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Types of tobacco consumption and 
the oral microbiome in the United 
Arab Emirates Healthy Future 
(UAEHFS) Pilot Study
Yvonne Vallès1, Claire K. Inman1, Brandilyn A. Peters   2, Raghib Ali1, Laila Abdel Wareth3, 
Abdishakur Abdulle1, Habiba Alsafar4,5, Fatme Al Anouti6, Ayesha Al Dhaheri7, Divya Galani1, 
Muna Haji1, Aisha Al Hamiz1, Ayesha Al Hosani1, Mohammed Al Houqani8, Abdulla Al Junaibi9, 
Marina Kazim10, Tomas Kirchhoff2, Wael Al Mahmeed11, Fatma Al Maskari12, Abdullah Alnaeemi13, 
Naima Oumeziane14, Ravichandran Ramasamy15, Ann Marie Schmidt15, Michael Weitzman   1,16,17, 
Eiman Al Zaabi10, Scott Sherman1,2, Richard B. Hayes   2,18 & Jiyoung Ahn2,18

Cigarette smoking alters the oral microbiome; however, the effect of alternative tobacco products 
remains unclear. Middle Eastern tobacco products like dokha and shisha, are becoming globally 
widespread. We tested for the first time in a Middle Eastern population the hypothesis that different 
tobacco products impact the oral microbiome. The oral microbiome of 330 subjects from the United 
Arab Emirates Healthy Future Study was assessed by amplifying the bacterial 16S rRNA gene from 
mouthwash samples. Tobacco consumption was assessed using a structured questionnaire and further 
validated by urine cotinine levels. Oral microbiome overall structure and specific taxon abundances 
were compared, using PERMANOVA and DESeq analyses respectively. Our results show that overall 
microbial composition differs between smokers and nonsmokers (p = 0.0001). Use of cigarettes 
(p = 0.001) and dokha (p = 0.042) were associated with overall microbiome structure, while shisha use 
was not (p = 0.62). The abundance of multiple genera were significantly altered (enriched/depleted) 
in cigarette smokers; however, only Actinobacillus, Porphyromonas, Lautropia and Bifidobacterium 
abundances were significantly changed in dokha users whereas no genera were significantly altered 
in shisha smokers. For the first time, we show that smoking dokha is associated to oral microbiome 
dysbiosis, suggesting that it could have similar effects as smoking cigarettes on oral health.

The human oral microbiome (OM) is the second most diverse and densely populated microbiome of the human 
body1. It plays key roles in human digestion, protection against pathogen colonization and nitrate reduction2 
and may have a role in human health including cardiovascular disease and cancer3,4. We recently reported that 
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cigarette smoking5 and alcohol6 are important determinants of the oral microbiome. In particular, cigarette smok-
ing is a cause of oral dysbiosis, affecting microbial diversity and its functional potential5,7.

Despite a global decline in tobacco consumption, tobacco use is still rising in African and Eastern 
Mediterranean countries, which is a significant public health concern8. Although cigarettes account for much 
of this increase, part of the increase is related to the popularization of alternative tobacco products common in 
Middle Eastern countries, such as dokha9 and shisha10. Dokha is a blend of tobacco leaves, barks, herbs, dried 
fruits and/or flowers and spices, which is smoked using a specialized pipe (midwakh) and is known to contain a 
much higher nicotine content than cigarettes11. Shisha is a fruit flavored tobacco comprised of shredded tobacco 
leaves, glycerol and other additives, which is smoked using a waterpipe12. Alternative tobacco products such as 
dokha and shisha, are, like cigarettes, a source of nicotine and other toxic products; however, the effect of these 
different types of tobacco on the oral microbiome remains unclear.

We tested for the first time the hypothesis that the oral microbiome is differentially impacted by specific 
tobacco products commonly used in Middle Eastern countries. We compared the effects of cigarette, dokha and 
shisha use on community composition of the oral microbiome by high-throughput sequencing of the bacterial 
16S Ribosomal RNA (16S rRNA) gene in 330 participants from the “UAE Healthy Future” (UAEHF) pilot study13.

Results
We studied 330 subjects, including 105 (31.8%) smokers and 225 nonsmokers (68.2%) (Fig 1, Table 1). Smokers 
were more likely to be men (96.2%), but other health related factors such as age, BMI and diabetic status (ascer-
tained by HbA1c levels in blood), were not different between smokers and nonsmokers (p = 0.81, p = 0.11 and 
p = 0.13, respectively) with the exception of systolic blood pressure (p = 0.05). Among the 105 smokers, 39% 
smoked more than one tobacco product, with cigarettes most commonly used (67.6%), followed by dokha (42%) 
and shisha (34.3%). Participants that exclusively used cigarettes smoked an average of 9.2 cigarettes per day and 
exclusive dokha users smoked an average of 10.7 midwakh pipes per day. On the other hand, only 50% of the 
participants that used shisha exclusively smoked it on a daily basis, while 13.3% smoked it on a weekly (2–3 times 
per week) and 36.6% smoked it on a monthly basis.

After data filtering, there were 16,132,922 high quality 16S rRNA sequence reads ready for analysis for these 
study subjects (mean per subject: 48887.42; SD: 13,408.67). After low count filtering, the final data set was com-
prised of 13 phyla, 20 classes, 26 orders, 41 families, 57 genera, 26 species and 1,080 OTUs. We observed that 
amongst the 13 phyla, Firmicutes (50.0%), Bacteroidetes (21.7%), Proteobacteria (15.8%), Actinobacteria (6.7%) 
and Fusobacteria (4.7%) were the most abundant (Supplementary Table S1) and were present in all samples. Phyla 
such as Tenericutes, SR1 and Synergistetes, although in very low relative abundance, were present in more than 
85% of the samples.

