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ABSTRACT 
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Title of Study: Finite element analysis of extruded AA6061-T6 mechanical connection in low-

cycle fatigue 

Pages in Study 70 

Candidate for Degree of Master of Science 

The low-cycle fatigue (LCF) life of the extruded aluminum alloy 6061-T6 (AA6061-T6) 

AM2 matting connection system was analyzed through 3D finite element modeling in conjunction 

with the plasticity-damage (DMG) and multi-stage fatigue (MSF) material models. The connection 

was modeled in ABAQUS Explicit based on the real-world boundary conditions of AM2 matting. 

The DMG-MSF user-defined material model characterized the low-cycle fatigue damage 

evolution within the microstructure of the extruded AA6061-T6 connection and utilized the 

maximum effective strain amplitude to predict the life of each stage of the fatigue process. It was 

determined that a constant displacement range of 15.17 mm generated an effective strain amplitude 

of 6.8E-03 mm/mm and a predicted total fatigue life within 1% to the laboratory- and full-scale 

data at approximately 1,122 cycles. The LCF characterization of the connection system allows for 

a significant reduction in laboratory- and full-scale testing for future design improvements.  
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CHAPTER I 

INTRODUCTION 

Background 

Aluminum alloy 6061 (AA6061) has been utilized for structural applications in the 

transportation industry for many years due to its high strength-to-weight ratio, manufacturability, 

and corrosion resistance [1-5]. Additionally, AA6061 has been used extensively by the U.S. 

Department of Defense (DoD) to create temporary airfield surfacing systems since the 1960s [6-

9]. Other materials such as steels, plastics, and composites have been used and are still being used 

for a variety of matting applications, however, extruded AA6061 is the primary material for U.S. 

military expeditionary airfield surfacing. The most commonly used expeditionary airfield 

surfacing system is referred to as AM2 matting. Ever since its introduction, AM2 matting has been 

fabricated from extruded AA6061-T6. AM2 matting is produced in three separate pieces. The three 

pieces include a multi-void hollow-core extrusion with tongue and groove connectors, an extruded 

overlap/underlap locking joint, and an extruded insert that is fit into the ends of the hollow core 

and welded in place prior to welding the locking connectors.  

Historically, AM2 matting is assembled in an array and utilized as an expeditionary airfield 

surface to support fighter and cargo aircraft over graded but unimproved soils, as shown in Figure 

1. Therefore, the mats are the primary support structure for the aircraft since unimproved subgrades 

are typically weak. The performance of AM2 matting has been quantified at the U.S. Army 

Engineer Research and Development Center (ERDC) in Vicksburg, MS through full-scale testing 
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over subgrade strengths of 6%, 10%, 15%, 25%, and 100% California Bearing Ratio (CBR) with 

simulated F-15E and C-17 traffic. This work is focused on the F-15E related data over the 6% 

CBR subgrade.  

 

Figure 1 Photograph of AM2 matting installation 

 

The F-15E traffic was applied with a single F-15E wheel and tire inflated to 2,240 kPa (325 

psi). The load on the single tire was 157 kN (35,235 lbf), which generated a contact area of 706 

cm2 (109.5 in.2). The wheel traveled along 5 five parallel lanes that were 23 cm (9 in.) apart, which 

created a total traffic width of 115 cm (45 in.). The five lanes were traversed in a pattern that 

allowed the three center lanes to receive twice as much traffic as the outer lanes to generate a 

simplified, normal distribution. The distributed traffic pattern allowed the loaded wheel to travel 

the center lane 4 times for each 16 total passes, which created a pass-to-coverage ratio of 4.  

The current minimum subgrade strength requirement for AM2 matting is quantified as a 

CBR of 6%. The current performance requirement for AM2 matting is to sustain 1,500 passes of 
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a fully-loaded F-15E or C-17 aircraft traffic when placed over a 6% CBR subgrade in a brickwork 

pattern; where failure is considered to be failure of 10% of the matting surface area. AM2 failures 

typically occur within the locking connection (shown in Figure 2) on the short edge of the matting, 

which is parallel to the direction of traffic [7-8]. Therefore, it is reasonable to assume that the 

connectors begin failing prior to the completion of the 1,500 passes. Results from full-scale testing 

at the U.S. Army ERDC [8] showed that the first panel failure occurred after approximately 984 

passes while the 10% failure criterion was reached at 1,395 passes, creating an average of 1,190 

passes. Additionally, it was determined that the number of cycles to failure of the connection was 

correlated directly to the plastic deformation of the subgrade. The matting failures from the full-

scale evaluations shifted from end connector failures to internal core failures as the subgrade 

strength increased.  

 

Figure 2 Photograph of the AM2 locking connection 
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Rushing et al. [7] evaluated the AM2 locking connection in a laboratory-scale environment 

to understand the performance of the joint without the expense of the constructing an entire test 

section and matting array. A laboratory procedure was developed to simulate the joint movement 

seen in full-scale testing, which is shown in Figure 3.  

Additionally, to replicate the appropriate range of motion within the connection when the 

matting wsa trafficked, the vertical displacement of the laboratory specimens was correlated to the 

deformation of the subgrade measured in full-scale testing, which can be determined by Equation 

1. It was noted that the width of the rut formed in the subgrade was based on traffic application, 

not the strength of the subgrade. Considering that the total span of the laboratory experiment was 

62.23 cm (24.5 in.), which was approximately half of the width of the typical rut formed during 

the full-scale experiments, Equation 1 was multiplied by 0.5 to give an equivalent amount of 

rotation within the joint. Therefore, Equation 2 calculates the displacement applied to the 

laboratory specimens per cycle. Where 𝛿𝑠 is the subgrade displacement from its original level, 𝑃𝑛 

is the number of passes, and 𝐶𝐵𝑅 is the strength of the subgrade beneath the matting in terms of 

%.  

It was learned from the laboratory experiments [7] that failures were only replicated 

accurately when the joint was loaded on the underlapping side exclusively, while restraining the 

overlapping side rigidly. When the connection was is loaded from the overlapping side, the joint 

engages fully along its length and the stress is transferred through the teeth without engaging the 

locking bar. When the joint is loaded on the underlapping side, however, the large tolerances built 

into the connection for assembly allow the joint to separate transfer the load through the locking 

bar over a much smaller area. A representation of the connection engagement modes is shown in 

Figure 4. 
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Figure 3 Schematic of the testing boundary conditions for the AM2 connection 

Section a) shows the laboratory testing boundary conditions, b) depicts the two primary failure 

locations within the connection, and c) is a picture of the actual setup used by Rushing et al. [7,8] 

 

 

 

𝛿𝑠 = 𝑙𝑜𝑔10𝑃𝑛 ∗ 1.64 ∗ 𝐶𝐵𝑅
−0.61 (1) 

𝛿𝑠 = 𝑙𝑜𝑔10𝑃𝑛 ∗ 0.82 ∗ 𝐶𝐵𝑅
−0.61 (2) 
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Figure 4 Schematic of the overlapping AM2 connection under two loading conditions 

Condition a) was loaded on the overlapping side and condition b) was loaded on the 

underlapping side 

 

(a) (b) 

 

Reported failures were consistent with the full-scale data showing a propagated crack 

through the upper tooth of the underlap locking connector, as shown in Figure 5. The data revealed 

that the average number of cycles to failure for the locking connection was 1,132 cycles. 

Considering that failure occurs below 1,500 cycles, the connection is undergoing low-cycle fatigue 

(LCF).  

Fatigue is an important failure criterial that is defined as repeated loading cycles that cause 

damage to accumulate within the material, effectively weakening or creating a finite lifespan [10]. 

Extensive testing and characterization are required in order to understand the intrinsic and extrinsic 

factors on material properties of a metal in fatigue. Fatigue of metals consists of four main stages: 

incubation (INC), microstructurally small crack (MSC), physically small crack (PSC), and long 

crack (LC). While MSC and PSC are sometimes combined for simplicity, INC can be broken down 
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into three sub-stages including void nucleation, growth, and coalescence [5]. Understanding the 

fatigue properties of extruded AA6061-T6 is crucial to understanding the performance of AM2 

matting connection and has the potential to reduce laboratory- and full-scale prototyping efforts 

for design improvements. 

 

Figure 5 Photographs of the AM2 connection and failure location 

Section a) shows the typical crack location circled and section b) shows the typical failure mode 

shown [6,7] 

 

(a)  (b) 
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CHAPTER II 

LITERATURE REVIEW 

Mechanical characterization 

Extrusion is the manufacturing process where a billet of material is forced through a small 

opening in a die to produce a near net shape part. A significant amount of pressure is applied to 

the material forcing the material to flow through the die. As a result, the material undergoes a large 

amount of plastic deformation. The large amounts of plastic deformation affects the microstructure 

of the metal resulting in different properties than wrought AA6061. Therefore, the properties of 

extruded AA6061 need to be quantified to have an accurate representation of the material being 

used to produce AM2 matting. The chemical composition (Wt. %) of AA6061-T6 is shown in 

Table 1 [2, 4]. Even though the base material composition is unaltered during extrusions, it is 

critical to the strength of an alloy [11], the aging condition contributes significantly to the strength 

as well [12].  

