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Many important engineering phenomena such as turbulent fow, fuid-structure inter-

actions, and climate diagnostics are chaotic and sensitivity analysis of such systems is a

challenging problem. Computational methods have been proposed to accurately and ef-

fciently estimate the sensitivity analysis of these systems which is of great scientifc and

engineering interest. In this thesis, a new approach is applied to compute the direct and

adjoint sensitivities of time-averaged quantities defned from the chaotic response of the

Lorenz system and the double pendulum system. A stabilized time-integrator with adap-

tive time-step control is used to maintain stability of the sensitivity calculations. A study

of convergence of a quantity of interest and its square is presented. Results show that the

approach computes accurate sensitivity values with a computational cost that is multiple

orders-of-magnitude lower than competing approaches based on least-squares-shadowing

approach.
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CHAPTER I

INTRODUCTION

Chaos is derived from a Greek word originally used to defne the infnite empty space

before everything existed [1]. In recent years, the word chaos means a state of disorder

and irregularity. In the feld of mathematics, Chaos is defned as an aperiodic long term

behavior in a deterministic system that exhibits sensitive dependence on initial conditions

[2]. This means that the trajectories of a system that does not have random or noisy inputs

and parameters, do not settle down to fxed points, periodic orbits or quasiperiodic orbits.

However, the nearby trajectories separate exponentially fast. Chaotic behavior can be seen

in different nonlinear systems describing physical or environmental phenomena such as

weather forecasts [3], turbulent fow[4], population modeling [5], economics [6], etc.

Nonlinear systems exhibiting chaos became of great interest starting from 1963, owing

to a meteorologist named Edward Lorenz who derived a set of three quadratic ordinary dif-

ferential equations as a simplifed model of atmospheric convection[3]. Lorenz discovered

thanks to his computer modeling that his system could display a very complex behavior.

His system’s response was highly unpredictable, such that a slight difference in one of the

system’s variables had a drastic effect on the whole system’s response. This is referred to

as sensitive dependence on initial conditions. Lorenz also gave a graphic representation of
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the solution of his equations using his computer. Plotting his solution on an xz plane, he

found an attractor that had a shape of a butterfy. His fndings gave rise to the term of the

"Butterfy Effect".

In order to understand this phenomena, Ruelle, a Belgian physicist, studied attractors

and called Lorenz attractor as a strange attractor since the trajectories in the phase space

seem to form cycles but don’t intersect with each other [4]. Because they are not on the

same plan and not concentric. Bifurcation studies were used to quantitavely monitor the

topological changes of a system’s solution as a parameter is varied. These studies help

understand the nonlinear systems without having to solve them numerically. Many bifur-

cations can be seen in nonlinear dynamical systems, such as saddle node bifurcations, hopf

bifurcations, limit cycle oscillations, period doubling, fip or fold bifurcations, etc [7].

In recent years, applied mathematicians and engineers are becoming more interested in

studying these nonlinear dynamical systems and quantifying the sensitivity of the systems’

responses with respect to their parameters. Sensititivity analysis is widely used in a large

range of physical and engineering problems such as: aerodynamic shape optimization [8],

adaptive grid refnement [9], and data adjustment for weather forecasting [10]. Sensitiv-

ity analysis can be computed either with a direct method or an adjoint approach. The

forward or direct method is more effcient for computing sensitivity derivatives of many

output quantities to a few input parameters, whereas the adjoint method is more effcient

for computing sensitivity derivatives of a few output quantities to many input parameters.

In the past few years, sensitivity analysis of chaotic systems became important for

design optimization. Time instantaneous quantities of these systems cannot be used as a

2



design metric because of their random nature and their lack of convergence, therefore time-

averaged quantities are used as quantities of interest. Since the computational capacity of

computer improved, many methods have been proposed to accurately compute the sensitiv-

ity values of these nonlinear systems. Methods, such as ensemble averaging method [11],

least-squares-shadowing (LSS)[12], non-intruisive LSS method [13] has been proposed

but are computationally expensive.

In this thesis a new approach of computing the sensitivity analysis of chaotic systems

is presented. This method, developed by Bhatia and Makhija [14], is able to compute ac-

curate direct and adjoint sentivity values of time-averaged quantities by using a stablized

sensitivity solver [15]. Adaptive time-step control is used to maintain stability of the sen-

sitivity calculations of two nonlinear systems: the Lorenz system and double pendulum.

This thesis is organized as follow: the following chapter presents a literature review

of chaos theory and sensitivity analysis. Chapter 3 focuses on chaos in Lorenz system

and its bifurcation study. Chapter 4 introduces sensitivity analysis of chaotic systems and

discusses the current approach. Results of the sensitivity analysis of the Lorenz system are

given in Chapter 5. Chapter 6 presents the double pendulum system, its chaotic behavior

and its sensitivity analysis. Finally, Chapter 7 gives a summary of this thesis along with

some conclusions and future research directions.
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CHAPTER II

LITERATURE REVIEW

2.1 Previous work in chaos theory

Chaos theory is a branch of mathematical theory that is still in development. It de-

scribes a series of phenomena rising from nonlinear dynamical systems. These systems

are mathemtical models to natural problems that scientists try to understand and interpret

using mathematical equations.

In the seventeenth century, Kepler, Galileo, and Descartes discovered the laws of mo-

tion and the causality effect principle, which states that each effect has a cause [16]. Isaac

Newton later validated this principle and developed laws of celetial motions independent

of the initial conditions. These differential equations show the variation of quantities with

respect to time and were called a two-body problem. However, as the number of planets or

variables increase the problem becomes complex and requires new analytical methods to

solve it.

Years later, the mathematician and astronomer Pierre Simon Laplace worked on the

concept of universal determinism. Determinism is another way of expressing the causality

effect, such that every event is physically determined by a series of previous causes[17].

Laplace was also able to use Newton’s laws of motion to calculate the past and future

trajectories of the solar system based on the initial condition of the systems.
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In 1885, Henri Poincaré, a french mathematician, tackled the many-body problem that

Newton could not solve. In his paper, he analyzed a three-body problem and derived

a result that demonstrated the stability of the solar system. He defned the state of the

system at a given moment represented in the phase space. Years later, Poincaré found very

complex geometries that were related to chaotic behavior of the solar system [18]. He also

discovered the phenomenon of sensitivity to initial conditions when he noticed that a slight

difference in the initial position of the planets resulted in huge differences in their position

in the long run. This was the birth of the chaos theory.

In the 1960s, a meteorologist found similar conclusions. From the Massachusetts Insti-

tute of Technology, Edward Lorenz is considered as the offcial discoverer of chaos theory.

This occured while programming 12 weather-simulating equations into his vacuum tube

computer to predict weather changes. The equations he used were similar to those Poincaré

and Newton had studied before and were proved extremely diffcult to solve. Lorenz found

that two slightly different initial conditions (0.506 instead of 0.506127) gave rise to ex-

tremely different behavior [3]. This conclusion was similar to Poincaré’s and was then

named sensitive dependence on initial conditions. It was then refered to as the butterfy

effect based on the title of Lorenz presentation given by Philip Merilees, the meteorologist

who organized the 1972 conference session where Lorenz presented his result, which was

"Predictability: does the fap of a butterfy’s wing in Brazil set off a tornado in Texas?"[19].

Lorenz not only showed that a perfect weather prediction is impossible but also rediscov-

ered the chaotic behavior of nonlinear dynamical systems. Moreover, Lorenz presented a

graphic description of his results using his computer and the fgure that appeared was his
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second discovery: the attractors. Fig. 3.17 represents the Lorenz attractor in the xz plane

for ρ = 28, β = 8/3 and σ = 10.

Figure 2.1: Lorenz attractor of Lorenz system.

