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Antibiotic resistant strains of bacteria continue to increase in prevalence, hindering the 

ability of clinicians to treat infection. One disease exacerbated by this trend is osteomyelitis, or 

bone infection. When osteomyelitis is induced by these antibiotic resistant strains, patients can 

experience prolonged hospital visits, greater economic burdens, amputation, and even death. Due 

to the limitations of antibiotics to clear these infections, we sought to identify new therapeutic 

options for osteomyelitis. Our aim was to first develop an in vivo implant-related model of 

osteomyelitis. We then wanted to explore the potential of novel CRISPR-Cas9 modified 

bacteriophage to treat infection. in vitro and in vivo investigations demonstrated that 

bacteriophage therapeutic may be a viable option for infection mitigation. Furthermore, our in 

vivo model of osteomyelitis proved to be reliable, consistent, and challenging. Future research 

will utilize this model as a platform for optimizing therapeutic regimen and delivery vehicle(s) 

for antimicrobial therapeutics.  
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CHAPTER I 

MOTIVATION  

The prevalence of antibiotic resistant pathogens is increasing, whereas the rate of novel 

antibiotic production by pharmaceutical companies is dwindling. Furthermore, osteomyelitis is 

especially prevalent in the diabetic population, with one 1 in every 15 patients requiring 

amputation.1 This is concerning, as there are currently over 11 million people in the United 

States alone with this disease, with new diagnoses each day.1 It may be assumed that the rate of 

osteomyelitis infections may thus increase, due to the widespread diagnosis of these diseases and 

antibiotic resistant bacterial strains across the United States. Thus, there exists a great need to 

develop novel therapeutics which can effectively kill bacteria, but are not susceptible to bacterial 

resistance.  

Research Objectives 

Previously, CRISPR-Cas9 modified phage exhibited superiority to vancomycin and 

fosfomycin therapeutics when treating Staphyloccoccus aureus LAC strain biofilms in vitro 

(Appendix A). Thus, we hypothesized that CRISPR-Cas9 could be used to optimize phage 

efficacy on Staphylococcus aureus strain ATCC 6538. Thus, the first aim of this study was to 

characterize CRISPR-Cas9 modified phage “#5φCas9” virus in vitro. Our objectives included 

identifying compatible delivery vehicles for this virus, investigation the release of this phage 

from such a delivery vehicle, and reconfirming bactericidal activity. We sought to analyze these 



 

2 

components utilizing Kirby-Bauer assays, antibiofilm plate assays, IVIS Lumina XRMS, and 

bacterial counts.  

The second aim of this work was to develop an in vivo model of osteomyelitis. To aid our 

research, we desired that the model would be reliable, consistent, enable longitudinal tracking of 

infection, and would be challenging enough to warrant promising solutions to the therapeutic 

shortage for osteomyelitis, should our novel therapeutic(s) mitigate infection. Herein, we 

investigated two different osteomyelitis models. In model #1, our objectives were to develop 

osteomyelitis infection that did not: (i) limit rat mobility, (ii) was not naturally cleared by the 

host, and (iii) that could be tracked longitudinally. The objectives of model #2 largely centered 

on improvements of model #1. In model #2, our objectives included: (i) localizing infection in a 

consistent location, (ii) inducing an infection of consistent severity among various animals, and 

(iii) to have an efficient platform to test our therapeutics of interest. To characterize these 

models, we utilized IVIS Lumina XRMS imaging, histology, scanning electron microscopy, and 

bacterial counting. 

 The third aim of this work was to apply the CRISPR-Cas9 bacteriophage therapeutic in 

our model (#2) of osteomyelitis and investigate its ability to clear infection. Again, we utilized 

IVIS Lumina XRMS imaging, histology, scanning electron microscopy, and bacterial counting. 
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CHAPTER II 

INTRODUCTION 

Since penicillin was first introduced to the world in the 1940s, antibiotics have become a 

reliable “go-to” for health care professionals.2 However, antibiotics have been losing their 

efficacy over time, due to the emerging population of antibiotic-resistant pathogens. This has in 

turn led to a deficit in reliable therapeutics for clinicians. Per a report published in 2013 by the 

Centers for Disease Control and Prevention (CDC), an estimated $20 billion in healthcare costs 

in the United States were due to bacterial antibiotic resistance, with costs estimated as high as 

$35 billion when lost productivity in the workforce was accounted for.3 Thus, this is a significant 

problem our society currently faces. 

Osteomyelitis 

Overview 

Osteomyelitis, or the infection of bone, is one disease whose severity has been 

exacerbated by the rise of these antibiotic resistant pathogens, as Staphylococcus aureus 

(S.aureus) is the most common cause of osteomyelitis.4–6 In 2013, in the United States alone 

there were over 80,000 infections and 11,285 deaths due to these antibiotic-resistant strains of S. 

aureus.3  
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There are many ways to classify osteomyelitis infection, one of which categorizes 

infection into an acute or chronic state. Although both are essentially bacterial bone infections, 

they are very different in terms of pathology and therapeutic resistance and should thus be 

treated as separate diseases.7 Acute osteomyelitis, typically recognized as the early stage of 

osteomyelitis, can generally be cleared with antibiotics if treated in a timely manner. In contrast, 

to treat chronic osteomyelitis, or infection that has persisted for longer than 6 weeks, long-term 

high dose administration of antibiotics with or without surgical intervention has traditionally 

been considered the minimum effective treatment.7–9 Often, more than one antibiotic are 

necessary to eradicate infection.10 However, even this treatment may not be vigorous enough, 

and patients may experience re-emergence of infection.9 

Etiology 

Osteomyelitis may be further categorized into three etiological groups: hematogenous, 

contiguous, or the result of contamination. In each of these cases, acute and chronic 

osteomyelitis can develop. Hematogenous osteomyelitis results from bacteria that has traveled 

through the blood stream to its bony host. Often, bacteria may then collect in bone capillaries. As 

a result, bacterial abscesses are found adjacent to the diaphysis in the middle of the bone.11 

Hematogenous osteomyelitis is especially prevalent in children, as bone growth may slow blood 

flow through the long bones, which allows bacteria in the blood to more readily colonize and 

grow.11 

In cases of contiguous osteomyelitis, bacteria reach the bone from adjacent infections.7 

This is particularly detrimental for those with diabetes mellitus, in which the development of 

infections of the digits are common, as well as dermal abscesses, which can then lead to 
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osteomyelitis. As of 2015, a staggering 30.3 million people in the United States were estimated 

to have diabetes, and from the 1970s to the 2000s, the percentage of OM cases that were 

diabetes-related increased from 13% to 29%.12,13 Thus, the diabetic population is particularly 

vulnerable to contiguous cases of osteomyelitis, and these patients are at a great disadvantage in 

terms of osteomyelitis infection outcome. 

The final etiological category of osteomyelitis discussed herein, that which results from 

direct contaminations, is exactly as its name indicates. Sometimes, this may occur from 

compound fractures, in which the bone is directly exposed to the environment. Alternatively, this 

can be due to contaminated hardware, used for fracture fixation or joint repair. In orthopedics, 

these implant-associated infections can become a serious issue resulting in osteomyelitis, 

increased hospital bills, and hardware failure.14 

Staphylococcus aureus 

Overview 

As mentioned previously, S. aureus is the most common cause of osteomyelitis. To 

develop therapeutics to combat this disease, the causative agent of the disease must first be 

understood. First discovered in the late 1880s, S.aureus is a gram positive bacteria with a 

diameter of about 1 m.15 Phenotypically, it appears as grape-like clusters.15 S. aureus causes 

minor skin infections, as well as more serious conditions such as pneumonia, endocarditis, and 

osteomyelitis. It is also a bacterial strain that has managed to elude antibiotics over time.  
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Figure 2.1 Scanning Electron Microscopy of Staphylococcus aureus 

Figure 2.1  

 

Impact & History of Antibiotic Resistance 

In 1940, prior to antibiotics, S.aureus infections resulted in a mortality rate as high as 

80%.15 In 1940, penicillin was introduced to the health care industry. Within only two years, a 

penicillin-resistant S.aureus isolate was discovered. Similarly, when methicillin was introduced 

in 1959, methicillin-resistant S. aureus (MRSA) materialized.2 To combat MRSA, the antibiotic 

vancomycin was developed. However, like the penicillin- and methicillin-resistant strains that 

emerged as new antibiotics were developed, a vancomycin-resistant strain of S.aureus (VRSA), 

materialized in 2002.16 In February of 2015, the fourteenth case of VRSA was reported.16 If this 

strain spreads, it would be quite detrimental to society as there are no currently no effective 

therapeutics for this strain.3,16 

Phenotypic States of Staphylococcus aureus Contributing to Antibiotic Resistance 

Two phenotypic states of S. aureus may be considered hallmarks of bacterial antibiotic 

resistance: small colony variants (SCVs) and biofilms.17 An SCV refers to an S. aureus cell with 

markedly decreased metabolic activity compared to the wildtype.17 The slower metabolic rate 
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may be attributed to auxotrophies, or to downregulated citric acid cycle activity, as seen in recent 

in vitro testing.18 Due to this altered metabolic activity, SCVs are more resistant to antibiotics 

and may be more apt to form biofilms.17,19 The mechanism by which S. aureus induces SCV 

formation is unknown, but the process is reversible.19 A more recent study determined that SCV 

formation may be stimulated as part of the SOS response to oxidative stress, although this may 

not be the sole stimulant of SCV formation.19 Exposure to antibiotics, such as gentamicin, may 

also promote SCV formation in human hosts.17,18 In contrast to SCVs, a biofilm refers to a 

grouping of staphylococcal cells surrounded by a self-produced protective exopolysaccharide 

polymer.7,18–20 The biofilm may contain SCVs or wildtype S. aureus cells. Once the biofilm is 

established, S. aureus may then eject groups of cells, in an effort to disperse its colonies to 

initiate the formation of additional biofilms.20 Biofilms may form on skin, bones, and other 

tissues, as well as on implanted hardware.20 Once bacteria enters this state, it is difficult for 

antibiotics to penetrate the glycocalyx matrix and thus clear infection.   

Summary 

The increase of antibiotic-resistant pathogens combined with the higher prevalence of 

comorbidities to osteomyelitis in our population highlight the importance of engineering new 

therapeutics for S. aureus, especially for chronic osteomyelitis cases.21,22 Ideally, novel 

treatments would be noninvasive, highly specific, and less susceptible to bacterial resistance. The 

delivery vehicles for such therapeutics should be biocompatible and capable of delivering a 

sufficient amount of therapeutic over time. To develop an appropriate therapeutic agent, these 

factors must be considered, in addition to the pathogenesis of S. aureus, and the refinement of 

animal models to evaluate these various components of osteomyelitis treatment. 
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Current Therapeutics 

Surgical Debridement 

Surgical debridement, or the removal of infected and/or damaged tissues due to bacterial 

contamination, is often considered vital to successful treatment of chronic osteomyelitis.8,23,24 

Although health care professionals have tried to find alternatives to this procedure, it currently 

remains the cornerstone of chronic osteomyelitis treatment, and its superiority to sole antibiotic 

therapy has been emphasized by numerous studies.24–26 

Antibiotics 

For decades, the most common class of therapeutic agents for osteomyelitis have been 

antibiotics. However, bacteria have developed resistance to these drugs over time due in part to 

the ability of certain bacteria to alter their metabolism, which are referred to as “small colony 

variants” (SCVs).17 Generally, antibiotics which act on the bacterial cell wall have greater 

efficacy on bacteria that are in the exponential phase, when they are growing quickly. Examples 

of such antibiotics include  -lactams, daptomycin, and fosfomycin.17 Fosfomyin, a small drug 

(~138g/mol) which comprises its own class of antibiotics, is of particular interest as it has seen 

promising effects in recent literature.27 

 Fosfomycin induces bacterial lysis after entering the cytoplasm, by mimicking glucose-

6-phosphate and glycerol-3-P, as native proteins GlpT and UhpT readily transport these sugar 

sources into the cell.28 Once inside the bacterial cell, Fosfomycin serves as a replacement to 

typical phosphoenolpyruvate (“PEP”). Typically, PEP binds to a transferase (“MurA”) which 

activates the enzyme (enolpyruvyl transferase), activating the cell wall synthesis pathway.27,28 By 

serving as an analog of PEP, Fosfomycin irreversibly halts this pathway, and cell death occurs.28 
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Since this is a universal mechanism across gram positive and negative bacteria, Fosfomycin has 

broad-spectrum efficacy. 

              The use of Fosfomycin clinically is limited, most commonly to female UTI cases, 

dermal infection, and sepsis.29–31 For UTI cases, oral administration at a dose of 3g every 2-3 

days is recommended.29 For soft tissue infection and/or sepsis, daily IV administration at doses 

ranging from 12-24g is recommended27,32 

Another antibiotic family are the glycopeptides. One of the most significant antibiotics 

within this classification is vancomycin, which is considered to be a “last resort antibiotic” for 

multi-drug resistant or severe infection types. Unlike fosfomycin, it is not internalized by 

bacterial cells; rather, it exerts its killing action by acting on the exterior cell wall. The terminal 

end of PEP  consists of a D-Ala-D-Ala chain, where vancomycin binds and deactivates the 

machinery necessary to maintain the cell wall structure.33 Thus, the cell is lysed. In cases of 

biofilm, it could be difficult for vancomycin to work effectively. 

Antibiotics may also act on protein biosynthesis, like Clindamycin. This drug would also 

see reduced bactericidal activity when faced with SCVs.17 In some cases, these antibiotic types 

would not only be ineffective against SCVs but could induce or increase biofilm growth. Low 

doses of -lactam antibiotics have been particularly noted to have this effect.34 The function of 

the bacteria as a SCV, then, should be considered when deciding on an antibiotic for chronic 

osteomyelitis. rifampin, moxifloxacin, and vancomycin, among others, have effects on bacteria 

in this state.17 

An alternative approach to antibiotic use in osteomyelitis patients may be to treat patients 

with combinations of the drugs, as this has been shown to be more effective than monotherapy 
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greater range of efficacy. For example, rifampin combined with either linezolid, vancomycin, 

cloxacillin, or ciproflaxin have all been explored.35–37  

Bacteriophages 

Bacteriophages are a specialized virus that have the ability to lyse bacterial hosts, making 

them a potential source for osteomyelitis treatment. Generally, they consist of a capsid head, in 

which DNA resides, a sheath, and tail fibers.38,39 The bacterial host specificity of phage is 

determined by their tail fiber.39 These tail fibers facilitate attachment to external bacterial cell 

wall binding proteins, such as OmpA or OmpC.40 After attachment to the bacterial cell wall, 

phages use a protein “holin” and/or murine hydrolase to generate a hole through which they can 

insert their DNA in a screw-like manner.41 Like most viruses, bacteriophages do not contain their 

own DNA synthesis machinery. They are dependent on hijacking bacterial host machinery, for 

progeny. Thus, after the pore in the cell membrane is created by holin, phage reproduces within 

the cell, until it lyses the host and seeks a new host. It should be noted that not all bacteriophages 

are virulent, or lytic; there are also lysogenic, or temperate phages. Temperate phages can 

integrate into their host genome, essentially serving as a parasite to their hosts. They can “live” 

within their host for multiple life cycles without inducing lysis.42 

It has long been known that the viral family of bacteriophages (“phages”) have high 

efficacy in lysing bacterium for which they are specific.43,44 Other advantages of phages are that 

they multiply in response to the presence of bacterial hosts, allowing for increased “dosage” of 

treatment as needed.45  However, several hurdles must be overcome before the positive qualities 

of phages may be utilized. Phages are generally specific for one strain of bacteria, and thus a 

wider range of bactericidal activity for polymicrobial infections, or infections in which the 
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bacterial agent is not identified, is desirable. To overcome this problem, phage “cocktails” 

containing multiple strains of phages have been developed.46 Alternatively, the endoylsins 

produced by phages could be harvested, avoiding the need of directly placing phages into the 

human body. In a recent study utilizing the endolysin CHAPK, delivered with lysostaphin, 

positive bacterial clearance was reported.47 Additionally, phages must be delivered to the site of 

infection for efficacy.44 Recent research has focused on engineering hydrogels, dry powders, 

nanoparticles, and coatings on implants for delivery of phages.44,45,48,49 

 

Figure 2.1 Example of Bacteriophage “Attack” on Bacteria  

Bacteriophage, seen here in green, injects its DNA into susceptible bacterial host. This 

mechanism will result in additional bacteriophage proliferation, and eventual bacterial cell 

lysing. (Image from Eye of Science/Science Source) 

 

Antimicrobial Peptides 

Antimicrobial peptides, or “AMPs”, have been gained popularity in recent years as 

therapeutics for osteomyelitis. The AMP Human -defensin-3 (HBD-3) has been given particular 
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attention, and has been evaluated in mouse models of osteomyelitis, as mice naturally have a 

structural and functional homolog of HBD-3 called mouse -defensin-14 (MBD-14).50 Mice 

have also been treated directly with HBD-3, in a comparative study with vancomycin as a control 

treatment. In this particular study, a promising outcome was achieved in that there were no 

statistically significant differences between the two treatments.51 

Magainin 2 is another antimicrobial peptide which may provide relief from the current 

therapeutic deficit in osteomyelitis treatment. Pexiganan acetate, a synthetic analog to magainin 

2, has been explored in a rabbit implant model of osteomyelitis with promising results.52 

Venoms from mammals may also serve as a source of AMPS. In one investigation, 

14kDa and 65kDa proteins isolated from the venom of the Naja Naja Oxiana snake were found 

to have similar, and in some cases greater, bactericidal activity than several antibiotics. However, 

due to the novelty of this study, testing has been limited to in vitro methods and thus in vivo 

animal models will be needed to determine if this may be a promising therapeutic.53 Bee venom 

may also be a useful source for AMPS. In an ex vivo study, calcium phosphate or PMMA 

cements were used to deliver analogs of bee venom halcitides (HAL-1 and HAL-2). In excised 

femoral heads, the AMPs exhibited significantly greater efficacy than Vancomycin.53 These bee 

venom derived AMPs have also shown success in a rat model of osteomyelitis, when delivered in 

calcium phosphate. However, tests such as bacterial counts of bone homogenates are excluded, 

among others, and thus limit our knowledge of their efficacy.54 

Ranalexin, isolated from the North American Bullfrog (Rana catesbeiana) has also 

exhibited bactericidal activity against MRSA. However, evaluation of this therapeutic has been 
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limited to dermal infection studies, delivered with lysostaphin. This warrants future research on 

the use of this AMP for osteomyelitis.55 

Plant-based & Natural Remedies 

Taking a holistic, natural approach to antimicrobial development has also been explored. 

