
Mississippi State University Mississippi State University

Scholars Junction Scholars Junction

Theses and Dissertations Theses and Dissertations

8-10-2018

A Software Vulnerability Prediction Model Using Traceable Code A Software Vulnerability Prediction Model Using Traceable Code

Patterns And Software Metrics Patterns And Software Metrics

Kazi Zakia Sultana

Follow this and additional works at: https://scholarsjunction.msstate.edu/td

Recommended Citation Recommended Citation
Sultana, Kazi Zakia, "A Software Vulnerability Prediction Model Using Traceable Code Patterns And
Software Metrics" (2018). Theses and Dissertations. 260.
https://scholarsjunction.msstate.edu/td/260

This Dissertation - Open Access is brought to you for free and open access by the Theses and Dissertations at
Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of
Scholars Junction. For more information, please contact scholcomm@msstate.libanswers.com.

https://scholarsjunction.msstate.edu/
https://scholarsjunction.msstate.edu/td
https://scholarsjunction.msstate.edu/theses-dissertations
https://scholarsjunction.msstate.edu/td?utm_source=scholarsjunction.msstate.edu%2Ftd%2F260&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsjunction.msstate.edu/td/260?utm_source=scholarsjunction.msstate.edu%2Ftd%2F260&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholcomm@msstate.libanswers.com

A software vulnerability prediction model using traceable code patterns

and software metrics

By

Kazi Zakia Sultana

A Dissertation
Submitted to the Faculty of
Mississippi State University

in Partial Fulfllment of the Requirements
for the Degree of Doctor of Philosophy

in Computer Science
in the Department of Computer Science and Engineering

Mississippi State, Mississippi

August 2018

Copyright by

Kazi Zakia Sultana

2018

A software vulnerability prediction model using traceable code patterns

and software metrics

By

Kazi Zakia Sultana

Approved:

Byron J. Williams
(Major Professor)

Eric Hansen
(Committee Member)

Sarah B. Lee
(Committee Member)

Stefano Iannucci
(Committee Member)

Mike J. Phillips
(Committee Member)

T. J. Jankun-Kelly
(Graduate Coordinator)

Jason M. Keith
Dean

Bagley College of Engineering

Name: Kazi Zakia Sultana

Date of Degree: August 10, 2018

Institution: Mississippi State University

Major Field: Computer Science

Major Professor: Byron J. Williams

Title of Study: A software vulnerability prediction model using traceable code patterns
and software metrics

Pages of Study: 112

Candidate for Degree of Doctor of Philosophy

Context: Software security is an important aspect of ensuring software quality. The

goal of this study is to help developers evaluate software security at the early stage of de-

velopment using traceable patterns and software metrics. The concept of traceable patterns

is similar to design patterns, but they can be automatically recognized and extracted from

source code. If these patterns can better predict vulnerable code compared to the tradi-

tional software metrics, they can be used in developing a vulnerability prediction model to

classify code as vulnerable or not. By analyzing and comparing the performance of trace-

able patterns with metrics, we propose a vulnerability prediction model. Objective: This

study explores the performance of code patterns in vulnerability prediction and compares

them with traditional software metrics. We have used the fndings to build an effective

vulnerability prediction model. Method: We designed and conducted experiments on the

security vulnerabilities reported for Apache Tomcat (Releases 6, 7 and 8), Apache CXF

and three stand-alone Java web applications of Stanford Securibench. We used machine

learning and statistical techniques for predicting vulnerabilities of the systems using trace-

able patterns and metrics as features. Result: We found that patterns have a lower false

negative rate and higher recall in detecting vulnerable code than the traditional software

metrics. We also found a set of patterns and metrics that shows higher recall in vulner-

ability prediction. Conclusion: Based on the results of the experiments, we proposed a

prediction model using patterns and metrics to better predict vulnerable code with higher

recall rate. We evaluated the model for the systems under study. We also evaluated their

performance in the cross-dataset validation.

Key words: vulnerability, software security, software quality, software testing, software
metrics, nano-patterns, micro patterns

DEDICATION

To my parents Kazi Abul Kashem and Roksana Akther.

ii

ACKNOWLEDGEMENTS

First and foremost I want to thank my advisor Dr. Byron Williams. I am really grateful

to my advisor for his enormous dedication towards fulflling my degree. I appreciate all his

contributions in developing research ideas, writing papers, providing support, and funding

to complete my Ph.D. He was not only motivational and caring for my academic and re-

search related activities, he was also a great support for me even during tough times in the

Ph.D. pursuit. I really believe that without his contribution, I would not be able to achieve

this degree. I am also thankful to the members of the ESE group who have given their

signifcant advice and important guidelines to improve my experiments, ideas, and pre-

sentation skill. The ESE meeting in every week really helped me to learn about different

research potentials in my relevant area. The group has been a source of friendship as well

as good direction and collaboration. I would like to acknowledge honorary group member

Dr. Edward B. Allen who retired a few years ago. I am also grateful to the members of my

PhD committee who have given their valuable advice and reviews of my work since my

preliminary examination of PhD.

I would also like to thank specially to Dr. Donna Reese who was the head of the de-

partment of Computer Science and Engineering when I frst started my PhD in Mississippi

State University. It would not be possible for me to start my PhD if she did not provide

fnancial support at that time. She also cooperated me in every step whenever I needed

iii

any support or recommendation from the department for participating in any conference

or competing for any award. I am also indebted to my MS advisor Dr. Hasan Jamil who

built my background for PhD through giving me opportunities to work with him. I could

learn how to develop ideas and write papers during my MS from his enormous research

experience. It was possible to publish a number of papers during my MS because of his

extraordinary motivation and support at that time.

I would like to thank the department of Plant and Soil Sciences of Mississippi State

University which has been supporting my research assistant position for last two years. I

would be happy to thank my two lab mates Ajay Deo and Dr. Zadia Codabux for their

collaboration in some of my papers. I am really grateful for the pattern extraction tool

developed by Dr. Singer that I used to do the experiments of the dissertation.

Finally, I think my achievements would not be possible without the continuous support

and inspiration that I got from my family members. I believe that it is my parents without

whom I could never get my strength and motivation back to start my PhD. They supported

me in all my pursuits since my childhood. My parents, my brothers, and my other family

members have made my life indebted to them by giving me mental strength and inspiration

throughout this journey. Finally, the person who was always beside me during the long and

diffcult path of my PhD is my loving husband Muhammad Aminul Islam. I believe that

his company and his continuous cooperation made my struggle worth and fruitful.

iv

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF TABLES . viii

LIST OF FIGURES . xi

CHAPTER

1. INTRODUCTION . 1

2. BACKGROUND . 9

3. RELATED WORK . 19

3.1 Micro Patterns . 19
3.2 Nano-patterns . 20
3.3 Software Security using Metrics 21

4. RESEARCH GOAL . 26

4.1 Research Questions . 26
4.1.1 RQ1: What is the relationship between traceable patterns

and software vulnerabilities? 27
4.1.2 RQ2: Can traceable patterns better predict vulnerable code

than software metrics? 30
4.1.3 RQ3: How do we determine the most signifcant set of pat-

terns and metrics to build a framework for vulnerability pre-
diction? . 31

4.1.4 RQ4: Is the framework effective at predicting vulnerabilities? 32

5. EXPERIMENTAL SETUP . 34

v

5.1 Vulnerability Collection and Tools 34
5.1.1 Tools . 35
5.1.2 Vulnerability Collection 38

5.1.2.1 Apache Tomcat . 38
5.1.2.2 Apache CXF . 40
5.1.2.3 Stanford Securibench 42

5.2 Data Extraction . 42
5.2.1 Micro pattern Extraction 42
5.2.2 Software Metrics Extraction 43
5.2.3 Nano-pattern Extraction 43

5.3 Vulnerability Prediction . 44
5.3.1 Performance Measures 45

6. VULNERABILITY PREDICTION MODEL 49

6.1 Overview of the Prediction Model 49
6.1.1 Building the Prediction Model 51

. 51
. 51

. 51
. 51

6.1.1.1 Preprocessing
6.1.1.2 Feature Extraction
6.1.1.3 Feature Selection
6.1.1.4 Build Predictor

6.1.2 Classifcation . 52
. 52

. 52
6.1.2.1 Feature Extraction and Selection
6.1.2.2 Model Evaluation

6.2 Methodology . 52
6.2.1 System Selection . 52

. 53
. 53

. 53
. 54

. 54
. 54

. 55
. 55

6.2.2 Features Extraction
6.2.2.1 Nano-Patterns Extraction
6.2.2.2 Software Metrics Extraction

6.2.3 Feature Selection
6.2.3.1 Finding Signifcant Nano-patterns
6.2.3.2 Finding Signifcant Metrics
6.2.3.3 Select Common Nano-metrics

6.2.4 Building Prediction Model

7. EXPERIMENTAL RESULTS . 56

7.1 RQ1: What is the relation between traceable patterns and software
vulnerabilities? . 56

7.1.1 Is there any signifcant difference between traceable pattern
distribution in vulnerable and neutral code? 56

vi

7.1.2 How are the traceable patterns associated with each other in
vulnerable and neutral code? 64

7.1.3 Are the association rules useful in identifying vulnerabilities? 67
7.1.4 How do traceable patterns evolve from vulnerable code to

neutral code? . 68
7.2 RQ2: Can traceable patterns better predict vulnerable code than

software metrics? . 70
7.2.1 What are the performance measures of traceable patterns in

vulnerability prediction? 70
7.2.2 What are the performance measures of software metrics in

vulnerability prediction? 73
7.3 RQ3: How do we determine the most signifcant set of patterns and

metrics to build a framework for vulnerability prediction? 74
7.3.1 What are the signifcant nano-patterns that can predict vul-

nerable and neutral methods? 74
7.3.2 What are the signifcant software metrics that can predict

vulnerable and neutral methods? 76
7.4 RQ4: Is the framework effective at predicting vulnerabilities? . . 76

8. DISCUSSION . 80

8.1 RQ1: What is the relation between traceable patterns and software
vulnerabilities? . 80

8.2 RQ2: Can traceable patterns better predict vulnerable code than
software metrics? . 87

8.3 RQ4: Is the framework effective at predicting vulnerabilities? . . 89
8.3.1 Comparative Study among Nano-patterns, Metrics and Nano-

metrics . 89
8.3.2 Trade-off between Recall and FP Rate 96
8.3.3 Performance of nano-metrics in Cross-dataset Validation . 97

9. THREATS TO VALIDITY . 102

9.1 Construct Validity . 102
9.2 External Validity . 103
9.3 Internal Validity . 103

10. CONCLUSION . 104

REFERENCES . 107

vii

LIST OF TABLES

2.1 Catalog of Micro patterns [18] . 16

2.2 Catalog of Fundamental Nano-Patterns [47] 17

2.3 Class-level Software Metrics . 18

2.4 Method-level Software Metrics . 18

4.1 Binary Representation of Vulnerable Methods 29

5.1 Systems in Study for RQ1 . 35

5.2 Systems in Study for RQ2-RQ4 . 36

5.3 Vulnerabilities . 36

5.4 Affected Versions for RQ1 . 36

5.5 Affected Versions for RQ2-RQ4 . 37

7.1 Chi-square values for micro patterns in Tomcat (Release 6) 60

7.2 Chi-square values for micro patterns in Stanford Securibench 61

7.3 Chi-square values for nano-patterns in Tomcat (Release 8) 64

7.4 Micro patterns association types in Tomcat (Release 6) 65

7.5 Micro patterns association types in Tomcat (Release 7) 65

7.6 Micro patterns association types in Tomcat (Release 8) 65

7.7 Micro patterns association types in Stanford Securibench 66

7.8 Nano-patterns association types in Apache Tomcat (Release 6, 7, 8) 66

viii

7.9 Nano-patterns association types in Stanford Securibench 67

7.10 Best Association Rules (in Tomcat-6 and Tomcat-7) 68

7.11 Micro pattern evolution types from vulnerable to neutral classes in Tomcat 70

7.12 Micro pattern evolution types across the releases of Tomcat 71

7.13 Results of Welch’s Test for nano-patterns (*Effect sizes are mentioned within
brackets and for all correlations p < .05.) 71

7.14 Machine Learning results for traceable patterns in Tomcat (Release 6) . . . 71

7.15 Machine Learning results for traceable patterns in Tomcat (Release 7) . . . 72

7.16 Machine Learning results for traceable patterns in Stanford Securibench . . 72

7.17 Machine Learning results for traceable patterns in Apache CXF 72

7.18 Machine Learning results for software metrics in Tomcat (Release 6) . . . 73

7.19 Machine Learning results for software metrics in Tomcat (Release 7) . . . 73

7.20 Machine Learning results for software metrics in Stanford Securibench . . 74

7.21 Machine Learning results for software metrics in Apache CXF 74

7.22 Chi-square values of nano-patterns . 75

7.23 Selected Set of nano-patterns . 75

7.24 Results of Welch’s Test . 76

7.25 Nano-metrics . 77

7.26 Performance Measures in Logistic Regression 78

7.27 Performance Measures in Support Vector Machine 78

7.28 Performance Measures in Logistic Regression (using Tomcat-6 as training
data) . 78

ix

7.29 Performance Measures in Logistic Regression (using Tomcat-7 as training
data) . 78

7.30 Performance Measures in Support Vector Machine (using Tomcat-6 as train-
ing data) . 79

7.31 Performance Measures in Support Vector Machine (using Tomcat-7 as train-
ing data) . 79

10.1 Publication List . 104

10.2 Dissertation Timeline . 105

x

LIST OF FIGURES

5.1 Apache Tomcat Security Page . 40

5.2 Affected class names for a vulnerability in Apache Tomcat 40

5.3 Apache CXF Security Page . 41

5.4 Affected class names for a vulnerability in Apache CXF 41

6.1 Data Flow Diagram of the Research Plan 50

6.2 Overall Framework of the Research Plan 50

7.1 Micro Patterns Distribution in Tomcat (Release 6) 58

7.2 Micro Patterns Distribution in Tomcat (Release 7) 58

7.3 Micro Patterns Distribution in Tomcat (Release 8) 58

7.4 Micro Patterns Distribution in Stanford Securibench 59

7.5 Nano-patterns Distribution in Tomcat (Release 6) 62

7.6 Nano-patterns Distribution in Tomcat (Release 7) 62

7.7 Nano-patterns Distribution in Tomcat (Release 8) 62

7.8 Nano-patterns Distribution in Stanford Securibench 63

7.9 Example of micro pattern evolution across vulnerable to neutral class . . . 69

8.1 A code snippet from a method in P ersonalBlogService.java of Personal-
Blog . 83

8.2 A code snippet from a method in BakeW eblogAction.java of Roller . . . 85

xi

8.3 A code snippet from a method in ConsistencyCheck.java of Roller . . . 85

8.4 False Negative rates in class-level metrics vs micro patterns (SVM) 89

8.5 False Negative rates in method-level metrics vs nano-patterns (SVM) . . . 90

8.6 Precision in class-level metrics vs micro patterns (SVM) 90

8.7 Precision in method-level metrics vs nano-patterns (SVM) 90

8.8 Recall in class-level metrics vs micro patterns (SVM) 91

8.9 Recall in method-level metrics vs nano-patterns (SVM) 91

8.10 F2-measure in class-level metrics vs micro patterns (SVM) 91

8.11 F2-measure in method-level metrics vs nano-patterns (SVM) 92

8.12 Comparative Study on FN Rates (LR) . 93

8.13 Comparative Study on Recall (LR) . 93

8.14 Comparative Study on Precision (LR) . 95

8.15 Comparative Study on F2-measure (LR) 96

8.16 Plot of ROC for Nano-metrics in Logistic Regression. 97

8.17 Plot of ROC for Nano-metrics in Support Vector Machine. 98

8.18 Plot of ROC for Nano-patterns and Metrics in Logistic Regression. 98

8.19 Plot of ROC for Nano-metrics in Logistic Regression (Trained by Tomcat-6). 99

8.20 Plot of ROC for Nano-metrics in Support Vector Machine (Trained by Tomcat-
6). 100

8.21 Plot of ROC for Nano-metrics in Logistic Regression (Trained by Tomcat-7). 100

8.22 Plot of ROC for Nano-metrics in Support Vector Machine (Trained by Tomcat-
7). 101

xii

CHAPTER 1

INTRODUCTION

Software vulnerability research is crucial for enabling improvements to the state-of-the-

art in software engineering focused on delivering functional and secure software projects.

Although a software vulnerability may be deemed as a special kind of software bug, this

bug violates security policies and results in serious consequences that makes the software

exploitable to malicious attack. According to Munaiah et al. in [34], while missing, in-

suffcient, or incorrect functionality can be referred as traditional bugs, vulnerabilities are

defned as the misuse of functionality that deviates the software from its intended behav-

ior and allows exposure to malicious attackers. According to [31], vulnerability discovery

differs from defect discovery in development the process. Therefore, taking precaution

against vulnerabilities is a dominant factor in ensuring security and mitigating risks. De-

velopers are encouraged adopt secure coding practices and to follow security policies dur-

ing the software implementation phase. There have been a number of security patterns and

guidelines for developers to follow [19, 56, 40, 23]. Following these rules and procedures

can reduce the probability of vulnerable code, but they do not guarantee a seal to all kinds

of security leakages that may be exploitable by attackers. There is a need for methods that

can highlight certain code constructs that identify vulnerable code characteristics.

1

To minimize the likelihood of vulnerabilities developers can investigate their code

repository and vulnerability history in order to fnd code constructs that are susceptible

to vulnerability. Vulnerability history in earlier releases can then be used to mine code

constructs that are associated with vulnerabilities and then build a vulnerability predic-

tion model [8]. In earlier studies, software metrics were extracted from existing software

repositories and then used as features in supervised machine learning to build vulnerability

prediction models [45, 42, 43, 46, 44, 6, 7, 8]. In these studies, the authors considered fle-

level vulnerability prediction and did not distinguish between class-level and method-level

software metrics. In addition, although they showed reasonable accuracy at vulnerability

prediction, their false negative rates were high resulting in failure to detect many vulnerable

fles. Moreover, vulnerability prediction at a lower granular level assists developers to pre-

cisely identify the location of the vulnerable code. Developers may not be able to locate or

pinpoint the source of the vulnerability in a fle if it consists of a number of classes and/or

methods. A developer needs a signifcant amount of time to examine all methods in order

to locate a particular bug in a large fle [17]. Prediction at source fle level also reduces

accuracy [31]. Binary-level predictions are also not desirable as no specifc action can be

taken due to the size of the binaries that contain hundreds of source fles [31]. Therefore,

software developers are still in need of a mechanism to classify vulnerable code at varying

levels of granularity. Our goal is to build a vulnerability prediction model using extracted

code constructs. We focused on the implementation phase using class-level and method-

level code patterns to highlight potentially vulnerable areas in the code. These patterns

capture the object-oriented features of code and have not previously been extensively ana-

2

lyzed. The identifed code areas that are prone to vulnerability based on the vulnerability

history can then be marked for targeted testing or more rigorous reviews.

This research uses traceable software patterns that can be mechanically identifed in the

source code and determines their relationships with vulnerabilities. Gil et al. [18] devel-

oped the concept of traceable patterns that can be automatically (mechanically) recognized.

These patterns are related to a specifc programming language and have different levels of

abstraction. Class-level traceable patterns are called micro patterns whereas method-level

traceable patterns are called nano-patterns. Gil et al. [18] defned 27 micro patterns orga-

nized into eight categories with respect to the formal conditions on the structure of Java

classes. They capture class properties whereas nano-patterns are method-level patterns

and capture properties of methods within a class. Nano-patterns were frst introduced by

Batarseh in [3]. Singer et al. presented 17 fundamental nano-patterns organized into four

groups: calling, object-oriented, control fow and data fow in [47]. Nano-patterns are ex-

tracted at the Java method-level and they are defned based on the properties of methods

within a class. After the emergence of these traceable patterns, researchers studied their re-

lation with software defects and vulnerabilities [12, 11, 50, 51, 53]. These studies detected

bug and vulnerability-prone traceable patterns.