David Ruelle assigned the term of "strange attractor"[4] to this phenomena. Strange

attractors can be a representation of a chaotic system in a specifc phase space. However,

attractors can also be found in various nonchaotic dynamical systems. There are four types

of attractors: fxed point, limit-cycle, limit-torus, and strange attractor. While working

on turbulent fows, Ruelle and Takens argued that the Navier-Stokes equations also exhib-

ited strange attractors, and that the onset of turbulence is a result of the presence of these

attractors [4].
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After Lorenz, more strange attractors were discovered. From a chemical reactions

study, the Rössler attractor was found. Chua attractor came out from the study of an elec-

tronic circuit [7].

Period doubling is another behavior that can be observed in chaotic systems. It was

proposed by Mitchell Jay Feigenbaum to describe the transition between regular dynamics

and chaos in a system while studying the logistic map proposed by the biologist Robert

May [20], [21]. This system’s behavior changes depending on the value of its variable

r. Periodic orbits are observed and period doubling occurs as the value of r (growth rate)

increases as seen in Fig. 2.2 versus the long term x the quantity of interest.

Figure 2.2: Bifurcation diagram of logistic map [16].

Chaos theory is an area of interdisciplinarity. Lorenz, a meteorologist, Ruelle, a math-

ematical phisict, and other mathematicians, chemists, and biologists were working on sim-
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ilar things. The modern chaos theory would not have been possible without computers to

perform millions of operations in a short period of time. Nowadays, engineers have become

interested in understanding nonlinear chaotic systems and performing design optimization

on these systems.

2.2 Stability of dynamical systems

The notion of stability is very important in chaos theory. Considering a dynamical

system which satisfes

ẋ = f(x, t) x(t0) = x0 x ∈ Rn , (2.1)

f(x, t) is Lipschitz continuous with respect to x, uniformly in t, and piecewise continuous

in t. If a point x ∗ ∈ Rn satisfes f(x ∗ , t) = 0, then x ∗ is an equilibrium point of Eq. 2.2.

x ∗ is locally stable if all solutions which start near it remain close to it for all time. The

equilibrium point x ∗ is said to be locally asymptotically stable, if x ∗ is locally stable and,

∗ ∗ ∗all solutions starting in a neighborhood of x tend towards x as t → ∞. x is globally

stable, if it is stable for all initial conditions x ∈ Rn [22].

If the origin of the system is shifted, the equilibrium point occurs at x ∗ = 0.

2.2.1 Defnition of asymptotic stability

The equilibrium point x ∗ = 0 is asymptotically stable at t = t0 if, x ∗ = 0 is stable and

x ∗ = 0 is locally attractive. Uniform asymptotic stability requires x ∗ = 0 to be uniformaly

stable, and x ∗ = 0 is uniformally locally attractive. x ∗ = 0 is unstable, if it is not stable

[22].
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2.2.2 Defnition of Lyapunov stability

The equilibrium point x ∗ = 0 is stable at t = t0 if for any � ≥ 0, there exists a

δ(t0, �) ≥ 0 such that

||x(t0)|| ≤ δ → ||x(t)|| ≤ �, ∀t ≤ t0. (2.2)

If δ is not a function of t0, Uniform stability is guaranteed and the origin will not lose

stability.

Lyapunov stability is a weak requirement on equilibrium points. It is defned only at

a time instant t0. It also does not require that the trajectories starting near the equilibrium

point tend to it asymptotically [22].

2.2.3 Defnition of exponential stability

The equilibrium point x ∗ = 0 is exponenatially stable if there exist constants m, α ≥ 0 

and � ≥ 0, such that

||x(t)|| ≤ me −α(t−t0)||x(t0)||, ∀||x(t)|| ≤ �andt ≥ t0. (2.3)

The rate of convergence is the maximum value of α.

Exponential stability is a stronger stability form. It implies uniform and asymptotic

stability. Global exponential stablity can be reached if Eq. 2.2.3 hold ∀x0 ∈ Rn [22].

2.3 Previous work in sensitivity analysis

Sensitivity analysis determines the mathematical techniques that, when applied to a

given system, provide the gradient of an output quantity of interest with respect to design
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variables parametrizing the system at hand. It is useful in a large range of physical and en-

gineering problems such as: aerodynamic shape optimization [8], adaptive grid refnement

[9], and data adjustment for weather forecasting [10].

The forward or direct algorithms and the adjoint algorithms can be used to compute

the sensitvity derivatives. The forward approach is more effcient for computing sensitivity

derivatives of many output quantities to a few input parameters, whereas the adjoint method

is more effcient for computing sensitivity derivatives of a few output quantities to many

input parameters.

In simulations of time-dependent problems mainly chaotic dynamical systems, such

as turbulent fows and the climate system, the instantaneous quantities can not be used

as a design metric. This is due to their fuctuating nature and their lack of convergence.

Therefore time-averaged quantities, such as time-averaged aerodynamic forces in turbulent

fow simulations, and the time-averaged global temperature in climate simulations, are of

great scientifc and engineering interest and computing their sensitivities can be benefcial

in many applications.

Traditional sensitivity analyses techniques, both direct and adjoint methods, are used

to calculate the sensitivity of the time-averaged quantities with respect to the parameters

of the system. The results are obtained by calculating the time-average of the sensitivity,

which is done by time averaging the solution of a linear initial value problem obtained

from linearization of the dynamics around the reference trajectory [23].

In the feld of design optimization with large-scale simulations, adjoint sensitivity ap-

proach has been a successful tool [8], [24]. The least-squares-shadowing method is consid-
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ered to be state-of-the-art, but is still computationally restrictive even for two-dimensional

fows about airfoils [25].

One of the frst methods used to tackle sensitivity analysis of time-averaged quantities

of chaotic systems was ensemble averaging method [11]. This method yielded good results

when direct sensitivity approach was used to study macroscopic climate sensitivity. Eyink

et al. went on to generalize the method to solve for sensitivity of ocean circulation and

Lorenz 63 [26]. The ensemble adjoint method involves averaging over a large number

of ensemble calculations. However, this approach has high computational costs make it

uncontrollable for many applications.

The method of least-squares-shadowing (LSS) [12] calculates the sensitivity of chaotic

systems using a shadow path of the nonlinear solution, which transforms the problem at

hand into a boundary value problem. Even though this method has shown its effectiveness

for different low dimensional chaotic systems, it creates a computational challenge for high

dimensional systems.

A non-intruisive LSS method has been proposed by Ni et al. [13] as an attempt to

reduce the computational cost and the memory usage of the LSS approach. In this method,

the sensitivity of long-time-averaged quantities in chaotic dynamical systems has been

computed using a tangent solution, which approximates the adjoint and direct sensitivity

variables as a linear combination of stable and unstable contributions.

These contributions are detected by computing multiple adjoint and direct sensitivity

variables in partitioned segments in time. However, long time segments cause numerical

overfow and short segments do not effciently separate stable from unstable contributions.
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This approach has been used to calculate sensitivity analysis of the Lorenz system [12],

to resolve turbulent fow about an airfoil [25]. Multiple shooting shadowing for sensitiv-

ity analysis of chaotic dynamical systems has been used to solve for chaotic aeroelastic

response [27]. Blonigan, et al estimated the cost of approach to be at least four orders-of-

magnitude higher than a forward nonlinear solution. Post-processing of several solutions

yields the computed adjoint/direct sensitivity variables. Both the number of solutions over

each segment and the length of each time segment are tunable parameters. Long time

segments produce numerical overfow. Short segments are not able to effectively separate

stable from unstable contributions.

The method developed by Lasagna [28] transforms the initial value problem to a bound-

ary value problem using a time-periodic orbit. Both time-averaged quantities and their

direct and adjoint sensitivities are calculated on this orbit.