Overall oral microbiome community.  We found that microbial diversity (Shannon entropy) was margin-
ally greater in all smokers compared with nonsmokers (p = 0.04, Fig. 2A); however, this was not observed when 
comparing single tobacco type users to nonsmokers (Fig. 2B). Based on Unifrac distance matrices, controlling 
for age, sex and batch effects, we found that the oral microbiome overall structure significantly differed between 
smokers and nonsmokers (p = 0.001, Fig. 3A). This finding was confirmed in the comparison of cotinine pos-
itive and cotinine negative participants (p = 0.001, Supplementary Figure S1), which was independent of their 
self-reported status. When considering single tobacco products independently, the oral microbiome structure 

Figure 1.  Flow chart depicting the classification of participants from the UAEHF pilot study. UAEHF pilot 
study participants were Emirati nationals aged 18 and above. Study participants completed a self-administered 
questionnaire including information on smoking habits. During the physical exam, participants provided 
blood, urine and mouthwash samples. From 517 consented study participants, 363 subjects completed the 
smoking section of the baseline questioners and provided mouthwash samples. A Cotinine test in urine was 
used to ascertain smoke exposure. These results were further used to validate the non-smoking self-reported 
data. We further excluded 33 subjects (11 had no cotinine data and 22 had self-reported as non-smokers but 
tested positive for cotinine). All individuals participating in the study read and signed an informed consent.
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of exclusively cigarette smokers (p = 0.001, Fig. 3B) and exclusively dokha users (p = 0.042, Fig. 3C) were signif-
icantly different from that of nonsmokers. However, exclusive shisha smokers’ oral microbiome was not signifi-
cantly different from that of nonsmokers (p = 0.62, Fig. 3D). In addition, no significant differences were observed 
when comparing the overall oral microbiome structure amongst those who exclusively used one type of tobacco 
(cigarette, dokha and shisha smokers, p = 0.2; Supplementary Figure S2).

Bacterial taxa abundance according to tobacco consumption and type.  To determine the associa-
tion of different tobacco products with oral bacterial taxa, we performed further detailed analyses.

Exclusively cigarette smokers (CS) vs. nonsmokers.  Contrasts between CS (n = 33) and nonsmokers (n = 225) 
(Table 2, Supplementary Table S2, Fig. 4) showed that CS were depleted of the phylum Proteobacteria and in 
particular of its genera Neisseria, Eikenella, Aggregatibacter, Actinobacillus, Haemophilus and Lautropia, and 
the phylum Fusobacteria, represented at the genus level by Fusobacterium and Leptotrichia. Also, significantly 
depleted and not previously reported were the less abundant phyla SR1, GN02 and Cyanobacteria. In contrast, CS 
presented higher abundances at the phylum level of Spirochaetes, Synergistetes and Tenericutes being represented 
at the genus level by Treponema, TG5 and Mycoplasma, respectively. Furthermore, Firmicutes, Bacteroidetes and 
Actinobacteria were enriched at all lower taxonomical levels in CS, being characterized at the genus level among 
others by Megasphaera and Dialister (Firmicutes), Paludibacter, Porphyromonas and Prevotella (Bacteroidetes), 
and Atopobium (Actinobacteria).

Exclusively dokha smokers (DS) vs. nonsmokers.  Consistent with the patterns observed in CS, taxa dynamics in 
DS (n = 16) differed significantly from nonsmokers with the depletion of the phylum Cyanobacteria observed in 
CS, and in the genera Actinobacillus, Lautropia (Proteobacteria), and Porphyromonas (Bacteroidetes), which were 
also depleted in CS (Table 2, Supplementary Table S2, Fig. 4). In contrast, DS were exclusively enriched in the 
genus Bifidobacterium (Actinobacteria).

Total 
(n = 330)

Smokers 
(n = 105)

Nonsmokers 
(n = 225)

Cigarette 
(n = 33)

Dokha 
(n = 16)

Shisha 
(n = 15)

Cigarette 
& Dokha 
(n = 20)

Cigarette 
& Shisha 
(n = 13)

Dokha & 
Shisha (n = 3)

Cigarette, 
Dokha & 
Shisha (n = 5)

Age, mean (SD) 32.8 (10.3) 32.4 (9.6) 33.1 (10.8) 36.4 (11.4) 30.8 (7.5) 35.7 (10.6) 26.6 (5.3) 30.2 (7.1) 30 (7.8) 29.6 (8.2)

Sex, n (%)

  Female 104 (31.5) 4 (3.8) 100 (44.4) 2 (6.1) 0 (0) 1(6.7) 1 (5) 0 (0) 0 (0) 0 (0)

  Male 226 (68.5) 101 (96.2) 125 (55.6) 31 (93.9) 16 (100) 14 (93.3) 19 (95) 13 (100) 3 (100) 5 (100)

BMI, mean (SD) 28.3 (6.5) 29.5 (6.9) 28.2 (6.2) 29.2 (6.8) 29.7 (6.6) 29.9 (5.5) 28 (6.8) 32 (9.1) 29.1 (12.4) 30.6 (3.7)

HbA1c, mean (SD) 5.6 (1.1) 5.7 (1.0) 5.6 (1.1) 5.9 (0.1) 5.9 (1.2) 5.7 (0.6) 5.7 (1.3) 5.4 (0.4) 5.4 (0.2) 5.5 (0.3)

Systolic BP mean (SD) 115.9 (16.4) 118.3 (15.9) 114.8 (16.1) 119.0 (15.5) 122.94 (15.6) 118.8 (12.4) 113.3 (19.9) 122.8 (16.0) 102.5 (9.2) 112.6 (3.4)

Table 1.  Characterization of smoking habits in the Emirati cohort.