Dorward and Bouvier [11] analyzed the effect of composition on the strength, ductility, 

and toughness of AA6061. The authors analyzed variations of magnesium and silicon content 

within the material. Peak yield strength was greatly affected by composition, with approximately 

a 100 MPa difference between the strongest and weakest alloys. Peak strength increased by 

approximately 5 MPa with each 0.1% increase in Mg2Si. Specimens with lean and nominal 

chemistries of silicon and magnesium showed the best combination of strength and toughness. The 

authors noted that strength increased with aging time for all of the variations tested; however, 
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elongation decreased with aging time. Therefore, the tensile and toughness properties of AA6061-

T6 can vary based on both the exact composition of the alloy and the aging process. 

Table 1 Chemical composition of AA6061-T6 in wt.% 

Element Mg Si Cu Mn Fe Cr Zn Al 

Min. 0.80 0.40 0.15 -- -- 0.04 -- Bal. 

Max. 1.20 0.80 0.40 0.15 0.7 0.35 0.25 Bal. 

 [2,4] 

Abood et al. [2] compared the effect of heat treatment on the mechanical properties of 

AA6061 in three different conditions. The three conditions were annealed (O), T4, and T651. 

Monotonic stress-strain data can be seen in Table 2. As expected, the yield strength and ultimate 

strength increased as the aging condition increased. Additionally, the authors measured elongation 

at 13%, 19%, and 28% via tensile testing for the T651, T4, and O conditions, respectively. The 

strain hardening exponent and strength coefficient of the three aging conditions are also listed in 

Table 2. The main takeaway from this work was that as the treatment increased, the yield strength 

increased, and the elongation decreased. The decreased ductility due to an increase in hardness is 

consistent with [11]. 

Ozturk et al. [12] investigated the influence of the T6 aging treatment specifically on the 

mechanical properties of AA6061. The T6 condition is a very common method to increase the 

strength of AA6061. A solution heat treatment occurs at 500 C to obtain the supersaturated α solid 

solution. Then, artificial aging is performed by heating the alloy to 200 C to allow for precipitation 

of various phases. The hardness and strength of AA6061 depends on the precipitate type, density 

and size [13]. The authors determined that peak aging requires a dense population of β needle-

shaped precipitates aligned in the <1 0 0> direction to block dislocation movement. The peak aged 
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condition, which occurs after 200 minutes of aging at 200 C, showed an increase of 73% over the 

material without any heat treatment. As expected, it was noted that ductility is inversely 

proportional to the strength. The total elongation for the peak aged material was 13.2% while the 

non-treated material measured an elongation of 24.6%. Due to the heat treatment process, the 

presence of β” precipitates within the microstructure led to drastic changes in the mechanical 

properties, such as increasing the yield strength and hardness values.  

In summary, the microstructure of AA6061 changes with the chemical composition, the 

manufacturing process, and the ageing process. Takahashi et al. [14] and McCullough [15] 

characterized the microstructure of extruded AA6061-T6. Figure 6 and Figure 7 show the highly 

textured microstructure with grains that are elongated in the extrusion direction. The grains are 

oriented in the <111> and the <100> direction. The fine, needle-like precipitates in Figure 6d are 

oriented in the <100> direction and ranged from 20-100 nm in length. Based on the findings from 

[5, 14-15], it was confirmed that the extruded AA6061-T6 has a unique microstructure due to the 

processing methods. 

Abood et al. [2], Brammer et al. [4], McCullough et al. [5], Mirza et al. [16], and Wong et 

al. [21] quantified the monotonic tensile properties of extruded AA6061-T6. The uniaxial results 

from the material can be seen in Table 2. Overall, the alloys exhibited similar yield and tensile 

strengths. As expected, it can be seen in Table 2 that the lesser-aged conditions have lower 

strengths but higher elongation. The variation in tensile properties for the materials with the same 

aging conditions may be a result of slightly different chemical composition or heat treatment 

process. 
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Figure 6 Microstructural analysis of extruded AA6061-T6 

The analysis shows a) a 3D stitched view from optical micrographs, b) an inverse pole figure 

color map of the surface, c) pole figures captured from b), and d) a transmission-electron 

microscopy image of needle-shaped precipitates within the specimen [14] 

 

 

Figure 7 EBSD images of extruded AA6061-T6 

Electron backscatter diffraction images of extruded AA6061-T6 with a) inverse pole figure map 

and b) pole figures of the specimens in the extrusion direction [15] 

a)  
b)  

 



 

12 

Table 2 Monotonic tensile properties of extruded AA6061 

Material 

Elastic 

Modulus 

(GPa) 

Yield 

Strength 

(MPa) 

Ult. Tensile 

Strength 

(MPa) 

Elong-

ation 

(%) 

Monotonic Strength 

Coefficient K, (MPa) 

Strain-

Hardening 

Exponent, n 

AA6061-T651 [2] -- 300.0 338.0 13.0 480.0 0.052 

AA6061-T4 [2] -- 262.0 307.0 19.0 400.0 0.069 

AA6061-O [2] -- 73.0 127.0 28.0 110.0 0.158 

AA6061-T6 [4] 67.8 296.0 320.0 -- 178.0 0.360 

AA6061-T6 [5] 66.4 304.4 320.8 20.0 377.4 0.039 

AA6061-T6 

Custom [5] 

67.5 270.3 292.5 22.7 355.4 0.050 

AA6061-T6 [16] 66.9 297.0 319.0 21.5 470.0 0.120 

AA6061-T6 [21] 69.6 319.9 347.5 11.8 337.2 0.017 

 

Fatigue properties 

When a metal undergoes strain-controlled deformation, the elastic strain amplitude 

dominates when small strains are applied; however, the plastic strain amplitude dominates when 

large strains are applied [10]. Both the elastic and plastic strain amplitudes contribute to the total 

fatigue life in the LCF of extruded AA6061-T6. Total fatigue life can be summarized by 

Equation 3, 

 

∆휀𝑡𝑜𝑡
2

=
∆휀𝑒
2

+
∆휀𝑝

2
 (3) 
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where 
∆𝜀𝑡𝑜𝑡

2
 is the total strain amplitude, 

∆𝜀𝑒

2
 is the elastic strain amplitude, and 

∆𝜀𝑝

2
 is the plastic 

strain amplitude. The elastic strain amplitude can be broken down using Basquin’s equation [17] 

into Equation 4, 

 

 

∆휀𝑒
2

=
𝜎𝑓
′

𝐸
(2𝑁𝑓)

𝑏
 (4) 

where 𝐸 is the elastic modulus, 𝜎𝑓
′ is the fatigue strength coefficient, 𝑏 is the fatigue strength 

exponent, and 2𝑁𝑓 is the number of reversals to failure. The Coffin-Manson relationship [18-19] 

can be used to represent the plastic strain amplitude, as shown in Equation 5,  

 

 

∆휀𝑝

2
= 휀𝑓

′(2𝑁𝑓)
𝑐
 (5) 

where 휀𝑓
′  is the fatigue ductility coefficient, and 𝑐 is the fatigue ductility exponent. Brammer et al. 

[4] combined Equation 3 with the Massing’s Hypothesis and applied it to the branch equation [20] 

to create an equation for the stabilized hysteresis loop, creating Equation 6,  

 

 

∆휀 =
∆𝜎

𝐸
+ 2(

∆𝜎

2𝐾′
)

1
𝑛′

 (6) 

where 𝐾′ is the cyclic strength coefficient and 𝑛′ is the cyclic strain hardening exponent. Equation 

4 can be used to predict the cyclic stress-strain response of the material.  Therefore, quantifying 

the parameters from Equations 3-6 allows one to understand the response of AA6061-T6 to fatigue 

loading. The following works [3, 4, 5, 16, & 21] have quantified the LCF parameters from 

Equations 3-6.  
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Badaruddin et al. [3] studied the LCF performance of extruded AA6061-T6 under strain-

controlled testing. The results are plotted in Figure 8. All testing was fully-reversed at a strain rate 

of .004/s over a range of strain amplitudes from 0.5% to 1.3%. The authors found that strain 

softening occurred at a strain amplitude of 0.7% and below while strain hardening occurred at 

strain amplitudes of 1.1% and above. Figure 9 shows the strain hardening and softening behavior. 

The strain softening was attributed to dislocation annihilation because the secondary phase 

particles (Mg2Si) cannot restrain the dislocation movement when under compression. The authors 

attributed the strain hardening to interactions between the secondary phase particles and Mg2Si 

precipitates that disrupt the dislocation movement. The authors noted improved fatigue life at the 

strain rates below .7% due to the lower strength and higher ductility of the material. A minimal 

amount of the Bauschinger effect was noticed at a strain amplitude of 0.7% (Figure 10a), however, 

it was not present at an amplitude of 1.3% (Figure 10b). Figure 11 shows that the cyclic stress 

responses are lower than the monotonic results, which also indicates strain softening. The LCF 

parameters were recorded in Table 3.  

