
Mississippi State University Mississippi State University

Scholars Junction Scholars Junction

Theses and Dissertations Theses and Dissertations

8-7-2020

A Deep Learning approach to predict software bugs using micro A Deep Learning approach to predict software bugs using micro

patterns and software metrics patterns and software metrics

Marcus Brumfield

Follow this and additional works at: https://scholarsjunction.msstate.edu/td

Recommended Citation Recommended Citation
Brumfield, Marcus, "A Deep Learning approach to predict software bugs using micro patterns and
software metrics" (2020). Theses and Dissertations. 101.
https://scholarsjunction.msstate.edu/td/101

This Graduate Thesis - Open Access is brought to you for free and open access by the Theses and Dissertations at
Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of
Scholars Junction. For more information, please contact scholcomm@msstate.libanswers.com.

https://scholarsjunction.msstate.edu/
https://scholarsjunction.msstate.edu/td
https://scholarsjunction.msstate.edu/theses-dissertations
https://scholarsjunction.msstate.edu/td?utm_source=scholarsjunction.msstate.edu%2Ftd%2F101&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsjunction.msstate.edu/td/101?utm_source=scholarsjunction.msstate.edu%2Ftd%2F101&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholcomm@msstate.libanswers.com

A Deep Learning approach to predict software bugs

using micro patterns and software metrics

By

Marcus Brumfield

Approved by:

Stefano Iannucci (Major Professor)
Byron J. Williams
Tanmay Bhowmik

T.J. Jankun-Kelly (Graduate Coordinator)
Jason M. Keith (Dean, Bagley College of Engineering)

A Thesis
Submitted to the Faculty of
Mississippi State University

in Partial Fulfillment of the Requirements
for the Degree of Master of Science

in Computer Science
in the Department of Computer Science and Engineering

Mississippi State, Mississippi

August 2020

Copyright by

Marcus Brumfield

2020

Name: Marcus Brumfield

Date of Degree: August 7, 2020

Institution: Mississippi State University

Major Field: Computer Science

Major Professor: Stefano Iannucci

Title of Study: A Deep Learning approach to predict software bugs
using micro patterns and software metrics

Pages of Study: 47

Candidate for Degree of Master of Science

Software bugs prediction is one of the most active research areas in the software engi-

neering community. The process of testing and debugging code proves to be costly dur-

ing the software development life cycle. Software metrics measure the quality of source

code to identify software bugs and vulnerabilities. Traceable code patterns are able to de-

scribe code at a finer granularity level to measure quality. Micro patterns will be used in

this research to mechanically describe java code at the class level. Machine learning has

also been introduced for bug prediction to localize source code for testing and debugging.

Deep Learning is a branch of Machine Learning that is relatively new. This research looks

to improve the prediction of software bugs by utilizing micro patterns with deep learning

techniques. Software bug prediction at a finer granularity level will enable developers to

localize code to test and debug during the development process.

DEDICATION

To my parents Roderick and Adarianne Brumfield and my siblings Arielle and Arianna

Brumfield.

ii

ACKNOWLEDGEMENTS

I would like to thank Dr. Stefano Iannucci, Dr. Byron J. Williams, and Dr. Tanmay

Bhowmik for guiding me throughout my matriculation at Mississippi State University. I

also want to thank my family and friends for the continuous support.

iii

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF TABLES . vi

LIST OF FIGURES . vii

CHAPTER

1. INTRODUCTION . 1

1.1 Software Metrics . 1
1.2 Traceable Code Patterns . 3
1.3 Machine Learning Techniques 4
1.4 Research Goal and Questions 5
1.5 Contribution . 6

2. RELATED WORK . 7

2.1 Software Metrics . 7
2.2 Traceable Code Patterns . 9
2.3 Machine Learning Techniques 13

3. METHODOLOGY . 16

3.1 Research Goal and Questions 16
3.2 Software Bug Dataset . 17
3.3 Micro Patterns Extraction . 17
3.4 Software Bug Prediction . 19
3.5 Performance Measures . 21

4. ANALYSIS AND RESULTS . 22

4.1 Data Collection . 22

iv

4.1.1 Research Question 1: What is the performance of the soft-
ware bug prediction model using micro patterns as features
with a multilayer perceptron? 22

4.1.2 Research Question 2: What is the performance of the soft-
ware bug prediction model when using class-level software
metrics as features with a multilayer perceptron? 23

4.1.3 Research Question 3: What is the performance of the soft-
ware bug prediction model as the training size increases? . 26

5. DISCUSSION . 38

6. THREATS TO VALIDITY . 40

7. CONCLUSION AND FUTURE WORK 42

REFERENCES . 44

v

LIST OF TABLES

2.1 Class-level software metrics calculated in the research by [12]. 10

2.2 The micro-patterns catalog defined by Gil and Maman [13]. 11

2.3 Fundamental nano-patterns introduced by Singer et. al. in [26] 12

3.1 The datasets used from the Public Unified Bug Dataset in [12]. 18

4.1 The datasets used from the Public Unified Bug Dataset in [12]. 23

vi

LIST OF FIGURES

4.1 The results from the Bug Prediction dataset using micro patterns. 24

4.2 The results from the Bug Prediction and PROMISE datasets using micro
patterns . 25

4.3 The results from the Bug Prediction datasets using software metrics. 27

4.4 The results from the Bug Prediction and Promise datasets using software
metrics. 28

4.5 The False Positive Rate results from the Bug Prediction datasets using micro
patterns as the training size increases. 30

4.6 The Precision results from the Bug Prediction datasets using micro patterns
as the training size increases. 31

4.7 The Recall results from the Bug Prediction datasets using micro patterns as
the training size increases. 32

4.8 The F-Measure results from the Bug Prediction datasets using micro patterns
as the training size increases. 33

4.9 FP Rate for the Bug Prediction Dataset Using Class-Level Software Metrics. 34

4.10 Precision for the Bug Prediction Dataset Using Class-Level Software Metrics. 35

4.11 Recall for the Bug Prediction Dataset Using Class-Level Software Metrics. 36

4.12 The F-Measure results from the Bug Prediction datasets using class-level
software metrics as the training size increases. 37

vii

CHAPTER 1

INTRODUCTION

Identifying and predicting software bugs is an important research area in software en-

gineering in terms of improving software quality. Early identification of files that contain

software bugs will help improve the testing phase of the software development life cycle

(SDLC). Bug prediction involves the use of static analysis and machine learning techniques

to identify defects in software. Most software projects are developed with a tight deadline

to push into production. Bug prediction enables developers to prioritize which files to de-

bug and test, which leads to a faster development process. This technique also helps in

ensuring software quality during the development process to significantly decrease the ap-

pearance of bugs in software. Even with the advances in this research field, there is a need

for improving the results of bug prediction techniques [3].