Essential oils have long been hailed as having many health benefits, and more recently was 

shown to have antimicrobial properties, with a low likelihood of staphylococcal resistance. A 

few examples include: tea tree (Melaleuca alternifolia),56 and Gingko biloba.57Tea tree oil has 

exhibited efficacy on S.aureus biofilms as well as planktonic cells at concentrations as low as 

1%.56 Recent studies on Ginkgo biloba extract, and one of Ginkgo biloba’s ginkgolic acids, 

“C15:1.,” have shown biofilm formation inhibition. Interestingly, planktonic growth was not 

affected.57  

Flavonoids are another natural source for potential antimicrobials.  Curcumin, a natural 

component of the common spice turmeric, has been evaluated as a therapeutic in a rat implant 

model of osteomyelitis. A combination of this flavonoid and erythromycin proved to be more 

successful than curcumin or erythromycin monotherapy, indicating the synergistic effects 

curcumin may exhibit when administered with other antibiotics. No adverse effects were noted, 

as well.58 

Enzymes 

Another interesting area of current research revolves around the use of enzymes as 

therapeutics. One such enzyme is lysostaphin, a metalloendopeptidase which can lyse the cell 

wall of S. aureus, thus serving as a bacteriocin.47,59,60 The attractiveness of lysostaphin to 

reseachers is heightened by the fact that it works synergistically with other therapeutics.37  In 
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particular, with AMPs.55 Furthermore, in a recent study, a PEG-based hydrogel exhibited 

enzymatic activity over 14 days. 59 Endolysins, as mentioned above, are another feasible 

treatment for osteomyelitis.  Isolated from bacteriophages, they can dismantle the bacterial cell 

well with their hydrolase activity.47 

Quorum–sensing Inhibitors 

Another aspect of S.aureus treatment falls under the umbrella of “quorum sensing 

inhibitors.” The concept behind these therapies are that without the ability to communicate, the 

S. aureus cells will be more readily cleared from the body. Thus, this mode of treatment may be 

most effective combined with antibiotics or other bactericidal agents.61 Some examples of 

substances explored for this purpose include: savirin (in mouse dermal ulcer studies),62 and 

Hamamelitannin.61 

Metals 

A materials based outlook on potential therapeutics for osteomyelitis has also been 

considered. Largely, this focuses on optimizing metals used for orthopedic hardware. One novel 

metal formulation, stainless steel with a 4.5% copper alloy (317L-Cu), has been shown to exhibit 

antimicrobial properties while still maintaining biocompatibility in vitro and in vivo, making it a 

promising material choice for future implant devices.63 It has also been found that this metal may 

increase the expression of the insulin-like growth factor-1 (IGF-1) in osteoblasts, unlike other 

commonly utilized metals such as 317L and Ti-6Al-4V.63 A magnesium-copper (Mg-Cu) alloy 

(with 0.25 wt% Cu) may also provide desired antimicrobial activity, as supported by a recent in 

vitro and in vivo study. This study also demonstrated the ability of Cu content to adjust corrosion 

rate.64 
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Gold (Au), is an attractive yet pricey option for a metal-based therapeutic. As a 

nanoparticle, it has exhibited cytocompatibility, efficacy against planktonic and sessile bacteria, 

and bactericidal activity for MSSA and MRSA strains.65 As a more tangible alternative, silver 

(Ag) has long been explored for both orthopedic implants and as a therapeutic. However, there 

are some conflicting reports of silver’s (Ag) ability to serve as an antimicrobial in recent 

studies.66 Ag may be more beneficial at higher doses, or in conjunction with other materials, or 

when utilized in a silver ion state.66–68 In a study evaluating the delivery of Ag nanoparticles 

from a silk-fibroin hydrogel, it was determined that Ag had positive cytocompatibility and 

bactericidal activity at a concentration 0.5%, with adverse effects on osteocytes at any higher  

concentrations.65 Alternatively, it’s possible that the varied results may be attributed to the 

strains of S. aureus utilized.66  

Miscellaneous 

Based on their ability to differentiate into chondrocytes, osteocytes, and other relevant 

cell lineages, it has been postulated that mesenchymal stromal cells (MSCs) may serve as an 

effective therapeutic or synergistic agent in osteomyelitis treatment. However, in a recent study 

MSCs were found to exacerbate the severity of osteomyelitis.69 Greater degrees of osteolysis 

spontaneous fracture, and upregulation of pro-inflammatory cytokines were evident in the 

MSC/infected treated group, versus the infected control subjects.69 

Hyperbaric oxygen therapy has been proposed as a potential S.aureus infection treatment 

regimin, however in multiple in vivo studies it has been shown that this is an ineffective 

therapeutic.70,71 It is has been demonstrated that it is faulty as an intermittent treatment, and as an 

supplement to antibiotic treatment.71 Another intruiging therapy is the use of visible blue light, 
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which has been determined to be effective against MRSA strains at 470 nm.72 It has been 

determined to heighten the efficacy of a variety of antibiotics, as well.72 

Another method of inhibiting S.aureus virulence for effective osteomyelitis treatment is 

with the use of the NSAID diflunisal. This drug acts to inhibit one of the most well-studied loci 

of S.aureus virulence, and when combined with other drugs, may prove to be an effective 

treatment regimin.5  

Another possible therapeutic is nitric oxide, which has exhibited efficacy against S. 

aureus in planktonic and biofilm forms. Specifically, it seems to exhibit synergistic efficacy 

when administered with antimicrobials.73 Current research regarding this treatment typical 

revolves around delivery, and efficient levels of NO to exceed the MIC. In one recent study, by 

incorporating the precursor to NO, isosorbide mononitrate, into a novel hydrogel, efficient 

clearance of bacteria was achieved.73 

Delivery Vehicles 

Hydrogels 

Commonly used by clinicians and researchers, hydrogels are a versatile and compatible 

delivery vehicle for therapeutics in cases of osteomyelitis. Hydrogels are a water-based material, 

constituting of synthetic or natural hydrophilic polymers in various combinations.  Some 

materials that may be incorporated into the gel(s) include, but are not limited to: chitosan,73 

silk,65 hydroxyapatite(“HA”),65 gelatin,74,75 and keratin.76 

Their release profiles vary, but there is typical an initial burst of therapeutics for about 7 

days,74,77 followed by a slow, low dose elution to follow. They then degrade completely and may 

be cleared by the body by 6 weeks, but again there is high variability per each unique clinical 
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case.77 Hydrogels have been used as carriers for antibiotics,23,74,77–80 nanoparticles,49 

microparticles,80 bacteriophages,43,44,49,81 proteins,76 and other therapeutics.59,69,73  

One of the positive qualities of hydrogels are the ability to have their properties tailored 

for one’s own interests. Components of these gels that may be altered include: porosity, 

viscosity, elasticity, and the degree to which they swell. One of the most pertinent qualities of a 

delivery vehicle are their elution rates of one’s drug of choice, and thus this is one area which 

has been researched extensively. To alter drug elution rates, the sensitivity of hydrogels to 

temperature,23,79,80,82 pH,82 or both can be altered to increase or decrease degradation rates, to 

optimize release profiles of therapeutics. 23,78,80 

Another way to modify drug elution rates is through changes in the composition of the 

gels. For example, altering gelatin concentration, which alters degradation rate.74 More recently, 

silk fibroin obtained from Bombyx mori cocoon were used as a main component of a hydrogel. 

These silk fibers, dissolved in CaCl2 :CH3CH2OH:H2O, are an attractive component in a 

hydrogel due to their tyrosine residues, which provide stabilization for Ag and Au additives.65 

Keratin has also been explored as an additive to hydrogels to obtain optimal mechanical, 

physical, and therapeutic qualities.76 In one study, through an oxidative extraction process, a 

hydrogel consisting of “keratose” and ciprofloxacin achieved a release profile of 60% elution 

over 10 days, followed by a slow, sustained release for 3 weeks following initial injection.76 The 

efficacy of the gel in inhibiting Staphylococcal growth, combined with the  hypothesized 

electrostatic interactions enabling ciprofloxacin release to coincide with hydrogel degradation, 

make this formulation an intriguing delivery vehicle in future studies.76 
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A more unique way to control drug release may be through conformational changes. 

Recently, a layered hyaluronic acid methacrylate (HAMA) system was able to deliver triggered 

release of phages in vivo.44 The success of the system is due to the outer HAMA layer, which is 

sensitive to an enzyme found in S. aureus called hyaluronidase (HAase). Upon contact, the 

HAMA layer degraded and released bacteriophages to treat S.aureus biofilms.44 Another 

alteration of hydrogels which was been considered involves the utilization of a “gellan gum” 

conformation, in which the hydrogel took on a threefold double helical shape. This was used to 

deliver both dissolved vancomycin, and vancomycin encapsulated in PLGA nanoparticles.83 

Cements 

Traditionally, bone cements have been used by surgeons for placement of orthopedic 

hardware. In the past, these cements were largely non-degradable which impeded bone healing 

and led to additional surgical procedures. Recent modifications of bone cement have improved 

degradation rates and enabled them to become drug carriers. They may hold antibiotics, like 

teicoplanin,78 vancomycin,84–86 gentamicin,87 or AMPs.54,88 For greater antimicrobial properties 

and length of drug elution, new formulations of bone cements are being engineered. Some 

materials that have been considered are calcium sulfate hemihydrate, calcium phosphate,54 and 

PMMA,85–88 among others.78,84 Some more recent cements have even used bioactive glass.84 One 

interesting formulation included hydrophilized PMMA, due to a pluronic F68 additive, to 

effectively deliver vancomycin for up to 11 weeks.85 

Micro- and Nano-particles 

Recently, micro- and nano-particles have become a great area of interest for scientists. 

These particles are favorable because of their biocompatibility, use for local or systemic 



 

19 

delivery, and easy manipulation depending on their usage.89 Micro- and nano-particles can vary 

by their size(s), what they are loaded with, what they are made of, how they are administered and 

how they are created. 

They have been used to deliver antibiotics,72,83,89–92 and bacteriophages,49,93,94 among 

other drugs. Different materials that have been analyzed for favorable micro- and nano-particle 

synthesis include: PEG,92  poly(ester-amide)-PEGs  (“PEAE”),89 Poly(N-isopropylacrylamide) 

(“PNIPAM”),93 gold,49,94 silver,72 silk fibroin,91 and PLGA.83,90,92,95 Chitosan, gelatin, and a 

mixture of chitosan and gelatin cross-linked with genipin have also been used.96 As gold micro- 

and nanoparticles are popular, recent research has focused on finding alternatives to circumvent 

their high price tags. Cockle shells may be able to serve this purpose.97 Recent in vitro studies 

indicate a positive release kinetic profile of this material, which initially released about 85% of 

the vancomycin loaded into the nanoparticles within the first 15 hours followed by a slow release 

profile for a full 120 hours.97 Another interesting development is the creation of raspberry-like 

gelatin microspheres. These microspheres have multiple compartments inside of a single 

microsphere, making them a desirable blend of nanoparticles and microspheres. Various 

biomolecules can be released from the microspheres by diffusion, erosion or degradation-

controlled release. This shows promise for administering therapeutics such as vancomycin, 

dextran and other biomolecules.75 

As mentioned previously, these particles may be used for local and systemic delivery of 

therapeutics. Hydrogels are a common way these particles have been delivered to the site of 

infection.80,83 Given their size, however, oral ingestion seems to be a feasible way micro- and 

nanospheres may be introduced into the biological system. This would be desirable for modern 
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osteomyelitis treatments, as this would be less invasive than local treatments, and ensure the 

clearance of isolated colonies of bacteria. However, there is concern over this methodology, as 

stomach acid can hinder the effectiveness of phages and antibiotics. Thus, extra measures must 

be taken to deliver and protect microspheres from the harsh environment of the stomach if they 

are to be taken orally. Protection can involve encapsulation by a basic protectant such as calcium 

carbonate to counteract the acidic conditions.48,98 Furthermore, the base of microspheres may be 

fine-tuned for those undergoing acidic conditions.  Alginate, for example, has been proven to 

increase the survival of many bioactive substances in simulated stomach acid.48,98 For greater 

protection of the phages, a combination of alginate with calcium carbonate may also be used as a 

buffer to the acid.98  

Coatings/Films 

Another effective local delivery system are coatings, or films, which can serve as either a 

preventative measure or an active treatment against contaminated implants. The number of 

substances used for these coatings are extensive. In recent studies, antibiotics,45,99–104 phages,45  

and alternative microbials105 released from films/coatings made of phosphatidylcholine,99,102 

hydroxypropylmethlycellulose (HPMC),45  poly(D,L-lactide),100,105 and hydrogels101,106have all 

been explored, among others.107 Interestingly, silver may also be used as both an antimicrobial 

and delivery vehicle as a coating material. Or, silver can be combined with other materials.68 

Made of aluminum and silicon, zeolites are beneficial in this pairing because of their crystal-like 

porous structure.68 In one study, zeolite alone decreased bacterial CFUs by approximately 3000 

units. Through ion exchange, the silver-zeolite coating decreased the CFUs by an additional 

1500 units compared to the zeolite.68 Another metal silver has been paired with for a coating is 
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titanium, in order to limit the systemic silver ion side effects.67 As mentioned previously, 

nanoparticles have a multitude of application potentials and coatings are no exception. In a 

recent study, silver nanoparticle coatings of a titanium orthopedic  implant (316 L SS) were able 

to completely eradicate infection in an in vivo study spanning 42 days.108 Thus, it may be 

possible to alter both the orthopedic hardware materials and nanoparticle coatings for optimal 

anti-infection properties. Poloxamer 407, also known as “F-127”, is a hydrogel with many 

applications, but may also serve as a useful coating to prevent adhesion of bacteria to orthopedic 

hardware. In particular, for PMMA.106 

Scaffolding 

Bone scaffolds which serve as delivery vehicles for osteomyelitis treatment are desirable, 

as they could ideally offer support for a fracture and direct bone healing. Some scaffolds may be 

even be engineered to degrade, ideally at the rate of native bone regeneration.109 A seemingly 

limitless amount of materials and therapeutics can be engineered for this purpose, making these 

scaffolds a great focus of current research. Scaffolds composed of combinations calcium 

sulfate,95 PLGA,95,109 polyurethane,110 PLLDA,111 β -tricalcium phosphate (β-TCP),112 and other 

materials have been used to deliver a multitude of therapeutics, including: antibiotics,95,109,111 

proteins,110 and others. 

