Intersect(segAbv, segBel);
tmp = TRUE :

RETURN tmp
rmin← OmtMinKey(TE); //Update register
TE/σE ← DeleteEvent(eki)

64

If sabv is Null, then verification leading to the non-existence of such a segment
must be performed.

Let scur be a denoted by a leaf node [keycur, keycur−next, si] ∈ TA Let sabv be a de-
noted by a leaf node [keyabv, keyabv−next, sabv] ∈ TA. if keycur−next = keyabv−next
then, the sabv is above si.

• {TRUE,FALSE} ← VerifyBelSeg(si : xi, yi, xj, yj, sbel : x′i, y
′
i, x
′
j, y
′
j) re-

turns TRUE if current segment si in TA is below the given segment sbel in TA.
If sbel is Null, then verification leading to the non-existence of such a segment
must be performed.

• AddActSeg(TA, xi, yi, xj, yj); is an operation that adds a new event in an
event collection CA whose OMT is TA.

• DelActSeg(index : xi, xi, yi, xj, yj, EventType); is an operation that removes
an existing active segment in an active segment tree TA.

• {TRUE,FALSE} ← VerifyNonAdjacent(segi : (, , ,), segj : (, , ,)) re-
turns True:if segi and segj are not adjoining segments of a polygon P .

There are two major postconditions in this sub-process that must be verified.

i) If an input event is a start event, it is added as a leaf node into an active segment
tree TA. This event’s segment si is tested Intersection with two segments in an
event tree: 1) segment sabv just above si, and 2) segment sbel just below si. If
an intersection is found, then this process immediately terminates; otherwise,
the process expects the new events to process.

ii) If an input event is a stop event, it tests Intersection between sabv and sbel seg-
ments. If an intersection exists, then the process exits immediately; otherwise,
the process deletes the processed event from the event tree, expecting the next
higher event to process.

The algorithmic description of Intersection operation with preconditions and

postconditions is listed in Table 3.3. It determines if an intersection exists between

to segments s and s′ using an efficient method expressed in 3.2.

65

Table 3.3

Formal description of the trustworthy execution of the modified Shamos-Hoey
Algorithm with preconditions and postconditions for Intersection Procedure.

Operation Intersection

// Returns intersection point of two segments s and s′

UDIs:

s : (xi, yi, xj, yj)// first segment

s′ : (x′i , y
′
i , x

′
j, y

′
j) // second segment

Preconditions:

xi < xj //segment is ordered in increasing x-value

VerifyNonAdjacent(s,s’) //Simple polygions have adjacent segments intersect at an end-point.

Postconditions:

// (x′, y′) left of seg (xi, yi)− (xj , yj)

// > 0 for left, 0 for on, and < 0 for right of the line

Function : IsLeft(xi,yi,xj,yj,x
′,y′)

Return : isleft← (xj − xi) ∗ (y′ − yi)− (x′ − xi) ∗ (yj − yi)

// Return the intersecion point (x,y)

Function : IntersectionPoint(xi,yi,xj,yj,x
′
i,y

′
i,x

′
j,y

′
j)

a1 = yj − yi; b1 = xi − xj ; c1 = a1 ∗ xi + b1 ∗ yi
a2 = y′j − y′i; b2 = x′i − x′j ; c2 = a1 ∗ x′i + b1 ∗ y′i
d = a1 ∗ b2− a2 ∗ b1
x = b2 ∗ c1− b1 ∗ c2
y = a1 ∗ c2− a2 ∗ c1
Return : (x, y)

islefti = IsLeft(xi, yi, xj, yj, x
′
i , y

′
i)

isleftj = IsLeft(xi, yi, xj, yj, x
′
j, y

′
j)

isleftk = IsLeft(x′i , y
′
i , x

′
j, y

′
j , xi, yi)

isleftl = IsLeft(x′i , y
′
i , x

′
j, y

′
j , xj, yj)

AssertGt(islefti × isleftj, 0) :

Return : FALSE

AssertGt(isleftk × isleftl, 0) :

Return : FALSE

RETURN TRUE, IntersectionPoint(s, s′)

66

3.4 Related Works, Applications and Conclusion

A trustworthy execution of the Shamos-Hoey algorithm is a subsidiary to trust-

worthy execution of several secure services based on spatial data assets. For instance,

the input polygon to a polygon decomposition algorithm must be a simple geometric

structure. Algorithms for a point location problem, convex-hull, Delaunay triangu-

lation also take simple polygon as an input. However, if the integrity of a simple

polygon is compromised, the output of the dependant algorithms is highly likely to

be compromised, otherwise incorrect.

67

CHAPTER 4

SECURE QUERYABLE DYNAMIC MAPS

The economics of the security world
are all horribly, horribly nasty and
are largely based on fear,
intimidation and blackmail

Linus Torvalds

4.1 Introduction

As shown in Figure 4.1, consider a set of non-intersecting, closed polygonsR1, R2, R3

and R4 bounded by sequences of connected points

{A,N,M..C,B,A}, {A′, B′, C ′..E ′, A′}..{D,E, F ′..I ′, D}, {K ′L′,M ′, ..O′, K ′}

The region R1 is an island polygon inside region R2, and the region R4 is com-

pletely excluded from other regions R1, R2, R3. Let the region exterior to polygons

R1, R2, R3, R4 be φ. For convenience, let the unique codes ρ1, ρ2, ..ρ4 be used to

represent the region interior to each of the polygons R1, R2..R4, respectively. A se-

cure queryable dynamic map (SQDM) for a set of polygonal regions {R0, R1, ..Rn} is

defined as:

RSQDM = SQDM(R0, R1, ..Rn),

68

where RSQDM is a dynamic structure that supports the following operations that:

• serves authoritative and unbiased query response about the location of a query
point q(x, y).

• facilitates incremental trustworthy/verifiable insertion or merging of any sub-
division on the map.

• serves AU services pertaining to associating any attribute to a point in a geo-
graphic region.

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O′

N ′

M ′

L′

K′

I′

H′

G′

F ′

R1

R2 R3

R4

φ

φ
A′

B′

C′
D′

E′

Figure 4.1

A set of polygons on a map. Polygon ABC..NA contains an island polygon
A′E ′D′..B′A′.

In general, the input to an SQDM process P is a sequence of vertices S =

{p0, p1, ...pn} corresponding to non-intersecting (non-crossing), closed polygonsR0, ..Rn,

where each point is a tuple (x, y) that represents a point in 2D. Two consecutive points

make a segment that separates two regions in the plane. Execution of the SQDM

process P :

1. maps each line to a rectangular block [x1, x2, y1, y2, v] (or simply bounding box
(BB)) (as shown in Figure 4.2 (Right) in a mesh (a set of BBs) constructed for
the regions and

69

2. assigns an appropriate context (say, α) specific value v to all points in the
BB, where v = {} implies α-specific interpretation of such BBs. For instance,
context alpha can be a zip code, street, city, congressional districts, and so on
over the BB.

Thereafter, responding to a query regarding any point q(x, y) boils down to a trivial

problem of identifying the BB containing q(x, y), and using the value v to answer

the query. With this definition, the next section is dedicated to briefly explain a

trustworthy execution of SQDM process to build RSQDM that serves the above-

mentioned operations. From this now on, we use the symbols p, p′, or upper case

letters such as A, and B to represent a 2D point. The x and y ordinate of any point

p is designated as px and py (or Ax and Ay); region above a segment AB is designated

by AB.ρa, region code below a segment AB is accessed by AB.ρb.

4.2 Sub-processes in SQDM Protocol

An SQDM Protocol can be divided into four sub-processes:

1. P0: to i) pre-process input polygons to create a boundary-point OMT Tp with
dynamic root σp to capture the integrity and validity of the input boundaries
and ii) create a template mesh, B, which is a set of bounding boxes (BBs) that
enclose complete segments in the boundaries. More specifically, a template
mesh is a 2D OMT TB with dynamic root σB called region OMT, whose leaf
items are entries of the form [x1, x2, y1, y2, v].

2. P1 maps segments in an input polygon to one of the BB according to a specific
rule.

3. P2 utilizes the set of BBs constructed by P1 to authoritatively resolve queries;
and

4. P3, that allows incremental changes to be performed to the BBs (or to the values
in BBs) by making batch execution of P1 possible. For instance, a BB can be
split vertically or horizontally into constituent BBs; two adjoining/neighboring
BBs can be merged together; splits mapped to a BB can be split into constituent

70

splits, new segments can be added to create subdivisions inside an existing
region (polygons), among others.

In the blockchain-based SQDM execution, the process states are represented as a

2-tuple (σp, σB). Every valid operation executed on the input map progresses the

current state St : (σp, σB)t to new state St+1 : (σ′p, σ
′
B)t+1. Such progress is committed

only after verifying the correctness of the new state, which is supported by O(n)

verification objects, V Os. In other words, an SQDM in blockchain is bootstrapped

by initializing a blockchain state as:

S0 : (σp ← 0, σB →)t0

At the crux of a blockchain-based SQDM protocol are micro-transactions that

make up each of the processes P0,P1...P3. The micro- transactions are elementary,

individual operations that composed of a larger, complex process. Such transactions

are committed for each of the processes P1..P2 only after verifying specific transaction

conditions by an independent, multiple validator (or say verifiers)s in a blockchain

network. The way it works ensures the integrity of every data and process outcome

from very genesis to a termination of an SQDM process. Confidence in underlying,

resultant data structure facilitates an authoritative response to any query against

input data. To build such a system, we leverage features of an OMT that allow

verifiable, and incremental updates to any data record, SQDM blocks BBs in B;

and other context-specific data) in its leaf nodes. In what follows, we discuss use-

ful OMT structures, micro-transactions, verification/validation of micro-transactions;

71

and verifiable execution (and output) of micro-transactions that constitute each of

the sub-processes P0,P1, ...P3 in an SQDM protocol. For ease of explanation, we

use the following simplified map to discuss the operations of the sub-processes in an

SQDM protocol.

A

B

C

D

E

F

G

H

I

J

K

L

MN

A′

B′

C′
D′

E′R1

R2

φ
φ

A

B

C

D

E

F

G

H

I

J

K

L

M

N

M′

A′

B′

C′

D′

E′

φ

01

02

03

04

05

06

07

08

09

10

11

12

12.1

13

14

15

16

17

18

19

20

19

20

21

22

23

24 25

26
26

Figure 4.2

Left: A polygon ABCD..MNA on the map whose interior region has an island
polygon A′E ′..C ′B′A′. Right: The map on the left is transformed into a mesh of

bounding blocks which captures the bounding segments of the polygons.

Furthermore, we will use notations and symbols as follow: a '=' or ':=' is an

assignment of a variable to a value; '→' is update of a value on the left to the value

on the right; '←' is setting an existing variable by a new value; a symbol preceding

':' is used to annotate object or value on the right and with other variables as usual

semantics.

72

4.2.1 Pre-Processing P0

An SQDM protocol bootstrap by accepting a counter-clockwise (CCW), sequence

of boundary points of a simple polygon in a 2D plane. In other words, a polygon

with n sides is described by n+1 points, where the last point (with the highest point

index) and the first point (with the smallest point index) have the same geographic

coordinates (x, y). As shown in Figure 4.2 (Left), R2 is bounded by a sequence of

vertices A,B,C, ..N,A, and the island region R1 is inside R2, and is bounded by

points A′, E ′..C ′, B′, A′. All the space outside the regions R2 and R1 is a Universe

φ. Two consecutive distinct points p(x1, y1) and p′(x2, y2) is a segment (or only line

segment) that separates two regions, ρa, and ρb in a 2D plane. ρa is the region above

the segment pp′, and ρb is the region code for the region below the segment pp′. For

instance, segment CD separates region ρa := R1 just above it, and region ρb := R0

below it; segment QR separates region ρa := R0 above it, and region ρb := R1 just

below it, and so on.

In general, an SQDM process starts by taking input boundary points LR0∪..Rn =

{L0 : {pi : pi ∈ R0}...Ln : {pi : pi ∈ Rn}}. For an input in Figure 4.2 (Left), all

together, boundary points in two polygons R1 and R2 are collected in two collections

L1 and L2 given as:

LR1∪R2 = {L1 : {A,B,C..A}, L2 : {A′, B′, ...E ′}}

73

A

B

C

D

E

F

G

H

I

J

K

L

M
N

R1

R2φ
A′

B′

C′
D′

E′

σp

v10

v20

v30

A

v31

B

v21

v32

..

v33

A′

v11

v22

v34

B′

v35

..

v23

v36

..

v37

E′

Figure 4.3

(Left): An input polygon is a sequence of points. (Right): All the points in the
input polygons are added to a 1D-OMT Tp that represents a dynamic polygonal

object.

A point p in a polygon m is identified by what is called SQDM point defined as:

p = m ‖ n ‖ (x, y)

It conveys three distinct properties of a point in the polygon.

1. a polygon number m, which is even for enclosing polygons and odd for excluding
polygons. For example, for the region R1, m is even, while for the region R3,
this value is odd.

2. the point index n, which increases monotonically on CCW traversal of boundary
points in any polygon m, and

3. the geographic coordinate (x, y) of the point.

This process P0 invokes micro-transaction AddPoint(p, q, q′) to add all points p

in a polygon Ri to the boundary-point OMT with root σp. The first point is added

by invoking AddPoint(p0, q, q
′), where q = q′ = 0, with dynamic root σp = h(q, q′).

Subsequent points are inserted until last the point pn+1 is encountered. A complete 1D

74

OMT Tp represents the complete region bounded by points in a CCW. A completion

of boundary-point OMT triggers process P1 for the construction of a mess of BB. For

the example input polygons R1 and R2, the leaves of Tp can be listed as:

{(2 ‖ 0 ‖ (x0, y0), 2 ‖ 1 ‖ (x1, y1), x0 ‖ y0),
(2 ‖ 1 ‖ (x1, y11), 2 ‖ 2 ‖ (x2, y2), x1 ‖ y1),

...
(2 ‖ 15 ‖ (x15, y15), x0 ‖ y0, 2 ‖ 0 ‖ (x0, y0))}

From now on, we use a notation such as pp′ to represent a segment connecting

points p and p′; pp′ · ρa, and pp′ · ρb to retrieve region labels associated with any

segment connecting two points p and p′.

4.2.1.1 SQDM Map Construction

After completely adding boundary points into a boundary-point OMT Tp, the

root of the tree is σp. The completion initiates an SQDM map construction process.

In this step, an input boundary-point OMT Tp for a region R is used to incremen-

tally build a 2D template map representing the given region. The 2D map is a set

of bounding boxes that can contain the partial or complete segments in the input

polygon represented by leaves of 1D-OMT. It is represented by a 2D-OMT TB, whose

dynamic root is σB. Each entry/record in the map OMT is a bounding box (BB) is

represented by a 5-tuple

(x1, y1, x2, y2, v)

75

The initial state of the blockchain for an SQDM protocol before the start of a map

construction process is recorded at time t as

(σp, σB → 0)t

Map construction incrementally modifies the existing leaf nodes in both OMTs

Tp and Tb to progress the roots σp and σB to progress the current state- S0(σp, σB)→

S1(σ′p, σ
′
B).

The process for map construction follows the following steps:

• Bootstrapping by initializing a blockchain ledger with an empty bounding box
[xl, yl, xh, yh]that covers the complete globe. It is the first entry to a 2D-OMT
TB with dynamic root σB, and the value of the dynamic root is σB → h(xl ‖
yl ‖ xh ‖ yh ‖ 0).

• Clip (split or slice, break) existing BB to initiate the insertion of constituent
BBs. A BB can be divided into two parts by introducing either a vertical line
or a horizontal line through the bounding box. For example, a bounding box
(1, 5, 9, 8) split by vertical line x = 3 gives two bounding boxes: i) (1, 5, 3, 8)
and ii) (3, 5, , 9, 8). Split by a horizontal line y = 6 gives two different boxes:
i) (1, 5, 9, 6) and ii) (1, 6, 9, 8). A micro-transaction SplitBB(xl, yl, xh, yh, x

′, y′) is
executed to split an input BB (xl, yl, xh, yh) either vertically along x = x′ or
horizontally along y = y′. In addition, if the split axis intersects any segment in
boundary-point OMT Tp, invoke Interpolate(p, p′, {x′, y′}) to insert intersection
points of the split axis and all the line segment joining points p ∈ Tp and p′ ∈ Tp.

The BBs constructed are inserted into 2D-OMT TB. The choice where to split

depends on the strategy that minimizes the number of BBs that can completely

bound/contain all the segments in an input boundary-point OMT Tp. Specifically,

the map construction follows two major steps:

1. Invoke µ-transaction InitGlobe(xl, yl, xh, yh, φ, σp, σpd) to initialize region OMT
TB. The rectangular region (xl, yl)× (xh, yh) covers the complete region for an

76

A

B

C

D

E

F

G

H

I

J

K

L

MN

A′

B′

C′
D′

E′R1

φ
φ

A

B

C

D

E

F

G

H

I

J

K

L

M

N

M′

A′

B′

C′

D′

E′

φ

BBt

BBb

01

02

03

04

05

06

07

08

09

10

11

12

12.1

13

14

15

16

17

18

19

20

19

20

21

22

23

24 25

26
26

Figure 4.4

An input polygon ABC...MA is divided into a mesh of bounding blocks called BB.
A strategic selection of split axis (horizontal or vertical) produces the minimal

number of blocks that sufficiently represent the region enclosed by boundary points.

input polygon(s). It also sets the dynamic root σpd of Tpd to terminal root value
σp, which means initiation of construction of map TB for the region Tp.

2. Invoke µ-transaction SplitBB(xl, yl, xh, yh, x
′, y′) to split existing BB along appro-

priate axis (x = x′ or y = y′) into two children BBs.

3. Replace the original BB by two children BBs, and update the root of 2D-OMT
TB.

4. Invoke µ-transaction Interpolate(p, p′, {x′, y′}) to insert a new point (xi, yi) =
I(p, p′, [xi, yi]), which is an intersection point between segment pp′ and split
axis along x = x′ or y = y′.