Kim et al. in [24] identifed how micro patterns change as software evolves as vul-

nerabilities are fxed and they identifed certain evolution patterns as more bug-prone than

others. In our study, we analyzed how micro patterns are changed from vulnerable classes

to neutral classes (i.e., where no vulnerability has been found). Other researchers inves-

tigated the associations between micro patterns and code smells which is a key indicator

3

of degrading software quality [15]. Sultana et al. identifed associations among the mi-

cro patterns and nano-patterns that are more frequent in vulnerable code [50, 53]. In these

studies, they computed association rules and the phi-coeffcient between each pair of micro

and nano-patterns to fnd their associations both in vulnerable and neutral code. This anal-

ysis helps developers to focus on the use of certain patterns together that may negatively

affect quality. Moreover, this analysis will assist developers to predict the existence of vul-

nerabilities. When a developer uses one pattern from the connected pair, he/she should try

to avoid the use of its peer pattern (that is closely associated with vulnerable code) in order

to reduce the risk of a security violation. If this scenario is infeasible, then these patterns

should be targeted for more thorough review or testing.

This research focuses on using traceable patterns to detect the likelihood of security

defects. Our research goal was to build a vulnerability prediction model using the rela-

tionships between these patterns, software metrics, and vulnerable code. We determined

pattern distribution in both vulnerable and neutral code and then identifed the patterns

that frequently exist in vulnerable code compared to the neutral code (i.e., code where no

known vulnerability exists). We also analyzed the association of micro and nano-patterns

with vulnerabilities from different angles. We showed how the pair of patterns work for

vulnerabilities, how they evolve from one version to another version, and how the patterns

perform in vulnerability prediction compared to metrics. In this research, we aimed to

build a vulnerability prediction model at the method level that would be able to classify a

method as vulnerable or neutral. The motivation of this study is to detect vulnerable code

early in the development process so developers can reduce the number of vulnerabilities

4

released to production. The existence of vulnerability-prone patterns highlights potentially

vulnerable code. Being aware of these problematic code constructs, developers can be

more cautious when using them during development. When no alternatives exist, devel-

opers can program using the constructs but from a defensive standpoint by recognizing

that their approach may be troublesome. This strategy will reduce the testing workload by

minimizing their search space and suggesting them a lower number of methods that need

security related testing. Developers and testers will focus more effort and employ more

resources and time on these vulnerable areas executing specifc tests that target the types

of vulnerabilities observed when using the patterns [49].

The major contributions of this research are as follows:

• Secure Development: We analyzed the distribution of micro and nano-patterns in

vulnerable code (classes or methods) and code where no vulnerabilities have been

reported. Our comparative analysis on the distribution of traceable patterns will dis-

criminate among the patterns regarding their relationship to known vulnerabilities in

the source code. This technique will assist developers to be more restrictive in their

usage of patterns as well as guide them to inspect their code for potential vulnerabil-

ities.

• Cost-effective Testing: The fndings of this study will help testers become more

focused on the potentially vulnerable areas of code instead of the entire code base. It

will save time and effort of the testers and ensure effcient testing for the suspected

code.

5

• Lower Granularity: Our vulnerability study is targeted at the class and method

level. Doing so will help developers to concentrate on a lower granularity level

of code and pinpoint the vulnerable components more easily. The results of this

analysis will develop a good understanding of what makes secure code. Developers

will be able to ensure reliable system evolution by re-engineering later versions with

the proper usage of these code constructs.

• Comparative Study: We trained a vulnerability prediction model using the micro

and nano-patterns extracted from the vulnerable and neutral code (classes and meth-

ods where no known vulnerability exists, we will use the term “neutral” to refer

them) data extracted from three different software systems. We executed three ma-

chine learning techniques to classify vulnerable code. We trained the model using

traditional class and method-level software metrics extracted from the vulnerable

and neutral classes and methods respectively from three different systems using the

same techniques. We have presented a comparison of performance measures in-

cluding precision and recall for two types of features (nano-patterns vs method-level

metrics and micro patterns vs class-level metrics) in vulnerability prediction. This

strategy will help developers to decide features to use in prediction model based on

their performance for their respective projects.

• Improved Vulnerability Prediction: We developed a vulnerability prediction model

using the signifcant set of nano-patterns and method-level metrics extracted from

vulnerable and neutral methods of different software systems. We executed two

6

machine-learning techniques to classify vulnerable code. This study will help the

developers to better asses how vulnerability-prone the code it. It will also assist

testers to test code to understand how different nano-patterns and metrics contribute

to code that is prone to vulnerabilities. Moreover, the proposed set of metrics and

patterns can be used for testing vulnerabilities in any system in general as we have

presented their performance results in cross-dataset validation.

• Generic and Robust Prediction Model: We have presented experimental results

for both within dataset and cross-dataset validation. This study will help developers

to evaluate their system in three different ways. First, they can identify signifcant

patterns for their own systems by analyzing vulnerability history and then use these

patterns to train a model for vulnerability prediction in later releases. Second, they

can extract only the proposed set of metrics and patterns from their vulnerability his-

tory and train a machine for future vulnerability prediction. Third, they can test their

codebase using a machine that is trained by the proposed set of metrics and patterns

from any other system. Our cross-dataset validation shows good performance while

using the proposed metrics and patterns as features.

We describe terms used in this study in chapter 2. Chapter 3 presents the existing lit-

erature and their fndings. In chapter 4, we focus on the research questions covered in

the entire study. Chapter 5 describes the procedure followed to answer all the questions.

Chapter 6 presents the vulnerability prediction model proposed by this study. We present

all the experimental results and their discussion in chapter 7 and 8 respectively. Chap-

7

ter 9 discusses the limitation of our work and chapter 10 concludes the study with future

direction.

8

CHAPTER 2

BACKGROUND

This chapter describes terms used in this study.

• Vulnerability: “A vulnerability is a security exposure that results from a product

weakness that the product developer did not intend to introduce and should fx once

it is discovered.1” Another defnition is “An information security ‘vulnerability’ is

a mistake in software that can be directly used by a hacker to gain access to a sys-

tem or network.2” Examples of vulnerabilities are Cross-site scripting (XSS) which

allows remote authenticated users to inject arbitrary web scripts or HTML, denial

of service that refuses users’ requests for a service through the network, injection

faws which occur when untrustworthy data is sent to an interpreter as part of a com-

mand or query, and Broken Authentication and Session Management which allows

attackers to compromise passwords, keys, or session tokens, or to exploit other im-

plementation faws to assume other users’ identities3.

• Micro Pattern: Micro patterns are mechanically recognizable patterns that are cap-

tured using formal conditions of the structure of a Java class such as use of inheri-

1https://msdn.microsoft.com/en-us/library/cc751383.aspx
2https://cve.mitre.org/about/terminology.html
3https://www.owasp.org/index.php/Top 10 2013-Top 10

9

https://3https://www.owasp.org/index.php/Top
https://2https://cve.mitre.org/about/terminology.html
https://1https://msdn.microsoft.com/en-us/library/cc751383.aspx

tance, immutability, data management and wrapping, restricted creation, and so on.

They are similar to design patterns except that they are defned at a lower level of ab-

straction [18]. The detailed description of 27 micro patterns is presented in Table 2.1.

This table presents the categories of micro patterns and their description.

• Nano-pattern: Nano-patterns are method-level traceable patterns. They represent

coding actions at the method level frequently used in Java software development [3].

Table 2.2 defnes 17 fundamental nano-patterns [47]. Singer et al. supplemented the

fundamental nano-patterns by incorporating additional patterns.

• Micro Pattern Evolution: Examining the development history of a system explores

facts about the software and enables a better understanding of its qualities [24]. In

this study, we examined the change history of micro patterns in different versions of

the same system. For example, a vulnerability has been detected in foo.java of ver-

sion 6.0.1, and its pattern type is A, later the class is changed to fx the vulnerability

in version 6.0.2, and now its pattern type is B after fxing the vulnerability in that

class. This change has been termed as a A → B evolution.

• Phi-Coeffcient: Phi-Coeffcient measures the degree of association between two

binary variables. It is the linear correlation between postulated underlying discrete

univariate distributions of variables X and Y [13]. The strength of the association

is determined by following criteria [41]: a small association (.10 ≤ φ < .30), a

medium association (.30 ≥ φ < .50) and a high association (φ ≥ .50).

10

• Vulnerable code vs Neutral code: If a vulnerability is fxed in foo.java of version

7.0.2, that class of version 7.0.2 and its later versions are termed as a “neutral” class.

On the other hand, the source code of foo.java in the previous versions of 7.0.2 will

be termed as a “vulnerable” class. The same defnition applies in case of a Java

method. If no vulnerability is found in a class or method, that class / method is

deemed neutral.

• Itemset and Support Count: In our study, we used the concept of Market Basket

Transactions that relates to a set of data where each row represents a transaction and

each column corresponds to an item. An entry in the table will be ‘1’ if that item is

purchased in the transaction and ‘0’ otherwise. Each transaction can be represented

as a series of 1’s and 0’s. In our case, each method is represented as a series of 1’s

and 0’s, where ‘1’ indicates a pattern exists in that method and ‘0’ indicates that

pattern is absent in the method.

LET I = i1, i2, . . . , id be the set of all items and T = t1, t2, . . . , tN be the set of

all transactions. A subset of items is purchased in each transaction. We defne an

itemset as a collection of zero or more items. If an itemset contains k items, it will

be termed as a k−itemset. Bread, Milk is an instance of a 2−itemset [54], [20].

An important property of an itemset is support count which represents the number

of transactions containing a specifc itemset [54]. This can be defned as follows:

σ(X) = |{ti, where X ⊂ ti and ti ⊂ T }|

Here, X refers to an itemset which is a subset of ti.
11

• Association Rule Mining: An association rule is an expression of the form

X → Y |X ∩ Y = φ

Each association rule is measured by its support and confdence. Support indicates

the frequency of the rule for a given dataset. Confdence means the frequency of the

occurrences of items in Y in the samples that also contain the items in X [54]. They

can be mathematically represented as follows:

σ(X∪Y)Support, s(X → Y) =
N

σ(X∪Y)Confidence, c(X → Y) =
σ(X)

Association rule mining can be defned as fnding all rules fulflling the conditions

support ≥ minsup and confidence ≥ minconf , where minsup and minconf are

the predefned support and confdence thresholds respectively [54]. An exponential

number of rules can be generated out of a given dataset. The general procedure for

mining association rules can be decomposed into two subtasks: Frequent Itemset

Generation and Rule Generation.

• Frequent Itemset Generation: The itemsets that satisfy minsup thresholds are

known as frequent itemsets. As there is an exponential number of frequent itemsets

(2k −1 frequent itemsets from k items of dataset), the generation of all these itemsets

are computationally expensive for large values of k. To solve this issue, the Apriori

principal has been developed to reduce the number of candidate itemsets [54].

12

• Rule Generation: In this step, all rules having a high confdence are generated from

the frequent itemsets. Frequent itemset having k items can produce up to 2k − 2

rules [54]. The general way to produce an association rule out of a set I is to parti-

tion it into two non-empty subsets X and Y , where Y = I − X and the rule X →

I − X satisfes the confdence threshold. For example, I = {M1,M2,M3} is a fre-

quent itemset. The relevant candidate rules are: {M1,M2} → {M3}, {M2,M3} →

{M1}, {M1,M3} → {M2}, {M1} → {M2,M3}, {M2} → {M1,M3}, {M3} →

{M1,M2}. In this example, if {M1,M2} → {M3} rule is a low confdence rule, all

other rules containing M3 in their consequent part such as {M1} → {M2,M3}, {M2} →

{M1,M3} will be considered low confdence rules and will be ignored.

• Class-level Software Metrics: Chowdhury et al. in [8] evaluated a set of software

metrics to predict vulnerable fles. We selected the set of metrics that are related to

classes as listed in Table 2.3. The metrics were extracted using the SciTools Un-

derstand code analysis tool. These metrics capture the properties of classes includ-

ing their structural complexity, dependency on other classes, inheritance properties,

cohesiveness among their methods, and so on. The detailed descriptions of these

metrics and their purposes are described in Table 2.3. The selected software metrics

are related to program complexity and defect-prone code structure. For example, ac-

cording to Chidamber & Kemerer [4]: 1) Excessive coupling between object classes

is detrimental to modular design and prevents reuse. 2) Inter-object class couples

should be kept to a minimum. 3) The higher the inter-object class coupling, the

more rigorous testing needs to be.
13

• Method-level Software Metrics: Chowdhury et al. in [8] evaluated a set of software

metrics to predict vulnerable fles. We selected the set of metrics that are related to

methods as listed in Table 2.4. These metrics capture the properties of methods

including their structural complexity, dependency on other methods, properties of

parameters, return conditions, and so on. The detailed descriptions of these metrics

and their purposes are described in Table 2.4. The selected software metrics are

related to program complexity and defect-prone code structure.

• Supervised Machine Learning Techniques: In our problem, we identifed a set

of features from the program component (i.e., class or method). We collected the

feature values from vulnerable classes or methods and neutral classes or methods.

In other words, there are two groups: vulnerable and neutral. We collected labeled

data, marked as vulnerable or neutral data, and then trained the machine so that it

can classify any class or method as vulnerable or neutral based on its learning. In

this way, supervised machine learning can help us to predict vulnerable code based

on its feature values.

• Naive Bayes: Naive Bayes is a simple classifcation technique based on Bayes’ rule

of conditional probability that assumes that the value of one feature is independent of

the value of another feature. Naive Bayes classifer classifes an instance assuming

that all its features independently contribute to the probability and the correlations

among the features do not play any role in the classifcation. Moreover, it requires a

small set of training data for classifying properly [30].

14

• Logistic Regression: Logistic regression measures the relationship between the cat-

egorical dependent variable and one or more independent variables by estimating

probabilities using a logistic function. In our study, LR calculates the probability

of a class or a method being vulnerable or neutral for the given values of the used

features. We included this technique as this has been used in earlier studies of vul-

nerability prediction using CCC metrics [8] and wanted to be able to compare results

while building from existing studies.

• Support Vector Machine: SVM is a supervised learning model where the training

points are separated by the widest possible gap. Then a new point is classifed based

on its side of the gap. SVM can perform both the linear and non-linear classifcation

mapping the input into higher dimensional space.

15

Table 2.1

Catalog of Micro patterns [18]

Category Patterns Description
Degenerate Class Designator An interface with absolutely no members.

Taxonomy An empty interface extending another interface.
Joiner An empty interface joining two or more superinterfaces.
Pool A class which declares only static fnal felds, but no methods.
Function Pointer A class with a single public instance method, but with no felds.
Function Object A class with a single public instance method, and at least one instance feld.
Cobol Like A class with a single static method, but no instance members
Stateless A class with no felds, other than static fnal ones.
Common State A class in which all felds are static.
Immutable A class with several instance felds, which are assigned exactly once, during instance construction.
Restricted Creation A class with no public constructors, and at least one static feld of the same type as the class
Sampler A class with one or more public constructors, and at least one static feld of the same type as the class

Containment Box A class which has exactly one, mutable, instance feld.
Compound Box A class with exactly one non primitive instance feld.
Canopy A class with exactly one instance feld that it assigned exactly once, during instance construction.
Record A class in which all felds are public, no declared methods.
Data Manager A class where all methods are either setters or getters.
Sink A class whose methods do not propagate calls to any other class.

Inheritance Outline A class where at least two methods invoke an abstract method on“this”
Trait An abstract class which has no state.
State Machine An interface whose methods accept no parameters.
Pure Type A class with only abstract methods, and no static members, and no felds
Augmented Type Only abstract methods and three or more static fnal felds of the same type
Pseudo Class A class which can be rewritten as an interface: no concrete methods, only static felds
Implementor A concrete class, where all the methods override inherited abstract methods.
Overrider A class in which all methods override inherited, non-abstract methods.
Extender A class which extends the inherited protocol, without overriding any methods.

16

Table 2.2

Catalog of Fundamental Nano-Patterns [47]

Category Nano-Patterns
noParams—takes no arguments
noReturn — returns void

Calling
recursive — calls itself recursively
sameName — calls another method with the
same name
leaf — does not issue any method calls

Object-
Oriented

objCreator — creates new objects
feldReader — reads (static or instance)
feld values from an object
feldWriter — writes values to (static or
instance) feld of an object
typeManipulator — uses type casts or
instanceof operations

Control
Flow

straightLine — no branches in method body
looper — one or more control fow loops
in method body
exceptions — may throw an unhandled
exception
localReader — reads values of local
variables on stack frame

Data
Flow

localWriter — writes values of local
variables on stack frame
arrayCreator — creates a new array
arrayReader — reads values from an array
arrayWriter — writes values to an array

17

Table 2.3

Class-level Software Metrics

Metrics Description
AvgCyclomatic [29] McCabes cyclomatic complexity counts the number of independent paths through a program unit

(i.e., number of decision statements plus one). AvgCyclomatic takes the average of this metric
for all nested functions or methods in a class.

AvgCyclomaticModifed [29] It is same as cyclomatic complexity except that each decision in a multi-decision structure
(switch in C/Java) statement is counted as 1.
Average modifed cyclomatic complexity is the average of this metric for all nested functions or methods in a class.

AvgCyclomaticStrict [29] The cyclomatic complexity that adds 1 for every occurrence of logical and (&&) and logical or in conditional expressions.
AvgEssential [29] It is the cyclomatic complexity after iteratively replacing all well structured control structures

(if-then-else and while loops) with a single statement.
CountClassBase The number of immediate base classes.
CountClassCoupled [4]
(Chidamber & Kemerer metric)

The number of other classes to which a class is coupled.
Class A is coupled to class B if class A uses a type, data, or member from class B.

CountClassDerived [4]
(Chidamber & Kemerer metric)

The number of immediate subclasses. (i.e. the number of classes one level down the inheritance tree from this class).

CountDeclMethodAll [27]
(Lorenz & Kidd metric)

The number of methods, including inherited ones.

CountLineCode [14] The number of lines that contain source code. A line can contain source and a comment.
For Classes this is the sum of the CountLineCode for the member functions of the class.

MaxInheritanceTree [4]
(Chidamber & Kemerer metric,
also known as Depth of inheritance tree (DIT))

DIT is the maximum number of nodes from the class node to the root of the inheritance tree.
The root node has a DIT of 0. The deeper within the hierarchy, the more methods the class can inherit, increasing its complexity.

PercentLackOfCohesion [4]
(Chidamber & Kemerer metric,
also known as Lack of Cohesion of Methods (LCOM))

It calculates what percentage of class methods use a given class instance variable.
It is computed by taking each instance variable and then divide the number of functions that use it by the total number of functions.
Then the average of this value for all instance variables is subtracted from 1. A lower percentage means higher cohesion between class data and methods.

SumCyclomatic [4]
(Chidamber & Kemerer,
also known as Weighted Methods per Class (WCM))

It is the sum of cyclomatic complexity of all nested functions or methods.

Table 2.4

Method-level Software Metrics

Metrics Description
CountInput [22] The number of inputs a function uses plus the number of unique

subprograms calling the function. Inputs include parameters and global variables that are
used in the function, so Functions calledby + Parameters read + Global Variables read.

CountOutput [22] The number of outputs that are SET. This can be parameters or global variables.
So Functions calls + Parameters set/modify + Global Varibales set/modify.

CountLineCode [14] The number of lines that contain source code. Note that a line can contain source and
a comment and thus count towards multiple metrics.

CountPath [14] It is the number of unique paths though a body of code, not counting abnormal exits or gotos.
Cyclomatic [29] McCabes cyclomatic complexity counts the number of independent paths through a program unit

(i.e., number of decision statements plus one).
CyclomaticModifed [29] The Cyclomatic Complexity except that each decision in a multi-decision structure (switch in C/Java)

statement is not counted and instead the entire multi-way decision structure counts as 1.
CyclomaticStrict [29] The Cyclomatic Complexity with logical conjunction and logical

and in conditional expressions also adding 1 to the complexity for each of their occurrences.
Essential [29] It is the cyclomatic complexity after iteratively replacing

all well structured control structures (if-then-else and while loops) with a single statement.
MaxNesting [21] Maximum nesting level of control constructs (if, while, for, switch, etc.) in the function.

18

CHAPTER 3

RELATED WORK

This chapter presents relevant research on software security, traceable patterns and

metrics used for defect and vulnerability prediction.

3.1 Micro Patterns

A traceable pattern can be expressed as a simple formal condition on the attributes,

types, name and body of a software module and its components [18]. These patterns are

based on modules including code fragments, routines, classes and packages. The class-

level traceable patterns are micro patterns while the method-level patterns are called nano-

patterns. Gil and Maman described the catalog of 27 micro patterns on Java classes and

interfaces [18]. Table 2.1 presents the categories of micro patterns and their descriptions.

