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Summary
Over many years, scientists and engineers have developed a broad variety of mathematical formulations to inves-
tigate the propagation and interactions with flow of flow-induced noise in early-stage of product design and devel-
opment. Beside established theories such as the linearized Euler equations (LEE), the linearized Navier–Stokes
equations (LNSE) and the acoustic perturbation equations (APE) which are described in an Eulerian framework,
Galbrun utilized a mixed Lagrange–Eulerian framework to reduce the number of unknowns by representing per-
turbations by means of particle displacement only. Despite the advantages of fewer degrees of freedom and the
reduced effort to solve the system equations, a computational approach using standard continuous finite element
methods (FEM) suffers from instabilities called spurious modes that pollute the solution.
In this work, the authors employ a discontinuous Galerkin approach to overcome the difficulties related to spu-
rious modes while solving Galbrun’s equation in a mixed and pure displacement based formulation. The re-
sults achieved with the proposed approach are compared with results from previous attempts to solve Galbrun’s
equation. The numerical determination of acoustic modes and the identification of vortical modes is discussed.
Furthermore, case studies for a lined-duct and an annulus supporting a rotating shear-flow are investigated.

PACS no. 43.28.Bj

1. Introduction

Acoustic noise reduction, which is a wide matter of con-
cern in industry, calls for a better understanding of the
complex phenomena that occur when an acoustic wave
propagates in a mean flow. A majority of research per-
formed in aeroacoustics and computer aided engineering
(CAE) has been aimed at the aircraft noise community,
arguably starting by the work of Lighthill, [25]. Com-
monly, aircraft noise research traditionally focusses on
high Mach number and high Reynolds number free-field
jet flows. In high-speed jets, noise generation is consid-
ered to be of quadrupole type, caused by unsteady non-
linear mechanisms. The methodologies developed in CAE
have rejected this, in their focus on time-domain solutions
of the non-linear Navier–Stokes equations, either as Direct
Numerical Simulations (DNS) where no turbulence mod-
els are included, to turbulence models such as Reynolds-
Averaged Navier-Stokes (RANS) and Large Eddy Simu-
lation (LES) codes. In wall-bound and internal flows at
low Mach numbers, the sound generating mechanisms are
however governed by fundamentally different physics than
that of free-field jet noise. When an air flow is obstructed
by a change of geometry, such as a sharp corner or a bi-
furcation, flow instabilities and vortices are generated. As
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these vortices impinge on boundaries, sound impulses are
generated.

A less explored field of aeroacoustics is that of pure
wave propagation in inhomogeneous media with arbitrary
mean flows, as this is disconnected from the noise genera-
tion processes. The conceptual difference in the simulation
of sound generation and sound propagation is large enough
to justify a treatment of the two as separate topics. In re-
gions outside of acoustic sources, the acoustic quantities
are often small in comparison to the flow-field quantities.
In many cases, it can be assumed that the flow-field af-
fects the sound waves, whereas the sound waves do not in-
duce the flow-field. Thus, the perturbations about the mean
flow are often small enough to justify linearization. This
enables a two-stage treatment of the acoustic wave prop-
agation: firstly, the mean flow can be calculated without
the need to consider any acoustic waves, and secondly, the
sound waves can be calculated as perturbations about the
mean flow-field. Also, as a consequence of the lineariza-
tion, a frequency domain approach can be taken. A main
benefit of a frequency-domain approach, as opposed to a
time-domain approach, is the significant reduction of com-
putational time in case of harmonic excitation. Since most
research efforts have been aimed at jet noise generation,
where unsteady simulations are needed, only a few studies
on frequency-domain aeroacoustics are available.

Currently, different methods such as the Linearized Eu-
ler Equation (LEE) [4], the Linearized Navier–Stokes
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Figure 1. Frame of reference state and perturbed state.

Equation (LNSE), see Kierkegaard et al. [27] or the
Acoustic Perturbation Equation (APE), see Ewert and
Schröder [15], Munz et al. [32], Hüppe and Kaltenbacher
[22] and Zörner et al. [43], are utilized besides the well
known acoustic analogies by Lighthill [24, 25], Curle [11]
and Ffowcs William and Hawkings [16] for solving aero-
acoustic tasks such as wave propagation in moving fluid as
part of CAE.

Galbrun [18] proposed a displacement based descrip-
tion in a Lagrange–Eulerian mixed frame for analyzing
the propagation of sound waves in moving fluids. Since
only the displacement field is the unknown quantity, Gal-
brun’s equation represents a potent alternative to the meth-
ods mentioned above. Among the possibility of reducing
the degrees of freedom, boundary conditions can naturally
be expressed, i.e. in terms of boundary displacement.

Despite the positive aspects of Galbrun’s equation, so-
called spurious modes exist when extracting the eigenval-
ues of the associated boundary value problem utilizing a
standard, unstabilized finite element method. The same
holds for the LNSE and LEE formulation. These spuri-
ous modes possibly pollute the solution when using the
standard continuous Galerkin discretization [20, 13]. Vari-
ous attempts have been published in the literature for han-
dling the problems associated with spurious modes, cf.
[5, 35, 41, 42]. The work presented in this paper aims as a
step to the development of a simulation methodology for
alternative strategies for flow acoustics.

Bécache et al. [2] and Bonnet et al. [6, 5] have demon-
strated that the direct displacement-based formulation as-
sociated with Galbrun’s equation may produce erroneous
or spurious solutions if the finite element method is based
on simple continuous finite elements. In particular, it is
proposed in [5] that a regularized reformulation of the vari-
ational equation for uniform and shear flows can produce
robust solutions by damping them out. Other authors, such
as Dietzsch et al. [12], have used finite element functions
which can shift, but not remove, the location of spurious
solutions to higher frequencies and higher damping val-
ues. In this paper, a formulation based on the displacement
variables is presented which minimizes the appearance of
spurious solutions without the need of a regularized refor-
mulation.