 

Figure 8 Strain-life plot of extruded AA6061-T6  

The plot shows total, elastic, and plastic strain [3] 
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Figure 9 Stress-life plot of AA6061-T6 

Stress amplitude versus number of cycles of extruded AA6061-T6 at various strain amplitudes [3] 

 

 

Figure 10 Hysteresis loops of extruded AA6061-T6 

Typical hysteresis loop of extruded AA6061-T6 at a) 0.7% strain amplitude and b) 1.3% strain 

amplitude [3] 

(a) (b) 
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Figure 11 Stress-strain plot for extruded AA6061-T6 

Monotonic and cyclic stress-strain curves of extruded AA6061-T6 [3] 

 

Brammer et al. [4] evaluated extruded AA6061-T6 at a variety of strain amplitudes to 

define the strain-controlled LCF properties. The cyclic tests were run with a frequency of 5 Hz and 

with strain amplitudes of .002, .003, .004, .005, .006, and .007. The fatigue life results (shown in 

Figure 12) showed significant strain hardening for strain amplitudes .004 and greater, indicated by 

the positive slope of the curves, as shown in Figure 13. The stress-strain responses from the first 

cycle at each strain amplitude shown in Figure 14a were symmetric and did not show signs of the 

Bauschinger effect. Additionally, Figure 14b shows the hysteresis loops at the half-life for each 

strain amplitude and only a slight downward shift was observed. The strain-life LCF parameters 

were tabulated in Table 3.  
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Figure 12 Strain-life plot of extruded AA6061-T6 

Curves for the total strain, elastic strain, and plastic strain amplitudes are shown [4] 

 

 

Figure 13 Stress-life plot for extruded AA6061-T6 

Stress amplitude versus number of cycles for extruded AA6061-T6 [4] 
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Figure 14 Hysteresis plots for extruded AA6061-T6 

Hysteresis loops for a) the first cycle and b) the half-life of extruded AA6061-T6 [4] 

 

(a)  (b)  

 

McCullough et al. [5] evaluated the fatigue crack nucleation and growth in extruded 

AA6061 in the T6 condition and a custom annealed condition. The custom condition was evaluated 

after exposing the AA6061-T6 to an elevated thermal environment. The fully-reversed strain-life 

fatigue results at a frequency of 5 Hz are shown in Figure 15. A small amount of strain hardening 

was observed and minimal Bauschinger effects were present in either material, as shown by the 

first-cycle and half-life hysteresis loops (Figure 16). Even so, almost all of the fatigue tests for 

both material conditions showed work-softening, as shown by the negative slopes of the curves in 

Figure 17. In summary, both the T6 and annealed conditions resulted in similar strain-controlled 

fatigue lives, however, the T6 condition always required more stress to achieve the same strain 

amplitudes due to its higher yield strength. The authors attributed the reduction in yield strength 

of the annealed material to the increase in grain size during the slight recrystallization period at 

elevated temperature. Additionally, the monotonic and cyclic stress-strain response for both 
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materials are displayed in Figure 18, confirming that more stress is required of the T6 condition in 

order to reach an equivalent strain as the annealed condition. Also, the lower values for the cyclic 

results in Figure 18 compared to the monotonic results indicates strain softening behavior. The 

LCF parameters were recorded in Table 3. 

 

Figure 15 Strain-life plot for extruded AA6061-T6 and heat affect AA6061 

Strain-life plot of extruded AA6061-T6 and custom treated AA6061 [5] 

 

 

Figure 16 Hysteresis plots for extruded AA6061-T6 and heat affected AA6061 

Typical hysteresis loops for a) the first cycle and b) the half-life of extruded AA6061-T6 and a 

custom treated AA6061 [5] 

 

(a) (b) 
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Figure 17 Stress life plot of extruded AA6061-T6 and heat affected AA6061 

Stress amplitude versus number of cycles for extruded AA6061-T6 and a custom treated 

AA6061 [5] 

 

 

Figure 18 Stress-strain plot for extruded AA6061-T6 and heat affected AA6061 

Monotonic and cyclic stress-strain curves for extruded AA6061-T6 and a custom treated 

AA6061 [5] 
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Mirza et al. [16] evaluated the strain-controlled LCF behavior of extruded AA6061-T6 

under strain amplitudes of 0.4%, 0.6%, 0.8%, 1.0%, and 1.2% at a constant strain rate of 1x10-2 s-

1. The results can be seen in Figure 19a & Figure 19b. The stress-strain responses showed minimal 

Bauschinger effect, which can be observed in the half-life hysteresis loop at a strain amplitude of 

1.2% (Figure 20). Minor cyclic hardening occurred at high strain amplitudes (0.8–1.2%) within 

the first ten cycles and was followed by cyclic stabilization and then a little softening prior to 

failure. Figure 21 shows this hardening/softening behavior. The authors reported a longer fatigue 

life than [4, 21], but is most likely due to higher ductility of the specific material studied. The LCF 

parameters were recorded in Table 3. 

 

Figure 19 Strain life plots of extruded AA6061-T6 

The strain-life fatigue plot of extruded AA6061-T6 with a) total, elastic, and plastic strain 

amplitudes and b) total strain amplitude only [16] 

a) b) 

 



 

22 

 

Figure 20 Hysteresis plots of extruded AA6061-T6 

Typical hysteresis loop of extruded AA6061-T6 for first, second, and mid-life cycles at a total 

strain amplitude of 1.2% [16] 

 

 

Figure 21 Stress-life plot of extruded AA6061-T6 

Stress amplitude versus number of cycles for extruded AA6061-T6 at various strain amplitudes 

[16] 



 

23 

Wong et al. [21] performed strain-life LCF testing of 3 lots of extruded AA6061-T6. The 

tests were performed fully-reversed and uniaxial at a strain rate of 0.01 s-1. The material showed 

slight cyclic hardening, with a 3% increase in the cyclic yield strength over the monotonic yield 

strength, as shown in Figure 22. The strain-life plot is shown in Figure 23, including the elastic 

and plastic strain-life curves. The LCF parameters were calculated and listed in Table 3. 

 

Figure 22 Stress-strain plot for extruded AA6061-T6 

Monotonic and cyclic stress-strain curves for extruded AA6061-T6 [21] 
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Figure 23 Strain-life plot of extruded AA6061-T6 

Strain-life plot of extruded AA6061-T6 with elastic and plastic strain-life curves [21] 

 

Table 3 Low-cycle fatigue properties for extruded AA6061-T6 

Extruded AA6061-T6 LCF Parameters [3] [4] [5] [16] [21] 

Cyclic strain hardening exponent 𝑛′ 0.025 0.078 0.044 0.039 0.024 

Cyclic strength coefficient 𝐾′ MPa 368.0 268.0 392.8 369.0 372.3 

Fatigue strength coefficient 𝜎𝑓
′ MPa 386.0 705.0 458.0 534.0 593.0 

Fatigue strength exponent 𝑏 -0.036 -0.110 -0.063 -0.082 -0.093 

Fatigue ductility coefficient 휀𝑓
′  0.770 2.400 0.620 4.490 5.390 

Fatigue ductility exponent 𝑐 -1.010 -0.980 -0.750 -1.100 -1.100 

 

 



 

25 

Discussion of low-cycle fatigue data 

One interesting finding from the LCF results presented by [3-5, 16] is the deformation 

induced hardening. Brammer et al. [4] and Mirza et al. [16] reported strain hardening between 

strain amplitudes of 0.2% to 0.6% and 0.6% to 1.2%, respectively. McCullough et al. [5] also 

reported strain hardening at 0.3%, however, the authors reported strain softening between strain 

amplitudes of 0.7% to 2.0%. In contrast, Badaruddin et al. [3] documented strain softening between 

amplitudes of 0.3% to 0.7% and strain hardening at amplitudes above 0.7%. Abood et al. [2] 

compared three different heat treatments on the strain-life of AA6061 in LCF. The three conditions 

were the O, T4, and T651 aged conditions. The LCF testing revealed that the O condition showed 

cyclic hardening while the other two conditions showed cyclic softening. Therefore, the strain 

hardening or softening behaviors were likely due to microstructural differences between each of 

the materials. Additionally, authors [3, 4, & 16] conducted the fatigue testing according to ASTM 

E606, while [5] performed testing according to ASTM E606-92 to achieve the higher strain 

amplitudes without buckling and [21] performed testing according to ASTM E606-80. Therefore, 

a difference in specimen sizes likely contributed to a difference in LCF response in addition to any 

microstructure variations.  

All of the data analyzed in this study were collected from fully-reversed (R=-1) testing, 

however, it was noted that the strains were applied differently. The authors from [3] utilized a 

constant strain rate of 0.004 s-1 while [16 and 21] utilized a strain rate of 0.1 s-1. The authors from 

[4 & 5] performed the cyclic testing at a constant frequency of 5 Hz instead of a constant strain 

rate. Therefore, the frequency of the fatigue testing for [3 & 16] changed continuously to hold the 

strain rate constant while the strain rate of the tests performed by [4 & 5] varied to keep the 
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frequency constant. The variation in rate of testing could have an effect on the outcome of the 

testing.  