In this thesis, a new approach developed by Bhatia and Makhija [14] is used to calculate

sensitivity values and understand their rate of convergence. The solution of the nonlinear

dynamical systems is obtained from a nonlinear ODE solver. Nonlinear chaotic dynamical

systems can exhibit different responses such as, limit cycle oscillations, period doubling,

chaos, etc, but the solution stays contained in a bounded manifold unless an instability

forces unbounded growth of the response. The sensitivity equations are a linearization of

the chaotic ODE about the nonlinear states. When solving for these sensitivities using con-

ventional approaches on the linearization of chaotic systems, the sensitivity solution grows

exponentially, causing round-off errors and numeric overfow. Therefore the linearized

sensitivity solution experiences unbounded growth while the nonlinear solution remains
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bounded for chaotic systems due to the nonlinearities in the system. The solution of a

linear ODE will amplify or decay according to the eigenvalues and eigenvectors of the Ja-

cobian matrix of the linearized ODE, and the applied force function. Stable eigenvalues

(real part less than zero) cause decay of the linearized solution and unstable eigenvalues

(real part greater than zero) cause growth of the linearized solution. Direct and adjoint sen-

sitivity variables are intermediate quantities whose time-dependent behavior is computed.

An inner product with the appropriate function for direct-sensitivity and adjoint-sensitivity

yields the sensitivity of the quantity-of-interest with respect to the sensitivity parameter.
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CHAPTER III

BIFURCATION STUDY OF LORENZ SYSTEM

In 1963, a meteorologist named Lorenz derived a set of three quadratic ordinary differ-

ential equations as a simplifed model of atmospheric convection from the Navier-Stokes

equations. The partial differential equation models the resulting convection motion from

a two dimensional fuid cell that is warmed from below and cooled from above. These

equations representing three modes, where x, y, and z measure the rate of convective over-

turning (velocity feld), the difference of horizontal temperature, and the distortion of the

vertical profle of temperature. These respectively, are:⎧ 
0x = σ(y − x) ⎪⎨ 
0y = ρx − y − xz (3.1)

⎪ 0⎩z = xy − βz 

where the three parameters σ (the Prandtl number), ρ (the Rayleigh number), and β (an

aspect ratio of the region under consideration) are positive. The same equations are used

to model lasers, dynamos, chemical reactions, electric circuits, etc [29], [30].

Even though the equations of the Lorenz system seem simple, their solution can be

extremely complicated, unpredictable and even chaotic due to the two nonlinear terms: xz 
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and xy. For different values of the parameters, the approximate numerical solutions to

Eq.(3.1) look complicated. Fig. 3.1 represents the x,z plane projection of the solution for

σ = 10, β = 8/3,and ρ = 28. Looking at the three dimensional picture, the trajectory does

not intersect itself. It starts from one side and continues winding from one to the other. It

does not settle down to a periodic or stationary behavior.

Figure 3.1: A numerical solution to the Lorenz equations projected on the xz plane.

The general form of Fig. 3.1 does not change by varying the initial conditions as long as

the initial transient behavior is ignored. However, the trajectory’s loops are very sensitive

to changes in the initial conditions. This makes the prediction of the trajectory at a certain

time interval impossible.

Some of the properties of the Lorenz system are:
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• Symmetry: Eq.(3.1) has a symmetry (x,y,z) to (-x,-y,z) for all values of the parame-

ters.

• The z axis: Z axis, x=y=0, is invariant, which means that all trajectories starting on

the z axis will remain there and tend towards the origin (0,0,0).

• Existence of a bounded, globally attracting set of zero volume: Lorenz showed that

there is a bounded ellipsoid E in IR3 which all the trajectories enter after a certain

x ∂ẏ ∂żtime. Moreover, the divergence of this system ∂ ˙ + + = −(σ + β + 1) is
∂x ∂y ∂z 

negative. Therefore, there is a bounded set of zero volume within E towards which

all the trajectories tend.

• Existence of stationary points: The origin (0,0,0) is a stationary point for all pareme-

ters values. The Lorenz system has two additional stationary points when 1 ≤ ρ.

Chaos has been defned as the high sensitivity to initial conditions, where a small dif-

ference in the initial state of a system can cause a big difference in its fnal state. The frst

chaotic behavior, observed by Lorenz, was a strange attractor that was called after him

as the Lorenz attractor for ρ = 28[3]. As the parameters σ, β,and ρ vary, the response’s

behavior changes in a signifcant way. Whenever this happens, a bifurcation occurs [31].

Studies have shown that for higher values of ρ the solution becomes chaotic with some

periodic windows. In these regions, period doubling bifurcations occur.

3.1 Time simulations for different values of ρ 

Fixing the parameters σ and β as σ = 10 and β = 8/3, ρ is varied as follows:
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• Case ρ ≤ 1:

In this case, the origin (x, y, z) = (0, 0, 0), shown in Fig. 3.9 and presented as a red

star, is the only equilibrium point. All points are attracted to it, including the two

initial points used for this simulation (x01, y01, z01) = (1, 1, 1) and (x02, y02, z02) = 

(1, −1, 1).

Figure 3.2: Time simulation of the Lorenz system for ρ = 0.5.

• Case ρ = 1:

For the case ρ = 1, a pitchfork bifurcation is observed where the origin becomesp p
unstable and two stable fxed points appear (± β(ρ − 1), ± β(ρ − 1), ρ − 1).
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Figure 3.3: Time simulation of the Lorenz system for ρ = 1.

• Case 1 ≤ ρ ≤ 13.925:

For the case of ρ = 10 shown in Fig. 3.4, two stable manifolds are observed.

They are characterized by a trajectory driven away from the origin point (x, y, z) = 

(0, 0, 0), which for this case is a saddle point, as the time increases. They are starting

from their initial points (x01, y01, z01) = (1, 1, 1) and (x02, y02, z02) = (1, −1, 1) and

connect to their stable fxed points which correspond to (x1, y1, z1) = (4.9, 4.9, 9) 

and (x2, y2, z2) = (−4.9, −4.9, 9), respectively.
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Figure 3.4: Time simulation of the Lorenz system for ρ = 10.

• Case ρ = 13.926:

When ρ = 13.926, the branches start from the initial points (x01, y01, z01) = (1, 1, 1) 

and (x02, y02, z02) = (1, −1, 1) and reach the stable fxed points in left and right,

respectively. Since the origin (x, y, z) = (0, 0, 0) is unstable, the trajectories cannot

pass through it. Therefore, the branches come closer to it without touching it asymp-

totically which is confrmed in Fig. 3.5. Thus, the stationary orbit at the origin has a

homoclinc orbit [31].
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Figure 3.5: Time simulation of the Lorenz system for ρ = 13.926.

• Case 13.925 ≤ ρ ≤ 24.06:

For this case where the Rayleigh number ρ equals 20, Fig. 3.6 shows both spirals

starting from (x01, y01, z01) = (1, 1, 1) and (x02, y02, z02) = (1, −1, 1), crossing over,

and spiraling towards the other side until they reach their corresponding fxed points.
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Figure 3.6: Time simulation of the Lorenz system for ρ = 20.

• Case ρ = 24.74:

At ρ = 24.74, a subcritical Hopf bifurcation occurs. The results in Fig. 3.7 agree

with the results shown in the literature. According to Lorenz [3], the two fxed

points, observed in Fig. 3.10, Fig. 3.15, Fig. 3.12, lose their stability in the Hopf

bifurcation at this value of the Rayleigh number forcing the orbits around them to

become unstable.
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Figure 3.7: Time simulation of the Lorenz system for ρ = 24.74.

• Case ρ = 28:

At this value of the Rayleigh number, the Lorenz attractor is observed in Fig. 3.8.

Continuation of Codimension 1 bifurcations and limit cycles for this case are pre-

sented in the next sections.
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Figure 3.8: Time simulation of the Lorenz system for ρ = 28.

• Case ρ ≥ 100.795:

Between these two values, period doubling bifurcations of stable periodic points are

observed in the time simulations.
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Figure 3.9: Time simulation of the Lorenz system for ρ = 150.

3.2 Bifurcations study

In this section, a bifurcation study of the Lorenz system is used to qualitatively monitor

the behavior of its solution as the control parameters σ,β and ρ are varied. This study

uses the Matlab-based bifurcation toolkit, MATCONT, developed by Dhooge, et al [33].

The MATCONT GUI uses the standard Matlab ODE to compute and visualize curves of

equilibria, limit points, Hopf points, limit cycles, period doubling bifurcation points of

limit cycles, fold, fip and torus bifurcation points of limit cycles.