1.1 Software Metrics

Software Metrics have been used in research to measure software quality. Complex-

ity, volume, and object-oriented metrics have been utilized by researchers in correlation

to software defects. Software metrics have been widely used in bug prediction models be-

cause they are useful, generalizable, easy to use, and widely-used. In terms of being useful,

software metrics have been used in many companies in the world to predict defects. They

1

are also generalizable in that many datasets and software projects in different program-

ming languages can use them for measurement. Software metrics are easy to use because

there are tools that can automatically process the results. They are also widely-used by

researchers since around 1990 [18]. Existing research proves that these techniques aid de-

velopers in identifying software that has potential defects during development. The overall

goal involves localizing the software bugs to ensure that only the affected files are flagged

to test and debug. Researchers have also found correlations between metrics and software

defects in software projects to build predictive models using static analysis and machine

learning techniques. Although the software engineering research community have made

strides towards measuring software quality, there is a need to address the limitations [5].

Existing software metrics are able to measure software quality, but with a high percent-

age of false negative rates. This limitation causes code that does not contain bugs to be

tested and debugged, which increases the time to complete the testing phase of the SDLC.

Also, software metrics do not give feedback to developers on how to ensure software qual-

ity.

There is not a consensus among the software engineering community for which metrics

should be used for all software projects. Although software metrics are commonly used

to evaluate software quality, there may be other undiscovered methods that can accurately

identify defects. Another limitation of utilizing traditional software metrics involves the

lack of localizing the areas of code that cause the bugs. There is still a need to identify

metrics that can identify bugs in code at various levels of granularity [20].

2

1.2 Traceable Code Patterns

Traceable code patterns have been introduced to identify vulnerable code at a lower

granularity level such as class and method level. The two types of traceable code pat-

terns are class-level patterns called micro-patterns, and method-level patterns called nano-

patterns [13, 26]. These patterns can be defined on many variants of modules written with

the Java programming language. Gil and Maman [13] introduced the concept of traceable

code patterns by presenting a catalog of 27 micro-patterns that can be mechanically recog-

nized to identify the structure of a class. Singer et al. in [26] identified 17 nano-patterns

that capture the properties of Java methods. Traceable code patterns enable code to be

described at the function-level and the class-level. This will also help developers locate

specific code locations to debug and test.

Utilizing traceable code patterns will enable developers to localize the classes and

methods that are likely to contain bugs. This will improve the productivity of the test-

ing phase by not only identifying the files that contain bugs, but also classes and functions

that are affected [29]. Developers will also have a better understanding of which patterns

are more likely to result in software bugs. Traceable code patterns such as micro patterns

and nano-patterns have been identified for the Java programming language. Software tools

have been developed to identify micro patterns and nano-patterns in Java programs. These

tools are limited only to Java programs, but the concept of traceable code patterns could

be applied to other programming languages. Locating bugs at a finer granularity level,

class and method, significantly reduces the time and cost of testing and debugging before

moving software to production [27].

3

1.3 Machine Learning Techniques

Traditional Machine Learning techniques such as Decision Trees, Support Vector Ma-

chine (SVM), and Naı̈ve Bayes have been utilized to predict software bugs. Research stud-

ies have proven to predict software defects in terms of bugs and vulnerabilities. Techniques

include text-based and metrics-based prediction. Traditional machine learning algorithms

produce promising results in terms of accuracy, but false positive and false negative rates

are relatively high. Also, most works involve conducting experiments on specific software

projects [6].

Researchers have also investigated the use of Deep Learning for vulnerability predic-

tion with software metrics and text classifier techniques [35]. Li et. al in [15] developed a

Deep Learning convolutional neural network to predict software defects using information

such as semantic and structural information for program files along with software metrics.

Feedforward neural networks have shown promise in producing more accurate results in

predicting vulnerable code versus traditional machine learning techniques [6]. Researchers

have also conducted research with various techniques with neural networks such as text-

based and metrics-based prediction [32]. The challenge in bug prediction involves fully

utilizing Deep Learning methods at a larger scale. A dataset containing an order of mil-

lions of records would be considered to be sufficient for Deep Learning. Many researchers

have utilized this technique at a smaller scale as a proof of concept.

Thus far, traceable code patterns have not been used in combination with Deep Learn-

ing techniques in current research studies. Sultana et al. in [31] used traditional machine

learning algorithms to predict software vulnerabilities where micro patterns produced rel-

4

atively high results for Recall compared to software metrics. Other measures such as False

Negative rate, Precision, and F-measure were relatively low in terms of predicting vul-

nerable code. The open issue with software defect model involves giving developers a

better sense of granularity. This will give developers a better technique for identifying the

code location that is causing a software bug [28]. With the utilization of micro patterns,

identifying software at the class level will be enabled.

1.4 Research Goal and Questions

The research goal is to compare the prediction results of software metrics and traceable

pattern by using Deep Learning. In order to conduct this research, the following questions

are proposed:

Research Question 1: What is the performance of software bug prediction model using

micro patterns with a multilayer perceptron? The deep learning approach will be evaluated

by using performance measures such as false positive rate, precision, recall, and f-measure.

The results will be compared with traditional machine learning techniques that will include

the algorithms Naı̈ve Bayes, Random Forest, and Support Vector Machine.

Research Question 2: What is the performance of the software bug prediction model

when using class-level software metrics as features with a multilayer perceptron? Similar

to Research Question 1, the deep learning approach will be evaluated and compared to the

results of the traditional machine learning techniques. Class-level software metrics will be

used as features for predicting bugs.

5

Research Question 3: What is the performance of the software bug prediction model

as the training size increases? The experiment related to this question evaluate the deep

learning approach as the prediction model receives more training data. This also involves

a comparison with the traditional machine learning algorithms. The goal of this research

question is to show whether or not deep learning can outperform the traditional machine

learning techniques as the training size increases.

1.5 Contribution

Identifying software bugs at the class-level will help software developers identify code

constructs that contain bugs and also improve software quality. Identifying classes that con-

tain software bugs will also help software developers in the testing phase of the Software

Development Life Cycle (SDLC). So far, traceable code patterns have not been investi-

gated along with Deep learning techniques to identify vulnerable classes and functions. To

our knowledge, this research is the first to utilize micro patterns along with Deep Learn-

ing for software bug prediction. This research will provide the foundation for developing

prediction models that utilize traceable code patterns for Deep Learning algorithms.

6

CHAPTER 2

RELATED WORK

This chapter discusses previous research that influenced this current study in bug pre-

diction. The topics that will be discussed include software metrics used for bug prediction,

traceable code patterns, and machine learning techniques. This will provide background

information and serve as a literature review for software bug prediction.

2.1 Software Metrics

Metrics can be used to measure security in software. Research has shown that the

number of code-level metrics is relatively lower compared to design level and system level

metrics. Common software metrics include lines of code, cyclomatic complexity, nest-

ing levels in functions, and interactions between functions [4, 5]. The studies show that

these metrics were very common in predicting vulnerable code. There is a need for the

development of new metrics that measure vulnerabilities in source code. Using metrics

at the code-level increases the probability of identifying vulnerable code locations [28].

Chowdhury et al. in [5] utilized complexity, volume, and object-oriented metrics to pre-

dict vulnerabilities in source code. The metrics were used in a previous study for software

defect prediction. Nagappan et al. in [22] included complexity metrics to predict defects

and vulnerabilities.