Arcelli and Maggioni suggested a different approach for interpreting micro patterns based

on the number of attributes (NOA) and the number of methods (NOM) of a type [28].

Their identifed types are not completely aligned to the constraints and defnitions of mi-

cro patterns [28]. Destefanis et al. identifed micro patterns that were more error-prone

than others and detected correlations among the patterns [12, 11]. They also found that

the classes having no micro pattern are supposed to be more fault-prone than the classes

with micro patterns. Kim et al. detected the micro patterns evolution along with the pro-

19

gram’s evolution throughout the development process [24]. Their analysis of micro pattern

evolution from one revision to another reported some types of micro pattern evolution to

be more bug-prone than others. They performed their micro pattern evolution analysis on

three open-source projects: ArgoUML, Columba, and jEdit. The kinds of evolution are

almost identical across all the projects. In another study, Singer et al. extracted the asso-

ciation between micro patterns with class name suffx which might be useful for run-time

bug detection by the developers [48]. In [53], we previously analyzed the correlation of

micro patterns with vulnerable classes and identifed certain micro patterns as more prone

to vulnerability than others. They also found that some micro patterns are highly associated

within vulnerable classes, much more than they are in other classes [53]. We also in [52]

presented the comparative study between micro patterns and class-level software metrics

using machine learning techniques for vulnerability prediction.

3.2 Nano-patterns

Nano-patterns represent coding actions at the method level frequently used in Java

software development [3]. Table 2.2 defnes the 17 fundamental nano-patterns [47]. Singer

et al. supplemented the fundamental nano-patterns by incorporating additional patterns

and classifed Java methods using data mining concepts: frequent itemset generation and

association rule mining [47]. They applied their work to clustering and categorizing Java

methods based on the associated nano-patterns. Sultana et al. used a similar approach

to explore the relationship between nano-patterns and vulnerabilities [50, 51]. Deo et al.

found certain nano-patterns to be more fault-prone than others [10]. This study was limited

20

to fnding nano-patterns associated with software defects and did not consider security

defects.

3.3 Software Security using Metrics

This research contributes new knowledge in the feld of software security assessment.

Researchers developed a number of software security metrics to assess the security of a

software system. These metrics are used to predict vulnerabilities in code based on some

predefned threshold values at a certain confdence level. Most of the existing literature fo-

cuses on complexity metrics for software quality assessment. Researchers have found that

complexity is related with software faults and other problematic issues [42]. Researchers

also determined that the fault prediction models based on complexity metrics might be

useful for vulnerability prediction and some metrics, such as nesting complexity metrics,

are more effective for locating vulnerable code than to locate faulty code [45]. Shin et

al. [44, 46] conducted an empirical study to analyze the impacts of complexity metrics

on vulnerable and non-vulnerable fles. They also determined that vulnerable functions

have distinctive characteristics from non-vulnerable functions and from faulty but non-

vulnerable functions in terms of code complexity. They showed that fault prediction mod-

els based on traditional metrics such as code churn, complexity and fault history provide

similar performance in vulnerability prediction across a wide classifcation threshold [46].

In another study, the authors analyzed how different complexity metrics, code churn, and

developer activity metrics can be used to predict vulnerabilities [43]. They showed that

these metrics are positively correlated to vulnerabilities. These studies attempted to im-

21

prove on existing code-level analysis studies for vulnerability prediction. Although the

techniques resulted in adequate vulnerability prediction, the methods suffered from high

false negative rates [43, 44, 42]. Their study identifed development history metrics as

stronger indicators of vulnerabilities than code complexity metrics as complexity metrics

do not have statistically signifcant power to predict vulnerabilities [16]. Chowdhury et al.

in [7, 8] defned how different code structures cause vulnerable source code. The authors

empirically showed that complexity, coupling, and cohesion (CCC) can be effectively used

as metrics to detect vulnerability in the early stage of development. They used four alter-

native data mining and statistical techniques such as C4.5 Decision Tree, Random Forests,

Logistic Regression, and Naive-Bayes and compared their performance on vulnerability

prediction [8]. Another study on complexity metrics showed that these metrics are good

predictors of vulnerabilities between different releases of a project and also between dif-

ferent projects in various felds [33]. According to [32], complexity metrics perform better

than coupling metrics in vulnerability prediction. Another study concluded that software

metrics can discriminate between vulnerable and non vulnerable functions, but they have

no strong correlations with the number of vulnerabilities in the analyzed functions [2].

Structural complexity metrics can exist at the code or design level. Alshammari et

al. in [1] introduced seven metrics for assessing the security of an object-oriented class.

Chowdhury et al. also proposed three code level metrics: stall ratio, coupling corruption

propagation, and critical element ratio to assess the security in a software [6]. The stall

ratio measures the ratio of stall statements in loop structures which can be targeted by the

attacker to cause a denial of service attack. Coupling corruption propagation is a measure

22

of propagation of a potential damage across the components of the software. The critical

element ratio is a metric for measuring the ways a program or class can be infected by

malicious inputs [6]. In another study, authors showed that relative code churns can be

used as a predictor of defect density in software systems [35]. Zimmermann et al. [60]

demonstrated a large-scale empirical study to evaluate the effcacy of classical metrics such

as complexity, churn, coverage, dependency measures, and organizational structure of the

company to predict vulnerabilities. In their study, they showed that classical metrics predict

vulnerabilities with higher precision but lower recall, and they concluded that vulnerability

prediction is not as simple as defect prediction. For the accurate vulnerability prediction

domain, usage of the program components are needed to be captured. Younis et al. [58]

also determined the performance of software metrics for vulnerability prediction. In their

work, they trained their model with exploit data, and considered the vulnerabilities which

have been exposed by some attacks.

Neuhaus et al. [36] introduced a new metric called import and function-call to con-

struct the prediction model for vulnerability. The imports in programming languages (e.g.

#include in C++, import in Java) allow developers to reuse services provided by other li-

braries. They successfully leveraged machine learning techniques to predict vulnerabilities

with an average precision of 70% and recall of 45%. Walden et al. in [55] employed dif-

ferent code and design based software metrics as vulnerability predictors and used text

mining techniques to build vulnerability prediction models for web applications written in

PHP. Zhang et al. in [59] proposed a composite algorithm VULPREDICTOR to predict

vulnerable fles by analyzing software metrics and text features together which is built on

23

an ensemble of many classifers. They claimed that VULPREDICTOR performs better

than Walden et al. approaches for a wide range of percentages of fles to be inspected [59].

In [39], the authors used bag-of-words representation considering a Java source fle as a

series of terms with associated frequencies. However, the reason why bag-of-approach

method or the frequency of several terms is relevant to vulnerability has not been defned

clearly. Gopalakrishna et al. [38] measured vulnerability likelihood based on four arti-

facts of computer programming, including privileged lines of code, error-prone constructs,

programming mistakes, and program style. They suggested to weight these metrics based

on the extent of their correlations with vulnerabilities, but they did not identify how they

could be weighted and how their threshold values would be determined. Nguyen et al. [37]

introduced a new prediction model using dependency graphs of a software system based

on the relationship among software elements such as components, classes, functions, and

variables which can be obtained from static code analyzers. Their proposed model was

tested on JavaScript Engine of Firefox.

These studies focused on identifying metrics that quantify software security. Our work

is motivated by our goal of improving the performance of existing metrics-based vulner-

ability prediction models. In addition, we aim to assess security by targeting a specifc

granularity level. Earlier works did not distinguish between class and method-level metrics.

They considered the metrics at the fle-level which has no specifc granularity. Because a

fle can be of any size, it cannot represent a program unit that can be compared with another

unit. This analysis will lead us to develop effective security measures to assess software

security. In this research, we separated class-level and method-level metrics and trained

24

our model with those metrics separately. Then we compared their prediction accuracy with

the accuracy of the model trained with micro patterns and nano-patterns respectively. To

reach our target, we investigated the relationship between Java traceable patterns and se-

curity vulnerabilities. This relationship has been studied from different viewpoints such

as the patterns’ distribution, associations among the micro and nano-patterns and patterns’

evolution types in vulnerable versus neutral code. For example, if we can identify micro

patterns and their associations or evolution types that relate to vulnerable code, we will be

able to identify potentially vulnerable areas in newly-implemented code. It may not be a

direct causation of vulnerability, but the resulting data can be used to assess security or pre-

dict the likelihood of a vulnerability in the source code. Finally, based on the experiments

we performed on patterns and metrics, we proposed a vulnerability prediction model using

a combined set of patterns and metrics (nano-metrics) that can be used for any system and

that performs better in terms of recall.

25

CHAPTER 4

RESEARCH GOAL

This chapter presents the research goal, research questions that need to be answered in

order to reach the goal, and the approach we followed to reach it.

The goal of this research is to develop a vulnerability prediction framework that limits

false negative rates using traceable patterns and code-level software metrics. Our motiva-

tion is to reduce the number of vulnerabilities in code during implementation and main-

tenance by using traceable patterns and software metrics. In doing so, developers can be

more conscious about vulnerable areas detected by the model and can program defensively

as certain patterns arise while coding or some defned thresholds are violated. Testers will

concentrate more on the defective classes or methods and spend more time and resources

testing them. Both developers and testers can further target problematic areas for testing

and thus can save resources allocated for security testing.

4.1 Research Questions

These section presents research questions that this work addresses. We present each

question and describe the implications of each and our approach to address the question.

We have also refned several questions to further focus the research.

26

4.1.1 RQ1: What is the relationship between traceable patterns and software vul-
nerabilities?

Is there any signifcant difference between traceable pattern distribution in vulnera-

ble and neutral code? This question determines the correlation between traceable patterns

and vulnerabilities. We have answered this question by exploring the distribution of pat-

terns in both vulnerable and neutral code. The objective is fnd interesting patterns that

show a signifcant difference in their frequencies in vulnerable versus neutral code. For

example, if the frequency of pattern A is signifcantly high in vulnerable code compared

to neutral, the pattern may exhibit interesting characteristics that may represent vulnerable

code by its presence. To fnd signifcant presence or absence, we have not only compared

the pattern’s frequencies in vulnerable versus neutral code, but also conducted hypothesis

testing to validate the fndings statistically. We formulate our Hypothesis H0 as follows:

H0: Software vulnerabilities are independent of patterns contained in their source

code.

If we can reject this hypothesis for a particular pattern, we can say that the particular

pattern and software vulnerability are related. We do not claim that the presence of the

pattern is the cause for the vulnerability rather, we suggest the code to be considered for

further testing and review.

How are the traceable patterns associated with each other in vulnerable and neutral

code? To answer this research question, we computed the phi-coeffcient for each pair of

patterns in vulnerable and neutral code using a statistical tool. The connected pairs found in

code indicate that they frequently exist together. Developers can avoid using them together

27

if they understand that their co-existence can indicate vulnerable code. This analysis helps

us to determine the joint effect of patterns on vulnerability generation. For example, if we

see that CompoundBox − Immutable is a highly associated pair in vulnerable classes

whereas they have no association in neutral classes, we can conclude that their joint occur-

rence has some relationship to the vulnerable code. As the phi-coeffcient is a statistical

measure, we did not conduct any further statistical test for these fndings.

Are the association rules useful in identifying vulnerabilities? Association analy-

sis is a well-known concept in data mining for discovering hidden relationships among

large data-sets [20]. The association rules among the nano-patterns were generated for

the vulnerable and neutral methods using a data mining tool. These rules explore if

there is a dependency among the nano-patterns that may be attributed to vulnerable meth-

ods. Knowing that the co-existence of two nano-patterns possesses a high likelihood for

vulnerability, they will be prompted to either avoid the co-occurrence of the patterns or

rigorously test the code where the patterns exist. For example, if developers know that

jdkClient → tailCaller is frequent in vulnerable methods, they will carefully use them

together or try to avoid their coexistence by replacing them with other types. This method-

ology for identifying nano-patterns could be integrated into a developer’s IDE and used to

alert the developer when code contains the risky patterns.

The vulnerable method can be represented when compared to changes made to a method’s

structure to address vulnerabilities as a series of 1’s and 0’s as shown in Table 4.1. Each

row represents a method that has been changed to fx a particular vulnerability. Each col-

umn pi corresponds to a nano-pattern. An entry in the table will be ‘1’ if that pattern exists

28

in the method and ‘0’ otherwise. In our problem, we can assume P = p1, p2, . . . , pd to

be the set of all items (i.e., patterns) and S = s1, s2, . . . , sN be the set of all vulnerable

methods. Each method si contains a subset of patterns chosen from P . We will defne an

itemset as a collection of zero or more patterns. Table 4.1 shows that the support count of

p1, p2 is 2 as they exist together in s1 and s4.

Table 4.1

Binary Representation of Vulnerable Methods

p1 p2 p3 p4 p5 p6
s1 1 1 0 0 0 0
s2 1 0 1 1 1 0
s3 0 1 1 1 0 1
s4 1 1 1 1 0 0

In our problem, an association rule satisfying a pre-defned threshold of the support

count can be generated using a data mining tool (e.g., Weka). If we can generate a set of

association rules with support and confdence thresholds, we can correlate the nano patterns

with the vulnerability by analyzing those rules. For example, if we see {p1, p2} → {p3} is

a rule with high confdence, we can interpret two things. First, we can say that {p1, p2, p3}

is a frequent itemset indicating the nano-patterns co-exist in many known vulnerable meth-

ods. Second, we can confdently determine that the probability of the occurrence of p3 is

high in a vulnerable method if it also contains the patterns p1 and p2. As a result, a devel-

oper notifed of such relationships, will be more conscious when generating any code that

contains the three patterns together.

29

How do traceable patterns evolve from vulnerable code to neutral code? This question

serves to strengthen the relationships between patterns and vulnerabilities. For example,

if we see that pattern A is frequent in vulnerable code and pattern B is frequent in neutral

code, and we get the evolution type A → B (i.e. vulnerable code is fxed by removing

pattern A and including pattern B), this result strengthens the claim that pattern A is more

vulnerability-prone than pattern B.

4.1.2 RQ2: Can traceable patterns better predict vulnerable code than software
metrics?

What are the performance measures of traceable patterns in vulnerability predic-

tion? We extracted a total of 24 nano-patterns (including 17 fundamental patterns) for

every method in our codebase using the nano-patterns extraction tool [47]. After that, we

computed Welch’s t-test between the nano-patterns and security vulnerabilities. Welch’s

Test1 for unequal variances (aka Welch’s t-test) is a modifcation of a Student’s t-test to

see if two sample means are signifcantly different. Using this test, we determined the

nano-patterns that have different means between the two groups of methods (i.e., vulnera-

ble and neutral for each system under study). If a nano-pattern has signifcantly different

mean in vulnerable and neutral methods according to Welch’s test, we assume that pattern

is distributed differently in two groups and consider it as signifcant for that system. By

doing so, we collect the signifcant patterns out of 24 nano-patterns and then train the ma-

chine using the nano-patterns as features. The nano-patterns show a signifcantly different

distribution in two groups, they can better distinguish the vulnerable and neutral methods,

1http://www.statisticshowto.com/welchs-test-for-unequal-variances/

30

https://1http://www.statisticshowto.com/welchs-test-for-unequal-variances

and we can ignore unnecessary patterns in the training model. The results of the related

experiments evaluate traceable patterns as predictors for software vulnerabilities. We used

machine learning techniques to evaluate their performance in prediction. For micro pat-

terns, we directly used all of them for machine learning. We present performance measures

including False Negative rate, Recall, Precision, F-measure while using traceable patterns

as features for classifying code as vulnerable or neutral.

What are the performance measures of software metrics in vulnerability predic-

tion? The results of the related experiments evaluate software metrics as predictors for

software vulnerabilities. We used machine learning techniques to evaluate their perfor-

mance in prediction and then presented performance measures including False Negative

rate, Recall, Precision, F-measure while using software metrics as features for classifying

a code as vulnerable or neutral.

4.1.3 RQ3: How do we determine the most signifcant set of patterns and metrics to
build a framework for vulnerability prediction?

What are the signifcant nano-patterns that can predict vulnerable and neutral meth-

ods? This question determines the association of nano-patterns with vulnerable and neutral

code. Based on the project and codebase, the set of signifcant patterns varies and we con-

sider the common set of patterns that show signifcant relationship with vulnerability for

all projects under study. Those patterns have been used as features for vulnerability pre-

diction.

For this question, we used chi-square test of independence. We have developed the

following null hypothesis:

31

H0 : There is no association between nano-patterns and vulnerabilities.

The alternative hypothesis is:

Ha : There is an association between nano-patterns and vulnerabilities.

What are the signifcant software metrics that can predict vulnerable and neutral

methods? This question determines the association of method-level metrics with vulner-

able and neutral code. Based on the project and codebase, the set of signifcant metrics

varies and we considered the common set of metrics that show signifcant relationship

with vulnerability for all projects under study. Those metrics have been used as features

for vulnerability prediction.

Then, we combined the set of patterns and metrics (we have defned the combination

of a traceable softare pattern and traditional metric as a nano-metric) and used them as

features for building the proposed vulnerability prediction framework.

4.1.4 RQ4: Is the framework effective at predicting vulnerabilities?

Once we have developed our framework, we determined its effectiveness in predict-

ing code-level vulnerabilities. We used vulnerability data extracted from versions of open

source software to train our predictive model. We validated our framework by using the re-

maining software versions and additional projects under study. First, we used the same sys-

tem dataset for both training and testing. This experiment shows how these nano-metrics

work for vulnerability prediction in later releases of the same system. Second, we do

cross-dataset validation where we frst train the machine with one system and then test the

vulnerabilities for another system. This strategy ensures the effectiveness of the proposed

32

features whether the machine trained by these features from any system can universally be

used for various systems.

The four research questions were developed targeting our motivations that led to the

overall research goal. The frst research question helps to analyze the relationship between

vulnerabilities and patterns from different perspectives. The results of this question pro-

vides guidelines to developers and testers about using these patterns in code. The second

research question enables a comparative study between patterns and metrics so that devel-

opers can choose appropriate metrics for predicting vulnerabilities in their own systems.

The third and fourth research questions result in proposing and evaluating a new set of

metrics, combining both the nano-patterns and metrics, that can perform better than the

existing metrics for any system alone. Although the motivations of the research questions

are different from each other, their results have guided us to fulflling our research goal.

For example, in the frst research question, we found that some patterns are signifcantly

present in vulnerable and neutral code which motivated us to assume that they can be used

to build a predictor which may work better than current predictors (using metrics). In the

second research question, we built separate predictors using patterns and metrics and com-

pared their performance. We found that micro patterns do not perform better than metrics,

whereas nano-patterns perform better than metrics (when considering certain criteria [e.g.,

false negatives]). So, in our third research question, we proposed nano-metrics consisting

of nano-patterns and software metrics and evaluated their performance. Chapter 7 presents

the results of the research questions.

33

CHAPTER 5

EXPERIMENTAL SETUP

This chapter presents the experimental setup including systems and tools information,

the approach of vulnerability collection, data extraction to get the answers of the research

questions.

5.1 Vulnerability Collection and Tools

We used three different projects: Apache Tomcat1, Apache CXF2; and the Stanford

Securibench dataset3 to evaluate our research questions. The statistics of the systems used

for RQ1 are presented in Table 5.1. Table 5.2 shows the systems used for the other re-

search questions. Apache projects were used for two major reasons. First, all vulnerability

reports including pointers to the classes affected by a vulnerability for every release are

documented on the Apache website. Second, we needed Java based systems because micro

patterns and nano-patterns are defned for Java classes and methods respectively. Apache

Tomcat consists of about half a million lines of code and more than 3000 classes. The

vulnerabilities reported on the site are listed in Table 5.3. This table shows the reported

vulnerability types across two major releases of Apache Tomcat. We considered 14 ver-

1https://tomcat.apache.org/
2http://cxf.apache.org/
3https://suif.stanford.edu/ livshits/securibench/stats.html

34

https://3https://suif.stanford.edu
https://2http://cxf.apache.org
https://1https://tomcat.apache.org

sions of Tomcat-6, 18 versions of Tomcat-7, 7 versions of Tomcat-8, and 12 versions of

Apache CXF. The reported vulnerabilities are detected across these versions as shown in

Table 5.4 and Table 5.5. In most cases, the versions of Apache Tomcat 6 and 7 are iden-

tical in terms of the source code; we were mainly interested in the classes and methods

where the vulnerabilities are identifed and fxed in a subsequent release. The source code

of Tomcat is contained in the Apache Tomcat Archives4, and the source code of CXF is in

Apache CXF Archives5. These repositories were used to download the source fles across

the versions specifed. Stanford SecuriBench is a set of open source programs used to

test static and dynamic security tools [25, 26]. We conducted the experiment for traceable

patterns on the J2EE web applications known as Pebble 1.6-beta1, Personalblog 1.2.6 and

Roller 0.9.9 in the Stanford SecuriBench dataset.