Figure 2.  Characterization of the α-diversity of the Emirati oral microbiome. Diversity comparisons between 
(A) smokers (n = 105) and nonsmokers (n = 225) and (B) between tobacco types, cigarettes (n = 33), dokha 
(n = 16) and shisha (n = 15) versus nonsmokers (n = 225). Diversity was significantly greater in smokers than 
nonsmokers, but not when comparing single tobacco type use to nonsmokers. Only significant p values from 
linear regression are shown.
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Exclusively shisha smokers (SS) vs. nonsmokers.  Consistent with overall microbial composition comparisons, 
only four taxa were identified as having a significantly different relative abundance between SS (n = 15) and non-
smokers (Table 2, Supplementary Table S2, Fig. 4). The phyla Cyanobacteria and SR1 and the classes Chloroplast 
(Cyanobacteria) and BD1-5 (GN02) were all significantly depleted in SS when compared to nonsmokers.

Multiple tobacco type smokers (MS) vs. nonsmokers.  We also performed the contrast between MS (n = 41) 
against nonsmokers (Table 2, Supplementary Table S2, Fig. 4). Depletion and enrichment patterns of taxa relative 
abundances were for the most part mirroring those observed in the contrast between CS and nonsmokers with 
some exceptions, in particular, the significant enrichment in MS of the genera Campylobacter and Enhydrobacter 
(Proteobacteria), and the depletion of the genus Vagococcus (Firmicutes); the two latter genera were not observed 
in other contrasts.

Contrasts between tobacco types.  Comparisons between CS and DS revealed no significant differences at any tax-
onomical level in the taxa relative abundances of their oral microbiome (Supplementary Table S3). Comparisons 
between CS and SS however showed similar results to those observed in the contrast between CS and nonsmok-
ers, with patterns for SS similar to that of nonsmokers. Only the depletion of the genus Actinobacillus was consist-
ently observed in cigarette vs. shisha users and dokha vs. shisha smokers.

Discussion
This study encompasses the first characterization of the oral microbiome of the Emirati population and describes, 
for the first time, the specific effects on oral bacterial community structure of two regional products, dokha 
and shisha, with the latter experiencing increased worldwide usage in recent years14. We found that the Emirati 
population exhibited a diverse oral microbiome and that overall microbial diversity and composition were asso-
ciated with use of tobacco products (Fig. 4). In particular, smoking in general, exclusive use of cigarettes and 
exclusive use of dokha were associated with significant alterations of oral microbiome structure and relative taxa 

Figure 3.  Principal Coordinate Analysis (PCoA) of the bacterial communities according to smoking use and 
tobacco types derived from Unifrac weighted distances. Significant differences between (A) smokers (n = 105) 
and nonsmokers (n = 225) were observed (p = 0.001), (B) cigarette (n = 33, p = 0.001) and (C) dokha smokers 
(n = 16, p = 0.042). However, no significant differences were identified between (D) shisha smokers (n = 15, 
p = 0.620) and nonsmokers. All nonsmoker participants were colored orange and all smokers independently of 
tobacco use or type in blue.
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Taxaa

Non 
Smokers Cigarettes Dokha Shisha Multiple

Meanb Meanb Log2FC(95CI %) qc Meanb Log2FC(95CI %) qc Meanb
Log2FC(95CI 
%) qc Meanb

Log2FC(95CI 
%) qc

Phylum

Cyanobacteria 5.76 0.83 −1.38 (−2.36, 
−0.39) 1.00E-02 0.00 −1.40 (−2.32, 

−0.48) 4.00E-02 1.31 −1.16 (−2.08, 
−0.25) 8.00E-02 0.90 −1.30 (−2.29, 

−0.31) 3.00E-02

Fusobacteria 1733.44 1254.80 −0.48 (−0.73, 
−0.23) 0.00E + 00 1788.84 0.08 (−0.26, 0.41) 8.50E-01 1770.45 0.02 (−0.32, 

0.36) 1.00E + 00 1739.36 0.06 (−0.17, 
0.30) 6.40E-01

GN02 3.27 0.52 −2.03 (−2.83, 
−1.22) 0.00E + 00 1.75 −0.86 (−1.74, 

0.02) 2.50E-01 2.23 −0.83 (−1.72, 
0.05) 2.80E-01 3.17 −0.35 (−1.10, 

0.40) 5.90E-01

Proteobacteria 7106.72 3563.83 −1.08 (−1.44, 
−0.72) 0.00E + 00 6666.25 −0.20 (−0.67, 

0.27) 7.60E-01 6525.77 −0.26 (−0.74, 
0.22) 9.10E-01 4984.18 −0.56 (−0.90, 

−0.22) 1.00E-02

Spirochaetes 157.39 337.85 1.07 (0.52, 1.61) 0.00E + 00 236.53 0.68 (0.00, 1.36) 2.50E-01 122.97 −0.11 (−0.79, 
0.58) 1.00E + 00 273.62 0.92 (0.40, 1.43) 1.00E-02