3.2.1 For Rayleigh number ρ 

a) Continuation of codimension 1 bifurcation of equilibria

To investigate the bifurcations for Rayleigh number ρ for the case of Lorenz attractor
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shown in Fig. 3.8, the two other parameters σ = 10, and β = 8/3 are kept constant

and only ρ is free. Fig. 3.10 shows the bifurcation diagram of the Lorenz system

for ρ = 28 where the solution exhibits chaotic behavior. For the sake of conformity

in all the bifurcation diagrams, the green lines show the stable branches and the red

lines show the unstable branch. The blue star (*) shows the location of the Hopf

bifurcation, the black star is the Branch Point and the cyan star is the Neutral Saddle.

The Hopf points correspond to the value of ρ = 24.74 regardless of the initial value

of ρ.

Figure 3.10: Bifurcation diagram of Lorenz system for ρ.

b) Continuation of limit cycles

A branch of limit cycles starting from the upper Hopf point is computed. The results
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are shown in Fig. 3.11 and no Period doubling bifurcations have been observed for

this value of ρ = 28.

Figure 3.11: Limit cycle continuation of Lorenz system for ρ.

3.2.2 For Prandtl number σ 

a) Continuation of codimension 1 bifurcation of equilibria

Similar to the previous case, σ is set as a free or active parameter while ρ = 28 

and β = 10 are kept constant. Fig. 3.12 shows the bifurcation diagram of the

Lorenz system for σ. Two branches have been plotted; the upper one for initial point

(x0, y0, z0) = (1, 1, 1) and the lower one corresponds to initial point (x0, y0, z0) = 

(0, 0, 0). The latter branch is more visible in Fig. 3.12. Two Hopf points and a branch
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point are observed in the upper branch. Whereas a Hopf bifurcation, a neutral saddle

point, and branch point exist in the lower one. In both branches the stability changes

when a Hopf point or a branch point are encountered.

Figure 3.12: Bifurcation diagram of the Lorenz system for σ.
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Figure 3.13: Figure 3.12 zoomed

b) Continuation of limit cycles

Starting a limit cycle continuation from a Hopf point of the branch for the initial

point (x0, y0, z0) = (1, 1, 1) , the results shown in Fig. 3.14 are generated.
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Figure 3.14: Limit cycle continuation of Lorenz system for σ 

3.2.3 For the aspect ratio β 

a) Continuation of codimension 1 bifurcation of equilibria

Similar to the previous cases, the investigation of the bifurcations for β is started

by setting β as a free parameter and keeping the other two parameters σ = 10, and

ρ = 28 constant. The bifurcation diagram of the Lorenz system for β Fig. 3.15 is

similar to a supercritical pitchfork bifurcation. This is mainly due to the symmetry

property of the Lorenz equations. A branch point, a neutral saddle and two Hopf

bifurcations are detected in this case.
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Figure 3.15: Bifurcation diagram of Lorenz system for β.

b) Continuation of limit cycles and equilibria

The limit cycle continuation from the positive Hopf point is illustrated in Fig. 3.16.
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Figure 3.16: Limit cycle continuation of the Lorenz system for β 

3.3 Strange attractor

A strange attractor is an attracting set that exhibits high dependence on the initial condi-

tions of the system. Even though the trajectories are very unpredictable, they are attracted

to a bounded set. For the Lorenz system they accumulate on the same butterfy shaped

object observed in the xz plane projection given in Fig. 3.17 for values of ρ in the range of

24.06 < ρ < 30.
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Figure 3.17: Lorenz attractor of the Lorenz system for ρ = 28 

This accumulation does not seem to depend on the initial position. Considering two

close points with a difference of 1.e-3, the two points have the same path at frst but their

trajectories grow apart as time increases as shown in Fig. 3.18 and then become chaotic.
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Figure 3.18: Time series of two points of the Lorenz system for ρ = 28.

3.4 Period doubling route to chaos

Chaotic attractors can happen in different ways in nonlinear dynamical systems. The

four major routes to chaotic attractors are: period doubling cascade route, intermittency

transition route, crisis route, and route to chaos in a quasi-periodically driven system. It

has been observed that the Lorenz system undergoes a period doubling cascade route.

According to Poincaré, a period doubling bifurcation can be defned in a discrete dy-

namical system as a bifurcation in which the system switches to a new behavior with twice

the period of the original system. Period doubling bifurcations can occur in continuous dy-

namical systems. They are observed in the Poincaré section. Assuming that a periodic orbit

is created in a period doubling window, it generates a single point in the Poincaré section.

If the orbit’s characteristic multipliers become more negative than −1, then the new motion
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remains periodic with a period twice the original motion’s period. The period−two cycle

may become unstable and give birth to a period−four cycle with four Poincaré intersection

points.

A Poincaré section of x = y is used to show period doubling bifurcation in the four

period doubling windows found by Sparrow. The fgures below show the phase portrait

of the orbits for a value of ρ at each periodic window in the left. Its trace in the Poincaré

section of x = y in the right hand side where the red dots represent the intersection of the

orbits with the Poincaré section. The red points show where the period doublings occur.

The four period doubling windows investigated are:

• 99.5 < ρ < 100.86 

Figure 3.19: Lorenz system’s phase portrait and its trace in the Poincaré map for ρ = 100 

• 126.4 < ρ < 126.55 
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Figure 3.20: Lorenz system’s phase portrait and its trace in the Poincaré map for ρ = 126.5 

• 145 < ρ < 167 

Figure 3.21: Lorenz system’s phase portrait and its trace in the Poincaré map for ρ = 150 

• 215 < ρ < 313 
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Figure 3.22: Lorenz system’s phase portrait and its trace in the Poincaré map for ρ = 305 
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CHAPTER IV

SENSITIVITY ANALYSIS OF CHAOTIC SYSTEMS

4.1 Standard sensitivity analysis

In this thesis, standard sensitivity analysis methods are defned as direct (or forward)

and adjoint sensitivity analysis. Direct and adjoint sensitivity analysis can be derived for

the following nonlinear dynamical system represented by

dx 
= f(x, α, t) (4.1)

dt 

x|t=0 = x0, (4.2)

where x = x(α, t) is the state and α is a parameter with respect to which sensitivity of x 

is required. The differentiation of this equation with respect to α gives

dxα 
= Jxα + fα (4.3)

dt 

xα|t=0 = 0, (4.4)

where xα = dx/dα is the sensitivity state, J = ∂f(x, α, t)/∂x is the Jacobian, and fα = 

∂f(x, α, t)/∂α is the sensitivity with respect to α. Since the linearization is performed

about a known state x, the solution of Eq.(4.1)is required before Eq.(4.3) can be solved.

Engineers are interested in a time-averaged quantity given by

ˆ T1 
Q(α) = lim q(x, α, t)dt (4.5)

T →∞ T 0 
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where q(x, α, t) is the instantaneous quantity of interest evaluated at time t. The limit

on T exists beacuse engineers are interested in an infnite averaging time. Computationally,

the value of T is chosen high enough to ensure the convergence of Q(α), which is when it

does not change as T varries.

The sensitivity of the time-averaged quantity with respect to α is defned as:

ˆ T ˆ TdQ(α) 1 dq(x, α, t) 1 ∂q(x, α, t) ∂q(x, α, t)T 
Q(α)qα = = lim dt = lim + xαdt. 

dα T →∞ T dα T →∞ T ∂α ∂x0 0 

(4.6)

In order to evaluate Q(α) and Q(α)qα, convergence of the time-averaged quantity (and its

derivative) for a fnite time T is required.

