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Aleksandra Medvedeva 14, 18106 Niš, Serbia
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Abstract. With the advent of Web 2.0 technologies and social media, companies
are actively looking for ways to know and understand what users think and say about
their products and services. Indeed, it has become the practice that users go online
using social media like Facebook to raise concerns, make comments, and share rec-
ommendations. All these actions can be tracked in real-time and then mined using
advanced techniques like data analytics and sentiment analysis. This paper discusses
such tracking and mining through a system called Social Miner that allows com-
panies to make decisions about what, when, and how to respond to users’
actions over social media. Questions that Social Miner allows to answer in-
clude what actions were frequently executed and why certain actions were
executed more than others.
Keywords: Data analytics, Facebook, Sentiment analysis, Social media.

1. Introduction

Business Processes (BP) are a cornerstone to the success of any company that wishes to
sustain its growth and remain competitive. According to [25], ”a process is nothing more
than the coding of a lesson learned in the past, transformed into a standard by a group
of experts and established as a mandatory flow for those who must effectively carry out
the work”. More precisely, a BP consists of tasks (t) connected to each other according to

? This is an extended version of a 2-page WETICE2016 demo paper [36].
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a process model defining, at design-time, who does what, when, and where. At run-time,
tasks are assigned to persons (p) and/or machines (m) so for execution.

Since the advent of social media, the traditional view of how companies operate has
completely changed. Contrary to top-down commands and bottom-up feedback that limit
innovation and creativity in companies, interactions that social media allows to happen in
companies are crossing all levels and occurring in all directions. This organizational shift
reduces cost, improves efficiency, facilitates innovation, among other benefits [7],[35].
Social media is also impacting the design of BPs. Earlier, we looked into this design to
shed light on social interactions between tasks (t2t), between persons (p2p), and between
machines (m2m) in BPs [14],[21]. These interactions reveal for instance, which task is
“easy” to replace with other tasks, which person is mostly solicited for partnership with
other persons, and which machine works well with other machines.

As a follow-up to our work on BP social-design we also looked into bridging the
gap between the business world (hosting BPs) and social world (hosting Facebook as
an illustrative application of social media) [20]. While the business world continuously
attracts the R&D community’s attention [13],[23], the social world’s surface is barely
“scratched” and hence, several opportunities are untapped. To reverse this trend we raise
many questions that need responses such as who are the social world’s stakeholders, what
actions can the stakeholders perform, and how to track the interactions in the social world.
While we detail in [10] the actions that stakeholders perform in the context of social
media, we focus in this paper on the interactions that arise in the social world in response
to both events triggered and actions taken in the business world and then, to what extent
these interactions would impact BPs. For instance, increasing the delivery fees of goods
in a process could raise concerns over social media that decision makers in the business
world would like to be aware of, should corrective actions need to be taken to address
these concerns. For this purpose, we associate the business world with control flow and
the social world with social flow, define the constituents of each flow, and manage the
cross-flow interactions. We present the design and development of Social Miner, a real-
time tracking and mining tool on top of Facebook.

The rest of this paper is organized as follows. Section 2 gives a short overview of
social media mining in favor of business. Section 3 presents a motivating scenario to
stress out the gap in examining the interactions between the business and social worlds.
Section 4 briefly discusses data mining (with focus on sentiment analysis) and business
process modeling. Section 5 details the real-time tracking and mining of users’ actions
over social media where Facebook is used for illustration purposes. Section 6 implements
this tracking and mining through a real marketing campaign on Facebook. Finally, Sec-
tion 7 discusses the importance of connecting the business and social worlds together.
Finally, Section 8 concludes the paper and identifies some future work.

2. Related work

Mining social networks in favor of business application is not new. Bonchi et al. present
an overview of key problems in this domain and the techniques in social network analysis
in an infant stage and emphasize, among others, potential business benefits and technical
challenges [5]. These challenges include data preparation, network dynamics, propaga-
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tion, evaluation, etc, whilst value-added benefits may be summarized in a short sentence:
”Social networking may allow increased revenue”.

In essence, 2 types of social network mining strategies are in use. The first strategy
mimics social networks by tracking activities of employees and their relationships inside
an organization during business process execution in order to make them more flexible and
productive. Examples include, but not limited to, MiSoN (Mining Social Networks) and
SUPER (Social-based bUsiness Process managEment fRamework). In MisoN, Aalst et al.
use events logs for social networks mining [1]. These event logs are made by employees
of an enterprise when they use some of enterprise information systems (e.g., ERP and
CRM) and transform into sociograms by MisoN, which are later use for workflow analysis.
SUPER is based on social relations between employees who are in charge to execute
particular BPs. These relations are delegation, substitution and peering and results of their
use are reported in [14,21]

The second strategy goes beyond an enterprise and use public social networks
(e.g., Facebook and Tweeter) to mine customers’ opinions about companies’ products
and services to facilitate CRM via customer needs anticipation and reputation monitoring,
identify their churn and reasons for it, find experts, etc. [5]. These findings are obtained
using sentiment analysis, opinion mining, and at large scale social influence mining. For
the later, Tang et al. present how this mining may help expert finding [33]. A general
approach that allows to identify the node that influences others is presented in [4].