SR1 81.79 26.15 −1.31 (−2.01, 
−0.60) 0.00E + 00 84.05 −0.28 (−1.10, 

0.54) 8.20E-01 28.36 −1.10 (−1.92, 
−0.27) 8.00E-02 73.22 −0.40 (−1.07, 

0.27) 4.60E-01

Synergistetes 18.53 81.96 1.72 (1.09, 2.35) 0.00E + 00 23.42 0.66 (−0.11, 1.43) 3.00E-01 20.68 0.31 (−0.46, 
1.09) 9.30E-01 36.90 1.03 (0.43, 1.64) 1.00E-02

Tenericutes 23.83 43.11 0.68 (0.06, 1.31) 5.00E-02 29.92 0.43 (−0.32, 1.19) 5.60E-01 16.83 −0.35 (−1.11, 
0.42) 9.30E-01 30.30 0.47 (−0.12, 

1.06) 3.10E-01

Phylum; Class; Order; Family; Genus

Actinobacteria; 
Actinobacteria;Bifidobacteriales; 
Bifidobacteriaceae;Bifidobacterium

6.51 13.16 0.84 (0.03, 1.65) 1.00E-01 57.14 1.88 (1.01, 2.74) 1.17E-03 8.09 0.49 (−0.37, 
1.36) 8.95E-01 8.81 0.49 (−0.29, 

1.27) 4.45E-01

Actinobacteria; 
Coriobacteriia;Coriobacteriales; 
Coriobacteriaceae;Atopobium

142.80 221.05 0.59 (0.14, 1.05) 4.00E-02 181.90 0.31 (−0.27, 0.89) 6.74E-01 144.84 0.05 (−0.54, 
0.64) 9.70E-01 117.81 −0.26 (−0.69, 

0.17) 4.48E-01

Bacteroidetes; Bacteroidia;Bacteroidales; 
[Paraprevotellaceae];[Prevotella] 732.67 986.83 0.58 (0.18, 0.97) 2.00E-02 715.75 0.06 (−0.45, 0.58) 8.96E-01 856.09 0.41 (−0.11, 

0.94) 8.95E-01 717.10 −0.01 (−0.38, 
0.37) 9.64E-01

Bacteroidetes; Bacteroidia;Bacteroidales; 
Porphyromonadaceae;Paludibacter 23.68 38.59 0.68 (0.12, 1.24) 5.00E-02 22.67 0.19 (−0.50, 0.88) 7.83E-01 13.34 −0.37 (−1.07, 

0.33) 8.95E-01 30.94 0.64 (0.11, 1.17) 8.04E-02

Bacteroidetes; Bacteroidia; 
Bacteroidales;Porphyromonadaceae; 
Porphyromonas

913.25 618.01 −0.67 (−1.07, 
−0.26) 1.00E-02 552.77 −0.93 (−1.45, 

−0.40) 1.44E-02 701.09 −0.53 (−1.06, 
0.00) 7.36E-01 841.62 −0.39 (−0.77, 

−0.01) 1.58E-01

Bacteroidetes; Flavobacteriia; 
Flavobacteriales;Flavobacteriaceae; 
Capnocytophaga

157.25 75.70 −0.95 (−1.35, 
−0.54) 0.00E + 00 141.59 −0.11 (−0.63, 

0.41) 8.29E-01 171.86 0.15 (−0.38, 
0.68) 9.70E-01 130.23 −0.21 (−0.59, 

0.17) 4.91E-01

Firmicutes; Bacilli; 
Gemellales;Gemellaceae;Gemella 23.11 16.75 −0.57 (−1.03, 

−0.12) 4.00E-02 18.68 −0.42 (−1.00, 
0.15) 4.79E-01 29.34 0.19 (−0.39, 

0.77) 9.70E-01 14.68 −0.73 (−1.16, 
−0.31) 1.68E-02

Firmicutes;Bacilli; 
Lactobacillales;Enterococcaceae; 
Vagococcus

1.25 0.91 −0.36 (−0.98, 
0.25) 3.70E-01 1.27 −0.19 (−0.92, 

0.54) 7.83E-01 1.25 −0.09 (−0.82, 
0.65) 9.70E-01 0.71 −0.73 (−1.31, 

−0.15) 7.20E-02

Firmicutes; Clostridia; 
Clostridiales;Peptostreptococcaceae; 
Peptostreptococcus

95.48 54.49 −0.77 (−1.29, 
−0.24) 2.00E-02 53.88 −0.79 (−1.44, 

−0.14) 2.04E-01 95.87 −0.14 (−0.80, 
0.52) 9.70E-01 74.96 −0.44 (−0.94, 

0.05) 2.29E-01

Firmicutes; Clostridia; 
Clostridiales;Veillonellaceae; Dialister 54.07 63.92 0.45 (0.05, 0.84) 8.00E-02 47.16 0.10 (−0.42, 0.61) 8.29E-01 53.78 0.17 (−0.35, 

0.69) 9.70E-01 46.95 0.08 (−0.30, 
0.45) 8.29E-01

Firmicutes; Clostridia; 
Clostridiales;Veillonellaceae;  
Megasphaera

156.45 266.63 0.70 (0.19, 1.20) 3.00E-02 228.18 0.49 (−0.14, 1.12) 4.79E-01 160.45 0.05 (−0.59, 
0.69) 9.70E-01 150.16 −0.05 (−0.53, 

