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Abstract

Framelets and their attractive features in many disciplines have attracted a great interest in
the recent years. This paper intends to show the advantages of using bi-framelet systems in
the context of numerical fractional differential equations (FDEs). We present a computational
method based on the quasi-affine bi-framelets with high vanishing moments constructed using
the generalized (mixed) oblique extension principle. We use this system for solving some types
of FDEs by solving a series of important examples of FDEs related to many mathematical appli-
cations. The quasi-affine bi-framelet-based methods for numerical FDEs show the advantages
of using sparse matrices and its accuracy in numerical analysis.

Keywords: Fractional Differential Equations; Quasi-Affine System; Bi-Framelet; Mixed Oblique
Extension Principle.
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1. INTRODUCTION

In recent years, fractional differential equations
(FDEs) have been widely used in the develop-
ment of many modern problems in engineering prac-
tices and applied sciences. For example, it has
applications in the modeling of earthquakes I eco-
nomics 2 fluids ¥ dynamic of viscoelastic materials®
and many other disciplines, e.g. see Refs. [5H8].

Fractional calculus is a mathematical area that
studies and analyzes the properties of the derivative
and integration of a non-integer orders. In particu-
lar, this area is getting more attention from many
researchers to develop new methods for solving
differential equations involved by fractional order.
Atangana is unique among fractals-theorists in his
ability to bring to bear new definitions, theory and
ideas on some of the most intractable issues on
FDEs. He is the founder of the fractional calcu-
lus with nonlocal and non-singular kernels popu-
lar in applied mathematics today and has achieved
and contributed significantly to the numerical and
pure analysis of FDEs. Atangana et al. defined the
well-known Atangana—Baleanu fractional derivative
definition that describes the complicated problems
related to the power and exponential laws and free
of singularities @17

Note that, in general, the exact solution of most
the FDEs does not exist. Therefore, examining
and developing new numerical methods is very
important. For example, Laplace and Fourier tech-
niques were proposed B89 Adomian decomposition
method in Refs. 20-H23] variational iteration method
in Ref. 24, and other methods can be found in
Refs. 25H28|. Interested readers should consult other
references therein to have an extra knowledge of the
other used methods.

In the context of numerical and computational
mathematics, framelet systems have proven as a
powerful tool on tackling issues related to the
numerical and computational framework. The main
aim of this work is to shed some lights on the ben-
efits of using bi-framelets in the area of the FDEs.
Some of the FDEs we consider are as follows:

Deu(t) + c(t)u(t) = f(t), with the conditions,

dFu

— =0, k=0,1,2,...
dtk |,_,

;n—1,
(1)

for some n € N where n — 1 < o < m, ¢(t), f(t) are
known square integrable functions, D¢u is Caputo

200 Reading

FDE (see Definition [[LT)) operator of u, and wu(t) is
the unknown function to be approximated.

Definition 1.1. For a real function wu(t) where
t,a > 0, and n € N, we have the following:

e The Caputo’s fractional derivative of order « is

defined by
( 1 t (n)
/ u™ (z) A
Fn—a) Jy (t—x)etl-n
Deu(t) = ifn—1<a<n,
d™u(t
dltLV(L ) if « =n.

e The Riemann—Liouville fractional derivative of
order « is defined by

(1 a [
1 a / o u@)
I(n—a)dt” J, (t—z)otl-n

Deu(t) = ifn—1<a<mn,

d"u(t)
dtn
e The Riemann—Liouville fractional integral opera-

tor (FIO) of order « is defined by

if « =n.

¢
I%u(t) = F(la) /0 i 11,(;))1_& dr, n—1<a<n.
(2)
Note that,
d"u(t
Deu(t) =I"¢ ( dﬂ(l )> ,
DIIu(:) = u(-),
and for ¢ > 0,

n—1 k
« « t
JoDu(-) = u(-) — Zu(k)((ﬁ)g.
k=0

2. AN OVERVIEW OF
QUASI-AFFINE BI-FRAMELET

Let us recall some definitions and facts to clarify the
concept of bi-framelets. It is known that orthonor-
mal bases are non-redundant systems, while their
redundant setup are known as frames. The redun-
dancy here is very useful in many applications such
as the error recovery/correction in transmission of
data. Frames are more general than orthogonal
systems and provide better representations. They
were introduced by Duffin and Schaeffer in Ref. 29,
A big development later on has been achieved in
Refs. [B0H32.