Tucker et al. [22] studied the plasticity, damage, and fracture characteristics of extruded 

AA6061-T6 at a variety of stress states and strain rates. Figure 24 shows the results from the from 

three strain rates in each of the stress states. Compression tests resulted in the highest stresses while 

tensile tests resulted in the lowest stresses, with torsion tests falling in between the two. At 6% 

equivalent strain, a 9% difference in flow stress was found between tension and compression 

results. Additionally, a 7% and 9% increase in tensile and compressive flow stress, respectively, 

was found between applied strain rates at 6% equivalent stain. Therefore, the stress state had an 

equal impact on flow stress as did the strain rate. Tension and torsional straining revealed higher 

damage nucleation rates than compression. It was also noted that compression loads showed the 

highest work hardening rate, while tension revealed the lowest work hardening rate.  

The extruded AA6061-T6 incurred damage from micron-scale particles and nano-scale 

precipitates. Figure 25 is an optical microscope image of the AA6061-T6 with the extrusion 

direction perpendicular to the image. The Mg2Si and AlFeSi secondary particles are indicated by 

the dark shapes. The secondary particles had an average diameter of 1.3 µm and an average nearest 

neighbor distance of 11.4 µm. The smaller precipitates (too small to be seen in Figure 25) were 

measured to have diameters ranging from 50-200 nm. Due to incurring void damage at two length 

scales, the void nucleation rate of the AA6061-T6 decreased as the strain rate increased. 

Additionally, the aspect ratio of the secondary particles was measured at 2.3.  

Figure 26 shows scanning electron microscope images of the fracture surfaces of tensile 

specimens tested at a strain rate of .001/s and 1000/s. While both fracture surfaces show evidence 

of ductile fracture, the main difference is the size of the voids. As the strain rate increased, the 
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average size of the voids decreased. Therefore, due to a decrease in void nucleation rate and void 

size, the ductility increased as the strain rate increased. The alloy had an elongation to failure of 

12.9% and 18.5% for the low and high strain rates, respectively. The percentage of small voids 

compared to the total number of voids increased from 39% to 98% for strain rates of 0.01/s and 

1000/s, respectively.  

Therefore, even though the stress state conditions for the data review from literature were 

all fully-reversed, it is likely that the differences in strain application from [3-5, 16, & 21] 

contributed to the differences in the LCF parameters.  

 

Figure 24 Effective stress-strain plot of extruded AA6061-T6 

Effective stress-strain plot of extruded AA6061-T6 with varying stress states and strain rates [29] 
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Figure 25 Optical microscopy image of extruded AA6061-T6 microstructure 

Optical microscopy image of extruded AA6061-T6 revealing Mg2Si and AlFeSi secondary 

particles perpendicular to the extrusion direction [29] 

 

 

Figure 26 Images pf extruded AA6061-T6 fracture surfaces 

Images of extruded AA6061-T6 fracture surfaces under tension at strain rates of a) 0.0001/s and 

b) 1000/s [29] 

(a) (b) 
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Of utmost importance to this work was the low-cycle fatigue performance of extruded 

AA6061-T6. Several authors [3-5, 16, & 21] characterized the LCF parameters, which are 

summarized in Table 3.  Additionally, McCullough et al. [5] quantified the LCF parameters for 

the MSF model, as shown in Table 4. The parameters defined in Table 3 do show some variation, 

however, none of the materials were tested exactly the same. Variations in strain amplitude, strain 

rate, and specimen size all had potential effects on the fatigue results. Even so, the cyclic strain 

hardening exponent n', the cyclic strength coefficient K', and the fatigue ductility exponent c 

showed consistency between [3, 16, and 21].  

To summarize the literature review findings, the LCF properties of extruded AA6061-T6 

have been evaluated and quantified by several sources. It was determined that the extrusion process 

results in a unique set of mechanical properties for AA6061-T6. Additionally, other factors affect 

the mechanical properties in addition to the processing history, such as material composition, heat 

treatment, and the application of the strain.  
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CHAPTER III 

USER-DEFINED MATERIAL MODEL 

For this work, a user defined material model (VUMAT) was employed within ABAQUS 

Explicit to accurately predict the response of the extruded AA6061-T6 during the finite element 

simulations. This material model featured Mississippi State University’s plasticity-damage (DMG) 

and multi-stage fatigue (MSF) subroutines. 

DMG plasticity-damage material model 

To provide an accurate response from the finite element model, a viscoplasticity model 

created by Bammann et al. [23,24], known as the damage-plasticity, or DMG, model, was used in 

this approach to describe the nonlinear response of the extruded AA6061-T6 material behavior. 

The thermo-viscoplastic constitutive equations were developed from the classical thermodynamics 

of irreversible processes with internal state variables (ISVs). The evolution of the plasticity ISVs 

is prescribed in the hardening minus recovery format, where the hardening is defined as the 

increase in yield strength due to plastic deformation. The yield surface evolves in space in one of 

three ways for hardening materials: (1) isotropic hardening, 𝑘, which reflects the effect of the 

global dislocation density; (2) kinematic hardening, 𝛼, also known as the Baushinger effect, 

reflects the impact of the dislocation density; and (3) mixed hardening, where both isotropic and 

kinematic hardening characteristics are present. The orientation of the yield surface may change 

under mixed hardening. While the mixed hardening yield surface evolution has the greatest 



 

31 

potential accuracy of the three methods, isotropic hardening is the most commonly utilized method 

in finite element models for metal forming.  

Overall, the mechanical properties of a material depend on the amount and type of defects 

within the microstructure. Deformation of a material increases the amount, size, and accumulation 

of these microstructural defects, increasing the amount of damage within the material. 

Microstructural damage reduces the material strength, increases the inelastic flow, and reduces the 

elastic moduli within the region of growth. The microstructural damage within ductile metals can 

typically be characterized through void nucleation, growth, and coalescence. If the extent of void 

growth prior to fracture is small, it is possible to ignore its effects on the constitutive equations, 

however, ductile fracture must include all three stages in order to provide a representative model.  

Horstemeyer et al. [25] modified the DMG-plasticity damage model to account for stress 

state dependent damage evolution as well as the heterogeneities of microstructure for damage 

progression and failure analysis. The additions included grain size, particle size, particle volume 

fraction, pore size, pore volume fraction, and pore nearest neighbor distances. The pertinent 

equations within this model are denoted by the rate of change of the observable ISVs. The two 

components of the damage progression mechanism are void nucleation and second phase particle 

and pore growth. The time derivative of damage total 𝜙𝑡𝑜𝑡𝑎𝑙 is shown in Equation 7.  

 

𝜙𝑡𝑜𝑡𝑎𝑙 = (�̇�𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 + �̇�𝑝𝑜𝑟𝑒𝑠)𝐶 + (𝜙𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 + 𝜙𝑝𝑜𝑟𝑒𝑠)�̇� (7) 

 

Where the damage variable 𝜙𝑡𝑜𝑡𝑎𝑙 represents the damage fraction of material within a continuum 

element. The parameters 𝜙𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 and 𝜙𝑝𝑜𝑟𝑒𝑠 represent the void growth from the particle 

debonding and from pores, respectively, while �̇�𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 and �̇�𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 are their respective time 
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derivatives. The variable 𝐶 represents the void coalescence, which is indicative of the pore-pore 

and particle-pore interactions, and �̇� is its time derivative. Failure is assumed to have occurred 

when the damage fraction approaches unity.  

The DMG plasticity-damage material model was implemented into a finite element 

subroutine for solving the plasticity and damage equations simultaneously due to the coupling of 

the damage and stress equations. Within this framework, all of the ISV model accounts for the 

deviatoric inelastic deformation resulting from the presence of dislocations, dilatational 

deformation, and the ensuing failure from damage progression. Therefore, the ISV equations work 

together to link the microstructural features to the macroscopic response of the material.  Failure 

state is reached within an element as 𝜙𝑡𝑜𝑡𝑎𝑙 approaches a value of 1. 