The paper is organized as follows: Section 2 sets up
the Galbrun equations from basic principles which leads
to Section 3 a description of the numerical scheme. The

authors utilize a discontinuous Galerkin (DG) method,
cf. [9, 10, 1, 39], for discretizing Galbrun’s equation for
which a time-harmonic behavior is assumed. To account
for inter-element fluxes, a local Lax–Friedrichs flux, cf.
[21], is used and discussed. In order to highlight the bene-
fits of the proposed method, solutions are compared to the
state of the art methods such as LNSE and LEE as case
studies in Section 3 which includes a discussion on the
influence of an appropriate flux factor. Further, a filtering
(Lagrange multiplier) technique is applied to exclude non
relevant modes from the solution space. Finally, in Sec-
tion 4 examples including a lined duct and a circulating
flow within an annulus are investigated.

2. Theory and Numerical Method

In this section, the fundamental principles for deriving
Galbrun’s equation are outlined. For additional insight, the
reader is referred to the literature [18, 41, 33, 6, 12, 19,
20, 23, 34]. In order to give a comprehensive description,
some mathematical fundamentals are required. Hereafter,
a Cartesian coordinate system defined by the orthonormal
directions ‘1’ and ‘2’ is used, such that a two-dimensional
space is considered. Further, a vector component descrip-
tion together with Einstein’s summation convention is as-
sumed to indicate component summation for repeated in-
dices. Hereafter, the domain of interest is ΩF ⊂ R2 which
is bounded by a closed surface, ΓF .

2.1. Lagrange-Eulerian frame

For deriving Galbrun’s equation, one has to be familiar
with the concept of a mixed Lagrange-Eulerian frame in
the view of continuum mechanics and the associated ap-
propriate balance equations. Despite the fact that the the-
ory to derive Galbrun’s equation is well published in the
literature, the authors present the basic principles for bet-
ter readability.

Two distinguished states are considered. In the first state
namely the perturbed state, any given particle is defined
by its spatial coordinate position y(t) where in the second
state or the unperturbed state or reference state, the same
particle takes the position x(t), cf. Figure 1. The vector
components of the Lagrangian displacement w(t) are de-
fined as the difference of these two states, i.e.

wl(t) = yl(t) − xl(t). (1)

Further, any given field quantity Φ takes the form

Φ(yl, t) = Φ0(yl) + Φ′(yl, t) (2)

in the Eulerian frame with the Eulerian perturbation
Φ′(yl, t) and

Φ(yl, t) = Φ0(xl) + Φ̃(xl, t) (3)

in the Lagrangian frame with the corresponding La-
grangian perturbation Φ̃(xl, t), cf. Poirée [33]. Since the
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application of Galbrun’s equation is basically a linear per-
turbation procedure, the mean flow quantities, Φ0, can be
calculated from an adequate preceding stationary bound-
ary value problem. It must be noted that these mean flow
quantities Φ0 are described specifically in Eulerian coordi-
nates, cf. Brazier [7]. Combining equations (1)–(3) while
assuming that the mean values Φ0 are slowly varying, i.e.
associated gradients in time and space are integrable con-
tinuous functions. Together with a Taylor expansion up to
the linear terms, one identifies the relation between Eule-
rian and Lagrangian perturbations

Φ′(yl, t) = Φ̃(xl, t) − wj
(

Φ0(xl, t)
)

,j , (4)

where (),j = ∇() = ∂()
∂xj

represents the Nabla-Operator
with the corresponding spatial derivative in the j-direction.
From equation (4), it is apparent that if the spatial gradi-
ent of the mean values vanishes, the Eulerian and the La-
grangian perturbations are equal, see [31].

2.2. Galbrun’s equation formulation

The acoustic radiation of a source produces a small per-
turbation of the physical quantities such as pressure and
density. The propagation of that small perturbation is gov-
erned by the Galbrun equation which is a linear equation
whose unknown w is the perturbation of displacement.
The well known conservation equations of fluid dynamics,
namely the mass, momentum and energy balance equa-
tions in an Eulerian frame are used to derive Galbrun’s
equation. Assuming small perturbations, the displacement
based expression is formulated. Further, it is assumed that
the fluid of interest is a perfect inviscid gas with adia-
batic thermodynamic properties (i.e. isentropic material
behavior). Under these assumptions, Galbrun’s equation
is stated, cf. the references [18, 41, 7, 31].

ρ0
D2wk

Dt2
− p0,lwl,k + p0,kwl,l −

(

c2
0ρ0wl,l

)

,k
= 0, (5)

k, l = 1, 2, 3, in ΩF ,

and

wjnj = 0, on ΓF . (6)

In addition, appropriate initial boundary for wj(t = 0) and
D(wj)/Dt(t = 0) in ΩF and on ΓF must be stated that
fulfill the boundary conditions on ΓF .

Further,

D()
Dt

=
∂()
∂t

+ v0k(),k and (7)

D2()
Dt2

=
∂2()
∂t2

+
∂(v0k)
∂t

(),k + 2v0k
∂

∂t
(),k + v0kv0l(),lk,

where ρ0 represents the mean flow mass density, p0 the
mean flow pressure, c0 the speed of sound and v0k the
mean flow velocity in the k-direction, respectively. The
surface normal vector n on ΓF is pointing outward of the
domain ΩF .