2040051-2
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Definition 2.1. Let Ly(R) denote the space of all
square integrable functions over R. A family of vec-
tors {¢Y¥,v € I} C Lo(R) is a framelet for Lo(R) if
there exist constants C'1, Cy > 0 such that

Cillgl? <>~ Hg.v") > < Callgll?,

vel
Vg€ Ly(R). 3)

If Ch1 = Cy =1, it is called a Parseval frame. The
importance of such tightness in the framelet sys-
tem is that they provide a simple and better recon-
structions for the elements of the space Lo(R). In
framelet analysis, we say that the function ¢ is a
refinable function if

= > 2ho[k)¢(
k

where hy is a finitely supported sequence (called the
low pass filter of ¢) such that

= holkle ™.

kEZ

2. —k), (4)

Note that, in frequency domain, Eq. @) can be
written as

A~ ~

32 ) = ho()(), (5)

= / p(z)e” " dx
R

is the Fourier transform of ¢.

where

Definition 2.2. For a given refinable functions

.0, let E={1,2,3,...,r}, U={y",¢? ... 4"} C
Ly(R) and ¥ = {', wQ ..,Y"} C Ly(R). Then we
say that (X (¥), X(¥)), where

( )_{w]]w]?keZ?eeE}u
( )_{w]kﬂjukezaeeE}u

and

20202 — k) if j >0,
'l/}fk:{ Y2 ) ifj> (6)

204p4(27 (x — k) ifj <0
is a pair of quasi-affine bi-framelet system of Ly(R)

if both X(¥) and X (V) are framelet systems in
LQ(R) and

<g7 f> - Z <w§,k7 f> <g7 qﬁﬁ,k> holds

(€E,jk

Vg, f € La(R).  (7)

Note that, Eq. () is also satisfied for all elements
of ¥ and ¥ with finitely supported sequences called
high pass filters, hy[k], and hy[k], £ € E, respectively.
For simplicity, we define ¥° = ¢ and wo ¢. Thus,
for £ € R, we have

V(2 ) = he()o(:),
¢ (2) = he(-)o(-), VEEE. (8)

Therefore, given a quasi-affine bi-framelet system
X(V), we can find a subset of Ly(R), X (¥), such
that (similar to Eq. @3]))

Cytllgl® < D> e i)l

CeE jk
< CyY|gl? Vg€ Lay(R).  (9)

In particular, if ¢ = ¢ and ¢! = 1&5, V{ e E, then it
is called a tight framelet system for Ly(R). So, we
have the following equation:

lgl* = ZZI

leE j.k

From Eq. (), for a bi-framelet system, we have

//f 26 (o Oydadt,  (10)

kat Z%gk k(t)

leE 5.k

where

Thus, we have the following quasi-affine bi-framelet
representation:

4 4
> @Gtk (11)

éEE,j,k

where ag’ r = (9, 1% i) - Note that, the coefficients a? &

is not unique but it is one of the best choices for a
better simulation. Hence, one can consider the fol-
lowing truncated representation from Eq. () for f:

Ung =Y > afuly. (12)

VeE j,kEZL,j<n

Sparse representation for a smooth function is of
interest in many applications. Therefore, to have
such sparsity, it is crucial for Ay to have high van-
ishing moments, where a function 1 has a vanishing
moments of order s if

9 =0, forall k=0,1,...,5—1.

In literature, there are many principles to con-
struct bi-framelets, such as the the mized unitary

2040051-3
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Fig. 1 The first few B-spline functions of order m = 1 through m = 4.

extension principles (MUEP) (see e.g. Refs. B3
and references therein). In this paper, we use
the generalization of the MUEP, namely, the mized
oblique extension principle (MOEP) presented in
Ref. 35l By doing this, we will present some exam-
ples of bi-framelet systems that have high vanish-
ing moments. However, to have such property, it
is required to have some required constraints on
holk], holk]. In short, for some trigonometric func-
tion ©(+), if
O(-)$(0)$(0) = 1, and

O(ho(-/2 + ma)ho(-/2) + Lyephe(-/2 + ma)
he(/2) — O(:/2)dq, where a € {0,1},

then, the system (X (), X(¥)) defined in Defini-
tion forms a quasi-affine bi-framelet system of
Ly(R).