3. Motivating scenario

GreenUtility is a utility company that is going to launch an awareness campaign about
renewable energies on Facebook. To achieve the campaign’s targets like increasing the
number of green advocates, the marketing team must look after this campaign’s business
aspects (e.g., develop the campaign’s content and layout, secure the necessary approvals,
and assess the results of the campaign) and social aspects (e.g., announce the campaign
on Facebook page, engage in discussions with this Facebook page’s subscribers, post,
and refresh the marketing content if necessary). Both business and social aspects be-
come intertwined when the campaign is in a full swing. For instance, posting content on
Facebook needs the marketing director’s approval. And, collecting subscribers’ comments
from Facebook permits to decide on extending the campaign.

After securing the necessary approvals to launch the campaign, GreenUtility’s Face-
book page is updated with details like tips for saving energy and actions for contributing
to a green world. Afterwards, the subscribers to this Facebook page could (in fact, the sub-
scribers are not obliged) react to the campaign by posting responses, initiating new com-
munication threads, and expressing feelings over some ecological incidents (e.g., Gulf of
Mexico oil spill).

Putting all the social actions (e.g., post comments and invite others) that subscribers
perform on Facebook page together should permit to develop social flows that would give
GreenUtility better insights into what is being discussed over its Facebook page instead
of relying on some quantitative performance indicators (e.g., number of visitors), only.
Mining the social flows would help GreenUtility answer many questions like when is it
appropriate to post a campaign so that a good response rate is achieved, who are the main
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supporters/opponents of/to a campaign so that their feedback/concerns are shared/dealt
with, and who should respond to supporters/opponents so that fruitful discussions occur.

4. Some preliminaries

This section is an overview of data mining and business process modeling.

Data mining. The phenomenal growth of online social media (e.g., discussion fora and
blogs) is backed by the abundance and richness of user content such as comments,
reviews, and feeds that could correspond to opinions on events like visited places,
tried restaurants, and consulted books. Opinions can also be associated with senti-
ments reflecting users’ attitudes and feelings towards events like anger and happi-
ness. For a better understanding of opinions, many Sentiment Analysis (SA) tech-
niques and tools are reported in the literature (e.g., Batrinca and Treleaven [3] and
Tang et al. [32]). Generally speaking, Pang and Lee suggest 3 stages that SA goes
through: opinion retrieval, sentiment classification, and opinion summarization [26].
The first determines which textual sources (e.g., documents, posts, blogs, and news)
should be considered when looking for opinionated material with respect to a certain
granularity level (e.g., entire documents, phrases, and separate words). The second
identifies the overall sentiment that each textual source conveys. Finally, the third pro-
vides an integrated view of sentiments expressed by multiple textual sources. Fig. 1
depicts a comprehensive view of SA’s outcomes according to the type of source to
analyze (single versus multiple).

Sentiment Analysis

single source multiple sources

non-
opinionated

opinionated

subjectiveobjective

consenusal divided

non-
opininated

opinionated

score degree

positive negative

scoredegree

positive negative

non-featured featured

Fig. 1. Sentiment analysis decomposition

The aforementioned 3 stages can require different techniques and tools that are at
the crossroad of Natural Language Processing (NLP), Information Retrieval (IR),
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and Machine Learning (ML) [26]. Since textual sources could be opinion-free, the
opinion retrieval stage relies on IR techniques to rank content in terms of relevancy
(i.e., whether the content is topic-related) and opinionatedness (i.e., whether the con-
tent contains opinions) (e.g., Luo et al. [18] and Soboroff et al. [30]). The sentiment
classification stage adopts NLP-based ML techniques to agree on content’s subjec-
tivity/objectivity and polarity (e.g., Liu [16] and Ting et al. [34]). Polarity that can
be either qualitative or quantitative, permits to tag opinions with positive/negative
sentiment scores (e.g., good/bad and like/dislike) or degrees (e.g., good/excellent and
bad/worst). Last but not least, the opinion summarization stage uses IR techniques re-
lated to a content’s featurability and NLP-based ML techniques related to consensus
and division (e.g., Archak et al. [2,17]). The former identifies important features that
would characterize some events. And, the latter decides whether multiple sources
contain similar and/or contradictory opinions related to features so that opinions are
differentiated.

Despite the benefits of existing SA techniques, many shortcomings can be reported.
Indeed, they consider textual sources as one block and, thus, overlook nested ex-
changes in blocks. Plus, they do not capture users’ attitudes towards received con-
tent (should the user respond, delay to respond, or ignore). In this work, we move one
step-forward by analyzing a content’s structure and growth along with users’ senti-
ments so that we understand what happened, might happen as well as when opinion
changes happened.

Business process modeling in brief. BP modeling is about documenting and displaying
BPs graphically to help stakeholders analyze process models and find possible ways
of improvement. A modeling language consists of 3 parts: (i) syntax that provides
constructs and rules to combine constructs, (ii) semantics that gives meaning to
constructs, and (iii) notation that includes graphical symbols to visualize constructs.
In [27], Pourshahid et al. state that all 3 parts together should allow to model various
aspects of a BP such as tasks, events, resources, roles, constituents, functions, organi-
zation, and hierarchy. Over the years, Business Process Model and Notation (BPMN)
has rapidly become a standard for BP modeling as per the Object Management
Group (OMG) [24]. BPMN provides graphical elements to develop multiple flows
like control flow to show the partial order (i.e., conditional and concurrent) between
tasks in a BP and communication flow to show the exchange of messages between
a BP’s stakeholders. In addition to BPMN flows, other types of flows are reported
in the literature. Sadiq et al. use data flow for process specification following a
data/artifact-centric perspective and process verification according to 3 properties:
correctness, soundness, and variability [29]. Reichert and Dadam use control flow
and data flow to specify BPs following a process-centric and data-driven perspective,
and verify a BP’s correctness properties like reachability and termination [28].
Finally, Maamar et al. develop and synchronize control, communication, and
navigation flows to monitor BP execution [22].

