
Zayed University Zayed University

ZU Scholars ZU Scholars

All Works

1-1-2021

Characterizing Visual Programming Approaches for End-User Characterizing Visual Programming Approaches for End-User

Developers: A Systematic Review Developers: A Systematic Review

Mohammad Amin Kuhail

Shahbano Farooq

Rawad Hammad

Mohammed Bahja

Follow this and additional works at: https://zuscholars.zu.ac.ae/works

 Part of the Computer Sciences Commons, and the Education Commons

Recommended Citation Recommended Citation
Kuhail, Mohammad Amin; Farooq, Shahbano; Hammad, Rawad; and Bahja, Mohammed, "Characterizing
Visual Programming Approaches for End-User Developers: A Systematic Review" (2021). All Works. 912.
https://zuscholars.zu.ac.ae/works/912

This Article is brought to you for free and open access by ZU Scholars. It has been accepted for inclusion in All
Works by an authorized administrator of ZU Scholars. For more information, please contact
Yrjo.Lappalainen@zu.ac.ae, nikesh.narayanan@zu.ac.ae.

https://zuscholars.zu.ac.ae/
https://zuscholars.zu.ac.ae/works
https://zuscholars.zu.ac.ae/works?utm_source=zuscholars.zu.ac.ae%2Fworks%2F912&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=zuscholars.zu.ac.ae%2Fworks%2F912&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/784?utm_source=zuscholars.zu.ac.ae%2Fworks%2F912&utm_medium=PDF&utm_campaign=PDFCoverPages
https://zuscholars.zu.ac.ae/works/912?utm_source=zuscholars.zu.ac.ae%2Fworks%2F912&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:Yrjo.Lappalainen@zu.ac.ae,%20nikesh.narayanan@zu.ac.ae

Received December 22, 2020, accepted January 6, 2021, date of publication January 12, 2021, date of current version January 26, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3051043

Characterizing Visual Programming Approaches
for End-User Developers: A Systematic Review
MOHAMMAD AMIN KUHAIL 1, (Member, IEEE), SHAHBANO FAROOQ2, RAWAD HAMMAD3,
AND MOHAMMED BAHJA 4
1College of Technological Innovation, Zayed University, Abu Dhabi, United Arab Emirates
2University College, Zayed University, Abu Dhabi, United Arab Emirates
3Department of Computer Science and Digital Technologies, University of East London, London E16 2RD, U.K.
4School of Computer Science, University of Birmingham, Birmingham B15 2TT, U.K.

Corresponding author: Mohammad Amin Kuhail (mohammad.kuhail@zu.ac.ae)

This work was supported by the Research Incentive Fund under Grant R20051, and by the Zayed University, United Arab Emirates.

ABSTRACT Recently many researches have explored the potential of visual programming in robotics,
the Internet of Things (IoT), and education. However, there is a lack of studies that analyze the recent
evidence-based visual programming approaches that are applied in several domains. This study presents a
systematic review to understand, compare, and reflect on recent visual programming approaches using twelve
dimensions: visual programming classification, interaction style, target users, domain, platform, empirical
evaluation type, test participants’ type, number of test participants, test participants’ programming skills,
evaluation methods, evaluation measures, and accessibility of visual programming tools. The results show
that most of the selected articles discussed tools that target IoT and education, while other fields such as data
science, robotics are emerging. Further, most tools use abstractions to hide implementation details and use
similar interaction styles. The predominant platforms for the tools are web and mobile, while desktop-based
tools are on the decline. Only a few tools were evaluated with a formal experiment, whilst the remaining
ones were evaluated with evaluation studies or informal feedback. Most tools were evaluated with students
with little to no programming skills. There is a lack of emphasis on usability principles in the design stage
of the tools. Additionally, only one of the tools was evaluated for expressiveness. Other areas for exploration
include supporting end users throughout the life cycle of applications created with the tools, studying the
impact of tutorials on improving learnability, and exploring the potential of machine learning to improve
debugging solutions developed with visual programming.

INDEX TERMS Visual programming, end-user development, human-computer interaction, systematic
literature review.

I. INTRODUCTION
An increasing number of software applications are being
written by end users without formal software development
training. This inspired large technology companies such as
Microsoft [91] and Amazon [90] to invest in low-code devel-
opment environments empowering end users to create web
and mobile applications. According to the 2019 Q1 Forrester
report, the low-code market will witness an annual growth
rate of 40%, with spending forecast to reach $21.2 billion by
2022 [102].

End-User Development (EUD) has emerged as a field that
is concerned with tools and activities allowing end users

The associate editor coordinating the review of this manuscript and
approving it for publication was Adnan Abid.

who are not professional software developers to write soft-
ware applications [11]. This is promising as end users know
their own domain and needs more than anyone else, and
are often aware of specificities in their respective contexts.
Further, as end users outnumber developers with professional
software development training by a factor of 30-to-1, EUD
enables amuch larger pool of people to participate in software
development [12].