7

Complexity is theorized to be the catalyst for insecure software. The number of lines

of code, the number of independent paths, and the cyclomatic complexity in a program

are examples of what complexity metrics evaluate. Complexity in software is regarded

as being the biggest indicator of vulnerabilities. Software that is complex makes testing

more difficult and also harder to understand for developers [21]. Research by Shin et al.

in [24] proposed complexity metrics that are used to measure vulnerabilities in software.

The measurements used for complexity involves file complexity, coupling, and comment

metrics. The research hypothesized that vulnerable files have higher file complexity, higher

coupling, and fewer amounts of comments. Higher complexity creates a higher chance for

defects in code that lead to vulnerabilities.

Code churn is a metric used to evaluate the number of changes made to software. Mak-

ing changes to software can bring up new vulnerabilities in software. The measurements

used for this metric involves the number of times a file has been changed, the number of

lines changed for a file, and the number of new lines added to a file. The higher number

of times a file has been changed and the higher number of lines of code that have been

changed are regarded to be indicators of vulnerabilities [24]. These metrics have been

used in research conducted by Zimmerman et al. in [36] to predict vulnerabilities in the

commercial project Windows Vista. It was found in this research that the results of using

this metric yielded fewer false negatives but also higher false positives. This means that

there was a high number of indicators of vulnerable code that were not actually vulnerable.

Object-oriented metrics are used to measure the object-oriented properties in source

code. These types of metrics evaluate coupling between functions and methods. Coupling

8

involves the passing of data and the interaction between other functions and methods. The

theory is that highly coupled functions and methods are more likely to contain vulner-

abilities. Higher coupling involves how modules in software interact with one another.

Object-oriented software metrics have been utilized to measure the quality of classes and

functions [6].

Software metrics are highly regarded as the standard way to measure the quality and

security in source code. Previous studies have shown promising results in accurately pre-

dicting software bugs. Traditional software metrics do not indicate the code location that

causes software bugs [32, 35]. This leads to research that utilizes other forms of metrics

that can measure code at a finer granularity level. This research uses class-level software

metrics to predict software bugs in Java classes. Table 2.1 lists the software metrics used

in this research.

2.2 Traceable Code Patterns

Traceable code patterns have been introduced to identify vulnerable code at a finer

granularity level such as class and method level. The two types of traceable code pat-

terns are class-level patterns called micro-patterns, and method-level patterns called nano-

patterns. These patterns are defined for Java classes and methods. Traceable code patterns

are similar to design patterns, but they are able to describe source code at a lower level of

abstraction. The use of these types of patterns will enable developers to locate the area of

code that needs to be tested and debugged [13, 26].

9

Table 2.1: Class-level software metrics calculated in the research by [12].

Metrics Description
LCOM5 Lack of Cohesion in Methods 5
NL Nesting Level
NLE Nesting Level Else-If
WMC Weighted Methods per Class
CBO Coupling Between Object classes
CBOI Coupling Between Object classes Inverse
NII Number of Incoming Invocations
NOI Number of Outgoing Invocations
RFC Response set For Class
AD API Documentation
CD Comment Density
CLOC Comment Lines of Code
DLOC Documentation Lines of Code
PDA Public Documented API
PUA Public Undocumented API
TCD Total Comment Density
TCLOC Total Comment Lines of Code
DIT Depth of Inheritance Tree
NOA Number of Ancestors
NOC Number of Children
NOD Number of Descendants
NOP Number of Parents
LLOC Logical Lines of Code
LOC Lines of Code
NA Number of Attributes
NG Number of Getters
NLA Number of Local Attributes
NLG Number of Local Getters
NLM Number of Local Methods
NLPA Number of Local Public Attributes
NLPM Number of Local Public Methods
NLS Number of Local Setters
NM Number of Methods
NOS Number of Statements
NPA Number of Public Attributes
NPM Number of Public Methods
NS Number of Setters
TLLOC Total Logical Lines of Code
TLOC Total Lines of Code
TNA Total Number of Attributes
TNG Total Number of Getters
TNLA Total Number of Local Attributes
TNLG Total Number of Local Getters
TNLM Total Number of Local Methods
TNLPA Total Number of Local Public Attributes
TNLPM Total Number of Local Public Methods
TNLS Total Number of Local Setters
TNM Total Number of Methods
TNOS Total Number of Statements
TNPA Total Number of Public Attributes
TNPM Total Number of Public Methods
TNS Total Number of Setters

10

Gil et. al in [13] introduced micro-patterns by defining 27 patterns that can mechani-

cally describe a class by expressing formal conditions. The catalog is shown in Table 2.2.

The researchers also organized the patterns into eight different categories that are related

to degenerate classes, containment, and inheritance. Their studies show that the majority

of Java classes that were included in the experiments followed at least one of the micro-

patterns defined in the catalog. The authors suggested that a combination of micro-patterns

and nano-patterns will help aid developers during the development phase.

Table 2.2: The micro-patterns catalog defined by Gil and Maman [13].

Category Pattern Description
Degenerate Class Designator An interface with absolutely no members.

Taxonomy An empty interface extending another interface.
Joiner An empty interface joining two or more superinterfaces.
Pool A class which declares only static final fields, but no methods.
Function Pointer A class with a single public instance method, but with no fields.
Function Object A class with a single public instance method, and at least one instance field.
Cobol Like A class with a single static method, but no instance members.
Stateless A class with no fields, other than static final ones.
Common State A class in which all fields are static.
Immutable A class with several instance fields, which are assigned exactly once, during instance construction.
Restricted Creation A class with no public constructors, and at least one static field of the same type as the class.
Sampler A class with one or more public constructors, and at least one static field of the same type as the class.

Containment Box A class which has exactly one, mutable, instance field.
Compound Box A class with exactly one non primitive instance field.
Canopy A class with exactly one instance field that it assigned exactly once, during instance construction.
Record A class in which all fields are public, no declared methods.
Data Manager A class where all methods are either setters or getters.
Sink A class whose methods do not propagate calls to any other class.

Inheritance Outline A class where at least two methods invoke an abstract method on this.
Trait An abstract class which has no state.
State Machine An interface whose methods accept no parameters.
Pure Type A class with only abstract methods, and no static members, and no fields.
Augmented Type Only abstract methods and three or more static final fields of the same type.
Pseudo Class A class which can be rewritten as an interface: no concrete methods, only static fields.
Implementor A concrete class, where all the methods override inherited abstract methods.
Overrider A class in which all methods override inherited, non-abstract methods.
Extender A class which extends the inherited protocol, without overriding any methods.

Singer et al. in [26] presented a catalog of 17 nano-patterns that are used to characterize

Java methods. The categories include patterns related to calling, object-orientation, control

11

flow, and data flow. Table 2.3 lists the nano-patterns defined by the authors. This research

demonstrated that nano-patterns enable learning-based techniques to be used to analyze

Java applications. The authors also suggested that these patterns can be used by supervised

learning techniques.

Table 2.3: Fundamental nano-patterns introduced by Singer et. al. in [26]

Category Name Description
Calling NoParams Takes no arguments.

NoReturn Returns void.
Recursive Calls itself recursively.
SameName Calls another method with the same name.
Leaf Does not issue any method calls.