0.42) 8.60E-01

Fusobacteria; Fusobacteriia; 
Fusobacteriales; 
Fusobacteriaceae;Fusobacterium

989.40 743.50 −0.43 (−0.70, 
−0.16) 1.00E-02 747.78 −0.37 (−0.73, 

−0.01) 3.52E-01 822.11 −0.27 (−0.63, 
0.10) 8.95E-01 890.29 −0.13 (−0.38, 

0.12) 5.07E-01

Fusobacteria; Fusobacteriia; 
Fusobacteriales; Leptotrichiaceae; 
Leptotrichia

629.22 505.20 −0.35 (−0.66, 
−0.03) 9.00E-02 586.31 0.00 (−0.42, 0.42) 9.89E-01 777.87 0.29 (−0.14, 

0.71) 8.95E-01 596.20 0.04 (−0.26, 
0.33) 8.60E-01

Proteobacteria; 
Betaproteobacteria;Burkholderiales; 
Burkholderiaceae; Lautropia

232.27 68.79 −1.45 (−2.09, 
−0.81) 0.00E + 00 80.40 −1.12 (−1.88, 

−0.37) 5.08E-02 130.76 −0.69 (−1.45, 
0.07) 7.36E-01 161.85 −0.44 (−1.05, 

0.17) 3.58E-01

Proteobacteria; 
Betaproteobacteria;Neisseriales; 
Neisseriaceae; Eikenella

27.43 11.01 −1.16 (−1.67, 
−0.66) 0.00E + 00 26.74 −0.07 (−0.70, 

0.55) 8.96E-01 54.70 0.78 (0.14, 1.41) 7.36E-01 15.48 −0.75 (−1.22, 
−0.27) 1.80E-02

Proteobacteria; 
Betaproteobacteria;Neisseriales; 
Neisseriaceae; Neisseria

2527.32 896.43 −1.51 (−2.03, 
−0.99) 0.00E + 00 2053.66 −0.49 (−1.14, 

0.15) 4.79E-01 2184.49 −0.43 (−1.09, 
0.22) 8.95E-01 1326.65 −1.02 (−1.51, 

−0.53) 2.59E-03

Proteobacteria; 
Epsilonproteobacteria;Campylobacterales; 
Campylobacteraceae; Campylobacter

142.45 158.50 0.27 (0.02, 0.52) 9.00E-02 143.80 0.24 (−0.09, 0.57) 4.79E-01 141.67 0.11 (−0.23, 
0.45) 9.70E-01 156.84 0.36 (0.13, 0.59) 1.80E-02

Proteobacteria; 
Gammaproteobacteria;Cardiobacteriales; 
Cardiobacteriaceae; Cardiobacterium

23.01 9.58 −1.00 (−1.53, 
−0.46) 0.00E + 00 14.45 −0.46 (−1.12, 

0.20) 4.79E-01 30.17 0.21 (−0.46, 
0.87) 9.70E-01 11.18 −0.62 (−1.12, 

−0.12) 7.52E-02

Proteobacteria; 
Gammaproteobacteria;Pasteurellales; 
Pasteurellaceae; Actinobacillus

31.13 17.96 −0.79 (−1.41, 
−0.17) 4.00E-02 11.02 −1.14 (−1.88, 

−0.40) 4.83E-02 88.26 0.84 (0.09, 1.58) 7.36E-01 16.37 −0.90 (−1.49, 
−0.31) 1.98E-02

Continued
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abundances. Exclusive use of shisha was not associated with alterations in overall microbiome structure; however, 
depletion was noted in phyla Cyanobacteria and SR1, and classes Chloroplast and BD1-5.

The oral microbiome of the Emirati population presented a composition similar to that of other populations 
in the United States5,15, Japan and Korea16,17, China18, and among Amazonian Amerindians19,20, characterized by 
community dominance of phyla Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria and Fusobacteria and 
genera Streptococcus, Prevotella, Haemophilus, Veillonella and Neisseria. It would appear that the oral microbiome 
tends to have a generally similar community structure globally, despite there being wide differences in lifestyle 
and oral hygiene practices between populations. Of course, at a further detailed level of analysis between popula-
tions, there may be traits that tend to be more population-specific. For example, SR1 was reported as part of the 
core microbiome only in a Saudi Arabian population21. In the Emirati population SR1 was observed in 87% of the 
samples. This high carriage could be a characteristic of Middle Eastern populations, requiring further exploration. 
Further detailed analyses involving for example transcriptomics, metabolomics or proteomics could potentially 
reveal further population-specific biomarkers.

We found that tobacco use in general, was marginally associated (p = 0.04), with greater diversity of the oral 
microbiome. Similar associations have been reported in other studies16,22,23. However, this is not consistently 
observed with some reporting no change in diversity24–26. Exposure to tobacco smoke results in functional and 
structural changes in saliva and the oral environment27–29, which may impact on reduced immune fitness and 
decreased ability of the autochthonous bacteria to compete with transient taxa for nutrients; this may result in the 
increased diversity of the OM7,30 observed in smokers. Perhaps of clinical importance, periodontal disease and 
gingivitis, which are known to be associated with tobacco use, are also characterized by a higher diversity of the 
OM7,22,31–33, potentially indicating an early pathway to oral disease in smokers.