A total of 58 parameters were used to characterize the extruded AA6061-T6 within the 

subroutine for the DMG model, which can be seen in Table 4. The DMG parameters were provided 

by Mississippi State University. 
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Table 4  Damage-plasticity model parameters used in the VUMAT 

Coefficient Modified Extruded AA6061-T6 Values 

휃0 293 

𝜌 2.7E-09 

𝐶𝑣 0.372024 

𝐸 66380 

𝜐 0.33 

𝐶01 3.15717 

𝐶02 0 

𝐶03 276 

𝐶04 0 

𝐶05 .0005 

𝐶06 0 

𝐶07 0.692991 

𝐶08 0 

𝐶09 739.464 

𝐶10 0 

𝐶11 0 

𝐶12 0 

𝐶13 0.985029 

𝐶14 0 

𝐶15 539.246 

𝐶16 0 

𝐶17 0 

𝐶18 0 

𝐶19 0.011853 
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Table 4 (continued) 

Coefficient Modified Extruded AA6061-T6 Values 

𝐶20 567.441 

𝐶21 0 

𝐶𝑎 0 

𝐶𝑏 0 

𝐷𝐶 0.99 

𝑎𝑛 0 

𝑏𝑛 0 

𝑐𝑛 0 

𝐶𝑐𝑜𝑒𝑓 0 

𝑋𝐾𝐼𝐶 1000 

𝐴𝑆𝑃 0 

𝑃𝑉𝐹 0.001 

𝑐𝑑1 1 

𝑐𝑑2 1 

𝑑𝑐𝑠0 30 

𝑑𝑐𝑠 30 

𝑍𝑍 0.509 

𝑉𝑉𝐹𝐼 0 

𝐶𝑇𝑁 0 

𝐶𝑇𝐶 0 

𝐷𝑁 0.01 

𝑟0 0 

𝐵𝐸𝑇𝐴𝐸 1 

𝐶𝐴𝑀 18 
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Table 4 (continued) 

Coefficient Modified Extruded AA6061-T6 Values 

𝐸𝑃𝑆𝐹 1.0e-10 

𝑉𝑁𝐸𝑊𝐷𝑇 0.50 

𝑁𝑃𝐿𝐴𝑆 1 

𝑁𝐶𝐷 10 

𝑁𝑉𝑂𝐿 0 

𝑁𝑃𝐿𝐴𝑁 0 

𝑁𝐿𝐺𝐸𝑂𝑀 0 

𝑁𝑇 0 

𝑁𝐼𝑇𝑀𝐴𝑋 0.25 

𝑀 0 

 

Multi-stage fatigue model 

The multi-stage fatigue (MSF) model was introduced by [26-28] and has since been 

expanded upon by [5, 29-32] to capture predictable fatigue behavior for a variety of 

aluminum alloys in both low- and high-cycle fatigue with respect to their processing 

histories. The MSF model was originally developed to capture the high-cycle fatigue of 

cast Al-Mg-Si alloys by identifying the effect of various microstructural features, such as 

pores, inclusions, etc. More specifically, the MSF model characterizes the effect of 

constrained microplasticity at debonded particles or pores on the formation and growth of 

microstructurally-small fatigue cracks. The MSF model focuses on the cyclic crack 

displacement as the driving force for crack growth instead of the traditional linear elastic 

fracture mechanics approach featuring the range of stress intensity, ∆𝐾. The MSF model 
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incorporates the incubation (INC), microstructurally small crack (MSC), physically small 

crack (PSC), and long crack (LC) stages of fatigue to predict the fatigue behavior of 

specific metals undergoing particular material processing methods, as related in Equation 

8, 

 

𝑁𝑡𝑜𝑡𝑎𝑙 = 𝑁𝐼𝑁𝐶 + 𝑁𝑀𝑆𝐶/𝑃𝑆𝐶 + 𝑁𝐿𝐶 (8) 

 

where, 𝑁𝑡𝑜𝑡𝑎𝑙 is the total fatigue life in number of cycles. 𝑁𝐼𝑁𝐶 is the number of cycles required to 

incubate a crack at a microscopic notch. The crack is considered incubated once the crack length 

reaches approximately one-half of the diameter of the void or inclusion that generates the crack. 

𝑁𝑀𝑆𝐶/𝑃𝑆𝐶 is the number of combined cycles required to propagate a MSC and a PSC from the 

microscopic notch. The MSC is defined as a crack with a length ranging between one-half the 

inclusion diameter up to 3 times the smallest grain size within the microstructure. The crack is 

considered a PSC when the size ranges from 3 times the smallest grain size up to 0.3 mm or even 

3.0 mm depending on the microstructure. 𝑁𝐿𝐶 is the number of cycles required for the LC to 

propagate until fracture. The LC would be considered any crack larger than the PLC, therefore, it 

could be as small as 0.3 mm.  

Incubation 

To capture the INC phase of the fatigue life of a material, the MSF utilizes a modified 

Coffin-Manson law based on the non-local maximum plastic shear strain, which is optimized for 

microscale interactions, as shown in Equation 9. In Equation 9, 𝐶𝑖𝑛𝑐 represents the linear 

coefficient while 𝛼 represents the exponential coefficient within the modified Coffin-Manson law. 

The damage around the incubation site is characterized by the parameter 𝛽, which is the non-local 
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maximum plastic shear strain amplitude over an area that is approximately one percent of the total 

inclusion area. The expression 
Δ𝛾𝑚𝑎𝑥

𝑝∗

2
 represents the local average amplitude of the maximum 

plastic shear strain, while 휀𝑎 is the remote applied strain amplitude and 휀𝑡ℎ represents the micro-

plasticity strain threshold. The variable 𝜓 integrates measured microstructural properties into the 

incubation parameter to increase the model sensitivity to variance within the microstructure. The 

parameter 𝜓  can be defined by the expression 𝜓 = [
(𝑀𝑃𝑆)2

(𝑁𝑁𝐷)(𝐺𝑆)
]
𝜆

, which utilizes the maximum 

particle size (MPS), the nearest neighbor distance (NND), the grain size (GS), and a sensitivity 

exponent (𝜆). The coefficient 𝐶𝑖𝑛𝑐 can also be defined by Equation 10, where 𝑐𝑛 is a material 

dependent constant and the parameter 𝑅 is the load ratio based on the maximal principal stress.  

 

𝐶𝑖𝑛𝑐𝑁𝑖𝑛𝑐
𝛼 =

∆𝛾𝑚𝑎𝑥
𝑝∗

2
= 𝛽 = 𝜓�̅�[휀𝑎 − 휀𝑡ℎ]

𝑞 (9) 

 

 

𝐶𝑖𝑛𝑐 = 𝑐𝑛(1 − 𝑅) (10) 

Equation 11 accounts for the relationship between the local plastic shear strain and the 

remote applied strain. The variables 𝑦1 and 𝑦2 are constants related to the remote applied strain 

translation of the local plastic shear strain. When the length of the plastic zone in front of the 

inclusion reaches its saturated length (휂𝑙𝑖𝑚), which can be described as the transition between 

constrained microplasticity and unconstrained microplasticity [33], Equation 12 is generated for 

the parameter �̅�; where 
𝑙

𝐷
 is the nominal length of the plasticity zone divided by the diameter of 

the inclusion or void where the crack is incubating.  
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𝑌 = 𝑦1 + (1 + 𝑅) ∗ 𝑦2 (11) 

 

 

�̅� = (1 + 휁 ∗
𝑙

𝐷
)𝑌 (12) 

When 
𝑙

𝐷
 is less than or equal to 휂𝑙𝑖𝑚, the ratio is defined by Equation 13. When 

𝑙

𝐷
 is greater 

than 휂𝑙𝑖𝑚, it can be defined by Equation 14. In Equation 14, 𝑟 is the shape constant for the limited 

plasticity transition [34-35]. The percolation limit, 휀𝑝𝑒𝑟, and the strain threshold, 휀𝑡ℎ, were 

determined through micro-mechanical simulations.  

 

 

 

𝑙

𝐷
= 휂𝑙𝑖𝑚

휀𝑎 − 휀𝑡ℎ
휀𝑝𝑒𝑟 − 휀𝑡ℎ

,
𝑙

𝐷
≤ 휂𝑙𝑖𝑚 (13) 

𝑙

𝐷
= 1 − (1 − 휂𝑙𝑖𝑚) (

휀𝑝𝑒𝑟

휀𝑎
)
𝑟

, 휂𝑙𝑖𝑚 <
𝑙

𝐷
≤ 1 (14) 

It has also been shown in literature [29] that the two strain values can be quantified through 

standard endurance limit calculations, as shown in Equations 15 and 16; where 𝑆𝑢𝑡 is equal to the 

ultimate tensile strength, 𝜎𝑦
𝑐𝑦𝑐𝑙𝑖𝑐

 is equal to the stabilized cyclic yield strength, and 𝐸 is the elastic 

modulus. 

 

 

 

휀𝑡ℎ =
0.29𝑆𝑢𝑡

𝐸
 (15) 

𝐼휀𝑝𝑒𝑟 =
0.7𝜎𝑦

𝑐𝑦𝑐𝑙𝑖𝑐

𝐸
 (16) 
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Small crack 

When the localized plastic zone has reached saturation, the crack transitions from the incubation 

phase into the MSC and PSC regime. The MSC/PSC crack growth within the MSF is captured 

through the range of the crack tip displacement, or Δ𝐶𝑇𝐷. In high cycle fatigue, the Δ𝐶𝑇𝐷 would 

be related to the crack length and the applied stress amplitude, however, in low-cycle fatigue, 

Δ𝐶𝑇𝐷 is proportional to the macroscopic shear strain range. Equation 17 defines the crack 

growth rate with respect to the number of cycles as a function of Δ𝐶𝑇𝐷; where 𝜒 is a material 

constant related to the crack propagation rate within the microstructure in which the crack 

growth rate is linearly proportional to the crack driving force [25]. Δ𝐶𝑇𝐷𝑡ℎ is the threshold value 

for the crack tip displacement, which is 2.85*10-4 µm for pure FCC aluminum. The parameter 𝑎𝑖 

represents the initial crack length with respect to the inclusion size.  