Object-Orientation ObjectCreator Creates new objects.
FieldReader Reads (static or instance) field values from an object.
FieldWriter Writes values to (static or instance) field of an object.
TypeManipulator Uses type casts or instanceof operations.

Control Flow StraightLine No branches in method body.
Looping One or more control flow loops in method body.
Exceptions May throw an unhandled exception.

Data Flow LocalReader Reads values of local variables on stack frame.
LocalWriter Writes values of local variables on stack frame.
ArrayCreator Creates a new array.
ArrayReader Reads values from an array.
ArrayWriter Writes values to an array.

Research has been conducted to show how traceable code patterns can be used to iden-

tify software defects. Codabux et al. in [7] conducted a study to show that there is a

correlation between traceable code patterns and code smells. The results indicate that de-

velopers can understand what traceable patterns are most likely to lead to code smells. The

authors suggested that traceable code patterns can be used for prediction models. Sultana

et al. in [30] utilized traditional machine learning algorithms to identify vulnerable meth-

12

ods with the use of nano-patterns. The results show that nano-patterns produced lower

false positive rates and a higher recall compared to traditional software metrics. Sultana

in [28]extended her research to develop a prediction model using traceable code patterns

and software metrics. The result of the study indicated that pattern-based prediction models

produce relatively better results in terms of recall and should continue to be used by newer

machine learning techniques. This leads to the need for extended research that utilizes

traceable code patterns and machine learning.

2.3 Machine Learning Techniques

Machine learning algorithms have been introduced in conjunction with software met-

rics for measuring quality, bugs, and vulnerabilities. Research conducted by Alenezi et

al. in [1] used these metrics to evaluate machine learning algorithms that were used to

predict vulnerabilities in PHP files. The study evaluated the performance of classification

algorithms such as Naı̈ve Bayes, Decision Tree, and Random Forests. The most influen-

tial metrics were extracted by utilizing the gain ration, which normalizes the measure of

each feature to classification. The results indicate that software metrics can be used for

vulnerability prediction. Research conducted by Alves et al. in [2] evaluated the machine

learning algorithms Bayesian Network, Decision Tree, Naı̈ve Bayes, Random Forest, and

Logistic Regression. Machine learning algorithms give an unbiased prediction based on

datasets and historical data. These algorithms were used on open source software such as

Mozilla Firefox, Linux Kernel, Xen Hypervisor, Httpd and Glibc to predict vulnerabilities.

The research yielded the best results from the Decision Tree algorithm for Precision and

13

Logistic Regression for Recall. Machine learning algorithms proved to be promising in

regard to predicting vulnerabilities. Improving the use of datasets and metrics will give

better results for machine learning algorithms.

Deep learning is a subset of machine learning that utilizes the concept of neural net-

works to enable automated feature extraction. Traditional Machine Learning algorithms

require manual feature extraction that may affect classification results. Deep Learning

makes use of neural networks by adding one or more hidden layers between the input and

output. This enables incremental learning of the features that impact more accurate clas-

sification. The question of whether to use Deep learning over Machine learning comes

down to a few aspects. Deep learning was introduced with the idea of working with large

data sets. Also, deep learning would be suggested if there is a lack of understanding of

the features to extract. This concept also proves to perform well with image classification,

natural language processing, and speech recognition [16].

Researchers have also investigated the use of deep learning for vulnerability predic-

tion with software metrics and text classifier techniques. Convolutional and feedforward

neural networks have shown promise in producing more accurate results in predicting vul-

nerable code than traditional machine learning techniques [15, 35]. Russel et al. in [23]

compared convolutional neural networks (CNN) and recurrent neural networks (RNN) to

detect vulnerabilities from source code. Clemente et al. in [6] utilized a multilayer feed-

forward neural network with a combination of software metrics to predict security bugs

in four C++ based applications. The study compared the results of the deep learning ap-

proach with traditional machine learning algorithms. The Deep Learning approach was

14

able to outperform the traditional machine learning algorithms in terms of the evaluation

metric Accuracy, which is a ration of number of correct predictions to the total number of

predictions. To date, micro patterns have not been used in combination with deep learn-

ing techniques. Traditional machine learning algorithms produced relatively high results

for Recall but other measures such as False Negative rate, Precision, and F-measure were

relatively low in terms of predicting vulnerable code [30]. This research will utilize trace-

able code patterns with deep learning to compare software bug prediction with traditional

machine learning algorithms.

15

CHAPTER 3

METHODOLOGY

This section will discuss the methodology that will be used to conduct the proposed

research. This includes a description of our research goal and questions, experimental

design, and the methods used to answer each research question.

3.1 Research Goal and Questions

Our research goal is to compare the prediction results of software metrics and traceable

pattern by using Deep Learning. The following research questions have been proposed in

order to accomplish this goal:

• Research Question 1: What is the performance of software bug prediction model
using micro patterns with a multilayer perceptron? Performance measures such as
false positive rate, precision, recall, and f-measure are used to evaluate the prediction
model with micro patterns as features. The results are an evaluation of the multilayer
perceptron algorithm compared to traditional machine learning algorithms using mi-
cro pattens as predictors of software bugs.

• Research Question 2: What is the performance of software metrics when utilizing
Deep Learning to predict software bugs? This question will be answered by using
a similar process as Research Question 1. In this case, class-level software metrics
will be used as predictors for bugs. The performance measures include false positive
rate, precision, recall, and f-measure are used to evaluate the prediction model with
micro patterns as features.

• Research Question 3: What is the performance of the software bug prediction model
as the training size increases? The results of these experiments will show how the
multilayer perceptron algorithm and the traditional machine learning algorithms per-
form as the training size increases. The performance measures mentioned in Re-

16

search Question 1 and Research Question 2 will be used for evaluating each algo-
rithm. This will include using micro patterns and class-level software metrics as
features for two separate experiments.

3.2 Software Bug Dataset

Ferenc et al. in [12] produced an open source dataset called the Unified Bug Dataset.

This dataset combined the datasets PROMISE, Eclipse Bug Dataset, Bugcatchers Bug

Dataset, and GitHub Bug Dataset shown in Table 3.1. Information and source code of

various open source Java systems are available for download. The Unified Bug Dataset

provides software metrics that were calculated by the OpenStaticAnalyzer 1 static code

analyzer on each of the four datasets. The number of reported bugs for each class are also

provided in the download. The information for each of the datasets are provided in comma

separated values (CSV) files.

Due to the Unified Bug Dataset containing multiple versions of the same project, we

only considered the PROMISE and BugPrediction datasets. For the PROMISE dataset,

the newest version of the system was only included to prevent duplicate classes. The

BugPrediction dataset contained unique projects.

3.3 Micro Patterns Extraction

The micro patterns were extracted from the classes in Table 3.1 with a tool developed

by Gil and Maman in [13]. The tool receives a JAR file as input and reports the presence

of each micro pattern in Table 2.2 as 100% or 0% (100% if the micro pattern is present,

0% otherwise). A script was written to convert the class files into JAR files. Afterwards,

1https://github.com/sed-inf-u-szeged/OpenStaticAnalyzer

17

Table 3.1: The datasets used from the Public Unified Bug Dataset in [12].