5. Repeat (1), (2), and (3) until a BB contains at most 2 input segments (or their
fragments).

6. Update current blockchain state (σp, σB)t to next state (σ′p, σ
′
B)t′ .

With respect to the same input polygons R1 and R2, as shown in Figure 4.4, we

outline a map construction method in this section. The map construction process

starts by initializing the region OMT by inserting a bounding box WW ′ZZ ′ as the

first leaf in the tree. In other words, we execute a µ-transaction InitGlobe(Wx,Wy,W
′
x,Zy, φ)

77

to insert a BB that covers an input polygon(s) R1 and R2. It is followed by vertically

splitting the initial BB along x = Kx to replace it by two BBs, BB0 : WKK ′Z and

BB1 : KXYK ′. This particular split causes to partition the input segments into two

groups:

BB0 : {AB,AN,NM,LK}
BB1 : {BC,CD,DE,EF,CF,HC, IH, JI,KJ}

The split axis does not intersect through any input segment. Hence µ-transaction

Interpolate(.) is not executed. Similarly, block BB0 is split horizontally along axis

y = Ay to produce top block BBt that contain segments {AB} and bottom block

BBb that contains segments {AN,NM,LK}. This split also avoids µ−transaction

Interpolate(.). To proceed further, the block BBb can be split horizontally along

y = My that ultimately splits the segment AN into AM ′ and M ′N at A′ (red filled

circle). This is the time when micro-transaction Interpolate(A,N, y = My) is invoked

to introduce a new point M ′ in boundary-point OMT Tp. The effect is that: each

of the µ-transaction replaces a BB leaf in the region OMT by two new BBs, and

potentially replace a leaf in boundary-point OMT by two new points. The operation

InitGlobe and SplitBB µ-transaction update the root σBB of region OMT TBB, while

the operation Interpolate updates the root σp of the boundary-point OMT Tp. A

similar procedure is applied to the entire block on the right of the initial axis x = Kx.

This produces the complete 2D mesh, as shown in Figure 4.4(b).

78

4.2.1.2 Types of BBs

Type 0

ρa
ρb

Type 1

ρa
ρb

Type 2

ρb

Type 3

ρa

Type 4

ρa

Type 5
ρb

Type 6

ρa
ρb

ρc
o
Type 7

ρa
ρb
ρco

Type 8

ρa
ρb ρc
o

Type 9

ρa
ρb

ρco

Type 10

ρa
ρbρc
o

Type 11

ρa
ρb

ρc o

Type 12

ρa
ρb

ρc
o

Type 13 ρa
ρb
ρco

Type 14

C0 C1

C2C3

Figure 4.5

Types of BBs

The map construction process discussed in the previous section produces different

types of BBs depending upon the orientation of the segments that a BB contains. As

shown in Figure 4.4, the gray shaded blocks such as 01,05,11,10,16,20,21,22, and

26 contain no line segment of the input polygons. They are categorized as Group-0

BBs. The blue and green shaded blocks 03,04,06,09, ..,15,25,26,17,24 contain

a single segment as the block’s main diagonal (positive or negative) are categorized

as Group-I blocks. In case two consecutive segments such as NM and LM meet at

an acute or right angle, a block such as 07 and 12 (red shaded) is constructed. Such

blocks are categorized as Group-II blocks. It is important to note that these are the

ideal blocks that a map construction process must produce. Specifically, as shown in

Figure 4.5 the Group-I blocks can be further identified as six different types:

79

• Type-1, a segment in a polygon becomes a positive diagonal of a containing
BB.

• Type-2, a segment in a polygon becomes a negative diagonal of a containing
BB.

• Type-3, a segment in a polygon becomes vertical left side of a BB.

• Type-4, a segment in a polygon becomes vertical bottom side of a BB.

• Type-5, a segment in a polygon becomes vertical right side of a BB.

• Type-6, a segment in a polygon becomes vertical top side of a BB.

As shown in the same Figure 4.5, the Group-II blocks are differentiated into 8 types

as:

• Type-7, contains two segments meeting at the lower-left corner C1 of the con-
taining BB, where a longer becomes a positive diagonal and shorter becomes
support segment with horizontal offset of o from the corner.

• Type-8, contains two segments meeting at the lower-left corner C1 of the con-
taining BB, where a longer becomes a positive diagonal and shorter becomes
support segment with vertical offset of o from the corner.

• Type-9, contains two segments meeting at the upper right corner C2 of the
containing BB, where a longer becomes a positive diagonal and shorter becomes
support segment with horizontal offset of ofrom the corner.

• Type-10, contains two segments meeting at the lower-left corner C2 of the
containing BB, where a longer becomes a positive diagonal and shorter becomes
support segment with vertical offset of o from the corner.

• Type-11, contains two segments meeting at the upper left corner C4 of the
containing BB, where a longer becomes a negative diagonal and shorter becomes
support segment with horizontal offset of o from the corner.

• Type-12, contains two segments meeting at the upper left corner C4 of the
containing BB, where a longer becomes a negative diagonal and shorter becomes
support segment with vertical offset of o from the corner.

• Type-13, contains two segments meeting at the lower right corner C3 of the
containing BB, where a longer becomes a negative diagonal and shorter becomes
support segment with horizontal offset of o from the corner.

80

• Type-14, contains two segments meeting at the lower right corner C3 of the
containing BB, where a longer becomes a negative diagonal and shorter becomes
support segment with vertical offset of o from the corner. The regions that
the diagonal separates is designated as ρa ρb, and the region that the shorter
segment separates are either of ρa and ρb and ρc.

Together a collection of BBs is a template SQDM RSQDM for an input map.

RSQDM : {01, 02, 03, 04, .., 20, 21, 22, 23, 24}

Note that each BB in RSQDM is a leaf node in 2D- OMT TB with dynamic root

σB. Specifically, a BB in TB is of the form:

(xl, yl, xh, yh, v)

4.2.2 Segment to BB Mapping P1

Every segment pp′ in Tp produced by P0 can now be mapped to a one of Type 0,

Type 1, ..,Type 14 BBs in a template SQDM, RSQDM generated by process P1.

A sequence of µ-transaction MapLine() is invoked to map all the segments in 1-D

OMT Tp to one of the BB in TB. A µ-transaction MapLine(p, p′, xl, yl, xh, yh, v) updates

1. the value v BB : [xl, yl, xl, yl, v] ∈ RSQDM by the encoding of the mapped
segment pp′ ∈ Tp.

2. the dynamic value START = 0 and END = φ to the endpoint of the segment pp′

to track the completion of the mapping process. The mapping must terminate
whenever START = END.

In fact, an encoding for a segment captures sufficiently minimum information that

represents the segment. An encoding v for a segment is formulated according to the

81

type of block c = {0, 1, 2...14} being mapped to, vertical offset o of small segment s

(if any), and region codes ρa,ρb, ρc associated with the segment pp′.

Type 0 v = (c ‖ ρa ‖ ρb ‖ ρc ‖ o) = 0 ‖ 0 ‖ 0 ‖ 0 ‖ 0

Type 1 v = (c ‖ ρa ‖ ρb ‖ ρc ‖ o) = 1 ‖ ρa ‖ ρb ‖ 0 ‖ 0

Type 2 v = (c ‖ ρa ‖ ρb ‖ ρc ‖ o) = 2 ‖ ρa ‖ ρb ‖ 0 ‖ 0

Type 3 v = (c ‖ ρa ‖ ρb ‖ ρc ‖ o) = 3 ‖ ρa ‖ ρb ‖ 0 ‖ 0

Type 4 v = (c ‖ ρa ‖ ρb ‖ ρc ‖ o) = 4 ‖ ρa ‖ ρb ‖ 0 ‖ 0

...

Type 7 v = (c ‖ ρa ‖ ρb ‖ ρc ‖ o) = 7 ‖ ρa ‖ ρb ‖ ρc ‖ o

Type 8 v = (c ‖ ρa ‖ ρb ‖ ρc ‖ o) = 8 ‖ ρa ‖ ρb ‖ ρc ‖ o

...

(4.1)

Each mapping updates the root σB of the region OMT. After the completion of

this process, the values of the roots of the two OMTs TB and Tp are (σpd, σB) on

which a BN reaches a consensus on the integrity of the input polygon points as well

as corresponding 2D map constructed. In short, the process of adding boundary

points into a 1D-OMT and construction of the template map and the mapping of

the segments to the map can be seen as series of progression of the process states

captured by the roots of the two OMTs.

82

(σp ← 0, σB ← 0)
AddPoint(p0)−−−−−−−−→ (σ′′p , 0)

1

AddPoint(p1)−−−−−−−−→ (σ′p, 0)
2

...
(AddPoint(pn)−−−−−−−→ (σ∗p, 0)

n+1

(σpd ← σ∗p, σB ← 0)
InitGlobe−−−−−−−→ (σpd, σ

′
B)1

SplitBB(B0,[x’,y’])

Interpolate(pp’,q)
−−−−−−−−−−−−−−→ (σ′pd, σ

′′
B)

2

...

SplitBB(Bn,[x,y])
Interpolate(pp’,q)
−−−−−−−−−−−−−→ (σ∗pd, σ

∗
B)

n+1

(σ∗pd, σBm ← σ∗B)
MapLine(p0,p1,B)
−−−−−−−−−−→ (σ∗pd, σ

′
Bm)

1

MapLine(p1,p2,B′
−−−−−−−−−−→ (σ∗pd, σ

′′
Bm))

2

..
MapLine(pn,p0,B′′′

−−−−−−−−−−→ (σ∗pd, σ
∗
Bm))

n+1

4.2.3 Resolving Queries P2

Once the input segments are mapped to one of the BBs in an SQDM, the system

is in the state of responding queries from any client. The process for answering

(resolving) queries is as follows. Given a query point q(x, y), the BB [x1, y1, x2, y2, v]

that contains the point must satisfy x1 ≤ x < x2, y1 ≤ y < y2 is identified in a SQDM

map TB.

If the response block is of a Group I, the region codes ρa, and ρb associated with

the block value v is sufficient to determine the location of the query point. It is

simply done by checking if the query point is above or below a diagonal of the block.

83

Given a response block in Group II {7, 8, 9, 10..14}, to find the region in which

the point (x, y) falls; it is sufficient to decide on 'if (x, y) is BELOW the diagonal

of the block.' Suppose that a Group II block [x1, y1, x2, y2, v = [c ‖ ρa ‖ ρb ‖

ρc ‖ o]] is a response block, the two lines corresponding to different Type II blocks

c = {7, 8, 9, 10, ...14} can be resolved as:

Main Diagonal Support Segment BB Type

(x1, y1)—(x2, y2) (x1, y1)—(x1 + o, y2) 7

(x1, y1)—(x2, y2) (x1, y1)—(x2, y1 + o) 8

(x1, y1)—(x2, y2) (x2 − 0, y1)—(x2, y2) 9

(x1, y1)—(x2, y2) (x1, y2 − o)—(x2, y2) 10

(x1, y2)—(x2, y1) (x1, y2)—(x1 + o, y1) 11

(x1, y2)—(x2, y1) (x1, y2)—(x2, y2 − o) 12

(x1, y2)—(x2, y1) (x2 − o, y2)—(x2, y1) 13

(x1, y2)—(x2, y1) (x1, y1 + o)—(x2, y1) 14

(4.2)

An ability to check if a query point (x, y) is below both lines or above both lines or

in-between the two lines is sufficient to determine the region that contains the query

point.

4.2.4 Map Construction By Slab Decomposition Method

Similar to a slab decomposition method described in [5], steps for map construc-

tion is described as the following steps:

84

i) Identify Ux: Identify all unique X-coordinates in all endpoints of segments

in L to find vertical columns (slabs) for the map. As shown in figure 4.2, we have

10 unique x-values Ux{Ax, Bx, Cx, ..Hx, A
′
x, ..Fx}. The vertical lines passing through

these points define vertical slabs S0, S1...S9 over the input map. Each vertical slab

can be identified by a pair of vertical edges that pass vertically through adjacent

X-coordinates in Ux. Vertical slabs in the input map be annotated as:

S1[Ax, Nx], S2 : [Nx, Kx]..., S9[Gx, Fx]

A

B

C

D

E

F

G

H

I

J

K

L

MN

A′

B′

C′
D′

E′R1

φ A

B

C

D

E

F

G

H

I

J

K

L

M

N

A′

B′

C′

D′

E′

φ

01

02

04

0505

05

16 17

S0 S1 S2 S3 S8 S9

Figure 4.6

An input polygon ANM...BA is divided into a mesh of bounding blocks (BBs)
using the slab decomposition technique. Three types of blocks are represented by

gray shaded, blue shaded, and red shaded rectangles.

ii) Identify Bounding Boxes (BBs): Split all input segments in pp ∈ Tp at

points where they intersect the vertical axis through unique X-values in Ux. For in-

85

stance, such split points are the red filled circles in Figure 4.6. Segment AB intersects

vertical edge through Nx, hence it is split into segments AN ′ and N ′B. Similarly,

segment KJ is split at Cx, B
′
x, D

′
x to generate three splits, and so on. All splits pro-

duced from original segments in LR1∪R2 collected for respective vertical slabs, S1..S9

are:

S0 : Ax—Nx {AN,AN ′}
S1 : Nx—Kx {N ′B,NM,LM,LK}

...
S9 : Gx—Fx {FG′, GF}

iii) Identify Non-Overlapping Bounding Box (BB):

Identify a non-overlapping bounding box (BB) enclosing each of the split seg-

ments in Tp. As overlaid in Figure 4.6, BB around split AN is 02; around CD′ is

bBB2, BB around LM and NM is 05, and so on. In the case of 05 BB, two segments

in a slab meet at a single vertex (such as E) at an acute angle, their blocks overlap

each other in both X and Y-projection. From Figure 4.6, along the boundary of the

input map, we identify types of BBs, as explained in the previous section.

4.2.5 Constrained Mapping

The constraints imposed on the mapping ensure that the polygon describing the

region is simple and complete. Specifically, the following 2 constraints, viz.,

1. a single line mapped to a BB should be a side or a diagonal.

2. 2 adjacent boundary lines may be mapped to a BB, if one of them is a diagonal.

ensure that boundary lines can not cross each other inside BBs.

86

The third constraint imposed is the uniqueness of interpolated points. A boundary

line is specified by 2 points - say (pj, pj+1). Given 2 adjacent boundary lines (pi−1, pi)

and (pi, pi+1), the point pi is an interpolated point is pi lies on the line connecting

pi−1 and pi+1. Ensuring the uniqueness of interpolated points ensures that boundary

lines cannot cross each other at BB corners.

The fourth constraint is that mapping is to be performed sequentially, in the

CCW order of boundary lines. The mapping is complete when the start and end

points are the same. Together, all constraints ensure that a list of boundary lines

represents a valid polygonal region.

At the end of successful mapping, a list of boundary lines representing a region is

converted to a list of BBs. Each item in the BB list i) specifies a bounding X and Y

coordinates, and ii) explicitly identifies 0, 1 or 2 lines mapped to the BB. The main

advantage of converting a list of lines to a list of BBs is that any query regarding any

point (x, y) inside the original dashed BB can be answered by examining a single BB.

For example, in blue BBs 04 and 17, any point that falls below the diagonal is inside

the region; in blue BBs 09, 19 and 23, all points above the diagonal are inside the

region. In BBs 24, all points above the boundary line (C ′D′) (the bottom side) are

inside the island region. In the red BB 07 in Figure 4.7 (Right), only points that lie

in between the two mapped lines are outside the regions bounded by the boundaries.

To see the need for the third constraint – uniqueness of interpolated points –

consider the non-simple polygon ABCD in Figure 4.7(Left) which obviously does

87

A B

C

D

E

D′

A′

A

B

C

D

E

F

G

H

I

J

K

L

M

N

M′

A′

B′

C′

D′

E′

φ

01

02

03

04

05

06

07

08

09

10

11

12

12.1

13

14

15

16

17

18

19

20

19

20

21

22

23

24 25

26
26

Figure 4.7

Left: Effect of Ordering Boundary Points on Validity of a Region. Right: Two
input polygons ABC...MA and A′E ′..C ′E ′A′ are divided into a mesh of bounding

blocks called BBs. The mesh is in deed an SQDM for the two polygons.

not describe a valid region. By splitting boundary lines AB at A′, BC at E, CD

at D′, and DA at E, all boundary lines of this obviously invalid region can still be

mapped to BBs (as the boundary does not intersect inside any BB). Specifically, the

boundary lines can now be mapped in the order AA′, A′B, BE, EC, CD′, D′D, DE

and EA. However, the points added by interpolation are A′, E, D′ and E, which are

not unique (as E occurs twice). Thus, the third constraint will cause the mapping

to fail.

It is important to note that the situation would be different if the original region

was described instead as ABEDCEA – by a sequence of boundary linesAB,BE,ED,DC,CE

and EA. In this case only 2 points need to be added by interpolation (A′ and D′),

to perform the mapping in the order AA′, A′B, BE, ED, DD′, D′C, CE, and EA.

Mapping this sequence of boundary lines will be successful – as it should be, as the

88

boundary lines do describe a valid region (two triangular regions meeting at corner

E). Note that while we have 2 instances of point E, it is not a point added by

interpolation. In summary, the three constraints ensure that a given vector of points

represents a valid region.

4.2.6 Necessity and Sufficiency

One of the primary motivations of splitting complex processes into multiple trans-

actions is to reduce the complexity of individual transactions. It is obviously advan-

tageous to limit the number of lines in each BB to reduce complexity – after all,

we pay less care about the number of transactions and more about the simplicity of

transactions. Unfortunately, a minimum of 2 lines is necessary in scenarios where

2 adjacent boundary lines have overlapping projections in both X and Y directions.

Fortunately, limiting BBs to 2 lines (“red” BBs) is also sufficient.

To see why this is indeed the case, consider the scenario in Figure 4.8(a), where

several lines meet at a corner. It might appear at first glance that how many every

subdivisions are performed to split lines or BBs, a BB at the lower-left corner at

which all lines meet will still have several lines mapped to it.

However, only a finite number of bits can be used to represent x and y coordinates.

For example, describing coordinates using unsigned 32-bits is sufficient to realize a

worst-case resolution error (at the equator) of less than 1 cm. With finite precision,

in the smallest possible BB (x, y, x+ 1, y+ 1, v) at the lower-left corner, all lines will

89

have to map to the bottom side or the diagonal, or the left side of the BB (as in

Figure 4.8(b)).