Table 5.1

Systems in Study for RQ1

Systems Versions Files/Classes Methods
Apache Tomcat (Releases 6/7/8) Any Version 2800 (approx.) 10296 (approx.)
Stanford Personalblog 1.2.6 39 33

Roller 0.9.9 276 2857
Pebble 1.6-beta1 333 N/A

5.1.1 Tools

This section describes tools used to collect and analyze data for our studies.

4http://archive.apache.org/dist/tomcat/
5http://archive.apache.org/dist/cxf/

35

https://5http://archive.apache.org/dist/cxf
https://4http://archive.apache.org/dist/tomcat

Table 5.2

Systems in Study for RQ2-RQ4

Systems Versions Files/Classes Methods
Apache Tomcat (Releases 6/7) Any version 2800 (approx.) 10296 (approx.)

CXF 3.1.10 737 26366
Stanford Personalblog 1.2.6 39 33

Roller 0.9.9 276 2857
Pebble 1.6-beta1 333 N/A

Other Evaluation Dataset Apache Tomcat 9.0.0.M1, 9.0.0.M9, 9.0.0.M11, 9.0.0.M15, N/A 2468
9.0.0.M17, 9.0.0.M18, 9.0.0.M20, Apache Struts 2.2.3,
Apache Struts 2.3.4, and Apache Commons-Compress-1.4

Table 5.3

Vulnerabilities

Tomcat-6 Tomcat-7 Tomcat-8 Apache CXF Stanford Securibench
Information disclosure Security Manager bypass Security Manager bypass Denial of Service (DoS) Cross-Site Scripting
Security Manager bypass Request Smuggling Request Smuggling Authentication bypass HTTP Response Splitting
Request Smuggling Denial of Service Denial of Service SOAP Action spoofng attacks SQL Injections
Information disclosure Information Disclosure Information Disclosure Wrapping attack Path Traversal
Frame injection in documentation Javadoc Remote Code Execution XML External Entity (XXE) Injection Log Forging.
Session fxation Session fxation POODLE attack
DIGEST authentication weakness Bypass of CSRF prevention flter XML Encryption faw
Denial of Service DIGEST authentication weakness DTD based XML attacks
Bypass of security constraints Bypass of security constraints
Bypass of CSRF prevention flter Privilege Escalation
Authentication bypass and information disclosure Multiple weaknesses in HTTP DIGEST authentication
Multiple weaknesses in HTTP DIGEST authentication Security constraint bypass
Cross-site scripting Remote Denial Of Service
SecurityManager fle permission bypass Cross-site scripting
Remote Denial Of Service and Information Disclosure SecurityManager fle permission bypass
Information disclosure in authentication headers
Arbitrary fle deletion and
or alteration on deploy
Insecure partial deploy after failed undeploy
Unexpected fle deletion in work directory

Table 5.4

Affected Versions for RQ1

Systems Affected Versions Vulnerable Vulnerable
Classes Methods

Tomcat-6 6.0.16, 6.0.18, 6.0.26, 6.0.27, 6.0.29, 6.0.30, 6.0.32, 6.0.33, 6.0.35, 6.0.36, 6.0.37, 6.0.39, 6.0.41, 6.0.43 104 124
Tomcat-7 7.0.6, 7.0.10, 7.0.11, 7.0.16, 7.0.20, 7.0.21, 7.0.22, 7.0.27, 7.0.29, 7.0.32, 108 106

7.0.39, 7.0.42, 7.0.47, 7.0.50, 7.0.52, 7.0.53, 7.0.54, 7.0.57
Tomcat-8 8.0.0-RC1, 8.0.0-RC5, 8.0.1, 8.0.3, 8.0.5, 8.0.8, 8.0.15 55 21
Stanford Blueblog 1.0, Pebble 1.6-beta1, Personalblog 1.2.6 and Roller 0.9.9 91 151
Securibench

36

Table 5.5

Affected Versions for RQ2-RQ4

Systems Affected Versions Vulnerable Vulnerable
Classes Methods

Tomcat-6 6.0.16, 6.0.18, 6.0.26, 6.0.27, 6.0.29, 6.0.30, 6.0.32, 6.0.33, 6.0.35, 6.0.36, 6.0.37, 6.0.39, 6.0.41, 6.0.43 104 124
Tomcat-7 7.0.6, 7.0.10, 7.0.11, 7.0.16, 7.0.20, 7.0.21, 7.0.22, 7.0.27, 7.0.29, 7.0.32, 63 106

7.0.39, 7.0.42, 7.0.47, 7.0.50, 7.0.52, 7.0.53, 7.0.54, 7.0.57
Apache CXF 2.5.1, 2.6.0, 2.6.1, 2.7.0, 2.7.2, 2.7.7, 2.7.9, 2.7.10, fediz-core-1.2.0, 3.0.2, 3.0.6, 3.1.8 33 45
Stanford Blueblog 1.0, Pebble 1.6-beta1, Personalblog 1.2.6 and Roller 0.9.9 91 151
Securibench
Evaluation Dataset Apache Tomcat 9.0.0.M1, 9.0.0.M9, 9.0.0.M11, 9.0.0.M15, N/A 67

9.0.0.M17, 9.0.0.M18, 9.0.0.M20, Apache Struts 2.2.3,
Apache Struts 2.3.4, and Apache Commons-Compress-1.4

Vulnerability Extraction Tool: We used a static analysis tool called Early Security

Vulnerability Detector - ESVD6 to identify vulnerable classes and methods for the projects

in Stanford Securibench. The reason behind using ESVD instead of other tools is that

it was shown to have fewer false positives in its results with higher precision and recall

for the projects within Stanford Securibench in existing studies7. The tool has an Eclipse

plugin that was used to analyze the projects.

Traceable Pattern Extraction Tool: The micro patterns were extracted using a pattern

extraction tool developed by Gil and Maman [18]. This command line tool is available at

Maman’s webpage8. Singer et al. in [47] developed a tool to detect nano-patterns in Java

byte code. This tool provides the list of all methods and their associated nano-patterns.

We used another tool, JiraExtractor [10] developed at Mississippi State University, that

extracts the methods modifed for each revision number involved in fxing a vulnerability.

This tool then pulls nano-patterns of those methods from the database that contains the

6https://marketplace.eclipse.org/content/early-security-vulnerability-detector-esvd/
7http://docplayer.net/1619013-Early-vulnerability-detection-for-supporting-secure-programming.html
8http://www.cs.technion.ac.il/ imaman/mp/download.html

37

https://8http://www.cs.technion.ac.il
https://7http://docplayer.net/1619013-Early-vulnerability-detection-for-supporting-secure-programming.html
https://6https://marketplace.eclipse.org/content/early-security-vulnerability-detector-esvd

nano-pattern information for the software versions that is part of the analysis. JiraExtractor

actually incorporates the nano-pattern tool developed in [47] to extract the nano-pattern

information.

Metrics Extraction Tool: We used SciTools Understand 4.09 to extract class-level and

method-level software metrics in our research.

Other Tools: The phi-coeffcients were measured using SPSS 10. We used WEKA 3.811

to extract association rules and build the vulnerability prediction model.

5.1.2 Vulnerability Collection

This section presents our approach to data collection by presenting the systems that

were used in the study.

5.1.2.1 Apache Tomcat

We collected Apache Tomcat vulnerability reports that provide the information about

the vulnerability type, its CVE (Common Vulnerabilities and Exposures)12 id, affected

versions, revision number, fxed version, and the severity level of the vulnerabilities fxed in

the identifed versions. For example, if a vulnerability affects the versions 6.1, 6.2, 6.3 and

is fxed in 6.4, we consider 6.3 as the last affected version. By doing so, we collected the

last affected code versions for the listed vulnerabilities as shown in Table 5.4 and Table 5.5.

Table 5.4 shows the collected versions for research question 1 and Table 5.5 shows the

collected version for studying the other research questions. We considered 6.0.45 as the

9http://www.scitools.com
10http://www-01.ibm.com/software/analytics/spss/products/statistics/index.html
11http://www.cs.waikato.ac.nz/ml/weka
12https://cve.mitre.org/

38

https://12https://cve.mitre.org
https://10http://www-01.ibm.com/software/analytics/spss/products/statistics/index.html
https://9http://www.scitools.com

last non-affected version in release 6, 7.0.69 as the last non-affected version in release 7,

and 8.0.33 as the last non-affected version in release 8 at the time of study for research

question 1. But for the remaining research questions, we considered 6.0.48 as the last non-

affected version in release 6, 7.0.75 as the last non-affected version in release 7, and 8.0.69

as the last non-affected version in release 8. The reason behind it is that the vulnerabilities

that we considered for each major release are not available in the last version of that release

as they were already fxed. Although some other vulnerabilities may still exist in this last

version, we were only interested in the vulnerabilities that were reported in that release.

Then, we downloaded the code for all affected and non-affected versions listed in Table 5.4

for the frst research question and Table 5.5 for the other research questions. For example,

in Figure 5.1, the Denial of Service vulnerability (CVE-2014-0075) was fxed in revision

1578341 of version 7.0.53. If we follow the link to revision number13, we will get the list

of classes modifed to fx the vulnerability as shown in Figure 5.2. So our collected data is

as follows:

• CVE id

• Vulnerability Type

• Last Affected Version

• Revision No

• List of Classes modifed to fx

13http://svn.apache.org/viewvc?view=revision&revision=1578341

39

Figure 5.1

Apache Tomcat Security Page

Figure 5.2

Affected class names for a vulnerability in Apache Tomcat

5.1.2.2 Apache CXF

The vulnerability reports of Apache CXF provide the information about the vulnera-

bility type, its CVE id, affected versions, revision number and fxed version as shown in

Figure 5.3. The reports also provide the list of classes that were modifed for fxing the

respective vulnerability as in Figure 5.4. According to Figure 5.3, CSRF attacks (CVE-

2017-7662) affected the versions of Apache CXF Fediz prior to 1.4.0 and 1.3.2. If we

follow the link14, we get the list of class fles for fxing the vulnerability as shown in Fig-

ure 5.4. On the other hand, we considered 3.1.10 as the neutral version for Apache CXF.

14https://github.com/apache/cxf-fediz/commit/c68e4820816c19241568f4a8fe8600bffb0243cd

40

https://14https://github.com/apache/cxf-fediz/commit/c68e4820816c19241568f4a8fe8600bffb0243cd

Figure 5.3

Apache CXF Security Page

Figure 5.4

Affected class names for a vulnerability in Apache CXF

41

5.1.2.3 Stanford Securibench

We used a static analyzer tool called Early Security Vulnerability Detector - ESVD15

to identify the vulnerable classes and methods of the projects: pebble 1.6-beta1, personal-

blog 1.2.6, and roller 0.9.9. The tool has an Eclipse plugin that we installed in the Eclipse

IDE to analyze the projects. We obtained 23 vulnerabilities in pebble 1.6-beta1, 34 vul-

nerabilities in personalblog 1.2.6, and 207 vulnerabilities in roller 0.9.9. The vulnerability

types were cross-site scripting, http response splitting, sql injections, path traversal, and

log forging. We then explored the classes and methods that are associated to these types of

vulnerabilities. To that end, ESVD detected in total, 12, seven, and 72 vulnerable classes

in pebble 1.6-beta1, personalblog 1.2.6, and roller 0.9.9 respectively. There are 12 and

139 vulnerable methods in personalblog 1.2.6 and roller 0.9.9 respectively as detected by

ESVD.

5.2 Data Extraction

This section presents our approach to data extraction.

5.2.1 Micro pattern Extraction

We downloaded the affected versions listed in Table 5.5 from the Apache projects.

The micro pattern tool is activated via the command line and accepts the class name or

a jar fle as input and extracts all micro patterns identifed in that class or classes in the

jar fle. If a particular micro pattern exists in that class, the entry is ‘1’; otherwise, it

is ‘0’. We collected the micro pattern data for 104 vulnerable classes in Tomcat-6, 63

15https://marketplace.eclipse.org/content/early-security-vulnerability-detector-esvd/

42

https://15https://marketplace.eclipse.org/content/early-security-vulnerability-detector-esvd

vulnerable classes in Tomcat-7, 38 vulnerable classes in Tomcat-8, 33 classes in CXF, and

91 classes in Stanford Securibench. We then analyzed micro patterns from the source code

of the neutral version for each project. For RQ1, there were 2211 classes from version

6.0.45, 2789 classes from version 7.0.69, 2972 classes from version 8.0.33, and 551 from

Stanford. For RQ2 and RQ3, we collected micro patterns data for 717 classes of Tomcat-6,

827 classes of Tomcat-7, 737 of CXF, and 364 of Stanford.

5.2.2 Software Metrics Extraction

We used a commercial tool from SciTools called Understand 4.0 to compute the metrics

from the source code. We created a separate project in Understand for every version of

every project and ran a scheduler after specifying the metrics we needed. We executed

the scheduler for each project and generated separate csv fles containing the class-level

and method-level metrics as listed in Table 2.3 and in Table 2.4 for that project. Then we

selected the classes and methods that were recorded as vulnerable and stored their metrics

in separate fles.

5.2.3 Nano-pattern Extraction

We used the JiraExtractor tool to get the list of methods changed for a revision [10].

The tool fetches the nano-patterns of those methods using Singer’s nano-patterns extrac-

tion tool. For example, we found the list of vulnerabilities which affected a specifc version

of Apache Tomcat listed in Affected Versions column of Table 5.5 and then used the nano-

patterns tool to dump all methods and their nano-patterns of that version in the database.

After that, the JiraExtractor tool gets all the revision numbers for that version and fetches

43

the list of all methods in that version that have been revised to fx the vulnerability. Finally,

the tool extracts the nano-patterns of those methods from the database table. For RQ1,

we found 124, 106, 21, 151 vulnerable methods in Tomcat-6, Tomcat-7, Tomcat-8, and

Stanford respectively as presented in Table 5.4. For RQ2 and RQ3, we found 124, 106, 45,

151, 67 vulnerable methods in Tomcat-6, Tomcat-7, Apache CXF, Stanford, and Evalua-

tion dataset respectively as presented in Table 5.5. Then, we collected nano-patterns from

the source code of the neutral versions by using the nano-patterns tool by Singer. So for the

neutral versions, we had nano-patterns of 8645 methods in Tomcat-6, 10296 methods in

Tomcat-7, 13165 methods in Tomcat-8, 26366 methods in CXF, 2734 methods in Stanford,

and 2401 methods in Evaluation dataset.

5.3 Vulnerability Prediction

We developed vulnerability predictors by using three machine learning techniques.

Waikato Environment for Knowledge Analysis (WEKA) is a popular, open source toolkit

implemented in Java for machine learning and data mining. We used WEKA 3.8 for our

study. The parameters for each of the techniques were initialized with the default settings

for WEKA.

As our dataset was not balanced, we needed to create a balanced dataset consisting

of the same number of vulnerable and neutral classes or methods. Earlier studies either

considered under-sampling of the majority category or over-sampling of the minority cat-

egory. The problem with under-sampling is that information may be lost. In the case of

over-sampling the minority category, i.e., duplicating the instances representing vulnerable

44

fles can make the system biased to the vulnerable class when the size of vulnerable classes

is too small. In this research, we applied ClassBalancer flter in WEKA 3.816. This flter

re-weights the instances in the data so that each category has the same total weight. This

flter changes only the weight of the frst batch of the data.

We ran three machine learning algorithms separately for the nano-patterns and the

method-level metrics. We also ran them separately for the micro patterns and the class-

level metrics feature set. For each algorithm, we used 10-fold cross-validation to ensure

that the trained model will work accurately for an unknown dataset in practice [57]. In

10-fold validation, the sample dataset is randomly partitioned into 10 subsamples of equal

size. Of the 10 subsamples, a single subsample is retained as the validation data or test

data, and the remaining 10 − 1 subsamples are used as training data. The process is then

repeated 10 times considering each of the 10 subsamples exactly once as the test data. Af-

ter 10 runs, the average is taken on 10 folds to produce a single estimation. We trained

the model with each project separately and predicted the test data of the respective project.

The result of this experiment shows how accurately a model trained with historical data

can predict vulnerable classes or methods of later releases. For the RQ3, we also per-

formed cross-dataset validation, where we trained the model with one dataset and tested it

for another dataset.

5.3.1 Performance Measures

The following performance measures are used to evaluate the model.

16http://weka.sourceforge.net/doc.dev/weka/flters/supervised/instance/ClassBalancer.html

45

https://16http://weka.sourceforge.net/doc.dev/weka/filters/supervised/instance/ClassBalancer.html

• Precision: Precision for a vulnerable method or class prediction can be defned as

the ratio of the number of predicted vulnerable methods or classes that are actually

vulnerable to the total number of methods or classes retrieved as vulnerable [57].

It is also known as correctness of the prediction model. We used this measure in

our experiment in order to show how much irrelevant data are drawn by the model

while classifying a vulnerable or a neutral method or a class. The formula used for

computing precision is as follows:

TP
P recision = (5.1)

TP + FP

• Recall: Recall of a vulnerable method or class prediction is defned as the ratio of

the number of predicted vulnerable methods or classes that are actually vulnerable

to the total number of vulnerable methods or classes in the system. It can be defned

as follows:

TP
Recall = (5.2)

TP + FN

Recall is more signifcant than precision in the case of vulnerability prediction.

Higher recall for vulnerable methods or class prediction ensures that it has detected

most of the vulnerable methods or classes and very few of them remain undetected.

There is a trade-off between recall and precision. For example, if all the methods

or classes predicted as vulnerable by the model are actually vulnerable, its preci-

sion will be 100 percent although it does not guarantee that no vulnerable method

46

or class remains as undetected or wrongly predicted as neutral. Similarly, precision

will degrade in case a model wrongly predicts many neutral methods or classes as

vulnerable although it can successfully detect all the vulnerable methods or classes

and make 100 percent recall. It will make the predictor ineffcient and useless.

• False Negative Rate (Miss Rate): The False Negative rate indicates the percentage

of vulnerable methods or classes that are wrongly predicted as neutral. It is more

signifcant in our case as predicting a vulnerable method or a class as neutral may

cause serious security failure compared to the wrongly predicted neutral methods or

classes. In fact, recall is 1 − F NRate. With the increase of FN rate, recall will

decrease.

FN
F NRate = (5.3)

TP + FN

• False Positive Rate (Fall-out): FP Rate indicates the proportion of neutral methods

or classes wrongly predicted as vulnerable compared to the total number of actual

neutral methods or classes in the system. The formula is as follows:

FP
F P Rate = (5.4)

FP + TN

This measure is important in case of cross-dataset validation. As we applied classbal-

ancer only for the training set and not for the testing set. In the case of cross-dataset

validation, precision becomes extremely poor. In those cases, we focus on the FP

47

Rate to see the rate of wrongly predicted neutral methods compared to their actual

number.

• F-measure: F-measure can be interpreted as a weighted average of precision and

recall [57]. It gives equal importance to both precision and recall by considering

their harmonic mean [57]. The formula for F-measure is defned as follows [5]:

(β2 + 1)P recision × Recall
Fβ = (5.5)

β2 × P recision + Recall

In the above equation, β controls a balance between Precision and Recall. β = 1

makes F1-measure equivalent to the harmonic mean of Precision and Recall. β > 1

makes F -measure more recall-oriented and β < 1 makes it more precision oriented.

• ROC: ROC (Receiver Operating Characteristic) curve shows the trade-off between

the True Positive Rate and the False Positive Rate. The area under ROC curve is a

measure for evaluating the performance of the binary classifer in terms of TP and

FP rate. Area close to 1 shows high-performance model and area about 0.5 shows

low-performance model [32]. Increase in Recall (TP Rate) also results in increase

in FP Rate. Therefore, ROC measure helps to track the optimum point where the

metric performs well with respect to the TP Rate and FP Rate.