A recently engineered bone graft highlights the wide range of alterations that can be 

made to these scaffolds. In this study, calcium sulfate, hyaluronan,simvastatin, and PLGA 

microspheres loaded with vancomycin were used to create a hard “core,” surrounded by a 

moldable protective shell. The goal of this design was to allow necessary antibiotic release upon 

implantation, followed by the release of an osteogenic agent (simvastatin) to promote bone 
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union.95 Another novel approach includes the use of 3-D printing for scaffold production. In one 

study, a PDLLA cylinder was crafted of a series of 4 ring layers, for specific, alternating delivery 

of either levofloxacin or tobramycin.111  

Miscellaneous 

Other delivery vehicles which have been explored include, but are not limited to: 

pellets,113,114 polyurethane foams,5 and sponges.37,115,116 Sponges have been specifically explored 

for military applications, when it may be difficult to maintain and implant alternative delivery 

vehicles mentioned herein.37 

Animal Models 

Animal models may provide the most promising outlet for advancing our understanding 

of S. aureus, and resulting osteomyelitis infections. in vitro models often have results vastly 

different than those of in vivo studies; for example, an antibiotic may demonstrate high efficacy 

in vitro but in an infected animal models, provide little or no remedy for infection.17 

Small Animal Models 

Mouse (Murine) 

One unique aspect of murine models of osteomyelitis is the ability to evaluate the effect 

of diabetes on infectious pathophysiology. Scientists have successfully manipulated the genome 

of rats to induce both type I and type II diabetes in mice, unlike other animal models. Examples 

include the NOD/ShiLtJ mouse, which exhibits symptoms similar to type I diabetes.117  
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Post-traumatic  

In post-traumatic models of osteomyelitis, researchers generate a bony defect which they 

then contaminate with bacteria before closing the surgical site. The bony defect may be 

generated with micromotors,25 titanium burrs,50 or needles.5,118 Oftentimes, these models are 

utilized for evaluation of therapeutics,5 diagnostic tools for osteomyelitis,50 or investigation of 

pathophysiology.118,119 Examples of therapeutics evaluated using this type of model include -

defensins, 41 antibiotics,25 and NSAIDS.5 As mentioned previously, surgical debridement is 

often necessary in cases of chronic osteomyelitis for clearing infected areas. Although the murine 

tibia is limited in size, one study successfully performed debridement 2 weeks after initial 

infection establishment, using a 20 gauge needle.25 The aim of this work was to compare 

treatment outcomes of antibiotic treatment regimens with or without this invasive procedure. 

Ultimately, it was found that debridement significantly reduced bacterial counts.25 

Implant 

An alternative approach to modeling osteomyelitis involves the use of implant materials. 

They may serve as stabilization for obstructed limbs,86,120,121 a method of introducing 

contamination to a bony site,6,70,121 a delivery vehicle for osteomyelitis treatment,102 or a location 

for future bacterial colonization.86 A variety of materials have been explored for this purpose, 

including: pins, 470  stainless steel wires,102,117,122,123 titanium rods,51 sutures,124 and fixation 

plates.86,120,121 

In one unique study, a vicryl suture was used as the agent of bacterial contamination. A 

27 gauge needle was first used to generate a hole within the proximal tibia. The vicryl suture, 

after soaking in S.aureus for 30 minutes, was then inserted into this defect. This model was used 
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to evaluation of a novel diagnostic tool, a MRI probe which targeted for overexpressed IL-13Rα2 

receptors in OM.124In another compelling study, a K-wire was inserted through the femoral canal 

so 1 mm protruded into the joint space. It was here, where the implant extended into the 

surrounding soft tissues, that S. aureus was injected rather than inside the bony defect.123 Later, 

this model was used to evaluate a dual-antibiotic (ciprofloxacin and rifampin) loaded sponge for 

military applications.37 The outcomes of diabetic NOD/ShiLtJ mice in osteomyelitis has also 

been investigated based off of this model.117,125 For translational work aimed at improving 

therapeutics for diabetic patients, this murine model was used to determine that PGE1 

administered with cephalosporin may improve recovery outcomes.125 In another approach, the 

implant material served as a delivery vehicle for antimicrobials.102 A phosphatidylcholine 

coating was applied to a k-wire, for release of loaded amikacin, C2DA, or both. After 1 week, all 

animals were euthanized and the femurs were evaluated for residual bacterial activity.102 

For more traumatic surgeries, the femur may be utilized for placement of a fixation plate. 

In one study, contaminated titanium fracture fixation plates were placed onto the femur, and then 

an 0.44 mm osteotomy was created. In the control groups, complete bridging of the osteotomy 

gap was complete by 35 days. In contrast, the infected mice at 35 days exhibited dramatic bone 

damage and did not bridge the osteotomy gap. Increased levels of TGF- and PDGF genes were 

noted in the control groups, which are indicators of the typical bone healing process. In contrast, 

these levels were markedly reduced in the infection groups.121 In other models, a plate can be 

utilized without serving as the source of infection. In one such study, a fixation plate served to 

stabilize an 8 mm osteotomy. It was in this space that S. aureus was injected.120 Later, 

debridement and lavage were performed.120 Later, this model was used to analyze a novel 
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lysostaphin coating on titanium locking plates.105 In a similar model, a radiolucent PEEK 

fracture fixation plate with a titanium coating was used to stabilize a 0.7 mm transverse 

osteotomy in the mid-diaphysis. Then, an S.aureus soaked collagen sheet was placed into the 

defect to establish infection. After 7 days, the surgical site was debrided and subjects received 

either systematic vancomycin or PMMA spacers with or without vancomycin. A significant 

finding of this study was that the implant fixation was undermined by 10-14 days following 

surgery, due to osteolysis around the titanium screws. Also, a biofilm formed on the screws and 

plate itself.86 

 Hematogeous 

Hematogenous murine models of osteomyelitis are also feasible. Typically, S. aureus is 

injected into the lateral tail vein. Over the course of one experiment, it was noted that S.aureus 

initially invaded and proliferated not only in the bone but in several other organs. After 60 days, 

however, these organs were cleared and S. aureus was present only in the tibia. This was 

attributed to the tropism of the S.aureus strain used (6850) for bone. This demonstrates great 

potential for this strain of bacteria for hematogenous models, and emphasizes the significance of 

bacterial strain in infection studies.126 This model was later used to evaluate the efficacy of 

antibiotics (Rifampicin, Gentamicin, and Cefuroxime). Only rifampin was successful in the acute 

osteomyelitis groups, whereas none of the antibiotics were successful in the chronic 

osteomyelitis groups. The bacterial resistance was attributed to the formation of antibiotic- 

resistant small colony variants (SCVs).17 More recent work utilizing this model has found the 

SigB, a S. aureus regulator, plays an important role in murine hematogenous chronic 

osteomyelitis infection development.127 
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Rat 

Rat models offer advantages in ease of care, cost, and less ethical complications seen in 

larger animals. Furthermore, rats tolerate long term antibiotic therapy, even when administered at 

high doses.128 Their bones are also easily pulverized, enabling research groups to easily conduct 

bacteriology analysis.128Their immune systems have also been manipulated, which opens up the 

possibility of studying risk factors for osteomyelitis, and their impact on pathophysiology of the 

disease. 128,129Thus, rats serve as good models for novel therapeutics, before moving onto more 

expensive and taxing animal models. Rat models became popular following the publication of 

Zak et al. (details below).36,129 Since then, an abundance of models have emerged. 

Post-traumatic 

The first rat osteomyelitis models largely relied on sclerosing agents to induce infection 

in post-traumatic tibial models. As mentioned previously, the model published by Zak et al. led 

to the popularization of rats as an animal for osteomyelitis research. In this model, a 5% sodium 

morrhuate solution placed into the metaphysis of the tibia, followed by an injection of S.aureus 

suspension.36 In 1985, Rissing et al. investigated which was preferable for traumatic injury and 

infection establishment: the use of a 22-gauge needle or drill. In both cases, the protocol 

described by Zak et al was used.10,36 It was determined that the drill protocol yielded a higher 

rate of infection versus the needle protocol, at rates of 81% and 51% respectively. 36 Rissing et 

al. further optimized their protocol by comparing two sclerosing agents, arachidonic acid and 

sodium morrhuate. Arachidonic acid was chosen as a sclerosing agent by this group because it is 

one of the fatty acids found in sodium morrhuate, and was thought to play a role in bone 

resorption and the inflammatory response. The Rissing drill protocol, mentioned above, was 
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used.10It was determined that arachidonic acid was able to generate infection at much lower 

doses than sodium morrhuate, as the effects of a 5 µL of 5% sodium morrhuate treatment was 

paralleled by an almost 1000-fold smaller dose of arachidonic acid. A surprising finding was that 

in the control group, given S.aureus and saline, there was still a relatively high rate of 

infection.130 

Sclerosing agents introduce an unwanted variable into osteomyelitis studies, and sodium 

morrhuate has a toxic effect on S. aureus.10 Thus, after Rissing et al.’s findings that infection 

could be established without sodium morrhuate or arachidonic acid, modern models have 

avoided the use of these sclerosing agents. One of the first groups to exclude sclerosing agents 

modified Rissing et al.’s drill protocol, and utilized fibrin glue as a facilitator of infection 

development.10,128 S.aureus, in theory, was expected to adhere to the glue and thus establish a 

localized infection without spreading systemically. Infection was noted in more than 90% of 

tibias, as indicated by roentgenograms and histology.128 In another study, agar beads were used 

to introduce S.aureus to the proximal tibia, where acute osteomyelitis then developed.131 

Femoral models with no additives have also been explored. In one study, a syringe needle 

was placed directly into the distal femur, where S.aureus was injected and bone wax was used to 

seal the defect. After two weeks, this surgical site was accessed again and cleared with PBS. A 

novel bone cement was then placed into the femoral cavity and evaluated as a potential 

therapeutic.85 A similar model was utilized to evaluate AMP treatment, delivered in calcium 

sulfate cement, for acute osteomyelitis.54 
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Implant 

Perhaps the greatest use of rats in osteomyelitis studies are for implant-based models, and 

related research. A wide variety of implant materials have been explored, including: nails,66 

screws,132 titanium/Kirschner wires,35,58,91,133–136 hollow needles,136 and fixation 

plates.20,26,69,95,110,129,137–140 

A popular non-fractured implant model of osteomyelitis was published by Lucke et al., in 

which acute osteomyelitis was localized in the tibia.133 In this model, S.aureus was injected into 

the medullary canal followed by insertion of a  0.8 mm k-wire, serving as a permanent implant. 

All animals were sacrificed after 28 days.133 This model has since been used to evaluate boric 

acid therapy, systemically and locally.134 This therapy was evaluated 21 days after bacterial 

inoculation, at which time the k-wire was removed. Results indicated the potential of boric acid 

as a synergistic agent, potentially with vancomycin, but not a stand-alone therapeutic.134 In a 

similar model, it was found that this same methodology of S.aureus injection and k-wire 

placement within the tibia could generate chronic osteomyelitis after 4 weeks.135 At this time, 

systemic teicoplanin treatment with or without extracorporeal shockwave therapy was then 

evaluated.135 Other therapeutics investigated using a wire implant model of osteomyelitis include 

silk fibroin nanoparticles loaded with vancomycin,91 and efficacy of erythromycin given with or 

without the flavonoid curcumin.58 Femoral wire-based implant models of osteomyelitis also 

exist. Such models have been used to compare moxifloxacin to vancomycin treatment(s) 7 days 

after initial infection establishment.136 

Similar to k-wires, stainless steel tubing may also be used as an implant for infection 

development. In one study, this tubing was used over more commonly used wires in order to 

induce a greater volume of biofilm. The tubing was pre-soaked in S.aureus, inserted into the 
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femur, and then a supplementary S.aureus suspension was injected into the space. At days 6 and 

45 post-initial infection, respectively, signs of acute and chronic osteomyelitis were 

confirmed.141 

Although not as common as wires, screws132 and nails66 have also been used to simulate 

implant-related osteomyelitis in rats. In one study, a polyetheretherketone (PEEK) screw coated 

in titanium was used as the agent to introduce bacteria into the tibia. The animals were monitored 

for up to 28 days, in which µCT was used to evaluate bone formation and resorption.132 To 

observe osseointegration and antimicrobials of a novel nail, a similar model was used. A 

unicortical hole 8 mm in depth was first drilled into the proximal lateral tibial metaphysis, 

followed by S.aureus injection and nail placement. It was found that the HA and HA-Ag coated 

screws had excellent osseointegration and biocompatibility, but exhibited no anti-infection 

properties.66 

Fracture/Segmental Defect 

Typically, in models inducing fracture, wire or fixation plate implants are utilized. The 

groundwork for many of these fracture models can be derived from a study by Bonnarens and 

Einhorn.142 In this model, a portable apparatus, similar to a guillotine, was used to drop a weight 

onto the femur and create transverse fractures. Prior to fracture, a Steinmann pin was placed into 

intramedullary canal of the femur, exiting through the great trochanter process. The pin was then 

bent and a 3mm “handle” was buried into the muscle. Although this model did not induce 

infection, it provided a starting point for osteomyelitis researchers.142 In one modification, the 

femur was accessed distally for reaming rather than at the femoral condyles. Bacterial suspension 

was inoculated into this canal with an 18-gauge polypropylene catheter, which was left for 2 
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minutes following injection of the bacteria. Then, a pin was inserted and the drop apparatus used. 

This model was used for analysis of ceftriaxone treatment.143 The pin may also be placed after 

fracture occurs. In one study, a k-wire was placed starting at the proximal fragment, through the 

distal fragment, until it was partially seated into the epiphysis. This antegrade k-wire placement 

resulted in a favorable, consistent infection rate (90-100%) with a small dose of S.aureus over a 

period of 3 weeks.144 A modified Bonnarens and Einhorn model has also been used to study the 

effectiveness of chitosan films loaded with the antibiotic Ciprofloxacin, for osteomyelitis 

treatment. Fixation and bacterial contamination were performed after fixation, and followed by 

placement of films before closing the surgical site.104 

Other fracture models utilize fixation plates, and avoid the use of a drop apparatus. 

Instead, fracture is surgically induced. Oftentimes, an osteotomy is generated. In a majority of 

these studies, a defect 6mm in width is used.26,95,110,137–140In other cases, S.aureus has been 

introduced through fibrin hydrogels69 or onto the implant itself.129 

One of the first publications describing this fixation plate, osteotomy, and osteomyelitis 

rat model was Chen et al., in which a polyacetyl plate and kirshner wires were the fixation plate 

utilized.137 . It was determined that a 104 dose of S.aureus resulted in osteolysis and loss of 

stability over 2 weeks. After optimization of the model in pilot studies, debridement and the 

antibiotic ceftriaxone were evaluated as a therapeutic regimen. This model has been adapted to 

fit the aims of multiple research projects in recent years. In one study, a novel bone graft 

composed of calcium sulfate, hyaluran, and PLGA microspheres, formulated into a hard “core,” 

with a moldable outer shell, was evaluated. With this graft, vancomycin was delivered from the 

PLGA microspheres and the osteogenic agent simvastatin was utilized to stimulate bony union.95 
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Engineered polyurethane scaffolds, loaded with vancomycin, D-amino acids, and other 

treatments have also been evaluated using this model.110,139 

Other investigations include: biofilm formation in diabetic rats,129 whether osteogenic 

protein-1 (OP-1) could induce bone formation in the presence of S. aureus,137 and debridement 

optimization.26,140 

Although less common, tibial fracture models also exist. In one unique study, an open 

tibial fracture model, akin to a Gustilo type III wound, was developed. To induce infection, a 1 

cm longitudinal (linear) trough was first created in the tibial medullary cavity by drilling first 

into the anterior cortex, in a proximal to distal motion. After the trough was created, a cautery 

device was used to damage the endosteal blood supply. S. aureus was then placed into the 

trough, followed by curettage and lavage. This model successfully established acute 

osteomyelitis.145 

Hematogenous 

Although rare, a hematogenous rat model of osteomyelitis exists. In this model, a medial 

parapatellar arthrotomy was created, and then a cannulated needle was used to clear the 

medullary canal. Then, a k-wire was inserted into the medullary canal. After surgery, a catheter 

inserted into the tail vein was used to deliver S.aureus into the circulatory system of the rat. 

From this study, it was determined that a high dose of  S.aureus (107 CFU) was necessary. 

Furthermore, it was determined that after 14 days the k-wire addition significantly increased the 

rate of infection.11 



 

32 

Rabbit 

Rabbits are another animal model commonly used for osteomyelitis studies. They are a 

good solution for those who need an animal model larger than the more common rodents (mice 

& rats), but are not ready for the economic burden and greater responsibility associated with 

large animal models. They are also a great choice for pilot studies on implant devices, or implant 

coatings, as designing these products for rodents is limited or faulty due to their smaller size.146 

Some products designed for humans can even be used on rabbits with no modifications.146 A 

downside to rabbit models are their ruminant gastrointestinal system, which has made the ability 

of a rabbit model to evaluate antibiotic treatments questionable.147 Additionally, they are known 

to undergo respiratory depression during experimentation when put under anesthesia.148 

Post-traumatic 

As with murine and rat models described herein, there exist post-traumatic models of 

osteomyelitis in the rabbit, centered around the use of sclerosing agents.114 In one tibial model 

using this protocol, hallmarks of chronic OM were noted at 4 weeks.114 At this time, the rabbits 

either underwent debridement and placement of novel bioactive glass implants, or debridement 

supplemented with daily intravenous injections of Teicoplanin for 4 weeks.114 This model has 

also been used to evaluate a nano-hydroxyapatite /polyamide-66 (nHP66) nanoscaffold with 

varied amounts of oxidized titanium and silver ions, in order to maximize antibacterial material 

properties.67 A similar protocol was adopted for evaluation of fibrin gel scaffolding placed in the 

tibia, with or without mesenchymal stem cells and vancomycin alginate beads. It was found that 

bacterial numbers were significantly lower in groups with the vancomycin alginate beads than 

those without.149 These post-traumatic models using sodium morrhuate are also ideal for 
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mimicking blast wound trauma seen in the battlefield, and resulting bone infection. This is 

because sodium morrhuate induces necrosis of bones like blast wound trauma. In one such study, 

several strains of bacteria were evaluated, in monocultures or delivered in combination with one 

another.150 In femur models adopting this protocol, some cases of unexpected death have been 

reported.111,151 However, one study was able to successfully evaluate a novel 3-D printed 

scaffold laced with antibiotics, placed at 3 weeks following debridement.111 Thus, this model 

could be used for future work. 

