
Mississippi State University Mississippi State University

Scholars Junction Scholars Junction

Theses and Dissertations Theses and Dissertations

8-6-2021

Exploring the use of neural network-based band selection on Exploring the use of neural network-based band selection on

hyperspectral imagery to identify informative wavelengths for hyperspectral imagery to identify informative wavelengths for

improving classifier task performance improving classifier task performance

Preston Chandler Darling
preston.c.darling@gmail.com

Follow this and additional works at: https://scholarsjunction.msstate.edu/td

Recommended Citation Recommended Citation
Darling, Preston Chandler, "Exploring the use of neural network-based band selection on hyperspectral
imagery to identify informative wavelengths for improving classifier task performance" (2021). Theses
and Dissertations. 5261.
https://scholarsjunction.msstate.edu/td/5261

This Graduate Thesis - Open Access is brought to you for free and open access by the Theses and Dissertations at
Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of
Scholars Junction. For more information, please contact scholcomm@msstate.libanswers.com.

https://scholarsjunction.msstate.edu/
https://scholarsjunction.msstate.edu/td
https://scholarsjunction.msstate.edu/theses-dissertations
https://scholarsjunction.msstate.edu/td?utm_source=scholarsjunction.msstate.edu%2Ftd%2F5261&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsjunction.msstate.edu/td/5261?utm_source=scholarsjunction.msstate.edu%2Ftd%2F5261&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholcomm@msstate.libanswers.com

Exploring the use of neural network-based band selection on

hyperspectral imagery to identify informative wavelengths for

improving classifier task performance

By

Preston Chandler Darling

Approved by:

John E. Ball (Major Professor)
Ali C. Gurbuz

Stanton R. Price
Qian (Jenny) Du (Graduate Coordinator)

Jason M. Keith (Dean, Bagley College of Engineering)

A Thesis
Submitted to the Faculty of
Mississippi State University

in Partial Fulfillment of the Requirements
for the Degree of Master of Science

in Electrical Engineering
in the Electrical & Computer Engineering Department

Mississippi State, Mississippi

August 2021

Copyright by

Preston Chandler Darling

2021

Name: Preston Chandler Darling

Date of Degree: August 6, 2021

Institution: Mississippi State University

Major Field: Electrical Engineering

Major Professor: John E. Ball

Title of Study: Exploring the use of neural network-based band selection on hyperspectral im-
agery to identify informative wavelengths for improving classifier task perfor-
mance

Pages of Study: 78

Candidate for Degree of Master of Science

Hyperspectral imagery is a highly dimensional type of data resulting in high computational costs

during analysis. Band selection aims to reduce the original hyperspectral image to a smaller subset

that reduces these costs while preserving the maximum amount of spectral information within the

data. This thesis explores various types of band selection techniques used in hyperspectral image

processing. Modifying Neural network-based techniques and observing the effects on the band

selection process due to the change in network architecture or objective are of particular focus

in this thesis. Herein, a generalized neural network-based band selection technique is developed

and compared to state-of-the-art algorithms that are applied to a unique dataset and the Pavia City

Center dataset where the subsequent selected bands are fed into a classifier to gather comparison

results.

Key words: Remote Sensing, Machine Learning, Hyperspectral Imaging, Band Selection

DEDICATION

To my wife, Ali. Without you, I would not be where I am today. You inspire me to be the best

I can be. Thank you for being there every step of the way.

Thanks to my major professor, Dr. John Ball, as well as my committee members Dr. Stanton

Price and Dr. Ali Gurbuz for taking the time to help me grow as an engineer throughout this

journey.

Thanks to my friends Jarrett, Brandon, and Simmers for spending too many nights rambling

about this topic. It really helped shape this thesis, and I could not appreciate you all more for that

help.

ii

ACKNOWLEDGEMENTS

This work was supported in part by the Engineer Research and Development Center (ERDC)

under the United States Army Corps of Engineers (USACE). The findings and opinions in this

thesis belong solely to the author and are not necessarily representative of those who have supported

the work.

Permission to use the unique hyperspectral data gathered for this thesis was given by the

Survivability Branch of the Geotechnical and Structures Laboratory (GSL) of ERDC.

I thank my committee for their comments on this thesis, and I thank John E. Ball for directing

this research.

iii

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF TABLES . vi

LIST OF FIGURES . vii

CHAPTER

I. INTRODUCTION . 1

1.1 Scope of the Problem . 1
1.2 Importance . 2
1.3 Contributions . 4

II. BACKGROUND . 5

2.1 Hyperspectral Imaging . 5
2.2 Neural Networks . 8
2.3 Components of Neural Networks . 8
2.4 Backpropagation . 11
2.5 Hyperparameters . 13
2.6 Learning Strategies . 15
2.7 Types of Neural Networks . 19
2.8 Dimensionality Reduction . 21

III. CONSTRUCTING AND ANALYZING NEURAL NETWORK-BASED BAND
SELECTION . 26

3.1 INTRODUCTION . 26
3.2 RELATED WORK . 27
3.3 IMPLEMENTATION . 30
3.4 RESULTS . 36
3.5 FUTURE WORK . 41

iv

IV. ADDITIONAL RESULTS AND DISCUSSION 43

4.1 Additional Results . 43
4.2 Discussion . 57

V. CONCLUSIONS AND FUTURE WORK . 60

5.1 Conclusions . 60
5.2 Future Work . 62

REFERENCES . 65

APPENDIX

A. FORMULATING BACKPROPAGATION USING LINEAR ALGEBRA 68

A.1 Forward Propagation using Linear Algebra 69
A.2 Backward Propagation using Linear Algebra 70

B. ADDITIONAL RESULTS . 73

B.1 Selection Comparison Plots . 74

v

LIST OF TABLES

3.1 Neural Network Classification Accuracies for Various Band Selection Methods . . 39

3.2 𝑘-Nearest Neighbors Classification Accuracies for Various Band Selection Methods 40

4.1 Class Distribution in the ERDC Dataset . 44

4.2 Class Distribution in the Pavia City Center Dataset 45

vi

LIST OF FIGURES

2.1 Water Absorption Curves in [16] . 7

2.2 Standard Representation of Single Artificial Neuron 10

2.3 Simple Representation of a Deep Feed Forward Network 25

3.1 Neural Network Band Selection Diagram . 32

3.2 Network Architecture . 34

3.3 Hyperspectral Data Taken by the ERDC . 37

4.1 Average Accuracy vs % DR (DFF Classifer, ERDC Dataset) 46

4.2 Average Accuracy vs % DR (KNN Classifer, ERDC Dataset) 47

4.3 Average Accuracy vs % DR (DFF Classifer, Pavia City Center Dataset) 47

4.4 Average Accuracy vs % DR (KNN Classifer, Pavia City Center Dataset) 48

4.5 AEBS Confusion Matrix (DFF Classifer, ERDC Dataset, 50% Applied DR) 49

4.6 NNBS Confusion Matrix (DFF Classifer, ERDC Dataset, 50% Applied DR) 50

4.7 AEBS Confusion Matrix (KNN Classifer, ERDC Dataset, 50% Applied DR) . . . 50

4.8 NNBS Confusion Matrix (KNN Classifer, ERDC Dataset, 50% Applied DR) . . . 51

4.9 AEBS Confusion Matrix (DFF Classifer, Pavia City Center Dataset, 50% Applied
DR) . 51

4.10 NNBS Confusion Matrix (DFF Classifer, Pavia City Center Dataset, 50% Applied
DR) . 52

vii

4.11 AEBS Confusion Matrix (KNN Classifer, Pavia City Center Dataset, 50% Applied
DR) . 52

4.12 NNBS Confusion Matrix (KNN Classifer, Pavia City Center Dataset, 50% Applied
DR) . 53

4.13 NNBS vs AEBS Selections (ERDC Dataset, 90% Applied DR) 55

4.14 NNBS vs AEBS Selections (Pavia Dataset, 90% Applied DR) 56

A.1 Generic Labeled Layer of a Fully Connected Feedforward Network 72

B.1 NNBS vs ICABS Selections (ERDC Dataset, 90% Applied DR) 75

B.2 NNBS vs ICABS Selections (Pavia Dataset, 90% Applied DR) 76

B.3 NNBS vs OPBS Selections (ERDC Dataset, 90% Applied DR) 77

B.4 NNBS vs OPBS Selections (Pavia Dataset, 90% Applied DR) 78

viii

CHAPTER I

INTRODUCTION

1.1 Scope of the Problem

Hyperspectral images contain an abundance of data due to the nature of the modality. In

general, an image has three dimensions—two spatial, one spectral. Typical multispectral images

split an abritrary band of light into large spectral bins with the most familiar example being Red,

Green, and Blue (RGB) images having three channels for wavelengths in the visible electromagnetic

spectrum broadly corresponding to red, green, and blue light. A hyperspectral image in this same

band of light would take many more slices resulting in a much finer spectral resolution and often

times hundreds of “color” channels.1 With the spectral dimesnion becoming roughly two orders of

magnitude larger, the amount of computational resources required for analysis—especially in real

time scenarios—can render certain applications infeasible.

Due to limitations of computational resources and consequences of situations such as the

Hughes phenomenon,2 it is desireable to reduce the amount of channels in a hyperspectral image

such that a minimum amount of information is lost. The process by which the a subset of the

spectral dimension of the hyperspectral image is downselected is called band selection. Band

1It is worth noting that it is often disagreed upon when a multispectral image can become a hyperspectral image.
The simplest difference between the two is that multispectral images have a course sampling of the spectral dimension,
and hyperspectral images have a fine sampling. This thesis does not make an attempt to elaborate further on this point
of contention.

2Also known as the curse of dimensionality, this thesis uses this term to refer to the rule of thumb that a class can
be discriminated by a machine learning classifier as long as 5 training examples per dimension are presented to that
classifier.

1

selection is a heavily researched topic that will be discussed in more detail in Chapter II, but this

thesis’s primary concern is to explore neural network-based approaches to band selection.

There is a specific type of neural network architecture called an autoencoder whose task is

to recreate the network’s input at its output. In doing so, an autoencoder learns a transform

that performs compression on the data. Various authors have tested using the encoding weight

matrix of the autoencoder as a basis to determine which input bands were most important for

compression—and through the decoding process, image reconstruction—yielding a type of band

selection technique inherent to machine learning [1, 5, 9, 26]. This thesis explores if image

reconstruction is the only basis by which sufficient band selection results can be computed—

especially when the application of the data involves tasks such as classification. In other words,

should the basis by which bands are selected be application agnostic?

1.2 Importance

As discussed in Section 1.1, band selection is important for performing dimensionality reduction

(DR). For applications involving supervised learning, each dimension we keep in our hyperspectral

image compounds 10 more data points onto the amount of training examples for a single class.