In other words, at most 3 lines may need to be mapped to a BB. However, we

have the option to map the bottom of the BB as the top side of the BB below or the

left side as the right side of the BB to the left. In the worst-case scenario, only 8 lines

will need to be mapped to 4 adjacent BBs (or 2 each), as shown in Figure 4.8(c).

A consequence of limiting BBs to 2 lines is that we can not add any more lines to

a BB that is already red. By splitting a red BB into 3 (see Figures 4.8(d) and (e)), it

can be converted into a smaller red BB, a blue BB, and a clear BB. This operation,

which renders the smaller line of the larger red BB as the diagonal of the smaller red

BB (transaction SplitBB2()) can be repeated any number of times (if necessary) to

reduce the size of the remaining red BB (until new boundary lines to be added fall

entirely in clear or blue BBs). In the next section, we discuss a method to reduce

Group-II BBs into smaller Group-I BBs further.

(a) (b) (c) (d) (e)

Figure 4.8

(a)-(c) Necessity and Sufficiency of “red” BBs with 2 line segments. (d)-(e) a red
BB split into 3 BBs.

90

4.2.6.1 Reducing Group-II blocks

Group-II {7, 8, 9, 10, ..13, 14} blocks encloses two or more split segments. It is

desirable that this type of block is split multiple times to create a few Type 0,

Group-I blocks. This breaking down shall facilitate assigning block value v with a

minimal piece of information (potentially segment/region information). As shown in

the adjoining Figure 4.9, a Type-12 block with two segments AB and AC is broken

down into two Type {1, 2} blocks (blue shaded blocks 02 and 03), and two Type 0

(gray blocks 01 and 04) blocks.

A

B

CIc

I ′c

01 02

03

04

05

x2

y2

y3

Figure 4.9

A Type 12 block in an SQDM is reduced to few Type 0, Type 1, and smaller Type
12 blocks.

The first split is done to segment AB at point Ic(x2, y2)intersected it by horizontal

line through right endpoint C of shorter segment AC. This split created a Type 0

block 01, and a Type 1 block 02 around split IcB. Having known x2, shorter segment

AC is again split at I ′c(x2, y3). This split creates a Type II block (red shaded rBB1)

91

y0

y1

y2

(a)

s0

s1

s2

BB

x1BB0

BB2 BB3

BB1

(b)

BB4

BB5

x0 x1

(c)

BB6 BB7 BB8

Figure 4.10

A Type-8 BB is clipped horizontally through y1. It produces {BB0, BB1}. Block
BB0, when clipped vertically through x1, produces smaller BBs {BB3, BB4}. Block
BB1 contains 3 splits, it is clipped horizontally through y0 produces {BB5, BB4}.
BB5 contains two splits, which will be split vertically through x1 and x0 produces
{BB6, BB7, BB8}. Block BB4 is a rotated version of initial block BB, which can

be clipped first vertically and then horizontally recursively.

containing two splits AI ′c and AIc, and a Type I block 03 containing split I ′cC; and a

small Type 0 block wBB2.

Similarly, as shown in Figure 4.10, a Type-8 BB contains three segments s0, s1, s2.

It is further split into multiple Type 0, Group-I, and a smaller Group-II block. Thus

a rule of thumb for clipping BBs is that reduced blocks must be of any of Type

{0, 1, 2, .., 14}.

4.3 Related Work, Result and Conclusion

SQDM processes were applied to the real-world geo-spatial data in ESRI Shape-

file [28] format to an SQDM. Shapefiles representing US states, US Congressional

Districts, and MS counties were converted to an SQDM representation. A national,

92

state or county boundary or a parcel of geographic space is represented by a set of

geographic coordinates P (λ, φ), where λ represents the value of geographic latitude

defined such that −90◦ ≤ λ ≤ 90◦; and φ represents the value of geographic longi-

tude defined such that 180◦ ≤ φ ≤ +180◦. The system of assigning these latitude

and longitude values is based on a geographic coordinate system (GCS), which is

based on a standard geodetic systems such as North American Datum (NAD) 1983,

WGS 84. The geographic coordinates can be transformed to represent location on a

Euclidean plane (two-dimensional plane) using a projected coordinate system (PCS)

such as transverse Mercator or Pseudo-Mercator or Universal Transverse Mercator

(UTM). Most often, geographic regions such as countries, States, or cities are ref-

erenced in different geographic/planar coordinate systems (GCS). These maps data

are transformed to a common reference coordinate system [64], to ensure that data

represents a common co-ordinate reference system (GCS or PCS).

The boundary map of the USA consists of 56282 segments. Three methods for

constructing SQDM blocks for the boundaries of the USA and its states were inves-

tigated to find out the size of the µ-transactions for SQDM protocol. The number

of unique x-values is 55000. During the construction of an SQDM for the conti-

nental map of the USA, it is necessary to split the boundary segments at unique

X-ordinates. The total number of such split is 627084. Figure 4.11 shows the split

count frequency of segments that suffer splitting. The diagram indicates that the

majority of segments have split less than 100. The maximum number of splits for a

segment is 701.

93

Figure 4.11

The majority of segments have less than 100 splits (left). More than 95 percent of
original segments are split into less than 100 points (Middle). (Right) Number of
splits and numbers of the bounding boxes for each vertical slab in the US map.

4.3.1 SQDM of the USA States

As an example, the state of Mississippi is a polygon with 2713 points. To perform

the restrictive mapping of boundary segments to BBs using map construction method-

2,

1. boundary lines needed to be split 32 times;

2. a BB enclosing the entire state was split into 7919 BBs;

3. After mapping boundary lines to BBs (see Figure 7 top-left), 5181 were Type
0 (clear BBs), 2731 were blue/green BBs with a single line (Types {1 · · · 6}), 7
were red BBs with two lines (Types {7 · · · 14}).

Yazoo county inside Mississippi is a polygon with 713 points. To perform the

restrictive mapping of boundary segments to BBs

94

1. boundary lines needed to be split 35 times;

2. a BB enclosing the entire state was split into 2052 BBs;

3. after mapping boundary lines to BBs (Figure 4.12 (Left: top-right), we had
1317 clear BBs, 722 BBs with a single line, and 13 red BBs.

The following table displays the size of polygon features, the required number of

splits, and the numbers of clear, blue/green, and red BBs in the polygon’s SQDM.

95

Table 4.1

The sizes of the input maps of different US states and the number of white and blue
BBs in the respective map’s SQDMs.

Name n(pts) n(white BB) n(blue BB) Total BBsheight
MISSISSIPPI 2713 5181 2731 7919
YAZOO (County) 717 1317 722 2052
LOUISIANA 4801 9002 4841 13886
OHIO 2945 5629 2957 8594
OREGON 1961 3692 1959 5656
MONTANA 2327 4355 2325 6682
TENNESSEE 2275 4397 2274 6680
ARIZONA 1416 2663 1415 4080
CALIFORNIA 4382 8336 4383 12740
FLORIDA 5430 10284 5471 15775
IDAHO 2970 5544 2971 8519
KANSAS 1493 2834 1492 4328
KENTUCKY 3102 6008 3103 9117
MASSACHUSE 1822 3505 1873 5399
MARYLAND 6931 13130 6983 20147
MICHIGAN 4744 9022 4784 13816
MASSACHUSE 1822 3505 1873 5399
MINNESOTA 5953 11102 6004 17130
MISSOURI 3031 5800 3029 8832
USA* 56282 106545 56707 163558

96

Figure 4.12

Top (left): SQDM for MS state. Top (right): SQDM for Yazoo county.

97

CHAPTER 5

GEOGRAPHIC REGIONAL DELEGATION PROTOCOL

With e-currency based on
cryptographic proof, without the
need to trust a third party
middleman, money can be secure
and transactions effortless.

Satoshi Nakamoto

5.1 Introduction

A Domain Name System (DNS) [52] is a distributed system for a delegation of

a namespace to facilitate efficient resolving Internet domain names through separate

DNS servers. In a DNS, delegation starts from top-level authority called “root” (/).

It delegates namespaces to various zone authorities such as com, org, net, edu. The

zone authorities can delegate other distinctive names in their zone to other child-

level zones. For example, ownership of a DNS zone ms.edu is acquired through

delegation from the parent zone edu, which was, in turn, due to delegation by the

root zone. The owner of zone ms.edu can create any number of new names ending

with ms.edu (for example, cs.ms.edu, ee.ms.edu, etc.). Such created names can

be i) delegated, or ii) bound to different types of information – by creating distinct

types of DNS records. In DNS, x.y.z is a child of a zone y.z (or x.y.z ∈ y.z) as

98

x.y.z ends with y.z. This hierarchy of DNS zones constructs the DNS namespace.

The DNS hierarchy, along with a DNS security protocol (DNSSEC) [36], guarantees

authoritative (A) and unbiased response (U) to NS queries.

The DNSSEC associates every zone with a public key. The public key Ux.y.z of a

zone x.y.z is certified by the parent zone y.z, whose public key Uy.z is certified by its

parent zone z, whose public key Uz is certified by the root zone. The public key (say,

Φ) of the root zone is assumed to be public knowledge.

Knowledge of the root public key is sufficient to track the authority of a public

key UZ of a zone Z, and consequently, DNS information certified using UZ (for names

that end with Z). The response to a DNS query is a DNS record. Specifically, the

steps necessary for authoritatively establishing the integrity of a response RN for a

name N (say, 2 levels of hierarchy below the root), are as follows:

1. verify certificates 〈RN〉Ua , 〈a, Ua〉Ub , 〈b, Ub〉Uc , and 〈c, Uc〉Φ, where Φ is the
known root public key; given that the notation < A,UA >U is a certificate
verifiable using public key U , binding a public key UA with an entity A.

2. verify that i) name N ends with a; ii) name a ends with b and iii) name b ends
with c;

3. if N 6= a, confirm that no name ending with N has been delegated by a; for
example, if N = q.w.x.y.z and a = x.y.z it is essential to know that w.x.y.z
and q.w.x.y.z are not DNS zones (delegated by a = x.y.z).

The last step, viz., verification of non-existence of delegations, is facilitated by au-

thoritative denial (for providing proof of absence of specific DNS records). In DNS,

this is made possible by the NSEC / NSEC3 [21] component of DNSSEC.

Analogous to a zone name in DNS, let’s assume that an entity (example, a citizen,

Governing body, etc.) has an authority over a geographical region (such as land par-

99

cel, state, county, city, etc.) For the relation to exist, there must be a domain-specific

association between the entity and the geographic region, which enable the entity

to claim control (legal right) of over the region. Let us also assume that the entity

wishes to transfer the ownership right over to another entity. Under a conventional

system, the entity can do so by signing a written contract for a transfer of authority,

which should be recognized by a mutually trusted intermediary such as a government

office of title registration. The role of a government agency is crucial in terms that

it is a mutually trusted third party that authenticates and recognizes the transfer of

ownership of the right. It comes with a lengthy and inefficient bureaucratic process.

Moreover, delegating a 2D space is not as simple as delegating a scalar value like an

Internet domain name. It involves two-dimensional (2D) data representing a region

and sub-divisions intended for delegation. It must also preclude the involvement of

trusted third parties like title offices. Thus this seemingly trivial process has the

following requirements to meet AU requirements.

1. To secure underlying geospatial data of geographic boundaries and associated
features (domains) like area, physical structures like restaurants, banks, etc.

2. To prove that an entity has a specific authority over a region to securely delegate
partial or complete authority over the region, ensuring that:

• No overlaps between delegated region;

• No double-delegation, which means that the same geographic region should
not be transferable to multiple entities at the same time, and

• No unsolicited revocation of a delegated region.

3. To prevent a trusted third party during delegation to bring greater automation
for a 2D space delegation.

4. Securely and safely surrender (rollback) delegation once desired.

100

In the following section (5), we define the protocol called Geographic Regional Del-

egation Protocol (GRDP) that enables secure, trustworthy context-specific spatial

delegation.

5.2 Definition of GRDP

Let P be a non-intersecting, closed geographic region bounded by a series of n

boundary line segments. As shown in Figure 5.1, let an entity Ui owns an authority

over the surface interior to the region P . Let the relationship be encoded as an

association 〈Up, P 〉. A trustworthy geographic delegation of a sub-division C inside

a region P is a transaction T at time t for partial or complete transfer of authority

over sub-division C to second entity Uc, thereby transitioning current system state

St to St+1. Syntactically, T is defined as:

Tt = [P,C, St, Uc]Up , (5.1)

where subscript Ui signifies that T is digitally signed by Up. A successful execution

of a delegation transaction is expected to meet the following requirements:

• Avoid double delegation of the child division C by the same authority. It means
that once an authority delegates the child division (or any other child division
that overlaps with this child division) to another entity, he/she is not able to
delegate the same to the second entity.

• Establish ownership of entity Uc authoritatively over a 2D region P without a
Trusted Third Party (TTP).

• Authoritative surrendering of a delegation, which guarantees that complete
roll-back of a delegation transaction.

101

In other words, C is a region (described by 1 or more polygons) in GRDP. The region

C is a “child” of a region P (or C ∈ P) if region C lies entirely inside region P . A

GRDP region P can create any number of non-overlapping child regions. Specifically,

a region P can

1. delegate a child region (say) C ∈ P , or

2. associate various types of information with i) any point inside P or ii) any line
wholly inside P or iii) any polygon wholly inside P .

In fact, under a secure, and trustworthy GRDP, each delegation is treated as

an atomic transaction T . Only a 'well-formed' transaction results in a transfer of

authority of a child-division to a child’s authority. On the completion of a delegation

transaction, a new association 〈C,Uc〉 is instantiated and saved as a state change

in the delegation system. Once a parent’s authority over a child-division has been

successfully delegated to a child’s entity, the parent entity must not be able to delegate

to the other entities. The idea of preventing double delegation is similar to avoiding

transfer of the same monetary value to two different recipients through an online

remittance service. In an online remittance service, a central trusted institution like

Bank or Credit Card Company keeps track of every unit spent from an account to

avoid double-spending of a value. On the contrary, a revolutionizing technology such

as Bitcoin totally obviated the need of trusted institutions like Banks while also

avoiding double spending problem of monetary transactions [46, 70]. The technology

behind it is a peer-to-peer, broadcast network operating on an open consensus-based

protocol where a double-spending is avoided by having a set of computing nodes

102

verify a transaction against a complete set of historical transactions stored in an

append-only ledger called blockchain [46, 12].

On the other hand, the proposed regional delegation process is similar to a DNS

where a name query response is authoritative and uniquely established by delegated

zone servers. This protocol, however, can be built on the premise of two different

system design models: i) conventional centralized, two-party, prover-verifier model

and, ii) consensus-based state transition model. In the following section, we briefly

describe how each of these models operate to meet a delegation purpose.

A

B

C

D

E

F

G

H

I

J

K

L

M
N

C
P

φ

A′

B′

C′

D′

E′

A′

B′

C′

D′

E′

C

Figure 5.1

A parent entity Up draws a partition C in the parent region P over her control to
transfer the authority over the division to child entity Uc.

5.3 Conventional Delegation Workflow

A conventional delegation model is a centralized two-party communication pro-

tocol. For example, the first party is a map server Ms and the second party is a

client entity Uc. The map server maintains a complete spatial map, and is respon-

103

sible to respond to clients’ queries. It also performs map modifying operations on

the current map. The security of such s system depends on trust on the centralized

map service–its processes, and the platform. However, a single platform cannot be

entirely trusted upon its outputs. There are several reasons behind it. Firstly, an

exhaustive verification of a complex sub-system is virtually impossible. Secondly, a

centralized system is highly prone to single point of failure due to malicious attack

or technical issues. Hence, in a centralized system, data integrity, and service avail-

ability is expensive to realize. An alternative computing model based on distributed

consensus protocol and tamper-proof database known as blockchain is deemed suit-

able for a spatial delegation purpose. The backbone of such a protocol is network

consensus-based broadcast blockchain network discussed earlier in section 2.5.2.

5.4 Blockchain-based Delegation Workflow

A blockchain network-based protocol for delegation maintains the dynamic in-

tegrity of practically unlimited geo-spatial data items stored in a distributed database.

A broadcast network feeds on and validates specific transactions before committing

state changes to an append-only ledger called a blockchain. Network nodes are effi-

cient in maintaining data integrity and verifying transactions by storing and referring

minimal data, critical data meta-data that summarizes the dynamic state of the dele-

gation system. For instance, such data elements can be cryptographic hashes of data

records, an accumulated hash of series of data records or the root of a Merkle hash

tree [44] of data records, among others.

104

The proposed blockchain-based trustworthy delegation protocol, also known as

Geographic Regional Delegation Protocol (GRDP), originates from the following ro-

bust assumptions.

1. The blockchain network verifies the integrity and correctness of delegation
transactions.

2. Blockchain ledger is a distributed append-only ledger, that is a tamper-proof
record of states that can be publicly verified by any entities.

The protocol, additionally, makes the following assumptions related to a spatial map.

1. The polygonal region P is a non-intersecting, closed 2D polygonal region bounded
by an ordered sequence of boundary segments.

2. The delegated child-division inside P is also a non-intersecting, closed 2D polyg-
onal region.

T0[P,C, Uc]Up

S0

A

C

B

D

P

S1

A

C

B

D

C

P

E

F

G

H

Figure 5.2

A regional delegation is a transaction (T0) that permits an owner (Up) to divide a
region (P) (owned by Up) into child-region (C) to transfer the authority over the

child region to a child authority (Uc).

105

Figure 5 depicts a simplified work-flow of a regional delegation process. An en-

tity Ui has authority over a rectangular region P : ADCBA. A state S0 is reached

after chain of trustworthy execution of transactions that establishes relationship be-

tween Up and the region P . Consider that Up wishes to draw partition segments

{MN,MP,PO,ON} to construct a new child-division C inside the region P . With

S0 as the current state of the system, Up instantiate a high-level delegation transac-

tion

T0[P,C, Uc]Up ,

where Up broadcast digitally signed transaction T0 over the blockchain network to

delegate authority over child-division C to the child entity identified by Uc. The

blockchain network’s incentivized users (nodes) compete first to validate the transac-

tion T1, and communicate to reach a consensus on the next state S1 of the delegation

system. The verified transaction and new state are committed to an append-only

ledger maintained by each of the network nodes. The new state S1 is a piece of

information that uniquely establishes verifiable, authenticated, relationship between

child-division C and child entity Uc. The same procedure is followed by Uc to delegate

a child-division C ′ in C to a third-level child entity Uc′ , and so on.