(
𝑑𝑎

𝑑𝑁
)
𝑀𝑆𝐶

= 𝜒(Δ𝐶𝑇𝐷 − ΔCTD𝑡ℎ), 𝑎𝑖 = 0.625𝐷 (17) 

 

Equation 18 represents the crack tip displacement as a function of the remote loading 

application; where 𝐶𝐼, 𝐶𝐼𝐼, 𝜔, and 휁 are material dependent parameters that capture the 

microstructure-specific effects of the MSC growth in both low-cycle and high-cycle fatigue. The 

expression (
𝐺𝑆

𝐺𝑆0
)
𝜔

 accounts for the effect of grain size on small crack growth, where 𝐺𝑆 is the 

grain size under consideration, 𝐺𝑆0 is the reference grain size [29].  

Δ𝐶𝑇𝐷 = 𝐶𝐼𝐼𝜓(
𝐺𝑆

𝐺𝑆0
)
𝜔

[
𝑈Δ�̂�

𝑆𝑢𝑡
]
𝜁

𝑎𝑖 + 𝐶𝐼𝜓(
𝐺𝑆

𝐺𝑆0
)
𝜔

(
Δγ𝑚𝑎𝑥

𝑝

2
)

2

 (18) 
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The parameter ∆�̂� is defined by Equation 19; where ∆𝜎𝑎 is equal to the uniaxial effective 

stress amplitude (√
3

2

∆𝜎𝑖𝑗
′

2

∆𝜎𝑖𝑗
′

2
), ∆𝜎1 equals the maximum principal stress range and 휃 is equal to 

the path dependent loading parameter [36], where 0 ≤ 휃 ≤ 1. The parameter 𝑈 accounts for the 

effect of the loading ratio, where 𝑈 =
1

1−𝑅
. 

 

 

Δ�̂� = 2휃𝜎𝑎 + (1 − 휃)∆𝜎1 (19) 

Long crack 

The MSF model holds the ability to either account for damage from long crack growth 

through linear elastic fracture mechanics (LEFM) or it can be coupled with a more complex 

fracture mechanics model such as Fastran [37]. The LEFM approach focuses on the range of the 

stress intensity factor, Δ𝐾. Paris et al. [38] developed Equation 20, which shows a linear 

relationship between the crack growth rate and the stress intensity factor on a log-log scale,  

 

 

𝑑𝑎

𝑑𝑁
= 𝐴(Δ𝐾)𝑛 (20) 

where, 𝐴 is the crack growth parameter and 𝑛 is the exponent in the Paris Law. Considering the 

failure mechanisms of a ductile metal such as aluminum, the long crack contribution to fatigue life 

in terms of cycles is relatively limited because it typically occurs at the millimeter length scale 

[24], therefore the INC and MSC/PSC stages represent the majority of the fatigue life of similar 

metals [32, 39-40].  
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A total of 43 parameters were used within the MSF model to decompose the damage 

progression into the four stages of crack growth for the extruded AA6061-T6, as shown in Table 

5. Maximum cycle limits of 5,000, 1,500, and 15 cycles were applied for the INC, MSC/PSC, and 

LC stages, respectively, to reduce the computation time.  

The main goal of this work is to characterize the LCF performance of the extruded 

AA6061-T6 AM2 matting connection via a 3D FEM in conjunction with the DMG-MSF user-

defined material model.  
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Table 5 Multi-stage fatigue model parameters 

Stage Coefficient Extruded AA6061-T6 [5] 

Values 

Modified Extruded AA6061-T6 

Values 

INC 𝐾′ 392.9 392.9 

 𝑛′ 0.0438 0.0438 

 𝐶𝑖𝑛𝑐 0.60 0.60 

 𝐶𝑚 0.6228 0.6228 

 𝐴 -0.74 -0.74 

 𝑄 2.27 2.27 

 𝑦1 365.2 365.2 

 𝑦2 1,422 1,422 

 휁 1 1 

 𝑅 2.78 2.78 

 𝐸𝑀𝑂𝐷𝐸𝑋  1 1 

 𝑃𝐴𝑅𝑇𝐸𝑋𝑃 1 1 

 Ω 0.50 0.50 

MSC/PSC 𝑎𝑖 0.25 0.25 

 𝛩 1.0 1.0 

 𝑍 1.35 1.35 

 𝐶𝐼 16,000 16,000 

 𝐶𝐼𝐼 0.07 0.07 

 𝜒 0.425 0.425 

 𝐶𝑇𝐷𝑇𝐻  0.000285 0.000285 

 𝑎𝑓𝑖𝑛𝑎𝑙 450 450 

 𝐷𝐶𝑆𝐸𝑋𝑃  1 1 

 𝑃𝑂𝑅𝐸𝐸𝑋𝑃  0 0 

 𝐺𝑂 − 𝐸𝑋𝑃 0 0 
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Table 5 (continued)  

Stage Coefficient Extruded AA6061-T6 [5] 

Values 

Modified Extruded AA6061-T6 

Values 

 𝑃𝑀 0.324 3.76 

 𝑌𝐺𝐶𝐹 0.140 1 

 𝐺𝑠 12.3 12.3 

 𝐺0 2.07 2.07 

Multi-stage fatigue model parameters for extruded AA6061-T6 from [5] and the modified 

parameters used for this study 
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CHAPTER IV 

EXPERIMENT 

The purpose of this work is to build a finite element model to characterize the fatigue 

behavior of the extruded AA6061-T6 AM2 matting locking connection over a 6 CBR subgrade 

using the DMG-MSF material models. 

Finite element analysis 

A 3-D finite element model of the extruded AA6061-T6 AM2 locking connection was 

analyzed using ABAQUS Explicit. A two-inch wide section of the joint was modeled for simplicity 

and also to best represent the laboratory testing performed previously by [7,8]. For this work, the 

overlapping and underlapping end connectors have the same 5.08 cm (2.0 in.) width and 3.81 cm 

(1.5 in.) height, however, for simplicity, each rectangular hollow core and end connector were 

modeled as one piece instead of accounting for the welded region and insert. Additionally, the 

weld is not an area of interest for this work since the locking tabs, or teeth, typically fail before the 

welded region. The rollers on the right hand side and the upper roller on the left hand side from 

Figure 3 were assembled in the same location as [7,8] as shown in Figure 27. The lower roller on 

the left hand side was adjusted from 21 cm to 27 cm from the center of the joint to account for the 

increased stiffness in the FEM. The model boundary conditions were verified by using the same 

calibration procedure as [7], which resulted in the same displacement of 1.59 cm (0.625 in.) at the 

center of the loading roller when a 13.3 kN (3,000 lbf) load was applied, as shown in Figure 28. 



 

45 

 

Figure 27 Schematic of boundary conditions used for the 3D FEM 

 

 

Figure 28 Snapshot of 3D FEM after an applied calibration load of 13.3 kN 
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Figure 29 depicts the setup of the FEM. Boundary conditions of a roller (zero displacement 

in the U1-, U2-, U3-, UR1-, and UR2-directions) were applied to both rollers on the left hand side 

as well as the lower roller on the right hand side of the model. The upper roller on the right hand, 

or underlap, side of the connection had a zero displacement boundary condition for the U1-, U3-, 

UR1-, and UR2-directions and a specified displacement of -21.23 mm was applied in the negative 

U2-direction. All of the boundary conditions were applied during a single step with a time period 

of 1.0 and mass scaling at a factor of 1,000. The boundary conditions were applied with a smooth 

amplitude where the output is 0 at time 0 and 1 at time 1. The controlling displacement is plotted 

versus the step time in Figure 30. The specific geometry of the connection was provided by the 

U.S. Army ERDC and cannot be presented here to protect the IP.  

 

Figure 29 Picture of the boundary conditions applied to the FEM 
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Figure 30 Graphical plot of the controlling amplitude versus the step time for the FEM 

 

General contact was applied (all with self) to the whole model. Tangential behavior contact 

properties were applied with a friction penalty of 0.1 to provide a small amount of friction to the 

surfaces as they interact with each other. 

Linear C3D8R hexahedron elements were used for most of the model, however, a transition 

region between the course and fine elements utilized C3D10M quadratic tetrahedron elements, as 

shown in Figure 31. The element size was decreased in the area of interest (shown in Figure 32) 

to avoid singularities and for better convergence across areas of high stress and strain gradients. 