Other post- traumatic models exclude the use of sclerosing agents. Interestingly, many 

studies that fall within this category used the radius as their site of bacterial inoculation.78,113,152–

154. A 1 cm segment was removed, where S. aureus could then be directly injected into the 

medullary canal. Then, the excised segment was replaced.152,153 This model has since been 

adapted for use in a femoral model, to evaluate Teicoplanin-encapsulate nanoparticles.78 It has 

also been employed to evaluate calcium sulfate pellets, with or without debridement/tobramycin. 

Infection was allowed to develop for four weeks, and then treatment groups were assigned and 

implemented, with observation for an additional 4 weeks.113 Calcium sulfate pellets loaded with 

Daptomycin and coated with deacetylated chitosan have also been investigated with this 

model.154For a greater degree of severity, a unicortical defect as large as 5mm has been reported. 

Again, to induce infection S. aureus was injected at the damaged site. In this study, the damaged 

bone fragment was not replaced.46Other femoral models avoid the creation of unicortical defects. 

In one investigation, femoral trepanation was first performed, so a suspension of S. aureus could 

be inoculated into the knee cavity through a parapatellar injection. Following surgery, animals 
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were euthanized at 1,2,3,9, and 14 days for evaluation of bacterial load in bone marrow over 

time. Signs of acute osteomyelitis were noted.155 

Implant 

Due to a larger working space, rabbits enable a larger variety of implant-use than 

previously described murine and rat models. Implants that have been reported in literature 

include but are not limited to: nails,64,148,156 screws,63 wires,77,99 cylindrical/cylindrically shaped 

materials,52,103 and plates.52,79,146,157 

By generated a 4 mm defect in the tibia, injected S.aureus in this space and then placing a 

titanium nail, one study established an acute osteomyelitis model. Interestingly, different 

calcium-binding fluorophores were administered at 14, 28, and 41 days to enable bone formation 

evaluation at various times.148 Another unique nail-based study generated a bifocal osteotomy in 

the tibia, to evaluate internal versus external fixation in osteomyelitis. This is of particular 

interest, as most animal models described herein only utilize a single osteotomy. After this break 

was created, the tibial fragment was infused in a MRSA culture and replaced into the leg where 

an IM nail was used for stabilization. Four days later, surgical debridement was performed and 

the nails were removed. Rabbits were then placed into one of two groups, sterile nail fixation or 

bilateral external fixation with a homemade device. Following these procedures, rabbits were 

also given vancomycin intramuscularly twice a day, until euthanasia (4 days later, for a total of 8 

days of observation).156 

 Chronic models have also been reported. In one such study, sodium morrhuate was used 

to induce infection in the tibia over a period of 4 weeks. At this time, debridement was 

performed and either two novel Mg-Cu alloy based nails were placed or two pure titanium IM 
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nails.64 Screws models, similar to nail models due to implant likeness, have also been reported. 

For bacterial contamination, the screw of interest was exposed to both S. aureus and E. Coli for 6 

minutes prior to implantation. A 2.5 mm hole was created in the femur, where the screw(s) of 

interest were placed and their ability to mitigate infection was then evaluated.63 

Although uncommon, PMMA cylinders have also been used as an implant. A 8.5mm 

long defect was drilled parallel to the axis connecting the medial and lateral condyles of the 

femur, and irrigated thoroughly. Then, contaminated PMMA cylinder were pressed into the 

defect space. To prevent soft tissue infection, the face of the cylinder that was exposed was 

cleaned thoroughly. Four days after this initial surgery, the cylinders were removed and infected 

soft tissues surrounding the bony defect underwent debridement. The rabbits then received either 

sterile or polyelectrolyte-film-coated titanium implants, for 4 or 7 additional days.103 A similarly 

shaped implant of porous tantalum or a titanium alloy control, 36 mm long with a 2.7mm 

diameter and hexagonal cross-section, was used in a tibial study simulating amputees. Briefly, a 

bicortical hole was created towards the proximal tibia where one of two implants was then 

placed. The ends of a 24-gauge cerclage wire, placed along the anterior cortex and through the 

medial end of the implant, were twisted together on the medial side after proper placement was 

achieved. A 2mm skin puncture was then created proximal to the incision, where the implant 

exited the skin. Following surgery, some groups received a topical AMP treatment.52 

Fracture/ Segmental Defects 

Segmental defect models have also been developed. In one work, biofilm-coated stainless 

steel fixation plates, attached with 4 screws on the midshaft of the femur, were used to 

successfully induce osteomyelitis. A 1mm fracture was created after placement of the plate, 
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between the second and third screws. In 21 days, some noted symptoms included: implant 

failure, callus formation away from the fracture site, swelling, pus, and tissue damage.157 In 

another project, a 1 cm segment of bone was removed from the radius. Then, a k-wire was placed 

through the medullary cavity of the excised bone and the entire construct was placed into 

bacterial culture, and replaced into the dead space. 3 weeks after this surgery, the site was 

debrided, the k-wire was replaced, and a novel biodegradable hydrogel delivering gentamicin 

was utilized.77 This model was later used to analyze phosphatidylcholine coated wires with or 

without 25% vancomycin, which were inserted through the excised bony segment and placed 

back into the medullary canal.99 Other notable research centers around the use of the humerus for 

OM. In one effort, custom-designed intramedullary nails and a 7 hole locking compression plate 

was secured to the bone. At the central screw hole, an osteotomy was performed. Here, S. aureus 

was then injected into the defect.146 Later, this model was used to evaluate a thermoresponse 

hydrogel delivering gentamicin at the implant site.79 

Large Animal Models 

For initial studies of novel therapeutics, small animal models are often preferable due to 

their lower costs, ease of handling, and quicker data generation. After these preliminary studies, 

however, many scientists find it beneficial to reconfirm their findings in large animal models. 

This is because large animals more closely resemble humans in many aspects, such as in bone 

density, weight, and immune system functions. Large animal models are also particularly useful 

for the study of implants versus small animal models, as small animals have difficulty 

withstanding the use of some orthopedic implants.107 The similarity in bone size between large 

animals and humans also makes it easier to evaluate orthopedic hardware, as little or no 
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adjustments need to be made to prepare commercially available materials used for humans for 

animal research. For example, the diameter of the goat tibia is compatible with currently used 

interlocking nails.158 Additionally, for surgical protocols which necessitate multiple procedures, 

large animal models are preferable. It has been found that large animals are more likely to 

withstand the stressors associated with multiple procedures, such as debridement or hardware 

removal, versus smaller animals. Large animal models are needed in the translational pipeline, as 

a necessary step in the advancement of technologies and therapeutics from research labs to the 

clinic. 

Pig (porcine) 

A benefit of porcine models is their pulmonary intravascular macrophages, which inhibit 

bacteremia and allow hematogenous inoculation of bacteria.159 Although humans do not have 

these macrophages, it is well documented that bacteria may reach sites of osteomyelitis through 

the blood stream, so it is important to study this mode of transmission. In other animal models, 

reproducible models of hematogenous OM have been limited.  The intravascular macrophages of 

pigs allow them to live longer following hematogenous inoculation, in contrast to other animal 

models, in which the animals would have to be euthanized due to systemic infection.  Another 

benefit of using a pig model is that pigs are omnivores, unlike the herbavoric small animal 

models often used (such as the rabbit). This diet change can alter the response of an animal to 

antibiotics, making pigs a good candidate for oral and/or systemic antibiotic treatment 

evaluation.147 Furthermore, although the bone material of humans overall most closely resembles 

dogs, pigs are next in line. Notably, fracture stress is higher in dogs when compared to pigs. In a 

recent study, human bones were found to withstand an average of 1.21 N/mm^2 fracture stress, 
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whereas pigs were found to withstand approximately 2.40 N/mm^2 and dogs 6.12 N/mm2. 

Studies on fractures, and related stress bearing, may thus be more closely translated for human 

applications in a pig model versus canine models.160 One disadvantage of pigs is their rate of 

bone growth, which is considerably faster than that of a human.147 Additionally, the porcine tibia 

and fibula are shorter than those of a human. Therefore, it is not advised to test implants using a 

porcine model, if other large animal models are feasible. 147 

Post-traumatic 

For simulation of gunshot wounds, one porcine post-traumatic OM model fired a 200mg 

steel fragment into the right tibial metaphysis. After this procedure, S. aureus was inoculated into 

the defect site on a strip of sterile bovine collagen. Experimentally, pigs received 

Benzylpenicillin and Flucloxacillin through intramuscular injection every 6 hours for 7 days. 

After 14 days, animals were euthanized. It was found that systemic antibiotic administration 

could successfully eradicate infection. All control animals exhibited signs of localized, acute 

osteomyelitis.9 

Implant 

An implant associated tibial osteomyelitis model has also been established in pigs, 

utilizing the k-wire fixation methodology seen in other animal models. Two different ages of 

pigs were evaluated, 3 months and 8 months. Briefly, fluoroscopic guidance was utilized to clear 

out the medullary cavity of the tibia with a k-wire (4mm). After the cavity was sufficiently 

cleared, the wire was removed.  Afterwards, bacterial inoculum was placed at this site and a k- 

was placed into the medullary cavity for stabilization. Although animals were only observed for 

5 days, signs of localized, acute osteomyelitis were noted.147 From this same study, Tøttrup et al. 
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conducted a pharmacokinetic study of Cefuroxime in the 8 month old pigs. Controlled infection 

was reported in 90% of their subjects, with evidence of acute osteomyelitis. It was also found 

that Cefuroxime penetration was incomplete by day five. This may implicate the need for 

prolonged administration of antibiotics to patients with acute osteomyelitis, to ensure complete 

treatment of infected sites.147,161 

Hematogenous 

Hematogenous osteomyelitis model have also been explored pigs. In one study, a catheter 

was inserted into the left ear vein of juvenile pigs. Depending on assigned groups, the pigs then 

received a one-time inoculation of 10^8 CFU S. aureus, or twice at this initial surgery and 12h 

post surgery.162 After initial inoculation, it was found that infection was successfully induced in 

the long bones and lungs of the pig model, without affecting the vertebrae. After 48h, the 

pulmonary bacterial load decreased, and a bacteremia test was negative. This was largely 

attributed to the pulmonary intravascular macrophages of the pig, which can effectively 

phagocytize S. aureus.159,162 Animals were euthanized at 6h,12h,24h, or 48h, but even at such 

short time points signs of acute osteomyelitis were evident. Overall, this model is promising for 

juvenile osteomyelitis research. In the long bones of the pigs above, infection started from the 

deep metaphysis and then spread to the capillary loops near the growth plate. Additionally, no 

vertebral lesions developed. These are common characteristics of juvenile osteomyelitis.162,163 

This model has received considerable revision over the years. In one study, the use of the 

brachial artery rather than the ear vein resulted in 62.5% (5/8) of subjects euthanized for 

lameness.164 The use of the right femoral artery was also explored, in conjunction with the 

evaluation of several strains of Staphylococcus aureus. From this research, it was determined the 
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right femoral artery was superior to other previously tested modes of bacterial inoculation in 

porcine hematogenous models.165,166Thus, in a subsequent study, Nielsen et al. used the right 

femoral artery for a study of osteomyelitis detection diagnostics 111In-leukocytes, 18F-FDG, 11C-

methionine, 11C-PK11195 and 68Ga-citrate. However, 38% of subjects had to be prematurely 

euthanized due to lameness.167 Overall, the current hematogenous porcine models fail to be 

reliable due to high mortality rates, but remains a promising area for future animal model 

development, due to the porcine immune system.162 

Dog (canine) 

Canine animal models serve as a very positive animal model for orthopedic research. In a 

recent study, it was determined that canine bones most closely resembled human bones versus all 

other animal samples tested. Bone composition, density, and other orthopedic properties were 

evaluated.160 Furthermore, like other large animal models, dogs can undergo multiple 

procedures. This makes them ideal for studies utilizing debridement or other interventional 

procedures.24 Despite all of these desirable attributes for an animal model, few canine models 

exist. This is most likely due to the ethical complications that are associated with the use of 

animals commonly adopted as household pets. Furthermore, it may be difficult to control the 

breed differences across a population of dogs, even among mutts. 

The first published canine model was in 1976, by Deysine et al.168 Unique to this study 

was the use of the nutrient artery of the tibia as the inoculation site of radiopaque barium sulfate 

(used for radiograph enhancement) and S.aureus, somewhat mimicking hematogenous OM. 

Although some signs of acute osteomyelitis were apparent, undesirable outcomes such as septic 

infection and spontaneous fracture occurred.168 
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Fitzgerald et al. established one of the first canine post-traumatic models. In this study, a 

defect created in the proximal tibial metaphysis was inoculated with bacteria, then filled with 

polymethylmethlyacrylate (PMMA) cement. Later, the PMMA was removed and replaced with 

gentamicin impregnated PMMA, which allowed 90% of subjects to overcome infection.87 

Almost 10 years later, in 1994, the model proposed by Fitzgerald et al. was used for the 

evaluation of other gentamicin delivery in vivo. Parenteral gentamicin therapy every 8 h for 4 

weeks, polymethylmethacrylate (PMMA) polylactide implant coated with gentamicin, and 

polyglycolide (PLGA) implant coated with gentamicin, were all tested. Debridement was 

performed at 4 weeks post initial surgery, and after antibiotic treatment subjects were observed 

for another additional 6 weeks (up to 10 weeks total). There was no statistical difference between 

the animals treated with PMMA or PLGA, but both were statistically significant versus the 

parenternal gentamicin treatment.24 Later, the model fabricated by Fitzgerald et. al was modified 

for femoral usage. First, a defect was drilled into the femur, inoculated with bacteria, and then 

one of several permanent implant materials was installed. Implant materials included: stainless 

steel and cobalt-chromium alloys, polyethylene, prepolymerized PMMA, and PMMA 

polymerized in vivo. As expected, the introduction of foreign materials at a site of bacterial 

inoculation increased the rate of bacterial proliferation.169 

Work deviating from these models, and simulating open fracture, also exist. In one such 

project, a captive bolt device delivered 6800 N of force to the proximal tibia. Then, 

intramedullary nails were used to fix the site of fracture. S.aureus was then injected into the 

medullary cavity, and allowed to flow freely into the surrounding soft tissue. A muscle flap was 

then surgically created on some of the subjects. It was found that the use of the transpositional 
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muscle flap increased vascular endothelial growth factor (VEGF) mRNA expression versus the 

fracture only group at 2 hours post-surgery, indicating that the type of closure used in surgery 

should be carefully selected. The use of muscle flaps was determined to have the potential to 

facilitate healing, largely believed to be due to increased blood supply at the site of injury.170 

 Goat (caprine) 

Caprine, or goat, osteomyelitis models have not been widely utilized across research 

groups. This is likely due to increased costs leading to limited sample sizes, and difficulty in 

managing the animals without prior experience. However, their larger bone sizes more closely 

mimic the human long bones, versus those of small animal models. The diameter of the goat tibia 

is compatible with many currently available fixation devices used on humans, such as 

interlocking nails. This provides an easier translation of research findings for human 

applications, as well as enabling scientists to avoid the increased economic burden associated 

with custom-made, novel devices designed specifically for animals.158 At this time, the only 

caprine OM models that fell within the constraints of the review’s consideration were tibial 

models.  

Other studies focused on post-traumatic models. In one study, a 3 mm diameter 

unicortical hole was developed in the proximal diaphysis of the tibia. Like other previously 

mentioned post-traumatic models, sodium morrhuate and S. aureus were then placed into this 

space. The Later, the area of infection was debrided. Radiographic and histologic evidence was 

collected to indicate signs of chronic and acute osteomyelitis in 100% of subjects throughout the 

12-16 week study.171 A similar caprine defect model was published the same month as this 

model, but a 12mm unicortical defect was created in the metaphysis of the tibia, followed by 
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bacterial inoculation. The larger defect size resulted in the omission of any sclerosing agents, 

while still inducing OM.172 

To compare the infection rate of fractures with external fixation (a modified Hoffman 

device, with two 5mm cortical pins on each side of the fracture) versus intramedullary locking 

nails, with or without reaming, one study developed two separate surgical protocols. For 

simulation of external fixation, a chevron osteotomy was created along the tibia followed by 

generation of 4 mm drill holes. For intramedullary nail placement, a medial parapatellar incision 

at the knee was performed, followed by use of a 6mm drill bit for access into the medullary 

canal. After fixation, S. aureus was introduced to the fracture site on an absorbable gelatin 

sponge. After 14 days, all animals were euthanized. Bacterial growth in the group with reaming 

and IM nailing was significantly greater than the groups with an external fixation device or no 

reaming and IM nailing.158 IM nails were further analyzed in a more recent study, in which a 

tibial mid-diaphysial osteotomy was performed with intramedullary nail fixation. Micro-CT 

images indicated the successful development of chronic osteomyelitis. However, infected soft 

tissue conflicts and a small sample size of 2 make the results of this study questionable.173 Future 

investigations will need to be conducted for more thorough conclusions on IM nails. 