Following the arguments considered in the works by
Gabard et al. [17], Treyssède et. al [41, 40] and Wang et al.
[42], a mixed formulation can be achieved by introducing
a Lagrangian pressure perturbation

p̃ = −c2
0ρ0wl,l. (8)

Following this, combining equations (5) and equation (8)
yields

ρ0
D2wk

Dt2
− p0,lwk,l + p0,kwl,l + p̃,k = 0k in ΩF , (9)

p̃ + c2
0ρ0wl,l = 0. in ΩF (10)

To revert the displacement field back to the well known
acoustic pressure p′ in the associated Eulerian frame, Ex-
pressions (4) and (8) are required. Note that the assump-
tions of slowly varying mean flow quantities such as ρ0, p0

and v0k must still hold.
Further, a time harmonic dependency is assumed to

convert the Galbrun equation from the time to the fre-
quency domain, i.e. any given quantity takes the form
φ(x, t) = <

(

φ̂(x)e−jωt
)

, while j depicts the imaginary
unit, ω = 2πf represents the angular frequency and φ̂(x)
the complex amplitude. Hereafter, the hat symbol is omit-
ted to improve readability. It is thought that all quantities
and fields are in a time harmonic regime. Furthermore, the
operator of the material time derivative reduces to

D()
Dt

= −jω() + v0k(),k.

In equation (6), rigid boundary conditions representing
hard walls have been introduced. To account for more
complicated boundary conditions, we present an admit-
tance boundary condition for the displacement based Gal-
brun equation, see [30, 29],

v′f − v
′
s = Y p′, (11)

expressed in Eulerian quantities, where v′f is the normal
component of the Eulerian fluid velocity perturbation, v′s
the normal component of the Eulerian structure velocity
perturbation, Ȳ = Y/(ρ0c0) the boundary admittance and
its normalized part Ȳ and p′ the Eulerian acoustic pressure
perturbation. Applying these and assuming zero structural
velocity v′s = 0, the equivalent admittance boundary con-
dition for Galbrun’s equation may be derived. Making use
of equation (4), this leaves a relation between admittance
and displacement

(

− jωwl + v0kwl,k − wkv0l,k
)

nl (12)

= Y
(

− c2
0ρ0wl,l − wlp0,l

)

.

Note that ṽk = D(wk)/Dt has been used for the relation
between the Lagrangian velocity perturbation ṽk, when ap-
plying equation (4), and the Lagrangian displacement. If
the mean pressure p0 is constant and the flow velocity v0k

is constant and orthogonal to the surface normal vector nl,
equation (12) reduces to a familiar form for boundary ad-
mittance

jωwlnl = Y c2
0ρ0wl,l, (13)

which is in agreement with Dietzsch et al. [12].
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2.3. Numerical method

Discontinuous Galerkin finite element methods (DG-
FEM) combine favourable features of finite element meth-
ods (FEM) and finite volume methods (FVM) with strong
mathematical foundation. DG-FEM possess a number of
favourable properties especially in hydrodynamic, uni-
form and non-uniform flow problems. They are robust and
high-order accurate and are able to capture physical phe-
nomena common to mixed finite element problems other
methods cannot reach. For this problem we make use of
DG-FEM to overcome an inherent issue.

Generally, DG-FEM combines the flexibility of intro-
ducing high-order FEM schemes with the flexibility of
FVM to formulate numerical schemes locally, which can
reflect flow, for example. However, finite volume methods
are often too inaccurate and diffusive when applied, espe-
cially, to wave propagation problems. The basic FVM is a
form of the lowest-order DG-FEM. So, it makes sense to
increase accuracy but keep the conservation part by devel-
oping DG-FEM further.

Considering Figure 2, it is clear that the global approx-
imation u(x) is not well-defined at the boundaries of each
element. As Figure 2 demonstrates, at each node x, two so-
lutions exist belonging to the respective adjacent elements
so that both, a left element Dk and a right element Dk+1

evaluate the approximation u(x). Since we do not enforce
continuity over the boundaries of the elements as in stan-
dard finite element methods, we are not guaranteed that
uil(x) = uir(x), and thus, it appears u(x) is not uniquely
defined. To establish a connection between elements, we
introduce a flux condition. For this study, a Lax-Friedrich
scheme, which blends between central and upwind flux,
is chosen. This defines the DG-FEM formulation. For a
detailed description of the numerical scheme and possible
stabilization techniques, the authors refer to the literature
[1, 10, 9, 39].

In this section, the finite element method utilized to
solve Galbrun’s equation is described. To do this, we first
construct the weak form of Galbrun’s equation with appro-
priate test functions that exist in a suitable mathematical
space. We define the inner product as

(u, v)ΩF
=
∫

ΩF

uv dΩF (14)

in the space of functions denoted by L2(ΩF ) where all
functions are square integrable over the domain ΩF . In the
weak formulation, this inner product is used to define a
local inner product and norm such that

(u, v)Dk
F
=
∫

Dk
F

uv dDk
F and ‖u‖2

Dk
F

= (u, u)Dk
F

(15)

with

ΩF ' Ωh =
K
⋃

k=1

Dk
F , (16)

where Ωh represents the approximated domain due to the
discretization procedure.

D

D

uu

nn

k

k+1

iril

k+1k

Γ

f(u )

il

f(u )

ir

x

Figure 2. A Lax–Friedrichs flux is defined across a shared ele-
ment boundary, shown as a red line Γ between the two elements
Dk and Dk+1. Displacement across this boundary can be discon-
tinuous, i.e. uil 6= uir .