In the following sections, we identify sub-processes, data objects, pre-conditions,

and post-conditions of constituent sub-processes that constitute an AGDP protocol.

5.5 Sub-processes in a Blockchain-based Delegation Process

A delegation process can be divided broadly into two sub-processes D0 and D1.

106

1. SQDM Process D0 : Input to this process is a set of regions P0, P1, ...Pn. It
follows a secure and trustworthy SQDM protocol discussed in chapter 4 to trans-
form a 2D spatial map to a 2D representation known as an SQDM. An SQDM
PSQDM is maintained by each of the mining nodes in a blockchain network, and
the state corresponding to an SQDM is stored in a ledger.

2. Delegation Process D1 : Input to this process is a sub-division C inside a region
Pi ∈ {P0, P1, ..., Pn} , an SQDM for a polygon Pi produced by process D0; a
reference to a delegating authority Upi ; and a reference to an entity Uc to which
delegation is transferred. This process is triggered by a delegation transaction
T signed by an authority Upi . It applies system-specific validation rules to the
transaction, and commit meta-data, and the state changes into an append-only
distributed ledger.

Shortly, we notice that a delegation process D works on two sets of inputs:

i) an SQDM for a closed polygonal region Pi ∈ {P0, P1, ...Pn} in a 2D plane. In
the SQDM, a set B of segment annotated bounding blocks (BBs) of different
types {0, 1, 2, .., 14} are maintained as leaves of an OMT TB, and the dynamic
value σB is stored as a single commitment to every BB in the collection.

ii) a closed child division C drawn inside the region Pi, which is set of consecutive
boundary points {p0, p1, .., pn, p0} in CCW. Two consecutive points p and p′ is
a segment that separates two a 2-D plane into two regions–the one above, ρa
and the other below, ρb. Syntactically, a segment pp′ connecting two endpoints
A(xi, yi) and B(xj, yj), and separating two regions ρa and ρb is defined as:

pp′/AB = (xi, xj, yi, yj, ρa, ρb) (5.2)

A 1-D OMT Tc with dynamic root σc is maintained to track the integrity of the
child-division C due delegated. Each leaf of the tree is defined as:

(p = n ‖ (x, y), p′, v = (x, y))

where, n is the index of a point (x, y) in the boundary-points in CCW of the sub-
division, and p′ is the index of the next point following p′. We use shorthands
pp′(ρa) or AB(ρa), and pp′(ρb) or pp′(ρb) to refer the regions just above and
below a segment pp′ or AB.

In the next section, we discuss the general conditions required for a successful

delegation transaction.

107

5.5.1 Validation Criteria of a Delegation Transaction

A delegation transaction Tt[P,C, St, Uc]Up is well-formed if all of the following

preconditions (also known as validation rules) are implicitly or explicitly established

to be true.

1. Tt is digitally signed by a valid authority Up, and the signature of which is
validated by a procedure Verify(Up, Tt).

2. Up has an authority over the region P .

3. Child-division C is a sequence of partition segments that forms a closed polyg-
onal region.

4. The child-division C is a simple polygon. Any self-intersecting polygonal child-
division is invalidated by process D1.

As shown in Figure 5.3, child-division C is a self-intersecting, which forms two
connected components. As we walk counter-clockwise along the boundary of d1

from F to E, a point p′ falls interior to the child polygon C. Paradoxically, the
same point falls exterior to the polygon C as we walk from A to G. Thus the
ambiguity in assigning a point to a region in a self-intersecting polygon leads
to invalidate basic assumption that a single line segment divides a plane into
two regions.

A

B

C

D

E

F

G

C

P
p′

Figure 5.3

Intersecting polygon is invalid for an SQDM process due to ambiguity in assigning a
point to an interior to a sub-division.

108

5. Each segment s′k ∈ C must be contained in/on the polygon P .

Figure 5.4 shows valid and invalid partition segments drawn by entity Up who
has authority over region P in an SQDM.

As shown in Figure 5.4 (a), child-division d0 = {EFG..JE} is drawn in a
Type 0 block in an SQDM. Segment IJ is a legal segment on the boundary of
the region P . Similarly, segment FG,GH,HI touch the border of the region
R are all legitimate. Any segment completely inside the block is also a valid
partition segment. However, because EF and JE cross out the block, they are
illegitimate partition segments. Any illegal segment in a sub-division renders
that sub-division to be completely illegitimate partition.

In Figure 5.4 (b), segments {H ′I ′} ∈ d1 are invalid partion segments because
they cross diagonal of a Type 1 or bBB block; segments {L′G′, G′J ′, J ′K ′, K ′L′} ∈
d2 are valid partition segments for the lower half of the block.

As shown in Figure 5.4 (c) segments {L′K ′, K ′J ′} ∈ d4 are invalid because they
cross third subdivision R′ /∈ Ui just below segment A′C ′′ in TypeII or (rBB)
block; however, division L′J ′1J

′
2J
′G′L′ is a valid partition for the region below

main diagonal segment A′C ′ and above segment A′C ′′ in a typical Type 7 block.

A procedure BelongTo(s′k, Cj, P) returns TRUE if a segment sk ∈ Cj is a
legal child partition segment for a parent region P ∈ Up. This procedure must
return TRUE for all segments s′k ∈ Cj for child division Cj to be a legitimate
child-division inside parent region P .

A B

CD

Ri

d0
E

F

G

HI

J

(a)

A′ B′

C ′D′

d1

d2

d3

Rj

Ri

E′
F ′

G′

H ′

I ′

J ′

K ′

L′

(b)

A′ B′

C ′D′

d4
Rj

Ri
R′

G′

J ′

K ′

L′

C ′′
J ′
1

J ′
2

(c)

Figure 5.4

Invalid partition segments for three types of BB in an SQDM. (a) shows the
partition segments in Type 0 block; (b) shows child-division in a typical Type 1

block; and (c) shows sub-division in a typical Type 7 block.

109

5.5.2 Simplified Illustration of a Delegation Protocol

Consider a simplified polygon ANM...CBA, as shown in Figure 5.5 (i). The

polygon is bounded by a sequence of boundary points {A,N,M, ..C,B,A} in CCW.

Assume that the region interior to the polygon is P and the exterior to the polygon

is region φ. Let us assume that an entity Up has an authority over the region P ,

encoded by a mapping 〈Up, P 〉.

First of all, we execute an SQDM protocol (as discussed in Chapter 4) to produce

a 2D block representation of the input 2D map. A successful execution of the protocol

will result in an SQDM, as shown in Figure 4.2 (Right). It is an assembly of three

types of bounding blocks BB covering the regions P0 and P1.

• Type-0

• Type in {1, 2, 3..6}

• Type in {7, 8, 9...14}

Assume that an authority Ui draws a sequence of partition segments to construct

a closed sub-division C:

Cj = {A′, B′, C ′, D′, D,A′}

inside the region P . The authority wishes to delegate the child-division (as depicted

in Figure 4.7 (ii)) to second entity Uc. For simplicity, we assume that all the boundary

points in the sub-division are given in a counter-clockwise of their occurrence in the

sub-division C.

From now on, we call the region P as parent region and its boundary segments

as parent segment; the sub-division as child -division and its boundary segments as

110

A

B

C

D

E
F

G

H

I

J

K

L

M
N

P
φ

(i)

A

B

C

D

E

F

G

H

I

J

K

L

M
N

A′

B′

C′ D′

Cφ

(ii)

A

B

C

D

E

F

G

H

I

J

K

L

M

N

M′

A′

P

B′

C′

D′

Q

φ

01

02

03

04

05

06

07

08

09

10

14

15

16

17

18

19

20

21

22

23

24

2526

27

(iii)

A′

P

C

D

17.1 17.2

(iv)

A′

P

C

D

a

b 17.2e

17.1

(v)

A′

P

C

D

a

b

c
de

17.2

(vi)

A

B

C

D

E

F

G

H

I

J

K

L

M

N

M′

A′

P

B′

C′

D′

Q

φ

17.1 17.2

01

02

03

04

05

06

07

08

09

10

14

15

16

18

19

20

21

22

23

24

2526

27

(vii)

Figure 5.5

(i) Input polygon ANM...CBA has interior region P (under control of authority
Up), and the exterior region φ. (iii) SQDM for P is a 2D-OMT T p

B with root σc
B.

(ii)Ui draws a child-division C = A′B′C ′..E ′A′ inside P to delegate it to the second
entity Uc. SQDM for C is a 2D-OMT T p

B with root σp
B. (iv)-(vi) Partition segment

A′B′ is rarrified to fit inside an existing BB 17, which is again split to fit the
rarefied fragment A′P of A′B′ completely. (vii) Rarefied segments in child-division

C are inducted into the parent SQDM to complete the delegation process.

111

child segments; the SQDM for the region P as a parent-SQDM and the SQDM for

the sub-division as a child-SQDM; the BBs in parent SQDM as parent-BBs; the

boundary point OMT for the parent and child polygonal regions as parent boundary

point OMT and child boundary point OMT, respectively.

At time t, Up instantiates a transaction Tt as: [P,C, Uc]Up . The transaction trig-

gers delegation process D1.

1. Populates a boundary-point OMT Tc with static root σc for the child division
C.

2. Invokes macro-transaction to construct a child SQDM TBc with root σBc for
child division represented by Tc. This process is described in Chapter 4. Specif-
ically, we have to validate the following two requirements for a child-division.

(a) A child division is a simple polygon: The ability to successfully map all
the boundary segments to BBs in an SQDM, in the CCW order of points
in a boundary-point OMT for the polygon is sufficient to determine that
no two segments (other than adjacent) intersect with each other. As two
crossing segments cannot be mapped to the same BB, whenever we en-
counter that two segments being assigned to the same BB intersect, we
identify a non-simple polygon. Alternatively, if two segments are divided
at the same point, we also identify intersected segments. To support it,
we maintain counts of the boundary points and the division points for a
polygon. Whenever the count of boundary points inserted becomes greater
than one, then we identify an intersecting polygon.

(b) Child division is a closed loop: Secondly, it proves that the polygon is
complete – by recording the first point and ensuring that the last point
is the same as the first. Thirdly, we can easily attribute the appropriate
region identifier (1 or φ) to each line segment incorporated in a BB. Most
importantly, on completion of the mapping, a query regarding any point
(x, y) can be answered by examining a single BB in which (x, y) falls – by
determining where the point (x, y) falls inside the BB in relationship to
the line(s) inside the BB.

3. Rarefy child segments: This process divides child segments along either horizon-
tal or vertical axes such that the splits completely fit into a BB in a delegating
SQDM. Here in the particular case (see Figure 5.5), child segment A′B′ is split
along horizontal axis y = Dx (at green filled point on A′B′) so that the splits

112

A′P ′ and P ′B′ fits well into two different BBs 17 and 16 respectively. This is
achieved by invoking µ-transaction

AddPoint(A′,P, x = Dx)

Similarly, the partition segment D′D is split along the horizontal axis through
y = Ex to produce splits D′Q and QD which fits inside BBs 27 and 16 respec-
tively, by invoking

AddPoint(D,D′, x = Ex)

Child segment A′D,B′C,C ′D′ do not suffer any split because they fall com-
pletely inside BB 17, 16 and 27 respectively. In general, child segments are
split by invoking µ-transaction

AddPoint(p, p′, [x′, y′]),

where, [x, y] is the axis along which the segment is split. Particularly, the split
axis is either of 4 sides of a BB in the input SQDM, where segment pp′ overlaps
geometrically.

Let us collect these splits in a dictionary Lrc = {A′, P, B′, C ′, D′, Q,D,A′}.

4. Map child segments in Lrc: Once child segments rarefied so that they fit com-
pletely inside existing BBs in the parent SQDM, they are sequentially mapped
to the parent BBs.

For example, child segment {A′P,A′D} are mapped to parent BB 17; {B′P,B′C ′, QD}
are mapped to the parent BB 16, and {C ′D′, D′Q} are mapped to BB 27.

However, mapping a child segment pp′ to a parent BB is valid if the segment(s)
becomes:

i) a diagonal of the parent BB

ii) a support segment of a diagonal of the BB (one endpoint is at the corner
of the BB and other is on the opposite side of the BB)

iii) one of the 4 sides of the parent BB with segment (parent or child) mapped
previously.

For instance, segment PA′ in BB 17 fails condition i), ii) and iii); segment A′D
fails condition ii). This calls for invoking a µ-transaction

SplitBB1(pp′,BB)

to further split the parent BB so that a child segment can be correctly mapped.

Consider a BB 17 along parent boundary line CD and child segment PA′ from
map in Figure 5.5(c). The following µ-transactions are invoked to additionally
split parent BB 17.1 into constituent parent BBs.

113

i) {17.1, 17.2} ← SplitBB1(17, x = A′
x) //produces BBs 17.1 and 17.2

ii) {a, b} ← SplitBB1(17.1, y = A′
y) // produces BBs ’a’ and ’b’

ii) {b.1, e} ← SplitBB1(b, y = A′
y) //produces BBs ’b.1’ and ’e’

By now, we are ready to map child segments A′P to a parent BB e. Similarly,
parent BBs 27 and 16 are split to map partition segments B′C ′, C ′D′, and
QD.

5.5.3 Region OMT

The region OMT is also a collection of key-value pairs; a pair {R, vR} corresponds

to a region R with parameters vR. Specifically, the parameters (in vR) associated with

region R include:

α Context

ξps root of boundary points collection

ξbs root of BB collection (pre-delegation)

ξbd root of BB collection (includes delegated regions)

ξr root of “parent and children” key-value collection

From now on we shall denote the parameters of R as R.ξps, R.ξbs, etc. The context

α can be anything that this map represents in the real-world. For instance, the

map for context “State,” “City,” “Congressional District,” “Gas Stations,” “Personal

Parcels,” and so on.

The 1-D OMT root ξps corresponds to a boundary-point OMT Tp collecting

boundary-points in CCW for a region R. The 2-D OMT root ξbs corresponds to

a static map of the region R (before delegation of sub-regions) represented by TB; ξbd

114

corresponds to a dynamic map T ′B altered by delegations. Leaves in both collections

are 5-tuples of the form (xl, yl, xh, yh, v).

The key-value pair collection with root ξr has one entry corresponding to the

parent, and one for every child region; a key-value pair {Q, qc} in this collection

indicates that region Q with region code qc > 1 is a delegated child; if qc = 0 the

region is the parent. The region code 1 is reserved for itself (undelegated regions).

If R.ξbs 6= 0, the implication is the successful completion of the map construction

process. Such a region is said to be in a non-authoritative state until R.α remains 0.

In the authoritative state, R.α 6= 0 (R has been assigned a context), and R.ξr 6= 0

(as R must have a parent).

5.6 Surrendering/Rolling-back a Delegation

A process by which a receipt of authority over a sub-division in a 2-D space is

returned back to the immediate authority that delegated the sub-division is defined

as surrendering (or rolling-back) a delegation transaction. It is similar to refunding

an online transaction. The need for rolling-back a delegation in the context of a

spatial region comes with few reasons:

• an error in construction of delegated sub-division,

• an erroneous delegation to wrong authority

• a service failure or due to legal interruption, among others.

A secure protocol for rolling-back a delegation is expected to totally preserve the area

of delegated region after the rolling-back.

115

A transaction RollBack (R, qr, P, v, p, pn) initiates rollback of region R delegation

by parent P . Before a region R delegation can be rolled back, delegations of all

regions inside R should have been rolled back. In other words,

1. R.ξr should be the root of an OMT with a single key-value pair, {P, 0}, corre-
sponding to the parent P ;

2. {R, qr} ∈ P.ξr;

3. The context OMT should have a key-value pair {α, ξd ‖ ξc} where {R,P} ∈ ξd,
{R, 0} ∈ ξc, and {P, n} ∈ ξc

After the delegation is rolled back R.ξr = 0, R.α = 0, R.ξbd = R.ξbs, R 6∈ P.ξr,

R 6∈ ξd, R 6∈ ξc and {P, n − 1} ∈ ξc. This macro-transaction conveys a sequence

of micro-transactions Remline (p, p′, qr) to remove a boundary line (p, p′) (not shared

with the parent) and modify a region identifier associated with each line from qr to 1.

The network nodes must achieve consensus on an OMT root rb and start/last-seen

points ps/pl after executing the sequence of micro-transactions. Only if ((p, pn) ∈

R.ξps) ∧ (p > pn), rb is initialized to P.ξbd, and ps = pl = pn.

5.7 Related Works, Results, and Conclusions

Considering that a state authority delegates county-level boundary to county

authority, states to county delegation was performed to evaluate the overhead of the

micro-transactions. For instance, Mississippi state is delegated to constituent counties

such as Yazoo, Noxubee, etc. The delegation process begins with independent parent-

level SQDM for the state and child-level SQDM for a county. For instance, to delegate

Yazoo county with 717 boundary segments by Mississippi state SQDM (with 7919

BBs), child boundary segments must be rarefied 212 times, producing a total of 929

116

(717+212) child segments. These child segments fall into the total of 74 parent-BBs.

These 74 parent BBs were split 2518 times to accommodate (929) child boundary

segments. After mapping the boundary segments (Figure 5.6 bottom), the total

number of BBs in the parent SQDM was 10363 (6682 clear BBs, 3661 blue/green,

and 20 red).

The GRDP protocol provides the following key merits in relation to spatial au-

thority transfer:

1. It supports fail-safe decentralized delegation services.

2. It obviate a trusted-third party authority for a delegation of authority over two
a dimensional space.

3. It supports the self-governing system of operating nodes.

Confidence in the attribution of ownership/control of geographic (regions (or co-

ordinates) opens avenues for a wide range of trustworthy services. For instance, in

the current time, anyone seeking to provide an (on-line) service is required to

1. Purchase an Internet domain names such as abc.com; xyz.org, etc.) from a
domain registrar.

2. Promote the domain name, with the hope that potential clients will remember
the name when they need the service.

3. Provide DNS information regarding the name (in the form DNS records) to
enable users to contact for purchasing a service.