Sheep (ovine) 

Sheep are a desirable model of long bone osteomyelitis, as their bones are similar in size 

to those of humans. Additionally, sheep and humans share a similar rate of osteogenesis. Sheep 

femoral bone has also been shown to closely mimic the torsional stiffness of human bone.174 

However, it should be noted that sheep bone is denser and has fewer Haversian canals than 

human bone. 174 Sheep models, like all large animal models, do come with the burden of 



 

44 

increased research costs. It should be noted that goat and sheep animal models have very similar 

characteristics; largely, these two could be interchanged depending on availability and costs to 

research groups.  

 Kaarsemaker et al. pioneered the use of sheep for osteomyelitis models in 1997. A 

4.2 mm drill hole was created in the medial proximal cortex of the tibia, and then a sclerosing 

agent (1 mL of 3% tetradecyl sodium sulphate solution) was put into the defect. Then, S.aureus 

soaked in gelatin sponge strips were packed into the medullary cavity. In the first round of 

surgery, 7/12 (58%) of subjects experienced fatal sepsis. Medically necessary intervention was 

then taken, with administration of the antibiotic Steptoprocpen (containing streptomycin and 

penicillin) an hour after surgery. It was determined that this allowed localized infection to 

develop, while preventing the previously observed fatal sepsis.7 In a similar femoral model, the 

use of sclerosing agents was avoided. A hole was drilled into the medial femoral condyle, where 

novel scaffold materials were packed. In both the control and experimental groups, no bacteria 

were isolated from blood samples, indicating localized infection which provides evidence that 

sclerosing agents are not necessary in post-traumatic ovine models.109 

Other efforts are directed towards implants, and segmental defects.  In 2002, an ovine 

tibial chronic osteomyelitis model using a midshaft chevron osteotomy, followed by bacterial 

inoculation and then intramedullary (IM) nail placement was published. It was determined that 

IM nail fixation may not be appropriate in all models, as it may stimulate virulence and thus 

interfere with the efficacy of antibiotic treatment. The use of external fixation was suggested for 

future studies.175 



 

45 

 Another research group seemingly took this advice when designing their model, in which 

a titanium locking compression plate was used to stabilize an osteotomy. Another novelty in this 

protocol was the introduction of S. aureus using a catheter at the site of the osteotomy.14 The 

reproducibility of this model was further validated in a following study evaluating a novel N,N-

dodecyl,methyl- polyethylenimine (PEI) coating on locking compression plates. This coating 

was found to prevent the formation of biofilms, and stimulate bone growth in the tibial defect. 

Furthermore, 100% of the animals used as controls successfully developed osteomyelitis. This 

indicates the reliability of this model.107 Another ovine-based study utilizing orthopedic plates  

modeled open fracture type IIIB.176 To contaminate the stainless steel plates, S. aureus was  first 

allowed to reach a biofilm state in vitro. Then, it was attached to a polyetheretherketone (PEEK) 

membrane, and placed on the stainless steel plate. 100% of sheep treated with the contaminated 

plates developed infection. The variance of results depending on the state of bacteria, planktonic 

or  biofilm, at the time of inoculation was emphasized in this work .176 

Miscellaneous Models  

Some exotic small animals have also been considered for osteomyelitis animal models, 

but have not received much interest. In 1984, the use of a guinea pig as a model of femoral post 

traumatic osteomyelitis was published. After exposing the lateral side of the right femur, the 

bone was cut with a scalpel saw and split at the diaphysis using a small forceps, then the site was 

closed with sutures. Depending on experimental group, the guinea pigs then either received no 

bacteria, S. aureus alone, or S. aureus and pin fixation. The stainless steel wire was 1.4 mm in 

diameter, and was inserted from the fracture in the proximal direction, before exiting the femur 

through an incision in the dermis of the trochanter region. After repositioning the fracture, the 
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wire was then pushed into the distal part of the diaphysis. In infected rodents, a needle leading to 

the site of injury was used to inoculate S. aureus.177 

Another non-traditional animal considered for femoral OM models are hamsters. An 

osteotomy was created, which was then left to heal on its own or fixed with a 0.9 mm K-wire. 

The pin was inserted retrograde, from the site of bony defect to the knee. To establish infection, 

S. aureus was placed in the muscle next to the site of surgery. Unique to this study, unlike many 

others, was that no wound care was performed. The site of incision was healed within 5 days, 

without sutures, and animals were observed for 1-2 weeks total.178 

Another animal that has been used, but is not commonly chosen for research projects, are 

chicken. To establish an acute hematogenous model, S. aureus was inoculated into a wing vein. 

Abscesses developed as early as 24 hours, and were most often found in the metaphysis of the 

long bones. Within 48h, many subjects exhibited signs of lameness. Only 23/29 developed 

osteomyelitis.179
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CHAPTER III 

METHODS 

in vitro Work 

Bacterial Strain(s) and Culture 

For all bacterial work herein, a modified Staphylococcus aureus strain ATCC 6538 

(“Rosenbach”) , originally isolated from a human lesion, was used. As a well characterized 

biofilm strain, this enabled us to generate a challenging infection see in other literature. Unless 

otherwise stated, all bacterial work done within this study was performed utilizing Brain Heart 

Infusion (“BHI”) based media and agar (BD Diagnostics, #211059). For propagation of bacterial 

culture, a single colony was picked and placed into a sterile culture tube filled with 4 mL of BHI 

medium. This tube was then cultured for 24h at 37℃ and 150 RPM. For enumeration of bacterial 

colonies, 100 µL of bacteria was spread onto a BHI agar plate and incubated for 24 h statically at 

37℃.  

Chromosomal Integration of GFP into ATCC 6538 

Staphylococcus aureus strain ATCC 6538 was genetically modified to contain 

chromosomally integrated green fluorescence protein (“GFP”), as previously described.180  

Extended details can be found in appendix C. Briefly, plasmid pTH100 harboring GFP was 

isolated from purchased DH5α E. coli (addgene, #84458) using QIAprep Spin MiniPrep kit 

(Qiagen). Isolated pTH100 plasmid was then introduced to competent S. aureus strain RN 4220 

by electroporation (Harvard Apparatus, BTX:ECM360) and plated onto an agar plate with 
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chloramphenicol, then incubated overnight at 30°C for recovery. Under UV light (Cole Palmer 

UVP-21, #EW-09817-02), the largest and most visibly fluorescent colonies were picked and 

cultured for 24h. Plasmid pTH100 was then isolated from RN4220-pTH100 culture using 

QIAprep Spin MiniPrep kit (Qiagen), and introduced to S. aureus ATCC 6538 by electroporation 

(Harvard Apparatus, BTX:ECM360). Resulting bacterial culture was placed onto an agar plate 

with chloramphenicol, then incubated overnight at 30°C for recovery. Under UV light (Cole 

Palmer UVP UVP-21, #EW-09817-02), the largest and most visibly fluorescent colonies were 

picked and cultured for recovery. A series of two heat shock events were then performed in BHI 

culture medium at 45℃, for 48h each.  

After the second heat shock, individual bacterial colonies recovered overnight in BHI 

culture at 200 RPM and 30°C. Cultures were diluted by 1:1000, cultured approximately 4 hours, 

then again diluted at 1:1000 and grown for 16 hours. This was performed for approximately 3-5 

dilution cycles, to ensure sufficient chromosomal crossover. The final bacterial culture was 

plated onto agar plates containing anhydrotetracylcine, and incubated overnight at 37°C.  

Single colonies were plated in duplicate on chloramphenicol and BHI agar. S.aureus colonies 

that grew on the BHI agar, but not the chloramphenicol plates, were then selected for future use. 

A plate reader (SpectraMax M5) was then used to identify the resulting bacterial strain with 

highest fluorescence signal. The final strain of interest was continuously diluted and plated over 

a period of 1 week to ensure stable integration of pTH100 into S. aureus ATCC 6538 (Fig.4.1, 

left).  In later studies, bacteria isolated from Ex Vivo rat tissue samples were found to emit 

fluorescence under UV lamp (Cole Palmer UVP-21, #EW-09817-02)  (Fig.4.1, right). 
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Preparation of Alginate Hydrogels 

All alginate gels were initially prepared at a 3% concentration, in anticipation of diluting 

the gel to 2% formulations after loading them with desired therapeutics. A 3% alginate mixture 

(w/v) was made with alginic acid powder (Sigma, #W201501) and αMEM media (Gibco, 

#12561-056), and left overnight, undisturbed, at room temperature to fully dissolve. This 

solution was pipetted into 1mL syringes, and sterilized using 2µm syringe filters (Pall, #4187). 

Desired therapeutics were then sterilely placed into this same syringe, with the dissolved 

alginate. The cross-linker, calcium sulfate, was then generated at a concentration of 0.21 g 

CaSO4 / mL distilled H2O and autoclaved at 121℃ for 30 minutes. Volume of desired cross 

linker was determined by dividing the total volume of alginate/ αMEM, in µL, by 25. This 

volume of calcium sulfate was then loaded into a new, sterile 1mL syringe. By attaching the two 

syringes (dissolved alginate with therapeutics in one syringe, and cross linker in the other) with a 

connector, and mixing vigorously for approximately one minute, the gel was formed with 

therapeutics distributed homogenously. The prepared syringe was then placed into a sterile 

container, and kept in the refrigerator or on ice until use. 

Kirby-Bauer Analysis of Phage and 2% Alginate Hydrogel Compatibility  

To analyze the bactericidal activity of desired therapeutics within the alginate gels, a 

Kirby-Bauer assay was performed.90 Phage in PBS, empty 2% alginate gels, or phage loaded 

within the 2% alginate hydrogel were applied at volumes of: 5, 10, 15, or 20 µL onto BHI agar 

plates covered with ATCC-6538-GFP. The applied solutions were allowed to set undisturbed for 

approximately 10 minutes at room temperature, and were then incubated at 37℃ for 24h.  
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Anti-biofilm Efficacy of Selected Therapeutics 

The ability of our selected therapeutics to mitigate biofilm infection was investigated as 

previously described, with minor modifications.59 A single colony of ATCC 6538-GFP was 

picked and placed into 4 mL of BHI culture medium, and placed into 37°C at 150RPM for 24h. 

The bacteria was then centrifuged to form a pellet, and re-suspended in PBS. 250 µL of this 

culture was put into 750 µL of PBS, and diluted by a factor of either 0, 103, or 105. Biofilms 

were grown by placing 20 µL of each designated bacterial culture (dilution factor 0, 103, or 105) 

into individual wells of a tissue culture coated 48-well plate, and supplemented with 500 µL 1% 

glucose(Sigma, #G7021) BHI (w/v) media. The biofilm was then placed into a 37°C incubator to 

grow statically for 24 h. All media was removed, and the biofilms were then gently washed with 

500 µL PBS. 75 µL of 2% alginate hydrogels loaded with fosfomycin, phage, or phage and 

fosfomycin (“dual”) were then placed on top of the biofilms. Additionally, two different controls 

were considered: empty 2% alginate hydrogels, and no treatment (only 1% glucose/BHI media 

applied). 400 µL 1% glucose BHI media was then placed on top of these hydrogels, and the 48 

well plate was incubated statically at 37 °C for 24 hours. All media was then removed, and the 

48 well plate was placed on ice for transportation to IVIS Lumina XRMS. Each well plate was 

imaged at 480-520 nm, then placed back on ice. Each well plate then underwent vigorous 

washing with 1mL PBS, which was then collected for subsequent plating for enumeration of 

bacteria. 

Optimization of Ultimate Bacterial Load on Orthopedic Screws 

A single colony of ATCC-6538-GFP was picked and placed into sterile culture tube with 

4 mL BHI media. This bacteria was grown at 37℃ at 150RPM for 24 hours. This culture was 

then centrifuged at 4000 RPM for 2 minutes, and re-suspended in PBS. Four different 1.5mL, 
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sterile tubes were then generated consisting of: 250µL of this culture, and 750µL of PBS. 200 µL 

of this culture/PBS solution was then placed into each individual well within a 96 well plate. 

Sterilized aluminum sheet metal was then placed over the wells of the plate, carefully. Sterile 

orthopedic screws were then placed through the aluminum foil gently using forceps, so that the 

head of the screw remained above the foil whereas the shaft of the screw was covered by the 

bacterial culture. To remove the screw from this setup, forceps tightly grasped the head of the 

screw and the aluminum foil was removed from around the screw. The screw was then placed 

into a clean, new 96 well plate to dry. To quantify the ultimate bacterial load, the dried screws 

were then placed into 1mL of PBS, vortexed to ensure homogeneity of the solution, and serially 

diluted as necessary. 100µL of the sample of interest was then spread onto BHI agar plates, and 

incubated for 24h at 37℃ for bacterial counting. Throughout this process, three variables were 

analyzed: (i) the bacterial load in each well, (ii) the dry time, and (iii) the time the screws 

remained within the culture. Effect of soaking time 

To analyze the effects of soaking time, screws were placed in 200µL culture diluted 10 

fold (~1.0x108 CFU in each well) for 5, 10, or 20 minutes. All screws were then dried for 5 

minutes before bacterial counting procedures were performed. 

Effect of Dry Time 

To analyze the effect of drying time, screws were placed into 200µL of culture diluted 

10-fold (~_1.0x108 __CFU/well) for 5 min. Screws were then carefully moved to a fresh 96 well 

plate, and dried for either 0, 5, or 10 minutes before bacterial counts were performed. 
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Investigation of Various Osteomyelitis Model(s) 

All procedures were performed in accordance with the Institutional Care and Use 

Committee of Mississippi State University, under IACUC protocol 17-097. Female, 13-week old 

(190-260g) Sprague Dawley Rats (Charles River) were used throughout the course of these 

studies. Upon arrival, all animals were quarantined for 3 days, during which time they were 

initially weighed, observed for any gross anatomical abnormalities, and allowed to acclimate to 

the animal facility. Rats were housed individually with 12h light/dark cycles and were provided 

food and water ad libitum prior to testing, and again after buprenorphine was cleared from their 

system. 

Aseptic, Pilot Model Considerations 

Prior to the introduction of bacteria into any model, aseptic pilot studies were performed 

to confirm efficient stability and bone healing to manipulated femurs. The first model-type we 

considered was pin fixation, due to the large prevalence of literature describing this 

model.133,135,142,178 The second model type we considered was a segmental defect, secured with a 

fixation plate. This model type was appealing as it would allow the additional consideration of 

bone healing with infection treatment. In both aseptic models, inadequate femoral stabilization 

resulted in adverse events of: early euthanasia, limping, swelling, and up to 15% weight loss(See 

appendix A). Thus, these models were abandoned in pursuit of implant-based models utilizing 

orthopedic screws (Osteomyelitis Models #1 and #2, described below). Future work could utilize 

either a pin model or segmental defect model, given necessary modifications to the surgical 

protocol.  
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Implant-based Models of Osteomyelitis: Overview 

Two implant-based models of osteomyelitis were considered in the course of these 

studies. In model #1, S.aureus ATCC 6538-GFP was delivered to the femur by PBS injection 

into a bicoritcal defect (McMaster Carr, #65), followed by placement of an orthopedic screw 

(Antrin Miniature Specialties Inc., #00-90, 303 stainless steel, Ø=0.047, ¼ length).At 14 days, 

phage was delivered to the site of infection by poloxamer 407 hydrogel. Control animals were 

sacrificed on day 14, as well. 

 

Figure 2.1 Overview of Model 1 

In model #1, S.aureus was injected into a bicortical defect, followed by placement of an 

orthopedic screw. At day 14, treatment(s) were applied and at day 20 (a 6 day treatment period) 

tissues were collected for further analyses. 

 

Due to inconsistencies in bacterial localization, and undesired severity of infection, 

modifications were made to model #1 to create model #2. In model #2 of osteomyelitis, S.aureus 

was delivered to the bicortical defect (McMaster Carr, #65),  on a pre- contaminated orthopedic 

screw(Antrin Miniature Specialties Inc., #00-90, 303 stainless steel, Ø=0.047, ¼ length). The 
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screw was soaked in approximately 200µL of 108 CFU/mL ATCC 6538-GFP for ~5 minutes, 

and dried for ~5 minutes prior to implantation Due to inconsistencies with gel synthesis, and 

poor maintenance of gelatinous form at the time of injection, poloxamer 407 was not used for 

model #2. Instead, a more standard 2% alginate gel was utilized to deliver therapeutics at day 7. 

 

Figure 2.1 Overview of Model #2 

In model #2, S.aureus was injected into a bicortical defect, followed by placement of an 

orthopedic screw. At day 7, treatment(s) were applied and at day 8 (a 24h treatment period) 

tissues were collected for further analyses. 