This allows the local unknowns to be discontinuous
from one element Dk to the other.

fLF (uil, uir) =
f (uil) + f (uir)

2
+
α

2
n · (uil − uir) (17)

To account for inter element fluxes, the Lax-Friedrichs-
Flux, cf. Equation (17), is chosen, where the scaling fac-
tor α needs to be defined. For Galbrun’s equation, the flux
term scales with c2

0. Therefore, in accordance to Hesthaven
and Warburton [21], the flux constant α is set to α = 106,
see Section 3.4.

Figure 2 illustrates the definition of the Lax-Friedrichs-
flux between two elementsDk andDk+1, respectively. The
flux in element Dk across the boundary Γ is denoted by
f (uil) and vice versa from element Dk+1 across Γ with
f (uir) where at the boundary the unknowns can take the
value uil in element Dk and uir in element Dk+1. The cor-
responding outward normal vectors are nk and nk+1.

Applying all the forgoing principles, the weak form
of Galbrun’s equation for each element domain Ωe

h with
boundaries Γeh reads as

∫

Ωe
h

(

ρ0
D2wk

Dt2
− p0 ,lwk,l + p0 ,kwl,l (18)

−
(

c2
0ρ0wl,l

)

,k

)

w̄∗k dΩe
h = 0,

with the piecewise discontinuous complex conjugated test
functions w̄∗k . Expanding the material time derivative using
equation (7) and simplifying ∂(v0k)/∂t = 0, ρ0 ,l = 0 and
p0 ,l = 0 results in

∫

Ωe
h

(

− ω2wk − 2jωv0lwk,l + v0jv0l,jwk,l (19)

+v0jv0lwk,lj −
(

c2
0wl,l

)

,k

)

w̄∗k dΩe
h = 0.

After integrating by parts and utilizing Green’s identity,
the weak form can be rearranged as

∫

Ωe
h

− ω2wkw̄
∗
k + 2jω(v0lw̄

∗
k),lwk

− (v0jv0l,jw̄
∗
k),lwk − (v0jv0lw̄

∗
k),jwk,l

+ c2
0wl,lw̄

∗
k,k dΩe

h . . . (20)
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+
∫

Γeh

(

− (2jωv0l − v0jv0l,j)wkw̄∗k (21)

+ v0jv0lwk,jw̄
∗
k − c

2
0wk,kw̄

∗
l

)

nl dΓeh = 0.

In order to apply the discontinuous Galerkin method, the
boundary integral in equation (20) does not vanish and ac-
counts for inter-elemental fluxes. At this stage, any con-
straint condition such as the restriction to the rotational
field of w, e.g. ∇× w = 0, can be easily integrated using a
Lagrange multiplier λh in the form of

∫

Ωe
h

λeh(∇ × w)hw̄∗ dΩe
h = 0

or
∫

Ωe
h

λeh(ekmnwm,n)w̄∗k dΩe
h = 0,

where ekmn is known as the permutation tensor. For the
remainder of this paper the Lagrange multiplier is dis-
cretized using piecewise discontinuous linear basis func-
tions.

To demonstrate how the inter-elemental fluxes are set
up, as an example, the last part of the boundary integral
in equation (20) is reformulated according to the notation
highlighted in Figure 2.

∫

Γeh

c2
0wk,kw̄

∗
l nldΓ

e
h =

∫

Γeh

(

1
2
c2

0

(

(w1,1 + w2,2)il + (w1,1 + w2,2)ir
)

n1

+
α

2

(

w1il − w1ir
)

)

(

w̄∗1il − w̄
∗
1ir

)

(

1
2
c2

0

(

(w1,1 + w2,2)il + (w1,1 + w2,2)ir
)

n2

α

2

(

w2il − w2ir
)

)

(

w̄∗2il − w̄
∗
2ir

)

dΓeh.

(22)

Utilizing the well known approach of partial integration
and discretizing the unknowns as well as the test functions
according to Galerkin, a matrix formulation in the form of

(

− ω2 [M
]

+ jω
[

D
]

+
[

C
]

)

[

w
]

= 0 (23)

can be achieved.
[

M
]

represents the mass matrix and
[

D
]

,
[

C
]

the damping and stiffness matrices, respectively. The
system of equations is analyzed in terms of eigenvalues
and eigenvectors using a Krylov subspace method where
the size of the subspace is set to be twice as large as the
number of eigenvalues of interest, cf. [8, 14, 37].

For this purpose, the software tool Comsol Multiphysics
together with Matlab is used to set up the model as well as
the system of equations and finally solve for eigenvalues
and eigenvectors.

3. Finite element model

In this section, we present a parameter study to investi-
gate the performance of applying a discontinuous Galerkin

1

2

v

01

H

L

c

0

= 340

m

s

Ma =

v

01

c

0

Figure 3. Model geometry for verification example, a bounded
rectangular domain with hard-walls.

discretization method with different boundary conditions
and approaches for filtering Galbrun’s equation. The test
is conducted on an purely academic test case where
the results are compared to the conventional continuous
Galerkin discretization method applied to the mixed and
pure displacement based formulation of Galbruns’ equa-
tion as well as the linearized Navier-Stokes equation and
linearized Euler equation. Reference values are provided
by the solution of the convected Helmholtz equation.

The no-flow case for Galbrun’s equation was first stud-
ied in the 1970s [20] and was proved to exhibit spuri-
ous circulation or rotational modes. In the case spurious
modes were solutions of the source-free problem associ-
ated with non-zero real-valued frequencies. Determined
numerically, these modes could be shifted to higher fre-
quencies by refining the mesh or by enforcing the nu-
merical method to avoid these solutions [12]. It was not
until Wang and Bathe [42] showed a mixed pressure–
displacement formulation, using a certain type of finite el-
ement, could lead to numerical solutions without spurious
modes.