Completely different from flows for BP modeling that are structured and known in ad-
vance, social flows are built on-the-fly and capture social actions over social media.
We expect tapping into social flows to understand why users execute certain social
actions, what business tasks triggered certain social actions, which social actions are
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triggered because of some social actions, what is the execution chronology of so-
cial actions, and what content like feelings and opinions does social actions convey.

5. Tracking and mining approach

This section details the approach for real-time tracking and mining users’ actions over
social media. It starts with some definitions and examples and then, discusses how putting
social actions together lead into the development of social flows.

5.1. Foundations

To formalize our approach, we first, refer readers to [19] where a definition for social ac-
tion (e.g., send, co-author, and tweet) is proposed. It is an operation that a Web 2.0 appli-
cation allows users to execute whether online or offline. Also, as per the same reference, a
social action falls into one of the following categories (Table 1): communication (e.g., chat
and poke), sharing (e.g., publish and upload), and enrichment (e.g., comment and tag). In
this paper A is the set of all social actions available for execution over all Web 2.0 appli-
cations (A = {poke, chat, send, co-author, tweet, post, comment, reply, tag, upload, · · · })
and Aapp2.0

(Aapp2.0
⊆ A) is the set of all social actions available for execution

over a particular Web 2.0 application (app2.0), Facebook in our case (AFacebook =

{poke, chat, send, post, upload, comment, tag, · · · }).

Table 1. Representative categories of social actions ([19])

Category Description Examples of social actions

Communication Includes actions that establish back-and-forth inter-
actions between users, which should engage them
in joint operations

Chat with a user or group of users, Poke someone,
Send direct messages to a user’s inbox

Sharing Includes actions that establish one-way interactions
and allow to create and edit shared content and to
facilitate this content’s consumption

Co-author a text/media on a Wiki, Publish a post
on a Blog Web site, Upload a photo/video on a
public repository, or any other data (e.g., sensor
reading)

Enrichment Includes actions that provide additional [meta] data
on shared content by providing opinions and/or
ranking

Comment a post, Tag users’ photos, videos, activ-
ities, etc.

Fig. 2 depicts how the control and social flows are anchored to the business and so-
cial worlds, respectively, with focus on the interactions from the business to social worlds
that trigger forming social flows. Interactions from the social to business worlds are the
result of mining social flows. For clarity purposes, these interactions are not represented
in Fig. 2 but are handled through metrics defined in Section 6.2. It happens that the suc-
cessful execution of some business tasks in the control flow makes users execute some
social actions. over Web 2.0 applications (e.g., after approving the marketing content,
GreenUtility posts the content on Facebook). The outcomes of executing these social ac-
tions could motivate (same and/or other) users to execute additional social actions and so
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on. This execution chain of social actions expands until some termination conditions are
met (e.g., deadline has passed and response-rate has become low). By putting all the so-
cial actions together with respect to when they occurred, social flows are obtained. Fig. 2
shows 1 control flow (F c

1 ) and 3 social flows (F s
1 , F s

2 , and F s
3 ). Later it will be shown that

social flow could branch into sub social-flows (aka nested flows).

Fig. 2. Business and social worlds from a flow perspective

5.2. Definitions and examples

In the following all examples are drawn from the motivating scenario and Fig. 2. The
definitions given in this section are integrated into the automatic building of social flows
as demonstrated in Section 6.

Definition 1. Control Flow (F c). It represents the process model of a BP and consists
of business tasks (bt) and dependencies between business tasks. Formally, F c is a 4-tuple
< T c, Dc, IT c, FT c > where: T c contains all business tasks in a BP; Dc ⊆ T c × T c

is the set of all dependencies between business tasks; IT c ⊆ T c is the set of all initial
business tasks; and, FT c ⊆ T c is a set of all final business tasks.

Example: F c =< {bt1, bt2, . . . , bti}, {(bt1, bt2), . . . , (bti−1, bti)}, {bt1}, {bti} >
where bt1 = secure-necessary-approvals and bt2 = develop-campaign-design.
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Definition 2. Business-to-Social Link (L(b2s)). It captures the statement that “upon the
successful execution of a business task, a user may execute social actions in response to
this execution”. We aim at conditionally mapping each business task in a control flow onto
a set of initial social actions that will form the roots of the future social flows. Formally,
L(b2s) : T c × C → 2A

s0 is a function where: T c contains all business tasks in a BP, C
is a set of conditions; and, As0 is a set of all initial social actions in the social flows.

Example:

– L(b2s) : (bt1, [condbt1 ]) → {sa1, sa2} where bt1 = secure-necessary-
approvals, condbt1 = is-campaign-approved?, sa1 = post-benefits-of-the-campaign-
on-Facebook, sa2 = post-benefits-of-the-campaign-on-Twitter; sa1 and sa2 are exe-
cuted if the campaign is approved.