The MOEP provides a way to construct bi-
framelets from refinable functions and it gives us
a better approximation orders and reconstruction.
Framelets have a great deal of use in many applica-
tions due to the features of redundancy (by increas-
ing the number ), and many other properties (see
e.g. Ref. [37). In this paper, we use analytic expres-
sions of bi-framelets with high redundancy gener-
ated via the MOEB using some analytic refinable
functions called B-splines. B-splines are of impor-
tance in harmonic theory and have wide range of
use for many applications in approximation analy-
sis. It is defined using the convolution product as
follows.

Definition 2.3 (Ref. 37)). For m € N, the B-
spline of order m, B,,, is defined as

®>

Bl = X[O,l)u and

1
B, = / Bp—1(- — x)dx.
0

Figure[llshows the graphs of the B-splines B,,, for
m =1,...,4. Note that, B,, is a piecewise function
of polynomials (B, € C™ }(R)) and is refined as

By (26) = ho(€) B (€),

ho(€) = <1+T£>m

3. SYSTEMS OF QUASI-AFFINE
BI-FRAMELETS

In this section, we use the MOEP to construct
quasi-affine bi-framelet systems using B-splines and
use it to solve some examples of FDEs.

System A (HAAR bi-framelet). Consider the

where

B-spline of order 1, By = x|g,1). Define
3 = —1208i | 3341807ie’*/?  489ie
34157 4726360mE  13847E’
1;1 (@) 529i 57518ie’/2  173ie'
T)= — .
14977¢  81337x€ 4897

Hence, the system (X (¥), X (¥)) is a bi-framelet, for
Ly(R). Figure 2 shows the graphs of the generators,
' and 1! in the time domain.

System B (Linear bi-framelet). For m = 2, con-
sider the linear B-spline for ¢ and qu with the fol-
lowing filters:

1

ho(€) = 3(1+ ),
ha(€) = 1 - cosé, ha(€)

= 21< L+e ™),
(€)= (1 +cos)
;lz(f) = %e_lg

2040051-4
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generate a bi-framelet system, namely

Bi(x) : Wl ()

1.0

| 1+3z+322+23 if —1<2<-1/2,

05 1 1/2(1 — 62% —62%) if —1/2<x <0,

' ] ={1/21 — 6224 62%) if0<z<1/2
1-3z+322—23 if1/2<z<1,

0.0 I ———— 0 otherwise,
: ' 4 V*(x)
sl : ; 1/31 +3x+ 322 +2%) if —1<2<0,
I : | | 1/3(1 43z + 322 - 823) if0<z<1/2,
e 1/3(—1+ 15z if1/2 <z <1,
-1.0 -05 0.0 05 10 15 = — 2142 4 82%)
tFelnglA2 The graphs of HAAR bi-framelet generators in Sys- 1/3(8 — 122 + 622 — xS) if1<x<2,
0 otherwise,
Then, this set of filters satisfies the conditions dl(l')
of MOEP and therefore the system (X (¥), X(¥))
forms a quasi-affine bi-framelet system for Lo(R). (1-2z if1/2<z<],
The generators of this system are depicted in Fig. —7+6x ifl1<z<3/2,
System C (Cubic-Linear bi-framelet). Con- =<1l -6z if3/2<z<2,
sider the (cubic) B-spline of order 4, ¢ = By, with 542 if2<x<5/2,
the following filter: 0 otherwise,
ho(€) = 761+ )", ()
and the (linear) B-spline of order 2, ¢ = By, with 1/4(-1—-2z) if —1/2<z<1/2,
the following filter: 1/2(=5+8z) ifl1/2<z<1,
o) = L1 1 i) ={1/2(11 —8z) if1<az<3/2
4 1/4(—5+22) if3/2 <2< 5/2,

Depending on the MOEP, we define explicitly in the 0 otherwise.
time domain the generators {1, ¢, ¢ = 1,2}, that

2.0:'
15
10}
o.5f
0.0f

—05f

—1.0f

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 -20 -15 -10 -05 0.0 0.5 1.0 1.5

Fig. 3 The graphs of the generators in System B.

2040051-5
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Fig. 4 The graphs of the generators in System C.