48

CHAPTER 6

VULNERABILITY PREDICTION MODEL

This chapter presents the research plan developed to evaluate frst two research ques-

tions; RQ1: What is the relationship between traceable patterns and software vulnera-

bilities? and RQ2: Can traceable patterns better predict vulnerable code than software

metrics? Figure 6.2 presents the workfow for accomplishing the research goal. After

completing the experiments related to RQ1 and RQ2, we developed an architecture for a

vulnerability prediction model using nano-patterns and method-level metrics. Based on the

results of frst two research questions, we realized that micro patterns are not a good pre-

dictor of vulnerabilities and class-level granularity does not work better than method-level

granularity. Therefore, we decided to consider method-level granularity and proposed a

model based on nano-patterns and method-level software metrics. We evaluated the effec-

tiveness of the model using vulnerability data of real-world applications.

6.1 Overview of the Prediction Model

We have devised a model to predict vulnerabilities using nano-patterns and method-

level metrics. The model comprises several phases. The datafow diagram of the model is

shown in Figure 6.1.

49

Figure 6.1

Data Flow Diagram of the Research Plan

Figure 6.2

Overall Framework of the Research Plan

50

6.1.1 Building the Prediction Model
6.1.1.1 Preprocessing

We collected a set of vulnerable and neutral methods for the systems under study. We

also cleaned the set of methods by removing duplicate instances.

6.1.1.2 Feature Extraction

We extract nano-patterns from the vulnerable and neutral methods using the nano-

patterns extraction tool [47]. The tool extracts all 24 nano-patterns from the given methods.

After that, we collect method-level metrics as specifed in Table 2.4 for those methods us-

ing the Understand tool.

6.1.1.3 Feature Selection

We extract data consisting of nano-patterns and method-level software metrics. To

initiate creation of the model, we need to perform statistical tests to get correlations of

nano-patterns and metrics with vulnerabilities. Are goal was to identify signifcant patterns

and metrics that show signifcantly different distributions in vulnerable and neutral code in

all projects under study. We consider the common set of patterns and metrics in all projects

and then used them to build a vulnerability prediction model.

6.1.1.4 Build Predictor

We build a predictor using machine learning techniques to classify vulnerable and neu-

tral code. We combined selected features (nano-metrics) to build this predictor.

51

6.1.2 Classifcation
6.1.2.1 Feature Extraction and Selection

We extract nano-patterns and metrics using the tools described previously. After ex-

tracting the patterns and metrics, we chose the selected features (signifcant set of patterns

and metrics or nano-metrics) for the test dataset.

6.1.2.2 Model Evaluation

These features are fed to the predictor which has already been trained using machine

learning techniques. The predictor then classifes the new piece of code as vulnerable or

neutral. We evaluate the effectiveness of the model using the measures including Recall,

Precision, F-measure, and AUC (Area under ROC curve).

6.2 Methodology
6.2.1 System Selection

We experimented our proposed model on four different projects: Apache Tomcat (Re-

lease 6 and 7)1, Apache CXF2, the Stanford Securibench dataset3 and the evaluation dataset.

The evaluation dataset consisted of a set of vulnerable and neutral methods from Apache

Tomcat 9.0.0.M1, 9.0.0.M9, 9.0.0.M11, 9.0.0.M15, 9.0.0.M17, 9.0.0.M18, 9.0.0.M20,

Apache Struts 2.2.3, Apache Struts 2.3.4, and Apache Commons-Compress-1.4.

1https://tomcat.apache.org/
2http://cxf.apache.org/
3https://suif.stanford.edu/ livshits/securibench/stats.html

52

https://3https://suif.stanford.edu
https://2http://cxf.apache.org
https://1https://tomcat.apache.org
https://9.0.0.M9
https://9.0.0.M1

6.2.2 Features Extraction

In this section, we describe how we collected features (nano-patterns and method-level

metrics) from the vulnerable and neutral methods of the systems under study.

6.2.2.1 Nano-Patterns Extraction

We identifed the affected versions of Apache Tomcat as listed in the Affected Versions

column of Table 5.5. After that, we used the nano-patterns tool developed by Singer [47] to

dump all methods and their respective nano-patterns in those versions in a database. Then

we collected the name of the affected methods inside every class that had been revised

to remove a vulnerability and fnally stored those methods and their nano-patterns in a

separate fle. We found 124, 106, 45, 151, and 67 vulnerable methods in Tomcat-6, Tomcat-

7, Apache CXF, Stanford, and Evaluation dataset respectively (presented in Table 5.5).

Then we collected nano-patterns from the neutral methods of the neutral versions using

the nano-patterns extraction tool. We obtained nano-patterns for 8645 methods in Tomcat-

6, 10296 methods in Tomcat-7, 26366 methods in CXF, 2734 methods in the Stanford

applications, and 2401 methods in the evaluation set.

6.2.2.2 Software Metrics Extraction

SciTools Understand 4.04 was used to compute the source code metrics. We frst cre-

ated a project in the Understand tool for every version of every system and ran a scheduler

to extract the specifc metrics needed. This process took almost 30 seconds for every ver-

sion of a project. We generated separate csv fles for all different versions containing the

4http://www.scitools.com

53

https://4http://www.scitools.com

method-level metrics of that version. Finally, we separated our vulnerable methods from

that fle and stored their metrics in a separate fle. We followed the same procedure for

collecting metrics of the neutral methods of the systems under study.

6.2.3 Feature Selection
6.2.3.1 Finding Signifcant Nano-patterns

We extracted 24 nano-patterns (including 17 fundamental patterns) for every method

in our codebase using the nano-patterns extraction tool [47]. After that, we computed the

chi-square test of signifcance between the nano-patterns and security vulnerabilities to get

the set of patterns that show a signifcant relationship with vulnerable methods.

6.2.3.2 Finding Signifcant Metrics

Welch’s Test5 for unequal variances (aka Welch’s t-test) is a modifcation of a Student’s

t-test used to determine if two sample means are signifcantly different. Using this test,

we determined the metrics that have different means between the two groups of methods

(i.e., vulnerable and neutral for each system under study). If a metric has signifcantly

different mean in vulnerable vs neutral methods according to Welch’s test, we assumed

that metric is distributed differently in two groups and considered it signifcant for that

system. By showing a different distribution between the two groups, they better distinguish

the vulnerable and neutral methods and we can ignore unnecessary metrics in the training

model.
5http://www.statisticshowto.com/welchs-test-for-unequal-variances/

54

https://5http://www.statisticshowto.com/welchs-test-for-unequal-variances

6.2.3.3 Select Common Nano-metrics

After getting the list of patterns and metrics for every system under study, we consid-

ered the patterns and metrics that are common in all systems. We discarded other patterns

and metrics and did not consider them as features for the prediction model. The common

set of nano-patterns and metrics selected for the study has been termed as “Nano-metrics”.

6.2.4 Building Prediction Model

We developed a prediction model using the nano-metrics. In this section, we describe

the steps followed to build the model.

We employed two machine-learning algorithms (Logistic Regression and Support Vec-

tor Machine) to build the prediction model and classify the vulnerable and neutral methods

in all the systems under study. We followed two types of experiments for predicting vul-

nerabilities. In the frst type, we trained the model with each dataset separately and used

10-fold cross-validation to ensure that the trained model would work accurately for the

later releases of the dataset in practice [57]. We trained the model with each project sep-

arately and predicted the test data of the respective project. The result of this experiment

showed how accurately a model trained with historical data can predict vulnerable meth-

ods of later releases. In the second type, we trained the model with one system and then

used another system as test dataset (cross-dataset validation). The goal of this approach

was to determine if the trained model would work for different systems. For example, if

we trained the model with Tomcat 6, we tested the model using the vulnerability data from

Tomcat 7, Apache CXF, Stanford, and the evaluation dataset.

55

CHAPTER 7

EXPERIMENTAL RESULTS

This chapter presents the experimental results.

7.1 RQ1: What is the relation between traceable patterns and software vulnerabili-
ties?

7.1.1 Is there any signifcant difference between traceable pattern distribution in
vulnerable and neutral code?

We found that some micro patterns exist frequently in vulnerable classes whereas others

are completely absent. In the same way, some micro patterns are frequent in neutral classes

and others are generally not present in them (for the target systems we analyzed). Our

signifcant observations are as follows:

• Vulnerable classes in all versions of releases 6, 7, and 8 do not contain the pat-

terns Box, Canopy, RestrictedCreation, P ureT ype, Extender, DataManager,

T rait, and StateMachine whereas they are present in neutral classes as shown in

Figure 7.1, Figure 7.2, and Figure 7.3. Therefore, we can recognize them as safe

patterns to be used in code.

• There are some micro patterns that have a statistically signifcant presence in neutral

classes compared to their presence in vulnerable classes as shown in Figure 7.1,

56

Figure 7.2, and Figure 7.3. They are CompoundBox, Immutable, Implementor,

Overrider, Sink, Stateless, F unctionObject, and LimitedSelf .

• There are certain micro patterns which are signifcantly present in vulnerable classes

but are almost absent in neutral classes. They are Outline and AugmentedT ype.

The percentage of Outline pattern in vulnerable versions of release 7 is 10.2 percent

and in neutral version of release 7 is 0.97 percent. Outline pattern is 9.09 percent

in vulnerable versions of release 8, and 1.11 percent in neutral version of release

8. AugmentedT ype pattern is 2.78 percent in vulnerable versions of release 7, and

0.68 percent in neutral version of release 7. AugmentedT ype pattern is 3.64 percent

in vulnerable versions of release 8, and 0.64 percent in neutral version of release 8.

CommonState pattern is available in version 6, but its uses have been reduced in the

later versions. The percentage of CobolLike pattern is higher in vulnerable versions

than in neutral versions.

• Other micro patterns such as Useless, Sampler, P seudoClass, Joiner, Designator,

Record, T axonomy, and Recursive are almost absent in both the vulnerable and

neutral classes in all the versions of the target systems.

• In the Stanford applications, we found LimitedSelf , Implementor, Overrider,

Sink, Stateless, F unctionObject as the most frequent patterns in the neutral classes

compared to the vulnerable classes as in Figure 7.4.

We performed a chi-square test to measure the statistical signifcance of our fndings.

We formulated our Hypothesis as H0: Software vulnerabilities are independent of micro

57

Figure 7.1

Micro Patterns Distribution in Tomcat (Release 6)

Figure 7.2

Micro Patterns Distribution in Tomcat (Release 7)

Figure 7.3

Micro Patterns Distribution in Tomcat (Release 8)

58

Figure 7.4

Micro Patterns Distribution in Stanford Securibench

patterns contained in their source code and assumed α = 0.05. We have tested this hy-

pothesis for all the affected and non-affected versions in release 6. We have reported the

chi-square values for all of them that we found using the SPSS tool in Table 7.1. In our

case, degrees of freedom is 1. For degrees of freedom=1 and at 5% level of signifcance,

the appropriate critical value is 3.84, and the decision rule is: Reject H0 if χ2 ≥ 3.84.

Therefore, we reject H0 for the micro patterns whose chi-square values are greater than

3.84 according to Table 7.1. In other words, we fnd statistically signifcant associations

between Tomcat vulnerabilities and these micro patterns at α = 0.05 (p ≤ 0.005). On

the other hand, there are some micro patterns such as Sampler, P seudoClass, P ool,

CommonState, F unctionP ointer, Joiner, Designator, Record, T axonomy, T rait,

CobolLike, and Recursive for which we cannot reject the null hypothesis (for these pat-

terns χ2 ≤ 3.84). This result shows there was not enough evidence at α = 0.05 to claim

that Tomcat vulnerabilities and these micro patterns are dependent where p ≤ 0.005. To

obtain the statistical signifcance of our fndings in Stanford, we performed a chi-square

59

test and had statistically signifcant evidence at α = 0.05 to show that vulnerabilities

present in the web applications and these micro patterns are not independent (i.e. they

are dependent or related in some way) where p ≤ 0.005. We have reported the chi-square

values that are greater than 3.84 in Table 7.2. In our case, degrees of freedom is 1. For

LimitedSelf , Implementor, Sink, Stateless, F unctionObject micro patterns, we can

say that their presence in neutral classes is signifcantly different than their presence in

vulnerable classes.

Table 7.1

Chi-square values for micro patterns in Tomcat (Release 6)

Micro Pattern Chi-Square Micro Pattern Chi-Square
Outline 75.645 Compound Box 6.101
Pure Type 25.776 Immutable 5.947
Implementor 19.557 Restricted Creation 5.438
Overrider 16.378 Function Pointer 2.997
Box 15.801 Trait 2.304
Sink 14.095 Record 1.8
Limited Self 11.764 Taxonomy 1.599
Function Object 11.223 Recursive 1.557
Augmented Type 9.596 Sampler 1.331
Data Manager 7.73 Pseudo Class 1.231
State Machine 7.695 Designator 1.03
Extender 7.101 Common State 0.83
Canopy 7.032 Pool 0.816
Stateless 6.874 Cobol Like 0.783

Joiner 0.232

The comparative study between nano-pattern distribution in the vulnerable methods

and that in the neutral methods show signifcant differences between them. This result

leads to the conclusion that some nano-patterns are more frequent in vulnerable methods

than they are in neutral methods and vice versa. Our signifcant observations are as follows:

60

Table 7.2

Chi-square values for micro patterns in Stanford Securibench

Micro Pattern Chi-Square
LimitedSelf 30.899
Implementor 29.213
Sink 8.053
Function Object 6.074
Stateless 5.052

• There are some nano-patterns that are more widely present in vulnerable methods

of Tomcat-6, 7, and 8 compared to the neutral methods as shown in Figure 7.5, Fig-

ure 7.6, and Figure 7.7 respectively. They are objCreator, thisInstanceF ieldReader,

thisInstanceF ieldW riter, otherInstanceF ieldReader,

otherInstanceF ieldW riter, looper, exceptions, localW riter, arrReader.

• There are some nano-patterns that are more widely present in neutral methods of

Tomcat-6, 7, and 8 compared to their presence in vulnerable methods as shown in

Figure 7.5, Figure 7.6, and Figure 7.7 respectively. They are void, samename, leaf ,

tailCaller, and straightLine.

• According to Figure 7.8, the most prominent nano-patterns in vulnerable methods of

Stanford applications are void, objCreator, thisInstanceF ieldReader,

staticF ieldReader, typeManipulator, looper, exceptions, localReader, localW riter,

jdkClient, and tailCaller. On the other hand, samename, leaf , and straightLine

were identifed as signifcantly less-prominent in vulnerable methods compared to

their existence in neutral methods.

61

Figure 7.5

Nano-patterns Distribution in Tomcat (Release 6)

Figure 7.6

Nano-patterns Distribution in Tomcat (Release 7)

Figure 7.7

Nano-patterns Distribution in Tomcat (Release 8)

62

Figure 7.8

Nano-patterns Distribution in Stanford Securibench

To obtain the statistical signifcance of our fndings, we performed a chi-square test. We

formulated our Hypothesis H0 as Software vulnerabilities are independent of the nano-

patterns contained in their source code, and we assumed α = 0.05. We tested this hy-

pothesis for all the affected and non-affected versions in release 8. We have reported the

chi-square values for all of them that we found in Table 7.3. In our case, degrees of free-

dom is 1. For degrees of freedom=1 and at 5% signifcance level, the appropriate critical

value is 3.84, and the decision rule is: Reject H0 if χ2 ≥ 3.84. Therefore, we reject H0 for

the nano-patterns whose chi-square values are greater than 3.84 according to Table 7.3. In

other words, we can say that we have statistically signifcant evidence at α = 0.05 to show

that vulnerabilities present in Tomcat and these nano-patterns are not independent (i.e.,

they are dependent or related in some way) where p ≤ 0.005. On the other hand, there are

certain nano-patterns for which we cannot reject the null hypothesis where χ2 ≤ 3.84 as in

Table 7.3. In other words, we can say that we do not have statistically signifcant evidence

63

at α = 0.05 to show that vulnerabilities present in Tomcat and these nano-patterns are not

independent where p ≤ 0.005.

Table 7.3

Chi-square values for nano-patterns in Tomcat (Release 8)

Nano-pattern Chi-Square Nano-pattern Chi-Square
exceptions 44.122 typeManipulator 3.289

looper 43.334 void 2.350
otherInstanceFieldReader 36.981 noparams 2.269

arrReader 31.597 arrCreator 2.088
otherInstanceFieldWriter 26.879 arrWriter 1.734

straightLine 13.052 leaf .658
tailCaller 12.896 staticFieldWriter .655

localWriter 9.083 localReader .566
objCreator 7.426 staticFieldReader .489

thisInstanceFieldReader 7.066 jdkClient .296
samename 5.549 client .184

thisInstanceFieldWriter 3.723 switcher .122
recursive .069

7.1.2 How are the traceable patterns associated with each other in vulnerable and
neutral code?

We have computed the phi-coeffcient for each pair of micro patterns and nano-patterns

in both the vulnerable and neutral versions of Tomcat 6, 7, 8, and Stanford Securibench ap-

plications [9]. We present the connected pairs of micro patterns of vulnerable and neutral

versions of Tomcat 6, 7, and 8 and Stanford Securibench in Table 7.4, Table 7.5, Table 7.6,

and Table 7.7 respectively. We also present the connected pairs of nano-patterns of vulner-

able and neutral versions of three releases of Apache Tomcat and Stanford Securibench in

Table 7.8 and Table 7.9 respectively. Here we present the associations that are different in

vulnerable versus neutral versions in respective releases.

64

Table 7.4

Micro patterns association types in Tomcat (Release 6)

Vulnerable Neutral
High Association Medium Association High Association Medium Association
Compound Box-Immutable (1) Common State-Function Object (0.438) Implementor-Function Object (0.598) Stateless-Function Pointer (0.467)
Function Object-Cobol Like (1) Common State-Cobol Like (0.438) Box-Implementor (0.384)
Pool-Sink (0.908) Pure Type-State Machine (0.374)
Sink-Stateless (0.778) Function Pointer-Cobol Like (0.364)
Compound Box-Implementor (0.704) Box-Function Object (0.361)
Immutable-Implementor (0.704) Sink-Stateless (0.357)
Pool-Stateless (0.702) Pool-Stateless (0.357)

Outline-Trait (0.349)
Function Pointer-Limited Self (0.343)
Immutable-Restricted Creation (0.332)

Table 7.5

Micro patterns association types in Tomcat (Release 7)

Vulnerable Neutral
High Association Medium Association High Association Medium Association
Compound Box-Immutable (1) Stateless-Cobol Like (0.439) Implementor-Function Object (0.468)
Function Pointer-Cobol Like (1) Function Pointer-Limited Self (0.367) Pure Type-State Machine (0.457)
Pool-Sink (0.566) Cobol Like - Limited Self (0.367) Compound Box-Restricted Creation (0.418)
Pool-Limited Self (0.522) Immutable-Restricted Creation (0.417)

Function Pointer-Cobol Like (0.416)
Sink-Data Manager (0.409)
Sink-Limited Self (0.392)
Pool-Restricted Creation (0.343)
Implementor-Function Pointer (0.341)
Joiner-Taxonomy (0.332)
Compound Box-Immutable (0.331)
Function Pointer-Limited Self (0.33)

Table 7.6

Micro patterns association types in Tomcat (Release 8)

Vulnerable Neutral
High Association Medium Association High Association Medium Association
Pool-Sink (1) Stateless-Cobol Like (0.43) Function Object-Cobol Like (0.534) Pure Type-State Machine (0.474)
Function Pointer-Cobol Like (1) Function Pointer-Limited Self (0.43) Immutable-Restricted Creation (0.472)
Pool-Stateless (0.759) Compound Box-Restricted Creation (0.466)
Sink-Stateless (0.759) Sink-Data Manager (0.435)
Pool-Limited Self (0.759) Sink-Limited Self (0.393)
Sink-Limited Self (0.759) Pool-Restricted Creation (0.392)
Compound Box-Immutable (0.7) Compound Box-Immutable (0.361)

Pool-Stateless (0.345)
Sink-Stateless (0.329)
Function Object-Limited Self (0.317)

65

Table 7.7

Micro patterns association types in Stanford Securibench

Vulnerable Neutral
High Association Medium Association High Association Medium Association
Outline-Extender (1) Immutable-RestrictedCreation (.397) Canopy-FunctionObject (.772) Sink-Taxonomy (.467)

Canopy-Implementor (.311) FunctionPointer-CobolLike (.667) Stateless-FunctionPointer (.417)
Implementor-LimitedSelf (.591) PureType-StateMachine (.405)
Pool-CommonState (.573) CompoundBox-DataManager (.344)
Sink-DataManager (.5) Implementor-FunctionObject (.316)

Table 7.8

Nano-patterns association types in Apache Tomcat (Release 6, 7, 8)

High Association Medium Association
leaf-straightLine (.606) localWriter-jdkClient (.487)
objCreator-jdkClient (.591) objCreator-localWriter (.468)
looper-arrReader (.514) otherInstanceFieldReader-otherInstanceFieldWriter (.441)

otherInstanceFieldReader-arrReader (.418)
otherInstanceFieldWriter-exceptions (.398)
typeManipulator-jdkClient (.375)
looper-exceptions (.368)
objCreator-typeManipulator (.359)
arrReader-arrWriter (.343)
typeManipulator-tailCaller (.333)
looper-localWriter (.324)
staticFieldReader-localWriter (.312)
typeManipulator-localWriter(.303)

66

Table 7.9

Nano-patterns association types in Stanford Securibench

High Association Medium Association
arrCreator-arrWriter (.782) otherInstanceFieldReader-arrCreator (.49)
objCreator-jdkClient (.708) thisInstanceFieldWriter-otherInstanceFieldWriter (.43)
otherInstanceFieldReader-arrWriter (.626) noparams-thisInstanceFieldReader (.419)
staticFieldReader-localWriter (.557) exceptions-jdkClient (.405)
objCreator-exceptions (.524) void-thisInstanceFieldWriter (.402)

samename-straightLine (.399)
typeManipulator-exceptions (.389)
objCreator-localWriter (.357)
typeManipulator-jdkClient (.341)
objCreator-typeManipulator (.33)
typeManipulator-looper (.322)
looper-arrCreator (.312)
localWriter-jdkClient (0.308)

7.1.3 Are the association rules useful in identifying vulnerabilities?

As we see from Table 7.10 we can conclude the following statements:

• objCreator and typeManipulator either exist together in vulnerable methods or

both of them are absent (i.e., if both patterns exist, the method contains a vulnerabil-

ity).