However, if geographic coordinates can be delegated from one entity to another

entity, business or service providers do not need to purchase and promote their In-

ternet domain names. For instance, they already own a geographic location that

can uniquely identify their business or services. Potential customers do not need to

117

Figure 5.6

Top (left): SQDM for MS state. Top (right): SQDM for Yazoo county. Bottom:
After the delegation of Yazoo county by MS.

118

recall domain names of the services/business and also do not have to search them

by a location. With an authorized delegation service, any customer that look for a

service can simply search by a location to get an authenticated, and unbiased list

of service provider around the location by using a simple query such as 'n-closest

context-specific feature around (x,y).'

119

CHAPTER 6

BLOCKCHAIN-BASED REDISTRICTING PROTOCOL

Either you repeat the same
conventional doctrines everybody is
saying, or else you say something
true, and it will sound like it’s from
Neptune

Satoshi Nakamoto

Trust in the integrity of processes for congressional redistricting is crucial for

the smooth functioning of democracies. Achieving universal consensus on the fair-

ness and unbiasedness of district plans is essential. In this chapter, we discuss a

blockchain-based redistricting protocol (BREP) to automate the task of redistrict-

ing. It is expected to enhance public participation in a redistricting process and

bolster transparency in the process outcome. BREP is designed to choose the “best”

of any number of independent redistricting plans, based on agreed-upon metrics like

iso-perimetric ratio, area moment, population moment, among other metric that

measures the compactness of the constructed districts. Other constraints, such as

contiguity of the geometry and equal-population, are also evaluated.

6.1 Introduction and Motivation

In the context of elections, redistricting (or only districting) is a task of de-

composing a geographical region into electoral sub-regions called districts such that

120

each sub-region meets a similarity criteria such as population, geographic contiguity,

geometric compactness, among others [22]. Every ten years, congressional redistrict-

ing is performed to incorporate population changes across the United States. Basic

principles of a congressional redistricting in the USA include [3]:

1. Each new district must have a nearly equal population.

2. Each district must avoid political biases.

3. Each district must form a geographically contiguous and geometrically compact
geographic region.

The redistricting principles, however, may differ among states. A congressional

redistricting is usually performed by a commission of political representatives or in-

dependent experts. Redistricting by a politically biased committee may lead to what

is known as gerrymandering [3]. A gerrymandered redistricting process produces dis-

tricts that give an advantage to one party over another [3, 19] in elections. The idea of

using computer algorithms to automate redistricting to produce a fair district plan is

appealing to scholars in political science, law, and computational sciences. However,

the trust in the computer platform and the algorithm are controversial, for very good

reasons. The integrity of the computing platform, data or algorithms may have been

compromised (or attacked) at numerous points. Sophisticated computer algorithms

might be misused to produce appealing but subtly, politically biased districts [3].

Moreover, most of the redistricting algorithms or software use some heuristics al-

gorithms such as K-Means minimization heuristic, shortest split-line algorithm, and

ad-hoc heuristic, among others [3]. These algorithms neither yield precise and correct

solutions nor provide a probability of correctness/error of the solution. Redistricting

121

operations, in essence, seek to create optimally compact, contiguous, near-equal pop-

ulation districts, thereby optimizing some cost, making it an NP-hard problem [4].

It is therefore easy to understand that present computing platform and algorithm(s)

are not sufficient to produce or identify unbiased districts. We purpose a trustworthy

and secure blockchain-based redistricting evaluation protocol (BREP) for choosing

the “best” districting plan from potentially thousands of proposed districting plans,

based upon agreed-upon compactness measures such as iso-perimetric ratio, area mo-

ment, population moment, etc. The motivations for the proposed approach are as

follows:

1. A redistricting problem is an exhaustive search problem that cannot guarantee
optimality.

2. A computerized or automated redistricting method cannot be trusted to gen-
erate a fair redistricting plan.

3. An ability to independent experts to participate in a redistricting process can
enhance transparency, competitiveness, and consensus in the fairness of dis-
tricting tasks.

Having discussed the rationale behind purposing BREP, we formalize the protocol

in the following section.

6.2 Overview: Blockchain-based Redistricting Protocol (BREP)

A geographic region (such as a state of the USA) is a (political) map containing

non-overlapping boundaries called census blocs. We group the census blocs/blocks

together to construct different contiguous sub-regions. These sub-regions are called

as congressional districts. For instance, the state of Texas is constituted with 914231

122

census blocks. These blocks are grouped into 36 different political sub-divisions called

congressional districts. Each district is a contiguous geographic region.

B0

B1

B2

B3

B4

B5

B6

B7

B8

B9

B0

B1

B2

B3

B4

B5

B6

B7

B8

B9

D0 D1 D2

P-I

Figure 6.1

Left: a region R contains ten census blocks (B0, B1, ..B9) allocated for redistricting
into three districts D0, D1, and D2. Right: P-I, where the ten blocks are grouped to
form 3 sub-regions, (say) congressional districts as depicted by gray, green, and red

shade areas.

Consider a geographic region R, as shown in Figure 6.1. It consists of a set of

2-D sub-divisions, viz., census blocks {B1, B2, .., Bn}. Each census block Bi ∈ R is

geography bounded by a set of boundary points p0, p1, .. in counter-clockwise order

(CCW). Each sub-division Bi is also associated with a set of p static attributes Ai =

{ai0, ai1...aip}. For instance, attributes of a census block can be a scalar measure of an

area enclosed, count of the population residing in the block, among others. The region

R is divided into q sub-divisions called congressional districts, D = {D1,D2..Dq},

where a set of contiguous census blocks creates each district.

123

A redistricting plan is a mapping G : R → D that maps each Bi ∈ R uniquely

to one of the distinct districts Dj ∈ D. Furthermore, such mapping must attempt to

optimize k measurable constraints, C = {c1, c2...ck}. For instance, a plan may impose

measurable constraints such as equal-population, compactness, convexity, and prox-

imity of the districts constructed. Given a set of N district plans G = {G1,G2, ...GN},

BREP is a protocol for a trustworthy computation of a ’goodness’ measure mi for

each of the mapping Gi. Let us take an example of an online auction process to

explain the operations of BREP protocol further.

6.2.1 An Analogy to an Online Auction Process

A seller auctions a product O for an online sale. Potential n customers bid

their intended payment amounts X = {x0, x1, ..} online. As the auction expires, the

highest bidder Cj ∈ X, bidding maximum price xmax = max{X}, is announced as

a winning bidder. For a fair and impartial result of a bidding process, a secure and

trustworthy system must have control over the auction process and related bidding

data assets such as customer’s account, bidding amounts, etc. A mutually trusted

party to select the highest bidder is necessary to uphold the trust in the entire auction

system. Similar to an online bidding process, a BREP protocol begins by posting

a valid problem P , that defines a state-wide (or nation or city-wide) redistricting

problem in a public blockchain infrastructure. The blockchain infrastructure consists

of possibly hundreds of independent computing nodes, often called verifiers. The

124

verifiers (also known as incentivized users) verify the integrity and correctness of the

problem instance before finally committing to a public blockchain ledger.

Independent sources (users) can propose their districting plan (or redistricting

solution) for a specific valid problem committed on a blockchain network. Such in-

dependent sources can be an individual, an expert group, a firm, a computing node

or a system of resourceful computing nodes, and so on. A source of a redistrict-

ing solution Gj to a redistricting problem P broadcasts the solution over a public

blockchain. According to the BREP protocol, each redistricting solution must be

associated with a metric value that is a measure of ’goodness’ (higher compactness

measure, near-equal population, and contiguous geographic boundary, among others)

of redistricting solution. Additionally, the measure and certain monetary stake (e.g.,

a digital currency such as Bitcoin). Once a bunch of the redistricting solutions is

received by the blockchain network, the “best” solution is selected by the network

depending upon the claimed ’goodness’ measures of the solutions. The best solution

is again validated by the incentivized nodes (users) of the blockchain network. If

such a solution fails the validation criteria defined for the corresponding redistrict-

ing problem, the stake associated with the solution is forfeited by the blockchain

network. A valid redistricting solution is declared as the winner of the redistricting

process and is rewarded based on predefined reward and penalty policies for the prob-

lem. The provision of reward and penalty ensures the submission of correct solutions

and eventually selection of the “best” redistricting plan.

125

Redistricting
Plans

Blockchain
Network

Redistricting
Plans

Miner

Ledger: Input Map for Redistricting

Ledger:Metrics

Figure 6.2

In a BREP, a map redistricting problem is defined and broadcast over a blockchain
network. A set of independent computing nodes submits a set of redistricting plans

to the blockchain network. The potential plans are evaluated by executing
transactions corresponding to standard metrics. The evaluation results are

validated in blockchain and finally committed to a ledger.

Figure 6.2 depicts a simplified framework of a BREP protocol. A state authority

publishes data assets required for a redistricting over a public blockchain network op-

erating on a BREP protocol. The data assets are verified before they are committed

to an append-only ledger in the blockchain network. Identified non-state authorities

post potential district solutions (plans) for the problem into the network. The incen-

tivized nodes (users) in the network agree upon the “best” solutions. They eventually

validate it to determine the best redistricting solution.

In short, fairness of the bidding process may call for a trusted third party to

select the highest bidder. The goal of BREP is to avoid the need for a trusted third

party to select an optimal redistricting plan. BREP employs a transaction-based

state machine model for achieving consensus on the outcome of the process state.

126

Specifically, BREP relies on a consensus-based blockchain broadcast network (BN)

[46, 12].

6.2.2 Security Assumptions

The security and trust of a BREP stem from the following assumptions:

1. A blockchain network verifies and maintains the total integrity of input data
required for redistricting. Input data set in used by BREP consist of

• geo-spatial information of census blocs (or counties) in a given geographic
region,

• static attributes such as count of population and area/perimeter/centroid
of the census blocs,

• contiguity and compactness requirements

• policies for redistricting reward and penalty,

• redistricting plans (solutions), among others.

2. Incentivized computing nodes (also called miners) compete to determine the
“best” redistricting plan out of the submitted redistricting solutions. Once it
is selected, the network nodes again compete to validate the plan.

6.2.3 Contributions

This chapter makes the following contributions:

• Efficient data structures for low-complexity verification of transactions executed
in a BREP.

• Execution policies that a blockchain network nodes to follow to complete the
selection of the “best” redistricting solution submitted to the network.

• Open avenues to enhance public participation in a pressing issue of congressional
redistricting.

The security and trustworthy of a redistricting evaluation protocol leverages two

major components:

127

• A set of Ordered Merkle Tree (OMT) for ensuring the integrity of redistricting
data assets; district plans; and evaluation metrics corresponding to each of the
plans, and

• A universal consensus achieved on the integrity of the operations and data in
a blockchain network.

6.2.4 Metrics for Evaluating District Plans

Generally, geometric compactness, contiguity, and population equality have been

considered for measuring the quality of a redistricting plan. Litany of scholarships

are dedicated to measuring a districting plan for a redistricting problem. In cases,

heuristic algorithms used to produce a districting plan attempt to minimize or maxi-

mize compactness while also producing near-equal population districts. Other greedy

algorithms just attempt to produce equal-population districts. However, scholars still

debate over complete dependence on a single criterion. We will define some of the

frequently recommended compactness measure as reported by [61, 3, 20], to measure

the quality of a districting plan. We define several other criteria for a shape d whose

area is Ad; perimeter is Pd; the convex hull is Hd; the largest inscribed circle in d is

cd; bounding circle C, and count of population is pd, and centroid is c0(Cx, Cy). The

shape d consists of N composing shapes called blocks {b0, b1, .., bN}.

6.2.5 Area, Perimeter and Centroid of a Closed Geometric Figure

Let d be a simple polygon whose n sides are described by Cartesian coordi-

nates (x0, y0), (x1, y1), ..., (xn−1, yn−1, (x0, y0)) in counter-clockwise (CCW) along the

128

perimeter of the polygon. An area, A, of the shape is given by Gauss’s area formula

[10],

A =
1

2
|
n−1∑
i=0

(xi + xi+1)(yi+1 − yi)| (6.1)

The perimeter (L) and the centroid (Cx, Cy) of the polygon with an area A is

given by [9]:

L =
n−1∑
i=0

√
(xi − xi+1)2 + (yi − yi+1)2; (6.2)

Cx =
1

6A

n−1∑
i=0

(xi + xi+1)(xiyi+1 + xi+1yi)

Cy =
1

6A

n−1∑
i=0

(yi + yi+1)(xiyi+1 + xi+1yi)

(6.3)

Algorithms for computing A, L, and (Cx, Cy) requires only O(n) iterations. This

permits a low-memory platform to calculate these properties.

Several measures of compactness for a shape d can be defined as below:

1. Iso-Perimetric Ratio (IPQ): It is defined as the ratio of a shape’s area to that of
a circle of equal perimeter. A higher ratio is desired for a higher compact dis-
trict. This metric can detect complex boundaries. However, it fails to capture
population distribution. Mathematically,

IPQ = 4π ∗ Ad/P
2
d ; (6.4)

A similar measure known as Schwartzberg ratio equal to 1/
√

(IPQ) can be
defined for the shape. However, as cited by [14], this measure is overly sensitive
to small changes in the boundary.

2. The moment of area (I): It is a dispersion measure defined as weighted distances
ρ2
i squared of the composing blocs to a fixed point known as centroid. The

weights wi of the composing blocs can be of area Abi or population count of pbi .
If weights are measurement of areas, then it is called moment of area (IA), and
if weights are measures of population counts, the measure is called moment of
population (IP). Though a higher value of the moment is desired, it does not
always detect complex boundaries. Mathematically,

129

I =
bn∑

bi=0∈d

wiρ
2
i (6.5)

3. Convex Hull Area Ratio (HA): It is a ratio of a shape’s area to the area of
a convex hall for the shape. Instead of an area, it is also possible to define
the population hull (HP) as a ratio of shape’s population measure shape to
population. A convex shape is considered to be less diverse and morphologically,
less distorted. Mathematically,

HA = Ad/AHd (6.6)

4. Reock Ratio (RR): It is the ratio of the area of a shape to the area of the
smallest circle bounding the shape. Mathematically,

RR = Ad/AC (6.7)

a similar ratio can be defined if we take the largest circle c inside the shape.
However, it is computationally intensive to determine the largest in-circle for
an irregular shape.

5. Mean (MR), Dynamic (DR) or Harmonic (R) Radius: The mean radius is the
average value of the radius ρ to the shape’s centroid. It is an areal dispersion
measure equal to:

MR = (2R/3)/
(

(1/Ad)

∫
Sd

ρδAd

)
; (6.8)

where ρ is a radius integrated over a surface area Ad in shape d. Similarly,
dynamic (DR) and harmonic radii (HR) is equivalent to:

DR = (R/
√

2)/
(

(1/A)

∫
Sd

ρ2δAd

)−1/2

(6.9)

HR = (R/2)/
(
A/

∫
Sd

δAd/ρ
)

; (6.10)

6. Rohrbach Index (RI): It is a measure of an average distance of points in a shape
to the shape’s perimeter. Normalized with equal area circle, it is given by:

RI = (

∫
Sd

dpδAd)/(πR
3/3); (6.11)

where dp is a distance of a point in shape to the shape’s perimeter.

130

Other criteria for redistricting are contiguity of districts, and near-equal population

counts among constructed districts.

• District Contiguity or non-fragmentation: This property can be checked by
maintaining an adjacency matrix of the census blocks in a state. Each block
that falls in a district must be checked if that block’s adjacent block is in the
district. Figure 6.3 shows a valid and invalid redistricting scenarios.

Algorithm 2: District Contiguity Algorithm

Input : R = {b0, b1..bN}, a set of blocks (census blocks) in a state R;

A〈bi,{bj : bj ∈ R is adjacent to bi}〉–is an adjacency matrix of

blocks in R;

D, a districting plan, is a set of k sub-sets of blocks in R.

Output: False if a block bi in a district Dj does not have an adjacent block

in A that is also in jth subsets Dj.

1 for Each bi IN Dj do

2 Abi :=Adj(bi, A) ; // Adjacent blocks of block bi in A

3 if Abi Intersection Dk IS {} then

4 RETURN FALSE

5 end

6 end

7 RETURN TRUE

• Population Equality: It is a basic requirement for a districting plan. Algorithms
must work to map nearly equal population among created districts. Each cen-
sus block is associated with a count of population in that block. The total
population in a district must be equal to the sum of the population counts for
all the census blocks mapped to that district.

Let Dj be jth district of a state R, which is composed of n−blocks {bj0, b
j
1, .., b

j
n}.

Then the population of the district Dj is given by the sum of the population
of the constituent blocks bj0, .., b

j
n. The variance of the population among the

district must be below some defined threshold.

131

6.3 An Illustration of a State Redistricting Problem

Consider that a public key, Up associated with an authority responsible for con-

structing a redistricting regionR and announcing the problem in a broadcast blockchain

network. Let the contrived region R represents the state constituting of 10 census

blocks,

R = {B0, B1, B2, B3, B4, B5, B6, B7, B8, B9};

allocated for redistricting into three distinct, non-overlapping congressional (say)

districts D = {D1, D2, D3}. Each block Bi is associated with a set of attributes

{ai0, ai1, ..}. For example, the block’s surface area and population count can be denoted

by ai0, and ai1. The geometric attributes such as area and perimeter associated with

a geometric figure (such as a polygon) is computed by the network nodes. We also

choose to associate non-geometric attributes such as population (p) with each of the

blocks in the region. As a requirement for a redistricting problem, the authority

Up is permitted to decide to measure a redistricting plan against k = 3 measurable

constraints such as C = {IPQ, I,HA}, with usual meanings as discussed in earlier

section 6.2.4.

Starting from now, we refer Ur as a State authority, and her region, R is ap-

portioned for a redistricting. The potential districting plans for the region will be

evaluated in a blockchain network that executes a BREP protocol. For notational

convenience, we use Up.R, R.D, R.C, Bi.a
i, Bi.p, etc. to access parameters/properties

132

B0

B1

B2

B3

B4

B5

B6

B7

B8

B9

D0 D1 D2

P-I

B0

B1

B2

B3

B4

B5

B6

B7

B8

B9

D0 D1 D2

P-II

B0

B1

B2

B3

B4

B5

B6

B7

B8

B9

D0 D1 D2

P-III

B0

B1

B2

B3

B4

B5

B6

B7

B8

B9

D0 D1 D2

P-IV

Figure 6.3

Blocks B0, B1, ..B9 are used to construct 3 districts gray (D0), green (D1), and red
(D2). Four arbitrary redistricting plans are constructed: P-I, P-II, P-III and P-III.