 

Implant-based Models of Osteomyelitis: Procedures 

General Surgical Procedure(s) for Infection Establishment 

For all surgical procedures, rats were anesthetized with isoflurane at an initial 

concentration of 2-3%, then kept at 1-2% for maintenance. Rats were administered slow release 

buprenorphine (1.0-1.2 mg/kg BW) pre-operatively for pain relief. Fur from the left hind leg and 

surrounding areas was removed with electric clippers, followed by application of depilatory 
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cream. An ear tag was also applied. Then, subjects were transferred to the surgical table, where 

the hind limbs were cleaned with alcohol and chlorhexidine and sterilely draped. After 

preparation of the site of surgery, the skin was incised with an anterior approach, from the level 

of mid-diaphysis to the patella, along the lower half of the femur. The muscle tissue was 

separated using blunt dissection along the muscle bundle divisions on the anterolateral side of the 

femur. Approximately 2 mm from the distal epiphysis, a bicortical defect was created with a 

pneumatic power drill (Conmed Hall #PRO6150), and a #65, uncoated drill bit (McMaster Carr), 

to create a defect approximately 0.035” inches in diameter.  

Infection Procedure for Osteomyelitis Model #1: S.aureus Delivery by Injection 

In osteomyelitis model #1, a 10µL PBS solution containing approximately 106 CFU of 

ATCC 6538-GFP was injected into the bicortical defect, and allowed to sit for 2 minutes 

undisturbed. Then, a sterile #00-90 stainless steel orthopedic screw (Antrin Miniature 

Specialties) was fastened to the defect using a 0.070” slotted screwdriver (McMaster Carr). 

Then, the superficial fascia lata (and subcutaneous tissues, if needed) and skin were closed with 

monocryl sutures. 

Infection Procedure for Osteomyelitis Model #2: S.aureus Delivery by Orthopedic Screw 

In osteomyelitis model #2, A #00-90 stainless steel screw (Antrin Miniature Specialties) 

was pre-contaminated with approximately 103 CFU of ATCC 6538-GFP as described within the 

in vitro methods above (see: “Optimization of Ultimate Bacterial Load on Orthopedic Screws”). 

It was then fastened into the defect using a 0.070” slotted screwdriver (McMaster Carr). Then, 

the superficial fascia lata (and subcutaneous tissues, if needed) and skin were closed with 

monocryl sutures. 
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General Surgical Procedures for Treatment Application 

On this assigned treatment day, all rats were anesthetized and the leg was cleaned for 

surgery as described above. The surgical site was re-opened along the previous incision line. All 

residual suture material was carefully removed, and in some cases, placed within PBS for future 

bacterial counting analyses. Again, the muscle tissue was separated using blunt dissection along 

the muscle bundle divisions on the anterolateral side of the femur. If pus was evident, it was 

removed. However, no debridement was performed. The orthopedic screw was removed using 

0.070” slotted screwdriver (McMaster Carr), and collected for bacterial counting. Approximately 

100µL of assigned therapeutic was then placed into the bicortical defect, which was able to fill 

the defect and the underlying, ventral surrounding soft tissue(s). Then, the superficial fascia lata 

(and subcutaneous tissues, if needed) and skin were closed with monocryl sutures. All animals 

were randomly assigned treatment groups and surgeons to minimize any additional variables. 

The radiance numerical data obtained for IVIS Lumina XRMS 24 prior to treatment was used to 

ascertain that there was an even distribution of infection severity among treatment groups. 

Treatment Procedure for Osteomyelitis Model #1: S.aureus Delivery by Injection 

In model #1, all animals were sacrificed (n=6) or given bacteriophage therapy (~MOI=5, 

n=5) in 30% (w/v) Poloxamer 407 (“P407”) hydrogel on day 14. All phage treated animals were 

sacrificed on day 20.  All screws were collected on day 14. Soft tissues and bones were collected 

for bacterial counts, SEM, and/or histological analyses on day 14 for the control group, and day 

20 for the phage treated groups.  
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Treatment Procedure for Osteomyelitis Model #2: S.aureus Delivery by Orthopedic Screw 

In model #2, all rats were treated on day 7 and sacrificed on day 8. The treatment groups 

(n=6) were as follows: (i) fosfomycin (3mg) (ii) phage (~MOI=5), (iii) dual (3mg fosfmycin + 

~MOI=5 phage) delivered in 100µL of 2% alginate hydrogels. All animals assigned to the 

control group (n=5) received 100µL empty 2% alginate hydrogel. All screws, soft tissues, and 

bones were collected for bacterial counts, SEM, and/or histological analyses. 

IVIS Imaging 

Throughout the course of in vivo studies, radiographs with fluorescent overlays were 

collected using the IVIS Lumina XRMS Series III system (Cole Palmer). In model 1, imaging 

was performed on days 1, 7, 13, and 15. In model 2, images were collected on days 1, 3, 6, and 8. 

For imaging, rats were anesthetized with 2% isoflurane, and maintained at 1-2% isoflurane for 

approximately 10-20 minutes, for the duration of the imaging process. For imaging, rats were 

placed in the right lateral recumbent position. For fluorescent imaging, images were read at 480-

520 nm. A circular region of interest (ROI) was collected from the IVIS system, from which an 

average radiance value per area covered ([p/s/cm≤/sr]) was automatically calculated and 

recorded. All images were normalized to day 1. 

ex vivo Work 

Bacterial Counts of Screws, Soft Tissue, and Bone 

Screws 

Screws were collected on the day of treatment application (in model 1=day 14, in model 

2=day 7). Screws were removed from the femur and immediately placed into 1 mL PBS. During 
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all processing procedures, the samples were kept on ice or at 2-4℃. All screws were vortexed at 

2000 RPM for 2 minutes, serially diluted 100-1000 fold, plated for enumeration. 

Soft Tissue 

Soft tissue samples were collected on day 20 for model 1, and on day 8 for model 2, 

immediately following animal sacrifice and tissue collection. During all processing procedures, 

the samples were kept on ice or at 2-4℃. Soft tissue samples were collected generously; all soft 

tissue immediately surrounded the femur was collected for analysis. This tissue was placed 

directly into 10mL PBS, cut into fine pieces using sterile scissors, then vortexed at 2000 RPM 

for 2 minutes. The sample was weighed, then serially diluted in PBS for subsequent bacterial 

plating.  

Bone 

Bone samples were collected on day 20 for model 1, and on day 8 for model 2, 

immediately following animal sacrifice and tissue collection. After careful acetabular and 

patellar disarticulation, and soft tissue removal, the femur was placed into 10mL PBS. During all 

processing procedures, the femur samples were kept on ice or 2-4℃. Each femur was initially 

broken using sterile bone rongeurs. Then, a homogenizer (Cole Palmer, LabGEN7) was used to 

thoroughly mince the samples. All samples were initially homogenized on a low setting (2-3) for 

approximately 2 minutes, and then at high (8-9) for 1 minute. Between samples, the homogenizer 

was cleaned with Ethanol and distilled H2O. All samples were then weighed, vortexed, and 

serially diluted in PBS for bacterial plating. 
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Histology 

In model #1, the entire, intact femur and surrounding soft tissues were histological 

processed on day 20. In model #2, the excised femur was broken along the screw line using bone 

rongeurs, at which point the distal portion was collected for histological analysis. All samples 

were initially placed into 10% formalin for 48h at room temperature. For bone samples, 

decalcification was performed for 2 days in Kristensen’s solution, then rinsed and placed into 

10% formalin. Tissues were routinely processed, embedded in paraffin, sectioned at 5µm, and 

stained with hematoxylin and eosin (“H&E”) or Saffarin-O/Gram (“Saf-O”). 

Scanning Electron Microscopy 

Screw Preparation 

Screw samples for microscopy were collected on treatment surgery day (model 1=day 14, 

and model 2=day 7). Screws were removed carefully from the infected femur and placed directly 

into 1 mL of 0.1M sodium cacodylate, ½ karnovsky’s ( 2.5% glutaraldehyde, 2% 

paraformaldehyde) fixative for 24 hours. Prior to imaging, all samples were placed onto stubs 

with carbon tape. All screw samples required additional support, and thus a permanent adhesive 

glue was positioned underneath the screw, on top of the carbon tape. These samples were then 

sputter coated (Quorom Tech Model # SC7640) at a plasma current of 30mA, and 3.5 kV, for 

approximately 3-5 minutes with Platinum. All samples were then imaged using FESEM (Carl 

Zeiss AG-SUPRA 40). 

Bone Preparation 

On day 20 (model #1) or day 8 (model #2), animals were sacrificed and the femurs were 

collected for SEM imaging. In model 2, only the portion of the femur proximal to the screw line 
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was analyzed. To prepare the samples for imaging, they were first broken into 1-3mm pieces 

using bone rongeurs. All samples were immediately placed into 5mLs of 0.1M sodium 

cacodylate, ½ karnovsky’s ( 2.5% glutaraldehyde, 2% paraformaldehyde) fixative for 24 hours. 

Prior to imaging, all samples were placed onto stubs with carbon tape. These samples were then 

sputter coated (Quorum Tech Model # SC7640) at a plasma current of 30mA, and 3.5 kV, for 

approximately 3-5 minutes with Platinum. All samples were then imaged using FESEM (Carl 

Zeiss AG-SUPRA 40). 
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CHAPTER IV 

RESULTS 

in vitro Work 

Chromosomal Integration of GFP into ATCC 6538 

Integration of GFP into ATCC-6538 was successful, as indicated by IVIS Lumina XR 

Series III micro-plate reader (SpectraMax M5), and Ex Vivo culturing of the selected strain. This 

strain enabled phenotypic characterization of our model throughout the course of infection 

progression and regression (Fig.4.3, Fig.4.4). 

 

Figure 4.1 Chromosomal Integration of GFP into ATCC 6538  

(Left) GFP is successfully integrated into ATCC 6538 in two strains. Ultimately, strain #1 was 

selected as it held a higher intensity of signal versus strain 2, as confirmed in plate reader 

(SpectraMax M5). Over the span of 7 days, the signal remained consistent per CFU present. 

(Right) GFP continues to be expressed within the ATCC 6538-GFP strain cultured ex vivo. 
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Kirby-Bauer Analysis of 2% Alginate Hydrogels 

Kirby-Bauer analysis was used to assess whether bacteriophage therapy was compatible 

with 2% alginate hydrogels. This preliminary work indicated that bacteriophage therapy still 

exhibited bactericidal activity within the gels, as indicated by the clear region within this agar 

plate (Left, far right bottom). 

 

Figure 4.2 Kirby-Bauer Analysis of 2% Alginate Hydrogels 

(Left) Phage loaded in 2% alginate gels has bactericidal activity, as indicated by the clear region 

of therapeutic placement. From top left, clockwise: 20µL, 15 µL, 5 µL, 10µL. (Center) From top 

left, clockwise: 5 µL phage, 20 µL phage, 20 µL empty 2% alginate gel, 5 µL empty 2% alginate 

gel. Alginate hydrogels appear to have no bactericidal activity, as expected. Phage therapeutic 

displays some bactericidal activity. (Right) From top to bottom: 20µL of phage, empty 2% 

alginate hydrogel, and phage +2% alginate hydrogels plated on bacterial lawns indicate that 

alginate and phage are compatible. 

 

Anti-biofilm Efficacy of Selected Therapeutics 

Utilizing IVIS Lumina XRMS and bacterial counts, the efficacy of our therapeutics at 6, 

12, and 24h was assessed.  
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Figure 4.3 Antibiofilm Plate Assay 

(From left to right) Biofilm plates with applied treatments at 6, 12, or 24 hours, where cool 

colors indicate lower levels of S.aureus, and warm colors indicate a higher prevalence of 

S.aureus. 

 

 

 

Figure 4.3 (continued) Antibiofilm Assay: Bacterial Counts 

(Top left) Bacterial counts collected at 6, 12, and 24h reveal that our selected therapeutics did 

have efficacy on cultured biofilms, relative to the untreated control. 
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Optimization of Ultimate Bacterial Load on Orthopedic Screws 

Based on bacterial counts, the amount of soaking time is positively related to the ultimate 

bacterial load on the screws. At 5, 10, and 20 minutes the average load(s) are 9.9x103, 3.6x104 , 

and 8.3x104, respectively. 

 

Figure 4.3 Effect of Soaking Time on Screw Bacterial Load 

Soaking time appears to be positively correlated to bacterial load. 

 

 

Figure 4.3 Effect of Drying Time on Screw Bacterial Load 

Dry time (0-10 minutes) does not appear to have a large effect on S.aureus viability. 
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Osteomyelitis Model #1 (Delivery of S.aureus by Injection) Results 

in vivo Results 

Clinical Signs of Osteomyelitis 

On day 14 (treatment day) all rats presented with pus along the femoral surgical site. In 

several rats, the area surrounding the femur remained swollen throughout the course of infection 

(mild-moderate). Porphyrin staining of the eyes and nose was common.  

IVIS Imaging 

IVIS imaging of rats from model #1 indicate that both the location (Fig.4.3) and the 

severity of infection (compare Rat A,B, and C on day 1 of Fig.4.3) varied among subjects. The 

average signal at days 1, 7, and 13 were: 5.16x108, 1.18x108, and 1.66x108 [p/s/cm≤sr], 

respectively. Pre-treatment (day 13) signal ranged from: 8.46x107-1.60x108 [p/s/cm≤sr]. 

.  

Figure 4.4 Model 1 Representative IVIS Images at Day 1, 7, and 13 

Presence of bacteria, indicated by the presence of color, in representative rats A, B, and C is 

observed at days 1, 7, and 13.  In this model, we see inconsistent localization of bacteria, with a 

magnitude of 109 photons, as indicated by the scale bar. 
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Ex vivo Results 

Bacterial Counting 

Bacterial counts performed on day 14 on orthopedic screws ranged from 9.55x103- 

2.32x105CFU. The average recovered bacteria on these screws was 5.25x104 CFU. The average 

soft tissue counts for control groups, collected on day 14, was 2.41x106. The average soft tissue 

bacterial counts for phage treated groups, collected on day 20, was 2.75x106. No statistical 

differences existed between these two groups (p=0.8562). The average recovered bacterial 

counts from bones were: 9.09x105 in control groups (collected at day 14), and 2.06x106 in the 

phage treated group (collected at day 20). The bone bacterial counts were found to be 

significantly different, and higher, than those of the control group (p=0.0476). 

Soft Tissue 

 

Figure 4.5 Figure 4.4 at Day 20 

No statistical differences exist between the control and phage treated groups (p=0.8562, unpaired 

t-test). We note inconsistent bacterial counts among groups, indicated by the range of data points 

visualized above. 
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Bone 

 

Figure 4.6 Figure 4.5 at Day 20.  

Control and phage treated groups are statistically different (p=0.0476, unpaired t-test). 

 

Histology 

Histological analysis included H&E stains of infected and uninfected bone, and Saf-

O/gram stains of infected bone samples. Histology results indicate successful establishment of 

osteomyelitis, with “hallmark” symptoms such as necrotic bone (Fig.4.6A-B), inflammation 

(Fig.4.6C), and evidence of gram positive bacteria (Fig. 4.6E-F).  
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Figure 4.7  Figure 4.7 

(A-C): Infected samples; (D): Uninfected control samples. (A).Within the S.aureus infected bone 

there are multifocal areas of inflammation with bone necrosis (*) surrounding by marked 

medullary and cortical bone proliferation. (B, C): Higher magnification of areas of inflammation 

demonstrate abundant neutrophils with fewer macrophages and reactive fibroblasts. In (B) the 

area of inflammation surrounds a piece of necrotic bone (*). (D): Normal control bone with 

normal cortical thickness and medullary bone marrow. 

 

 

Figure 4.7 Model #1 Histology: Saf-O/Gram Strains 

(E-F) Clusters of gram positive bacteria within marrow and areas of remodeling. Some bacteria 

appear to be within macrophages. 
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Scanning Electron Microscopy 

Scanning electron microscopy (SEM) of excised screws and control bones at day 14 

further support the successful establishment of osteomyelitis in our rat model. We see clusters of 

gram positive bacteria within the threading of excised orthopedic screws as well as residual 

glycocalyx fibers (Fig.4.7A-B). Processed bone tissues also show evidence of S.aureus deep in 

bone canniculi (Fig.4.7C-D). 

 

Figure 4.8 Model #1: SEM at Day 14  

(A-B) Gram positive bacteria and glycocalyx formation are seen within the ridges of a screw 

excised at day 13 at various magnifications. (C-D) Robust biofilm formation and gram positive 

bacteria growth is apparent in internal cortical bone samples from infected tissues. 

 

Osteomyelitis Model #2 (Delivery of S.aureus by Orthopedic Screw) Results 

in vivo Results 

Clinical Signs of Osteomyelitis 

On day 7 (treatment day) a few rats presented with pus along the femoral surgical site. 