The graphs of these generators are shown in Fig. A

System D. Now lets consider the B-spline of order four for both ¢ and qz~5 Again, by applying the setup
of the MOEP, we are able to find the generators explicitly as follows:

823/3 if 0 <x<1/2,
—8/3(—64 4 48z — 1222 + 23) if 7/2 <z <4,
8/3(—279 + 2462 — 7222 + T23) if 3 <z <7/2,
—8(—159 + 170z — 6022 + 7x3) if 5/2 <x <3,
Y (x) = { 8(—9 + 261 — 2422 + T2°) if1<a2<3/2,
—8/3(—1 + 6z — 1222 + T2?3) if1/2<x<1,

8/3(—398 + 540z — 2402% + 352%)  if 2 <z <5/2,
—8/3(—162 + 300x — 18022 + 352%) if3/2 <z <2,

0 otherwise,

1/3(2891 — 40502 + 186022 — 280x3)  if 2 < x < 5/2,

1/3(63 — 1862 + 18022 — 5623) if 1 <x<3/2,
2079 — 1882z + 564z2 — 5623 if3<2<7/2,
1/3(729 — 486 + 108z — 8z3) if4<x<9/2,

V3 (x) = { 1/3(—1 + 62 — 122 + 8x3) if1/2<x<1,
1/3(—3367 + 2586z — 66022 + 56x3)  if 7/2 <z < 4,
—231 + 4422 — 27622 + 5623 if 3/2 <z <2,
1/3(—5859 + 64502 — 234022 + 280z3) if 5/2 <z < 3,
0 otherwise,

2040051-6
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( (3085325 — 6081780

+ 384863122 — 77606223) /725760
(5581333 — 5351892z

+ 169412722 — 17837023) /725760
(2689304 — 2337951

+ 65464822 — 5955523) /725760
(1835920 — 1606479z

+ 44565622 — 3965123) /725760
(116 — 13531z — 2000422 — 7695x3) /241920
(1303313 — 644037z

+1062512% — 585123) /1451520
—311(—343 + 147z — 2122 + 2°) /1451520
311(27 + 27z + 922 + 23) /1451520
(52717 + 74877x + 3603922 + 58512%) /1451520
(—866552 + 542923z — 11234422 + 769523) /241920
(2836 — 555212 — 3015622 + 3965123) /725760
(348 — 40593z — 6001222 + 595552°) /725760
(—135883 + 360636

— 44631322 + 178370x3) /725760
(—9331667 + 12543708z

— 546411322 + 77606223) /725760
0

499 + 253z — 36922 — 192223) /60480
1497 + 759z — 110722 — 68023) /181440
—311(—343 + 1472 — 2122 + %) /181440
311(8 + 12z + 622 + 23)/181440
107383 + 613112 — 1130722 + 68023)/181440
247711 + 147587z — 2919922 + 192223) /60480
36821 + 115713z — 11606122 4 3255223) /181440

(f

(f

(_

(—207893 + 457857z — 34415722 + 8324023) /181440
(_

0

We depict the graphs of these generators in Fig. [l

2040051-7

(2968875 — 4307295z + 203841922 — 3138562°) /181440
(3882467 — 3259287z + 90444322 — 8324023) /181440
(1709219 — 1396503z + 37221922 — 3255223) /181440
(
(

6839125 + 74623052 — 266942122 + 31385623) /181440

if3/2 <z <2,

if 5/2 <z < 3,

if 7/2 <z < 4,

if3<z<7/2
if —1<z<0,

if 5 <x <6,
if6<ax<7,

if —3<z< -2,
if —2<z<—1,
if 4 <ax <5,
if1/2 <z <1,
if0<z<1/2,

if 1 <z <3/2,

if 2 <x<5/2,

otherwise,

if2<z<5/2,
if3<a<7/2,
if 7/2 < x < 4,
ifo<az<l,
if —1<z<0,
if6<xz<7,
if —2<z< -1,
if 5 <z <6,
if 4 <z <5b,
if 1 <z <3/2,
if 3/2 <z <2,
if 5/2 <z < 3,

otherwise.
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Fig. 5 The graphs of the generators in System D.

4. QUASI-AFFINE BI-FRAMELET
OPERATIONAL MATRIX OF
FDES

In this section, we introduce the quasi-affine bi-
framelet operational matrix of the FDEs defined in
Eq. () using the function approximation given by
Eq. (12).

For simplicity, we present the bi-framelet oper-
ational matrix using System A (Haar bi-framelet
system X ({t1,12})). For other types of bi-framelet
systems that generated by higher order of B-splines
given in Sec. [ the procedure will be the same.