Eq.(4.6) defnes the direct sensitivity analysis approach which necessitates the evalu-

ation of xα. In case the system has multiple parameters, Eq.(4.6) and Eq.(4.6) need to

be solved for each parameter. This can be avoided using an adjoint approach by multi-

plying the governing equation Eq.(4.1), with a Lagrange multiplier, l, and adding to the

quantity-of-interest:

ˆ T � � �� 
Q(α) = lim 

1 
q(x, α, t) + lT dx − f(x, α, t) dt. (4.7)

T →∞ T dt0 

Then, the adjoint sensitivity of time-averaged Q(α) is defned as
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ˆ T T1 ∂q(x, α, t) ∂q(x, α, t)
Q(α)α

q = lim + xα (4.8)
T →∞ T ∂α ∂x0 

dx dxα 
+ lTα ( − f(x, α, t) + lT ( − fα − Jxα)dt (4.9)

dt dt ˆ T � � � � 
1 ∂q(x, α, t) dx ∂q(x, α, t) 

= lim + lTα + − lT J xα − lT fα dt 
T →∞ T ∂α dt ∂α 0 

(4.10)" # ˆ T T1 ∂q(x, α, t) ∂q(x, α, t) dlT 
= lim + ( − − lT J)xα − lT fα dt + lT fα|t=T 

t=0
T →∞ T ∂α ∂x dt0 

(4.11)

where, the third term is dropped in Eq.(4.9) due to Eq.(4.1) and integration-by-parts is

used on the second term in Eq.(4.10). Then, defning the adjoint problem as

dl ∂q(x, α, t) 
= −JT l + (4.12)

dt ∂x 

l|t=T = 0, (4.13)

simplifes the adjoint sensitivity Eq.(4.12) to

ˆ T � � 
1 ∂q(x, α, t)

Q(α)qα = lim − lT fα dt. (4.14)
T →∞ T ∂α 0 

Eq.(4.14) requires l, which is obtained from the solution of Eq.(4.12). The adjoint

equation is solved backwards in time with the initial condition defned at t = T , as in

Eq.(4.13).

4.2 The problem of standard sensitivity analysis for chaotic systems

In chaotic systems, any small perturbation to the system will lead to momentous changes

in the time accurate response of the system due to the Butterfy Effect. Even though the
39
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nonlinearity of the system keeps the solution bounded, its linearized solution using stan-

dard sensitivity analysis methods will amplify or decay depending on the stability of the

eigenvalues, eigenvectors of the Jacobian matrix J, and the force function [14]. Apply-

ing direct and adjoint sensitivity analysis methods to time-averaged quantities result in an

exponential growth of sensitivites as the averaging time T increases causing round off er-

rors and numerical overfow with fnite precision arithmetic. Therefore, the sensitivities

computed by the standard methods are not all that useful.

4.3 Multiprecision analysis

The solution of the nonlinear Lorenz system exhibits chaotic behavior but remains

bounded unless an instability forces an unbounded growth of the solution. The objective

is to investigate the sensitivity of time-averaged quantities obtained by the time accurate

chaotic response of the Lorenz system. Analysis with arbitrary precision computations

for chaotic sensitivity analysis of the Lorenz system is considered to study whether the

sensitivity of the infnitely long time-average is converging or not.

4.3.1 Arbitrary-precision arithmetic

In computer science, arbitrary-precision arithmetic or bignum arithmetic indicates that

the calculations are done on numbers that have high precision digits limited only by the

system’s available memory. Many modern programming languages have built-in support

for bignums, and others have libraries available for arbitrary-precision integer and foating-

point math [37]. Arbitrary precision is used in applications where precise results with very

large numbers are required, and the speed of arithmetic is not a limiting factor.
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4.3.2 Multi-precision Libraries
4.3.2.1 GMP: GNU Multiple Precision

GNU Multiple Precision Arithmetic Library (GMP) is a library for arbitrary-precision

arithmetic, used on signed integers, rational numbers, and foating point numbers. Their

precision has no limit except the one implied by the machine’s available memory [38].

GMP runs on:

• For 32-bit machines, dimension limit is 232 − 1 bits.

• For 64-bit machines, dimension limit is 264 − 1 bits.

GMP aims to be faster than any other bignum library for all operand sizes mainly by

using different algorithms for different operand sizes; algorithms that are faster for very

big numbers are usually slower for small numbers.

4.3.2.2 MPFR: Multiple Precision Floating-Point Reliably

Based on GNU Multi-Precision Library, GNU MPFR (GNU Multiple Precision Floating-

Point Reliably) is a GNU portable C library for arbitrary-precision binary foating-point

computation with correct rounding [39]. The computation is effcient and has well-defned

semantics. It provides support for special numbers: signed zeros −0, infnities and not−a

−number where each number has its own precision. MPFR implements all mathematical

functions: logarithm, exponential, trigonometric, hyperbolic functions, etc.

4.3.2.3 Boost multi-precision

Boost is a set of libraries for the C++ programming language that provide support

for linear algebra, pseudorandom number generation, multithreading, image processing,
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regular expressions, multi-precision and unit testing, etc. Boost’s multi-precision library

provides extended precision arithmetic types for foating point, integer and rational arith-

metic types in C++ that have more range and precision than C++’s ordinary built-in types

[40]. Depending on the number type, precision can be arbitrarily large (limited only by the

available memory), fxed at compile time (for example 50 or 100 decimal digits), or varied

by member functions at run-time.

4.3.3 Methods
4.3.3.1 Boost multi-precision methods

• Cpp bin foat: It acts as an entirely C++ foating-point number type that is a drop-in

replacement for the native C++ foating-point types, but with much greater precision.

It provides arithmetic types at 50 and 100 decimal digits precision. This type has a

radix of 2, even if the precision is specifed as decimal digits.

• Cpp dec foat: Precision can be specifed to get arithmetic types at 50 and 100 deci-

mal digits precision. The radix of this type is 10. As a result, it can behave slightly

differently from base-2 types.

• Gmp foat: It acts as a thin wrapper around the GMP to provide a real-number type.

The type defnitions provide arithmetic types at 50, 100, 500 and 1000 decimal digits

precision.

4.3.4 Results

The sensitivity analysis of the time-averaged quantity of the time accurate response of

the nonlinear Lorenz system was investigated (see Chapter 5 for more details). The multi-
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precision arithmetic library Boost was able to provide arbitrary precised types using GMP

to calculate the sensitivity of the time-averaged of the chaotic response of Lorenz system

using the standard sensitivity analysis method.

However, as shown in Fig. 4.1 this quantity did not converge to a specifc value for

long time periods. Therefore an new approach to calculate the direct and adjoint sensitivity

analysis of chaotic system will be followed.

Figure 4.1: Sensitivity of z̄  with respect ρ using standard ODE solver with multipricision.
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4.4 Current approach

The approach used in this thesis to obtain a stable and accurate sensitivity of the

quantity-of-interest with respect to a parameter is discussed in a detailed manner by Bha-

tia and Makhija [14] where the requirements to compute time-accurate adjoint and direct

sensitivity variables are relaxed.

4.4.1 Adaptive time-integration for sensitivity equations

Time-integration schemes are developed to solve the direct and adjoint problems. Dis-

continuous Galerkin fnite element approach is used to derive a scheme where the time-step

size can be adaptively chosen. Maintaining the stability of the linearized sensitivity prob-

lem is the primary criteria defned for selecting a time-step [14].

4.4.2 Update schemes

The recursive update scheme applied at each time step to solve for the direct sensitivity

is

x 1 
α = (I − A1)

−1(xα 
0 + F α), (4.15)

where ˆ −t1 

A1 = Jdt, (4.16)
+t0 

and ˆ t− 
1 

F α = fαdt. (4.17)
+t0 
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This formula is the Backward-Euler scheme. Its stability is identifed from the eigenvalues

of the matrix (I − A1)
−1 which are infuenced by both: the length of the interval t1 − t0,

and the change in J during this interval.

Adjoint equations are solved in reverse time and the recursive update scheme applied

at each time step is

l0 = (I + B0)
−1(l1 + G) (4.18)

where, ˆ +t−1 

B0 = Jdt, (4.19)
−t0 

and ˆ +t−1 ∂q(x, α, t)
G = dt. (4.20)

t− ∂x 
0 

To solve for adjoint states l0 , values from previous time step are required l1 .