Supposing a neural network is performing pixel classification and the data contains 10 classes, a

simple RGB image would required at least 10 ∗ 3 or 30 training pixels per class in order to perform

classification. Because there are so few dimensions, RGB images require much fewer examples

in terms of raw data. In general, however, RGB images’ limited spectral information makes

pixel-wise classification tasks very difficult. With the spectral resolution inherent in hyperspectral

imaging, the classification problem becomes both easier and harder. The network has access to

2

more dimensions making discrimination between different classes of pixels easier, but assuming

the hyperspectral image has 200 channels, 10∗200 pixels are required per class in keeping with the

curse of dimensionality. Band selection techniques are important not only to reduce the amount of

computational resources to analyze the data but to also reduce the amount of examples a classifier

would need to be sufficiently trained.

The selections produced through these techniques can give insight into some physical character-

istics of the data. For example, consider an application where a hyperspectral pixel classifier needs

to detect man-made materials such as concrete and steel in two scenes—one comprised mainly of

vegatative materials and another comprised of mainly soil materials. Assuming the hyperspectral

image is captured with a sensor tuned to the near infra-red (IR) and electro-optical (EO) bands, the

vegatative-rich scene will show higher responses in wavelengths corresponding to the near IR and

visually green regions3, while the soil-rich scene will generally have duller responses across most

bands except for those matching the visual color of the soil. One could imagine that the hyper-

spectral classifier would want the selected bands that provide the most discriminative information

between the background—vegatation or soil in this example—and the target, concrete or steel.

Depending on what the band selection technique considers “important”, subsets that are mainly

bands defining soil and vegatation can be just as valid as subsets defining maximum descripancy

between vegatation and concrete. Hence, it is important to carefully consider the context under

which the band selection technique is operating.

3About 495–570 nm

3

1.3 Contributions

This thesis examines different band selection techniques effects on hyperspectral pixel classi-

fication. Band selection aims to reduce data as much as possible while maintaining that amount

of important information in the dataset. As alluded to in Section 1.2, different band selection

techniques have different definitions of what is “important”. With the data’s intended purpose

being hyperspectral classification, this thesis compares band selection techniques that select by

maximizing statistical moments like variance and kurtosis, minimizing image reconstruction er-

ror, and maximizing class discrimination. A generic feedforward network for hyperspectral pixel

classification is constructed to learn input weights for band selection similar to the techinique(s)

described in [26]. To explore if the data’s application should be taken into account when choosing

a band selection technique, this neural network-based band selection (NNBS) technique is used

as a specific comparison to observe effects when selecting bands based on minizing image recon-

struction error versus maximizing classification accuracy. In addition to the Pavia City Center

hyperspectral dataset, the ERDC collect a novel dataset for use in this thesis allowing for an exam-

ination of this technique’s effect in heavily skewed datasets. In short, the author’s contributions to

this field of research include:

• Developing a new method of band selection based on deep feedforward architecture opti-
mizing classification results.

• Demonstrating that any neural network architecture can be used to perform band selection
(as opposed to being limited to convolutional neural networks and autoencoders).

• Publishing the results of the previous two contributions in an SPIE conference paper.

• Coding a custom machine learning library for more control over computations allowing for
experimentation with layer-by-layer network analysis.

4

CHAPTER II

BACKGROUND

2.1 Hyperspectral Imaging

All imaging sensors—biological or not—operate under the same working principle: react

proportionally to the amount of light reflected or transmitted towards the sensor. For man-made

imagers, either a CCD-1 or CMOS-based2 sensor is used to convert the incident attenuation of light

on each pixel of the sensor to an electric signal [15]. In color imagery, the light is separated using

filters, prisms, or inherent transmission of light depending on wavelength through a material, and

the separated light is captured by individual imagers [13]. For a standard RGB image, bandwidths

of light corresponding to red, green, and blue colors are directed towards three different sensors

that captures the three images for each color channel. These three images are then stacked on top

of each other and displayed to form the visual spectrum of colors humans can see.

Multispectral imagery is loosely defined as multiple images covering large bandwidths of light

stacked on top of each other. This can result in true color images like RGB, false color images

like RGN3 to more easily detect things like vegetation, and dual band thermal imaging fusing the

MWIR and LWIR4 information resulting in better detection of targets during nighttime conditions.

1Charge-Coupled Device
2Complementary Metal Oxide Semiconductor
3RGN stands for Red, Green, and Near IR. Near IR wavelengths take up the blue channel resulting in living

vegetation appearing as a purplish color.
4Midwave Infrared and Longwave Infrared

5

Researchers tend to argue over when a multispectral image becomes a hyperspectral image. For

this thesis’s purposes, multispectral images are comprised of a few bands with large bandwidths

(70–400 nm), whereas hyperspectral images are comprised of many more bands with a much

narrower bandwidth (5–10 nm) [14].

Hyperspectral sensors operate similarly to multispectral sensors, but with the spectral dimension

being one to two orders of magnitude larger, typical images are gathered using particular scanning

methods. Two of most common scanning techniques used in hyperspectral imagers are whisk

broom and push broom scanners [8]. Both sensor types utilize movement of the sensor on a drone,

aircraft, or satelite to scan the downrange of an image, but differ how the crossrange is scanned.

For whisk broom sensors, a rotating mirror oscillates back and forth scanning the crossrange pixel-

by-pixel. Because of the moving parts associated with scanning these swaths, whisk broom sensors

are expensive, break more easily, and take longer to collect data. As a consequence, push broom

sensors are becoming the standard in collecting hyperspectral imagery as the entire crossrange is

imaged at once, line-by-line.5

From a remote sensing point-of-view, hyperspectral images open up the possibility of clas-

sifying pixels based on their spectral responses. In other words, each pixel can be seen as

an accumulation of materials’ spectral responses. Multispectral images do not provide enough

discriminatory information to classify pixels [12]. Hyperspectral sensors sample the spectral di-

mension at a fine enough resolution allowing for the spectral curve of a pixel to start resembling

one that can be measured by spectroscopy. Material classification due to sensing material spectral

responses allows for a wide variety of new remote sensing applications including improved image

5Push broom sensors are not without their faults as the varying sensitivity between each of the imagers requires
precise calibration to obtain valid data.

6

Figure 2.1

Water Absorption Curves in [16]

segmentation, improved performance of unwanted vegatation in agriculture applications over RGN

images, and improved detection of man-made structures by looking for man-made materials such

as steel or concrete [12].

As with any remote sensing modality, hyperspectral imaging faces challenges specific to its

sensing domain. Because hyperspectral imagery is usually focused on sampling the visual and

IR6 bands, atmospheric attenuation is of great concern for sensing spectral curves [20]. Refer to

figure 2.1 for an example of absorption due to water in the atmosphere versus wavelength [16]. To

account for this, most preprocessing steps for hyperspectral imagery involve dropping bands most

greatly affected by water absorption to avoid high variance in these bands.

Another issue hyperspectral sensing faces is due to the nature of downrange scanning. Because

hyperspectral sensors are air-based and the scanning method is usually line by line, variations in

6There are many types of hyperspectral sensors. IR could be LWIR, MWIR, or SWIR.

7

downrange scanning due to air turbulence can cause each line to vary spatially. For example, if

there is no turblence and the sensing platform moves at a constant speed, each pixel will be square

as one would expect. However, a real flight path of a drone will experience some turbulence

causing square pixels to become sheared into rectangles, or at worst, some form of quadrilateral.

Mitigating this in real data can be very computationally intenseive but is generally performed by

orthorectifying the data by using the sensing platform’s IMU7 data to account for turblence during

data collects [2].

2.2 Neural Networks

This thesis investigates changes in band selection when varying neural network architecture.

Machine learning is a vast research area, and covering all of it is outside the scope of this thesis.

This section will focus only on the working principle behind neurons, the formulation of a fully

connected neural network, autoencoders, and simplified explanations of the training process.

2.3 Components of Neural Networks

Machine learning algorithms in general take in data and perform operations resulting in outputs

such as classification, decisions, or transformations. One of the more popular machine learning

techniques is the artificial neural network (ANN). ANNs are loosely modeled after the biological

systems of the brain where information is attenuated and transported through neurons and synapses.

The purpose of machine learning neurons8 and, ultimately, neural networks is to model any

nonlinear function. Thus, neurons take in data and introduce nonlinearity to produce an output

that propagates through the network eventually contributing to some task.

7Inertial Measurement Unit
8Also called perceptrons

8

Neurons take in a data vector x and output data 𝑦. In typical applications of this model, the

connections from neuron to neuron has an associated weight, 𝑤, associated with it such that the data

is attenuated as it moves along that connection. Mathematically, the data is multiplied against these

weights and summed with the rest of the inputs in the neuron producing an unactivated output, 𝑧.

At this point, 𝑧 is a linear combination of weights in 𝑤 and data in 𝑥. To introduce nonlinearity into

the neuron, this unactivated output is passed through a nonlinear activation function, 𝜑, producing

the activated output, 𝑦. Assuming x is a column vector of length 𝑁 and w is a row vector of length

𝑁 , the entire operation is described as the inner product of x and w passed through the activation

function, 𝜑, shown in equation 2.1. Refer to figure 2.2 for a visual representation of this model.9

𝑦 = 𝜑 (𝑧) = 𝜑 (wx) (2.1)

In order to learn more complicated nonlinear functions, a single neuron is not enough. The

simplest form of an ANN is the multilayer perceptron (MLP). A MLP is a fully connected feed

forward network comprised of an input layer, a hidden layer, and an output layer. Because there

are multiple neurons in one layer, describing the forward propagation of data from one layer to the

next is most easily described using linear algebra. Arranging the weights between two layers into

a weight matrix W such that a column vector of weights for the first neuron w1 corresponds to the

first column in W, the second neuron’s weights w2 corresponding to the second column, and so on

results in a modification to equation 2.1 shown in equation 2.2.

y = 𝜑 (z) = 𝜑 (Wx) (2.2)

9The unactivated output models some linear hypersurface of the form z = wx which is the slope-intercept equation
where the hypersurface intersects through the origin. To allow this hypersurface move away from the origin, a bias 𝑏
is generally added constructing the more familiar z = wx + 𝑏 equation. For this thesis, the bias is taken into account
by allowing x = [1, 𝑥1, 𝑥2, ...] and w = [𝑏, 𝑤1, 𝑤2, ...].

9

Figure 2.2

Standard Representation of Single Artificial Neuron

A MLP is the simplest form of a fully connected deep feed forward network where there could

be multiple hidden layers. The above computations computations describe forward propagation

throughout any feed forward network. Starting at the input layer, the input data, x, is propagated

through the first layer producing the first layer of activated outputs, a1 = W1x. The second

layer uses the previous layer’s outputs as inputs producing the second layer of activated outputs,

a2 = W2a1. This can be generalized as shown in equation 2.3.

al = Wl−1,lal−1 (2.3)

Assuming there are 𝐿 layers, equation 2.3 is implemented such that a0 = x and 𝑙 ∈ [1, 𝐿]. Refer

to figure 2.3 for a visual example of a simple deep feed forward network.