The maximum aspect ratio of elements within the area of interest was measured at 6.75 for the 

coarsest mesh.  
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Figure 31 Snapshot of the meshes applied to each component of the FEM 

 

 

Figure 32 Close-up view of the meshed area of interest 
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Three different material properties were applied to the model. Purely-elastic 17-4 PH 

stainless steel properties were applied to the rollers since they were not the focus of this study. A 

Young’s modulus of 1.9E05 GPa, a Poisson’s ratio of 0.27, and a density of 7.75E-09 tonne/mm3 

were utilized. The properties are summarized in Table 6. Additionally, purely-elastic, purely-

plastic AA6061-T6 properties were utilized for the material within the connectors that was outside 

of the area of interest. A Young’s modulus of 66,380 GPa, a Poisson’s ratio of 0.33, a yield stress 

of 304.4 MPa, and a density of 2.9E-09 tonne/mm3 were applied. These material properties are 

also summarized in Table 6. For the material within the area of interest, 101 parameters were used 

to characterize the extruded AA6061-T6 for the DMG and MSF models. The MSF model 

parameters were calibrated with the as-received extruded AA6061-T6 data from [5]. The DMG 

model utilizes 58 material specific parameters while the remaining 43 parameters were calibrated 

through the MSF model with the as-received material data from [5]. The data from [5] were 

recorded from fully-reversed strain life fatigue testing at a frequency of 1 Hz for strain amplitudes 

above 0.7% and a frequency of 5 Hz at 0.7% and below. The 101 total parameters for the extruded 

AA6061-T6 were applied to the FEM through a user-defined material model, or VUMAT, 

subroutine.  

Table 6 Table of material properties used outside of the area of interest 

 Property 17-4 PH SS AA6061-T6 

EMOD (Gpa) 1.90E+05 6.64E+04 

Poisson's Ratio 2.70E-01 3.30E-01 

Density (tonne/mm3) 7.75E-09 2.70E-09 

Yield Strength (Mpa) -- 3.04E+02 
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To ensure the calibration of the DMG-MSFVUMAT, a single element finite element 

analysis was performed. A single C3D8R element was meshed, as shown in Figure 33, with all 

dimensions measuring 25.4 mm. X-Symmetry was applied to the base, or XZ plane, of the element 

while the right and rear (XY and YZ) surfaces of the element were restricted to Z-Symmetry and 

X-Symmetry, respectively. A displacement of 1 mm was applied to the front surface of the element 

in the U1-direction to achieve a desired strain amplitude within the element. All of the boundary 

conditions were applied through a single step and utilized a smooth amplitude where the output is 

0 at time 0 and the output is 1 at time 1. Figure 34 displays the strain-life results for the DMG-

MSF subroutine in conjunction with the single element model and compares it to the strain-life 

fatigue data from [5]. The DMG-MSFVUMAT correlates well with the fatigue data provide by 

[5], showing that the material properties are well calibrated and are applied correctly to the FEM. 

Mass scaling was also applied to the model with a factor of 1,000 to decrease computation time. 

The parameters 𝑃𝑀 and 𝑌𝐺𝐶𝐹 were modified from 0.324 and 0.140 to 3.76 and 1, respectively, 

during the single element FEM calibration of the material model to allow the model to run 

properly. The parameter 𝑃𝑀 is the Paris exponent and the parameter 𝑌𝐺𝐶𝐹 is the geometrical 

correction function. Both constants are long crack parameter, therefore, they should have a 

minimal effect in the LCF regime.  
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Figure 33 Image of the single element FEM boundary conditions for the DMG-MSF 

calibration 

 

Figure 34 Strain-life plot of the single element FEM results compared to laboratory data 

Laboratory data provided by [5] 
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Results 

Figure 35 shows the finite element model of the AM2 connection at the maximum 

displacement of 21.32 mm in the negative U2 direction, which is equal to the rut depth or actuator 

displacement at cycle 1,132. The results provided herein are reported from the underlapping 

connector of the system. The maximum Von Mises stress was found to be 341.1 MPa and was 

located within the lower tooth. The upper tooth of the underlapping joint revealed very similar 

Von Mises stresses as the lower tooth, but slightly lower at 313 MPa. As expected, the maximum 

principal logarithmic strain value of 7.8E-02 mm/mm was also located in the same location as the 

maximum stress, as seen in Figure 36a. The maximum principal logarithmic strain in the upper 

tooth of the connector was approximately 2.9E-02 mm/mm. The maximum effective strain 

amplitude (SDV 53) was found to be 4.4E-02 mm/mm, as shown in Figure 36b, while the effective 

strain amplitude within the upper tooth was recorded at 1.5E-02 mm/mm.  

 

Figure 35 Contour plot of the Von Mises stress at a displacement of 21.32 mm 
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Figure 36 Principal and effective strain contour plots of the underlapping connector 

Showing a) the principal logarithmic strain and b) the effective strain amplitude within the 

underlapping connector at a displacement of 21.32 mm 

 

(a) (b) 
 

 

The predicted fatigue life (SDV 61) was approximately 11 cycles for the lower tooth and 

158 cycles for the upper tooth, which can be seen in Figure 37. The total fatigue life can be broken 

down into its respective components of INC, MSC/PSC, and LC to better understand the failure. 

Figure 38a shows the total incubation period (SDV 58) within the underlapping connector. The 

number of INC cycles predicted in the lower tooth was approximately 4 cycles. The number of 

INC cycles in the upper tooth was approximately 129. Figure 38b displays the MSC/PSC (SDV 

59) results for the underlapping connector. The DMG-MSF model predicted 7 total MSC/PSC 

cycles for the lower tooth and 29 cycles for upper tooth. The LC stage (SDV 60) reported zero 

cycles for the stressed areas of both the upper and lower tooth of the underlapping connector.  
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Figure 37 Contour plots of the predicted fatigue life for the underlapping connector from two 

different angles at the maximum displacement of 21.32 mm 

 

 

  

 

Figure 38 Contour plots of the underlapping connector for the INC and MSC/PSC stages  

Section a) depicts the INC (SDV 58) regime and b) depicts the MSC/PSC regime of the total 

fatigue lives in the underlapping connector at a displacement of 21.32 mm 

 

(a) (b) 
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A mesh convergence study performed on the FEM to ensure the convergence of the results. 

Figure 39 shows a plot of the maximum effective strain amplitude versus the number of elements 

at within the lower tooth of the underlapping connector. The h-refinement method was used for 

the area of interest by increasing the number of elements in the area of large stress and strain 

gradients. The total number of elements meshed within the two connectors ranged from 

approximately 5.0E04 to 1.0E05 and the element density was only changed in the area of interest. 

The highest aspect ratio within the underlapping connector ranged from 6.8 to 3.8 for the least- 

and most-dense meshes, respectively.  The maximum Von Mises stress, principal logarithmic 

strain, effective strain amplitude, and predicted fatigue life was recorded for each simulation within 

the convergence study, as shown in Table 7. 

 

Figure 39 A plot of the effective strain amplitude versus the number of elements for the mesh 

convergence study of the FEM 
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Table 7 Tabulated results from the mesh convergence study performed on the FEM 

Total 

Elements 

Max Aspect 

Ratio 

Max Von Mises 

Stress (MPa) 

Max Principal Logarithmic 

Strain (mm/mm) 

Max Effective Strain 

Amp (mm/mm) 

4.98E+04 6.8 340.5 9.72E-02 5.45E-02 

5.91E+04 5.8 341.2 8.08E-02 4.57E-02 

6.84E+04 5.0 340.7 8.04E-02 4.51E-02 

8.05E+04 4.6 339.8 8.26E-02 4.64E-02 

8.89E+04 4.2 339.9 7.45E-02 4.21E-02 

1.04E+05 3.8 341.1 7.81E-02 4.42E-02 

 

Discussion 

It is interesting to note that out of the 11 total cycles the MSF-DMG model predicted for 

the lower tooth, 4 cycles were in the INC stage and then the remaining 7 cycles were within the 

MSC/PSC stage of crack propagation. In contrast, the upper tooth predicted a total fatigue life of 

158 cycles, however, 129 of the cycles were in incubation and only 29 were propagation of the 

MSC/PSC. An increase from the effective strain amplitude of 1.5E-02 mm/mm in the upper tooth 

to the effective strain amplitude of 4.4E-02 mm/mm in the lower tooth caused a decrease in the 

INC cycles from 128 to 4. The MSC/PSC stage only reduced from 29 to 7 cycles. Therefore, the 

incubation period is the controlling stage of the fatigue life in LCF. 

For this work, the upper tooth of the underlapping connector was the main area of interest 

because it is the most common failure location observed by [6-9]. The maximum stress and strain 

values within the connection are reported on the lower tooth of the underlapping connector, 

however, the lower tooth is not the typical failure point. It is interesting to note that the upper tooth 

reported higher strain values than the lower tooth from step time 0.0 to step time 0.65, which is 
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equal to joint displacements of 0.0 mm and 16.31 mm, respectively, which is almost 77% of the 

maximum vertical travel. Figure 40 is a snapshot of the effective strain amplitude contour plot of 

the underlapping connector at step time 0.65. The maximum values of the contour plot were limited 

to reduce the effect of the singularities caused by the contact of the locking bar. The recorded 

effective strain amplitude within the upper tooth at step time 0.65 was approximately 8.9E-3 

mm/mm, which corresponded to a predicted fatigue life of about 520 cycles.  