133

associated with a state redistricting structure. In what follows, we discuss the BREP

protocol based on the following assumptions regarding input data:

1. No block contains a hole polygon. In other words, polygons are bordered ex-
ternally to each other without containing one into the other.

2. Blocks appropriated for redistricting form a contiguous region called (say) state.

A BREP process employs three major sub-processes:

1. State Construction Sub-process Psc,

2. District Plan Construction Sub-process Ppc, and

3. District Plan Evaluation Sub-process Ppe

Given a 4-tuple (R,D, A, C) defined by a state authority Up, sub-process Psc specif-

ically operates in the following order to-

1. Initialize blockchain ledger for a state construction sub-process,

2. Initialize OMTs TR and TD representing region R, and district set D.

3. Load R into TR; load D into TD; load A into TR (it will be clear later);

4. Trigger sub-process Ppe.

The blockchain network is now ready to receive districting solutions from any

non-state authority identified by a public key Ug. Each independent Ug operate

to constructs an independent mapping G(R,D) and the corresponding district plan

metric structure (DPMS) (Ω, G,M)Ug, which is self-claimed ’goodness’ value of the

plan G. Under sub-process Ppc,

5. Ug broadcast the DPMS over the blockchain network (BN).

6. The BN reaches the consensus to select the best performing plan.

134

Given a selected best performing plan G(R,D) purposed by a non-state authority Ug,

the sub-process Ppe operates to

7. Validate G(R,D) against the SRS (R,D, A, C),

8. Recompute DPMS to validate claimed DPMS (Ω, G,M)Ug. The computed
matrices are again committed to a blockchain ledger.

Figure 6.4

BREP as a set of Macro-Transactions

We execute each of these sub-processes as the processes’ macro-transactions in a

BN. Firstly (see Figure 6.4), the macro-transaction for Psc is executed as State Re-

districting Macro-Transactions to reach a consensus on the correctness of a Psc. It is

followed by the execution of District Plan Macro-Transactions for Ppc to reach a con-

sensus on the correctness of each Ppc; Finally, the Macro-Transactions for Ppe is ex-

ecuted i) to select the “Best” district plan and ii) to validate the selected district plan

to finally commit it into a blockchain ledger. Each of the macro-transaction is broken

135

down into constituent low-complex operations called micro (µ)-transactions. In the

later section, we identify specific µ-transactions in each of the maco-transactions.

In the following section, we discuss data structures that are useful to execute (µ)-

transactions in a BN.

6.4 BREP: Data and Transactions

Major actors in a BREP protocol are two types of authorities: i) State authority,

Up, and ii) Non-state authority, Ug. We use a public key Uu
p to identify a state

authority Up. The public key Uu
p is bound with a private key U r

p . Any non-state

authority Ug is identified (as ’g’ in general) by a public key Uu
g , is bound with a

private key U r
g . A transaction Tt digitally signed by an authority Up is denoted

as (T)Up ; and that signed by Ug is denoted by (T)Up. Data required for a state

redistricting are defined as State Redistricting Structure (SRS), and data submitted

as redistricting plan are described as State Districting Plan (SDP). On the bedrock

of BREP are multiple OMTs that facilitate to track the integrity of an SRS, an SDP,

and other useful data for a state redistricting project.

6.4.1 State Redistricting Structure (SRS)

A state authority Up defines a state redistricting structure (SRS). It is denoted

as (Ω)Up, which is a 5-tuple Ω(R,D,C,A)Up , with usual definitions of R, D, C, and

A. Corresponding to a 5-tuple ΩUp SRS apportioned by authority Up, a blockchain

network initiates, maintains, and updates the following OMTs.

1. Block OMT: It is an OMT TBi that collects border points for each block Bi ∈ R;
with dynamic root σBi ,

136

2. Region OMT: It is an OMT TR that collects 1D-OMT root σBi ∈ R; with
dynamic root σR,

3. District OMT: It is an OMT TD that collects every district Di ∈ D; with
dynamic root σD,

4. Constraint OMT: It is an OMT TC that collects all measurable constraints
ci ∈ C; with a dynamic root σC .

6.4.1.1 Block OMT TB

Given a polygon with a sequence of n unique points p0, p1, ..pn, p0 in CCW, each

point is added in that order to a Block OMT. Each leaf of the OMT represents a

segment that connects two consecutive points p and p′. Hence, the structure of a

leaf in the tree is (p, p′, v = 0). The index p is defined as p = n ‖ (x, y), where n is

monotonically increasing positional index of the point p(x, y) in the input polygon.

Given N census blocks B0, B1, ..BN , a set of N Block OMTs TB0 , TB1 ..TBN with

their respective roots σB0 , σB1 ..σBN are constructed. The usefulness of the tree lies

in generating proofs if two points(segments) are adjacent to each other in a given

polygon. The root of the tree is useful in asserting the integrity of the geometric

polygonal features under consideration. From now on, we use (p, p′, v) ∈ B to convey

that a segment connecting points p(x, y) and p′(x′, y′) exists in the block tree TB

with root value σB, the point associated with leaf with index p is (x, y), a consecutive

point that follows it is p′(x′, y′). During construction of a block OMT for a block

Bi, its area ai, perimeter, p′i, and centroid (cx, cy) is computed by 6.1, 6.2 and 6.3,

respectively.

137

6.4.1.2 Region OMT TR

The leaves of a region OMT together represent a geographic region selected for

redistricting purposes. Each leaf in a region OMT captures the state of a census

block in the region. The leaf corresponding to a block Bi in a region OMT is of the

form:

(ki, kn, vi),

where, ki is the block key, kn is key to the next block in the OMT, and v is an n-tuple

vector. Specifically, the vector captures essential attributes of the block such as area

a, perimeter l, centroid (cx, cy), polygon-type t = {0, 1} (bit “1” for simple and bit

“0” for self-intersecting), population p, and a block OMT root σBi for the block. It

is represented as:

vi = σB ‖ p ‖ t ‖ a ‖ l ‖ cx ‖ cy (6.12)

Initially, only non-geometric attribute like population count is initialized for each

block in a region OMT. Thus, v is initialized as:

vi = 0 ‖ p ‖ 0 ‖ 0 ‖ 0 ‖ 0 ‖ 0

From now on, we use shorthands Bi.σB to access the root of Block OMT constructed

for the block Bi. Similarly, we use Bi.× to access properties such as p, t, a, l, cx, and

cy of the block Bi from a leaf in the region OMT.

138

6.4.1.3 District OMT TD

District OMT is constructed to maintain the integrity of district identifiers al-

located for redistricting the census blocks. Given a set of q district identifiers

{D0,D1, ..Dq}, an OMT has q leaves of the form (di, dn, 0), where di is the ith district

identifier, and dn is the district identifier of the next district.

6.4.1.4 Constraint OMT TD

Similar to a district OMT, a constraint OMT maintains the integrity of the con-

straint variables to be computed for each redistricting plan. Each leaf of this OMT

is a structure (ci, cn, z), where ci is the index of ith measurable constraints, cn is

the index of next measurable constraint, and z is the function definition of the con-

straint. From now on, we use notations Ω.R, Ω.D, Ω.C, Ω.A, and so on refer/access

parameters defined for an SRS (Ω)Up .

Once an authority Ur completes defining a redistricting problem ΩUr , it digitally

signs the problem’s data object. The signed problem object is broadcast over a

block-chain network as a transaction object. The incentivized users in a blockchain

network work on to validate such transactions before finally appending the resultant

state changes into ledger called redistricting problem chain, called as an Ω−chain,

CΩ.

139

6.4.2 State Districting Plan (SDP)

A non-state authority Ug constructs a state (re)districting plan (SDP), which is a

mapping G(R,D). We can propose any number of SDPs can be for an SRS. Formally,

an SDP is structured as a key-value pairs:

GUg = {(b0, di), ..(bi, di)}, (6.13)

where bi is a block identity of the ith block in a Ω.R, and Di is district identity of

the ith district in Ω.D. A districting plan is well-formed if and only if (i) it contains

all blocks, (ii) each block is assigned to a distinct district, and (iii) all districts form

a contiguous geographic region. For the state redistricting structure mentioned in

example-1; few possible SDPs are P-I, P-II, P-III and P-IV as shown in Figure 6.3.

Meanwhile, it is useful to notice that only plan P-I satisfies all conditions (i), (ii) and

(iii). The districting plan P-II violates the condition (iii) as district D2 contains a

fragmented block B0. The plan P-III violates the condition (ii) as it assigns block B1

to two different districts D0 and D1. Similarly, the plan P-IV violates the condition

(i) because it misses to assign the block B5 to any district.

An Ug initiates and maintains the following OMTs to maintain the integrity and

validity of an SDP G that is broadcast over a BN.

1. OMT TG collects records of GUg , whose static root σG is signed by the non-state
authority Ug.

2. Plan OMT: It is an OMT TP that collects geometric properties for all districts
constructed under a district plan G, with a dynamic root σP .

140

6.4.2.1 Plan OMT TP

A leaf in a plan OMT TP captures the state of a redistricting plan G. It has a

leaf of the form:

(di, dn, w)

, where di ∈ R.D is the district identity of the ith district, and dn is the next district

following this leaf. The value w is defined to include geometric properties such as

a simplicity t, an area (a), a perimeter l, and centroid (cx, cy). Other properties

such as an aggregate of the areas, an aggregate of populations, and the new centroid

of the constituent blocks are tracked by variables a′, p′, and (c′x, c
′
y), respectively.

To denote that if a set of blocks constructs a contiguous district, we also include a

fragmentation property f = {0, 1} (bit “1” for contiguous and bit “0” for fragmented

or non-contiguous). Thus the value wi takes the following form:

wi = f ‖ t ‖ a ‖ l|cx ‖ cy ‖ p′ ‖ a′ ‖ c′x ‖ c′y (6.14)

From now on, we use G.σG to access the static root of the OMT TG, G.(Bi) to

access an image of the block Bi under the plan G (or district that is mapped from

block Bi), G.(Di) to access all the blocks mapped to a district Di in the plan G. We

use also use usual notation such as Di.x to access properties such as t, a, l, a′, p′, c′x

and c′y associated with a district Di.

141

6.4.3 District Plan Metric Structure (DPMS)

Corresponding to an SRS (Ω)Up that a state authority Up constructs, Up also

computes a set of measurable constraints functions defined by Ω.C to produce a

district plan metric structure (DPMS). A DPMS for an SDP G corresponding to an

SRS Ω is a 3-tuple

M = (Ω,G,M = (mij) ∈ Rq×k) (6.15)

where expression M = (mij) ∈ Rq×k is evaluated k measurable constraints Ω.C =

{c0, .., ck} for q districts {D0, ...,Dq} in TΩ.D. M is a matrix with q × k values of k

constraint functions for q district. Corresponding to a district plan, Ug also computes

a scalar value F(M). F(.) is a function that signifies the compactness and contiguity

of a district plan. This scalar value is used to order any given number of submitted

SDPs for an SRS, and determine the “best” SDP.

A metric OMT TM with root value σM is used to commit the integrity of computed

metrics for an SDP. TM collects values mij measured for constraints ci and district

Dj. Specifically, the OMT collects 3-tuple entries of the form:

(di, dn,m00 ‖ m01 ‖ m02..mqk)

as its leaves. From now on, we use G.M to refer DPMS for an SDP G; conversely

M.G to get an SDP G corresponding to M.

142

6.5 BREP: Macro-Transactions

Having discussed the data structures appropriated for BREP, we discuss the

BREP sub-processes as macro-transactions. Macro transactions are broken into

smaller, lower-complex atomic operations called micro-transactions. Each micro-

transactions can be safely verified its correctness in constant time, with minimal ver-

ification objects. Due to the need that a large number of micro-transactions must be

executed for each sub-process, it is useful to group logically related micro-transactions

together to form what is called as macro-transaction. Each macro-transaction is again

be verified in constant time using constant size verification objects. Once a macro-

transaction is executed, a blockchain network must reach-global consensus on its out-

put. In turn, an agreed-upon macro-transaction output is stored into a blockchain,

which is discussed in later sections.

6.5.1 Macro-Transactions for Sub-Process Psc

A state authority Up feeds an SRS over a blockchain network as a macro-transaction

TΩ defined as:

TΩ
i = [ti, δt,Ω]Up (6.16)

which is digitally signed by Up, at time ti. It is a public announcement for districting

plans from any individuals Ugs. Incentivized users in a blockchain network compete

to verify if TΩ
i is well-formed. A transaction Ti is well-formed subject to the following

conditions:

1. Up’s signature is valid for the transaction TΩ
i , and

143

2. Transaction expiry time (ti + δt) is not reached, and

3. Every census block Bi ∈ TΩ.R is a simple polygon. In a simple polygon,
no non-adjacent segments intersect with each other. As shown in Figure 6.6,
polygon AB..HA is a simple polygon whose segments only intersect at their end-
points. Other polygon IJ..PI is not a simple polygon because two non-adjacent
segments PO/(MN) and LM intersect. However, a trustworthy mechanism to
detect a simple polygon is not a trivial process. In section 6.6, we discuss
trustworthy methods for detecting a simple polygon in a blockchain network.

A

B

C

D

E

FG

H

B0

(a)

I

J

K

L

M

N

O

P

(b)

Figure 6.5

(a): A simple polygon ABC..HGA; (b): A self-intersecting polygon IJK..PI.

6.5.1.1 Micro-Transactions

In section 6.6, we discuss AddPoint(), AddEvent(), DelEvent(), AddActSeg()

µ-transactions to execute trustworthy methods to construct and determine if a given

block is a simple polygon. In parallel, µ-transactions such as IncrArea(), IncrPeri(),

and IncrCentr() are executed to compute area, perimeter, and a centroid of a

polygonal block.

144

6.5.2 Macro-Transactions for Sub-Process Ppc

A non-state authority Ug submits DPMS MUg corresponding to a DPS G in the

form of macro-transaction

TMj = [tj,MG, T
Ω
i]Ug ; (6.17)

To mark the receipt of a DPMS for evaluation, the blockchain network enters the

record for this transaction in CΣ ledger. All submitted MG are ordered based upon

their F(.) values to reach a consensus on the “best” performing DPMS M̂G.

6.5.3 Macro-Transactions for Sub-Process Ppe

Corresponding to the “best” performing DPMS M̂G, BN request back Uĝ the

“best” performing SDP, Ĝ = M̂G.G. Uĝ broadcasts Ĝ out of the chain by issuing a

macro-transaction T G defined as:

T Gj = [tj, Ĝ, TΩ
i]Uĝ ; (6.18)

signed by Uĝ at time tj, corresponding to an SDP transaction TΩ
i . A district plan

transaction T Gj is well-formed if the following conditions are satisfied.

Precondition-1: Ug’s signature is valid for the transaction T Gj .

Precondition-2: This transaction must enter network before expiring time set
for the problem transaction which implies Tj.tj ≤ (TΩ

j .ti + TΩ
j .δt)

Precondition-3: Every block in a region R must be mapped to one of the
districts in Di ∈ TΩ

i .(D). As shown in Figure 6.3, SDP P-I satisfies this con-
dition by assigning every block to one of the gray, green, or red districts. An
SDP P-IV misses mapping block B5 to a district, which makes it an illegitimate
district plan.

145

Precondition-4: A block Bi ∈ (T Gj .G) must be assigned to a unique district
di ∈ (TΩ

j → Dk). This property ensures that the mapping assigns a block to a
distinct district. As shown in Figure 6.3, SDP P-III is invalid because of the
block B1 is assigned to both gray and green districts.

Precondition-5: Blocks assigned to each district Di must construct a geo-
graphically contiguous district. In other words, no district is geographically
separated into two or more regions. As shown in Figure 6.3, SDP P-II is invalid
because of the red district, D2, is separated into two regions B0 and {B7, B9}.

6.5.3.1 Micro-Transactions

These validation rules applied by reconstructing a plan OMT TP for a Ĝ. Re-

construction process consists of a series of µ-transactions. We define each of the

transactions in relation to a redistricting plan T Gj .G where a district Di is mapped to

a set of n′ blocks Di = {Bi
0, B

i
1, ..B

i
n′} ⊂ R.

1. IncrArea(Di, Bi): Given an initialized variable, a′ ∈ w ∈ TP tracking the sum
of the area of all blocks Bi ∈ Di, it reads region OMT TR leaf (Bi, vi) (the key
is Bi) to access area value Bi.a, and increments the current value of a′ by Bi.a.

2. IncrCentr(Di, Bi) Given an initialized variable, c′x ∈ w ∈ TP tracking the
sum of centroids of all blocks Bi ∈ Di, it reads TR leaf (Bi, vi) (the key is Bi) to
access centroid value (Bi.cx, Bi.cy), and increments the current value of c′x, c

′
y

by (Bi.cx, Bi.cy).

3. IncrPop(Di, Bi) Given an initialized variable, p′ ∈ w ∈ TP tracking the sum
of the population of all blocks Bi ∈ Di, it reads TR leaf Bi, vi) (the key is Bi)
to access population value Bi.p, and increments the current value of p′ by Bi.p.

4. AddToUnion(Di, Bi) Given a block Bi and union UDi , this transaction com-
putes the geometric union of Bi and UDi .

5. CalcUArea(Di): Given an initialized variable, a ∈ w ∈ TP tracking the area
a district Di, computes the area of the district.

6. CalcUPeri(Di): Given an initialized variable l ∈ w ∈ TP tracking the perime-
ter of a district Di, computes the perimeter of the district.

7. CalcUCentr(Di): Given an initialized variable (cx, cy) ∈ w ∈ TP tracking
the centroid district Di, computes the centroid of the district.

146

The completion of the above µ-transactions enables to evaluate the rules in Precondition-

3, Precondition-4, and Precondition-5 mentioned in the earlier section. They are

validated as:

1. The aggregate of the areas of constituting blocks for each district in the plan G
is equal to the area of the geometric union of the blocks. In other words,

∀Di ∈ G,Di.a = Di.a
′; a, a′ ∈ wi ∈ TP (6.19)

The satisfaction of the above expression ensures that no duplicate block is
assigned to a district Di ∈ R.D.