10

2.4 Backpropagation

Machine learning boils down to an optimization algorithm. For example, suppose there is an

ANN designed to classify images on whether or not a cat or dog was present in the image. To do

this, the ANN has two output neurons forming an output column vector, o. Given some test data,

each image has an associated label, y, such that y = [1, 0] indicates the prescence of a cat and

y = [0, 1] indicates the prescene of a dog in an image. When performing forward propagation on

input data 𝑥, the output can be compared to the label and determined how incorrect the network

was compared to the expected output, i.e. label, using a cost function. For instance, given an

output vector o = [0.75, 0.2], a label y = [1, 0], and a loss function of 𝐶 = (y − o)𝑇 (y − o), the

associated cost for this example would be 𝐶 = 0.1025. For ANNs, the machine learning task is to

learn every layer’s weight matrix, 𝑊 , such that the cost is minimized.10 This leads to the actual

training technique of the neural network—backpropagation.

At its core, backpropagation takes advantage of the optimization problem. As weights vary, the

cost function varies creating local optima. The goal of training is to find the global minimum of

the cost function. Gradient descenet is an efficent method by which derivative of the cost function

with respect to the network’s weights are used to find changes in the weights leading to a minimum

of the cost function. In practice, the error signal calculated from the cost function propagates

backwards through the network determining how each weight should change—hence the name,

backpropagation.

10The cost function used in this example is the L2 cost function for simplicity’s sake. Because this is a classification
problem with the output vectors being one-hot encoded, the cross entropy cost function would be more ideal in this
scenario.

11

Throughout the explanation of backpropagation in this section, the cost function used will be

the L2-norm cost function, i.e. 𝐶 = 1
2 (o − y)𝑇 (o − y). The derivative of the cost function with

respect to weight of the 𝑖th neuron in layer 𝑙 connected to the 𝑗 𝑡ℎ neuron in layer 𝑙 + 1 is broken

down using the chain rule in equation 2.4.

𝛿𝐶

𝛿𝑤𝑖 𝑗

=
𝛿𝐶

𝛿𝑎 𝑗

𝛿𝑎 𝑗

𝛿𝑧 𝑗

𝛿𝑧 𝑗

𝑤𝑖 𝑗

(2.4)

The motivation behind this particular application of the chain rule is that 𝑧 𝑗 is directly related

to the weights as described in equation 2.1, so connecting its derivative to the derivative of 𝐶 is

desireable. Since this computation is performed starting at the output layer, equation 2.4 evaluated

at the output layer with 𝑛 neurons is shown in equation 2.5.

𝛿𝐶

𝛿𝑎 𝑗

=
𝛿𝐶

𝛿𝑜 𝑗

=
𝛿

𝛿𝑜 𝑗

[
1
2

(
𝑜 𝑗 − 𝑦 𝑗

)2
]
= 𝑜 𝑗 − 𝑦 𝑗

𝛿𝑎 𝑗

𝛿𝑧 𝑗
=

𝛿𝜑
(
𝑧 𝑗

)
𝛿𝑧 𝑗

= 𝜑′
(
𝑧 𝑗

)
𝛿𝑧 𝑗

𝛿𝑤𝑖 𝑗

=
𝛿

𝛿𝑤𝑖 𝑗

(
𝑛∑︁

𝑘=1
𝑤𝑘 𝑗𝑥𝑘

)
=

𝛿

𝛿𝑤𝑖 𝑗

𝑤𝑖 𝑗𝑥𝑖 = 𝑎𝑖

𝛿𝐶

𝛿𝑤𝑖 𝑗

=
𝛿𝐶

𝛿𝑎 𝑗

𝛿𝑎 𝑗

𝛿𝑧 𝑗

𝛿𝑧 𝑗

𝑤𝑖 𝑗

= (𝑜 𝑗 − 𝑦 𝑗)𝜑′(𝑧 𝑗)𝑎𝑖 (2.5)

In order to make future computation easier, the introduction of an “error” signal of the 𝑗 th

neuron, 𝛿 𝑗 , is defined in equation 2.6. With this definition, equation 2.4 is reformulated to a more

general form of the chain rule shown in equation 2.7.

𝛿 𝑗 =
𝛿𝐶

𝛿𝑎 𝑗

𝛿𝑎 𝑗

𝛿𝑧 𝑗
(2.6)

𝛿𝐶

𝛿𝑤𝑖 𝑗

= 𝛿 𝑗𝑎𝑖 (2.7)

When attempting graident calculations in hidden layers, computing 𝛿𝐶
𝑎 𝑗

is not as simple as

computing it in the output layer. To compute this, the chain rule is utilized in succession to
12

compute the total derivative starting at the output layer and ending at the hidden layer. As long as

the computation is performed backwards, repeated calculations of gradients is unnecessary. This

leads to the recursive definition described in equation 2.8. In other words, 𝛿𝐶
𝑎 𝑗

of layer 𝑙 can be

found as long as that term is known for every neuron in the 𝑙 + 1 layer. For equation 2.8, let this

𝑙 + 1 layer be a layer with 𝑛 neurons.

𝛿𝐶

𝛿𝑎 𝑗

=

𝑛∑︁
𝑘=1

𝛿𝐶

𝛿𝑎𝑘

𝛿𝑎𝑘

𝑧𝑘

𝛿𝑧𝑘

𝛿𝑎 𝑗

=

𝑛∑︁
𝑘=1

𝛿𝑘𝑤 𝑗 𝑘 (2.8)

Equation 2.9 fully defines 𝛿 𝑗 no matter where in the network the computation is performed.

𝛿 𝑗 = 𝐶′(𝑜 𝑗 , 𝑦 𝑗) =
(
𝑜 𝑗 − 𝑦 𝑗

)
𝜑′(𝑧 𝑗), if 𝑗 is an output neuron

𝛿 𝑗 =

𝑛∑︁
𝑘=1

𝛿𝑘𝑤 𝑗 𝑘 , if 𝑗 is a hidden neuron (2.9)

Using equations 2.7 and 2.9, each training iteration updates weights using equation 2.10.

Δ𝑤𝑖 𝑗 = −𝜂 𝛿𝐶

𝛿𝑤𝑖 𝑗

= −𝜂𝛿 𝑗𝑎𝑖

𝑤new
𝑖 𝑗 = 𝑤old

𝑖 𝑗 + Δ𝑤𝑖 𝑗 (2.10)

Where 𝜂 is the learning rate and the introduced negative sign ensures that changes proceed towards

a minimum, i.e., gradient descent. While this section fully describes the derivation of backpropa-

gation, it is more easily formulated using linear algebra in practice. This formulation can be found

in appendix A.

2.5 Hyperparameters

With forward and back propagation fully defined, an ANN can be trained to perform tasks.

Before a network can be trained, the model must be constructed. When constructing a model, there
13

are many different considerations to take into account. Before an ANN can begin training, the

weights between each layer must be initialized in order for any of the calculations to be performed.

Decisions on various hyperparameters such as learning rate, minibatch size, and activation function

type can make a dramatic impact on network performance. Finally, various learning strategies can

alter convergence rate of networks as well as change hyperparameters during training based on

various factors that come up during training.

During intialization of an ANN, the weight matrices between each layer are randomly initialized.

There are some methods of choosing better intial weights depending on the choice of activation

functions such as Xavier and Kaiming intialization, but the standard method is to select random

weights from either a uniform or normal distribution of mean 0 and variance 1 [4].11 Small, random

initial weights allow each neuron to gradually learn which connections are important and change

those weights proportionally to the backpropagated error gradients.

Hyperparameters are incredibly important for any network to function. A neuron’s activation

function determines how gradients are calculated and how the neuron actually fires in the network.

Activation functions for neurons in a network are carefully chosen to meet certain criteria. In

general, activation functions need to avoid shifting the gradient of the cost function toward zero,12

be computationally inexpensive to perform, and be differentiable.13 Popular activation functions

in wide use include the sigmoid, softmax, and the hyperbolic tangent. While not a requirement,

the reason these types of functions are used is that their derivatives are easy to compute and are

11In applications of transfer learning, “initial” weights between early layers are pre-trained and are not updating
during training with only the weights towards the end of the network trained for “fine-tuning”.

12Also called the vanishing gradient problem.
13Another desireable characteristic of some activation functions is to be zero-centered. However, some activation

functions like the Rectified Linear Unit (ReLU) are not zero-centered, so it was not included in the general list of
requirements.

14

usually put in terms of the original function. For instance, if the activation function is the sigmoid

where 𝜑(𝑥) = (1 + 𝑒−𝑥)−1, then its derivative is 𝜑′(𝑥) = 𝜑(𝑥) (1 − 𝜑(𝑥)).

Learning rates are of particular importance as they define how much the ANN corrects itself with

each training iteration. With a large learning rate, the model can converge towards a set of weights

faster, but it may miss finding the global minimum due to exploding gradients. Small learning

rates provide finer model corrections, slower convergence, and possible vanishing gradients, but

it is easier to find minimum if the model can converge. Number of layers and number of neurons

in a layer determine how “deep” the network is and greatly affect the ability of the network to

model nonlinear functions. Finally, networks can be trained using an online or offline method.

Online methods look at one training example at a time, while offline methods look at multiple

examples called a batch in one weight update also called a training iteration. The minibatch size

hyperparameter determines how many training examples the network sees during one training

iteration, and the number of epochs determines how many times the network trains on the whole

dataset. In short, all of these hyperparameters affect some key aspect during training affecting

overall network performance and must be carefully tailored to each networks’ applications.

2.6 Learning Strategies

Setting up a network for training requires a learning strategy. The learning strategy dictates

how exactly the weights are updated and how the network actually handles the training data. The

learning strategy described in 2.10 describes standard gradient descent (GD). A simple extension

of this straetgy is called stochastic gradient descent (SGD) where the data is taken in small batches

and the weights are updated based on the average change throughout each minibatch. Updating the

15

network based on multiple data points rather than one at a time not only speeds up computation,

but also, the randomness associated with the batches tends to improve convergence to a global

minimum.

Other popular learning strategies incorporate the use of a momentum term. The momentum

term simply adds a small proportion of the previous iteration’s weight change into the current

iterations weight change. This is shown in equation 2.11 during iteration 𝑡 where 𝛼 ∈ [0, 1]

controls how much the momentum term is present during updates.

Δ𝑤𝑡
𝑖 𝑗 = −

(
𝜂
𝛿𝐶

𝛿𝑤𝑖 𝑗

+ 𝛼Δ𝑤𝑡−1
𝑖 𝑗

)
(2.11)

Intuitively, momentum encourages the weights to change in such a way that it has changed in the

past. This can help the network converge to a solution despite local minima being present on the

path towards the global minimum.

Stochastic Gradient Descent with momentum is described above, but variations on this can be

seen in applications of learning strategies that aim to deemphasize the choice of the learning rate.

A popular alternative to SGD with momentum is Adaptive Moment Estimation (ADAM). Adam

is similar to the simple momentum term described in 2.11, but it keeps a running average of the

first and second statistical moments of the cost gradient. Because of the way the weight update is

computed, the learning rate is automatically adjusted each training iteration based on the calculated

first and second moments. Equation 2.12 defines the update step for ADAM as described in [10].