– L(b2s) : (bt2, φ) → φ where bt2 = develop-campaign-design; no social action is
associated with bt2.

– L(b2s) : (bt3, [condbt3 ]) → {sa3} where bt3 = analyze-customer-application,
condbt3 = is customer application rejected?, and sa3 = post-a-note-on-customer-
wall; sa3 is executed if the customer application is rejected.

Definition 3. Social Flow (F s). It is a set of social actions put together on-the-fly. One
of these social actions is initial (i.e., linked to a business task as per Definition 2) and
the rest are either intermediaries or finals. First, the connection between social actions is
dependent on (i) the authorized relations that Web 2.0 applications allow to have between
their social actions (Section 5.3) and (ii) the nested levels of exchange that a Web 2.0
application allows to happen6. Second, the selection of the next social actions to execute
is based on contextual elements that do not fall into this paper’s scope. Formally, F s

is a 4-tuple < As
app2.0

, STRs
app2.0

, sas0, FA
s > where As

app2.0
⊆ Aapp2.0

contains those
social actions in a Web 2.0 application that end-users have voluntarily decided to execute;
STRs

app2.0
: As

app2.0
× Lapp2.0 → As

app2.0
is a function that corresponds to a time-

stamped authorized relation connecting a social action, that occurred at a certain level
of exchange (l ∈ Lapp2.0

), to another social action; sas0 ∈ As0
app2.0

is the initial social
action; and, FAs ⊆ As

app2.0
is a set of final social actions.

Example:

– F s
1 =< As

app2.01
, STRs

app2.01
, sas01 , FA

s
1 > where As

app2.01
= {sa1}, STRs

app2.01

not applicable, sas01 = sa1, and FAs
1 = {sa1}.

– F s
2 =< As

app2.02
, STRs

As
app2.02

, sas02 , FA
s
2 > where As

app2.02
=

{sa2, sa21, sa221, . . .},
STRs

As
app2.02

= [(sa2, sa21), (sa21, sa22)], [[(sa21, sa211)]], [[(sa22, sa221), (sa221, sa222)]],

sas02 = sa2, and FAs
2 = {sa21, . . .}. In this flow, 2 levels of exchange represented

by [ ] and [[ ]], respectively, exist. Note that F s
2 contains 1 primary sub-flow referring

to social actions between [ ] and 2 secondary sub-flows referring to social actions
between [[ ]].

6 E.g., 1 nested-level of exchange would support 2 types of social flows: primary and secondary. In Facebook
comment and reply can trigger post. Thus, comment and reply are part of the primary social-flow and post is
part of the secondary social-flow.
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– F s
3 =< As

app2.03
, STRs

app2.03
, sas03 , FA

s
3 > where As

app2.03
= {sa3, sa31},

STRs
app2.03

= {(sa3, sa31)}, sas03 = sa3, and FAs
3 = {sa31}

– As0
app2.0

= {sa1, sa2, sa3} for F s
1,2,3.

In addition to control flow, business-to-social link, and social flow definitions, extra
concepts and definitions are deemed necessary to allow the mining of social flows. Among
these concepts we cite scores of social actions (nodes for short) that are calculated while
the different social flows are under-development. As per Fig 1, each content to analyze is
related to a single user, and is both opinionated and subjective. So, a score is either local
that is about user’s feedback, global that aggregates local scores using direct neighbors’
scores, or cumulative that aggregates global scores using direct neighbors’ scores, as well.

Definition 4. Local Score Function (LS). It quantifies a user’s feedback on a so-
cial action using for instance, sentiment analysis techniques such as CoreNLP ([31]).
CoreNLP’s scores are -2 for very negative, -1 for negative, 0 for neutral, 1 for positive,
and 2 for very positive. With respect to social actions that do not have content such as
“like” and “wow”, their sentiment values are assigned using “common sense”, for ex-
ample. Formally, LS : As

app2.0
→ Z is defined as per Equation 1:

LS(sa) =

 sentimentAnalysis(sa(feedback)), sa has content

selfAssignment(sa()), sa has no content
(1)

where selfAssignment assigns a sentiment value to sa based on “common sense”.

Definition 5. Global Score Function (GS). It represents the cumulative feedback of a
social action’s free-of-content and secondary neighbors at time t. The number of sec-
ondary neighbors depends on the Web 2.0 application’s nested levels (1 for illustration
purposes). Formally, GS : As

app2.0
× T → Z is defined as per Equation 2:

GS(sa, t) =



sign(saparent)× LS(sa)

sign(saparent)× LS(sa) +

k∑
i=1

GS(sai, t), sa is secondary

LS(sa) +
k∑

i=1

GS(sai, t) +
m∑

j=1

GS(saj , t), sa is primary and 6= sas0(Definition 3)

(2)

where saparent is a social action’s parent; sign is a function that returns +1 if
LS(saparent) is positive or neutral, otherwise -1; sai is a free-of-content neighbor of

sa; and, saj refers to all secondary neighbors of sa. Note that GS(sas0, t) =

m∑
j=1

GS(saj , t)

where saj refers to all primary neighbors of sas0.