Figure 4.2: Two consecutive time intervals between [t−1,t0] with states x0 
α and x1 

α and

adjoint states l0 and l1, respectively.
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4.4.3 Norm-based time-step control

Given that the primary objective of the recursive update algorithm is to prevent un-

bounded growth of the sensitivity solution, an approximation to the amplifcation factor is

defned as

||x1 ||
ã = α . (4.21)

||x0 
α + F α|| 

The time integration scheme is stable when

ã ≤ ā ≤ 1, (4.22)

where, ā is a predefned limit on the amplifcation factor. Both x1 and t1 are unknowns

and t1 is adaptively identifed to ensure stability. This approach always ensures decay of

solution in accordance with the specifed value for ā. The algorithm of this approach is

presented by Bhatia and Makhija [14].
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CHAPTER V

SENSITIVITY ANALYSIS OF LORENZ SYSTEM

In this chapter a sensitivity analysis study on Lorenz system is presented. As seen in

Chapter 3, Lorenz system is a nonlinear ODE that can exhibit chaotic responses such as

strange attractor, limit cycle oscillations, and period doubling cascades depending on the

values of ρ. The system is defned as

dx 
= f(x, σ, ρ, β, t)

dt 
(5.1)

x|t=0 = x0, (5.2)

where, ⎤⎡ 

x = 

⎢⎢⎢⎢⎢⎢⎣ 

x 

y 

z 

⎥⎥⎥⎥⎥⎥⎦ 
(5.3)

and ⎤⎡ ⎢⎢⎢⎢⎢⎢⎣ 

σ(y − x) 

x(ρ − z) − y 

xy − βz 
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and ρ is the parameter with respect to which sensitivity of (x) is considered. Differentiation

of the governing equation with respect to ρ gives

dxρ 
= fρ + Jxρ (5.5)

dt 

where ⎤⎡ 

∂f 
J = = 

∂x 

⎢⎢⎢⎢⎢⎢⎣ 

−σ σ 0 

ρ −1 −x 

⎥⎥⎥⎥⎥⎥⎦ 
(5.6)

y x −β 

and ⎤⎡ 

∂f 
fρ = = 

∂ρ 

⎢⎢⎢⎢⎢⎢⎣ 

0 

x 

⎥⎥⎥⎥⎥⎥⎦ 
(5.7)

0 

The time-averaged z and z2 are given by

ˆ T1 
Qz = z̄  = lim zdt (5.8)

T →∞ T 0 

ˆ T1 
Qz2 

= z ̄2 = lim z 2dt (5.9)
T →∞ T 0 

and their sensitivities ˆ T1 dz(t)
Qz

ρ = z̄  ρ = lim dt (5.10)
T →∞ T dρ0 ˆ

1 T dz(t)2 
Qz2 

2̄ 
ρ = z ρ = lim dt (5.11)

T →∞ T dρ0 

The values of time-averaged quantities z̄  and z ̄2 are computed for 8 different initial

conditions at each ρ using an averaging time of T = 1000s. 200 uniformly spaced values
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of ρ between [1, 200] are used and Fig. 5.1(b) and Fig. 5.2(b) show the values of z̄  and

¯ z2 respectively, plotted versus ρ. A least-squares regression approach is used to estimate

¯the slopes of both z̄  and z2 versus ρ in 20 uniformly spaced intervals of ρ and are shown

in Fig. 5.1(c) and Fig. 5.2(c). In the interval of ρ ∈ [20, 25] The regression values of

both z̄  and z ̄2 in Fig. 5.1(c) and Fig. 5.2(c) show a jump due to the occurence of the

Lorenz attractor. Moreover as ρ increases from 100 to 200, the chaotic system undergoes

a period doubling cascade which leads to jumps in the estimated sensitivity values seen in

Fig. 5.2(c).
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(a) Convergence of z̄, ρ = 30 
(b) time-averaged z̄  

(c) Regression of dz̄/dρ 

Figure 5.1: Time-averaged quantity z̄  and its sensitivity dz̄/dρ.
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¯(a) Convergence of z2, ρ = 30 
(b) time-averaged z ̄2 

(c) Regression of dz ̄2/dρ 

Figure 5.2: Time-averaged quantity z̄2 and its sensitivity dz ̄2/dρ.

A standard linear central difference ODE solver is used to calculate the time-accurate

solution of the sensitivity problem at ρ = 30 with dt = 10−2s. Sensitivities of z and z2 

are plotted in Fig. 5.3(a) and Fig. 5.4(a) where the values oscillate and grow to order
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102 for z2 , these values continue to grow by several orders of magnitude for longer time

periods. Using the stabilized solver developed by Bhatia and Makhija [14], the direct and

adjoint sensitivities remain bounded to smaller values during the simulation presented in

Fig. 5.3(b) and Fig. 5.4(b) and Fig. 5.3(c) and Fig. 5.3(c) and show convergence for

increasing averaging time for both quantities at hand.
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(a) Sensitivity with standard ODE solver (b) Direct sensitivity

(c) Adjoint sensitivity

Figure 5.3: Sensitivity convergence of dz̄/dρ at ρ = 30.
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(a) Sensitivity with standard ODE solver (b) Direct sensitivity

(c) Adjoint sensitivity

Figure 5.4: Sensitivity convergence of dz ̄2/dρ at ρ = 30.

The adjoint problem is solved backward in time, therefore the sensitivity values start

from zero at the respective time and increase towards t = 0. This is an important distinction
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between the direct and adjoint approaches. Direct sensitivity solves the problem in forward

time and allows a control on termination of the time integration whereas the adjoint method

solves the problem backward in time and requires integration from fnal time to t = 0 

before the the time-averaged adjoint sensitivity can be used.

Different values of amplifcation factor have been used to study the infuence of ā on

the convergence of sensitivities of time-averaged quantities. In Fig. 5.5 and Fig. 5.6 the

values of dz/dρ¯ and dz̄2/dρ are computed for 100 uniformly spaced values of ρ ∈ [1, 200] 

with 8 different initial conditions at each ρ. The initial values assume x = z = 0.75 and the

value of y is chosen at uniform intervals in [−1, 1.1]. An averaging duration of T = 1000s 

is used for all results with dt = 0, 01s an 10, 000 time-steps for the nonlinear solver. It can

be observed from the two fgures Fig. 5.5and Fig. 5.5 that for ā = 1 the results show close

agreement with the regression data for both direct and adjoint approaches. However, as the

amplifcation factor decreases, the accuracy of the sensitivity results reduces and a larger

spread in the range of ρ ≥ 130 is seen.
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(a) ā = 1 (b) ā = 0.9 

(c) ā = 0.8 (d) ā = 0.7 

(e) ā = 0.6 (f) ā = 0.5 

Figure 5.5: Direct and adjoint sensitivities dz̄/dρ for different amplifcation factors.
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(a) ā = 1 (b) ā = 0.9 

(c) ā = 0.8 (d) ā = 0.7 

(e) ā = 0.6 (f) ā = 0.5 

Figure 5.6: Direct and adjoint sensitivities dz ̄2/dρ for different amplifcation factors.
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It can be observed that different results are obtained using the direct and adjoint sen-

sitivity analyses for the same cases. This is due to the fact that the stabilization solver

chooses time-step size independently for each sensitivity solution. Moreover, The adjoint

sensitivity results are in closer agreement with the regression data than those from the

direct sensitivity.

The impact of averaging time, T, on the accuracy and convergence of the sensitivity

quantities is studied for dt = 0.01s. Three different values of ā = 0.6, 0.8, 1 are studied

¯and results are shown in Fig. 5.7and Fig. 5.8 for z̄  and z2 respectively. This shows that

as the averaging time increases, the direct and adjoint method are producing sensitivity

values, dz/dρ¯ and dz̄2/dρ, that are independent of the initial condition. However, the fnal

values are seen to depend on the choice of ā for both time-averaged quantities.
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(a) ā = 1 (b) ā = 0.8 

(c) ā = 0.6 

Figure 5.7: Convergence of sensitivities dz̄/dρ for different amplifcation factors at ρ = 30.
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(a) ā = 1 (b) ā = 0.8 

(c) ā = 0.6 

Figure 5.8: Convergence of sensitivities dz ̄2/dρ for different amplifcation factors at ρ = 

30.