For the no-flow case, a pure displacement formulation
can make use of edge elements which are also known
as Raviart–Thomas elements [3]. It was shown in [36]
that they are of similar efficiency as Lagrangian elements
when used for the pure pressure formulation. However,
with mean-flow, a mixed formulation of Galbrun’s equa-
tion can develop numerical spurious modes due to the in-
herent mathematical nature of the problem [17].

3.1. Finite duct with uniform mean flow

Since this article focuses on the finite element method
used to compute a solution of the Galbrun equation, we
consider the artificial case set in a bounded domain, since
analytical results are available. Figure 3 illustrates a rect-
angular duct configuration in two dimensions with height
H = 0.5 m and length L = 3.4 m. The air filled duct is
bounded by acoustically hard walls, i.e. the surface normal
particle velocity is set to zero. In terms of particle displace-
ment within Galbrun’s equation, the following expression
is equivalent to the hard walled boundary condition:

wjnj = 0 on ΓF . (24)

For this test case, the Mach number is defined by the ratio
of the homogeneous constant mean flow velocity v01 and
the constant speed of sound c0 = 340 m/s. The flow veloc-
ity is varied so that the Mach number takes values from 0
to 0.3.
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Table I. Analysis configuration: unknowns are density ρ, flow
velocity v and displacement w. Order: 1 - linear and 2 - quadratic
elements. DOF: degrees of freedom per node.

Abbreviation Method Order DOF

LNSE ρ1v2 CG 1 & 2 3
LEE ρ1v2 CG 1 & 2 3
GAL w2p1 CG 1 & 2 3

GAL w1 CG CG 1 2
GAL w2 CG CG 2 2
GAL w1 DG DG 1 2
GAL w2 DG DG 2 2

Figure 4 illustrates the finite element mesh consisting of
930 triangular elements.

Table I lists all investigated model configurations for
the parameter analysis. As an example, the abbreviation
“LNSE ρ1v2” is understood as the linearized Navier–
Stokes equation where a conventional continuous Galerkin
discretization method is used and the basis functions are of
1st-order (or linear) for the density ρ and of 2nd-order (or
quadratic) for the velocity v. The temperature field within
the LNSE and the pressure field within the LEE are omit-
ted since all processes are considered adiabatic. Further,
no stabilization scheme is applied. The mixed formula-
tions are solved numerically using Taylor-Hood elements,
see [12], which are commonly adopted as basis functions
for mixed-formulations.

In order to compare the results of the eigenvalue extrac-
tion, analytical solutions of the convected Helmholtz equa-
tion are taken as references. For the duct case with plane
wave propagation, the eigenfrequencies of the acoustic
modes are calculated as follows (cf. Dietzsch et al. [12]).

fn =
c0n

2l

(

1 −Ma2) with n = 0, 1, 2 . . .N.(25)

Eigenvalue calculations are limited to the set up to the fre-
quency f ≤ 100 Hz. It can be seen that for the test case,
one expects three solutions at f0 = 0 Hz, f1 = 50 Hz and
f2 = 100 Hz for a vanishing mean flow velocity. Further,
the eigenfrequencies decrease with (1 −Ma2) for increas-
ing flow velocity.

3.2. Convergence study

For a convergence study the duct geometry from the pre-
vious numerical model, Section 3.1, was adopted to inves-
tigate the numerical scheme. On applying a discontinuous
Galerkin method to the displacement based form of Gal-
brun’s equation, Figure 5 illustrates two structured mesh
configurations, i.e. a first and a second level of mesh re-
finement. In total seven mesh refinements, from eight tri-
angular meshes, have been conducted.

The relative error for each mesh refinement can be
computed since the exact solution is easily derived. Rel-
ative errors, ε are measured in discrete L2 norms and
h := min(Hx, hy) > 0 is the size of a triangle element
length. To illustrate how the numerical schemes improve

Figure 4. Finite element mesh for domain, cf. Figure 3 with 930
triangular elements

Figure 5. Two sample mesh configurations, the first and second
examples taken from eight variations in the h–convergence study.
Top: 1st level of refinement, bottom: 2nd level of refinement.

with mesh-refinement, as h → 0, experimental conver-
gence rates are illustrated in Figure 6. It is clear that so-
lutions follow an asymptotic convergence rate which sug-
gests numerical stability. The outliers in Figure 6 for the
first mesh refinements are thought to be a result of a spatial
undersampling of the associated eigenvectors and can thus
be ignored. To the authors’ knowledge, it is not clear why
the convergence rate remains linear when using quadratic
elements. Nevertheless due to computational costs, the au-
thors use linear and quadratic elements hereafter since the
relative errors are sufficient.

3.3. Comparison of theoretical and numerical for-
mulations

First a comparison between different mixed-formulation
methods is presented, to give a reference and also to illus-
trate an improvement due to a suggested approach. In the
subsequent figures, the eigenfrequencies are plotted within
the complex plane where the real part <{f} is associated
with the corresponding physical eigenfrequency of the cor-
responding harmonic oscillation.

Figures 7 and 8 show the results for three mixed-
formulations, namely solving the test case with LNSE, cf.
Figure 7a, with LEE, cf. Figure 7b, and the mixed formu-
lation of Galbrun’s equation, cf. Figure 8. From Figure 7a
and 7b, it is not possible to clearly identify the acous-
tic eigenfrequencies at f1 = 50 Hz and f2 = 100 Hz at
Ma = 0 for both methods using LNSE and LEE. More-
over, the imaginary parts of the eigenvalues have small
values leading to a possible pollution of the results when
a subsequent modal superposition procedure is applied in
order to restore the system response in the frame of a har-
monic analysis. In contrast, the mixed formulation of Gal-
brun’s equation shows a more stable behavior since the
imaginary parts of all acoustically not relevant eigenvalues
(i.e. convective and spurious modes) increase their value
with increasing Mach number.
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Figure 6. Numerical h-convergence rates for linear, quadratic
and cubic elements for the displacement-based Galbrun duct
problem, cf. Section 3.1, of the first two modes f1 and f2
for different Mach numbers. The black doted line indicates
an O(h)-convergence, the black solid line indicates an O(h3)-
convergence. (a) Linear basis function, (b) Quadratic basis func-
tion, (c) Cubic basis function.