• In vulnerable methods, both jdkClient and tailCaller exist together, but in neutral

methods, there is no specifc pattern between them.

The correlation measure among the two patterns jdkClient and tailCaller in neutral

methods is 0.21716, which is not strong. The correlation among these two patterns is 100

percent within vulnerable methods. Hypothesis H0 states that Vulnerability generation is

independent of dependencies among the nano-patterns. We set α = 0.05. The value of

χ2 was 2.74 for Tomcat-6 and 0.61 for Tomcat-7. For degrees of freedom = 1 and a 5%
67

Table 7.10

Best Association Rules (in Tomcat-6 and Tomcat-7)

Vulnerable Methods Neutral Methods
typeManipulator = 0 → objCreator = 0 conf:(1) objCreator = 0 → typeManipulator = 0 conf:(0.91)
objCreator = 0 → typeManipulator = 0 conf:(1)
typeManipulator = 1 → objCreator = 1 conf:(1)
objCreator = 1 → typeManipulator = 1 conf:(1)
looper = 0 → straightLine = 0 conf:(1) straightLine = 1 → looper = 0 conf:(1)
straightLine = 0 → looper = 0 conf:(1)
tailCaller = 1 → jdkClient = 1 conf:(1)
jdkClient = 1 → tailCaller = 1 conf:(1)

level of signifcance, the appropriate critical value is 3.84 and the decision rule is: Reject

H0 if χ2 ≥ 3.84. Therefore, we could not reject H0 as chi-square value was less than

critical value for both versions. In other words, we can say that we do not have statistically

signifcant evidence at α = 0.05 to show that vulnerability generation and a dependency

among the patterns are not independent. We found associations among a small number of

nano-patterns in vulnerable methods. We assume that the association among the patterns

may or may not have signifcant impact on the vulnerabilities generated.

7.1.4 How do traceable patterns evolve from vulnerable code to neutral code?

To answer this question, we analyzed all the vulnerable classes of a particular release

and then analyzed those classes in the neutral version of the same release where the vul-

nerability had been fxed. We have also determined how the micro patterns changed across

the releases and identifed several evolution types. For example, in Figure 7.9, we see

that Test.java has been evolving across versions 6.0.1 through 6.0.5. The vulnerability was

active in versions 6.0.2 and 6.0.3. So we consider 6.0.3 as the last-affected version. The

vulnerability has been fxed in version 6.0.4, and after that version, all the released versions

68

https://conf:(0.91

have been considered as neutral versions for that vulnerability. So, in this example, version

6.0.3 is the last-affected version and any version after 6.0.4 can be considered neutral for

that vulnerability.

Figure 7.9

Example of micro pattern evolution across vulnerable to neutral class

If we focus on the evolution of the micro pattern in this example, we see that micro

pattern None has been changed to Implementor as soon as the vulnerability has been

fxed. So the micro pattern type of Test.java has been evolved from None to Implementor

(None → Implementor) once its vulnerability has been fxed and it has transitioned from

vulnerable to a neutral class. In other words, we can say that micro pattern Implementor

has been introduced once the vulnerability is removed. The micro patterns evolution types

found in releases 6, 7, and 8 are listed in Table 7.11. We also notice that in many cases,

the micro patterns do not change across the vulnerable to the neutral class. When a class is

generally modifed to fx a vulnerability, the pattern type remains same. In those cases, the

vulnerability is fxed without changing the pattern. Therefore, the fndings of our study do

not encourage avoiding using some micro patterns in code, but it helps the developers to

use them carefully so that they do not make the program vulnerable. We have also detected

69

how the micro patterns evolve across the releases with time. The types of micro patterns

evolution across the releases is listed in Table 7.12. The frequency is computed with respect

to the total number of evolution types found in Apache Tomcat. From this table, we see

that some evolution types such as None → Implementor, Implementor → None,

CommonState → Stateless are more frequent compared to other types of evolution.

Table 7.11

Micro pattern evolution types from vulnerable to neutral classes in Tomcat

Micro Pattern Evolution
Recursive → None

AugmentedT ype → None
None → Sink

7.2 RQ2: Can traceable patterns better predict vulnerable code than software met-
rics?

7.2.1 What are the performance measures of traceable patterns in vulnerability pre-
diction?

The False Negative (FN) rate, Precision, Recall, and F-Measure of the micro and

nano-patterns based prediction model for Tomcat-6, Tomcat-7, Stanford Securibench, and

Apache CXF are presented in Table 7.14, Table 7.15, Table 7.16, and Table 7.17 respec-

tively. The list of nano-patterns that we found as signifcant for the systems is presented in

Table 7.13.

70

Table 7.12

Micro pattern evolution types across the releases of Tomcat

Micro Pattern Evolution Frequency
None → None 66%
None → Implementor 5.3%
CommonState → Stateless 5.3%
Implementor → None 2.67%
None → Sink 1.3%
None → LimitedSelf 1.3%
None → F unctionP ointer 1.3%
AugmentedT ype → None 1.3%
Recursive → None 1.3%

Table 7.13

Results of Welch’s Test for nano-patterns (*Effect sizes are mentioned within brackets
and for all correlations p < .05.)

Tomcat-6 Tomcat-7 Apache CXF Stanford Securibench
noparams (-.183) samename (.291) noparams (-.416) noparams (-.504)
samename (.333) leaf (-.483) objCreator (.613) void (-.842)
leaf (-.633) objCreator (.826) staticFieldReader (1.016) objCreator (1.527)
objCreator (.801) thisInstanceFieldReader (.447) typeManipulator (1.631) staticFieldReader (1.745)
thisInstanceFieldReader (.57) thisInstanceFieldWriter (.515) straightLine (-.968) typeManipulator (1.181)
thisInstanceFieldWriter (.43) otherInstanceFieldReader (-.175) looper (1.11) straightLine (-1.042)
staticFieldReader (.846) otherInstanceFieldWriter (.274) exceptions (.430) exceptions (1.183)
typeManipulator (.539) staticFieldReader (.530) localWriter (1.238) jdkClient (1.092)
straightLine (-.824) typeManipulator (.523) jdkClient (.994) tailCaller (.461)
looper (.711) straightLine (-.601)
exceptions (.633) looper (.736)
localWriter (.829) exceptions (.761)
arrReader (.218) localReader (.156)
arrWriter (-.17) localWriter (.645)
jdkClient (.736) jdkClient (.109)
tailCaller (.420) tailCaller (.260)

Table 7.14

Machine Learning results for traceable patterns in Tomcat (Release 6)

Method FN Rate Precision Recall F-Measure Method FN Rate Precision Recall F-Measure

Micro Patterns
Naive Bayes
Logistic Regression
SVM

0.144
0.183
0.135

0.613
0.604
0.603

0.856
0.817
0.865

0.793
0.763
0.796

Nano-patterns
Naive Bayes
Logistic Regression
SVM

0.177
0.210
0.258

0.720
0.766
0.763

0.823
0.790
0.742

0.800
0.785
0.746

71

Table 7.15

Machine Learning results for traceable patterns in Tomcat (Release 7)

Method FN Rate Precision Recall F-Measure Method FN Rate Precision Recall F-Measure

Micro Patterns
Naive Bayes
Logistic Regression
SVM

0.160
0.113
0.104

0.631
0.640
0.644

0.840
0.887
0.896

0.788
0.823
0.831

Nano-patterns
Naive Bayes
Logistic Regression
SVM

0.311
0.292
0.302

0.676
0.744
0.730

0.689
0.708
0.698

0.686
0.715
0.704

Table 7.16

Machine Learning results for traceable patterns in Stanford Securibench

Method FN Rate Precision Recall F-Measure Method FN Rate Precision Recall F-Measure

Micro Patterns
Naive Bayes
Logistic Regression
SVM

0.088
0.099
0.077

0.604
0.618
0.610

0.912
0.901
0.923

0.828
0.829
0.837

Nano-patterns
Naive Bayes
Logistic Regression
SVM

0.173
0.135
0.103

0.812
0.837
0.833

0.827
0.865
0.897

0.824
0.824
0.883

Table 7.17

Machine Learning results for traceable patterns in Apache CXF

Method FN Rate Precision Recall F-Measure Method FN Rate Precision Recall F-Measure

Micro Patterns
Naive Bayes
Logistic Regression
SVM

0.394
0.364
0.424

0.630
0.765
0.716

0.606
0.636
0.576

0.612
0.658
0.599

Nano-patterns
Naive Bayes
Logistic Regression
SVM

0.178
0.156
0.200

0.771
0.796
0.788

0.822
0.844
0.800

0.771
0.859
0.798

72

7.2.2 What are the performance measures of software metrics in vulnerability pre-
diction?

The False Negative (FN) rate, Precision, Recall, and F-Measure of class-level and

method-level metrics based prediction model for Tomcat-6, Tomcat-7, Stanford Securibench,

and Apache CXF have been presented in Table 7.18, Table 7.19, Table 7.20, and Table 7.21

respectively.

Table 7.18

Machine Learning results for software metrics in Tomcat (Release 6)

Method FN Rate Precision Recall F-Measure Method FN Rate Precision Recall F-Measure

Class metrics
Naive Bayes
Logistic Regression

0.204
0.185

0.865
0.859

0.796
0.815

0.809
0.823

Method metrics
Naive Bayes
Logistic Regression

0.500
0.347

0.847
0.794

0.500
0.653

0.545
0.677

SVM 0.185 0.864 0.815 0.824 SVM 0.331 0.775 0.669 0.688

Table 7.19

Machine Learning results for software metrics in Tomcat (Release 7)

Method FN Rate Precision Recall F-Measure Method FN Rate Precision Recall F-Measure

Class metrics
Naive Bayes
Logistic Regression
SVM

0.268
0.125
0.143

0.890
0.888
0.884

0.732
0.875
0.857

0.759
0.878
0.862

Method metrics
Naive Bayes
Logistic Regression
SVM

0.475
0.366
0.356

0.856
0.800
0.794

0.525
0.634
0.644

0.569
0.661
0.669

73

Table 7.20

Machine Learning results for software metrics in Stanford Securibench

Method FN Rate Precision Recall F-Measure Method FN Rate Precision Recall F-Measure

Class metrics
Naive Bayes
Logistic Regression

0.506
0.329

0.729
0.759

0.494
0.671

0.528
0.687

Method metrics
Naive Bayes
Logistic Regression

0.408
0.224

0.832
0.830

0.592
0.776

0.628
0.628

SVM 0.291 0.764 0.709 0.719 SVM 0.099 0.809 0.901 0.881

Table 7.21

Machine Learning results for software metrics in Apache CXF

Method FN Rate Precision Recall F-Measure Method FN Rate Precision Recall F-Measure

Class metrics
Naive Bayes 0.194 0.907 0.806 0.854

Method metrics
Naive Bayes 0.311 0.891 0.689 0.722

Logistic Regression 0.194 0.895 0.806 0.822 Logistic Regression 0.289 0.866 0.711 0.786
SVM 0.194 0.885 0.806 0.824 SVM 0.356 0.871 0.644 0.679

7.3 RQ3: How do we determine the most signifcant set of patterns and metrics to
build a framework for vulnerability prediction?

7.3.1 What are the signifcant nano-patterns that can predict vulnerable and neutral
methods?

Table 7.22 presents the chi-square values of the nano-patterns for all the systems un-

der study. Here we present only the nano-patterns for which we got chi value greater

than 3.84 and we can reject the null hypothesis H0:There is no association between nano-

patterns and vulnerabilities. As we know that, for degrees of freedom=1 and at 5% level

of signifcance, the appropriate critical value is 3.84, and the decision rule is: Reject H0

if χ2 ≥ 3.84. Table 7.23 lists all the nano-patterns chosen as our fnal list of features. For

this set of nano-patterns, we can reject the null hypothesis and they are common in all the

systems under study.

74

Table 7.22

Chi-square values of nano-patterns

Tomcat-6 Tomcat-7 CXF Stanford
Nano-patterns Chi-sq values Nano-patterns Chi-sq values Nano-patterns Chi-sq values Nano-patterns Chi-sq values
noparams 6.88 void 3.91 straightLine 30.22 void 8.75
straightLine 105.35 samename 16.56 leaf 16.92 noparams 15.93
samename 30.12 leaf 31.54 objCreator 8.12 samename 4.83
leaf 60.06 objCreator 57.1 thisInstanceFieldWriter 9.65 leaf 116.55
objCreator 73.48 thisInstanceFieldReader 13.12 staticFieldReader 28.41 objCreator 164.72
thisInstanceFieldReader 32.26 thisInstanceFieldWriter 9.1 typeManipulator 59.93 thisInstanceFieldWriter 22.02
thisInstanceFieldWriter 9.11 otherInstanceFieldReader 6.38 looper 38.75 staticFieldReader 422.12
otherInstanceFieldReader 29.88 otherInstanceFieldWriter 24.58 exceptions 11.46 typeManipulator 59.73
otherInstanceFieldWriter 11.16 staticFieldReader 30.09 localWriter 41.57 straightLine 147.69 ** For all values, p < .05.
staticFieldReader 71.12 staticFieldWriter 13.2 jdkClient 28.39 looper 11.62
staticFieldWriter 6.11 typeManipulator 42.81 exceptions 90.89
typeManipulator 54.04 straightLine 57.17 localReader 7.28
looper 56.93 looper 48.37 localWriter 225.67
exceptions 38.04 exceptions 24.20 arrCreator 4.19
localWriter 109.19 localWriter 61.48 jdkClient 136.15
arrCreator 7.04 arrCreator 6.48 tailCaller 38.33
arrReader 16.52 arrReader 14.54
arrWriter 4.6 arrWriter 11.20
jdkClient 50.42 jdkClient 29.38
tailCaller 29.20 tailCaller 16.25

Table 7.23

Selected Set of nano-patterns

straightLine
leaf

objCreator
thisInstanceFieldWriter

staticFieldReader
typeManipulator

looper
exceptions
localWriter
jdkClient

75

7.3.2 What are the signifcant software metrics that can predict vulnerable and neu-
tral methods?

We performed the Welch‘s t-test to select a signifcant set of method-level software

metrics in the systems under study. Table 7.24 shows that all the signifcant metrics are

common for each system. Therefore, we selected these metrics to be combined with se-

lected nano-patterns to develop the nano-metrics.

Table 7.24

Results of Welch’s Test

Tomcat-6 Tomcat-7 Apache CXF Stanford Securibench
CountInput (1.156) CountInput (.688) CountInput (.356) CountInput (.502)
CountLineCode (1.658) CountLineCode (1.162) CountLineCode (1.888) CountLineCode (1.646)
CountOutput (1.752) CountOutput (1.453) CountOutput (1.674) CountOutput (1.567)
Cyclomatic (1.468) Cyclomatic (1.039) Cyclomatic (1.801) Cyclomatic (1.184)
CyclomaticModifed (1.579) CyclomaticModifed (1.101) CyclomaticModifed (2.198) CyclomaticModifed (1.185)
CyclomaticStrict (1.503) CyclomaticStrict (1.007) CyclomaticStrict (1.918) CyclomaticStrict (.974)
Essential (1.086) Essential (.692) Essential (1.783) Essential (.260)
MaxNesting (1.118) MaxNesting (.943) MaxNesting (1.499) MaxNesting (1.659)

*Effect sizes are mentioned within brackets and for all correlations p < .05.

7.4 RQ4: Is the framework effective at predicting vulnerabilities?

In this section, we present the performance measures including FN Rate, FP Rate,

Precision, Recall, F2-measure, and ROC while using nano-metrics as features for the vul-

nerability prediction model. The nano-metrics that were developed combining the selected

nano-patterns and method-level metrics are listed in Table 7.25. Table 7.26 and Table 7.27

present the measures in logistic regression and support vector machine techniques respec-

tively. Table 7.28 and Table 7.29 show the results while using Tomcat-6 and Tomcat-7 as

76

training datasets in the logistic regression model. Table 7.30 and Table 7.31 show the re-

sults while using Tomcat-6 and Tomcat-7 as training datasets in the support vector machine

model.

Table 7.25

Nano-metrics

straightLine
leaf

objCreator
thisInstanceFieldWriter

staticFieldReader
typeManipulator

looper
exceptions
localWriter
jdkClient

CountInput
CountLineCode

CountOutput
Cyclomatic

CyclomaticModifed
CyclomaticStrict

Essential
MaxNesting

77

Table 7.26

Performance Measures in Logistic Regression

System FN Rate FP Rate Precision Recall F2-Measure ROC
Tomcat-6 0.202 0.255 0.758 0.798 0.777 0.843
Tomcat-7 0.314 0.237 0.743 0.686 0.714 0.761
Apache CXF 0.275 0.170 0.810 0.725 0.765 0.868
Stanford 0.095 0.145 0.862 0.905 0.883 0.938

Table 7.27

Performance Measures in Support Vector Machine

System FN Rate FP Rate Precision Recall F2-Measure ROC
Tomcat-6 0.211 0.320 0.711 0.789 0.748 0.734
Tomcat-7 0.279 0.344 0.677 0.721 0.698 0.688
Apache CXF 0.250 0.202 0.788 0.750 0.768 0.774
Stanford 0.095 0.157 0.852 0.905 0.878 0.874

Table 7.28

Performance Measures in Logistic Regression (using Tomcat-6 as training data)

System FN Rate FP Rate Precision Recall F2-Measure ROC
Tomcat-7 0.279 0.266 0.037 0.721 0.070 0.805
Apache CXF 0.175 0.337 0.010 0.825 0.020 0.827
Stanford 0.197 0.271 0.197 0.803 0.316 0.844
Evaluation dataset 0.269 0.249 0.076 0.731 0.137 0.827

Table 7.29

Performance Measures in Logistic Regression (using Tomcat-7 as training data)

System FN Rate FP Rate Precision Recall F2-Measure ROC
Tomcat-6 0.229 0.242 0.065 0.771 0.119 0.853
Apache CXF 0.275 0.303 0.010 0.725 0.020 0.792
Stanford 0.252 0.258 0.194 0.748 0.308 0.831
Evaluation dataset 0.299 0.225 0.080 0.701 0.144 0.809

78

Table 7.30

Performance Measures in Support Vector Machine (using Tomcat-6 as training data)

System FN Rate FP Rate Precision Recall F2-Measure ROC
Tomcat-7 0.233 0.291 0.036 0.767 0.069 0.738
Apache CXF 0.100 0.379 0.010 0.900 0.019 0.761
Stanford 0.136 0.281 0.203 0.864 0.329 0.792
Evaluation dataset 0.194 0.268 0.077 0.806 0.141 0.769

Table 7.31

Performance Measures in Support Vector Machine (using Tomcat-7 as training data)

System FN Rate FP Rate Precision Recall F2-Measure ROC
Tomcat-6 0.147 0.363 0.049 0.853 0.092 0.745
Apache CXF 0.025 0.464 0.009 0.975 0.017 0.755
Stanford 0.034 0.339 0.191 0.966 0.319 0.813
Evaluation dataset 0.209 0.324 0.064 0.791 0.118 0.733

79

CHAPTER 8

DISCUSSION

This chapter discusses the experimental results.