From an implementation perspective, Algorithm 1 illustrates how Equations 1 and 2
for local and global score calculations, were programmed. At the end of each execution
round, each social action gets its respective local and global score, that is used later for
analysis and presentation. After a certain time of launching a campaign, collecting neces-
sary details about social actions begins allowing to proceed as follows:
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- Lines 4-8 list all reactions on the initial post. The self assignment value for each
reaction is multiplied by the sign of the post to get the global score of the reaction,
and added to the global score of the post.

- Lines 9-28 list all the comments on the initial post including reactions, replies, and
reactions on replies, as well. All of these affect the global score of posts and com-
ments via the nested loops. A comment’s sentiment value is checked using CoreNLP
tool, multiplied by the post’s sign to get its global score and then added to the post’s
global score.

- Lines 12-26 proceed with the same analysis targeting this time reactions on com-
ments, replies to comments, and reactions to replies, respectively.

Algorithm 1 Local/Global score calculation
1: for all posts as p do
2: p.LS = 0
3: p.GS = 0
4: for all reactionsOnPost as rp do
5: rp.LS = selfAssignment(rp)
6: rp.GS = sign(p) ∗ rp.LS
7: p.GS = p.GS + rp.GS
8: end for
9: for all commentsOnPost as cp do

10: cp.LS = sentimentAnalysis(cp.feedback)
11: cp.GS = sign(p) ∗ cp.LS
12: for all reactionsOnComment as rc do
13: rc.LS = selfAssignment(rc)
14: rc.GS = sign(cp) ∗ rc.LS
15: cp.GS = cp.GS + rc.GS
16: end for
17: for all replyOnComment as rpc do
18: rpc.LS = sentimentAnalysis(rpc.feedback)
19: rpc.GS = sign(cp) ∗ rpc.LS
20: for all reactionsOnReply as rr do
21: rr.LS = selfAssignment(rr)
22: rr.GS = sign(rpc) ∗ rr.LS
23: rpc.GS = rpc.GS + rr.GS
24: end for
25: cp.GS = cp.GS + rpc.GS
26: end for
27: p.GS = p.GS + cp.GS
28: end for
29: end for

Definition 6. Cumulative Score function (CS). It represents the cumulative score of a
social action’s direct neighbors at time t. The number of direct neighbors depends on the
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Web 2.0 application’s nested levels (1 for illustration purposes). Formally, CS is defined
as per Equation 3:

CS(sa) =

GS(sa) + CS(sai, t), sa is secondary

GS(sa) + CS(sai, t) + CS(saj , t), sa is primary
(3)

where sai is both a secondary node and a certain direct neighbor of sa; and, saj is
both a primary node and a certain direct neighbor of sa. Note that Equation 3 provides
different cumulative scores whether the social action is primary or secondary, and, there-
fore, considers the social flow’s structure. Regarding the initial social actions, their CS
is computed recursively using all nodes’ cumulative scores. When a change happens in a
social flow (e.g., new like, new comment, and new share), CS automatically changes.

When the development of a social flow is in progress, some scores automatically
change (e.g., if like is connected to comment at time t+1, like’s score at t+1 will be differ-
ent from time t). This change would impact other nodes in the social flow through score
propagation. We rely on asynchronous self-stabilization principle to propagate impacted
global scores after each update (i.e., a newly-added social action to the social flow) [9].
This principle consists of re-computing the scores of initial social actions’ neighbors.
Each node checks its direct neighbors and detects any change of scores among their neigh-
bors. If there is a change, the node computes its score again and again. Thanks to this
domino effect, all nodes update their scores until reaching all initial social actions.

5.3. Authorized relations between social actions

The ongoing expansion of social flows is dependent on the authorized relations that a
Web 2.0 application supports in order to connect social actions together (STRs

app2.0
in

Definition 3). Each Web 2.0 application allows a limited number of (next) social actions
from which users can select for execution. Although these relations are not explicitly
shown in Web 2.0 applications, we expose them for 2 reasons: enumerate the next possible
social actions and recommend some next possible social actions to users with respect to
what has been executed earlier. Enumerating the next possible social actions is relevant
when building social flows; it permits to track exchanges online and to connect social
actions on the fly.

Table 2 suggests examples of next possible social actions in some representative Web
2.0 applications. In this table, [0/1.. ∗ (resp.1)]sa means zero/one to many (resp. only
one) social action(s) will be executed, and (||) and (⊕) are or and xor logical operators,
respectively. To define some authorized relations in Web 2.0 applications, we analyzed
Decker and Lesser’s coordination relations between tasks namely facilitates, cancels ,
inhibits, constrains, enables, and causes [8]. Due to the inappropriateness of the first 3
relations for our work, we discuss the remaining ones:

1. enables(sai, {saj}): upon the successful execution of a social action sai,
the Web 2.0 application activates other social actions {saj} from which
users can execute some (i.e., zero to many) and many times. Examples are
enables(share, {like}) and enables(post, {share, like, comment}) in Facebook
and enables(tweet, {reply, retweet, post− to− Facebook}) in Twitter.
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2. constrains(sai, {saj}): upon the successful execution of a social action sai, the
Web 2.0 application activates other social actions {saj} from which users can execute
one social action saj , only. Examples are constrains(request, {confirm, delete})
in Facebook and constrains(follow, {accept, deny} in Instagram.

3. causes(sai, {saj}): upon the successful execution of a social action sai, another
social action saj is automatically executed. Example is causes(add, {follow}) in
Facebook.