To quantify the convergence of the time-averaged quantities and their sensitivity, a

measure has been introduced as σ(Q(α))/mean(Q(α)) and is presented in Fig. 5.9 and
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¯Fig. ?? for both z̄, z2 and their respective direct and adjoint sensitivities d¯ zz/dρ and d ̄ 2/dρ 

at ρ = 30 for increasing averaging time.

(a) Convergence of z (b) Convergence of dz̄/dρ 

Figure 5.9: Convergence of z and its direct and adjoint sensitivities at ρ = 30 and ā = 1.
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2(a) Convergence of z (b) Convergence of dz ̄2/dρ 

Figure 5.10: Convergence of z2 and its direct and adjoint sensitivities at ρ = 30 and ā = 1.

Both fgures show that even though time-averaged z̄  and z ̄2 show similar convergence,

the difference of convergence between their sensitivities dz/dρ¯ and dz ̄2/dρ in the other

hand is signifcant; using an averaging time of T = 103 to compute the sensitivity of z̄  

¯will give higher spread of its sensitivity values compared to the ones of z2 using the same

averaging time. Which suggests that with the same number of iterations, direct and adjoint

sensitivities of z ̄2 will converge to a value that is independent of the initial condition.
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CHAPTER VI

SENSITIVITY ANALYSIS OF DOUBLE PENDULUM

6.1 Governing equations of double pendulum system

Many important applications in engineering sciences have dynamical systems with pen-

dulum elements. For instance, a study on double pendulum is important to control and

optimize double arm robots [36]. Even though the response of a single mass pendulum

is easily obtained, when combining two pendulums this simple dynamic system exhibits

a complicated motion and the systems becomes very sensitive to initial conditions and its

response turns out to be chaotic.

The schematic sketch of the double pendulum system considered in this paper is pre-

sented in Fig. 6.1. The the top pendulum is attached to a fxed point while its lower end

is connected with the top end of the second pendulum. The arm of each pendulum is as-

sumed to be massless. The solid sphere at the end pf each pendulum is the concentrated

mass. Further m1, m2, l1, l2, θ1 and θ2 are the mass, length and angular displacement of

the top and bottom pendulum respectively.
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Figure 6.1: Schematic sketch of double pendulum.

The system of equations of the double pendulum can be derived using the positions of

mass 1 and 2 given by

x1 = l1 sin θ1 (6.1)

y1 = −l1 cos θ1 (6.2)

x2 = l1 sin θ1 + l2 sin θ2 (6.3)

y2 = −l1 cos θ1 − l2 cos θ2 (6.4)

The corresponding angular velocities are

ẋ1 = l1 cos θ1θ̇  
1 (6.5)

ẏ1 = l1 sin θ1θ̇  
1 (6.6)

ẋ2 = l1 cos θ1θ̇  
1 + l2 cos θ2θ̇  

2 (6.7)

ẏ2 = l1sinθ1θ̇  
1 + l2sinθ2θ̇  

2 (6.8)
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The kinetic energy K and potential energy P of the double pendulum is given by

1 
K = mv 2 (6.9)

2 
2 =

1 
m(ẋ + ẏ2) (6.10)

2 
2 2 =

1 
m1(ẋ1 + ẏ12) + 

1 
m2(ẋ2 + ẏ22) (6.11)

2 2 
1 2 1 2 

= (m1 + m2)l1
2θ̇  

1 + m2l̇  
2
2 
θ̇  
2 + m2l1l2θ1θ2 cos(θ1 − θ2) (6.12)

2 2 

and

P = m1gy1 + m2gy2 (6.13)

= −(m1 + m2)gl1 cos θ1 − m2gl2 cos(θ2) (6.14)

The Hamiltonian of the system is

H = K + P (6.15)

1 2 1 2 
= (m1 + m2)l

2θ̇  
1 + m2l̇  

2
2 
θ̇  
2 + m2l1l2θ1θ2 cos(θ1 − θ2) (6.16)12 2 

− (m1 + m2)gl1 cos θ1 − m2gl2 cos(θ2) (6.17)

The Lagrangian is then obtained as

L = K − P (6.18)

1 2 1 2 
= (m1 + m2)l1

2θ̇  
1 + m2l̇  

2
2 
θ̇  
2 + m2l1l2θ1θ2 cos(θ1 − θ2) (6.19)

2 2 

+ (m1 + m2)gl1 cos θ1 + m2gl2 cos(θ2) (6.20)

For the Lagrangian of a system this Euler-Lagrange differential equation must be true

� � 
d ∂L ∂L − = 0 (6.21)
dt ∂θ̇ ∂θ 
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A couple of algebraic manipulations yields the nonlinear system of equations of the

double pendulum

dz 
= f(z, m1, l1, m2, l2, t)

dt 
(6.22)

where, ⎤⎡ 

z = 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

θ1 

θ2 

θ̇  
1 

θ̇  
2 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

(6.23)

and ⎤⎡ 

f = 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

θ̇  
1 

θ̇  
2 

2 2 −g(2m1+m2) sin θ1−gm2 sin (θ1−2θ1)−2m2l2θ̇2 sin (θ1−θ1)−2m1l1θ̇1 cos (θ1−θ2) sin (θ1−θ2) 
l12m1+l1m2−l1m2 cos(2θ1−2θ2)� � 

2 2 
2l1(m1+m2)θ̇1 +2g(m1+m2) cos θ1+l2m2θ̇2 2 cos (θ1−θ2) sin (θ1−θ2) 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 
l22m1+l2m2−l2m2 cos(2θ1−2θ2) 

(6.24)

6.2 Time simulation of double pendulum system

It has been shown experimentally [34] and numerically [35] that the double pendulum

exhibits periodic, quasi-periodic and chaotic behavior depending on the initial conditions

of the system. The periodic behavior of the double pendulum during t = 6s is observed

in Fig. 6.2 where θ1 and θ2 presented in Fig. 6.2(a) are in phase and both pendulums are

oscillating periodically around equilibrium point x1 = x2 = 0 Fig. 6.2 (b). Fig. 6.3 shows

the quasi-periodic behavior of the system where the angles are no longer in phase and the
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motion of the seco nd pendulum is quasi-periodic. The chaotic behavior of the system is

shown in Fig. 6.4 where the motion of the second pendulum is random and unpredictable.

Time series of both angles θ1 and θ2 are presented in Fig. 6.2 for m2 = 0.01 shows the

x positions of the two masses m1 and m2 with respect to y.

(a) Time series of angles θ1 and θ2 (b) Positions of m1 and m2 over time

Figure 6.2: Periodic behavior of double pendulum.
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(a) Time series of angles θ1 and θ2 (b) Positions of m1 and m2 over time

Figure 6.3: Quasi periodic behavior of double pendulum.

(a) Time series of angles θ1 and θ2 (b) Positions of m1 and m2 over time

Figure 6.4: Chaotic behavior of double pendulum.
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6.3 Sensitivity analysis of double pendulum

m2 is the parameter with respect to which sensitivity of (z) is considered. Differentia-

tion of the governing equation with respect to m2 gives:

� � 
∂ dz ∂ ∂f ∂f ∂z 

= (f(z,m2, t)) = + (6.25)
∂m2 dt ∂m2 ∂m2 ∂z ∂m2 

which becomes

dzm2 = fm2 + Jzm2 (6.26)
dt 

The two quantities of interest are the time-averaged position x2 and its square x2
2 which are

obtained by ˆ T1 
Qx2 = x̄  2 = lim x2dt (6.27)

T →∞ T 0 ˆ T12̄ 22Qx2 
= x2 = lim x2dt (6.28)

T →∞ T 0 

and their sensitivities ˆ T1 dx2(t)
Qx2 = ¯ = lim dt (6.29)m2 

x2m2 
T →∞ T 0 dm2 ˆ T1 dx2(t)

2 
2̄2Qx2 

= x = lim dt (6.30)m2 2m2 T →∞ T 0 dm2 

The values of time-averaged quantities x̄  2 and x ̄ 22 are computed for 8 different initial

conditions at each m2 using an averaging time of T = 1000s. 50 uniformly spaced values

of m2 between [0.1, 6] are used and Fig. 6.5(b) and Fig. 6.6(b) show the values of x̄  2 and

x ̄22 respectively, plotted versus m2.
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x̄2(a) Convergence of x2 at m2 

Figure 6.5: Convergence of time-averaged quantity x̄  2.