Only mild swelling and porphyrin staining of the eyes and nose were noted.  
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IVIS Imaging 

IVIS images collected from model #2 reveal consistent localization of bacteria along the 

screw line, as anticipated (seen by the rainbow colors in Fig. 4.8). Furthermore, the severity of 

infection remained similar across different animals: on day 6 (pretreatment) signals ranged from 

4.24x107-1.48x108.The average signal at day 6 (pre-treatment) was 9.11x107 [p/s/cm≤sr]. 

 

Figure 4.9 Model #2 Representative IVIS Images at Day 1, 3, and 6 

In Rats A, B, C and D, the location of S. aureus is predictable (at the screw) and consistently 

maintained in this location as infection develops. We also note an ultimate lower bacteria load 

versus Model 1, as indicated by the photon magnitude of 108 within the scale bar. 

 

Ex vivo Results 

Bacterial Counting  

Using Sidak’s multiple comparisons tests, significant differences were determined 

between four groups: (i) control v. fosfomycin (p=0.0083), (ii) control v. dual therapy 
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(p=0.0105), (iii) fosfomycin v. phage (0.0139), and (iv) phage v. dual (p=0.0178). The average 

bacterial counts (CFU/mL) per bone tissue treatment group were as follows: (i) control: 

1.15x104, (ii) fosfomycin: 3.91x103, (iii) phage: 1.06x104 and (iv) dual: 3.49x103. Soft tissue 

bacterial counts were not significantly different (One way ordinary ANOVA p=0.131). The 

average bacterial counts (CFU/mL) per soft tissue treatment group were as follows: (i) control: 

9.07x104, (ii) fosfomycin: 2.28x104, (iii) phage: 2.13x104 and (iv) dual: 4.32x104. 

 

Soft Tissue 

 

Figure 4.10 Figure 4.9 at Day 8 

No statistical differences exist between soft tissue bacterial counts within model 2. (One way 

ordinary ANOVA p=0.131).  
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Bone 

 

Figure 4.11 Figure 4.10 at Day 8 

Significant differences were determined between four groups: (i) control v. Fosfomycin 

(p=0.0083), (ii) Control v. dual (p=0.0105, n=6), (iii) Fosfomycin v. phage (0.0139), and (iv) 

phage v. dual (p=0.0178).  

 

Scanning Electron Microscopy 

Scanning electron microscopy reveals evidence of successful osteomyelitis establishment 

in model #2. Screws collected at day 7 reveal thick layers of S.aureus within the ridges of 

orthopedic screws (Fig.4.12). On pieces of bone subjected to SEM, gram positive cocci are 

visible sporadically among the cortical bone (Fig.4.12), with evidence of biofilm slime (Fig.4.12, 

right). 
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Figure 4.12 SEM of Screws Collected at Day 7 

(Left) Gram positive cocci, and potential underlying biofilm, is evident on the distal portion of 

the orthopedic screw excised at day 7. (Right) Bacteria fills the threading of the orthopedic 

screws excised at day 7.   

 

 

 

Figure 4.13 SEM of Bone Tissue Excised on Day 8 

Bacteria are found within the various surfaces of cortical bone. (Right) Indications of biofilm, in 

which S.aureus is presumably suspended within, is apparent. 

 

Model #1 and Model #2: Comparison of Average Bacterial Counts in Soft Tissue and Bone 

As mentioned previously, model #2 was generated in response to shortcomings found 

within model #1. Model #1 was induced with ~106CFU bacteria, whereas model #2 was induced 
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with ~103 CFU bacteria on the orthopedic screw. In table 4.2, we see that these initial bacterial 

loads are reflected in final bacterial counts.  

Table 4.2 Comparison of Average Bacterial Counts Between Model #1 and #2 

 Model #1 Model #2 

Soft Tissue 

Counts 

Control 2.41x106 9.07x104 

Phage 2.75x106 2.13x104 

Bone 

Counts 

Control 9.09x105 1.15x104 

Phage 2.06x106 1.06x104 

In the table above, we see evidence that model #2 successful generated a less severe infection 

than model#1, based off of average bacterial counts from phage and control samples.  
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CHAPTER V 

DISCUSSION 

Infections induced by antibiotic resistant strains of bacteria are increasing in prevalence 

throughout the world, resulting in tremendous economic turmoil and negative outcomes for 

patients, with no immediate end in sight. This has created a great need to identify and 

commercialize novel therapeutics, to overcome the ongoing insufficiency of bacterial killing 

offered by traditional antibiotics. Bacteriophages may be suitable to fill this niche, as they exhibit 

bactericidal activity, are highly specific, non-toxic, and are readily cleared from the body. 

Largely, the use of these antimicrobials has been limited thus far due to the public opinion 

towards voluntarily taking viruses, and because of the specificity exhibited by each 

bacteriophage, which can hinder the ability of clinicians to rapidly treat infection. With CRISPR-

Cas9 modification, it may be possible to extend the specificity of bacteriophage therapeutics to a 

variety of pathogens, thus enhancing the appeal and utility for clinical application. Bacteriophage 

therapeutics would also circumvent the current antimicrobial crises, as risk for bacterial 

modification is low with exposure to these viruses over time. Within this study, we thus aimed to 

lay the groundwork for future CRISPR-Cas9 bacteriophage use, motivated by preliminary in 

vitro work on S.aureus LAC biofilms (Appendix A, FigureA.1).  
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in vitro Investigations 

Cytation5: Preliminary Work (Appendix A) 

Largely, this work was motivated by preliminary work treating biofilms with antiobiotics 

(vancomycin or fosfomycin) or bacteriophage (appendix A), which were then imaged using the 

Cytation5 software system. With this system, bacterial presence (green) indicated poor 

therapeutic action. Black panels were ideal results, indicating full bacterial clearance. 

Surprisingly, preliminary results indicated that fosfomycin was more effective at nearly a tenth 

lower dose (128 µg/mL) than vancomycin (1024 µg/mL) on biofilm lawns. This difference in 

bactericidal efficacy may be due to the glycocalyx surrounding the developed biofilm, and the 

previously mentioned mechanisms of each drug. Vancomycin, with its larger size, may have a 

more difficult time reaching the live, underlying later of Staphylococcus aureus within biofilm 

than the smaller Fosfomycin molecule. Also, the extracellular matrix of biofilms is sustained by 

a protective layer of dead staphylococcal cells. Vancomycin may be attaching to these cells, and 

is thus not reaching the live cells. Fosfomycin, on the other hand, would not act on these dead 

cells and thus have greater efficacy in disrupting biofilms. Within this work, we also note that a 

phage MOI of 10 is ideal for bacterial clearance.  

Bacteriophage Therapy: Advantages and Disadvantages  

As previously discussed, CRISPR-Cas9 modified bacteriophage was utilized within the 

study. This therapeutic had two mechanisms of action: (i) “traditional” bacteriophage lysing, and 

(ii) CRISPR-Cas9 “cutting” mechanism of bacterial cell wall. Phage are not known to be 

susceptible to bacterial resistance efforts, are highly specific, readily available in the 

environment around us, and have been used with great success in the country of Georgia. In 

cases of biofilm, phage may also prove superior to traditional antibiotics because it will not bind 
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to the dead Staphylococcal cells surrounding the underlying, live layer of bacteria and thus 

become ineffective. As seen in this study, a potential disadvantage of this therapeutic is delivery 

and optimal dosing of this therapeutic. In the current clinical scenario, there is not a library of 

phage readily available for use, as seen in the country of Georgia. For effective treatment of 

polymicrobial infections, or patients in critical care, it would be essential to have quick and easy 

access to a variety of bacteriophage(s). Bacteriophage therapeutics would need to be mass 

produced and carefully maintained to ensure virus vitality. 

Integration of GFP into ATCC 6538-GFP: Implications and Advantages 

Integration of GFP into S.aureus ATCC 6538 was successful (Fig.4.1), enabling the 

longitudinal analysis of bacterial growth for future in vitro and in vivo investigations. The 

genetic incorporation of this fluorescent protein into our bacterial genome was performed in an 

effort to address some of the downsides of conventional bioluminescent bacterial strains. Our 

strain may allow longitudinal analyses superior to conventional bioluminescent imaging (“BLI”), 

as our strain can hypothetically be imaged indefinitely. Conventional BLI bacterial strains have 

the capabilities to lose their luminescent signal over time, limiting time course studies and in vivo 

studies seeking long-term analyses. 

There are some disadvantages to the use of a GFP-tagged bacterial strain. BLI is 

generally detectable at a lower level than GFP, which would be useful in less severe infection 

models. In one study, only 50 luciferase-tagged cells were needed for BLI detection, versus 

nearly 5x10^5 GFP-tagged cells.181 Furthermore, researchers have to be careful not to introduce 

auto fluorescent materials within their studies when utilizing GFP-tagged bacteria. Some 

common materials which can fluoresce are collagen, certain hydrogels, cell culture medium, and 

genipen.181 There is also the potential of GFP to emit a signal after cell death. Furthermore, 
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within this work we were not able to establish a direct standard curve correlation CFU to emitted 

signal. In other work, BLI signal has been successfully correlated to CFU.182 

Kirby-Bauer Assays 

Phage therapeutics were successfully loaded into alginate hydrogels, and were found to 

exhibited no adverse effects on the therapeutics, as supported by Kirby-Bauer assays (Fig.4.2), 

which was consistent with reports of other studies utilized hydrogel delivery vehicles for 

bacteriophage therapeutics.44  

Antibiofilm Assays 

Currently, there exist no commercially available release profile for assays for fosfomycin 

or bacteriophage therapeutics. In an effort to: (i) characterize the release profile of 2% alginate 

gels loaded with fosfomycin, phage, or fosfoymcin + phage and (ii) confirm the efficacy of these 

therapeutics on ATCC 6538-GFP biofilm, a previously described antibiofilm assay was 

modified.59 IVIS Lumina XRMS data output confirmed the efficacy of therapeutics against 

biofilm (Fig. 4.3). Subsequent bacterial counts from these assays were successfully utilized to 

generate graphs of both signal intensity changes over time(Fig.4.3), and bacterial counts over 

time (Fig.4.3), which indicated that our selected therapeutics were successful in mitigating 

infection, relative to the untreated control. Through optimization of: bacterial culture magnitude, 

soaking time, and drying, we demonstrate the ability to consistently deliver  CFU on orthopedic 

screws. For future studies, this data may be utilized to induce infections of various magnitudes.  

Antiseptic Model #1 and Model #2 

In this study, two different antiseptic models were considered. In model #1, a Kirschner 

wire was used. Unfortunately, we saw rotation about the wire itself, which resulted in poor health 
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and spontaneous fracture within our rats. For ethical reasons, we decided to try another model. In 

aseptic model #2, a fixation plate was used. The plate consisted of a variety of parts we had 

created by a small company in Tupelo, MS. Again, this method of stabilization did not work, and 

spontaneous fracture and imcomplete healing of the defect was noted. We believe that this 

model, like aseptic model #1, did not allow adequate stabilization. It is possible the designed 

components of the fixation plate were not manufactured properly.  

in vitro and ex vivo Investigations of Osteomyelitis Model #1 (Delivery of S.aureus by 

Injection into the Bicortical Defect) 

Within this work, we investigated two different osteomyelitis models. In model #1, 

infection was induced by injection of S.aureus into a bicortical defect. In this model, there was a 

two week infection period, and a 6 day treatment period. Successful establishment of infection 

was confirmed by multiple platforms. On surgery days, pus was evident in all subjects. IVIS 

Lumina XRMS imaging (Fig.4.3) allowed successful, longitudinal tracking of infection over 

time. However, IVIS results indicated inconsistent localization of bacteria in this model, and 

evidence of unintended soft tissue infection. Histological analyses revealed typical hallmarks of 

infection, such as: necrotic bone, abundant neutrophils, inflammation, and gram positive bacteria 

(Fig4.6).  Scanning Electron microscopy revealed gram positive bacteria within the ridges of 

excised orthopedic screws and on pieces of bone (Fig.4.7). Within SEM images, evidence of 

residual glycocalyx is also apparent. Finally, bacterial counts were performed to quantify the 

bacteria present on orthopedic screws on day 14, and the effect of phage therapy on soft tissue 

and bone samples 6 days after treatment (Fig.4.9,4.10). Interestingly, the only significant 

differences we extrapolated from the bacterial counts were between the phage-treated and control 

bone samples. The bacterial counts of the phage treatment group were determined to be 
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significantly greater than the control group (p=0.0476). We attribute these results to a variety of 

factors. First, the 6 day treatment period was not ideal, given the single, 100 µL treatment 

applied. Realistically, this treatment may have been cleared from the body in 24h. Furthermore, 

this was a very robust infection. It is possible that the infection would have continued to increase 

in severity given any treatment under these conditions. Furthermore, some literature reports the 

capacity of S.aureus to respond to mechanical and chemical stimuli aggressively when it is an 

insufficient dose to induce cell death, resulting in greater biofilm formation or generation of 

SCVs.17–19,183 in vivo and ex vivo Investigations of Osteomyelitis Model #2 (Delivery of S.aureus 

to the Bone by Orthopedic Screw) 

Due to inconsistent localization of infection, variance in bacterial counts, and the inability 

of our therapeutics to lower infection over a span of 6 days, model #1 was abandoned in pursuit 

of model #2. In model #2, several key protocol changes were made to address the issues seen in 

model #1: (i) a lower initial dose of bacteria was introduced to animals, (ii) the infection period 

was reduced from 14 days to 7 days, (iii) the treatment period was limited to 24h, (iv)bacteria 

was delivered to the femur by orthopedic screw, and (v) the use of a 2% alginate hydrogel 

instead of poloxamer 407. 

Ultimately, we believe these to be positive decisions, based on the outcomes of IVIS 

Lumina XR images, histology, SEM, and bacterial counting. IVIS images revealed consistent 

infections localized along the screw line (Fig.4.8). SEM revealed that despite the changes we 

made to our in vivo protocol, gram positive bacteria were still easily detected among the excised 

orthopedic screw and ex vivo bone tissue, indicating infection establishment (Fig.4.11,4.12).  

Significant differences were found in several of the bone bacterial count groups: (i) 

control v. fosfomycin (p=0.0083), (ii) control v. dual therapy (p=0.0105), (iii) fosfomycin v. 
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phage (0.0139), and (iv) phage v. dual (p=0.0178). Soft tissue bacterial counts were not 

significantly different (One way ordinary ANOVA p=0.131). However, a trend suggests that 

there was an effect of treatment on ultimate soft tissue bacterial load, albeit variation among 

samples. This may be due to the differing immune systems of each subject, surgeon error 

(dropping screw during placement or removal), or variation in cultured screws.  

Although fosfomycin treatment was successful in lowering bacterial load versus the 

control and phage groups, it should be noted that it was administered at a much higher dose than 

typical. In humans, an oral dose falls around 3g and intravenous doses fall around 12-16g, and up 

to 20g for life threatening infections.184 In our rats, we administered ~3mg per rat. 

Comparatively, the phage therapeutic was administered at a low dose (~MOI=5). Given a higher 

phage dose, it is possible that the efficacy of fosfomycin could be matched. 

Infected Models #1 and #2: Summary and Discussion 

Animal Choice 

Within our animal studies, rats were used. Rats are a good selection for initial screening 

of novel therapeutics, but do not ultimately closely simulate the clinical scenario. Rodents are 

capable of withstanding, comfortably, high doses of Staphylococcus aureus. In model#1, ~1x106 

CFU bacteria were introduced into the defect, and in model #2 ~103 CFU were introduced into 

the defect. In humans, fewer Staphylococcal cells are needed to induce infection of the bone. 

What may contribute to the greater tolerance seen in rats is the lack of a S.aureus virulence 

receptor, which is found in humans. For this reason, rabbits may be a more viable choice for 

future osteomyelitis studies, as they are still a “small” animal, but have these virulence 

receptors.153 
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Similarities and Differences to Clinical Scenarios 

In this work, ATCC 6538-GFP was utilized. This strain was originally isolated from 

human lesions. This strain also generates biofilms, one of the most common reasons for 

orthopedic hardware failure and/or persistent, chronic infections in humans. For this reason, we 

claim that the bacteria used in the work herein mimics the clinical reality.  

In both models, the orthopedic screw was removed, which is standard for most revision 

surgeries involving contaminated orthopedic hardware (when the stability of the limb has not 

been compromised). For our research purposes, this was necessary to allow delivery of the 

therapeutics. It also enabled us to do bacterial counting assays on the screw themselves. In the 

true clinical scenario, a sterilized, new screw would typically replace the older, contamined 

screw. We did not do this; we did not want our therapeutics forced out of the infected defect 

space. Furthermore, by not replacing the screw in the “treatment period,” the use of this model 

can be extended to analyzing scaffolding, such as: cements, fibrous networks, and more rigid or 

semi-permanent materials. 

In model #2, the model used for the full animal study, bacteria was introduced through 

contaminated orthopedic screw(s). Although this is possible in the clinical scenario, it is not the 

most common cause of osteomyelitis. In the modern world, orthopedic hardware is more readily 

sterilized than ever before and thus we see less of this type of infection.  