2. The sum of areas of all districts is equal to the sum of areas of all blocks in the
region R. In other words,

q∑
i=0,Di∈G

Di.a =
N∑

i=0,Bi∈R

Bi.a (6.20)

where Di.a ∈ w ∈ TP , Bi.a ∈ TR.

The satisfaction of the above expression ensures that all blocks in the given
district have been assigned to at least one district Di ∈ R.D.

3. The sum of the areas of all the districts constructed is equal to the area of the
union of the districts (i.e., the area of the constructed state). In other words,

As =

q∑
i=0

Di.a (6.21)

Once the macro-transaction T G is successfully executed for the district plan ĜUg ,

a new macro-transaction TM is triggered to access the correctness of M̂G. TM is

defined as:

T̂M = [Ω, Ĝ]Ug (6.22)

Micro-transactions for T̂M is a series of mij = CalcConstF(Dj, ci) for all 0 ≤

i < k and 0 < j < q, invoked to compute each constraint function ci ∈ C for each

147

district Dj ∈ D. mij values are stored as leaves of a metric plan OMT T̂ M with

the root value of σ̂M. If σ̂M is equal to the root value T M.σM–initially claimed

by non-state authority Ug, then the district plan Ĝ is finally recorded as the “best”

agreed by the blockchain network.

6.6 Trustworthy Verification of a Simple Polygon: Using Modified Shamos
Hoey Algorithm

In a simple polygon, no non-adjacent segments intersect with each other. As

shown in Figure 6.6, polygon AB..HA is a simple polygon whose segments only

intersect at their end-points. Other polygon IJ..PI is not a simple polygon because

two non-adjacent segments PO/(MN) and LM intersect. However, a trustworthy

mechanism to detect a simple polygon is not a trivial process. In this section, we

discuss a trustworthy process for detecting a simple polygon in a blockchain network.

A

B

C

D

E

FG

H

B0

(a)

I

J

K

L

M

N

O

P

(b)

Figure 6.6

(a): A simple polygon ABC..HGA; (b): A self-intersecting polygon IJK..PI.

The incentivized users in a blockchain reach a consensus on a single commitment

until no intersection is detected while processing a given polygon. The protocol makes

148

use of multiple OMTs to monitor the integrity of input polygon, and integrity of the

process under execution. Specifically, we leverage three OMTs to execute Shamos-

Hoey algorithm to enable the blockchain network to reach a consensus regarding if a

polygon is simple.

• Block OMT TB with a dynamic root value of σB, captures segments (points)
on the boundary of an input polygon B. Its construction process is the same
as discussed in section 6.4.1.1.

• Event OMT TE with a dynamic root value of σE, to capture the integrity of
the process sequence.

• Active Segment OMT TA with a dynamic root value of σA, to capture the
integrity of a state of processing input segments.

In the following sections, we discuss the construction and the utility of these OMTs.

6.6.0.1 Event OMT TE

Construction of an Event OMT begins once construction of a Block OMT com-

pletes. Each leaf of a Block OMT TB is processed to insert two event leaves into an

Event OMT TE. Given a leaf (p, p′, v) ∈ TB representing a segment connecting two

points (x, y) and (x′, y′), two event leaves inserted in an event tree are:

1. (x, αn, x ‖ x′ ‖ y ‖ y′ ‖ S) and (x′, α′n, v = x ‖ x′ ‖ y ‖ y′ ‖ E) if x < x′

2. (x, αn, x ‖ x′ ‖ y ‖ y′ ‖ E) and (x′, α′n =, v = x ‖ x′ ‖ y ‖ y′ ‖ S) if x > x′

where, encoding S denotes a ’start’ event leaf, and E denotes an ’end’ event leaf;

αn and α′n denote indices of succeeding leaf. Given N Block OMTs TB0 , TB1 ..TBN , it

results in N Event OMTs TE0 , TE1 ..TEN with respective roots.

149

From now on, we use (α, αn, v) ∈ TE to convey that the leaf exists in the event

tree TE with root value σE, α.“LeafType” to access encoding S or E associated with

the event leaf with index α; α.(x, y) and α.(x′, y′) to access segment endpoints (x, y)

and (x′, y′) encoded in v.

6.6.0.2 Active Segment OMT TA

An Active Segment OMT is due for construction immediately after the construc-

tion of the Event Tree is completed. The leaves in TE are processed in order (from

the lowest key leaf to the highest key leaf) to insert into an active segment OMT TA.

Each leaf in the tree is of form the (γ, γn, v). Given a leaf (x, αn, x ‖ y ‖ x′ ‖ y′ ‖

{S,E}) ∈ TE, two major operations are performed for inserting/deleting a new leaf

into this tree.

• if α.EventType is S, then it then a leaf of the form (y, γn, µ = x ‖ y ‖ x′ ‖ y′)
is inserted in TA. Delete (x, αn, x ‖ y ‖ x′ ‖ y′ ‖ S) from TE.

• if α.EventType is ’E’, then existing leaf γ is deleted/removed from TA. Delete
leaf (x, αn, x ‖ y ‖ x′ ‖ y′ ‖ S) from TE.

The construction of the tree dictates sequential operations of vertices in a polygon

from left to right. It ensures that no vertices(segments) are excluded from considering

intersections. From now on, , we use (γ, γn, v) ∈ TA to convey that the leaf exists in

the active event tree TA with dynamic root σA. Also, we use γ.(x, y) and γ.(x′, y′) to

access segment connecting endpoints (x, y) and (x′, y′) encoded in µ; γ

150

6.6.1 Blockchain µ-Transactions

Operations for the construction of three OMTs explained in the previous section

are executed as a series of verifiable µ-transactions in a BN. Initially, a blockchain

network bootstraps by initializing the state of each of the OMTs to zeros such as

(σB ← 0, σE ← 0, σA ← 0, ξB ← 0)

where bit variable ξB = 0, 1 is “1” if a block is simple. Well-defined operations are

executed in a blockchain, attempting to set this variable to “1” to suggest that a BN

successfully reached consensus about the polygon being simple.

We define each of the transaction related to a polygonal block Bi with n points

Bi = {p0, p1, ..pn, p0} in CCW; each point pi is a coordinate (x, y).

1. AddPoint(i, x, y): Inserts ith point (x, y) in Block OMT TB. A process invokes
this transaction for all points in the block. The first call of this transaction
initializes a Block OMT with initial root value 0. Subsequent calls progress
the root value until the last invocation is made, which marks the end of the
insertion process.

2. IncrArea(xi, yi, xj, yj): Given an initialized variable, a tracking an area of
an input block Bi, this transaction increments the current value of a by (xi +
xi+1)(yi+1 − yi).

3. IncrPeri(xi, yi, xj, yj): Given an initialized variable p tracking perimeter of
an input block Bi, this transaction increments the current value of p by√

(xi − xi+1)2 + (yi − yi+1)2

4. IncrCentr(xi, yi, xj, yj): Given an initialized variables cx and cy tracking a
centroid (cx, cy) of an input block Bi, this transaction increments the current
value of cx by (xi + xi+1)(xiyi+1 + xi+1yi) and the current value of cy by (yi +
yi+1)(xiyi+1 + xi+1yi).

5. AddEvent(p, p′, v): Adds two events associated with the points p and p′ sub-
ject to the following rules:

151

• (p, p′, v) ∈ TE
• If an event with key p.x ∈ TE, single update value v to v′ of an event

leafp.x, αn, v as: if p.x < p′.x, v′ = v ‖ p.x ‖ p.y ‖ p′.x ‖ p′.y ‖ S,
otherwise, v′ = v ‖ p.x ‖ p.y ‖ p′.x ‖ p′.y ‖ E. Otherwise, insert new leaf
with key p.x.

6. DelEvent(p): Deletes an event with key p.x if exists in event OMT TE.

7. AddActSeg(le : (α, αn, v)): Adds a segment si connecting two points α.(x, y)
and α.(x′, y′) to an Active Event OMT TA subject to the following conditions:

• α.EventType is “S.”

• Event with key y /∈ TA, else abort the process with the state (σA, σE, σA, 1).

• IAbv(le : (α, αn, v), la : (γ, γn, v
′)): Active segment s′ la : (γ, γn, v

′) ∈ TA
is just above the current segment si; and s and s′ do not intersect. If they
intersect, then abort the process with the state- (σA, σE, σA, 1).

• IBel(le : (α, αn, v), la : (γ, γn, v
′)): Active segment s′ la : (γ, γn, v

′) ∈ TA
is just below the current segment si; and s and s′ do not intersect. If they
intersect, the process is aborted with the state- (σ′B, σ

′
E, σ

′
A, ξB : 0).

8. DelActSeg((α, αn, v), (γ′, γ′n, v
′), (γ′′, γ′′n, v

′′)): Deletes a segment si connect-
ing two points α.(x, y) and α.(x′, y′) from an Active Event OMT TA subject to
the following conditions:

• α.EventType is “E”.

• Event with key y ∈ TA
• Active segment s′ la : (γ′, γ′n, v

′) ∈ TA which is just above the current
segment si; Thus, γ′.y = α.αn is true.

• Active segment s′′ la : (γ′′, γ′′n, v
′′) ∈ TA which is just below the current

segment si; Thus, γ′′ = α is true.

• Segments s′ and s′ are not adjacent segments in TB.

• Segments s′ and s′ do not intersect. If they intersect then abort the process
with the state (σ′B, σ

′
E, σ

′
A, ξB : 0)

Whenever all leaves in an Event OMT TE are processed, and still the blockchain
state is still found to be (σB : 0, σE : 0, σA : 0, ξB : 0), a consensus is reached on
a current roots σ′B, σ

′
E and σ′A, of OMTs as a new state as:

(σ′B, σ
′
E, σ

′
A, ξB : 1)

to mark that the block is identified to be a simple polygon.

152

In parallel to building a Block OMT for a census block, we compute and update

several geometric properties such as area, perimeter, and the centroid of the polygonal

block. For instance, we compute area, perimeter, and centroid iterating over vertices

of a simple polygon.

6.7 Trustworthy Verification of a Simple Polygon: Bounding Box Method

The process starts by adding every point into a Block OMT (as discussed in section

6.4.1.1). Corresponding to polygonal block Bi, a set of non-overlapping bounding

boxes (BBs) that covers the polygonal region and can safely enclose all the boundary

segments in the block is determined. In other words, each segment in the polygonal

block can be mapped to one of the BBs. As a rule, only two segments can be

mapped to a BB only if the segments meet at one of the corners of the BB. In

case, a segment mapped to a BB intersects (excluding at the corner) with one of the

previously mapped segment, a self-intersecting polygon is identified. This operation

is performed with the following transactions.

1. AddPoint(p, p′) to add every point p ∈ Bi into a Block OMT, TBi , with a
dynamic root σBi . To add all points in Bi, a sequence of

AddPoint(p0, p0),AddPoint(p1, p0)..AddPoint(pn, p0)

are executed. The root of the OMT is updated accordingly.

2. InitBB(BBi) to initialize an OMT TBB with dynamic root σBB, where Bi is
5-tuple (xl, yl, xh, yh, v) representing bounding box for a block Bi.

3. SplitBB(BBj = (xa, ya, xb, yb), [x
′, y′]) to split a BB BBj along vertical split axis

x = x′ or horizontal axis y = y′. For instance, splitting a BBj along x = x′

produces two BBs (xa, ya, x
′, yb) and (x′, ya, xb, yb). The root of the OMT is

updated accordingly.

153

4. InterPolate(pp′, q) inserts a new point q between two points p and p′ in block-
OMT TB whenever SplitBB(BBj, [x

′, y′]) intersects existing segment pp′ ∈ Bi.
The root of the 1-D OMT TB is updated accordingly.

5. MapLine(BBj = (xa, ya, xb, yb, pp
′)) to map a segment pp′ to a BB ∈ TBB. Map-

ping a segment to a BB is setting the value of the leaf by the segment identifier.
Let BBj.v be a segment mapped to this BB. The preconditions for this trans-
action are:

• pp′ is a diagonal of BBj and BBj.v = 0 (empty BBj), OR

• One of p and p′ is a corner and other is on the side of BBj, and BBj.v = 0
or BBj.v = 0 is a diagonal segment.

• pp′ does not intersect between p and p′ with a segment previously mapped
to BBj

If segment pp′ intersects previously mapped segment qq′ ∈ TB, the transaction
is aborted to identify a self-intersecting polygon.

For example, a µ-transaction InitBB(01) initializes a bounding box for B0 in Fig-

ure 6.7(a). Then, µ-transaction SplitBB(01,Cx) splits BB 01 into two BBs 01.1 and

01.2, as shown in Figure 6.7(c). This is followed by µ-transaction InterPolate(BA, q1),

which inserts a new point q1 into 1-D OMT BA ∈ TB0 . Notice that q1 is an inter-

section point between split axis x = Cx and segment BA ∈ TB0 . This process is

continued until the complete set of BBs (as shown in Figure 6.7(d))is built so that

all segments/splits in TB0 can be enclosed. Then segment mapping is triggered. The

µ-transaction MapLine(02,BC), MapLine(02,Bq1), MapLine(04,CD), MapLine(10,DE),

and so on are used to map the segments to one of BB until all segments in TB0 . Notice

that, red shaded BBs contain two segments meeting at a corner, blue shaded BBs

contain single diagonal segment, green-shaded BBs contain a segment that is one of

the side of the BB and gray shaded are empty BBs.

154

A

B

C

D

E

F
G

H

B0

(a)

I

J

K

L

M

N

O

P

(b)

A

B

C

q1

01.1 01.2

(c)

A

B

C

D

E

F

G

H

01

02

03

04

05

07

08

09

10

11

12

13
14

15

09′07′

06′

06

(d)

A

B

C

D

E

F

G

H

(e)

Figure 6.7

(a) A simple polygon B0{A,B, ..H,A} where no non-adjacent segments intersect
with each other. (b)Polygon with vertices {I, J, ..P, I} is not a simple polygon

because two non-adjacent segments PO/(MN) and LM intersect. (c) A set of BBs,
TBB={01, 02, 03..07′, 09′, ..15} built to map segments in polygon B0. (d) Segments

in B0 is mapped to a BB in TBB

155

6.8 BREP: Blockchain States

An append-only blockchain ledger is maintained to keep track of BREP processes

states. It captures three distinct transaction states: i) commitment for each SRSs, ii)

commitment for each DPMS, and ii) a record to the validated and evaluated “best”

performing SDP corresponding to an SRS.

Once macro-transaction TΩ
i is completed, BN reaches a consensus on a 5-tuple

(t, σR, σD, σC , η, µ) where σR is the root value of OMT TR, σD is the root value of

OMT TD, and σC is a root value representing measurable constraints for a district

plan, η is the sequence number, µ is chain accumulation until the previous entry in

a chain. The first entry (0, 0, 0, 0, 0, 0) is the genesis entry with the sequence number

η = 0. Hence, CΣ until the ith SRS recorded at timestamp T is a blockchain of:

(0, 0, 0, 0, 0, 0), (t0, σR, σD, σC , 1, µ1)..(t, σR, σD, σC , η, µi)

where, µ1 is h(0, 0, 0, 0, 0, 0), and µi+1 = h(ti, σRi , σDi , σCi , ηi, µi).

Once macro-transaction TM successfully executed, it is appended at timestamp

t in the same chain as a 5-tuple entry (t, σM, σG, Ug, σR, µ). Once the BN reaches

consensus on the best SDP for an SRS, then it is recorded as a 5-tuple entry

(t, 1, σM, σG, Ug, σR, µ)

The incentive for a non-state authority to submit an SDP is that the best performing

SDP is rewarded. However, the best performing SDP selected by BN is again vali-

156

dated, as mentioned in section 6.5.2. If the SDP fails the validation rules, then the

authority submitting the SDP loses the stake placed during the submission. These

mechanisms encourage any entity to submit a valid SDP for a reward; meantime, it

discourages to submit an invalid SDP. The ability of the protocol to store complete

SDP out of the chain obviates the storage demand for nodes. Only small transactional

records are stored in a ledger by the computing nodes.

6.9 Evaluation Tools and the Methods

Census record of 2010 and spatial data of census-blocks in the “TIGER/Line”

data format was accessed from ftp://ftp2.census.gov/geo/. The geographic entities

such as state, census blocks, and congressional districts are uniquely identified by

codes such as Federal Information Processing Series (FIPS) and Geographic Names

Information System Identifier (GNIS ID). These codes are adopted by the National

Institute of Standards and Technology (NIST) and Census Bureau to identify entities

in the geospatial data.

Census block-level spatial data for each US state are publicly available through:

• https://www.census.gov/geographies/mapping-files/2019/dec/rdo/116-congressional-
district-bef.html (SRC1)

• https://www.maris.state.ms.us/HTM/Data.html

• https://catalog.data.gov/dataset/tiger-line-shapefile-2010-2010-state-alabama-2010-
census-block-state-based-shapefile-with-housing;

• ftp://ftp2.census.gov/geo/tiger/TIGER2010BLKPOPHU/tabblock2010 01 pophu.zip

The storage size of processed census blocks spatial file (in cartographic boundary

shapefiles (.shp)) ranges from 4MB (District of Colombia) to 760 MB (Texas), with

157

an average shapefile of 278MB. In total 11.8 GB of census-blocks spatial data was

processed. The spatial data extracted from different public sources will be stored in

MangoDB and regular comma-separated text files. Spatial data visualization tools

such as QGIS, and mapshaper modules are useful. Graphics and visualization are be

produced by tools such as tikz library for Latex, or matplot library.

We considered a total of 230 congressional districts from 49 US states for evalu-

ation under different metrics such as Iso-Perimetric index, Robharch index, and so

on. The spatial boundary and population of the census-blocks in each of the states

were pre-processed to transform into a state redistricting structures (SRS). The cur-

rent congressional districts in the states are used to construct state districting plans

(SDP) to the corresponding SRS.

The total number of census blocks were 6643775, with average counts of blocks

for a district being 29012; and minimum count of blocks being 1538 in 13th district

of New York, and maximum count of blocks being 133769 in single district North

Dakota.