Theorem 4.1.  Suppose that DU, u(-) and the sys-
tem (X(V0),X(V)) are obtained using System A
based on the MOEP, and the functions {u(™(.),z €
(0,1)}, m € N are continuous and bounded. Then,
for some constant M, we have

u — Unulls < M272",

Proof. Based on the upper bound of the bi-
framelet system using Bessel property, we have

lw = Unull3 <7D (1w, 03 )P+ [, 43,)17).

j>nkeZ
But,
[w, )]+ 1w, 95 )]
< lulloo (195 kll1 + 15411

= lulloo2 721 I + 19]11)-

Therefore, we have
= Unal < oo (el + 211 })

XY D27 ((u )]

j>n ke
+ (w5 1))

Using the mean value theorem for integration, one
can find &1, & such that £ < & and that

\w,hm+uwwﬁﬂsz<éwuxl;mm>
< 27 (Ju(€) — (),

where A = 279k, k+0.5) and B = 277 [k+0.5, k+1).
Hence,

o = Unal < oo (mac{llert + 211 })

32 (ul) — u(e))

j=>n
< = ulloo ({0 I + 19211}
x (Ju(é1) = u(&))272".
Then, the result is concluded. O
Notice, Eq. (I2]) can be written as

Ung(t) = AL Gn(t), (13)

2040051-8
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where the Haar bi-framelet vector A, (Al is the
transpose of the bi-framelet vector A4,) and Haar

bi-framelet function vector G, (t) are given as

1l 1
An =. I:a/_2n’_n7 az_2n+1’_n, ceey

1 1 1 T

ap,05 -+ A2n_1 n—1, a2”—1,n] )

Gn(t) = [w1—27l,—n(t)7 w1_27x+1’_n(t), ceey
wé,O(t)a s 71/]%"71,n71(t)7
[ O]

Consider the collocation points

where n,, is the length of interval of ¢; ;. that covers
the compact support of the bi-framelet system at
hand, for example, for the case of Haar bi-framelet
system, n, = 2"71(2n + 1). Define the operational
bi-framelet matrix as follows:

anxnp (tz) — [Gn (ti)]izl,...,np-

Now, considering the system defined by Eq. ()
and in order to solve it using a bi-framelet system
via the discretized points, we substitute the trun-
cated expansion given in Eq. (I3]). Thus

Ap (Ga(ti) + c(ti) (1°Ga)(t:)
=f(t;), i=1,...,ny, (14)

where J% is the FIO defined by Eq. ().
Fori=1,...,n,, Eq. (@) can be written as
LT ey (1) A = B (1), (15)
where F, (t;) = [f(ti)]i=1,...n, is a matrix function
vector of order n, x 1. The coefficient bi-framelet
vector A, in Eq. (IH), and so the approximated solu-

tion, can be calculated using, for example, Mathe-
matica software.

5. NUMERICAL APPLICATIONS

In this section, we use the bi-framelet systems pre-
sented in Sec. Bl to illustrate and show the efficiency
of the proposed method by using some examples of
FDEs.

Example 1. Consider the following FDEs:

(DYu(t) + c(t)u(t) = f(t), where
a = %, c(t) = Vt,

F(t) = 1.10773V/82 4+ Vt4,

u(0) = 0.

The exact solution for this FDE is u(t) = ¢.

By applying the procedure in Sec. @l and solving
the resulting system, we obtain the approximated
solution of the FDE using System A, for example,
when n = 12, 13, respectively, we have

UUlg(x)
4.44399 x 10716
—13 1
+8.51319 x 10~ 3¢, g <7 <1,
_ J—3.19679 x 10717
s 1 1
+8.52429 x 10z, - <z < —,
4 2
—13 1
8.52429 x 10~ 13z, 0<z< T
Uuiz(x)
3 7
758912 x 107 M + 2, S <z<-,
4 8
wu 3 1
3.21889 x 10 + x, 3 <z < 5
s 1 1
6.08208 x 107 + 2, =-<ax<->,
8 4
wu 5 3
—1.56248 x 107 + 2, — <z <>,
8 4
u 1 5
—1.74251 x 107 ¥ + 2, — <z <=,
2 8
—14 7
—3.84196 x 10~ + x, 3 <@ <1,
wu 1 3
—2.04705 x 107 + 2, - <z <=,
4 8
0<z< L
X X —.
’ =8
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We also present the matrix L;,xn,(n = 1) in Eq. (I3) using System A where