As mentioned before, the authors propose the use of
a discontinuous Galerkin discretization method to deter-
mine solutions to Galbrun’s equation in a displacement-
based formulation, rather than solving the mixed formula-
tion with the use of continuous Galerkin discretization.

For this purpose, the two different discretization
schemes are compared in Figure 9 and Figure 10 specifi-
cally to highlight the benefits of the DG method. In Fig-
ure 9a and 9b, the computed eigenvalues are plotted in
the complex plane when using a continuous discretiza-

={f}

<{f}

={f}

<{f}

(a)

(b)

Figure 7. Comparison of eigenfrequencies from LNSE and LEE
formulation solutions of the duct problem using continuous
Galerkin methods, cf. Section 3.1. (a) LNSE ρ1v2, (b) LEE
ρ1v2.

tion scheme while utilizing linear and quadratic basis func-
tions, respectively. It is observed that the eigenvalues are
widely spread across the complex plane and the acoustic
modes of interest at f1 = 50 Hz and f2 = 100 Hz are not
distinguishable from the others.

In contrast, cf. Figure 10a and 10b, the use of a dis-
continuous Galerkin discretization method enables a clear
separation of the relevant acoustic eigenfrequencies from
the others.

Comparing the solution of the acoustic eigenfrequen-
cies from the numerical examples of “GAL w1 DG” (lin-
ear elements) and “GAL w2 DG” (quadratic elements), cf.
Figure 10a and 10b, with the analytical values according
to equation (25), we find good agreement. These values
are listed in Table II where the relative error is calculated
in accordance to

ε =
|f − f̃ |
f

· 100%, (26)

where f denotes the analytic result and f̃ the numerical
approximation.
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={f}

<{f}

={f}

<{f}

(a)

(b)

Figure 8. Comparison of eigenfrequencies from LNSE and LEE
formulation solutions of the duct problem using continuous
Galerkin methods, cf. Section 3.1. (a) GAL w2p1, (b) GAL
w2p1 extended scale.

Table II. Comparison of acoustic eigenvalues to analytical results
at Ma = 0.3; Mesh used as shown in Figure 4.

Analytical GAL w1 DG GAL w2 DG

f1 45, 500 Hz
45, 522 Hz; 45, 496 Hz;
ε = 0.05% ε = 0.009%

f2 91, 000 Hz
91, 179 Hz; 90, 967 Hz;
ε = 0.12% ε = 0.036%

3.4. Flux constant

As mentioned in the previous section, an appropriate value
for α within the Lax-Friedichs-Flux needs to be chosen
in order to adjust for a correct flux representation across
each finite element. For this purpose, the influence of the
parameter α with respect to the results is investigated for
the filtered Galbrun equation, i.e. a Lagrange multiplier λh
is used to enforce ∇ × w = 0.

By varying the parameter α for a constant Mach number,
it is observed that for sufficiently accurate results, α should

={f}

<{f}

={f}

<{f}

(a)

(b)

Figure 9. Results of standard continuous discretization method
for solving the displacement based Galbrun equation. (a) GAL
w1 CG; linear elements, (b) GAL w2 CG; quadratic elements.

be larger than 106, cf. Figure 11 and Figure 12, indepen-
dent of flow velocity and order of basis function. The au-
thors identified that α scales with (c0 + v0)2. These results
are in close agreement to reported conclusions, see [13].

3.5. Vortical and spurious modes

The originality of Galbrun’s equation is that the mixed
pressure–displacement formulation given by Treyssède
[41] is not changed by the presence of flow and is gen-
erally identical to the no-flow case. Except the presence
of flow complicates the analysis to the existence of modal
solutions due to the convective terms present. Even for an
irrotational source term, the displacement field is not gen-
erally curl-free for shear-flow problems. Nevertheless, it
has not yet been proven whether Discontinuous Galerkin
methods satisfy the inf-sup condition. Vortical modes are
non-acoustic perturbations convected with the mean flow,
i.e. propagate with the flow. If the mean-flow is uniform,
acoustic and vortical modes are decoupled but when the
mean flow is rotational, the two types of modes couple.
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={f}

<{f}

={f}

<{f}

(a)

(b)

Figure 10. Results of discontinuous discretization methods for
solving the displacement based Galbrun equation; flux parameter
α = 106, cf. Equation (17). (a) GAL w1 DG; linear elements, (b)
GAL w2 DG; quadratic elments.

Hence it is possible to identify these modes from numeri-
cal artefacts, the spurious modes.

Further, especially for uniform mean-flow, it is clear that
while the location of acoustic eigenfrequencies decrease
with increasing Mach number, some other (non-acoustic)
eigenfrequencies show a clear proportional dependency on
the Mach number while others seem to be randomly dis-
tributed across the complex plane.