Dataset Number of Classes System Name
PROMISE 125 Ant 1.3

178 Ant 1.4
293 Ant 1.5
351 Ant 1.6
745 Ant 1.7
339 Camel 1.0
608 Camel 1.2
872 Camel 1.4
965 Camel 1.6
10 Ckjm 1.8
6 Forest 0.6
29 Forest 0.7
32 Forest 0.8
241 Ivy 1.4
352 Ivy 2.0
272 JEdit 3.2
306 JEdit 4.0
312 JEdit 4.1
367 JEdit 4.2
492 JEdit 4.3
135 Log4J 1.0
109 Log4J 1.1
205 Log4J 1.2
195 Lucene 2.0
247 Lucene 2.2
340 Lucene 2.4
26 Pbeans 1
51 Pbeans 2
237 Poi 1.5
314 Poi 2.0
385 Poi 2.5
442 Poi 3.0
157 Synapse 1.0
222 Synapse 1.1
256 Synapse 1.2
196 Velocity 1.4
214 Velocity 1.5
229 Velocity 1.6
723 Xalan 2.4
803 Xalan 2.5
885 Xalan 2.6
909 Xalan 2.7
440 Xerces 1.2
453 Xerces 1.3
588 Xerces 1.4

Dataset Number of Classes System Name
Eclipse Bug Dataset 6,729 Eclipse 2.0

7,888 Eclipse 2.1
10,593 Eclipse 3.0

Bug Prediction Dataset 997 Eclipse JDT Core 3.4
1,497 Eclipse PDE UI 3.4.1
324 Equinox 3.4
691 Lucene 2.4
1,862 Mylyn 3.1

Bugcatchers Bug Dataset 191 Apache Commons
1,582 ArgoUML 0.26 Beta
560 Eclipse JDT Core 3.1

GitHub Bug Dataset 73 Android U.I.L. 1.7.0
479 ANTLR v4 4.2
5,908 Elasticsearch 0.90.11
731 jUnit 4.9
331 MapDB 0.9.6
301 mcMMO 1.4.06
1,887 MCT 1.7b1
5,899 Neo4j 1.9.7
1,143 Netty 3.6.3
1,847 OrientDB 1.6.2
533 Oryx
1,468 Titan 0.5.1
1,610 Eclipse p. for Ceylon 1.1.0
3,412 Hazelcast 3.3
1,593 Broadleaf C. 3.0.10
63 Android U.I.L. 1.7.0
411 ANTLR v4 4.2
3,035 Elasticsearch 0.90.11
308 jUnit 4.9
137 MapDB 0.9.6
267 mcMMO 1.4.06
413 MCT 1.7b1
3,278 Neo4j 1.9.7
913 Netty 3.6.3
1,503 OrientDB 1.6.2
443 Oryx
981 Titan 0.5.1
699 Ceylon for Eclipse 1.1.0
2,228 Hazelcast 3.3
1,843 Broadleaf C. 3.0.10

18

a script was written to dump each JAR file into the micro patterns detection tool. The file

name and the information for each micro pattern was stored in a separate CSV file for

each dataset. The micro pattern instances were then converted into binary numbers (1 if

the micro patten is present, 0 otherwise). After obtaining the micro pattern instances for

the classes, a script was written to find the file name in the spreadsheets provided by the

Unified Bug Dataset and include the number of reported bugs. A script was then written to

convert the number of bugs into true/false values (true if the micro patten is present, false

otherwise). The final result of the spreadsheets for the databases included the micro pattern

instances and the true/false values for each class.

3.4 Software Bug Prediction

This research utilized two different sets of features, micro patterns and class-level met-

rics, from Java classes. The labeled data from the classes were collected and marked as

true if the class contained reported bugs and false otherwise. The collected information

was then fed into a prediction model and trained so that the selected algorithm can make

predictions. Supervised learning was used due to the availability labeled data. In our case,

the prediction model used a set of features (micro patterns or class-level software met-

rics) to identify patterns for bug occurrences in class files. Four algorithms were applied

for supervised learning for bug prediction (Multilayer Perceptron, Naı̈ve Bayes, Support

Vector Machine, and Random Forest) because of their use in earlier studies in bug pre-

diction [19]. The Multilayer Perceptron algorithm served as the Deep Learning approach

where a neural network with one hidden layer is used for classification. The other algo-

19

rithms (Naı̈ve Bayes, Support Vector Machine, and Random Forest) were selected as the

traditional machine learning algorithms, where they have been used in previous studies to

predict software bugs [6, 27]. Although traditional machine learning algorithms have been

used to predict software bugs with micro patterns, Deep Learning has not yet been used

with these techniques [31].

The software tool used for this research is Waikato Environment for Knowledge Anal-

ysis (WEKA), a widely used data mining and machine learning tool written in Java. This

software provides many algorithms for data analysis and predictive modeling. WEKA

3.8.4 2 was used in our research. The parameters for the traditional machine learning

algorithms (Naı̈ve Bayes, Support Vector Machine, and Random Forest) were initialized

with the default settings for WEKA. The Multilayer Perceptron algorithm was initialized

to train for 10,000 episodes with a learning rate of 0.3 because these values produced the

best results. The dataset used in our research was not balanced between the classes that

contained bugs and the neutral classes. The ClassBalancer filter provided by WEKA 3.8.4

3 was used to generate an even number of neutral classes with the classes that contain

bugs. This is made possible by the re-weighting of the instances in the training data. For

the experiments related to Research Question 1 and Research Question 2, 10-fold cross-

validation was used for the prediction model. For Research Question 3, selected files were

used for training data and test data. This process is based on the total number of software

projects contained in the dataset. There is a counter that iterates until it reaches the number

of projects contained in the dataset. During the current value of the counter, that number

2https://www.cs.waikato.ac.nz/ml/weka/
3https://weka.sourceforge.io/doc.dev/weka/filters/supervised/instance/ClassBalancer.html

20

of projects is selected randomly for the training data and the remaining are used as test

data files. This process will show how well each algorithm performs as the training data

increases.

3.5 Performance Measures

Performance measures are needed in this research to evaluate how well each algorithm

predicts software bugs. The measures are as follows:

• False Positive (FP) Rate: The FP rate indicates the percentage of incorrect predic-
tions in a class. This performance measure will show the rate at which an algorithm
incorrectly predicts whether or not a software bug is present [6, 30].

• Precision: Precision is the number of correct predictions in a a class (true or false)
over the total number of instances of each class. This will show how correct each
algorithm performs with predicting software bugs [6, 30].

• Recall: Recall is the number of correct correct predictions in that class over the total
number of instances in that class. This will indicate the likelihood that an algorithm
will not incorrectly make a prediction for a class [6, 30].

• F-Measure: The F-Measure is a harmonic mean of the Precision and the Recall per-
formance measures. This measure is important because it gives an equal importance
between Precision and Recall [6, 30].

Weka provides each of these performance measures when classifying the provided data.

The predictions are made for all instances from the provided data. In our case, predictions

are made for whether a class contains a software bug or not. These measures are provided

for each of these instances, in our case true and false. In other words, Weka provides the

performance measures for predicting classes that contain software bugs and also classes

that do not contain software bugs. The results that are shown in this research is a weighted

average between the prediction of both instances.