Consistent with previous studies, we found that smokers were significantly depleted of Proteobacteria such 
as Neisseria, Haemophilus and Lautropia)5,23,30, and enriched of Bifidobacterium5 and TG534. In addition, we 
reported for the first time the depletion in all smokers of the less abundant phylum SR1 (Supplementary Table S4). 
Members of the SR1 phylum are predominantly uncultivated, non-respiring oral bacteria that possess an altered 
genetic code, where the usual UGA stop codon is reassigned to a glycine)35–37. This change in the genetic code of 
SR1 may limit synergistic relationships within the oral bacterial community36, which is potentially related to the 
depleted relative abundances we observed.

Exclusive cigarette use was also associated with differentials in specific oral taxa, including a wider range of 
taxa than that found for all smokers combined. CS were depleted when compared to nonsmokers in the gen-
era Aggregatibacter (Proteobacteria), Capnocytophaga and Porphyromonas (Bacteroidetes) and in particular of 
the phylum Fusobacteria represented by significantly depleted Fusobacterium and Leptotrichia. We previously 
reported5 similar differentials and related the bacterial genes involved to xenobiotic metabolism of toluene, 
in agreement with Peralbo-Molina, et al.38 who observed that exhaled breath condensate of cigarette smokers 
contained lower levels of p-cresol, a toluene metabolite. We also found that CS were significantly enriched in 
Atopobium and Bifidobacterium (Actinobacteria), TG5 (Synergistetes), Treponema (Synergistetes), Campylobacter 
and Eikenella (Proteobacteria) and Megasphaera (Firmicutes) consistent overall with previous results5,30,34,39,40.

We report for the first time on the impact of dokha and shisha on the oral microbiome. Dokha was asso-
ciated with similar patterns of OM dysbiosis as found for cigarette use, although significant associations were 
found for fewer taxa, among which, the depletion of the phylum Cyanobacteria, the genera Actinobacillus, 
Lautropia (Proteobacteria) and Porphyromonas (Bacteroidetes) and the enrichment of the genus Bifidobacterium 

Taxaa

Non 
Smokers Cigarettes Dokha Shisha Multiple

Meanb Meanb Log2FC(95CI %) qc Meanb Log2FC(95CI %) qc Meanb
Log2FC(95CI 
%) qc Meanb

Log2FC(95CI 
%) qc

Proteobacteria; 
Gammaproteobacteria;Pasteurellales; 
Pasteurellaceae; Aggregatibacter

353.06 196.38 −0.77 (−1.25, 
−0.29) 1.00E-02 257.84 −0.42 (−1.03, 

0.18) 4.79E-01 494.65 0.37 (−0.24, 
0.98) 8.95E-01 255.76 −0.46 (−0.91, 

−0.01) 1.58E-01

Proteobacteria; 
Gammaproteobacteria;Pasteurellales; 
Pasteurellaceae; Haemophilus

3786.72 2365.12 −0.77 (−1.16, 
−0.38) 0.00E + 00 3404.50 −0.13 (−0.64, 

0.37) 7.83E-01 3396.53 −0.29 (−0.81, 
0.22) 8.95E-01 2333.62 −0.62 (−0.99, 

−0.26) 1.68E-02

Proteobacteria; 
Gammaproteobacteria;Pseudomonadales; 
Moraxellaceae; Enhydrobacter

2.18 2.25 0.21 (−0.71, 1.13) 8.10E-01 1.47 0.13 (−0.75, 1.01) 8.85E-01 1.91 0.22 (−0.65, 
1.10) 9.70E-01 9.95 1.15 (0.23, 2.06) 7.20E-02

Spirochaetes; Spirochaetes; 
Spirochaetales;Spirochaetaceae; 
Treponema

161.93 346.73 1.08 (0.53, 1.63) 0.00E + 00 201.42 0.43 (−0.24, 1.11) 5.36E-01 131.28 −0.06 (−0.75, 
0.62) 9.70E-01 264.57 0.81 (0.29, 1.33) 1.80E-02

Synergistetes; Synergistia; 
Synergistales;Dethiosulfovibrionaceae; 
TG5

18.16 64.52 1.50 (0.89, 2.12) 0.00E + 00 19.19 0.41 (−0.33, 1.15) 6.56E-01 23.06 0.40 (−0.35, 
1.14) 8.95E-01 34.89 0.97 (0.38, 1.55) 1.68E-02

Tenericutes; Mollicutes; 
Mycoplasmatales;Mycoplasmataceae; 
Mycoplasma

14.78 40.78 1.41 (0.73, 2.09) 0.00E + 00 15.67 0.55 (−0.24, 1.34) 4.79E-01 11.52 0.14 (−0.66, 
0.93) 9.70E-01 21.21 0.93 (0.28, 1.57) 3.31E-02

Table 2.  Differentially abundant taxa at selected taxonomical levels by type of tobacco use, compared to 
nonsmokers. aOnly those taxa that have a significantly differential abundance with q < 0.10 and a Cook’s 
distance < 10 in at least one contrast are shown. bMean values refer to mean normalized counts of taxa 
according to each group. cFDR adjusted p value. FDR adjustment was implemented at each level independently 
(i.e. phylum, genus).
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(Actinobacteria). The lower number of significant associations of taxa differentials with the use of dokha is proba-
bly due to the low number of participants (n = 16) that exclusively smoked dokha. Dokha is commonly consumed 
in the UAE using the traditional  midwakh pipe. Midwakh users in the UAE consume dokha on average 12 times 
per day, being equivalent to smoking 6 grams of dokha per day9, which is reflected on its effects on the oral micro-
biome. Dokha toxicants and health effects have received limited study, although notably Shaikh et al. reported 
increased systolic blood pressure, heart rate and respiratory rate in users41, indicating that these exposures consti-
tute a potentially significant, yet understudied threat to health in the Middle Eastern region.