Table 2. Illustration of some authorized relations between social actions
Web 2.0 application Social action Next possible social actions

Facebook post [0..*]like || [0..*]comment || [0..*]share || [0..1]delete

share [0..*]like || [0..1]delete

like [0..1]unlike

follow [0..1]unfollow

comment [0..*]reply || [0..1]edit || [0..1]delete

friend request [0..1]confirm
⊕

[0..1]delete

Twitter tweet [0..*]reply || [0..*]re-tweet || [0..1]like || [0..1]delete

reply [0..*]reply || [0..*]like || [0..*]re-tweet || [0..1]delete

quote tweet [0..*]reply || [0..*]re-tweet || [0..1]delete

like [0..1]unlike

Instagram post [0..*]send to || [0..*]comment || [0..*]like ||[0..*]share-to

comment [0..*]reply || [0..*]like || [0..1]delete

follow [0..1]accept
⊕

[0..1]deny

send to [0..1]like
⊕

[0..*]comment

Let us consider GreenUtility and Facebook’s social actions defined in Table 2.
When no social action is executed, GreenUtility administrator executes post so that
texts, images, or videos are displayed on the company’s Facebook page. This post en-
ables the administrator and other (un)known Facebook members to like that post (like),
comment that post (comment), and/or share it (share). This happens because of
enables(post, {like, comment, share}) authorized relation. In the same way, exe-
cuting one of the recently enabled social actions will allow executing other social
actions in a chain reaction. For instance, executing comment after post enables to
like that comment (like) and/or to reply to that comment (reply) in compliance with
enables(comment, {like, reply}) authorized relation.

5.4. Illustration

Let us apply the different definitions to GreenUtility. On the one hand, the campaign’s
business aspect refers to a control flow that includes many business tasks (e.g., prepare-
campaign-material and approve-campaign-material) and dependencies between these
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tasks (e.g., approve-campaign-material requires finalize-material before). On the other
hand, the campaign’s social aspect refers to multiple social flows initiated depending on
the outcomes of executing certain business tasks. Let us assume that approve-campaign-
material is successfully executed. Next is to share this material with the community on
Facebook. The administrator logs into GreenUtility’s Facebook page and executes post as
a social action. Now that the campaign’s material is online, subscribers of GreenUtility’s
Facebook page can share the material with others, comment the material, or like the ma-
terial as per the authorized relations associated with post (Table 2). If a person makes a
comment, then comment as a social action is executed and will be connected to the first
social action that is post. At this stage, the under-development social flow consists of two
social actions: post then comment.

In Fig. 3a, we show GreenUtility’s post on Facebook at time t. This post has re-
sulted into executing additional actions by people like Alison, Bob, and the adminis-
trator of GreenUtility’s Facebook page. In Fig. 3a, we map this execution onto an under-
development social flow that will grow over time. Since Facebook supports 1 nested level
of exchange, the social flow is represented as 1 primary (level 0) caterpillar (i.e., a tree
such that its internal vertices constitute a path and the other vertices are the ”hairs” of the
tree and 2 secondary (level 1) caterpillars [13]. The primary caterpillar has GreenUtility’s
post as a root with 2 like and 2 subsequent comment while the first secondary caterpillar
has Bob’s reply as a hairless root. The nodes are labeled with 3 values (sentiment score,
global score, and cumulative score). All under-development social flows are acyclic and
temporal.

6. System development

This section consists of 2 parts. The first part describes the architecture supporting real-
time monitoring and mining of users’ social actions over Facebook. The second part de-
scribes the experiments that were carried out along with the results of these experiments.

6.1. Architecture

We developed a tool, named Social Miner (SM), for tracking and mining users’ actions
over social media with Facebook as a targeted Web 2.0 application. SM’s architecture is
given in Fig. 4 (a demo video is available at https://youtu.be/crBsEk2pSzo)
and consists of 4 modules: dashboard, social-action manager, social-action tracker, and
social-flow analyzer.

The dashboard is the interface provided to employees and BP engineers to manage
campaigns on GreenUtility’s Facebook page like launching a new campaign with the assis-
tance of the social-action manager (1.1) and to perform the necessary analysis (1.2). The
social action tracker “keeps-an-eye” on any change over this Facebook page while the
social-flow analyzer obtains insights into the activities over the Facebook page such as,
which subscribers are (un)supportive of a campaign and which campaign is most attractive
according to our mining analysis. To this end, the social action tracker uses Webhooks7 to
subscribe to changes in the Facebook page. These changes are stored in the social actions

7 developers.facebook.com/docs/graph-api/webhooks..

https://youtu.be/crBsEk2pSzo
developers.facebook.com/docs/graph-api/webhooks.
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a) GreenUtility's Facebook post b) Under-development social flow

Fig. 3. GreenUtility’s Facebook page and its associated social flows

repository and then made available to the social-flow analyzer for building the necessary
social flows so they are mined at a later stage.

1. The social-action manager uses Facebook SDK library for PHP so that requests
(e.g., publish campaign and reply to some comment message) are submitted to Face-
book Graph API8 and published on a Facebook page.

2. The social-actions repository is a MySQL database that stores details like time about
the social actions executed over GreenUtility’s Facebook page.

3. The subscribers repository is another MySQL database that stores details about the
subscribers (e.g., user id, user name, and weight) who take part in the discussions
over GreenUtility’s Facebook page.