Now, Figure 13 displays a similar version of Figure 10b.
In Figure 13, the Mach number was sampled in 100 steps
between Ma = 0 and Ma = 0.3, where each color code
represents a different Mach number sample. This way, it
is possible to follow the development of the eigenvalues
with increasing Mach number. Figure 13 displays all the
results where associated eigenvectors (colored boxes rep-
resent rectangular domain of duct, while the arrows point
to the eigenvalue at the certain Mach number sample) for a
chosen Mach number dependent eigenvalue are displayed.
The plotted eigenvectors show the rotation of the displace-
ment field. It is clear that despite the increasing Mach

(a)

(b)

Figure 11. Dependency of results due to varying the flux parame-
ter α for the (∇×w)-filtered Galbrun equation, cf. equation (20),
for Ma = 0. (a) GAL w1 DG, (b) GAL w2 DG.

number, the eigenvector remains stable. The authors un-
derstand “stable” in the sense that the eigenvalue depends
on the Mach number and is following a certain character-
istic where the associated eigenvector remains unchanged
in its appearance. The mentioned characteristics are fre-
quency as well as mesh size dependent. Until today it re-
mains an open question how these characteristics can be
described and whether their nature is either physical or nu-
merical? Notably, slightly altering the finite element mesh
structure changes these Mach-number-dependent eigen-
vectors entirely.

To investigate this behavior further more, Figure 14
shows the eigenvectors of the two acoustic modes and two
other modes that follow a certain characteristic Θ3(f3) =
const. and Θ4(f4) = const., cf. Figure 14a. Since the
acoustic pressure is proportional to the divergence of the
displacement field, see equation (8), we present the diver-
gence (∇·w) and the rotation (∇×w) of the displacement
field in Figures 14b to 14i. It can be seen that for the acous-
tic modes, the rotation of the displacement field is two or-
ders of magnitude lower compared to the divergence of
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(a)

(b)

Figure 12. Dependency of results due to varying the flux parame-
ter α for the (∇×w)-filtered Galbrun equation, cf. equation (20),
for Ma = 0.3. (a) GAL w1 DG, (b) GAL w2 DG.

the displacement field. In contrast, for non-acoustic modes
the rotation is two orders of magnitude higher. This com-
parison is valid since the data to calculate the divergence
and the rotation of the displacement field is relative to the
mode.

3.6. Filtering Galbrun’s equation

Bearing in mind results from the previous section, a filter-
ing of Galbrun’s equation is conducted to exclude the vor-
ticity related eigenvalues from the solution space. Keeping
this in mind, the Lagrange multiplier λh formulation intro-
duced, introduced in an earlier section, to enforce the rota-
tion of the displacement field to be zero within the domain.
The results are shown in Figure 15 and Figure 16.

It can be seen that by filtering Galbrun’s equation, vor-
ticity related eigenvalues are suppressed leaving only for
acoustics relevant modes. Figures 15(b) and Figure 16(b)
display an extended area of the complex plane. For larger
imaginary values some eigenvalues persist. Since these
eigenvalues are unlikely to be related to vorticity modes

Figure 13. Numerical solutions of the displacement-based Gal-
brun equation by the Discontinuous Galerkin method, GAL w2
DG; The dots represent all computed eigenfrequencies in the
complex quarter plane for distinct uniform-flow eigenvalue prob-
lems, Ma = 0 : 0.05 : 0.3. Linear-interpolation in increasing
darker-shade color coding for dots is assumed: from Ma = 0 to
Ma = 0.3. The inserts illustrate eigenvectors of rotation-modes
for the displacement field at non-zero Mach numbers.

={f}

<{f}(a)

(h) f1: ∇ · w ∼ O(10−5) (i) f2: ∇ · w ∼ O(10−5)

(d) f1: ∇ × w ∼ O(10−7) (e) f2: ∇ × w ∼ O(10−7)

(f) f3: ∇ · w ∼ O(10−5) (i) f4: ∇ · w ∼ O(10−5)

(h) f3: ∇ × w ∼ O(10−3) (i) f4: ∇ × w ∼ O(10−3)

Figure 14. Eigenvectors corresponding to four eigenvalues for the
solution of the displacement-based Galbrun equation using con-
tinuous finite element basis functions, GAL w2 CG at Ma = 0.3

and in addition they are well separated from any acoustic
mode, the authors understand them as spurious modes.

4. Examples

In this section the capabilities of the numerical method to
solve more realistic problems are illustrated. The first ex-
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={f}

<{f}

={f}

<{f}

(a)

(b)

Figure 15. Eigenfrequencies corresponding to solutions of the
(∇×w)-filtered Galbrun equation using linear elements; α = 106,
cf. Equation (17). (a) GAL w1 DG, (b) GAL w1 DG; extended
scale.

ample represents a duct with uniform flow such as in Sec-
tion 3 is considered. An admittance boundary condition
is applied at the outlet of the duct. The remaining bound-
aries are considered as acoustically hard walls, i.e. the as-
sociated eigenvectors to the solution of Galbrun’s equation
have zero displacement on these boundaries.

The second example can be seen as a cross section of
a swirling flow represented by an annulus with a shear
flow in circumferential direction. A boundary admittance
is considered on the outer ring.

4.1. Finite duct with an absorbing end-condition

To extend our verification of the non-mixed Galbrun for-
mulation, we present solutions for an equivalent bound-
ary condition for Galbrun’s equation in comparison to
the Robin boundary condition when considering the
Helmholtz equation. Figure 18 displays the model un-
der consideration with the corresponding results. In this
step the Mach number is set to zero in order to compare
the results of the proposed method for solving Galbrun’s
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(a)
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Figure 16. Eigenfrequencies corresponding to solutions of the
(∇ × w)-filtered Galbrun equation using quadratic elements;
α = 106, cf. Equation (17). (a) GAL w1 DG, (b) GAL w1 DG;
extended scale.

equation with the standard Galerkin (CG) discretization of
the Helmholtz equation using quadratic elements for the
pressure unknowns. The mesh is chosen as illustrated in
Figure 4.