Note that 𝜃 refers to all the layers’ weights condense into a single vector at iteration 𝑡, 𝛽1 and 𝛽2

16

are decay parameters for the moments, m0 and v0 are intially set to zero vectors, and 𝜖 is set to a

very small number to avoid divide by zero errors.

m𝑡 = 𝛽1m𝑡−1 + (1 − 𝛽1) Δ𝜽𝐶 (𝜽𝑡−1)

v𝑡 = 𝛽2v𝑡−1 + (1 − 𝛽2) (Δ𝜽𝐶 (𝜽𝑡−1))2

m̂𝑡 =
m𝑡

1 − 𝛽𝑡1

v̂𝑡 =
v𝑡

1 − 𝛽𝑡2

𝜽𝑡 = 𝜽𝑡−1 − 𝜂
m̂𝑡√
v̂𝑡 + 𝜖

(2.12)

Another method by which the learning rate can be automatically updated is through the scaled

conjugate gradients (SCG) method. This method is used in MATLAB’s deep learning toolbox

in order to update fully connected networks. The general idea of this method is to estimate the

second order gradient of the cost function in order to automatically choose step sizes that follow

the steepest descent path for the weight updates. The algorithm itself can be found in algortihm 1

as shown in [17].

17

Algorithm 1: Scaled Conjugate Gradients Strategy
input : weight vector w, 0 < 𝜎 ≤ 10−4, 0 < 𝜆0 ≤ 10−6, 𝜆0 = 0, p0 = r0 = ∇𝐶 (w), 𝑘 = 1,

success = true

output

:

Weight Vector w𝑘+1

if success is true then
𝜎𝑘 = 𝜎/|p𝑘 |; 𝑠𝑘 = ∇ [𝐶 (w𝑘 + 𝜎𝑘p𝑘) − ∇𝐶 (w𝑘)] /𝜎𝑘 ; 𝛿𝑘 = p𝑇

𝑘
s𝑘 ;

𝛿𝑘 = 𝛿𝑘 +
(
𝜆𝑘 − 𝜆̄𝑘

)
|𝑝𝑘 |2;

if 𝛿𝑘 ≤ 0 then

𝜆̄𝑘 = 2
(
𝜆𝑘 − 𝛿𝑘 |𝑝𝑘 |2

)
; 𝛿𝑘 = −𝛿𝑘 + 𝜆𝑘 |𝑝𝑘 |2; 𝜆𝑘 = 𝜆̄𝑘 ;

𝜇𝑘 = p𝑇
𝑘
r𝑘 ; 𝛼𝑘 = 𝜇𝑘/𝛿𝑘 ; Δ𝑘 = 2𝛿𝑘 [𝐸 (w𝑘) − 𝐸 (w𝑘 + 𝛼𝑘p𝑘)] /𝜇2

𝑘
;

if Δ𝑘 ≥ 0 then
w𝑘+1 = w𝑘 + 𝛼𝑘p𝑘 ; r𝑘+1 = −∇𝐶 (w𝑘+1); 𝜆̄𝑘 = 0; success = true;

if 𝑘 mod 𝑁 = 0 then
p𝑘+1 = r𝑘+1;

else
𝛽𝑘 =

(
|r𝑘+1 | − r𝑇

𝑘+1r𝑘
)
/(𝜇𝑘); p𝑘+1 = r𝑘+1 + 𝛽𝑘p𝑘 ;

if Δ𝑘 ≥ 0.75 then
𝜆𝑘 = 0.25 ∗ 𝜆𝑘 ;

else

𝜆𝑘 = 𝜆𝑘 + [𝛿𝑘 (1 − Δ𝑘)] /
(
|p𝑘 |2

)
;

if r𝑘 ≠ 0 then
𝑘 = 𝑘 + 1; continue;

else
return w𝑘+1;

18

2.7 Types of Neural Networks

This section has focused mainly on the simplest form of neural networks, the multilayer

perceptron (MLP) network, where there is one input layer, one hidden layer, and one output layer.

More generally, this form of network can be called a deep feed forward (DFF) network. A network

is considered to be a deep network when there is more than one hidden layer. Many other types

of networks can be built off the concepts described in this section. A few of these networks are

dicussed below.

One of the simplest extensions of the multilayer perceptron is the radial basis function neural

network (RBFNN). Like the MLP, the RBFNN strictly has one input layer, one hidden layer, and

one output layer. One key difference from the MLP is that the hidden layer activation functions

of RBFNNs are radial basis functions like the Gaussian function. RBFNNs operate very similar

to 𝑘-means clustering in that their goal is to cluster data points that are closer together. The

basic behaviour of training an RBFNN is to update initial cluster centroids14, radius of the radial

basis function, and weights leading to the output. During training, the centroids converge to their

positions describing a feature vector that is then projected onto the transformation space described

at the output neurons. In other words, each centroid contributes some amount to a sample data

point’s prediction based on how close it is to other centroids in the RBFNN.

Another simple extension from MLP networks is the autoencoder. Standard autoencoders

consist of one input layer, one hidden layer, and one output layer. Autoencoders seek to reconstruct

the input matrix at the output resulting in a compressed version of the input at the hidden layer.

Because of this, the weight matrix between the input and hidden layer is considered an encoder,

14These can be determined via 𝑘-means clustering or randomly sampling the training data.

19

and the weight matrix between the hidden layer and the output is the decoder. Furthermore, the

compressed output due to the limited number of neurons in the hidden layer is generally called the

autoencoder’s latent representation of the input. Because the output is compared to the input, the

cost function of these networks resemble a type of regression, but training autoencoders is similar

to that of deep feed forward networks. Other varieties of autoencoders exists such as the variational

autoencoder where the hidden neurons contribute to two latent representations for the mean and

variance of a normal distribution, the denoising autoencoder where portions of training vectors are

set to zero in order to learn ways to remove noise from noisy inputs, and the sparse autoencoder that

includes more hidden neurons in addition to sparsity regularization in the cost function to increase

performance over standard autoencoders.

Recurrent Neural Networks (RNN) extend DFF networks by allowing hidden neurons to in-

corporate a feedback loop enabling the capability to deal with sequence data, i.e., time dependent

data where data at time 𝑡 is dependent on data at time 𝑡 − 1 and before. RNNs are generally used

in applications of speech recognition and computational chemistry as they are useful for taking

into account context within a data sequence [23]. RNNs setup and training is unique in that the

hidden neuron contains an aggregate sum of past inputs to the system. Because this can lead to

vanishing or exploding gradient problems, alternative solutions involving truncating the history of

the memory in the hidden neurons have been suggested. One of the more widespread types of

RNNs is the Long Short-Term Memory LSTM network where a memory unit contains a forget

gate, input gate, and output gate that controls how much of the network should remember as well

as what the hidden neuron’s state should be based on this information.

20

Perhaps one of the most popular types of neural networks are Convolutional Neural Networks

(CNN) due to their applications in computer vision. A standard DFF network may flatten a 2D

image into a vector and perform classification tasks based on that vector. However, depending on

the spatial and spectral resolution of the image, the input vector could have hundreds of thousands

of dimensions resulting in a network that takes too long to converge. More sophisticated algorithms

would extract features from the raw data into a feature vector which is then fed into a DFF network,

whereas CNNs aim to perform both feature extraction and classification into one network. CNNs

utilize convolution neurons to learn filters that extract features in various layers of the CNN. Once

the CNN has extracted the features, the last portion of the CNN is essentially a DFF that performs

whatever task the CNN needs to do, e.g., classification. Because of this process, CNNs are able

to perform classification on images with increased performance when compared to an equivalent

DFF network [18].

2.8 Dimensionality Reduction

As discussed in section 2.1, one potential issue with hyperspectral imagery from an analysis

perspective is that the increase in spectral data results in longer computational resources needed

for analysis—especially for machine learning algorithms. Since hyperspectral imagery is highly

dimensional, it is important to perform dimensionality reduction (DR) on the data. There are

many different methods of DR towards any type of data, but these methods generally fall into two

categories—methods based on original dataset subsambling and methods based on trasnforming the

original data into a new space. Regardless of the method, the end goal of DR is to select dimensions

that provide the most information of the original set of data while discarding dimensions that are

21

redundant or provide uninformative information. Below are descriptions of various DR methods

seen in [24] and the references found in chapter III.

One of the simplest examples of dimensionality reduction is based on principle component

analysis (PCA). The goal of PCA is to find 𝑘 orthogonal basis vectors from the data 𝑋 such that

variance is maximized along each of the new basis vectors, or principle components (PC), i.e.,

the maximum amount of variance of the dataset is described with the first PC axis, the second

greatest amount of variance is described with the second PC axis and so on. In doing this, a form

of compression is found if 𝑁 PC are selected such that 𝑁 < 𝑘 . Performing in analysis of the data

in the transformed PC space is one of the simpler versions of DR. To perform subsambling in the

original space, methods such as the ones used in [11] utilize the eigenvectors and eigenvalues for

transforming to the PC space as a basis for selecting the most informative subset in the original

space with the argument being that the magnitude of the transformation vector for a dimension

should be greater than the magnitudes of transformation vectors for less important dimensions [7].

A natural extension of the PCA DR approach is to use independent component analysis (ICA).

Simply put, ICA works similarly to PCA with two changes. For one, the independent component

(IC) basis vectors are not necessarily orthogonal resulting in both linear and non-linear transfor-

mations being possible. Additionally, instead of constructing these IC axes based on maximizing

variance in the data, ICA seeks to maximize kurtosis of the data for each IC. Maximizing kurtosis

leads to the main applications of ICA involving viewing the data as a mixture of source signals.15

This is especially useful in DR for hyperspectral imagery in that hyperspectral pixels can be viewed

as a mixture of source materials. With that in mind, ICA can be used to determine the most

15See the blind source separation problem is an example of ICA applications.

22

informative bands that provide the most information on the source materials similar to the method

described for PCA [6].

Another popular DR technique involves implementing Linear Discriminant Analysis (LDA).

LDA aims to find a projection such that class separability is maximized while minimizing scatter

within each class. This is done through closed form solutions using class means, interclass variance,

and intraclass variance. Similar to the projection methods described above, the transformed data

is lower in dimensionality than the original, but the transformation matrix holds information

describing which input dimensions are important for maximizing class separability and minimizing

the spread within a single class allowing for selecting a subset of the original data. An example

of DR using LDA can be found in [3]. In general, there are a variety of techniques that that can

perform DR on arbitrary datasets. In [28], the DR strategy combines a searching algorithm that

minimizes the correlation between selected dimensions based on the volume of the hyperellipsoid

that the subset of bands creates, i.e., search for a subset that minimizes hyperellipsoid volume.

Refer to [24] and [7] for a survey of various techniques for DR.

An emerging pattern in many DR techniques is that some transformation from the input data

space to a new data space is computed. After that computation, either the transformed data space

is already reduced in dimensionality or the transformation itself is used as a basis for selecting a

subset of the original data. Machine learning has an obvious place in this format. For instance, the

latent representation that autoencoders compute can be synonymous with PCA compression and

fed into other algorithms as the reduced dataset. Other networks such as those in [26] use the input

weight matrix, synonymous with the transformation matrices in PCA, ICA, and LDA, as a basis

for selecting subsets of data for DR.