4. The social action tracker includes 2 modules: CoreNLP and Score calculator. On
top of time-stamped details about the executed social actions (e.g., user id, page id,
post id, and parent id) collected via Facebook Webhooks’ notifications, CoreNLP as
a sentiment-analysis tool annotates these actions with sentiment scores. The result
of CoreNLP analysis is formatted as JavaScript Object Notation (JSON) and then,
translated into a relational format (through an in-house script) prior to storing it in
the social-actions repository. The relational format has eased the storage of different
details in multiple tables and running queries over these tables when building and
analyzing the social flows. Any notification from Webhooks (e.g., newly added/up-
dated social actions) triggers the score calculator that computes new scores (Equa-

8 developers.facebook.com/docs/graph-api.

developers.facebook.com/docs/graph-api.
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tions 4 and 5) and/or revises some existing scores as per the score propagation al-
gorithm (Definition 6). For local scores, the score calculator considers subscribers’
weights (e.g., reputation) using the subscribers repository (Definition 4).

5. The social flow analyzer includes 3 sub-modules: builder, miner, and displayer. The
builder parses the content of the social actions repository (1.2.1) to generate the nec-
essary social flows enriched with scores and transmit the enriched social flows to the
miner for further analysis (1.2.2). The miner performs 3 types of metrics and one anal-
ysis discussed in Section 6.2. The displayer visualizes real-time social flows along
with the obtained analysis transmitted by the miner (1.2.3) on a browser showing
how GreenUtility promotes its services to customers and seeks their feedback through
Facebook (Fig. 2). The displayer uses Cytoscape graph-theory library for analysis
and visualization [11]. It also highlights with assistance of the miner the relevant so-
cial actions that form the social flows. Different shapes are used to differentiate the
social actions: star for post, rectangle for comment, hexagon for reply and triangle for
reaction. The displayer also uses colors to emphasize whether a social action is pos-
itive, negative, or neutral so that a manager can easily identify the points of interest.
GreenUtility uses the different flows to identify what social actions that (un)known
subscribers have executed over its Facebook page. This could lead into reviewing
BPs if their feedback were deemed relevant. Finally, the displayer is developed in
HTML 5 and JavaScript while the builder and miner are developed as PHP programs
and deployed on an Apache Web server.

Besides installing Facebook Graph API, companies interested in using Social Miner do not
require any additional installation or configuration to track their campaigns on Facebook.

Fig. 5. Example of social flow
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6.2. Experiments

To evaluate the benefits of using SM to decision makers, we carried out many experi-
ments associated with a real campaign known as “we are announcing Universe 11 plus,
the greatest phone ever” that was active from March 11, 2018 to March 16, 2018 on
Facebook. The metrics that result out of these experiments are discussed below and as-
sessed over one-day long time intervals. These metrics are implemented in the miner
sub-module, part of the social flow analyzer (Fig. 4).

1. Campaign attractiveness metric (M1, Fig. 6) defines how appealing a campaign was
to respondents by tracking their positive, neutral, and negative responses over differ-
ent time intervals. Formally, M1 is defined by Equation 4. By considering attractive-
ness, managers could extend campaigns, for example.

M1(ti) =
new(ti)

returning(ti) + new(ti)
(4)

Where ti is a certain time interval [from, to] that could be days, weeks, months, etc.,
new(ti) is the number of new respondents who executed some social actions dur-
ing ti, and returning(ti) is the number of returning respondents who first, exe-
cuted some social actions during ti and second, were included in the previous time
interval (ti−1) that was used for defining the attractiveness metric. At t0, all re-
spondents are treated as new. We rely on the time-stamped authorization relation
STRs

Facebook (Definition 3) to compute new(ti) and returning(ti).

Fig. 6. Chart associated with campaign attractiveness

Since M1 enables a campaign’s manager to discuss attractiveness from a global per-
spective, the focus is on the number of (new and returning) respondents. It would be
useful for the manager to study attractiveness from a local perspective by identifying
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the social actions that led for instance, to a major increase/decrease in the number of
new/returning respondents both compared to previous interval times. To this end, we
define local-attractiveness metric (M

′

1) with focus on returning respondents’ respon-
siveness levels (Equation 5):

M
′
1(sa, ti, ti+1) =

returning(sa, ti, ti+1)

returning(sa, ti−1, ti)
(5)

Where sa is a certain social action that is subject to analysis, ti−1, ti, ti+1

are 3 homogeneous time intervals such that ti happened earlier than ti+1,
returning(sa, ti, ti+1) is the number of returning respondents who were “new”
at ti and executed any action that came after sa during ti+1, and finally,
returning(sa, ti−1, ti) is the number of returning respondents who were ”new” at
ti−1 and executed any action that came after sa during ti. Similar to new(ti) and
returning(ti), returning(sa, ti, ti+1) and returning(sa, ti−1, ti) are computed
based on STRs

Facebook. Since a social action may appear many times in the time
interval ti+1, the manager points the desired social action that he wishes to analyze
using first occurrence, for example.