Although we found that shisha use was not related to overall oral microbiome structural changes, taxa relative 
abundance analysis identified the phyla Cyanobacteria and SR1, and the classes Chloroplast and BD1-5 as sig-
nificantly depleted in shisha smokers when compared to nonsmokers, The lack of significance observed for the 
majority of the taxa is likely due to both the low n number available (n = 15) for exclusive shisha users as well as 
to the infrequency of shisha use, rather than the absence of toxicants in this product12,42. Shisha is usually asso-
ciated with social gatherings, and consumption is often on a weekly to monthly basis43. As the OM is resilient44 
and smoking related changes may not be permanent if cessation occurs5, the frequency with which participants 
smoke shisha could partially explain the patterns observed. Shisha smoking has been associated with esophageal 
squamous cell carcinoma45, low birth weight of infants from smoking mothers46 and cardiovascular effects47, and 
hence warrants for further study.

Users of multiple tobacco types in our study tended to show similar depletion/enrichment patterns of taxa 
relative abundances as cigarette smokers, largely because cigarette use was the most common tobacco use type 
in this group. Potentially of note, increased abundance of Enhydrobacter was related to joint use of cigarettes 
and dokha. This bacterium grows in the presence of ammonia48 which is believed to be common in both these 
products. In the case of cigarettes, ammonia is added to facilitate freeing of nicotine molecules by raising pH49.

This investigation is the largest study of the oral microbiome of an Arabic population. In contrast to most 
studies that rely exclusively on self-reported questionnaire, we validated nonsmoking status by urinary cotinine 
measurement. Although associations were identified for the tobacco types commonly used in this region, larger 
studies, which would provide stronger statistical power, with more detailed information on tobacco use patterns 
and frequency will be needed to further delineate differentials in tobacco products and the oral microbiome. We 
are currently recruiting participants to the UAEHFS to address this and other health-related issues for the UAE 
population. Although amplicon pyrosequencing has major advantages for human microbiome studies, it has also 
some limitations, such as the possible overestimation of OTU richness due to homopolymer errors (repeated 

Figure 4.  Log2 fold change of genera abundances in the oral microbiome relative to tobacco use. Heatmap of 
the genera that were in significantly different relative abundances when comparing nonsmokers (n = 225) to 
cigarette (n = 33), dokha (n = 16), shisha (n = 15) and multiple (n = 41) tobacco type smokers independently. 
All genera with q < 0.1 (indicated by stars) in at least one of the comparisons are shown. Heatmap displays log2 
fold change when compared to nonsmokers.
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nucleotides), inaccuracies of taxonomic identification due to the short length of the sequences and the introduc-
tion of primer and sequencing related biases50–52. While our research using the 16 S rRNA sequencing approach 
was appropriate for identifying taxonomies, future studies should investigate functional capacity of the microbi-
ome, using full shotgun metagenomics sequencing and other methodologies.

In summary, we characterized the oral microbiome in the Emirati population and found that tobacco use 
had an important impact on the oral microbiome, particularly with regard to cigarette and dokha use. The abun-
dance of multiple taxa and in particular that of 15 genera was significantly altered (enriched or depleted) in 
cigarette smokers; however, at the genus level, only the abundance of Actinobacillus, Lautropia, Porphyromonas 
and Bifidobacterium were significantly altered in users of dokha, and none were observed in shisha smokers. Our 
results suggest that cigarettes and other local tobacco products alter the oral microbiome structure and specific 
taxa abundance in the Emirati population.

Methods
Study Population.  UAEHF pilot study participants were recruited in a 5-month period between December 
2014 and April 2015 at Zayed Military Primary Health Clinic (ZMH PHCC) and Abu Dhabi Blood Bank (ADBB), 
both of which are licensed for clinical research by the Health Authority of Abu Dhabi. Eligible Emirati nationals 
(aged 18 and above) completed a self-administered questionnaire including information on socio-demographic 
factors, lifestyle and medical history. Study participants completed physical and clinical exams, including meas-
urements of anthropometry, body composition, and blood pressure13. During the physical exam, participants 
also provided blood, urine and mouthwash samples. From 517 consented study participants, 363 subjects com-
pleted baseline questionnaires and provided mouthwash samples. We further excluded 33 subjects who had 
inconsistent smoking data (see smoking definition below). Therefore, our analytic dataset was comprised of 330 
subjects (Fig. 1). This study was approved by the Institutional Review Boards (IRB) of Sheikh Khalifa Medical 
City (SKMC), Zayed Military Hospital (ZMH), New York University Abu Dhabi (NYUAD) and NYU Langone 
Medical Center, New York. All individuals participating in the study read and signed an informed consent. All 
experiments were performed in accordance with relevant guidelines and regulations.

Measurements.  Definition of smoking.  Detailed information on cigarette smoking, including smoking 
status, tobacco type used and smoking history, was ascertained by questionnaire. We also measured cotinine 
in urine by COT rapid test cassette (International Biomedical Supplies), with a cut off concentration of 200 ng/
ml for tobacco smoke exposure. We further excluded from analysis 22 subjects with positive cotinine test who 
had self-reported as nonsmokers and 11 subjects with missing cotinine data. Tobacco type groups are defined 
as follows: smokers (all participants that self-reported as smoker independently of cotinine results), exclusively 
cigarette smokers (those that only smoke cigarettes), exclusively dokha smokers (those that only smoke dokha, 
typically in the traditional midwakh pipe), exclusively shisha smokers (those that only smoke shisha), multiple 
smokers (those that smoke more than one type of tobacco product), nonsmokers (those that self-reported as 
nonsmokers, and were further validated by a cotinine negative result).