¯ = 4 (b) time-averaged

(a) Convergence of 2̄x2 at m2 = 4 (b) time-averaged 2̄x2 

Figure 6.6: Convergence of time-averaged quantity x ̄ 22 .
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Time-averaged quantities x̄  2 and x ̄ 22 are computed for 8 different initial conditions of

angles θ1 and θ2 at each m2 using an averaging time of T = 1000s. time-averaged x̄  2 

converges to a value of zero due to the oscillating nature of the system, whereas the time-

averaged of its square is non zero. 100 uniformly spaced values of m2 between [0.01, 6] 

are used and Fig. 6.5(b) and Fig. 6.6(b) show the values of x̄  2 and x ̄22 respectively, plotted

versus m2.

A standard linear central difference ODE solver is used to calculate the time-accurate

solution of the sensitivity problem at m2 = 4 with dt = 10−3s. Sensitivities of x2 and x2
2 

are plotted up to T = 100 in Fig. 6.7(a) and Fig. 6.8(a) where the values oscillate and grow

to higher values of order 1030, these values continue to grow by several orders of magnitude

for longer time periods for both x2 and x2
2 . Using the stabilized solver developed by Bhatia

and Makhija [14], the direct and adjoint sensitivities remain bounded to smaller values

during the simulation presented respectively in Fig. 6.7(b) and Fig. 6.8(b) and Fig. 6.7(c)

and Fig. 6.8(c) and show convergence for increasing averaging time for both quantities at

hand.
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(a) Sensitivity with standard ODE solver (b) Direct sensitivity

(c) Adjoint sensitivity

Figure 6.7: Sensitivity convergence of dx̄  2/dm2 at m2 = 4.
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(a) Sensitivity with standard ODE solver (b) Direct sensitivity

(c) Adjoint sensitivity

2Figure 6.8: Sensitivity convergence of dx ̄ 2/dm2 at m2 = 4.

The adjoint problem is solved backward in time, therefore the sensitivity values start

from zero at the respective time and increase towards t = 0. This is an important distinction

between the direct and adjoint approaches. Direct sensitivity solves the problem in forward
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time and allows a control on termination of the time integration whereas the adjoint method

solves the problem backward in time and requires integration from fnal time to t = 0 

before the the time-averaged adjoint sensitivity can be used.

Different values of amplifcation factor have been used to study the infuence of ā on

the convergence of sensitivities of time-averaged quantities. In Fig. 6.9 and Fig. 6.10

2the values of dx̄  2/dm2 and dx ̄ 2/dm2 are computed for 100 uniformly spaced values of

m2 ∈ [0.01, 6] with 8 different initial conditions at each m2. The initial values assume

π θ̇  
2θ1 = θ2 = 

2 and θ̇  
1 = = 0. An averaging duration of T = 1000s is used for all results

with dt = 0, 001s and 1000, 000 time-steps for the nonlinear solver. Confdence intervals

are plotted for both the direct and adjoint sensitivity values using the mean and standard

deviation at each m2.
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(a) ā = 1 (b) ā = 0.8 

(c) ā = 0.6 

Figure 6.9: Direct and adjoint sensitivities dx̄  2/dm2 for different amplifcation factors.
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(a) ā = 1 (b) ā = 0.8 

(c) ā = 0.6 

2Figure 6.10: Direct and adjoint sensitivities dx ̄ 2/dm2 for different amplifcation factors.

It can be observed from the two fgures Fig. 6.9 and Fig. 6.10 that as the mass m2 

increases, both direct and adjoint sensitivity values decrease and reach a value of zero.

However, as the amplifcation factor increases, the accuracy of the sensitivity results re-
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duces and a larger spread in the range of smaller mass values is observed. Different results

are obtained using the direct and adjoint sensitivity analyses for the same cases which is a

result of the fact that the stabilization solver chooses time-step size independently for each

sensitivity solution.

The infuence of averaging time T on the accuracy and convergence of quantities and

their sensitivities is studied for dt = 1.e − 3s. Three different values of amplifcation

factor ā = 0.6, 0.8, 1 are studied. The results are shown in Fig. 6.11(a) and Fig. 6.11(b)

for x̄  2 and ¯ x2
2 respectively. As the Averaging time increases, x̄  2 converges to zero and

becomes less sensitive to initial values whereas for 2
2 
¯ x different initial conditions result in

different time-averaged quantities forming a band of nonzero values that gets narrower as

T increases

2
2 
¯(a) Convergence of x̄2 (b) Convergence of x 

Figure 6.11: Convergence of time-averaged x̄  2 and its square 2
2 
¯ x at m2 = 4 and ā = 1.
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(a) ā = 1 (b) ā = 0.8 

(c) ā = 0.6 

Figure 6.12: Convergence of the sensitivities for different amplifcation factors at m2 = 4.

Fig. 6.12 and Fig. 6.13 represent the convergence of the sensitivities dx̄  2/dm2 and

2dx ̄ 2/dm2 respectively for ā = 0.6, 0.8, 1. Both fgures show that as the averaging time

increases, the direct and adjoint method are producing sensitivity values, dx̄  2/dm2 and
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dx2
2/dm2, that are independent of the initial conditions.

a for both time-averaged quantities.

a is, the narrower the confdence intervals for both direct and adjoint

¯ 

¯ 

¯ However, the fnal values are

seen to depend on the choice of The smaller the

amplifcation factor

sensitivity.
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(a) ā = 1 (b) ā = 0.8 

(c) ā = 0.6 

Figure 6.13: Convergence of the sensitivities for different amplifcation factors at m2 = 4.

From these fgures, one can conclude that the sensitivities of the time-averaged x̄  2 with

respect to m2 converges in less time steps than the adjoint and direct sensitivities of x ̄ 22 .
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CHAPTER VII

CONCLUSION

In this thesis, sensitivity analysis of nonlinear chaotic systems is studied. First, the fa-

mous Lorenz system is considered. Its bifurcation study is presented to deeply understand

the system’s response as its parameters vary. Different bifurcations have been observed

mainly Hopf bifurcation, Limit cycle oscillations, stranger attractor and preiod doubling

bifurcations.

Computing the sensitivity analysis of this chaotic system using the standard sensitivity

analysis methods was not able to provide useful results even when arbitrary precision arith-

metics was adopted. Because not only the sensitivity values were growing exponentionally

but also no matter how high the averaging time is, the sensitivity values don’t seem to stay

stationary as the time varies.

A new stablized solver approach for direct and adjoint sensitivity analysis of time-

averaged quantities of chaotic systems is discussed. The new stabilized time-integrator

with a norm-based adaptive time-step control is used for time-integration of the linearized

sensitivity equations of two nonlinear systems, Lorenz system and double pendulum sys-

tem. This new approach is able to accurately and effciently comput the direct and adjoint

sensitivities of both nonlinear systems.
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A study is conducted to investigate the convergence of time-averaged quantities of

chaotic systems and their sensitivities and to also get an understanding of how the defnition

of a quantity-of-interest might infuence the number of iterations required to converge the

sensitivity values. Results show that the approach computes accurate sensitivity values

computationally order of magnitude lower than competing approaches and no extra cost is

required to compute the sensitivity of squared time-averaged quantities.

Sensitivity analysis of other large-scale systems such as a chaotic beam response and

fow over an airfoil is currently underway as long as a mathematical proof for the approach.

Future workwork will consider, among other aspects, new strategies for adaptive time-step

control and automatically choose the appropriate value for ā.
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