23

The remainder of this thesis focuses on methods that select subsets of the original data in its

original space. In the context of hyperspectral imagery, this is equivalent to a process known as band

selection where a subset of the spectral dimension is found in order to reduce computational costs

of hyperspectral analysis. A comprehensive review of state-of-the-art band selection techniques are

listed and compared in [25]. These methods are loosely broken into six categories: ranking based,

searching based, clustering based, sparsity based, embedding-learning based, and hybrid-scheme

based band selection. In [25], a state-of-the-art method in each category is selected and compared

to every other category. This thesis selects specialized versions of these methods from the ranking

based, searching based, and embedding-learning based categories. In chapter III, band selection is

generalized from those found in papers such as [26] and [9] to utilize deep feed forward networks

as the architecture for band selection.

24

Figure 2.3

Simple Representation of a Deep Feed Forward Network

25

CHAPTER III

CONSTRUCTING AND ANALYZING NEURAL NETWORK-BASED BAND SELECTION

The following is a conference paper submitted and published to the 2021 SPIE Defense and

Commercial Sensing conference. The formatting has been slightly altered to fit this thesis’s. Minor

grammatical changes have been made with some additional information added to Section 3.4.

3.1 INTRODUCTION

Data analysis is incredibly important in order to accomplish goals such as optimizing product

designs, automating increasingly complex tasks, and predicting trends in data to make more

intelligent decisions. As sensors and various fusion algorithms continue to improve, the amount

of data generated continues to increase in size and can become unmanageable. It is becoming

apparent that the sheer volume of data in some tasks can overwhelm analysis algorithms and

negatively impact performance. With this in mind, algorithms such as band selection are designed

to select the most informative subsets of hyperspectral imagery’s (HSI) spectral dimension. In other

words, the purpose of band selection generally aims to reduce 200 channels of spectral information

down to a more manageable number for computation. These algorithms can be used to reduce the

amount of data negatively impacting computation time yet still maintain algorithm performance

parameters such as classification accuracy.

26

In this paper, the type of data that will be the focus of our analysis is HSI. HSI is very similar to

RGB multispectral imagery in that they both have a third dimension in which material properties

affect specific bands of light differently. However, while color images typically have red, green, and

blue channels, hyperspectral imagery has many channels splitting a broad bandwidth of light into

fine slices. HSI is beneficial from a remote sensing point-of-view in that a high spectral resolution

results in each pixel capturing the material characteristic response of objects within a scene. With

the size of this third dimension typically increasing by a factor of 100 of a common RGB image,

the computation time needed to perform various analyses can suffer.

Herein, we propose a machine learning-based band selection algorithm we are calling Neural

Network Band Selection (NNBS). We apply our algorithm to select informative bands of a novel

HSI dataset to reduce computational complexity while maintaining classifier performance using

the reduced dataset. Using this dataset allows us to test our technique against other state-of-the-art

band selection algorithms on spectral curves of unknown materials.

3.2 RELATED WORK

Most methods of band selection involve using statistical analysis on the data itself in order to

reduce the amount of bands present. This usually involves leveraging some information metric

in order to rank the bands and cut the least informative bands present. Simple methods utilizing

principle component analysis (PCA) are widely used to transform the data in such a way as

to maximize the variance between channels. This can be extended to independent component

analysis (ICA) to leverage the fact that hyperspectral imagery has a limited amount of classes in

any datacube. Taken to the extreme, the data projections can be generalized to a point to where

27

the shape of the data itself can be used as a measure to select bands composing an optimal subset

of the data. As an alternative to transforming the data to maximize some statistical measure,

some methods opt to maximize measures based in information theory such as information gain

(IG). However, the most widely used method of performing dimensionality reduction (DR) on data

utilizes some form of machine learning.

Many DR methods prefer to reorient the band selection problem utilizing standard transforma-

tion methods such that the data is transformed and analysis perfomed in this lower-dimensionality

space. Rodarmel and Shan use PCA to reduce hyperspectral images’ dimensionality and found that

using around 10 PCA bands is comparable in classification results to using the original 60 bands

of their hyperspectral dataset resulting in a 83% reduction in dimensionality [22]. Koonsanit et al

extend PCA band selection by integrating the information gain metric in their selection process to

allow selection of bands to be more intelligent based on class separability information [11]. While

these methods produce competitive results, band selection is not performed on the original dataset

which does not allow for any additional analysis in the original information space.

To perform various analyses on the hyperspectral sensors and its captured data, it is important

to perform DR in its original space of 𝑁 variables. Du et al use projection-based methods to

analyze and rank the original hyperspectral bands by using ICA to determine which bands are

important for separating original source signals [6]. Ball et al use standard methods that take

advantage of classifier performance measured in the area under receiver operating characteristic

(AUROC) curves to select bands that maintain classifier performance to improve level set image

segmentation [3]. Zhang et al take advantage of geometrical intrepretations of data covariance in

order to select bands based on maximizing statistical measures [28]. As noted in several papers,

28

geometrical and statistical measures such as spectral angle mapper (SAM) and spectral information

divergence (SID) can be used to denote band relevance for selection purposes [3].

As more big data problems are being solved with machine learning techinques, there are also

many band selection techinques based in machine learning to allow more seamless integration with

existing architectures [27, 21, 19]. A majority of techinques based in machine learning make use of

the weights connecting various layers in the network. For instance, some networks take advantage

of an assumption that the weights connecting to the final feature extraction layer will activate

sparsely when an interesting object needs to be classified, combine that with an anomaly detection

calculation based on statistics, and select bands based on which features cause the anomalies

[21]. Other methods use dropout methods involving randomly removing bands to take note of the

degradation in performance [5, 21]. The bigger hit to performance correlates to more information

contained in those bands. Finally, other methods use autoencoder architectures to compress the

hyperspectral imagery and minimize reconstruction error at its output [9, 26, 1]. Once this is

trained, the input weight layer gives insight to which bands are needed for accurate reconstruction

thus automatically ranking the bands in the process.

Band selection techniques unique to machine learning implement some form of dropout in

the input space and detect how this affects classifier performance. Chandra and Sharma directly

implement input variable masking to accomplish band selection by asserting that drops in autoen-

coder reconstruction error directly correlate with the relevance of the masked band [5]. Zhan et al

implement a similar approach as the previous authors, but they segment the bands using a distance

density metric and test random band combinations before selecting a set demonstrating the highest

performance for their convolutional neural network (CNN) [27]. Some authors acknowledge that

29

an exhaustive search of band combinations can realize optimal results but is generally impractical

in HSI processing [3].

Other methods based in machine learning tend to integrate previously mentioned methods into

their own architecure or take advantage of machine learning’s nature as a black box. As an example

of integrating band selection into machine learning architecture, Ribalta et al construct an attention-

based CNN by extending the Elliptical Envelope algorithm from the standard, geometry-based band

selection method to an anomaly detector under the assumption that highly informative bands should

be viewed as anomalies [21]. By far, the most popular band selection approaches unique to machine

learning leverage network activations or layer weights in the band selection process. Prasvita uses a

method similar to Ball and Bruce by training many weak classifiers in a one-against-all scenario for

each class, using the activations to calculate band contributions for each class, and select the best

bands to improve overall classifer performance [19]. Mateus et al utilize autoencoder architecture

to reconstruct HSI so that input weights can be used to rank each band in terms of their magnitudes

[9]. This method is improved by integrating previously discussed segmenting tactics to improve

computational performance [26]. Other authors discourage segmentation in the spectral dimension

to allow for comparison between all bands. Instead, Ahmad et al segment spatially and implement

denoising autoencoders to provide competitive results [1].

3.3 IMPLEMENTATION

Our method aims to extend the autoencoder band selection techniques—referred to in this

paper as autoencoder band selection (AEBS)—to a generalized network architecture we are calling

neural network band selection (NNBS) for performing task-specific band selection. While the bands

30

selected via AEBS produce acceptable results, the bands themselves are selected on the same basis

that the network’s input weights are tuned—minimizing image reconstruction error. Important

processing applications of hyperspectral imagery include segmenting images into similar materials

or classifying each hyperspectral pixel as a specific material. It is unclear if image reconstruction

is the best metric for selecting bands for classification tasks. Therefore, it is desireable to select

bands on the basis of a specific task to be optimized. Herein, we propose a generalization of the

autoencoder methods listed in section 3.2 by shifting the task of the network to classification. Our

method aims to show that performance can be maintained—possibly even improved—regardless if

the network task has shifted from image reconstruction to classifying hyperspectral endmembers.

In NNBS, we use the learned input weights as a basis for selecting which bands contribute the

most to our network’s classification task. The input weight matrix between the input neurons and

the first hidden layer are organized such that the 𝑛th row contains a vector of weights connecting the

𝑛th input neuron to the hidden layer. This creates a weight matrix W that can be used to calculate

band contributions to task performance. In viewing the weight matrix as a column of row vector

entries, we can utilize the Frobenius norm to get the magnitude of each row vector producing a

contributions vector, c, that describes the magnitude that each band in the hyperspectral dataset

contributes to our network’s task. Refer to equation 3.1 for a quick calculation of c.

c = diag
(
W𝑇 × W

)
(3.1)

This method assumes that a sufficiently trained network will produce an input weight matrix,

W, where the magnitude of each row will be treated as that neuron’s contribution to the overall task.

The 𝑛th element of the calculated contributions vector c describes the contributions of the 𝑛th input

31

Figure 3.1

Neural Network Band Selection Diagram

neuron. In simpler terms, each input neuron corresponds to a band in the hyperspectral dataset.

With the contributions vector, we can simply rank each band according to their contributions by

sorting c and selecting an amount of bands to continue analyzing. Refer to figure 3.1 for a complete

diagram of how NNBS functions as a band selection technique.

32

A major component of this paper is to show that using input weights as a ranking mechanism

for band selection is possible for any network. To shift focus away from any specific neural network

architecture, we utilize a simple multilayer perceptron architecture to classify pixels in a unique

dataset and apply the input weight matrix ranking method to this architecture. Architecture param-

eters such as number of input layers and number of neurons in a specific layer are parameterized

in terms of the hyperspectral data presented to the network to further abstract specific network

architecture. Given some hyperspectral data of size 𝑋x𝑌x𝐷 and number of material classes, 𝑁 ,

our network’s architecture has 𝐷 input neurons to classify individual hyperspectral pixels and

each subsequent hidden layer decreases in number of neurons by half of the previous layer. This

continues as necessary until the output layer having 𝑁 output neurons to classify each pixel as a

material out of 𝑁 classes. For simplicity purposes, the number of output neurons is assumed to

be much less than the previous layer’s number of hidden neurons. In our case, this behavior is

represented in the following: 𝑁 � 𝐷/4. Refer to figure 3.2 for an abstraction of our simplified

architecture.