21

CHAPTER 4

ANALYSIS AND RESULTS

This chapter explains the results from experiments related to the research questions

stated in Chapter 1.4. The performance of the algorithms for each experiments are eval-

uated with the measures False Positive (FP), Precision, Recall, and F-Measure. The Bug

Prediction Dataset and the PROMISE Dataset are used because all of the class-level soft-

ware metrics are provided for those datasets.

4.1 Data Collection

The Micro Patterns Detector tool extracted the micro patterns from the PROMISE and

Bug Prediction datasets provided by the Public Unified Bug Dataset. The datasets were

selected due to the availability of all of the class-level software metrics to compare with

the micro patterns results. For the PROMISE dataset, the newest version of the system was

only included to prevent duplicate classes.

4.1.1 Research Question 1: What is the performance of the software bug prediction
model using micro patterns as features with a multilayer perceptron?

The ClassBalancer filter provided by Weka was used to generate an even number of

neutral classes with the classes that contain bugs. For each algorithm, 10-fold cross-

validation was used for PROMISE, Bug Prediction, and the combination of the two datasets

22

Table 4.1: The datasets used from the Public Unified Bug Dataset in [12].

Dataset Number of Classes System Name
PROMISE 734 Ant 1.7

32 Forest 0.8
481 JEdit 4.3
186 Log4J 1.2
334 Lucene 2.4
51 Pbeans 2
308 Poi 2.5
536 Xerces 1.4

Bug Prediction Dataset 996 Eclipse JDT Core 3.4
993 Eclipse PDE UI 3.4.1
243 Equinox 3.4
697 Lucene 2.4
834 Mylyn 3.1

shown in Table 4.1. Figure 4.1 show that the Multilayer Perceptron algorithm outperformed

the traditional machine learning algorithms in terms of F-Measure, where this is a weighted

harmonic mean of the Precision and Recall measures.

The Bug Prediction and PROMISE datasets were combined and evaluated in the same

manner. The results shown in Figure 4.2 show that the Multilayer Perceptron algorithm

performed the best in terms of F-Measure. The combination of the two datasets are consis-

tent with the previous results in that the Multilayer Perceptron algorithm performs the best

with micro patterns.

4.1.2 Research Question 2: What is the performance of the software bug prediction
model when using class-level software metrics as features with a multilayer
perceptron?

The experiment that is related to this research question has the same approach as Re-

search Question 1. The ClassBalancer filter was used to generate an even number of neu-

tral classes and classes that contain bugs. Also, 10-fold cross-validation was used for the

23

MLP NB SVM RF

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.46

0.45
0.45

0.44

0.54

0.58 0.58

0.59

0.54

0.55
0.55

0.56

0.53

0.51
0.51

0.51

Pe
rc

en
ta

ge

Bug Prediction Dataset Using Micro Patterns

FP Rate Precision Recall F-Measure

Figure 4.1: The results from the Bug Prediction dataset using micro patterns.

24

MLP NB SVM RF

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.46

0.45

0.44
0.43

0.54

0.56

0.57

0.58

0.54

0.55

0.56
0.57

0.54
0.54

0.54 0.54

Pe
rc

en
ta

ge

Bug Prediction and PROMISE Datasets Using Micro Patterns

FP Rate Precision Recall F-Measure

Figure 4.2: The results from the Bug Prediction and PROMISE datasets using micro pat-

terns

25

Bug Prediction, PROMISE, and the combination of the two datasets shown in Table 4.1.

Class-level software metrics are used as features in the model to predict software bugs. The

results are shown in Figure 4.3 and Figure 4.4 for the FN, Precision, Recall, and F-Measure

for each algorithm. The results from Figure 4.3 show that the Random Forest algorithm

outperformed the other algorithms in all of the performance measures when using the Bug

Prediction dataset.

There were similar results when the Bug Prediction and PROMISE datasets were com-

bined with the class-level software metrics. Figure 4.4 show that the Random Forest al-

gorithm also performed the best compared to the other algorithms used in the prediction

model with the combination of the Bug Prediction and PROMISE datasets.

4.1.3 Research Question 3: What is the performance of the software bug prediction
model as the training size increases?

In this experiment, the idea is to show how the algorithms perform as the training size

increases. Training files of the individual projects are randomly selected for each iteration,

where the averages at each stage are calculated. For example, the maximum number of

iterations is one less than the number of projects in the dataset. The first iteration randomly

selects a project as the training data, and uses the remaining projects as test data. The

remaining iterations repeat this process, but increase the selected projects by one for each

iteration until the maximum number of iterations is met. The average for the performance

measures are calculated for each iteration. This process was repeated for the number of

projects contained in the dataset.

26

MLP NB SVM RF

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.34

0.39

0.33

0.3

0.68
0.69 0.7

0.75

0.66

0.61

0.67

0.7

0.65

0.57

0.66

0.69

Pe
rc

en
ta

ge

Bug Prediction Dataset Using Class-Level Software Metrics

FP Rate Precision Recall F-Measure

Figure 4.3: The results from the Bug Prediction datasets using software metrics.

27

MLP NB SVM RF

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.35 0.35

0.38

0.3

0.66 0.66
0.65

0.72

0.65 0.65

0.62

0.7

0.64 0.64

0.6

0.7

Pe
rc

en
ta

ge

Bug Prediction and PROMISE Datasets Using Class-Level Software Metrics

FP Rate Precision Recall F-Measure

Figure 4.4: The results from the Bug Prediction and Promise datasets using software met-

rics.

28

The results of this experiment are shown in Figures 4.5, 4.6, 4.7, and 4.8 when micro

patterns are used for bug predictions. Figures 4.5 and 4.6 show that the Naı̈ve Bayes algo-

rithm produced the lowest False Positive Rate and the highest Precision compared to the

other algorithms. Figures 4.7 and 4.8 show that the Multilayer Perceptron outperforms the

other algorithms in Recall and F-Measure as the training size increases, which is consistent

with the previous findings for Research Question 1.

The same experimental method was used, but with software metrics. Figure 4.9 show

that the Multilayer Perceptron algorithm had the highest FP Rate compared to the other

algorithms as the training size increases. The results from Figures 4.10, 4.11, and 4.12

show that the Random Forest algorithm outperforms the other algorithms in Precision,

Recall, and F-Measure. This is also consistent with the results from Research Question 2.

29

0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of Training Projects

Pe
rc

en
ta

ge

FP Rate for the Bug Prediction Dataset Using Micro Patterns

MLP
NB
SVM
RF

Figure 4.5: The False Positive Rate results from the Bug Prediction datasets using micro

patterns as the training size increases.

30

0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of Training Projects

Pe
rc

en
ta

ge

Precision for the Bug Prediction Dataset Using Micro Patterns

MLP
NB
SVM
RF

Figure 4.6: The Precision results from the Bug Prediction datasets using micro patterns as

the training size increases.

31

0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of Training Projects

Pe
rc

en
ta

ge

Recall for the Bug Prediction Dataset Using Micro Patterns

MLP
NB
SVM
RF

Figure 4.7: The Recall results from the Bug Prediction datasets using micro patterns as the

training size increases.