6.9.1 GIS Development Tools

All of the software tools and programming libraries identified to be useful for

our research are free and open-source. Software modules required for the system

development will be written in the Python programming language. Among others, it

can leverage supporting program modules like OSGeo, osgr, numpy, scipy, matplotlib,

pyshape, geopandas, shapely, scipy.spatial, etc. Test frameworks will be designed and

158

implemented in python using different test constructs and modules readily available

as open and free resources.

6.9.2 Cryptographic Tools and Protocols

Standard cryptographic tools for encryption, decryption, hashing, digital certifi-

cate generation, among others, are borrowed from several free and open-source python

modules such as crypt, hashlib, and bitcoin.

In this experiment, census blocks of states of the USA were taken to define a state

redistricting structure. Current redistricting plans for each of the states were taken as

redistricting plans structure (DPS) for each of the redistricting problems. Constraint

functions considered for evaluating redistricting plans are IA, IP, HA, RR, MR, DR,

etc.

6.10 Related Works, Results, and Conclusions

The time to complete major operations such as computing IPQ, area-moment,

population-moment, and Rohbarc indices and block union were measured. The most

time-consuming operation was a geometric union of the blocks to construct the dis-

trict boundary. The operation is critical in constructing a covering boundary of a

district given constituent census-blocs. The order of magnitude (base 10) of run time

(in the second) for this operation among all districts is at most 2. As the redistricting

metrics themselves are insignificant than their secure/trustworthy computation, they

are not included as part of the results. BREP offers the following merits:

1. An open evaluation system is a transparent box for public auditing. It lefts
redistricting problems to independent untrusted parties, which obviates the

159

necessity to inspect and evaluate redistricting platforms (hardware and soft-
ware(s)) from different security perspectives. It only operates in ways to eval-
uate redistricting plans proposed by untrusted parties.

2. Since it embraces competitive approach, it considers redistricting efforts from
independent expert(s) be treated equally under a standard evaluation criteria.

3. As the selection of the optimal redistricting plan is left to the expertise of
independent evaluating computing nodes, related disputes between political
parties are expected to be nullified.

The use of computer systems to redistricting purpose goes as back as the 1960s. Fully

automated, semi-automated, and fully manual have been used in different states for

redistricting. While the fully automated system is efficient, it is insecure and cannot

be trusted. Traditionally, redistricting has been performed by a committee of experts

and political representatives. However, this approach is highly inefficient than an au-

tomated redistricting method. Scholars M. Altman and M. McDonald, Karin Mac

Donald [3, 4] recommended public participation in producing and verifying optimal

redistricting plan. They introduced the concept of an open-access system that pro-

vides access to redistricting plans, data, and tools to create such plans to be evaluated

publicly. They contended that such a model has the potential to produce thousands

of proposals on redistricting and gives way to much transparency and public partici-

pation. With an immense potential, such a model immediately introduces problems

of evaluating litany of potential district plans. It consumes exhaustive man-hours to

evaluate the plans. Hence, it demands automation using a high-performance com-

puter system. However, as argued earlier section, a conventional computing model is

prone to produce untrusted and unreliable evaluation metrics for a district plan. This

leads to demand for a trustworthy, distributed system for automating the evaluation

160

of district plans. BREP is a distributed consensus-based computing model with the

potential to enhance fairness in a redistricting project. Since redistricting is directly

related to public interest, the model is in line with Saeber’s public participation

geographic information system (PPGIS)[63].

161

CHAPTER 7

CONCLUSIONS

Information systems are composed of processes for “capturing, transmitting, stor-

ing, retrieving, manipulating, and displaying information” [2]. Information is in-

creasingly becoming a valuable commodity. However, the utility of information is

ultimately limited by the extent of trust in its validity.

In this dissertation, our focus was on geographic information. A high level of

confidence in the integrity of geographic information can enable a wide range of com-

pelling applications, and efficient strategies enhancing citizen trust in governments.

One contribution of this dissertation lies in recognizing two important assurances

regarding geographic information, viz., i) authoritativeness and ii) unbiasedness.

For information to be authoritative it is necessary for the receiver of the informa-

tion to establish

1. the source of the information, and

2. the chain of delegations through which the source gained the authority to cre-
ate/propagate such information.

For information to be unbiased, it is necessary to establish that no information rele-

vant to the query was suppressed.

162

Ultimately, all assurances stem from assumptions. More specifically, assumptions

are translated to assurances by well designed protocols. In other words, assurances

are meaningful only if the assumptions are reasonable, the protocols that leverage

assumptions are correct.

Central to the approach adopted in this dissertation is the need to minimize “what

we need to trust,” in order to validate the correctness of assumptions. More specifi-

cally, well founded assumptions like i) standard security properties of cryptographic

hash functions (preimage resistance and collision resistance) and ii) the ability to

achieve consensus on simple state-changes in a blockchain broadcast network are the

only assumptions underlying all protocols and information systems in this research

work.

A blockchain network operates by viewing breaking any computable process into

a sequence of atomic transactions. Execution of each transaction causes the system

to move from mutually agreed, verified, valid old state to a verified, and mutually

agreed new system state. The SQDM protocol was developed on top of a blockchain

network to guarantee both authoritative and unbiased responses to point location

queries. The protocol was then extended to enable Geographic Region Delegation

Protocol (GRDP) for delegation of a two-dimensional geographic space (example,

state, county, city, land parcel, etc.).

Any geographic feature such as point or line can be delegated in the same way we

delegate namespace in a Domain Name System (DNS). SQDM and GRDP can be used

to implement automated and federated e-governance services based on geographic

163

locations or regions. It obviates the need for Trusted Third Party (TTP) between

delegator and the delegatee.

As another utility of the SQDM protocol, a novel Blockchain-based Redistricting

Protocol (BREP) was designed and evaluated. BREP automates the congressional

redistricting task by outputting a highly optimized and trustworthy districting plan

from the public sphere.

To summarize, the protocols explored in this dissertation are primarily motivated

by the need to eliminate dependence on “trusted third parties” for guaranteeing

the integrity of data (example, geographic data assets for the map for geographic

delegation purpose) and the process (example, geographic services such as map and

point location services) output.

164

REFERENCES

[1] N. Adhikari, N. Bushra, and M. Ramkumar, “Secure Queryable Dynamic Maps,”
The 16th International Conference on e-Learning, e-Business, Enterprise Infor-
mation Systems, and e-Government, Las Vegas, 2017.

[2] S. Alter, “Defining information systems as work systems: Implications for the
IS field,” European Journal of Information Systems, vol. 17, no. 5, 2008, pp.
448–469.

[3] M. Altman, Districting principles and democratic representation, doctoral dis-
sertation, 1998.

[4] M. Altman and M. P. McDonald, “The Promise and Perils of Computers in
Redistricting,” Duke Journal of Constitutional Law & Public Policy, vol. 5, no.
1, 2010, pp. 69–159.

[5] S. Arya and D. Mount, “Computational Geometry - Proximity and Location,”
Handbook of Data Structures and Applications, D. P. Mehta and S. Sartaj, eds.,
2005 edition, Chapman & Hall/CRC, 2005, pp. 1–63.

[6] S. Banescu and A. Pretschner, “A Tutorial on Software Obfuscation,” Advances
in Computers, 2018.

[7] J. O. N. L. Bentley and T. A. Ottmann, “Algorithms for Reporting and Counting
Geometric Intersections,” IEEE Trans. Comput., vol. C, no. 9, 1979, pp. 643–
647.

[8] E. Bertino, B. Carminati, E. Ferrari, B. Thuraisingham, and A. Gupta, “Se-
lective and Authentic Third-Party Distribution of XML Documents,” IEEE
Transactions on Knowledge and Data Engineering, vol. 16, no. 10, 2004, pp.
1263–1278.

[9] P. Bourke, “Calculating the area and centroid of a polygon,”, 1988.

[10] B. Braden, “The Surveyor’s Area Formula,” The College Mathematics Journal,
vol. 17, no. 4, 1986, pp. 326–337.

165

[11] N. Bushra, N. Adhikari, and M. Ramkumar, “A TCB minimizing model of
computation,” Communications in Computer and Information Science, vol. 969,
no. October, 2019, pp. 455–470.

[12] V. Buterin, “A next-generation smart contract and decentralized application
platform,”, 2014.

[13] M. Chacos, Brad; Simon, “Meltdown and Spectre FAQ: How the critical CPU
flaws affect PCs and Macs,”, 2018.

[14] C. P. Chambers, “A Measure of Bizarreness,” Quarterly Journal of Political
Science, vol. 5, no. 1, 2010, pp. 27–44.

[15] B. Chazelle and J. L. Guibas, “Fractional Cascading: II. Applications,” Algo-
rithmica, vol. 1, no. 4786, 1986, pp. 163–191.

[16] Y.-J. Chiang and R. Tamassia, “Dynamization of the trapezoid method for
planar point location,” Proceedings of the Seventh Annual Symposium on Com-
putational Geometry, New York, USA, 1991, number January, pp. 61–70, ACM.

[17] R. Chiang, Yi; Tamassia, “Dynamic Algorithms in Computational Geometry,”
Proceedings of the IEEE, Providence, RI, USA, 1992, IEEE.

[18] K. C. Clarke, “Map Data Structures,” Analytical and computer cartography,
1995, pp. 133–156.

[19] V. Cohen-Addad, P. N. Klein, and N. E. Young, “Balanced power diagrams for
redistricting,” 2017.

[20] T. Consistency, “Chapter 2 . The Consistency and Effectiveness of Mandatory
District Compactness Rules,” 1998, pp. 989–1012.

[21] I. S. Consortium, Bind 9 administrator reference manual, Tech. Rep., Internet
Systems Consortium, Inc, 2005.

[22] R. Crocker, Congressional redistricting: an overview, Tech. Rep., 2012.

[23] K. David, GRAPHIC GEMS II Edited by DAVID KIRK, Academic Press, Inc.,
Palo Alto, Califorrnia, 2012.

[24] M. De Berg, O. Cheong, M. Van Kreveld, and M. Overmars, Computational
Geometry: Algorithms and Applications, vol. 17, 2008.

[25] Department of Defense, Trusted computer system evaluation criteria, Depart-
ment of Defense, 1985.

166

[26] P. Devanbu, M. Gertz, C. Martel, and S. G. Stubblebine, “Authentic Data
Publication Over the Internet.,” Journal of Computer Security, vol. 11, no.
0085961, 2003, pp. 291–314.

[27] E. Dieh, Ten Laws for Security, first edition, Springer International Publishing
AG, Gewerbestrasse, 2016.

[28] A. Esri and W. Paper, “ESRI Shapefile Technical Description,” , no. July, 1998.

[29] R. Franco, Preparata P.; Tamassia, “Fully Dynamic Point Location in a Mono-
tone Subdivision,” SIAM Journal on Computing, vol. 18, no. 4, 1989, pp. 811–
830.

[30] O. Fries, K. Mehlhorn, and S. Naher, “Dynamisation of Geometric Data Struc-
tures,” Proceedings of the 1st Annual Symposium on Computational Geometry,
J. O’Rourke, ed. 1985, pp. 168–176, ACM.

[31] S. Gautum, Cryptanalysis and Design of Symmetric Cryptographic Algorithms,
doctoral dissertation, Katholieke Universiteit Leuven, 2011.

[32] M. T. Goodrich, R. Tamassia, and N. Triandopoulos, “Efficient authenticated
data structures for graph connectivity and geometric search problems,” Algo-
rithmica, vol. 60, no. 3, 2011, pp. 505–552.

[33] G. Hunt, G. Letey, and E. Nightingale, “The Seven Properties of Highly Secure
Devices,” Tech. Report Microsoft, , no. MSR-TR-2017-16, 2017, p. 10.

[34] A. Jacobi, M. L. Jensen, L. Kool, G. Munnichs, and A. Weber, Security of
eGovernment Systems, Tech. Rep., Science and Technology Options Assessment,
Brussels, Belgium, 2013.

[35] L. Knudsen and M. Robshaw, The Block Cipher Companion, 3rd edition,
Springer, New York, 2011.

[36] S. Krishnaswamy, W. Hardaker, and R. Mundy, “DNSSEC in Practice : Us-
ing DNSSEC-Tools to Deploy DNSSEC,” 2009 Cybersecurity Applications &
Technology Conference for Homeland Security. 2009, pp. 3–15, IEEE Computer
Society.

[37] B. W. Lampson, M. Abadi, M. Burrows, and E. Wobber, “Authentication in
Distributed Systems: Theory and Practice,” ACM Tansactions on Computer
Systems, vol. 10, 1992, pp. 265–310.

[38] D. Larochelle and D. Evans, “Statically detecting likely buffer overflow vulner-
abilities,” 10th USENIX Security Symposium, 2001.

167

[39] D. Lee and F. Preparata, “Location of a Point in Planar Subdivision and its
Appliccations,” SIAM Journal on Computing, vol. 6, no. 3, 1977, pp. 5–6.

[40] C. Martel, G. Nuckolls, P. Devanbu, M. Gertz, A. Kwong, and S. G. Stubblebine,
“A General Model for Authenticated Data Structures,” Algorithmica, vol. 39,
no. 1, 2004, pp. 21–39.

[41] J. M. McCune and A. R. M. K. Perrig, Reducing the trusted computing base
for applications on commodity systems, doctoral dissertation, Carnegie Mellon
University, 2009.

[42] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of Applied
Cryptography, CRC Press, New York, 2001.

[43] R. C. Merkle, “A Digital Signature Based on a Conventional Encryption Func-
tion,” Conference on the Theory and Applications of Cryptographic Techniques
on Advances in Cryptology, London, UK, 1988, pp. 365—-378, Springer-Verlag.

[44] Mohanty; Somya D., Ordered Merkel Tree: A Versatile Data-Structure for Se-
curity Kernels, doctoral dissertation, Mississippi State University, 2013.

[45] D. Mount, “CMSC 754 Computational Geometry,” Lecture Notes, University
of Maryland, 2002, pp. 1–122.

[46] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System,”
Www.Bitcoin.Org, 2008, p. 9.

[47] G. T. Nguyen and K. Kim, “A survey about consensus algorithms used in
Blockchain,” Journal of Information Processing Systems, vol. 14, no. 1, 2018,
pp. 101–128.

[48] M. H. Overmars and J. van Leeuwen, “Maintenance of Configurations in the
Plane,” Journal of Computer and System Sciences, vol. 23, no. 2, 1981, pp.
166–204.

[49] D. Patten, “The evolution to fileless malware,” Retrieved from, 2017.

[50] F. Preparata, “A New Approah to Planar Point Location,” SIAM J. Computing,
vol. 10, no. September, 1978, pp. 473–483.

[51] R. Preparata P., Franco; Tamassia, “Dynamic Planar Point Location With
Optimal Query Time,” Theoretical Computer Science Science, vol. 74, no. 1,
1990, pp. 95–114.

[52] M. P.V, “Domain Names- Concept and facilities,”, 1987.

[53] R. L. Raja, “Redistricting : Reading Between the Lines,” The Annual Review
of Political Science, 2009.

168

[54] M. Ramkumar, “Efficient Key Distribution Schemes for Large Scale Mobile
Computing Applications,” IACR Cryptology ePrint Archive, 2008.

[55] M. Ramkumar, “Introduction,” Symmetric Cryptographic Protocols, 1st edition,
Springe, 2014, chapter Introducti, pp. 1–9.

[56] M. Ramkumar, “Cybersecurity: It’s All About Assumptions,” National Cyber
Summit 2016, Huntsville, 2016, ACM.

[57] M. Ramkumar, “Minimal TCB for System-Model Execution,” The 2017 Inter-
national Conference on Security and Management, Las Vegas, 2017, number 1.

[58] M. Ramkumar, “Executing large-scale processes in a blockchain,” Journal of
Capital Markets Studies, vol. 2, no. 2, 2018, pp. 106–120.

[59] H. Saini, Y. S. Rao, and T. C. Panda, “Cyber-crimes and their impacts: A
review,” International Journal of Engineering Research and Applications, vol.
2, no. 2, 2012, pp. 202–209.

[60] D. Samyde, S. Skorobogatov, R. Anderson, and J.-J. Quisquater, “On a new way
to read data from memory,” Security in Storage Workshop, 2002. Proceedings.
First International IEEE. IEEE, 2002, pp. 65–69.

[61] J. Saxon, “Spatial constraints on gerrymandering: A practical comparision of
methods,” 2018.

[62] M. I. Shamos and D. Hoey, “Geometric Intersection Problems,” 17th Annual
Symposium on Foundations of Computer Science (sfcs 1976), vol. 1976, pp. 208–
215.

[63] R. Sieber, “Public Participation Geographic Information Systems: A Literature
Review and Framework,” Annals of the Association of American Geographers,
vol. 96, no. November 2004, 2006, pp. 491–507.

[64] J. P. Snyder, Map Projections: A Working Manual, Tech. Rep., 1987.

[65] W. Stallings, “A Brief History of Computers,” Computer Organization and
Architecture Designing for Performance, eight edition, Prentice Hall, New Jersey,
New Jersey, 2007, pp. 18–20.

[66] P. Stewin and I. Bystrov, “Understanding DMA malware,” International Con-
ference on Detection of Intrusions and Malware, and Vulnerability Assessment.
Springer, 2012, pp. 21–41.

169

[67] V. Thotakura and M. Ramkumar, “Minimal trusted computing base for MANET
nodes,” 6th International Conference on Wireless and Mobile Computing, Net-
working and Communications, WiMob’2010, Niagara Falls, ON, Canada, 2010,
pp. 91–99, IEEE.

[68] J. R. Troncoso-Pastoriza, S. Katzenbeisser, M. Celik, and A. Lemma, “A Secure
Multidimensional Point Inclusion Protocol,” Mm&Sec’07: Proceedings of the
Multimedia & Security Workshop 2007, Dallas, TX, USA, 2007, pp. 109–120,
ACM.

[69] Z. Wang and R. B. Lee, “New cache designs for thwarting software cache-based
side channel attacks,” ACM SIGARCH Computer Architecture News. ACM,
2007, vol. 35, pp. 494–505.

[70] G. Wood, “Ethereum: a secure decentralised generalised transaction ledger,”,
2019.

170

	Authoritative and Unbiased Responses to Geographic Queries
	Recommended Citation

	tmp.1625165283.pdf.8ICMZ