33

Figure 3.2

Network Architecture

34

An important question to consider is the following: why should we focus only on the input

weight matrix? For NNBS to function, an arbitrary network must be trained on the original

hyperspectral data such that we can obtain the learned transformation matrices between each layer

that accomplish the task of the network—in our case, endmember classification. Once these weight

matrices are learned, we can use the magnitudes of each neuron’s weight vector as an indication

of how important a layer’s feature contributes to the next layer’s set of features. In doing so,

this enables us to compare contributions of the input features to the learned first layer features,

contributions from first layer features to second layer features, and so on until we get to the output

layer. However, because of the difference in activation values between each layer, there is no clear

method to compare input feature contributions to third layer features for instance. Instead, we take

advantage of the standard black box approach to neural network analysis allowing us to simplify

this process by only focusing on the input weight matrix for direct contributions to the output of

the black box. Algorithm 2 describes the band selection technique described in figure 3.1 using

only input weight contributions.

35

Algorithm 2: Neural Network Band Selection Algorithm
input : HSI 𝐼, Labels 𝑌 , Number of Selected Bands 𝑛

output

:

Selections 𝑠

𝑋 , 𝑌 = preprocessData(𝐼,𝑌)

options = setupNetworkParameters()

net = trainNetwork(𝑋 ,𝑌 ,options)

𝑊 = net.input.W

𝑐 = diag(𝑊’*𝑊)

val, ind = flip(sort(𝑐))

𝑠 = ind(1:𝑛)

3.4 RESULTS

The hyperspectral data was taken with a sensor dividing the visual and near infrared spectrums

into 272 channels. The objects in the image range from callibration equipment, natural materials,

and standardized CUBI objects with various surface materials applied to them. The data was hand

labeled to identify 15 classes. Before being analyzed for band selection, the data is preprocessed

to including data whitening to ensure cross channel correlation is minimized. The image is then

reorganized into a matrix to be fed pixel-by-pixel into our network. Refer to figure 3.3 for the

image used in this study.

36

Figure 3.3

Hyperspectral Data Taken by the ERDC

37

The networks used for NNBS and AEBS were constructed using built-in functions via MAT-

LAB and MathWorks’ Deep Learning Toolbox. Both network parameters were primarily kept

to default settings with the only notable changes being that the NNBS network was trained for

500 epochs via the Adam algorithm. The pixels were randomly separated into 70% training data

and 30% testing data, and NNBS was run multiple times to ensure that band selections were not

sensitive to network initialization. On average, the band selections for NNBS varied only by one

or two ranks per run, so the mode was taken for each selection to account for slight variations in

specific band rankings. It is worth noting that band selections from the AEBS method resulted in

much more varied rankings per run, and the same processing method was applied to the AEBS

rankings.

The method of evaluation is to perform DR based on the results of various band selection

algorithms and feed that new data through two classifiers. A few varying band selection algorithms

from section 3.2 were chosen and implemented to compare results with NNBS. The selected meth-

ods for comparison were independent component analysis band selection (ICA-BS) [6], optimal

projection-based band selection (OPBS) [28], and AEBS. To characterize DR’s impact on clas-

sifier performance, the classifiers are also run on the unaltered dataset. Finally, two of the most

common HSI classifiers—neural networks and 𝑘-nearest neighbors—are used to produce baseline

performance results.

Because the amount of data points labeled as soil is so large in this dataset, we perform a

type of undersampling on the soil class to avoid skewed class distribution issues. To inform

our undersampling ratio, we use an anomaly detector to classify pixels between soil and other,

effectively creating a one-against-all classifier. This gives us an accuracy of around 98.5% which

38

Table 3.1

Neural Network Classification Accuracies for Various Band Selection Methods

Method Accuracy
No Band Selection 94.3%

50% DR 75% DR 90% DR
ICA-BS 93.4% 90.4% 83.1%
OPBS 92.5% 90.2% 81.9%
AEBS 93.0% 90.5% 81.5%
NNBS 93.7% 91.4% 81.3%

we use as an indicator for how much we should undersample the soil pixels. While training on

this undersampled data gives us an optimistic classifier, the entire classifer including the anomaly

detector results in a well-balanced system in which pixels containing soil are screened before

making it to a more balanced classifier for the objects in our scene. Refer to tables 3.1 and

3.2 for comparisons of classifier accuracies when varying band selection method and amount of

DR applied. Note that 50%, 75%, and 90% DR applied refers to using 136, 68, and 27 bands

respectively for classification.

39

Table 3.2

𝑘-Nearest Neighbors Classification Accuracies for Various Band Selection Methods

Method Accuracy
No Band Selection 91.7%

50% DR 75% DR 90% DR
ICA-BS 91.8% 90.2% 90.0%
OPBS 90.6% 89.8% 88.9%
AEBS 91.3% 89.9% 88.2%
NNBS 91.8% 90.4% 89.0%

40

As is clear in both tables, NNBS tends to perform best in general when less DR is used. Even at

extreme levels of DR, NNBS continues to remain competitive with the other band selection methods.

It is important to note that once the data is reduced to 10% the original data’s dimensionality,

our assumption of network architecture, 𝑁 � 𝐷/4, is no longer true. This can cause issues

during training for NNBS. With tweaks to hyperparameters controlling training behavior and

network architecture, NNBS can be improved. These tweaks are not implemented to maintain the

architecture agnostic methodology.

3.5 FUTURE WORK

This paper focused on simple architectures to further explore the idea of generalizing band

selection using magnitudes of input weight vectors. Through our results, we observe that NNBS

is competitive for standard applications of dimensionality reduction. In doing so, we surmise that

the learned transformation matrices in neural networks can be utilized to perform various tasks

from selecting important input features—as is this paper’s goal—to analyzing higher level features

found in deep layers of complicated machine learning architectures. The next step in this work

is to analyze the importance of features selected in convolutional neural networks and of optimal

solutions of genetic algorithms.

An interesting path forward for this work involves testing more complex architecture, but also

applying band selection principles to a new application. For instance, certain NN architectures

learn base features towards the beginning of the network and learn higher order features towards

the end of the network. Band selection aims to down select input features by determining which

of these input features contribute the most information. With all this in mind, “band” selection

41

could be applied to higher level features to guide machine learning algorithms to more informative

solutions.

We have shown that the band selection technique underlying AEBS—ranking based on input

weight matrix magnitudes—can be generalized to a simple multilayer perceptron architecture. The

evaluation of classifier performance on those evaluated bands was comparable, if not preferable, to

other standard band selection techniques. While NNBS proved to be superior when more bands are

retained in the reduced subset, other methods continue to be competitive when the dimensionality

is further reduced. It appears that NNBS prioritizes class separability as this is the underlying

optimization task that generates the learned input weight matrices as opposed to data reconstruction

or compression. As such, we propose that selecting optimal bands for dimensionality reduction is

not an objective process but a subjective one tailored to the type of tasks being performed on the

data itself.

42

CHAPTER IV

ADDITIONAL RESULTS AND DISCUSSION

4.1 Additional Results

This section is dedicated to results obtained after publishing the paper described in chapter

III. The popular Pavia City Center dataset1 is used alongside additional results obtained using the

data gathered by the ERDC. The Pavia City Center dataset is captured with a hyperspectral sensor

diving its targeted bandwidth into 102 bands spanning 430 nm to 860 nm. The dataset has nine

classes in total with a tenth class covering the pixels that are unlabeled. Because this dataset is

much less skewed than the ERDC dataset, no subsample balancing is performed on the data. Refer

to tables 4.1 and 4.2 for the number of examples per class in each dataset.

1This dataset was gathered by Prof. Paolo Gamba from the Telecommunications and Remote Sensing Laboratory
at Pavia University.

43

Table 4.1

Class Distribution in the ERDC Dataset

Class Name Number of Examples
clay 15875
paint1 646
paint2 616
paint3 650
paint4 624
paint5 635
paint6 572
paint7 551
paint8 615
cubi1 179
cubi2 181
cubi3 187
cubi4 164
other 443

44

Table 4.2

Class Distribution in the Pavia City Center Dataset

Class Name Number of Examples
Water 824
Trees 820
Asphalt 816
Self-Blocking Bricks 808
Bitumen 808
Tiles 1260
Shadows 476
Meadows 824
Bare Soil 820

45

Figure 4.1

Average Accuracy vs % DR (DFF Classifer, ERDC Dataset)

In chapter III, the four methods are compared using average overall accuracy of a DFF network

and a K-means clustering algorithm at 50%, 75%, and 90% applied DR. Refer to figures 4.1–4.4

for this same information ranging from 10% reduction to 90% reduction in number of bands when

varying selection method, classifer, and dataset.

46

Figure 4.2

Average Accuracy vs % DR (KNN Classifer, ERDC Dataset)

Figure 4.3

Average Accuracy vs % DR (DFF Classifer, Pavia City Center Dataset)

47

Figure 4.4

Average Accuracy vs % DR (KNN Classifer, Pavia City Center Dataset)

48

Figure 4.5

AEBS Confusion Matrix (DFF Classifer, ERDC Dataset, 50% Applied DR)

Average overall accuracy is useful for a quick look into classifier performance, but it can hide

problems with classifier generality—especially if the dataset is skewed. Because of this, confusion

matrices are used to look deeper into classifier performance on a class-by-class basis. Not only is

overall average accuracy given, but the confusion matrix can show how often class A is mislabeled

as class B and vice versa for every class in the dataset. Because classifier type, amount of DR

applied, and dataset are all varied, 72 confusion matrices were constructed in total for this thesis.

Each confusion matrix generally displays the same type of information, so amount of DR applied

is fixed at 50% and only the AEBS method is directly compared to the NNBS method for the sake

of brevity. Refer to figures 4.6–4.11 for confusion matrices varying dataset and classifier type.

49

Figure 4.6

NNBS Confusion Matrix (DFF Classifer, ERDC Dataset, 50% Applied DR)

Figure 4.7

AEBS Confusion Matrix (KNN Classifer, ERDC Dataset, 50% Applied DR)

50

Figure 4.8

NNBS Confusion Matrix (KNN Classifer, ERDC Dataset, 50% Applied DR)

Figure 4.9

AEBS Confusion Matrix (DFF Classifer, Pavia City Center Dataset, 50% Applied DR)

51

Figure 4.10

NNBS Confusion Matrix (DFF Classifer, Pavia City Center Dataset, 50% Applied DR)

Figure 4.11

AEBS Confusion Matrix (KNN Classifer, Pavia City Center Dataset, 50% Applied DR)

52

Figure 4.12

NNBS Confusion Matrix (KNN Classifer, Pavia City Center Dataset, 50% Applied DR)

53

Finally, the selection results of each method are plotted against the average radiance of each

hyperspectral endmember. With this, it is easier to compare what each method focuses on in terms

of the data that is presented to it. As NNBS and its direct comparison to AEBS is the focus of

this thesis, the plots directly comparing these two methods are listed in figures 4.13 and 4.14. For

NNBS comparisons to ICABS and OPBS, refer to appendix B.

54

Fi
gu

re
4.

13

N
N

B
S

vs
A

EB
S

Se
le

ct
io

ns
(E

R
D

C
D

at
as

et
,9

0%
A

pp
lie

d
D

R
)

55

Fi
gu

re
4.