8.1 RQ1: What is the relation between traceable patterns and software vulnerabili-
ties?

Is there any signifcant difference between traceable pattern distribution in vulnera-

ble and neutral code?

We found Outline and AugmentedT ype micro patterns to be more frequent in vul-

nerable classes than they are in neutral classes of Apache Tomcat. Gil et al. [18] defned

an Outline pattern as an abstract class where two or more declared methods invoke at

least one abstract method of the current (“this”) object. On the other hand, a class having

only abstract methods and three or more static fnal felds of the same type is known as

AugmentedT ype [18]. As an abstract class can not be instantiated, and it is only for other

classes to extend, the abstract classes with abstract methods need to be used carefully such

that other classes can ensure their secured use. Kim et al. in [24] also observed the Outline

micro pattern as a defective pattern as they found high bug rates in classes having this pat-

tern. According to Destefanis [12], “The Cobol Like anti pattern is a class having a single

static method, one or more static variables, and no instance methods or felds. Cobol Like

80

classes do not declare any method or instance feld. Classes of this kind are very far from

the object-oriented programming paradigm and should be very rare.” The statement sup-

ports our result as CobolLike pattern is also not declared as a safe pattern in our analysis.

Destefanis in [12] declared fve micro patterns P ool, CobolLike, Record, P seudoClass,

and F unctionP ointer as anti-patterns as they are associated with bad programming prac-

tices. In our study, they are also not present in the list of safer micro patterns that have

been shown to be signifcantly frequent in neutral classes compared to vulnerable classes.

Another observation is the Containment category patterns such as Box, CompundBox,

Canopy, DataManager are almost absent in vulnerable classes of Tomcat. Box, CompundBox,

Canopy patterns are classes that wrap a central instance feld with their methods. The main

purpose of DataManager and Sink patterns is related to the management of data stored

in a set of instance variables. The DataManager pattern is a set of setter and getter meth-

ods which encapsulates all its felds and controls the access to these felds [18]. This is an

example of a good object-oriented programming practice that ensures encapsulation. The

presence of the patterns in the inheritors category such as Implementor, Overrider,

and Extender in neutral classes is more signifcant than their presence in the vulnerable

classes of Tomcat. Kim et al. in [24] found the evolution type Implementor → None as

bug-prone. It indicates that the removal of Implementor pattern makes a class defective,

which supports our claim that the Implementor micro pattern is more frequent in neutral

classes.

On the other hand, the results of analyzing the three web applications in Stanford

Securibench indicate that several micro patterns such as LimitedSelf , Implementor,

81

Overrider, Sink, Stateless, F unctionObject frequently exist in neutral classes. This

fnding is similar to the fndings from Apache Tomcat as they are also signifcantly frequent

in Tomcat’s neutral classes. The hypothesis testing validated our fndings that several micro

patterns are signifcantly associated with vulnerable code. Some patterns make the code

more reliable whereas some of them reduce code robustness resulting in less reliability.

Deo et al. in [10] found that some nano-patterns such as localReader, localW riter,

fieldReader, and objCreator have a high presence in defective methods (i.e., they are

more error-prone than other patterns). In our experiment, we have also discovered that

a set of patterns including these patterns have a high correlation with our examined vul-

nerabilities. Deo et al. [10] focused on defect-prone nano-patterns while we have an-

alyzed patterns of their potential involvement and their pair-wise associations in secu-

rity vulnerabilities. We found that some patterns are more frequent in vulnerable meth-

ods compared to their presence in neutral methods. If we see the following code of the

importOldData method in P ersonalBlogService.java fle of PersonalBlog as in Fig-

ure 8.1, it contains the F ieldReader pattern as it reads feld values from an object. The

line xyz.setT itle(rs.getString(”title”)) of the method that reads feld values of the Re-

sultSet object has been identifed as having a vulnerability because rs.getString(”title”)

was not sanitized before its use. Therefore, we can generalize that the methods that read

values from objects must be checked for proper sanitization in order to keep the code se-

cure. In this case, our target is not to detect the cause of any vulnerability, rather it is to

reduce the risk of vulnerability by making developers aware of code weaknesses that can

easily be exploited by an attacker. For this, we have taken advantage of the nano-patterns

82

that represent the properties of a Java method. On the other hand, samename, leaf ,

and straightLine are comparatively more frequent in neutral methods. Their relationship

with vulnerabilities have also been statistically verifed using chi-square tests. Table 7.3

presents the chi-square values in decreasing order. Moreover, the distributions of these

nano-patterns in three vulnerable web applications and in Apache Tomcat are identical

which strengthen the claim relating to the proper use of nano-patterns.

Figure 8.1

A code snippet from a method in P ersonalBlogService.java of PersonalBlog

How are the traceable patterns associated with each other in vulnerable and neutral

code?

If we analyze the associated pairs in affected versions of Tomcat release 6, 7, and 8,

we see that CompundBox − Immutable − Implementor, P ool − Sink − Stateless,

and P ool − Sink − LimitedSelf have a strong triangular relationship. Developers can

be more careful about the existence of these micro patterns’ triangles in code. If any two

of the three micro patterns in each group are present, the class needs to be tested rigor-

83

ously. On the other hand, some associations such as Sink − DataManager, Stateless −

F unctionP ointer, and Implementor − F unctionObject are found in the neutral classes

of both the Apache Tomcat and Stanford Securibench web applications. This result in-

dicates that these associations among the micro patterns are safe and testers can run the

standard tests if they see them together in code.

In our study, the results indicate a phi-coeffcient of 0.514 for the pair looper−arrReader

in Apache Tomcat which means looper and arrReader are highly associated with each

other in vulnerable methods. According to the study in [47], arrReader → looper is an

interesting rule that is more frequent in Java methods due to them iterating over an entire

array, reading each element per iteration. We see that our study also supports their fnding

by adding new knowledge that this association may make a Java method insecure and need

attention in vulnerability testing.

Some of the associations such as objCreator −jdkClient, localW riter −jdkClient,

objCreator−localW riter, typeManipulator−jdkClient, objCreator−typeManipulator,

and objCreator − straightLine are common in all types of applications studied here. If

we see the following code of the getUserInfo method in BloggerAP IHandler.java

fle of Roller as in Figure 8.2, it contains an objCreator pattern as it creates a new

XmlRpcException object here. It also contains localW riter pattern because it assigns

local variable msg a value. This line of the method has been identifed as having a

vulnerability because e may contain sensitive information and can be exploited by an

attacker resulting in information leakage. Figure 8.3 shows another code snippet from

ConsistencyCheck.java that contains localW riter, objCreator and jdkClient together.

84

This code was marked as having the SQL Injection vulnerability as string concatenation

is not allowed in queries. Therefore, methods where a local variable is assigned a string

value or a newly-created object should be rigorously tested.

Figure 8.2

A code snippet from a method in BakeW eblogAction.java of Roller

Figure 8.3

A code snippet from a method in ConsistencyCheck.java of Roller

Are the association rules useful in identifying vulnerabilities?

We discovered that nano-patterns such as localW riter, tailCaller and jdkClient co-

occur with the localReader nano-pattern at 100 percent confdence. One goal for this

question was to determine the co-occurrences of different patterns in a vulnerable code

snippet. The rules that reveal co-existence of some nano-patterns in vulnerable code can

85

lead developers and testers to predict vulnerabilities due to their existence. The existence

of the rule will give the developer an indication that the code is vulnerable. A tester will

use the result to apply additional, targeted test to potentially vulnerable areas in the code.

As some association rules among the nano-patterns have been explored to be frequent and

distinct in vulnerable methods, they can help the developers to identify potentially vulnera-

ble methods. Although we could not show that there is a correlation between vulnerability

and dependencies among the patterns, we could at least indicate that some dependencies

are frequent in vulnerable methods compared to others.

How do traceable patterns evolve from vulnerable code to neutral code?

Two evolution types None → Implementor and CommonState → Stateless show

that Implementor and Stateless micro patterns are more frequent in later releases. So

using these micro patterns in classes may improve the code quality by as isssues are fxed.

We observe that the CommonState pattern is frequent in Apache Tomcat release 6 and

its uses have been abruptly reduced in later versions. We can describe this scenario in

a way that many CommonState patterns have been converted to Stateless patterns in

later releases resulting in their frequent presence in later releases. None → Sink type of

evolution also supports that the pattern Sink is more prevalent in later releases.

We have found that AugmentedT ype patterns are more frequent in vulnerable classes

than they are in neutral classes. According to Table 7.11, the evolution type AugmentedT ype →

None from vulnerable to neutral version declares that AugmentedT ype patterns have

been removed from classes to make them neutral. Therefore, the vulnerable classes having

AugmentedT ype pattern in releases 6, 7 and 8 do not contain this pattern in their neutral

86

versions. Similarly, None → Sink type of evolution also supports that the pattern Sink

is more prevalent in neutral classes than it is in vulnerable classes. The evolution of the

micro patterns across different releases from vulnerable to neutral classes strengthens our

claim about micro pattern involvement in making a class more vulnerable.

8.2 RQ2: Can traceable patterns better predict vulnerable code than software met-
rics?

False Negative rate and Recall: The False Negative rates for vulnerable methods

using nano-patterns are lower than method-level metrics for all the systems under study.

This result shows that nano-patterns based models can retrieve more vulnerable methods

than method-level metrics. The lower the False Negative rate, the higher the recall will

be, resulting in a greater number of vulnerable methods with correct predictions. The

comparative study of False Negative rate and Recall between nano-patterns and method-

level metrics in SVM has been presented in Figure 8.5 and Figure 8.9 respectively.

Similarly, the False Negative rates for vulnerable classes using micro patterns are lower

than class-level metrics for all the systems (except Apache CXF) under study. The compar-

ative study of False Negative rate and Recall between micro patterns and class-level metrics

in SVM has been presented in Figure 8.4 and Figure 8.8 respectively. The maximum False

Negative rate is 31 percent in nano-patterns, which is 50 percent in method-level metrics

based model. The lowest Recall rate is 69 percent in nano-patterns, which is 50 percent in

the method-level metrics-based model. In our research, false negative rate and recall are

the most signifcant measures because they determine the percentage of vulnerable code

that has remained undetected. If neutral code is wrongly determined as vulnerable, it can

87

increase the workload of testers, but if a vulnerable code is wrongly determined as neutral,

it will make the model useless for the software team. Traditional metrics are not directly

related to the code constructs. Shin et al. in [45] empirically showed that complexity met-

rics can predict vulnerabilities at a low false positive rate but at a high false negative rate.

It means the vulnerable fles as detected by metrics were actual vulnerable fles, but many

other vulnerable fles remained as undetected. Our results also support the fndings of Shin

et al. in [45].

Precision: Precision indicates the percentage of actual vulnerable code (method or

class) in the total vulnerable codebase predicted as vulnerable by the model. It measures

the correctness or the effciency of the model. The comparative study of Precision between

nano-patterns and method-level metrics using SVMs has been presented in Figure 8.7. The

comparative study of Precision between micro patterns and class-level metrics has been

presented in Figure 8.6. According to Figure 8.6 and Figure 8.7, class-level metrics and

method-level metrics outperform micro patterns and nano-patterns respectively in terms

of precision. The maximum precision is 84 percent in nano-patterns, which is 89 percent

in the method-level metrics based model. The maximum precision is 77 percent in micro

patterns, which is 91 percent in class-level metrics-based model. This result indicates that

software metrics show more correct results than traceable patterns although they may not

capture all the vulnerable code of the system.

The metrics relate to the complexity, cohesiveness or coupling among the functions.

Other factors may be responsible for the likelihood that a method is vulnerable, and these

factors may not be captured by the metrics. On the other hand, a neutral method is usually

88

less complex, highly cohesive and less coupled and can be better detected by the metrics.

Therefore, metrics do not wrongly predict neutral methods as vulnerable resulting in high

precision.

F-measure: F-measure is a weighted average of precision and recall. We can assign

more weight to precision or recall based on our expected result. In our research, we con-

sider F2-measure, because it weights recall twice as much as precision. According to the

Figure 8.11, F2-measure in SVM is higher in the nano-patterns based model compared

to the method-level metrics based model. On the other hand, micro patterns show lower

performance compared to the class-level metrics as shown in Figure 8.10.

Figure 8.4

False Negative rates in class-level metrics vs micro patterns (SVM)

8.3 RQ4: Is the framework effective at predicting vulnerabilities?
8.3.1 Comparative Study among Nano-patterns, Metrics and Nano-metrics

False Negative Rate and Recall: The False Negative rate for vulnerable methods us-

ing nano-metrics is lower than method-level metrics and in some cases, lower than nano-

89

Figure 8.5

False Negative rates in method-level metrics vs nano-patterns (SVM)

Figure 8.6

Precision in class-level metrics vs micro patterns (SVM)

Figure 8.7

Precision in method-level metrics vs nano-patterns (SVM)

90

Figure 8.8

Recall in class-level metrics vs micro patterns (SVM)

Figure 8.9

Recall in method-level metrics vs nano-patterns (SVM)

Figure 8.10

F2-measure in class-level metrics vs micro patterns (SVM)

91

Figure 8.11

F2-measure in method-level metrics vs nano-patterns (SVM)

patterns for the systems under study as shown in Figure 8.12. This result shows that

the nano-metrics based model retrieves a higher number of vulnerable methods than the

method-level metrics. The lower the FN rate, the higher the recall will be resulting in a

greater number of accurately predicted vulnerable methods as in Figure 8.13.

The maximum FN rate is 31 percent (using LR) in nano-metrics, which is 36 percent

(using LR) in method-level metrics based model. The lowest Recall is 69 percent (using

LR) in nano-metrics, which is 63 percent (using LR) in method-level metrics based model.

Sultana et al. in [51] found that some nano-patterns are frequent in vulnerable methods

compared to their presence in non-vulnerable methods. They concluded that the methods

that read values from objects must be checked for proper sanitization in order to keep the

code secure. They statistically determined the signifcant difference in the presence of

nano-patterns in vulnerable and neutral methods. When we combine these patterns with

software metrics in order to enable a more gereric assessment for vulnerability prediction,

they perform better for certain systems.

92

Figure 8.12

Comparative Study on FN Rates (LR)

Figure 8.13

Comparative Study on Recall (LR)

93

In our study, the FN rate and recall are the most signifcant measures because they

determine the percentage of vulnerable code that remains undetected. If neutral code is

wrongly determined as vulnerable, it can increase the workload of testers, but if vulnera-

ble code is wrongly determined as neutral, then the model’s usefulness is limited for the

software team. After analyzing the results, we see that nano-metrics perform better than

metrics in retrieving more vulnerable code for all systems. Traditional metrics are not di-

rectly related to the code constructs. Shin et al. in [45] empirically showed that complexity

metrics can predict vulnerabilities at a low false positive rate but at a high false negative

rate. This result indicates that the vulnerable fles as detected by metrics were actual vul-

nerable fles, but many other vulnerable fles remained undetected. Therefore, we have

combined metrics with nano-patterns to improve their recall rate and reduce FN rate.

Precision: Precision indicates the percentage of actual vulnerable code (method or

class) in the total vulnerable code predicted as vulnerable by the model. This statistic

measures the correctness or the effciency of the model. An analysis comparing preci-

sion among nano-metrics, nano-patterns and method-level metrics using Logistic Regres-

sion is presented in Figure 8.14. The fgure shows that method-level metrics outperform

nano-patterns and nano-metrics. The maximum precision is 86 percent (using LR) in nano-

metrics, which is 87 percent (using LR) in method-level metric based model. Nano-metrics

show better precision than nano-patterns. The metrics are related to the complexity, cohe-

siveness or coupling among the functions. Although they can increase the probability of a

method being vulnerable, vulnerabilities may not be directly caused by them. Some other

factors may be responsible for making a method vulnerable which may not be captured by

94

these metrics. On the other hand, a neutral method is usually less complex, highly cohe-

sive and less coupled and can be better detected by the metrics. Therefore, metrics do not

wrongly predict neutral methods as vulnerable resulting in high precision.

The results show that using metrics as features in vulnerability prediction can be more

precise than nano-patterns and nano-metrics. The percentage of actual vulnerable code in

the total predicted vulnerable code is higher in the metric based prediction model. This re-

sult indicates that software metrics contribute to a higher number of correct results than

traceable patterns. We have combined these metrics with nano-patterns so that nano-

metrics can perform better in terms of precision by utilizing the properties of software

metrics.

Figure 8.14

Comparative Study on Precision (LR)

F2-measure: In our study, we assigned more weight to recall as recall is more impor-

tant in this scenario than precision. We selected F2-measure as it weighs recall twice as

much as precision. If the recall rate is lower, more vulnerable code will remain undetected

95

or wrongly identifed as neutral which is not desirable. Alternatively, if neutral code is

detected as vulnerable, precision will be lower. This case may increase the workload of

testers, but it is not as harmful as missing a vulnearbility. According to the Figure 8.15,

F2-measure is higher in the nano-patterns and nano-metrics based model compared to the

metrics-based model.

Figure 8.15

Comparative Study on F2-measure (LR)

8.3.2 Trade-off between Recall and FP Rate

We expect a higher recall with a lower FP rate in predicting vulnerable code. But

the FP rate usually increases with the increase of recall. We plot a graph of recall vs.

FP rate in order to explore the trade-off between recall and the FP rate. Such plots are

known as Receiver Operating Curve (ROC) which are used to visualize the performance

of a predictor in detecting the true class (in our case vulnerable methods). Figure 8.16 and

Figure 8.17 present the ROC curves using nano-metrics in Logistic Regression and Support

Vector Machine respectively. According to the fgures, a nano-metrics based model can

96

correctly identify about 50 percent of the vulnerable methods while keeping the FP rate

below 10 percent and about 65 percent (for systems, it goes above 75 percent) of the

vulnerable methods when the FP rate is below 20 percent using LR as in Figure 8.16.

In SVM, although recall is below 40 percent at FP rate 10 percent for two systems, the

measure grows above 75 percent at FP rate 30 percent for them as in Figure 8.17. In the

case of the method-level metrics, 70 percent of the vulnerable methods are detected at the

FP rate 20 percent but it is below 50 percent at FP rate 10 percent as shown in Figure 8.18.

Figure 8.16

Plot of ROC for Nano-metrics in Logistic Regression.

8.3.3 Performance of nano-metrics in Cross-dataset Validation

In order to evaluate the nano-metrics as generic and robust metrics for vulnerability

prediction, we trained the machine using the dataset from one system and tested it using

the dataset from other systems. In this experiment, we see that the recall rate is more

97

Figure 8.17

Plot of ROC for Nano-metrics in Support Vector Machine.

Figure 8.18

Plot of ROC for Nano-patterns and Metrics in Logistic Regression.

98

than 70 percent using logistic regression as shown in Table 7.28 and Table 7.29. False

positive rate is also less than 30 percent in most of the systems under study. Figure 8.19

and Figure 8.21 present ROC curves in cross-dataset validation while using Tomcat-6 and

Tomcat-7 as training dataset for logistic regression model respectively. According to these

fgures, a nano-metrics based model can correctly identify about 60 percent of the vul-

nerable methods while keeping the FP rate below 15 percent and about 65 percent of the

vulnerable methods when the FP rate is below 20 percent (except for Apache CXF) in

logistic regression model. On the other hand, in cross-dataset validation, precision is ex-

tremely low as in this case, we could not balance the number of vulnerable and neutral

methods in test dataset.

Figure 8.19

Plot of ROC for Nano-metrics in Logistic Regression (Trained by Tomcat-6).

99

Figure 8.20

Plot of ROC for Nano-metrics in Support Vector Machine (Trained by Tomcat-6).

Figure 8.21

Plot of ROC for Nano-metrics in Logistic Regression (Trained by Tomcat-7).

100

Figure 8.22

Plot of ROC for Nano-metrics in Support Vector Machine (Trained by Tomcat-7).