Mouthwash sample collection.  Participants were given a 10 ml sample of pharmaceutical grade normal saline 
(0.9%) solution and asked to vigorously swish for 30 seconds and spit it out onto a new sterile tube. Samples 
were stored initially at 4 °C for no more than 48 h. Samples were then vortexed for 20 seconds, pipetted up and 
down 10 times, aliquoted into 1 ml cryotubes and stored at −80 °C until further processing. To confirm that the 
saline solution used for collection of mouthwash samples contained no detectable levels of DNA, identical DNA 
extraction methods to those used in the study (see below), were applied to two separate saline solutions samples 
alongside two mouthwash samples. Neither of the two saline solution samples yielded any DNA. Extracted DNA 
was viewed by gel electrophoresis and concentrations were quantified using the high sensitivity Qubit assay. Only 
mouthwash samples yielded measurable amounts of DNA (Supplementary Table S5).

Microbiome assay.  Two 1 ml aliquots per sample were pooled for DNA extraction. Thawed samples were centri-
fuged at 6000 g for 3 min and then at 10000 g for 10 min in order to collect the cell pellet. DNA was extracted using 
the Mo BioPowerSoil PowerLyzer kit following manufacturer’s instructions (Mo Bio Laboratory Inc, California, 
USA). Genomic DNA was visualized on a gel and quantified using the Qubit HS kit (Thermo Fisher Scientific). 
Amplification of DNA from the V4 region of 16S rDNA gene (515 F-5′GTGCCAGCMGCCGCGGTAA3′ - 806 R 
- 5′GGACTACHVGGGTWTCTAAT3′) was performed using specifically designed primers with Roche 454 FLK 
adaptor sequences and a 12 bp index (reverse primer only) added for posterior multiplexing. Amplification was 
carried out using the FastStart enzyme (Roche, IN). PCR products were visualized in an agarose gel, purified 
using Agencourt AMPure beads (Beckman Coulter Life Sciences, IN) and quantified using the Qubit BR kit 
(Thermo Fisher Scientific). Samples were then pooled for sequencing on an Illumina Miseq platform.

Quality control.  Samples were sequenced in two batches. In addition to study samples, each batch contained 
three quality control samples, each in triplicate (shown in Supplementary Table S6) and a negative control (blank 
sample for DNA extraction and PCR amplification). Quality control samples showed good reliability, with the 
coefficient of variability ranging from 1.65–2.32% for the Shannon entropy and 1.02–7.21% for specific phyla 
relative abundances.

Statistical analysis.  Sequence data processing and taxonomic assignment.  Sequences were de-multiplexed 
and trimmed using the split_libraries_fastq.py QIIME script with default parameters53. Only sequences that 
passed quality control filters (average base score quality per read .20, reads longer than 200 bp), were further 
processed. Taxonomical assignment was achieved using the pick_de_novo_otus.py workflow as implemented 
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in QIIME53. Sequences were clustered into operational taxonomical units (OTU) using a 97% pairwise-identity 
cutoff, executing the UCLUST algorithm54. PyNAST55 and the Greengenes database were used for taxonomi-
cal assignment, followed by removal of chimeric sequences using ChimeraSlayer as implemented in the QIIME 
workflow51. Low count OTUs were filtered from the analyses if they were singletons and absent in more than 10% 
of the participants.

Estimating α-diversity.  β-diversity and taxa relative abundances. Oral microbiome richness and diversity were 
estimated from a rarefied dataset (16738 sequence reads per sample), in order to eliminate possible biases intro-
duced by differences of sampling effort. Estimation of richness (observed and Chao) and diversity (Shannon 
entropy and Simpson diversity index) were calculated using the vegan library in R56 (Supplementary Figure S3). 
To compare α-diversity between cases and controls we modeled richness and Shannon entropy in linear regres-
sion, adjusting for age sex and batch effects. Because linear regression assumes a normal distribution of the out-
come, Shannon entropy was previously log transformed. We conducted permutational multivariate analysis of 
variance (PERMANOVA) of weighted (taxa relative abundance) and unweighted (absence/presence) Unifrac 
distance matrices to compare overall oral microbial composition between tobacco users and nonusers and by 
tobacco type56. Matrices were calculated implementing the Unifrac function in the Phyloseq library in R57,58. 
We then generated PCoA plots to visualize sample ordination using the first two principal coordinates. All 
PERMANOVA analyses were adjusted for age, sex, and batch effects and were performed using the Adonis func-
tion in the vegan R library56. We used DESeq259 to explore for differential taxa abundances between smokers 
and nonsmokers for all tobacco categories as well as for the cotinine data. All statistical tests were two-sided. A 
p-value < 0.05 was considered of nominal statistical significance. In order to limit false detection of significance 
due to multiple comparisons, we adjusted for the False Discovery Rate (FDR)60. We determined a q-value < 0.10 
as significant after adjustment. All analyses were conducted using R version 3.3.261.

Data availability.  The datasets analyzed in this study are available in the Qiita database study ID - 11838.
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