Currently, the majority of osteomyelitis cases are found within the immunocompromised 

communities.185,186 Within this study, our rats were healthy prior to bacterial introduction, and 

were not immune-compromised in any way. To more accurately depict the true nature of 

osteomyelitis, and treatment difficulties, animals with diabetes or cardiac diseases would be 

more suitable for translation of results to the true clinical scenario. In diabetic patients, for 
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example, there is oftentimes limited vascularization. This can lead to necrotic extremities, which 

are a common place for infection to begin.186 Furthermore, these patients have a more limited 

capacity to fight infection.186 The rate of osteomyelitis is 4 times higher in the diabetic 

population than non-compromised, healthy individuals.186 

As mentioned previously, typical chronic infection is characterized by a 6 week period of 

persistent infection. Within this study, our infection period lasted only one week. We were 

limited by many factors which made accomplishing the “typical” human chronic infection 

impossible. A longer infection period results in additional time and economic constraints. 

Furthermore, to induce such an infection, we would have to administer a much lower dose of 

bacteria or continuously introduce antibiotics into the rat system. However, rats can rapidly clear 

small doses of S.aureus, making this difficult. Administering antibiotics consistently would have 

introduced another variable into our study, and potentially altered the effects of future 

therapeutics. Furthermore, we did not want to induce an infection so severe it would be 

impossible to treat. 

Another difference between our model and the clinical scenario is that we did not induce 

debridement, a gold standard for osteomyelitis treatment. Future studies may want to incorporate 

this into the surgical protocol. 

Therapeutic Regimen 

Within this study, a single 100 µL dose of selected therapeutics were applied to the 

infection site, and animals were sacrificed after 24 hours. Typical osteomyelitis treatment 

involves up to 3 months of continuous antibiotic administration, highlighting the true bold nature 

of our therapeutic regimen. Although our regimen does not simulate the clinical scenario, or 
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allow for full infection mitigation, it does offer insight on the potential of our therapeutics to 

clear infection. 

In this study, bacteriophage was administered at a low dose (~3-5 MOI). In preliminary 

work (appendix A), we noted that an MOI of 10 was needed to effectively clear infection. In this 

work, we were limited in the amount of phage we could deliver in a single, 2% alginate gel 

loaded 100 µL treatment, and thus could not deliver an MOI > ~3-5. It should also be noted that 

the in vitro conditions allowed optimal localization of therapeutic on top of biofilms. in vivo 

work allows the bacteria to “hide” within the bony host, motivating an MOI of greater than 10 to 

match in vitro efficacy (appendix A). 

Fosfomycin was administered, in contrast, at an extremely high dose (~3mg per 

treatment). In humans, this high of a dose is not recommended or typical used. Within the rat 

system, however, higher levels of antibiotic can be tolerated. Surprisingly, this extremely high 

dose was also unable to clear infection.  

In this study, the dual treatment utilized the same doses as phage and antibiotic 

monotherapy. Both therapeutics were administered at the same time. Ideally, a pilot study would 

be dedicated to optimizing the timing and dose of these two therapeutics when used in 

combination with one another. Additionally, it should be noted that the combination of these two 

therapeutics within 2% alginate hydrogels resulted in the most rigid gels, when compared to the 

controls or monotherapy. It is possible this altered the release of these therapeutics in vivo.  

In model #2, we note that phage appears to have more efficacy in soft tissues than in 

bone. This may be due to insufficient delivery of phage to the infected, bony defect site: our 

therapeutics were allowed to “pool” into the soft tissue below the femur, as the defect size has 

limited volume for therapeutic injection (~6-10uL). Alternatively, it could be an issue of phage 
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locomotion within the bone. Future studies are warranted to determine whether phage is more apt 

for soft tissue infections versus osteomyelitis. 

In conclusion, our therapeutic regimen offered temporary bacterial reduction but future 

work will require sustained, greater doses of therapeutics to truly alleviate infection. Greater 

doses of phage are needed to see true bactericidal activity. 

Applications 

Within current literature, there is great discussion of “the race to the surface” between 

native cells and bacterial cells for implant material(s). Currently published osteomyelitis models 

do not generally allow for the study of this phenomenon. Although it is inconsistent and severe 

infection, model #1 could be used to simulate this process in future work.  

As discussed above, model #2 does have its downsides, as any typical animal model 

would. However, it has the potential to be a rapid platform for testing novel therapeutics and 

delivery vehicles. This model has many key advantages (discussed in more detail above): (i) a 

rapid testing period, (ii) longitudinal tracking of infection, (iii) low costs, relative to other models 

and (iv) a severe infection, which would only reveal infection reduction for strongly bactericidal 

agents. 

Limitations 

Within the majority of this work, Staphylococcus aureus and CRISPR-Cas9 modified 

bacteriophage virus were utilized. Naturally, there exist variations between both living systems 

over time. It is difficult to perfectly replicate the load of bacteria or virus day to day, which may 

have had minor effects on procedures performed over multiple days.  
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The IVIS Lumina XRMS system was useful for tracking infection localization, and 

changes over time, but was limited in its ability to provide quantification of bacterial load. The 

generation of a standard curve, correlating CFU to signal output was pursued, but could 

ultimately never be generated. The IVIS system measures signal strength “relatively;” meaning, 

only the highest region of fluorescence will be displayed upon analysis. It is likely there is more 

bacteria surround the femur, but its signal was 1-2 log difference than the most apparent area of 

bacterial proliferation.187 Furthermore, it was not possible to image rats in precisely the same 

manner each trial, resulting in images that may be misleading, depending on rat orientation. See 

appendix E for more information on IVIS system image normalization, and numerical data 

collection. 

in vivo testing also has its limitations. Rats vary in size and naturally have different gut 

flora and immune systems, which could alter their responses to infection188 Animal research can 

be expensive, time consuming, and the biology of animals are never identical. Furthermore, we 

would ideally test both male and female rats. Within this study, our work was limited to only 

female Sprague Dawley rats. Additionally, our results are limited by the relatively small number 

of animals per treatment group in this study (n=5-6). Given a larger n, there is potential for more 

significant differences in bone and soft tissue bacterial counts per treatment group.  

Future Work 

On-going work aims to increase the power of our results from model 2, by increasing our sample 

size. This work will serve as a platform for future CRISPR-Cas9 osteomyelitis studies.  

For future studies, novel biomaterials should be considered for therapeutic delivery of 

osteomyelitis therapeutics. Within this work, we were unable to sustain the release of our 

therapeutics from poloxamer 407 or 2% alginate hydrogels, and thus effectively clear infection. 
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In the future, we hope to explore treatment regimens lasting longer than 24h, enabling a larger 

dose of phage treatment. With a longer treatment regimen, it may also be possible to assess 

additional parameters of infection mitigation. Pull out testing could characterize bone strength of 

experimental groups, and offer insight into the osseo-integration of the orthopedic screw with the 

native bone.  

Additional changes that could be performed for future studies are lower initial bacterial 

doses, the use of immunocompromised rodents, and the inclusion of surgical debridement.  

 

.   
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CHAPTER VI 

CONCLUSION  

Within this work, we have successfully developed a model of implant-related 

osteomyelitis. Our model is straight forward, enables longitudinal monitoring of infection 

(hypothetically indefinitely), and mimics the clinical reality of contaminated implant materials. It 

enables rapid testing of novel delivery vehicles, screw coatings, scaffolding, and antimicrobials. 

It is a challenging model; biofilm is particularly difficult to penetrate, and the bone architecture 

provides a space for pathogens to evade antimicrobials. However, the ability of novel 

therapeutics to minimize infection in this model would, for these reasons, point future 

researchers towards a truly promising therapeutic option.  

In this work, we provided evidence for the potential use of bacteriophage therapeutics for 

infection mitigation. Phage therapy has many positive qualities over conventional antibiotics; for 

one, they can be genetically engineered to kill a wide range of positive and negative gram 

bacteria.189  They can be made quite readily in vitro, and at a low cost. There are also no known 

side effects of administration of bacteriophage therapeutics; they are highly specific, non-toxic, 

and are readily cleared from the body. CRISPR-Cas9 gene editing software is a largely  

“untapped resource” for bacteriophage improvement, and should be considered for future 

research efforts. Given these promising assets, we believe bacteriophage therapeutics warrant 

further examination as a potential therapeutic for not only osteomyelitis, but for infections 

induced by antibiotic resistant bacterial strains.
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APPENDIX A 

EVIDENCE OF CRISPR-CAS9 MODIFIED BACTERIOPHAGE EFFICACY IN VITRO  
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Previously, it was demonstrated that the CRISPR-Cas9 system could be utilized for 

manipulation of the bacteriophage genome (REF). Thus, treatment of biofilms with 

bacteriophage modified by CRISPR-Cas9 (“φCas9”) compared to traditionally used antibiotics 

was explored.  

 

Figure A.1 Cytation5 Investigation of CRISPR-Cas9, Vancomycin, and Fosfomycin Biofilm 

Treatment 

For in vitro biofilm studies, a 6-well tissue culture plate was pre-coated with 2% human serum 

for 24 hours, after which a GFP-integrated strain of S. aureus ATCC 6538 was cultured in tryptic 

soy broth (TSB) supplemented with 2% glucose for 72 hours. After gentle washing with PBS, 

TSB supplemented with vancomycin (256, 512, or 1024 μl) or φCas9 (5, 10, or 25 multiplicity of 

infection (MOI)) was added to the biofilm and incubated for 24 hours before analysis (Cytation 

5). For in vivo evaluation, a bicortical cylindrical defect was created in the femur diaphysis of 

female SD rats. Bone wax was used to temporarily seal the ventral portion of the defect, 10 μL of 

106 or 107 CFU of S. aureus (n=3) was injected, and a screw was placed in the defect. S. aureus 

colonization of the femur over time was detected via IVIS Lumina XRMS. 
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APPENDIX B 

ABANDONED ASEPTIC MODELS 
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As mentioned in the methods, both pin and fixation plate fixation in aseptic pilot studies 

were considered when trying to identify an appropriate model of osteomyelitis. In the pin 

fixation model, adequate stabilization to the rat femur was not provided (Fig B.1). In the 

segmental defection/fixation plate model, bone union was never achieved over 28 days, and thus 

this model was abandoned. 

 

Figure B.1 Pin Fixation in an Aseptic Pilot Study 

Two different rats used in the pin fixation aseptic pilot studies were euthanized due to 

misalignment of femur and lack of stability affecting locomotion. 
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Figure B.2 Segmental defect/ Plate Fixation in an Aseptic Pilot Study(continued) 

Although a non-critical segmental defect (3mm) was generated, the proximal and distal femur 

pieces failed to unite.  
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APPENDIX C 

STATISTICS  
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All statistical analyses were performed using the GraphPad Prism 8 software system. 

Significance was confirmed when p ≤ α of 0.05. 

Model 1: Bacterial Counts 

As there were only two groups to compare, an unpaired two tailed t-test was used to 

compare the two groups.  

Model 2: Bacterial Counts 

For all bacterial counts in model 2, an Ordinary one-way ANOVA analysis was 

performed, with a Sidak’s multiple comparisons test to compare experimental groups. 
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APPENDIX D 

CHROMOSOMAL INTEGRATION OF GFP INTO ATCC 6538: ADDITIONAL DETAILS & 

FIGURES 
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Methods (extended) 

Isolation of pTH100, GFP harboring plasmid, from initial E.Coli strain 

Bacterial strain DH5α harboring plasmid pTH100, the GFP reporter, was purchased for 

experimental use (Addgene, #84458). This strain was propagated in a 5mL LB + ampicillin 

culture medium, as the given bacterial strain was characterized by the provider as having 

ampicillin resistance. To isolate the desired pTH100 plasmid from this strain, 4.5mL of this 

bacterial culture was first pelleted using a centrifuges and all culture medium was carefully 

aspirated off. A QIAprep Spin Miniprep kit (QIAGEN) was then used. 

Confirmation of DH5α-pTH 100 isolation was then confirmed with standard 

electrophoresis. A 0.8% agarose gel was generated with Tris acetate and EDTA (TAE) buffer. 

This solution was then microwaved from 1 min, at which time a 1:10,000 ratio (4uL) of 

Ethidium Bromide (EtBr) was added. This solution was thoroughly mixed, and casted for 

loading of DNA samples. 3 µL of the collected DH5α-pTH100 and a 1kB DNA ladder 

(Thermoscientific, Generuler) were placed into the generated wells with 2uL dye for 

visualization of ladders. Electrophoresis was then ran for 50 minutes at100V. Residual DH5α-

pTH100 was then labelled and placed into a 2-4℃ refridgerator until use.  
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Figure D.1 Electrophoresis of isolated DH5α-pTH100 

(Left) A 1 kB DNA ladder serves as a control for this procedure. (Right) A thick ladder forms as 

a result of our plasmid isolation procedure, indicating successful isolation of the DH5α –pTH 

100. 

 

Electroporation of competent S.aureus strain RN4220 for DH5α-pTH100 uptake  

On ice, 8uL of isolated pTH100 was added to competent S.aureus RN 4220 strain, and 

gently mixed and allowed to sit statically for 30 minutes. 1mL of this mixture was placed into a 

2mm gap electroporation cuvette (Fischerbrand, #FB102), which was then placed into a Harvard 

Apparatus “Electro Cell Manipulator” (ECM 630). The ECM 630 was ran at 2500V, 200Ω. 

Immediately following this electroporation, 1mL of BHI was added to the cuvette, which was 

then placed on ice for 30 minutes. The contents of the cuvette were then transferred to a culture 

tube, and placed into a shaker at 30℃ and 200RPM for 4 hours. 100µL of this solution as then 
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spread onto a BHI with 5mh Chloramphenicol (CM) agar plate and incubated for 22h at 30℃.   

Five separately resulting bacterial colonies were cultured, resuspended in PBS, and 100µL of this 

solution was analyzed for fluorescence using a SpectraMax M5 plate reader (Ex. 485 nm, 

Em.538, bottom read). Controls consisted of: RN4220 (-) and DH5α pTH100 (+). The two 

colonies with the highest fluorescence (compared to standard RN4220 culture) were selected for 

future testing. 

Table D.2 RN4220/pTH100 Plate Reader Analysis for Fluorescence Uptake 

Strain output 

RN 4220 pTH 100- #1 4642.9 

RN 4220 pTH 100- #2 2331 

RN 4220 pTH 100- #3 5737.6 

RN 4220 pTH 100- #4 3197.6 

RN 4220 pTH 100- #5 6025.6 

RN 4220 (- control) 14.339 

DH5α pTH100 (+ control) 368.81 

Above are the plate reader results for all 5 isolated RN4220-pTH100 colonies following recovery 

from electroporation. Compared to the controls and other strains used, RN4220-pTH100 #3 and 

#5 exhibited the highest apparent fluorescence and were selected for future procedures. 

 

Plasmid isolation from RN4220-pTH100 for uptake in ATCC 6538 

RN4220-pTH100 strain #5 was cultured in 5mL BHI/CM culture at 30℃ 200RPM 

overnight. The pTH100 plasmid was then isolated from this strain using the same methods 

mentioned above for isolation of pTH 100 from DH5α, utilizing the QIAprep Spin Miniprep kit 

(QIAGEN). Electroporation was then performed using this isolated pTH100 plasmid with 

S.aureus ATCC 6538 strain in ECM 630 was ran at 2500V, 200Ω. Resulting bacterial culture 

was then recovered as described above.180 
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Chromosomal Integration of pTH100 into ATCC 6538 

Chromosomal integration of pTH100 into ATCC 6538 were performed as previously described. 

1 colony of ATCC 6538-pTH 100 was streaked onto an agar plate then incubated at 44℃ to 

induce the first heat shock event. A single colony from the agar plate that underwent the first 

heat shock event was then streaked onto a new agar plate, and underwent a second heat shock at 

44℃ incubation. 48h later, the agar plate from heat shock #2 was analyzed under hand-held 

fluorescent light (Cole Palmer). The colony exhibiting the apparent highest fluorescence was 

then cultured in 5mL BHI at 30℃, 250 RPM. The next day, a 1:1000 dilution of this solution 

was performed in BHI and returned to 30℃, 250 RPM. 7 hours later, a 1:10 dilution was 

performed. 10µL of this solution was placed in 1mL fresh BHI and cultured in 30℃, 200 RPM. 

This dilution procedure was repeated 4-6 times. Resulting ATCC 6538-GFP bacteria was then 

plated on 1µg/mL anhydrotetracycline agar plates. Bacteria recovered from anhydrotetracylcine 

plates were then cultured at 37 ℃ in BHI overnight. 4 resulting plates were analyzed under 

handheld UV light (Cole Palmer UVP-21, #EW-09817-02). All resulting colonies which 

appeared to exhibit fluorescence under UV light were picked and plated in duplicate, first on 

BHI then CM agar plates. Bacterial colonies which grew on BHI but not CM were selected for 

future use. To determine a primary strain for future use, selected colonies were analyzed using 

SpectraMax M5 plate reader (Ex. 485 nm, Em.538, bottom read). 
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