[0.123526  —0.000125493  —0.000177473  —0.000250985 0.
0.213044 —0.000216492 —0.000306166 —0.000432984 0.
0.297806 —0.000302682 —0.000428058 —0.000605365 0.
0.38092  —0.000387215 —0.000547605 —0.000851786 0.
0.463514 —0.000471231 —0.000666422 —0.00107302 0.
. ~0.546115  —0.000555266  —0.000785265  —0.00129082 0.
"X T 10.629008  —0.000639607 —0.000962684  —0.00114703 0.280299
0.712356 —0.000724419  —0.00112202  —0.00110508 0.479997
0.79626  —0.000809802 —0.0012794  —0.00108281 0.66531
0.880779 —0.000895818 —0.0014365  —0.00106985 0.267067
0.965953 —0.000982504 —0.00159398  —0.00106223 0.0286871
1051800  —0.00106988  —0.00175219  —0.00105799  —0.180348 |
1.0:‘ “““““““““““
™ 8.x10’16:
I o085
0.8 080
Foo7s |
0.700.750.800.85090 T "==-- 6.x107°F
0.6
r 4.x10-‘5:
0.4}
f u(x) i
0'2i - ) 2.x10
ool or
610‘“012“‘014“‘016“‘0‘.8“‘116 00 o0z o4 os o8 10
Fig. 6 Numerical and exact solution with the error graph using System A for n = 13.
wof T T T ] ooo15f" T T T T T T T T T T
[ 090
L 085
0.8 0.80
F o075
e 0.0010+
[ 0.700.750.800.850.90 >
0.6
0.4f
r 0.0005+
L u(x)
0.2F
0.0l o.oooo:
00 02 04 06 08 10 00 02 04 06 08 10

Fig. 7 Numerical and exact solution with the error graph using System B for n = 3.
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Table 1 Numerical Results for Uug Using Systems A through D.
Uug(x) of Example[d
T Exact System A System B System C System D
0.1 0.1 0.1005346898001  0.100304753855  0.10006672850  0.1000042543
0.2 0.2 0.2009938636138  0.200529195474  0.20005975472  0.2000024200
0.3 0.3 0.3013962039710  0.300713551069  0.30045594550  0.3000034660
0.4 0.4 0.4017562049210  0.400868129463  0.40002791531  0.4000077620
0.5 0.5 0.5020926227360  0.500985983964  0.50001001520  0.5000940020
0.6 0.6 0.6024023892389  0.600115377357  0.60102998071  0.6000102330
0.7 0.7 0.7026903928032  0.700220677682  0.70102124144  0.7000174420
0.8 0.8 0.8029661945575  0.800314535807  0.80107057352  0.8000861630
0.9 0.9 0.9032226752090  0.900401982061  0.90203838642  0.9000234220
1.0 1.0 1.0034649540220  1.000461888702  1.00347076090  1.0008222021

Table 2 Error Results of Example [I] for Different Values on n.

by 195.229.148.13 on 03/18/21. Re-use and distribution is strictly not permitted, except for Open Access articles.

n System A System B System C System D
1 5.12 x 1072 4.84 x 1074 2.25 x 107° 6.45 x 1076
2 3.85 x 1073 1.02 x 107° 5.65 x 1076 2.67 x 1077
3 1.93 x 107° 2.01 x 1076 2.67 x 1077 1.97 x 107
4 3.75 x 1076 1.97 x 1077 5.01 x 1077 2.20 x 10~10
5 8.24 x 1077 1.83 x 107° 3.56 x 10710 3.73 x 10712
05 1 0.5F 1
0.500.550.600.650.70 T [ 0.500.550.600.650.70 b
04l 008 u(x) | oal % N u(x) 1
L 0.04 u (X) § L 0.04 \ u (X) ]
0.02 ! 1 [ 002 N 2 1
|- O - |- 0 \\ -
0.3} N \ 1 0.3+ N | 1
: : ]
0.2f ] 0.2f ]
01} ] 0.1} ]
I N > 1 i \ ) 1
0ol . ] 0.0F ) ]
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Fig. 8 Numerical and exact solution using System A for n = 1, 2, respectively.

in an excellent agreement with the exact solution.
Also, the error bounds are controlled as detailed in
Tables [l and 21

The graphical and numerical results of the Sys-
tems A and B, for different values of n, are pre-
sented in Figs. [6l and [l The obtained results are