32

0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of Training Projects

Pe
rc

en
ta

ge

F-Measure for the Bug Prediction Dataset Using Micro Patterns

MLP
NB
SVM
RF

Figure 4.8: The F-Measure results from the Bug Prediction datasets using micro patterns

as the training size increases.

33

0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of Training Projects

Pe
rc

en
ta

ge

FP Rate for the Bug Prediction Dataset Using Class-Level Software Metrics

MLP
NB
SVM
RF

Figure 4.9: FP Rate for the Bug Prediction Dataset Using Class-Level Software Metrics.

34

0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of Training Projects

Pe
rc

en
ta

ge

Precision for the Bug Prediction Dataset Using Class-Level Software Metrics

MLP
NB
SVM
RF

Figure 4.10: Precision for the Bug Prediction Dataset Using Class-Level Software Metrics.

35

0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of Training Projects

Pe
rc

en
ta

ge

Recall for the Bug Prediction Dataset Using Class-Level Software Metrics

MLP
NB
SVM
RF

Figure 4.11: Recall for the Bug Prediction Dataset Using Class-Level Software Metrics.

36

0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of Training Projects

Pe
rc

en
ta

ge

F-Measure for the Bug Prediction Dataset Using Class-Level Software Metrics

MLP
NB
SVM
RF

Figure 4.12: The F-Measure results from the Bug Prediction datasets using class-level

software metrics as the training size increases.

37

CHAPTER 5

DISCUSSION

In this section, we interpret and explain the significance of our findings from the results

from Chapter 4. The use of micro patterns gives software developers another technique to

evaluate the quality of their code. This concept also mechanically describes the structure

of programs written in Java at the class-level. Deep Learning has been used with software

metrics to predict bugs. With this idea, micro patterns are used in this research to achieve

the same goal.

The results in Figure 4.2 show that the Deep Learning approach by using the Multi-

layer Perception algorithm has a higher Recall and F-Measure than the traditional machine

learning algorithms. This means that the algorithm has a higher harmonic mean between

the Precision and Recall measures. Even with the higher value of False Positive Rate,

the Multilayer Perceptron algorithm has a lower number of undetected classes with bugs

because of the Recall value. The Bug Prediction Dataset can be predicted with a higher

overall Recall and F-Measure when using the Multilayer Perceptron algorithm. The same

can be concluded with the combination of the Bug Prediction Dataset and the PROMISE

dataset in Figure 4.3.

38

In Figure 4.4, the same model was applied but with class-level software metrics instead.

The Random Forest algorithm outperformed the other algorithms in terms of Precision,

Recall, and F-Measure. Also, the False Positive Rate was the lowest compared the the

other algorithms. It can be concluded that the Random Forest algorithm is able to predict

software bugs for the Bug Prediction Dataset and the PROMISE dataset better than the

other algorithms.

We conducted an experiment to show the performance of the algorithms as the training

size increases. For the Bug Prediction Dataset, the Multilayer Perceptron algorithm had

higher performances in terms of Recall and F-Measure compared to the other algorithms.

This is consistent with the results in Figure 4.2, where the algorithm also outperformed the

other algorithms. The results for the software metrics were also consistent with the results

in Figure 4.3, where the Random Forest algorithm performed the best.

Existing literature with Deep Learning and software bug prediction shows promising

results. Clemente et al. [6] utilized a feedforward neural network to predict software bugs

by using software metrics. The Deep Learning method performed better than the tradi-

tional machine learning algorithms in terms of accuracy. In this study, more classes will

be needed to fully utilize the Deep Learning approach. Studies by Sultana et al. [27] used

micro patterns and nano-patterns to predict vulnerable code with traditional machine learn-

ing algorithms. Deep Learning and the use of traceable code patterns will provide another

avenue to predict software bugs.

39

CHAPTER 6

THREATS TO VALIDITY

This section will discuss threats to validity in terms of construct, external, and internal.

Construct validity involves what a tests claims to measure. External validity involves the

ability that a test can generalize the results. Internal validity is any unwanted or unantici-

pated results.

Construct validity: Micro patterns are able to describe Java code at the byte code level,

but they may not capture all characteristics of classes. This is another method that soft-

ware developer can utilize to measure software quality. This study also utilizes the Public

Unified Bug Dataset, where the neutral classes may have unreported software bugs.

External validity: Deep Learning works well with large amount of data. In this study,

there is a limited amount of data to measure the performance of the Multilayer Perceptron

algorithm. More classes are needed to fully utilize the performance of Deep Learning.

Micro patterns are only used for class-level Java projects. It cannot be concluded that

micro patterns perform better than class-level metrics since this method is only used for

programs written in Java. Also, more research is needed for different Java frameworks.

Internal validity: This study evaluates the ability of predicting software bugs with micro

patterns and class-level metrics. It cannot be concluded that micro patterns and metrics

40

cause software bugs. The relation between software bugs and these methods are studied

to provide software developers a way to measure software quality during the development

process. The classes that are predicted for bugs need rigorous testing compared to the

predicted neural classes.

41

CHAPTER 7

CONCLUSION AND FUTURE WORK

This research will help software developers identify vulnerable code at the class-level

to pinpoint the specific code locations to perform rigorous tests. Traditional machine learn-

ing algorithms have proved to be able to predict vulnerable code, but the high rate of false

negatives have been the biggest challenge. Deep learning techniques have recently been

investigated to produce better results in predicting vulnerable code. So far, traceable code

patterns have not been investigated along with Deep learning techniques to identify vul-

nerable classes and functions. Software developers would be able to better locate specific

locations of vulnerable code if deep learning techniques preform better than traditional

machine learning algorithms.

In the future, this work can be extended by venturing into other datasets to provide the

prediction model with more data to improve the performance of Deep Learning approach.

This work can also be extended by predicting software bugs into categories. The use of

nano-patterns to predict software bugs would be another way to predict software bugs.

We did not utilize nano-patterns because the dataset that we utilized contained class-level

information rather than method-level. The use of feature selection techniques would de-

termine the most relevant features of the prediction model to improve results and reduce

42

complexity. For this research, we have provided a foundation of utilizing traceable code

patterns to predict software bugs with Deep Learning.

43

REFERENCES

[1] M. Alenezi and I. Abunadi. Evaluating software metrics as predictors of software
vulnerabilities. International Journal of Security and Its Applications, 9(10):231–
240, 2015.

[2] H. Alves, B. Fonseca, and N. Antunes. Experimenting machine learning techniques to
predict vulnerabilities. In 2016 Seventh Latin-American Symposium on Dependable
Computing (LADC), pages 151–156, 2016.

[3] S. Broggi. Bug prediction with neural nets. B.S. Thesis, 2018.

[4] I. Chowdhury, B. Chan, and M. Zulkernine. Security metrics for source code struc-
tures. Proceedings of the Fourth International Workshop on Software Engineering
for Secure Systems, 2008.

[5] I. Chowdhury and M. Zulkernine. Using complexity coupling and cohesion metrics
as early indicators of vulnerabilities. Journal of Systems Architecture, 57(3):294–313,
2011.