As can be seen, the results are in very good agree-
ment. Since the duct configuration is such that only plane
wave propagation is possible below a cut on frequency of
f = 340 Hz, there is no propagating mode below this fre-
quency, which correlates with the results pictured above.
For the acoustic eigenvalues inside a duct below the cut-
on frequency, Marburg [28] presented comparable results.
In addition considering the dispersion relation, the same
results, i.e. f = 340 Hz can be found.

When the flow velocity is increased, the eigenvalues
spread into the complex plane, see Figure 19(a). Again,
only for acoustics relevant eigenvalues decrease with in-
creasing Mach number. Figures 19(b) to 19(e) show the
eigenvectors of the first propagating mode that depend on
the Mach number. It can be seen that with increasing Mach
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(a)

(b)

Figure 17. Annulus geometry with corresponding finite element
mesh. (a) Geometry and flow direction, (b) Finite element mesh.

number the convectional effect on the mode shape is in-
creasing, too.

4.2. An annulus supporting a rotating shear flow

To investigate the capabilities of the proposed method on
a more realistic problem, an annulus with circulating flow
is analyzed.

Figure 17 shows the configuration of the test case
model. An annulus with an inner radius r1 = 0.75 m and
an outer radius of r2 = 1 m is chosen, which is equivalent
to the model investigated in Dietzsch et al. [12].

The mean flow velocity is defined as

v0k =
[

v01

v02

]

=
[

0
−Mac0

1
r2−r1

(2r − (r1 + r2))

]

(27)

where r denotes the radial or “1”-direction. For simplic-
ity the mean flow mass density is ρ0 = 1 kg/m3 and the
mean pressure is set to p0 = 0. For the case of Ma = 0.3
the mean flow would circulate clockwise at r = r2 and
counterclockwise at r = r1 the tangential component of
the mean flow velocity at r = r2 would be |v02| = 102 m/s.

The radial component remains zero at all the time. Again,
the eigenvalues at four different flow velocities are inves-
tigated.

As a first case the boundary condition on the outer sur-
face takes Ȳ = 0 which corresponds to an acoustically
hard wall or wknk = 0, respectively. In this case, the acous-
tically relevant modes can be identified with respect to
their vanishing imaginary part.

Figure 20 displays the results of the eigenvalues for the
annulus configuration with acoustically hard walls. It is
noticeable that all acoustic eigenvalues have a negligible
imaginary part and can easily be separated. In addition,
for Ma = 0, the eigenvalue at <(f ) = 124.098 is a dou-
ble mode due to the double symmetry of the geometry. As
the mean flow velocity increases, the modes separate into
a forward and a backward traveling wave where one eigen-
value increases and the other one decreases. The same be-
havior can be found when investigating tyre cavities under
rotation, see Lopez et al. [26].

In a second example, Ȳ = 1 and the (∇ × w)- fil-
tered Galbrun equation is used. Figure 21 shows the re-
sults for eigenvalue computation. It can be seen that when
increasing Ȳ , the eigenvalue distribution is shifted to lower
imaginary values and is not symmetric with respect to the
real axis. Further depending on the Mach number, char-
acteristic lines are identifiable where eigenvalues group
along. Investigating this further more, the authors iden-
tify acoustically relevant eigenvalues between these char-
acteristic lines for a given Mach number. Additionally,
for the acoustically relevant eigenvalues, a behavior where
(∇ · w) � (∇ × w) was noticed. For all other eigenval-
ues the divergence of the displacement field is in the same
order of magnitude as the curl of the displacement field,
i.e. (∇ · w) ≈ (∇ × w). This behavior can be used to sepa-
rate acoustically relevant eigenvalues from others. At this
point it must be noted that with a pure displacement based
formulation of Galbrun’s equation such a determination is
easily possible. So any scaling of the eigenvectors would
result in a scaling of the divergence and the curl of the
displacement field.

5. Conclusions

When solving Galbrun’s equation in its pure displacement
based formulation, the authors propose the use of a discon-
tinuous Galerkin method for discretizing Galbrun’s equa-
tion. Due to discontinuity between neighboring elements
it is shown that a Lax-Friedrichs condition with a flux fac-
tor α ≥ 106 gives sufficiently accurate results. In order to
exclude vorticity modes from the modal space, a (∇× w)-
filtering with the aid of a Lagrange multiplier is success-
fully applied and illustrating by various examples. Since
the pressure distribution is related to the divergence of the
displacement field, the presented studies show the sepa-
ration between acoustic modes from vorticity modes or
numerical spurious modes. It is shown that the vorticity
modes follow a certain characteristic which are frequency
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Figure 18. Comparison of numerical solutions for the the scalar Helmholtz equation against displacement based Galbrun equation with
Ȳ = 1 at the outlet and Ma = 0.

Figure 19. Eigenfrequencies located in the complex plane with corresponding eigenvectors of the first propagating mode for four Mach
flow speeds; numerical solution Galbrun w2 DG.
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={f}

<{f}

Figure 20. Eigenfrequencies related to the rigid-walled annulus problem with four Mach flow speeds.

={f}

<{f}

Figure 21. Eigenfrequencies related to the absorbing-lined annulus problem for four Mach flow speeds. Acoustic relevant frequencies
are highlighted in the red zone.

and mesh size dependent. To account for admittance con-
ditions on domain boundaries, an adequate boundary for-
mulation is presented.

Future research will be dedicated towards formulating
appropriate boundary conditions for solving general exte-
rior problems and duct problems by robust reformulations
provided by Bonnet-Benn Dhia et al. [5], for example,
using discontinuous Galerkin numerical solutions.
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