2040051-11
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Example 2. Consider the following FDE that gen-  The exact solution for the given FDE is u(t)
erated from a Newtonian fluid application®s: %(2754 — t3). Again, based on on the numerical
Dou(t) + e(t)ult) = (), where, §cheme pre.)sented in Sec. IZL we conclude the follow-
) ing numerical and graphical results based on Sys-
a==, cft)=1, tem A through D in Tables Bl and [ Figs. [§ and [0
4 u 3 R Figure [I0l shows the convergence behavior of the
f(t) = —0.678274t " — 0.5 + 1.44699t & + 17, numerical results obtained in Examples [I and
u(0) = 0. based on the Systems A through D.
0,008 loowst { 0.0008}
: 0.0020 1 [
0.006 1 0.0006 -
1 0.0015 |
0.004- ] 0.00041
] 0.0010f I
0.002 B 0.0002:
| 0.0005F ] I
0.000F : 0.0000 q 0.0000:
00 02 04 06 08 10 0.0 02 04 06 08 10 0.0 02 04
Fig. 9 The error graph using System A for n = 1,2, 3, respectively.
Table 3 Numerical Results for Uug Using Systems A through D.
Uug(xz) of Example
x Exact System A System B System C System D
0.1 —0.0004 —0.00041860817 —0.000403556327 —0.000402299 —0.00040197654
0.2 —0.0024 —0.00256530153 —0.002401047694 —0.002387746 —0.00240284943
0.3 —0.0054 —0.00527270464 —0.005383112986 —0.005400365 —0.00540105671
0.4 —0.0064 —0.00618757695 —0.006312109453 —0.006457773 —0.00639123865
0.5 0.0 0.000177081303 0.0001475890703 0.000001993 0.000002750685
0.6 0.0216 0.021484411843 0.0260873667288 0.0214862543 0.021647366728
0.7 0.0686 0.007125184395 0.0637654888274 0.0217741345 0.068818651729
0.8 0.1536 0.153581303000 0.1533247096767 0.1537444675 0.153953548984
0.9 0.2916 0.291359969675 0.2917539974832 0.2916787765 0.292175856955
1.0 0.5 0.498312385646 0.4993664893789 0.4995883653 0.500574441403

200 Reading

2040051

Table 4 Error Results of Example [2] for Different Values on n.

n System A System B System C System D
1 6.44 x 1072 1.35 x 1073 2.35 x 1074 7.67 x 1076
2 3.02 x 1073 6.45 x 107° 4.45 x 1076 0.88 x 1076
3 456 x 1074 6.73 x 1076 3.35 x 1077 2.55 x 1077
4 6.45 x 1076 7.33x 1077 3.01 x 1078 5.68 x 10710
5 1.24 x 1078 0.46 x 1078 2.55 x 10710 7.75 x 10712

2040051-12
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Fig. 10 Convergence rate of Examples [Tl and [Z respectively based on Systems A through D.

based on system A for n = 2, namely

Uusg ()

6.

CONCLUSION

The purpose of this work is to develop an efficient
method for solving FDEs. We derive a new numer-
ical scheme for solving important types of FDEs

0.00365168 — 0.0302517x, 1_36 <z < i, based on the quasi-affine bi-framelet operational
L 5 matrices of fractional integration formula.
0.00363541 — 0.0301866z, - <z < =, The Systems A through D were generated using
) 5 B-spline functions of different orders and based
0.00201247 — 0.0215092z, o<z <, upon the popular OEP that increase the accuracy
. 5 orders of the approximated function by increas-
—0.000951834 — 0.0155074, 7= <@ < 2, ing the vanishing moments property. The utilized
) ) numerical scheme can be used to solve various types
0.000547547 — 0.00978986z, T= <@ < g, of FDEs including the nonlinear case that will be
5 . considered in the future work. Two examples of
—0.0141255 + 0.0196224z, = <z < T, FDEs have been considered to test the validity of
7 1 the proposed scheme and demonstrate the power-
—0.0413182 + 0.0817772x, 6 <7 <35 fulness of the method. The problems have been
L 9 reduced to solving a system of algebraic equations.
—0.0887531 + 0.176647z, 5 < < 7., The obtained numerical and graphical results show
9 5 an excellent agreement with the exact values and
—0.162199 4 0.307218z, 6S%<g the theoretical estimation. Increasing the partial
5 1 sums and the order of the B-splines being used to
—0.272311 + 0.483397x, 357<1p generate the systems result an increase in the accu-
1 5 racy and efficiency of the method.
—0.427621 + 0.709302, T ST<
3 13 REFERENCES
—0.638948 + 0.991072z, —<z< =,
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