[6] C. Clemente, F. Jaafar, and Y. Malik. Is predicting software security bugs using
deep learning better than the traditional machine learning algorithms? 2018 IEEE
International Conference on Software Quality Reliability and Security (QRS), July
2018.

[7] Z. Codabux, K. Sultana, and B. Williams. The relationship between code smells
and traceable pattern - are they measuring the same thing. International Journal of
Software Engineering and Knowledge Engineering, 27(9-10):1529–1547, 2017.

[8] M. D’Ambros, M. Lanza, and R. Robbes. An extensive comparison of bug prediction
approaches. In 2010 7th IEEE Working Conference on Mining Software Repositories
(MSR 2010), pages 31–41. IEEE, 2010.

[9] K. Emam, W. Melo, and J. Machado. The prediction of faulty classes using object-
oriented design metrics. Journal of systems and software, 56(1):63–75, 2001.

[10] M. Fagan. Design and code inspections to reduce errors in program development. In
Software pioneers, pages 575–607. Springer, 2002.

44

[11] R. Ferenc, D. Bán, T. Grósz, and T. Gyimóthy. Deep learning in static, metric-based
bug prediction. Array, page 100021, 2020.

[12] R. Ferenc, Z. Toth, G. Ladanyi, and I. Siket. A public unified bug dataset for java.
In Proceedings of the 14th International Conference on Predictive Models and Data
Analytics in Software Engineering, 2018.

[13] J. Gil and I. Maman. Micro patterns in java code. OOPSLA ’05: Proceedings of 20th
ACM SIGPLAN conference on Object oriented programming systems languages and
applications, pages 97–116, 2005.

[14] X. Glorot, A. Bordes, and Y. Bengio. Deep sparse rectifier neural networks. In
Proceedings of the fourteenth international conference on artificial intelligence and
statistics, pages 315–323, 2011.

[15] J. Li, P. He, J. Zhu, and R. L. Michael. Software defect prediction via convolutional
neural network. QRS’ 17: Proc. of the International Conference on Software Quality
Reliability and Security, pages 318–328, 2017.

[16] S. Mahapatra. Why deep learning over traditional machine learning?
https://towardsdatascience.com/why-deep-learning-is-needed-over-traditional-
machine-learning-1b6a99177063, March 21 2018.

[17] R. Malhorta, L. Bahl, S. Sehgal, and O. Priya. Empirical comparision of machine
learning algorithms for bug prediction in open source software. International Confer-
ence on Big Data Analytics and Computational Intelligence (ICBDAC), pages 40–45,
2017.

[18] T. Menzies, Z. Milton, B. Turhan, B. Cukic, Y. Jiang, and A. Bener. Defect prediction
from static code features: current results, limitations, new approaches. Automated
Software Engineering, 17(4):375–407, 2010.

[19] P. Morrison, K. Herzig, B. Murphy, and L. Williams. Challenges with applying vul-
nerability prediction models. Proceedings of the 2015 Symposium and Bootcamp on
the Science of Security. ACM-Association for Computing Machinery, 2015.

[20] R. Moser, W. Pedrycz, and G. Succi. A comparative analysis of the efficiency of
change metrics and static code attributes for defect prediction. Proc. ACM/IEEE 30th
Int’l Conf. Software Eng., pages 181–190, 2008.

[21] S. Moshtari, A. Sami, and M. Azimi. Using complexity metrics to improve software
security. Computer Fraud and Security, 2013(5):8–17, 2013.

[22] N. Nagappan and T. Ball. Use of relative code churn measures to predict system
defect density. Proc. 27th Int’l Conf. Software Eng., pages 284–292, 2005.

45

[23] R. Russell, L. Kim, L. Hamilton, T. Lazovich, J. Harer, O. Ozemir, P. Ellingwood,
and M. McConley. Automated vulnerability detection in source code using deep
representation learning. Proc. ICMLA, pages 757–762, 2018.

[24] Y. Shin, A. Meneely, L. Williams, and J. Osborne. Evaluating complexity, code
churn, and developer activity metrics as indicators of software vulnerabilities. IEEE
Transactions on Software Engineering, 37(6), 2011.

[25] F. Shull, V. Basili, B. Boehm, A. Brown, P. Costa, M. Lindvall, D. Port, I. Rus,
R. Tesoriero, and M. Zelkowitz. ”what we have learned about fighting defects”. Proc.
Eighth Int’l Software Metrics Symp., pages 249–258, 2002.

[26] J. Singer, G. Brown, M. Luján, A. Pocock, and P. Yiapanis. Fundamental nano-
patterns to characterize and classify java methods. Electronic Notes in Theoretical
Computer Science, 253(7):191–204, 2010.

[27] K. Sultana, B. Williams, and T. Bhowmik. A study examining relationships between
micro patterns and security vulnerabilities. Software Quality Journal, 2017.

[28] K. Z. Sultana. Towards a software vulnerability prediction model using traceable code
patterns and software metrics. SE 2017 - Proceedings of the 32nd IEEE/ACM Inter-
national Conference on Automated Software Engineering, pages 1022–1025, 2017.

[29] K. Z. Sultana, A. Deo, and B. J. Williams. Correlation analysis among java nano-
patterns and software vulnerabilities. 2017 IEEE 18th International Symposium on
High Assurance Systems Engineering (HASE), pages 69–76, 2017.

[30] K. Z. Sultana, B. Williams, and A. Bosu. A comparison of nano-patterns vs. soft-
ware metrics in vulnerability prediction. 2018 25th Asia-Pacific Software Engineer-
ing Conference (APSEC),, pages 355–364, 2018.

[31] K. Z. Sultana and B. J. Williams. Evaluating micro patterns and software metrics
in vulnerability prediction. 2017 6th International Workshop on Software Mining
(SoftwareMining), pages 40–47, 2017.

[32] J. Walden, J. Stuckman, and R. Scandariato. Predicting vulnerable components: Soft-
ware metrics vs text mining. 2014 IEEE 25th International Symposium on Software
Reliability Engineering, Naples, pages 23–33, 2014.

[33] F. Wu, J. Wang, J. Liu, and W. Wang. Vulnerability detection with deep learning.
2017 3rd IEEE International Conference on Computer and Communications (ICCC),
pages 1298–1302, 2017.

[34] J. Xu, D. Ho, and L. Capretz. An empirical validation of object-oriented design
metrics for fault prediction. Journal of Computer Science, 4(7):571–577, 2008.

46

[35] Y. Zhang, D. Lo, X. Xia, B. Xu, J. Sun, and S. Li. Combining software metrics and
text features for vulnerable file prediction. 2015 20th International Conference on
Engineering of Complex Computer Systems (ICECCS), pages 40–49, 2015.

[36] T. Zimmermann, N. Nagappan, and L. Williams. Searching for a needle in a haystack:
Predicting security vulnerabilities for windows vista. 2010 Third International Con-
ference on Software Testing, Verification and Validation, pages 421–428, 2010.

47

	A Deep Learning approach to predict software bugs using micro patterns and software metrics
	Recommended Citation

	tmp.1625165283.pdf.68w8J