 

Figure 40 Contour plot of the effective strain amplitude within the underlapping connector at 

step time 0.65 

 

According to Figure 34, the FEM needed to calculate an effective strain amplitude of 6.5E-

03 mm/mm in order to get the same fatigue life as the laboratory- and full-scale testing. The FEM 

calculated the effective strain amplitude to be 6.5E-03 mm/mm in the upper tooth between step 

times 0.60 and 0.65, which are equal to 14.55 mm and 16.31 mm of vertical travel, respectively. 

The effective strain amplitude in the upper tooth measured approximately 5.2E-03 mm/mm and 

8.9E-03 mm/mm for steps 0.60 and 0.65, respectively. Interpolating Figure 30 between steps 0.60 
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and 0.65 provided an equivalent constant amplitude displacement of 15.17 mm in order to provide 

the same fatigue life as the existing data, which is 71% of the total displacement.  

The FEM was re-submitted with a maximum displacement of 15.17 mm and the results are 

shown below. Figure 41 shows a contour plot of the Von Mises stresses and Figure 42 shows the 

logarithmic strains found within the underlapping and overlapping sides of the connection. A 

maximum stress of 292.4 MPa and logarithmic strain of 1.45E-02 was recorded within the upper 

tooth of the underlapping connector and the maximum effective strain amplitude in the upper tooth 

was approximately 6.8E-03, as shown in Figure 43.  

  

Figure 41 A contour plot of the Von Mises stress within the connection system at a 

displacement of 15.17 mm 
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Figure 42 Contour plot of the principal logarithmic strains within the underlapping connector 

at a displacement of 15.17 mm 

 

 

Figure 43 Snapshot of the effective strain amplitude contour plot of the underlapping 

connector at a 15.17 mm displacement 
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The predicted total fatigue life was found to be a minimum of 1,122 cycles and located 

within the upper tooth, which can be seen in Figure 44a-b. The resultant 1,122 cycles is 

approximately a 1% difference from the 1,132 laboratory-scale data and a 6% difference from the 

full-scale data determined by Rushing et al. [7,8]. The DMG-MSF model predicted an INC (SDV 

58) life of 1,070 cycles and a MSC/PSC (SDV 59) life of approximately 52 cycles in the upper 

tooth of the underlapping connector. Therefore, the INC stage is still the controlling stage of the 

fatigue life considering that the MSC/PSC stage only increased from 29 to 52 cycles with a 

reduction in the effective strain amplitude from 1.5E-02 mm/mm to 6.8E-03 mm/mm. Figure 45a 

and Figure 45b show the contour plots for the INC and MSC/PSC stages, respectively. In 

summary, reducing the effective strain amplitude in the connection exponentially increases the 

INC stage of the fatigue life. Once the maximum effective strain amplitude surpassed 6.8E-03 

mm/mm, the total fatigue life rapidly diminished.  

 

Figure 44 Fatigue life contour plots of the underlapping connector at a displacement of 15.17 

mm 

Section a) shows the underside of the upper tooth and b) shows an internal view of the upper 

tooth within the underlapping connector at a maximum displacement of 15.17 mm 
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Figure 45 Contour plots of the INC and MSC/PSC stages at a displacement of 15.17 mm  

Section a) shows the INC stage and b) displays the MSC/PSC stage within the underlapping 

connector 

 

The accurate fatigue life prediction from the DMG-MSF model and correct failure location 

from the FEM shows that the constant 15.17 mm displacement range characterizes the increasing 

displacement loading of actual AM2 matting, which is plotted in Figure 46 It should be noted, 

however, that this characterization only applies to matting over a 6% CBR subgrade. Since the 

subgrade strength dictates the amount of displacement that occurs in the connection, a subgrade of 

different strength would have a different characteristic displacement. Even so, the location of the 

outermost rollers in the FEM should not have to be modified since the rut width in the subgrade is 

dependent on the traffic application instead of the soil strength. The inner roller on the left hand, 

or overlapping, side would not have to be modified to test the same connection. If a different 

connection geometry is being studied, it is suggested to recalibrate the boundary conditions to 

(a)  (b) 
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verify that the joint has the proper stiffness to mimic the stiffness of the AM2 matting multi-hollow 

core.  

 

Figure 46 Plot of the actuator displacement versus the number of cycles for the laboratory 

testing of the AM2 connectors for a subgrade with a strength of CBR 6% 

Plot generated from [8,9] 

 

One important thing to consider concerning the repeatability of this FEM is that the DMG-

MSF model is designed for constant amplitude fatigue loadings. The loading conditions of AM2 

matting present a unique challenge because the matting sees an increasing amplitude displacement 

controlled by the interaction of the mat system with the subgrade. Figure 46 shows the applied 

displacement to the joint versus cycle number from the laboratory testing. Therefore, the effective 

strain amplitude at cycle 1,132 is not representative of the constant strain amplitude that the DMG-

MSF model was written for.  In the lab, the connection was brought back to its original zero-load 

position before beginning the next cycle. Since the minimum load applied was zero, the load ratio 

for the FEM model would be referred to as R=0, where R is equal to the minimum load divided 
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by the maximum load. Since the AM2 loading cycle only applies a tensile strain, the mean strain 

and mean stress are greater than zero, which can significantly reduce the fatigue life in aluminum 

alloys [10]. In contrast, the DMG-MSF material model was calibrated with fully-reversed (R=-1) 

fatigue data with a mean stress of zero, therefore the calibration did not fit the boundary conditions 

of the FEM perfectly. Additionally, the DMG model parameters specifically were not calibrated 

to account for the extruded properties of AA6061-T6, which could have contributed to the error 

within the single element model calibration.   

Potential error was introduced into the model in ways in addition to the physical boundary 

conditions. Mass scaling was used within the analysis to shorten computational time. Figure 47 

shows the kinetic energy versus the internal energy of the model throughout the simulation. The 

kinetic energy recorded a negligible value compared to internal energy, therefore, the mass scaling 

used within the simulation had minimal effects on the results, however, it was still a potential error 

source. 

One final consideration regarding error within this model is the actual geometry of the 

parts. The connection is designed with a large amount of tolerance to be forgiving of subgrade 

inconsistencies during installation. The large tolerances also mean that the connection could 

engage differently each cycle, which is why the laboratory testing [7] used rollers instead of fixed 

supports. The FEM utilized roller constraints as well, however, the engagement of only one cycle 

was taken into consideration.  
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Figure 47 Plot of the internal and kinetic energy plotted versus time for the FEM 

 

In addition to designed tolerances, manufacturing tolerances also have an impact on the 

fatigue life of the connection. Each side of the connector was modeled as a 2-in. section of the 

hollow-core extrusion, like was tested in the lab by [7]. Even so, AM2 matting is a multi-hollow-

core extrusion and it is assumed that there are measurable differences in wall thickness between 

each hollow-core depending on its location. Additionally, the location of the extrusion re-weld 

seams within the hollow-core was not taken into consideration. Finally, the degradation of 

material properties due to the fusion weld bonding the end connector to the core was not taken 

into consideration. The dimensional differences between cores, the location of the weld seams, 

and the weld properties should not have a significant effect on the performance of the actual 

connector considering that it is extruded separately and the areas of high strain were within the 

teeth of the connector. 
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CHAPTER V 

CONCLUSIONS 

In conclusion, the finite element model in conjunction with the DMG-MSF user-defined 

material model herein was successfully able to characterize the performance of the extruded 

AA6061-T6 locking connection of AM2 matting. Extruded AA6061-T6 has microstructural 

differences from other forms of AA6061-T6 that result in different LCF properties, but the DMG-

MSF user-defined material model was able to accurately characterize the material within the LCF 

realm. A 3D single element model was used to calibrate the DMG-MSF material model prior to 

implementation into the actual FEM being studied.  The DMG-MSF model used the effective strain 

amplitude to calculate the number of cycles for the INC, MSC/PSC, and LC stages of fatigue life 

for the connection system. The FEM produced a fatigue life of approximately 11 and 165 cycles 

to failure for the lower and upper tooth of the underlapping connector, respectively, at the 

maximum specified displacement of 21.32 mm. The fatigue life results at a displacement of 21.32 

mm did not line up with the laboratory- and full-scale data, however, it was not expected to do so.  

The DMG-MSF model employs a constant strain amplitude approach while the AM2 

matting connection receives an increasing strain amplitude throughout its life due to subgrade 

deformation below the mat. A characteristic constant displacement range of 15.17 mm was 

determined for the extruded AA6061-T6 AM2 connection to produce the same fatigue life as the 

laboratory- and full-scale data. The FEM was evaluated at a maximum displacement of 15.17 mm 

and produced a fatigue life within 1% of the laboratory-scale data and 6% of the full-scale data at 
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1,122 cycles. The location of the minimum fatigue life was in the upper tooth of the underlapping 

connector. It was also noted that the crack incubation was the controlling stage of the total fatigue 

life, which decreased exponentially as the effective strain amplitude increased. The MSC/PSC 

regime showed a linear increase and the LC regime remained at zero cycles as the effective strain 

amplitude decreased.  
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