14

N
N

B
S

vs
A

EB
S

Se
le

ct
io

ns
(P

av
ia

D
at

as
et

,9
0%

A
pp

lie
d

D
R

)

56

4.2 Discussion

For the ERDC dataset, the majority class—clay—was subsampled to allow for the neural

network classifier as well as the overall accuracy results to not be dominated by the overwhelming

presence of that class. Even though the clay class if subsampled, it remains the majority class

during testing. The rest of the objects in the scene are low emissivity coatings that generally vary in

amount of light reflected, coatings that somewhat match the signature of clay, and living materials.

With this in mind, discriminators intuitively focus on the SWIR bands for living materials and

bands that differ provide the most difference between a clay color and the targeted material to be

detected.

The Pavia City Center dataset is much more well-balanced when compared to the ERDC

dataset. The sensor used in the collectio of this dataset only covers up to 860 nm which is just a

bit into the near IR range. The classes in this dataset are of a much higher variety covering two

types of living materials—trees and meadows—with the rest being either water or a type of

man-made material such as asphalt or bitumen. With this in mind, the selected bands in general

focus on the near IR for infromation on living-materials, some bands in the blue wavelengths in

order to classify the majority class—water—and various methods select different bands in order to

gather some information to discriminate between non-organic materials like tiles (metal sheets),

self-blocking bricks, and bricks.

ICA-based Band Selection (ICABS) focuses on finding a components comprising a transform

that maximizes the kurtosis of the data. Essentially, the data is assumed to be a mixture of non-

Gaussian signals and kurtosis is used as a measure of non-normality to find those signals. In

hyperspectral data, each pixel is some mixture of the materials present in the scene. ICABS finds

57

bands that best separate the signals in each pixel throughout the entire dataset. Although not entirely

the same, this method is used as stand-in method alongside NNBS for an LDA-based approach in

which bands are selected that best maximize class separability. In general, this performs very well.

In both datasets, ICABS selects areas that allow for the best separability between endmembers.

This typically occurs in the wavelengths corresponding to blue in each dataset. It should be noted

that for the Pavia City Center dataset, ICABS hyperfocuses on the areas corresponding to heavy

local variance for the water class. It is possible that this is the reason that ICABS is heavily

dependent on variations of applied DR as seen in 4.4. Refer to figures B.1 and B.2 for plots

showing the selection ICABS provides when limited to 10% of the original dimensionality.

Orthogonal Projection-based Band Selection (OPBS) is a fast version of Maximal Ellipsoidal

Volume (MEV) combined with sequential forward search (MEV-SFS). MEV-SFS adds to a subset

band by band such that each new band maximizes the amount of information in the subset while

minimizing the correlation between bands. Because OPBS defines maximizing information as

maximizing local variance, OPBS selections are used as a stand-ing for PCA-based approaches.

As such, OPBS selections prioritize regions where the endmember curves have the most local

variance. In the ERDC dataset, OPBS focuses much more strongly on the near IR wavelengths as

this is where the endmembers vary the most as seen in figure B.3. In the Pavia City Center dataset,

the band rankings oscillate between the longest and shortest wavelengths consistently despite the

amount of DR applied changing. This is mainly due to the fact that water absorption bands are

already taken out of this dataset as well as the fact that the poorer spectral resolution does not

capture the variance as well as the sensor used in the ERDC dataset.

58

Autoencoder-based Band Selection (AEBS) trains an autoencoder to reconstruct the hyper-

spectral dataset. The weights connecting the input to the network are used as a basis for selection,

i.e., the stronger the connections between an input neuron and the network, the more important

that band is to image reconstruction. The selections made by AEBS are very similar to those made

by OPBS although with a stronger emphasis on more equally sampling the original hyperspectral

endmembers allowing for better compression. In particular, AEBS seems to target regions that

offer the most entropy as these areas would contain the most amount of information for compression

and therefore, maximize the image reconstruction objective function.

Neural Network-based Band Selection (NNBS) implements the same process as AEBS but

with a general DFF architecture focused on hyperspectral pixel classification. Due to the nature

of minimizing the loss function, NNBS prioritizes weights that transform the input to make

classification easier. In other words, NNBS learns weight transforms that increase class separability

much like LDA. In the ERDC dataset, the selected bands are biased more towards the shorter

wavelengths as these regions offer the most class separability of endmembers. Because living

materials are anomalies within this dataset, NNBS also prioritizes selecting green and near IR

wavelengths to account for classifying these endmembers. In the Pavia City Center dataset, NNBS

mostly ignores the shorter wavelengths in favor of the green, red, and near IR wavelengths. This is

evident due to the endmembers being very close together in the shorter wavelengths and exhibiting

much more separability in the longer wavelengths.

59

CHAPTER V

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

At the outset, this thesis sought to explore three basic questions. One, can the AEBS method be

extended to any architecture without producing selections that did not help classifier performance?

Two, does the new method, NNBS, generate novel selections in comparison to AEBS, or do both

methods produce the same selections? And finally, do these different selection produce better

results? In other words, the evaluating task required pixel classification to be improved. NNBS

uses pixel classification to perform band selection. With this in mind, does NNBS produce better

results than AEBS?

First, to answer the question of machine learning band selection that is independent of autoen-

coder architecture, the selections made by NNBS need to be consistent from run to run. As there

is a stochastic element to NNBS, there is the concern that the selections in NNBS are giberish and

that they could vary due to random initialization. During testing, NNBS was performed multiple

times in order to accomplish two things: ensure that the selections do not vary run to run and in the

case that they do vary, is the variation significant enough to render NNBS selections useless. After

observing the results, the selections do not significantly vary from run to run as long as the network

is trained to a sufficiently small error which varies depending on architecture and the dataset. Any

variations present are within the actual rankings of the selections. Experimentally, the rankings

60

vary on average one rank up or down. While it is possible to overfit the network to allow for even

more consistency in rankings, it is unclear if this is preferable for the selections themselves. All

of these observations of NNBS apply to AEBS as both methods are based on a neural network

architecture optimizing a cost function. In short, NNBS produces consistent selections implying

that the selections can be repeated and are selected intelligently.

After demonstrating that NNBS produces consistent selections, it is desireable to have these

selections be unique from AEBS. If NNBS results match AEBS, then architecture does not matter,

and the “best” deep learning-based band selection method would use the architecture that con-

verges the faster or converges more consistently. However, selections produced by NNBS do not

match those produced by AEBS as is evident by figures 4.13 and 4.14. This can be intuited by

simply acknowledging that NNBS utilizes a DFF that is optimizing a cost function depending

on pixel classification accuracy, while AEBS utilizes an autoencoder optimizing a cost function

that minimizes image reconstruction error. With this, it is clear that NNBS and AEBS prioritize

different aspects of hyperspectral endmembers and have different definitions of what is “important”

information for band selection purposes.

Finally, does NNBS produce better results than AEBS or the other methods discussed in this

thesis? NNBS is shown to slightly outperform other methods, but this is not consistent when

varying applied DR and classifier type. All of these selection methods provide differing results

for the “best” subsets of the original bands. For instance, in the Pavia City Center dataset,

AEBS considers band 102 as the worst band, while NNBS considers band 102 to be the best.

When comparing classifier performance on this dataset, AEBS selections perform better when the

classifier is a DFF network, and NNBS selections perform better when the classifier is a 𝑘-means

61

clustering algorithm. With this in mind, it is important to note that each selection is shown to be at a

minimum competitive with other methods as shown by the figures in sections 4.1 and 3.4. Instead,

it is more important to consider the application for which the selections are the most important.

If the application of band selection is to design a cheaper sensor for detecting certain materials in

an image, then a band selection method that utilizes band grouping as well as one that takes into

account class separability. If the application of band selection is to retain as much information as

possible, approaches described in OPBS and AEBS would be more valuable.

5.2 Future Work

Before concluding this thesis, it is important to discuss where this research can move forward

into the future. For one, the most obvious take away is that weights learned via statistical transforms

and machine learning methods are important for analyzing data. As such, pre-trained networks’

weights can be used as a basis for analyzing all sorts of data. In the context of this thesis, neural

network weights hyperspectral endmembers can be analyzed to determine regions of the spectral

curves providing the most discriminative information for classification. Sensors can be selected

and tuned such that the spectral regions that most greatly discriminate weeds from important

crops are prioritized over bands that only introduce confusion. To step outside the hyperspectral

modality, CNN feature maps can be used to analyze important geometric features of objects such

that important features can be prioritized in the design of future algorithms.

A natural step in the future for the topics discussed in this thesis is that neural networks can

analyze their own parameters during runtime to make intelligent decisions during training. For

example, this thesis used a DFF network trained on the entire dataset to perform band selection.

62

A separate DFF network is trained on the reduced subset in order to compare selections between

different methods. An implementation of NNBS can be experimented with such that the input

weights are analyzed during runtime in order to preemptively self-prune input nodes that are

appearing to be unimportant. This sort of self-pruning can be applied to other networks in the

context of analyzing important features as well.

Finally, this thesis focused on analyzing input weights to make decisions about the input data.

However, a neural network uses more than the input weights in order to transform the input data to its

appropriate output. Therefore, the weights between each hidden layer holds important information

to make the network function. As alluded to in section 3.3 and experimented with in [21], hidden

layer weight information can be aggregated with the information present in input weights in order

to track input data information throughout the entire network ending at the output. This allows

the input data importance to be compared directly in terms of the output. With this, steps into

explainable neural networks can be taken which is important for applying machine learning to

delicate tasks such as cancer identification and autonomous vehicles.

In this thesis, various band selection methods are tested to the Pavia City Center dataset as

well as a novel dataset captured courtesy of the Engineer Research and Development Center.

Furthermore, an extension of the AEBS method called NNBS is applied to these datasets. When

spectral subsets are used in a DFF and 𝑘-means clustering classifer, each band selection method

optimizes different types of information with NNBS is shown to be competitive with other state-

of-the-art methods. It is clear from the results that each method prioritizes different regions

showcasing various characteristics of each hyperspectral endmember. With NNBS, future work in

63

explainable machine learning and of utilizing machine learning to analyze input data rather than

simply using the input to produce a desired output can be considered.

64

REFERENCES

[1] M. Ahmad, M. Alqarni, A. Khan, R. Hussain, M. Mazzara, and S. Distefano, “Segmented
and Non-Segmented Stacked Denoising Autoencoder for Hyperspectral Band Reduction,”
Optik, vol. 180, 11 2018.

[2] H. Ayman, W. Xiong, F. He, L. Yang, and M. Crawford, “Improving Orthorectification of
UAV-Based Push-Broom Scanner Imagery Using Derived Orthophotos From Frame Cam-
eras,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,
vol. 10, 02 2016, pp. 1–15.

[3] J. Ball, T. West, S. Prasad, and L. Bruce, “Level set hyperspectral image segmentation using
spectral information divergence-based best band selection,” 08 2007, pp. 4053 – 4056.

[4] W. Boulila, M. Driss, M. Al-Sarem, F. Saeed, and M. Krichen, “Weight Initialization
Techniques for Deep Learning Algorithms in Remote Sensing: Recent Trends and Future
Perspectives,” 02 2021.