2. Campaign responsiveness metric (M2, Fig. 7) indicates how a campaign is perceived
by the community of respondents based on their feedback, whether positive (support-
ive), negative (opponent), or neutral. We rely on the local score functions (Defini-
tion 4) to formally define M2 with focus on positive feedback in Equation 6:

M2(ti) =
| sa |positive

| sa |positive + | sa |neutral + | sa |negative
(6)

Where ti is a certain time interval [from, to], |sa|positive is the number of social ac-
tions executed during ti such that sign(GS(sa, t)) is positive (t ∈ ti), |sa|negative is
the number of social actions executed during ti such that sign(GS(sa, t)) is negative,
and |sa|neutral is the number of social actions executed during ti such that LS(sa)
is zero.

3. Campaign longevity metric (M3, Fig. 8) indicates how long a campaign remained
“alive/active”, i.e., respondents have continuously (without “big” gaps) provided
feedback on the campaign so that a certain activity level over Facebook for exam-
ple, is maintained. The longevity metric refers to the longitudinal dispersion of the
provided feedback over a certain time interval tk([from, to]) that shall fall into a
certain accepted activity level set by the campaign’s manager (e.g., minimum number
of actions in a day). We define this activity level with respect to a standard devia-
tion (σ) upon which the decision of putting the campaign either on hold (suspend)
or offline (stop). We rely on the time-stamped authorization relation STRs

Facebook to
formally define this standard deviation as per Equation 7:

σ =M3(tk) =

√√√√√ n∑
i=1

(xi − x)2

n
(7)

where tk is a time interval [from, to] sliced into n equal time intervals (ti) (e.g., in
days and in weeks), xi is the number of social actions executed during the slice
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Fig. 7. Chart associated with campaign responsiveness

ti ⊂ tk where i ∈ [1, n], and x is the average number of all social actions ex-

ecuted during the time interval tk(
n∑

i=1

xi/n). The number of social actions over a

certain time interval remains “acceptable” if this number falls into [x − σ,x + σ].
“Acceptable” could be defined over time and by benchmarking different time inter-
vals together. We, thus, analyze the longevity metric according to x and σ so that
this metric’s time space corresponds to the set of time intervals where the number of
social actions is declared “acceptable”.

In addition to the different metrics that SM produces, a reversal trend analysis of a
campaign is implemented to help a manager identify the reasons behind a change in a
campaign’s perception, for example. This perception could be based on a series of pos-
itive/negative and then negative/positive feedback. SM relies on the social flows’ sec-
ondary caterpillars to look for potential patterns such as 2 consecutive positive feedback
followed by 3 consecutive negative feedback, and so on. To achieve the reversal analysis,
we adopted gSpan algorithm for mining labeled graphs [37]. This algorithm uses a set
of graphs D and the minimum frequency (i.e., number of subgraphs before claiming that
these subgraphs are repetitive) as inputs. In our case, D could be a set or portions of sec-
ondary caterpillars. Because many social actions can be executed over time, we “cleaned”
the secondary caterpillars from irrelevant time intervals (e.g., those where the campaign
is inactive) for quality purposes. In Fig. 9, the minimum support threshold is 3 as an ex-
ample, and all the social actions until August 28, 2018 are considered when extracting the
patterns.

7. Discussions

From a business point of view, according to Zion Market Research, “Global enterprise
2.0 technologies market expected to reach around USD 14,955 million by 2024, at a
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Fig. 8. Chart associated with campaign longevity

CAGR approximately 46.87 for the forecast period from 2018 to 2024”9. Despite this
heavy investment and the social fever that has caught every single activity of people’s
daily lives, many are still reluctant to embracing social media whether for personal use
or for business use. Different concerns are continuously raised, including whether social
media is bringing any value-added to companies. Gartner clearly states that “... many
large companies are embracing internal social networks, but for the most part, they are
not getting much from them” [15]. And, social media is also seen as the source of new
forms of security threats, privacy breaches, and distraction to employees [10]. Contrar-
ily to these “skeptical” views, a London-based think tank, Demos, encourages companies
to allow their employees to embrace social network applications in order to establish
and foster contacts with stakeholders such as colleagues, customers, and suppliers [12].
Striking the right balance between social media’s pros and cons requires strict guidelines
that social media users should comply with. Burégio et al. present such guidelines from
3 perspectives known as technology, organization, and management [6]. The technology
perspective identifies the appropriate type of social media that should sustain a company
growth and fall into its mission. The organization perspective puts in place the necessary
procedures that should ensure an efficient use of social media to avoid misuses, for ex-
ample. Finally, the management perspective identifies the metrics (or key performance

9 www.zionmarketresearch.com/report/enterprise-technologies-market., last vis-
ited November, 14, 2019

www.zionmarketresearch.com/report/enterprise-technologies-market.
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Fig. 9. Pattern extraction during a campaign

indicators) that should permit to evaluate the efficient use of social media based on some
tangible benefits.

8. Conclusion

We presented an approach for developing flows in the context of companies that wish to
tap into social media’s opportunities. The flows are specialized into control and social.
The former consists of tasks that form business processes. The latter consists of social
actions that are executed over social media in response to specific events. Social flows
are enriched with scores based on sentiment analysis so that companies would secure a
better understanding of what-happened and what-might-happen in their ecosystems. For
validation purposes, we developed a tool, Social Miner, on Facebook allowing to track
and mine users’ posts, comments, responses, etc. The system permits to answer questions
like what actions were frequently executed, why certain actions were executed more than
others, and when such actions were executed. In term of future work we would like to
examine the impact of contextual factors on the next social actions to execute and the
deployment of Social Miner on another social media such as Twitter.
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