101

CHAPTER 9

THREATS TO VALIDITY

In this chapter, we discuss the limitations and threats to the validity of our fndings.

9.1 Construct Validity

Construct validity refers to the degree to which a test measures what it claims or pur-

ports to be measuring. In this study, micro patterns and nano-patterns are defned based on

the formal conditions of the structure of a Java class or a method. These patterns may not

be enough to consider all types of characteristics a class or a method may have. The vul-

nerable classes and methods were found from the Apache project vulnerability reports. We

also defned the last version of each release as non-vulnerable to compare the distribution

of micro and nano-patterns in vulnerable versus non-vulnerable classes and methods. But

the fact is the classes or methods that were considered as non-vulnerable may be reported

as vulnerable in a later release. Moreover, for the Stanford project, we assumed some

classes or methods to be non-affected as detected by ESVD which may result in some false

negatives.

102

9.2 External Validity

External Validity refers to the ability to generalize results. The experiment was con-

ducted on the systems including Apache, Stanford, and an evaluation dataset. As micro and

nano-patterns are defned only for Java classes and methods and vulnerability data is not

well formed for other Java projects, we limited this study to these applications. So it cannot

be concluded that the results are valid for other systems written in different programming

languages or that use different frameworks.

9.3 Internal Validity

This threat refers to the possibility of having unwanted or unanticipated relationships.

We are not claiming causation, just relating software vulnerabilities with the presence of

micro or nano-patterns. We do not claim that the suspected micro or nano-patterns are

the cause of the vulnerability-proneness of the classes or methods, but we recommend

rigorous testing of the classes or methods containing those patterns. On the other hand,

we encourage the use of patterns that seem to be more frequent in non-vulnerable code,

although it cannot be claimed that the code with these patterns will never be susceptible to

vulnerability. But we can at least declare that the classes or methods with these patterns

will not need rigorous (or extended) testing compared to the classes or methods with other

patterns.

103

CHAPTER 10

CONCLUSION

An overview of the publication plan is presented in Table 10.1.

Table 10.1

Publication List

Paper Title Venue Status
A Preliminary Study Examining Relationships between IEEE International Conference on Accepted
Nano-Patterns and Software Security Vulnerabilities Computers, Software and Applications (COMPSAC 2016), June 10-14, 2016
Assessing Software Defects Using Nano-Patterns Detection International Journal of Computers and Their Applications (Special Issue) Accepted
A Study Examining Relationships Between Micro Patterns and Security Vulnerabilities Software Quality Journal Accepted
Correlation Analysis among Java Nano-patterns and Software Vulnerabilities IEEE International Symposium on High Assurance Systems Engineering (HASE 2017) Accepted
Evaluating Micro Patterns and Software Metrics in Vulnerability Prediction Software Mining Workshop, IEEE/ACM International Conference on Accepted

Automated Software Engineering (ASE 2017)
Towards a software vulnerability prediction model using traceable code patterns and software metrics Doctoral Symposium of the 32nd IEEE/ACM International Conference Accepted

on Automated Software Engineering
The Relationship between Code Smells and Traceable Patterns - International Journal on Software Engineering Accepted
Are They Measuring the Same Thing? and Knowledge Engineering (IJSEKE 2017)
The Relationship between Traceable Code Patterns International Conference on Software Engineering Accepted
and Code Smells and Knowledge Engineering (SEKE 2017)
Evaluating the Performance of nano-patterns and software metrics in vulnerability prediction The ACM/IEEE International Symposium on Submitted

Empirical Software Engineering and Measurement (ESEM) (ESEM 2018)
Proposed Model and its Evaluation IEEE Transactions on Software Engineering (TSE) In Progress
Study on Code Smell and Vulnerabilities Journal 2018 In Progress

The timeline for completing the proposed plan is shown in Table 10.2.

In this study, we conducted experimental analysis on micro and nano-patterns extracted

from vulnerable and neutral code in order to fnd out any hidden relationship between pat-

terns and vulnerabilities in order to build a vulnerability prediction model. Correlating

patterns with vulnerabilities will guide developers to use them properly to avoid security

issues in Java source code. Testers will also be able to better ensure time and cost effec-

tive testing as they can pay closer attention to code where there is a higher likelihood for

104

Table 10.2

Dissertation Timeline

Tasks Deadline
Extract Nano-patterns and Method-level metrics January 2018
Correlation between Nano-patterns and Method-level metrics January 2018
Build Universal Prediction Model February 2018
Build Project-Specifc Prediction Model February 2018
Model Evaluation March 2018 - April 2018
Write up June 2017 - June 2018
Defense June 2018

a security threat. They will be able to concentrate their efforts on the classes or methods

having unsafe patterns. We also uncovered micro pattern evolution across the releases as

well as from vulnerable version to non-vulnerable version as vulnerabilities were fxed.

The evolution type results strengthen our claim regarding the relationship between micro

patterns and vulnerability. In addition, we extracted the association between pairs of mi-

cro and nano-patterns in vulnerable versus non-vulnerable code so that we can make an

assumption about their collaborative effect on making a class or a method vulnerable or

non-vulnerable. In the future, we aim to measure the micro and nano-patterns in numeric

scale rather than binary scale in order to extend their use in software security.

In the second part of this research, we analyzed traceable patterns and software metrics

to predict software vulnerabilities. This is the frst study comparing the performance of

these patterns in vulnerability prediction with traditional metrics. The software metrics

outperformed traceable patterns in determining neutral code with a higher precision and

recall. The recall rate of predicting vulnerable classes or methods is high when using

patterns as features. This observation indicates that patterns can be well suited as features

105

for detecting vulnerable code as opposed to neutral code. This study will allow developers

and testers to compare these two types of features and decide the best for their projects

based on the project characteristics. The results will better enable secure software by giving

the software team the ability to target tests to potentially vulnerable fles and allow for early

detection of secuirty risks. This research will open up new areas to investigate metrics at

different granularity levels (class or method-level) so that they can be used more precisely

in improving software security. We proposed a framework consisting of a combination

of nano-patterns and method-level metrics (nano-metrics). These metrics were evaluated

and shown to perform better in terms of recall and F2-measure compared to the metrics

and nano-patterns alone. Moreover, they were cross-validated to work for all the systems

under study in the same way. As a result, developers do not need to bother about training a

machine with their own vulnerability history if resources are constrained. Rather, they can

use a previously trained machine for classifying their vulnerable code. Developers will be

able to develop more reliable code by re-engineering later versions using safe patterns. In

this work, we examined Java based systems which released their own vulnerability history.

In the future, we will study Android (currently, the most widely used operating system

in the world) to investigate how nano-metrics work for vulnerability prediction in mobile

applications. In the future, we will extend this work for other frameworks by identifying

universal code patterns that might be related to software vulnerabilities across multiple

systems. In addition, we plan to develop specialized traceable patterns for that specifcally

target vulnerabilities.

106

REFERENCES

[1] B. Alshammari, C. Fidge, and D. Corney, “Security Metrics for Object-Oriented
Class Designs,” Proceedings of the 9th International Conference on Quality Software,
2009, pp. 11–20.

[2] H. Alves, B. Fonseca, and N. Antunes, “Software Metrics and Security Vulnerabil-
ities: Dataset and Exploratory Study,” 2016 12th European Dependable Computing
Conference (EDCC), 2016, pp. 37–44.

[3] F. Batarseh, “Java Nano Patterns: A Set of Reusable Objects,” Proceedings of the
48th Annual Southeast Regional Conference, New York, NY, USA, 2010, ACM SE
’10, pp. 60:1–60:4, ACM.

[4] S. R. Chidamber and C. F. Kemerer, “A Metrics Suite for Object Oriented Design,”
IEEE Trans. Softw. Eng., vol. 20, no. 6, June 1994, pp. 476–493.

[5] N. Chinchor, “MUC-4 Evaluation Metrics,” Proceedings of the 4th Conference on
Message Understanding, Stroudsburg, PA, USA, 1992, MUC4 ’92, pp. 22–29, Asso-
ciation for Computational Linguistics.

[6] I. Chowdhury, B. Chan, and M. Z. Chowdhury, “Security Metrics for Source Code
Structures,” Proceedings of the Fourth International Workshop on Software Engi-
neering for Secure Systems, New York, NY, USA, 2008, SESS ’08, pp. 57–64, ACM.

[7] I. Chowdhury and M. Zulkernine, “Can Complexity, Coupling, and Cohesion Metrics
Be Used As Early Indicators of Vulnerabilities?,” Proceedings of the 2010 ACM
Symposium on Applied Computing, New York, NY, USA, 2010, SAC ’10, pp. 1963–
1969, ACM.

[8] I. Chowdhury and M. Zulkernine, “Using Complexity, Coupling, and Cohesion Met-
rics As Early Indicators of Vulnerabilities,” J. Syst. Archit., vol. 57, no. 3, mar 2011,
pp. 294–313.

[9] H. Cramer,´ Mathematical Methods of Statistics, Princeton University Press, Prince-
ton, 1946.

[10] A. Deo and B. J. Williams, “Preliminary Study on Assessing Software Defects Us-
ing Nano-Pattern Detection,” Proceedings of the 24th International Conference on
Software Engineering and Data Engineering (SEDE), 2015.

107

[11] G. Destefanis, Assessing software quality by micro patterns detection, doctoral dis-
sertation, 2012.

[12] G. Destefanis, R. Tonelli, E. Tempero, G. Concas, and M. Marchesi, “Micro Pattern
Fault-Proneness,” Proceedings of the 2012 38th Euromicro Conference on Software
Engineering and Advanced Applications. 2012, SEAA ’12, pp. 302–306, IEEE Com-
puter Society.

[13] J. Ekstrm, “The Phi-coeffcient, the Tetrachoric Correlation Coeffcient, and the
Pearson-Yule Debate,”.

[14] N. E. Fenton and S. L. Pfeeger, Software Metrics: A Rigorous and Practical Ap-
proach, 2nd edition, PWS Publishing Co., Boston, MA, USA, 1998.

[15] F. A. Fontana, B. Walter, and M. Zanoni, “Code smells and micro patterns correla-
tions,” RefTest 2013 Workshop, co-located event with XP 2013 Conference, 2013.

[16] S. M. Ghaffarian and H. R. Shahriari, “Software Vulnerability Analysis and Dis-
covery Using Machine-Learning and Data-Mining Techniques: A Survey,” ACM
Comput. Surv., vol. 50, no. 4, 2017, pp. 56:1–56:36.

[17] E. Giger, M. D’Ambros, M. Pinzger, and H. C. Gall, “Method-level Bug Prediction,”
Proceedings of the ACM-IEEE International Symposium on Empirical Software En-
gineering and Measurement, New York, NY, USA, 2012, ESEM ’12, pp. 171–180,
ACM.

[18] J. Y. Gil and I. Maman, “Micro Patterns in Java Code,” Proceedings of the 20th
Annual ACM SIGPLAN Conference on Object-oriented Programming, Systems, Lan-
guages, and Applications. 2005, OOPSLA ’05, pp. 97–116, ACM.

[19] M. G. Graff and K. R. V. Wyk, Secure Coding: Principles and Practices, O’Reilly
& Associates, Inc., Sebastopol, CA, USA, 2003.

[20] J. Han, Data Mining: Concepts and Techniques, Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 2005.

[21] W. A. Harrison and K. I. Magel, “A Complexity Measure Based on Nesting Level,”
SIGPLAN Not., vol. 16, no. 3, Mar. 1981, pp. 63–74.

[22] S. Henry and D. Kafura, “Software Structure Metrics Based on Information Flow,”
IEEE Trans. Softw. Eng., vol. 7, no. 5, Sept. 1981, pp. 510–518.

[23] M. Howard and D. E. Leblanc, Writing Secure Code, 2nd edition, Microsoft Press,
Redmond, WA, USA, 2002.

108

[24] S. Kim, K. Pan, and E. J. Whitehead, Jr., “Micro Pattern Evolution,” Proceedings of
the 2006 International Workshop on Mining Software Repositories, New York, NY,
USA, 2006, MSR ’06, pp. 40–46, ACM.

[25] V. B. Livshits, “Findings Security Errors in Java Applications Using Lightweight
Static Analysis,”, Work-in-Progress Report, Annual Computer Security Applications
Conference, nov 2004.

[26] V. B. Livshits and M. S. Lam, “Finding Security Errors in Java Programs with Static
Analysis,” Proceedings of the 14th Usenix Security Symposium, aug 2005, pp. 271–
286.

[27] M. Lorenz and J. Kidd, Object-oriented Software Metrics: A Practical Guide,
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1994.

[28] S. Maggioni and F. Arcelli, “Metrics-based Detection of Micro Patterns,” Proceed-
ings of the 2010 ICSE Workshop on Emerging Trends in Software Metrics, New York,
NY, USA, 2010, WETSoM ’10, pp. 39–46, ACM.

[29] T. J. McCabe, “A Complexity Measure,” IEEE Trans. Softw. Eng., vol. 2, no. 4, July
1976, pp. 308–320.

[30] T. M. Mitchell, Generative and discriminative classifers: naive bayes and logistic
regression, McGraw-Hill, Inc., NY, USA.

[31] P. Morrison, K. Herzig, B. Murphy, and L. Williams, “Challenges with Applying
Vulnerability Prediction Models,” Proceedings of the 2015 Symposium and Bootcamp
on the Science of Security, New York, NY, USA, 2015, HotSoS ’15, pp. 4:1–4:9,
ACM.

[32] S. Moshtari and A. Sami, “Evaluating and Comparing Complexity, Coupling and
a New Proposed Set of Coupling Metrics in Cross-project Vulnerability Prediction,”
Proceedings of the 31st Annual ACM Symposium on Applied Computing, New York,
NY, USA, 2016, SAC ’16, pp. 1415–1421, ACM.

[33] S. Moshtari, A. Sami, and M. Azimi, “Using complexity metrics to improve software
security,” Computer Fraud & Security, vol. 5, 2013, pp. 8–17.

[34] N. Munaiah, F. Camilo, W. Wigham, A. Meneely, and M. Nagappan, “Do Bugs
Foreshadow Vulnerabilities? An In-depth Study of the Chromium Project,” Empirical
Softw. Engg., vol. 22, no. 3, June 2017, pp. 1305–1347.

[35] N. Nagappan and T. Ball, “Use of relative code churn measures to predict system
defect density,” Proceedings of the 27th international conference on Software engi-
neering, 2005.

109

[36] S. Neuhaus, T. Zimmermann, C. Holler, and A. Zeller, “Predicting Vulnerable Soft-
ware Components,” Proceedings of the 14th ACM Conference on Computer and
Communications Security, New York, NY, USA, 2007, CCS ’07, pp. 529–540, ACM.

[37] V. H. Nguyen and L. M. S. Tran, “Predicting Vulnerable Software Components with
Dependency Graphs,” Proceedings of the 6th International Workshop on Security
Measurements and Metrics, New York, NY, USA, 2010, MetriSec ’10, pp. 3:1–3:8,
ACM.

[38] E. S. R. Gopalakrishna and J. Vitek, Vulnerability likelihood: A probabilistic ap-
proach to software assurance, technical report, 2005.

[39] R. Scandariato, J. Walden, A. Hovsepyan, and W. Joosen, “Predicting Vulnerable
Software Components via Text Mining,” IEEE Transactions on Software Engineer-
ing, vol. 40, no. 10, Oct 2014, pp. 993–1006.

[40] R. Seacord, Secure Coding in C and C++, frst edition, Addison-Wesley Professional,
2005.

[41] D. J. Sheskin, Handbook of Parametric and Nonparametric Statistical Procedures,
Chapman & Hall/CRC, 2007.

[42] Y. Shin, “Exploring complexity metrics as indicators of software vulnerability,” The
3rd International Doctoral Symposium on Empirical Software Engineering (IDoESE
2008) , co-located with ESEM-2008, 2008.

[43] Y. Shin, A. Meneely, L. Williams, and J. A. Osborne, “Evaluating Complexity, Code
Churn, and Developer Activity Metrics As Indicators of Software Vulnerabilities,”
IEEE Trans. Softw. Eng., vol. 37, no. 6, nov 2011, pp. 772–787.

[44] Y. Shin and L. Williams, “An Empirical Model to Predict Security Vulnerabilities
Using Code Complexity Metrics,” Proceedings of the Second ACM-IEEE Interna-
tional Symposium on Empirical Software Engineering and Measurement, New York,
NY, USA, 2008, ESEM ’08, pp. 315–317, ACM.

[45] Y. Shin and L. Williams, “Is Complexity Really the Enemy of Software Security?,”
Proceedings of the 4th ACM Workshop on Quality of Protection, New York, NY,
USA, 2008, QoP ’08, pp. 47–50, ACM.

[46] Y. Shin and L. Williams, “Can traditional fault prediction models be used for vul-
nerability prediction?,” Empirical Software Engineering, vol. 18, no. 1, 2013, pp.
25–59.

[47] J. Singer, G. Brown, M. Lujn, A. Pocock, and P. Yiapanis, “Fundamental Nano-
Patterns to Characterize and Classify Java Methods,” Electronic Notes in Theoretical
Computer Science, vol. 253, no. 7, 2010, pp. 191 – 204, Proceedings of the Ninth
Workshop on Language Descriptions Tools and Applications (LDTA 2009).

110

[48] J. Singer and C. Kirkham, “Exploiting the Correspondence between Micro Patterns
and Class Names,” 2008 Eighth IEEE International Working Conference on Source
Code Analysis and Manipulation. Sept. 2008, pp. 67–76, IEEE.

[49] B. Smith and L. Williams, “On the Effective Use of Security Test Patterns,” Pro-
ceedings of the 2012 IEEE Sixth International Conference on Software Security and
Reliability, 2012, pp. 108–117.

[50] K. Z. Sultana, A. Deo, and B. J. Williams, “A Preliminary Study Examining Rela-
tionships Between Nano-Patterns and Software Security Vulnerabilities,” IEEE 40th
Annual Computer Software and Applications Conference (COMPSAC), 2016.

[51] K. Z. Sultana, A. Deo, and B. J. Williams, “Correlation Analysis among Java Nano-
Patterns and Software Vulnerabilities,” IEEE 18th International Symposium on High
Assurance Systems Engineering (HASE), 2017.

[52] K. Z. Sultana and B. J. Williams, “Evaluating micro patterns and software metrics
in vulnerability prediction,” 2017 6th International Workshop on Software Mining
(SoftwareMining), Nov 2017, pp. 40–47.

[53] K. Z. Sultana, B. J. Williams, and T. Bhowmik, “A study examining relationships
between micro patterns and security vulnerabilities,” Software Quality Journal, 2017,
pp. 1–37.

[54] P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining, (First Edition),
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2005.

[55] J. Walden, J. Stuckman, and R. Scandariato, “Predicting Vulnerable Components:
Software Metrics vs Text Mining,” 2014 IEEE 25th International Symposium on
Software Reliability Engineering, Nov 2014, pp. 23–33.

[56] D. A. Wheeler, Secure Programming for Linux and Unix HOWTO, 2003.

[57] I. Witten and E. Frank, Data Mining: Practical Machine Learning Tools and Tech-
niques, Morgan Kaufmann, San Francisco, USA, 2005.

[58] A. Younis, Y. Malaiya, C. Anderson, and I. Ray, “To Fear or Not to Fear That is the
Question: Code Characteristics of a Vulnerable Functionwith an Existing Exploit,”
Proceedings of the Sixth ACM Conference on Data and Application Security and
Privacy, New York, NY, USA, 2016, CODASPY ’16, pp. 97–104, ACM.

[59] Y. Zhang, D. Lo, X. Xia, B. Xu, J. Sun, and S. Li, “Combining Software Metrics and
Text Features for Vulnerable File Prediction,” 2015 20th International Conference
on Engineering of Complex Computer Systems (ICECCS), 2015, pp. 40–49.

111

[60] T. Zimmermann, N. Nagappan, and L. Williams, “Searching for a Needle in a
Haystack: Predicting Security Vulnerabilities for Windows Vista,” Proceedings of
the 2010 Third International Conference on Software Testing, Verifcation and Vali-
dation, Washington, DC, USA, 2010, ICST ’10, pp. 421–428, IEEE Computer Soci-
ety.

112

	A Software Vulnerability Prediction Model Using Traceable Code Patterns And Software Metrics
	Recommended Citation

	tmp.1631031154.pdf.FpXpc