[5] B. Chandra and R. Sharma, “Exploring autoencoders for unsupervised feature selection,” 07
2015, pp. 1–6.

[6] H. Du, H. Qi, X. Wang, R. Ramanath, and W. Snyder, “Band selection using independent
component analysis for hyperspectral image processing,” 11 2003, pp. 93– 98.

[7] I. Fodor, “A Survey of Dimension Reduction Techniques,” 2002.

[8] J. E. Fowler, “Compressive pushbroom and whiskbroom sensing for hyperspectral remote-
sensing imaging,” 2014 IEEE International Conference on Image Processing (ICIP), 2014,
pp. 684–688.

[9] M. Habermann, V. Fremont, and E. Shiguemori, “Unsupervised Band Selection in Hyper-
spectral Images using Autoencoder,” 01 2018, pp. 6 (6 pp.)–6 (6 pp.).

[10] D. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” International
Conference on Learning Representations, 12 2014.

[11] K. Koonsanit, C. Jaruskulchai, and A. Eiumnoh, “Band Selection for Dimension Reduction in
Hyper Spectral Image Using Integrated InformationGain and Principal Components Analysis
Technique,” International Journal of Machine Learning and Computing, vol. 3, 01 2012, pp.
248–251.

65

[12] B. Lu, Y. He, and P. D. Dao, “Comparing the Performance of Multispectral and Hyperspectral
Images for Estimating Vegetation Properties,” IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing, vol. 12, no. 6, 2019, pp. 1784–1797.

[13] R. Lukac and K. Plataniotis, “Color Filter Arrays for Single-Sensor Imaging,” 01 2006, vol.
2006, pp. 352 – 355.

[14] S. Madry and J. N. Pelton, “Electro-optical and Hyper-spectral Remote Sensing,” 2013, pp.
729–738.

[15] S. Mehta, A. Patel, and J. Mehta, “CCD or CMOS Image sensor for photography,” 2015
International Conference on Communications and Signal Processing (ICCSP), 2015, pp.
0291–0294.

[16] E. Mohamed, A. Saleh, A. Belal, and A.-A. Gad, “Application of near-infrared reflectance
for quantitative assessment of soil properties,” The Egyptian Journal of Remote Sensing and
Space Science, vol. 21, 02 2017.

[17] M. F. Moller, “A scaled conjugate gradient algorithm for fast supervised learning,” Neural
Networks, vol. 6, no. 4, 1993, pp. 525–533.

[18] K. O’Shea and R. Nash, “An Introduction to Convolutional Neural Networks,”, 2015.

[19] D. Prasvita, “Post-processing and band selection for hyperspectral image data classification
with AdaBoost.MH,” 11 2017, pp. 6–13.

[20] N. Rani, V. R. Mandla, and T. Singh, “Evaluation of atmospheric corrections on hyperspectral
data with special reference to mineral mapping,” Geoscience Frontiers, vol. 8, no. 4, 2017,
pp. 797–808, Special Issue: Deep Seated Magmas and Their Mantle Roots.

[21] P. Ribalta Lorenzo, L. Tulczyjew, M. Marcinkiewicz, and J. Nalepa, “Hyperspectral Band
Selection Using Attention-Based Convolutional Neural Networks,” IEEE Access, vol. PP, 03
2020, pp. 1–1.

[22] C. Rodarmel and J. Shan, “Principal Component Analysis for Hyperspectral Image Classifi-
cation,” Surv Land inf Syst, vol. 62, 01 2002.

[23] A. Sherstinsky, “Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term
Memory (LSTM) network,” Physica D: Nonlinear Phenomena, vol. 404, 2020, p. 132306.

[24] C. Sorzano, J. Vargas, and A. Montano, “A survey of dimensionality reduction techniques,”
03 2014.

[25] W. Sun and Q. Du, “Hyperspectral Band Selection: A Review,” IEEE Geoscience and
Remote Sensing Magazine, vol. 7, no. 2, 2019, pp. 118–139.

[26] J. Tschannerl, J. Ren, J. Zabalza, and S. Marshall, “Segmented Autoencoders for Unsupervised
Embedded Hyperspectral Band Selection,” 11 2018, pp. 1–6.

66

[27] Y. Zhan, D. Hu, H. Xing, and X. Yu, “Hyperspectral Band Selection Based on Deep
Convolutional Neural Network and Distance Density,” IEEE Geoscience and Remote Sensing
Letters, vol. PP, 11 2017, pp. 1–5.

[28] W. Zhang, X. Li, Y. Dou, and L. Zhao, “A Geometry-Based Band Selection Approach for
Hyperspectral Image Analysis,” IEEE Transactions on Geoscience and Remote Sensing, vol.
PP, 03 2018, pp. 1–16.

67

APPENDIX A

FORMULATING BACKPROPAGATION USING LINEAR ALGEBRA

68

A.1 Forward Propagation using Linear Algebra

This appendix aims to formulate the entirety of neural networks in terms of linear algebra using

the derivation provided in sections 2.3 and 2.4. Implementations of neural networks generally

use the linear algebra formulation as it is more compact, and there exist more efficient methods

of computing operations such as inverse matrices and matrix multiplication leading to faster

computation time.

For this formulation, X will be an input data matrix to layer 𝑙 whose columns are individual

data vectors of length 𝑁 such that [x1, x2, ..., x𝑀]. Therefore, X is a 𝑁x𝑀 data matrix with 𝑀

entries and 𝑁 variables. It is important to view the data this way to account for offline training. If

the minibatch size is equal to one, then the data matrix collapses to a single data vector, effectively

implementing online training. This allows for the formulation in this appendix to be used regardless

of minibatch size.

Similarly, a weight matrix W𝑙−1,𝑙 between layers 𝑙 − 1 and 𝑙 can be described in a similar way

such that the weights of a neuron in layer 𝑙 − 1 are organized into a column vector w. With each

column containing 𝑃 weights connecting an arbitrary neuron in layer 𝑙 − 1 to all the neurons in

layer 𝑙, the weight matrix of size 𝑃x𝑁 is formulated as W𝑙−1,𝑙 = [w1,w2, ...,wN]. Furthermore, to

incorporate the idea of a bias term, X and W𝑙,𝑙+1 are modified such that X =

[−→
1 , x1, x2, ..., x𝑀

]
and W𝑙−1,𝑙 = [b,w1,w2, ...,wN] such that b is a vector of biases for the 𝑃 neurons in layer 𝑙 + 1.

Forward propagation from layer 𝑙 − 1 and to layer 𝑙 creates the unactivated output matrix Z of size

𝑃x𝑀 as defined in equation A.1.

Z = W𝑙−1,𝑙X (A.1)

69

The unactivated output matrix Z is then passed through an activation function, 𝜑 (·), that acts on

every element of the matrix. This produces an activated output matrix that can be seen in equation

A.2.

Y = 𝜑 (Z) = 𝜑
(
W𝑙−1,𝑙X

)
(A.2)

An alternative definition of forward propagation can be found in equation A.3 that more clearly

defines the iterative role of the matrix computations throughout a network. If the layer is an input

layer, i.e. 𝑙 = 1, then A𝑙−1 = A0 = X is the input to the network. Similarly, if the layer is the output

layer, i.e. 𝑙 = 𝐿, then A𝑙 = A𝐿 = Y or the output of the network. Refer to figure A.1 for a labeled

reference of an arbitrary layer in a fully connected feedforward network.

A𝑙 = 𝜑 (Z𝑙) = 𝜑
(
W𝑙−1,𝑙A𝑙−1

)
(A.3)

A.2 Backward Propagation using Linear Algebra

Similar to section 2.4, backpropagation basically sums up to determining what the error signal

is for each layer. Each data entry in the input matrix X will create an entry in the output matrix Y.

A consequence of this is that the error signal for each neuron will create an error vector, 𝜹. For

each entry in Y, there will be an associated error vector entry organized in 𝚫 = [𝜹1, 𝜹2, ..., 𝜹𝑀].

Reformulating the equations for 𝛿 𝑗 as described in equation 2.9 results in equation A.4 describ-

ing the error matrix 𝚫𝑙,𝑙−1 associated between layers 𝑙 − 1 and 𝑙. Note that the matrix O is a matrix

containing the training labels to be compared to the output of the network, matrix Y.

𝚫𝐿−1,𝐿 = (O − Y) � 𝜑′ (Z𝐿) if 𝑙 = 𝐿 is an output layer

𝚫𝑙−1,𝑙 =

(
𝚫𝑇
𝑙,𝑙+1W𝑙,𝑙+1

)
� 𝜑′ (Z𝑙) if 𝑙 is a hidden layer (A.4)

70

The � operator is the Hadamard product, or put simply, it is element-wise multiplication

between matrices of the same size. It is important to note that in practical applications of back-

propagation in linear algebra, the 𝜑′ (Zl) term is calculated during forward propagation as the

network already has easy access to the unactivated outputs matrix Z𝑙 . After the 𝚫 matrices have

been backpropagated, the update equation for the weight matrix 𝑊𝑙−1,𝑙 between two layers then

becomes the following equation which is a reformulation of equation 2.10. Again, refer to figure

A.1 for a representation of where these matrices are located in an arbitrary layer of a network.

W𝑡+1
𝑙−1,𝑙 = W𝑡

𝑙−1,𝑙 − 𝜂𝚫𝑙−1,𝑙A𝑇
𝑙−1 (A.5)

To implement various learning strategies such as ADAM, terms that implement momentum, L2-

regularization, or sparsity regularizaition using Kullback-Leibler (KL) divergence must be refor-

mulated to take into account matrix computations using the output matrix Y. Once these terms are

incorporated into the cost function, the above equations proceed as defined.

71

Figure A.1

Generic Labeled Layer of a Fully Connected Feedforward Network

72

APPENDIX B

ADDITIONAL RESULTS

73

B.1 Selection Comparison Plots

Below are additional plots for comparing various selections to the selections from the NNBS

method.

74

Fi
gu

re
B

.1

N
N

B
S

vs
IC

A
B

S
Se

le
ct

io
ns

(E
R

D
C

D
at

as
et

,9
0%

A
pp

lie
d

D
R

)

75

Fi
gu

re
B

.2

N
N

B
S

vs
IC

A
B

S
Se

le
ct

io
ns

(P
av

ia
D

at
as

et
,9

0%
A

pp
lie

d
D

R
)

76

Fi
gu

re
B

.3

N
N

B
S

vs
O

PB
S

Se
le

ct
io

ns
(E

R
D

C
D

at
as

et
,9

0%
A

pp
lie

d
D

R
)

77

Fi
gu

re
B

.4

N
N

B
S

vs
O

PB
S

Se
le

ct
io

ns
(P

av
ia

D
at

as
et

,9
0%

A
pp

lie
d

D
R

)

78

	Exploring the use of neural network-based band selection on hyperspectral imagery to identify informative wavelengths for improving classifier task performance
	Recommended Citation

	tmp.1629224643.pdf.dJYwZ