A visual programming language (VPL), among other EUD
techniques, allows end users to create a program by piecing
together graphical elements rather than textually specifying
them [9].

Traditionally, visual programming has been successfully
used to help novices learn basics of programming by visual-
izing elements of a program. However, visual programming

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 14181

https://orcid.org/0000-0002-0000-0989
https://orcid.org/0000-0002-2138-1784

M. A. Kuhail et al.: Characterizing Visual Programming Approaches for End-User Developers: A Systematic Review

TABLE 1. An overview of the related review studies in terms of dimension coverage.

is increasingly being used by end users in various domains to
create and tailor applications that are useful beyond the realm
of education. For instance, VPLs are now being used in fields
such as the Internet of Things (IoT) [3], [10], mobile applica-
tion development [51], robotics [8], and Virtual/Augmented
Reality [4].

A few review studies have been conducted recently aimed
at analyzing and comparing different approaches to EUD
including visual programming. Table 1 shows an overview of
how these review studies compare with this study in several
dimensions. The works found in [7], [26] and [29] analyzed
a limited number of visual programming approaches and
techniques since article retrieval mainly focused on EUD
approaches in general as opposed to visual programming
approaches. For example, the work found in [29] classi-
fied the articles based on broad EUD techniques that do
not cover all VPL classifications, whilst the authors of [7]
primarily investigated EUD with reference to EUD-related
conferences and missed relevant visual programming jour-
nals. Other review studies such as [8] and [10] surveyed
visual programming environments in specific domains such
as robotics and IoT, thereby overlooking a broach view of
VPL approaches applied in multiple domains beyond IoT and
robotics.

Furthermore, as Table 1 shows, the existing review studies
have barely touched on the empirical evidence, evaluation
methods and measures that back up the validity of the visual
programming tools.

Therefore, there is a need for a systematic identification
of articles describing and analyzing approaches and visual

programming techniques used in multiple domains and
backed up by empirical evidence, in order to obtain
an in-depth analysis and understanding of the visual
programming research.

By systematically analyzing 30 articles presenting visual
programming tools representing various approaches (block-
based, diagram-based, form-based and icon-based), this study
contributes: (1) an in-depth analysis of the visual program-
ming approaches currently used to enable the creation of
software applications used in several domains beyond the
traditional ones (such as computer science education); (2) a
characterization of the trends and technologies used for the
development of visual programming tools; (3) an in-depth
explanation of the empirical evidence used to back up the
validity of the study, and (4) the discussion of open challenges
and future research directions specific to visual programming
tools.

This study will help the research community in the field
of end-user development aiming at designing and evaluating
visual programming tools. Such tools might adapt some ideas
from the tools surveyed in this study, while addressing the
discussed challenges and considering the suggested future
research directions.

The rest of the article is organized as follows. It first gives
a background of visual programming as a subset of EUD as
well as its categories. Then, the article discusses the review
studies in related areas. Thereafter, the study explains the
methodology of this systematic literature review including
the research questions. Subsequently, the study presents the
results of answering the research questions by examining the

14182 VOLUME 9, 2021

M. A. Kuhail et al.: Characterizing Visual Programming Approaches for End-User Developers: A Systematic Review

visual programming tools presented in the selected articles
against 12 dimensions: classification of visual programming,
interaction style, target users, domain, platform, empirical
evidence, types of test participants, number of test partic-
ipants, programming skills of test participants, evaluation
methods, evaluation measures, and accessibility. Thereafter,
challenges and future research directions are discussed.
Finally, the key findings are presented in the conclusion.

II. BACKGROUND
Visual programming is a subset of the end-user develop-
ment field (EUD). Other subsets of EUD include End-user
programming (EUP), which mainly focuses on enabling end
users to create their own programs [12], while EUD tack-
les the entire software life cycle including maintainability,
and extensibility. End-user Software Engineering (EUSE) is
another related research area which focuses on the quality
attributes of the software developed by end users including
reusability, security, and verifiability [77].

Visual programming refers to approaches and methods
that use two-dimensional graphical elements to allow non-
programmer end-users to create, extend, and customize soft-
ware applications [9]. Visual programming languages (VPLs)
are described by programming constructs and rules which are
visually depicted [13].

There are two widely known taxonomies for visual
programming languages: (1) Myers [1] classified visual pro-
gramming languages by specification techniques. Certain
categories in Myers’ classification can be generalized into
one category. As an example, data-flow graphs, directed
graphs, and flowcharts can be considered diagrammatic
VPLs. (2) Burnett and Baker [2], on the other hand, listed
three broad subcategories under ‘‘visual representations’’
namely: diagrammatic languages, iconic languages, and lan-
guages based on static pictorial sequences. This classifica-
tion, while highly useful, does not list the form-based VPLs
mentioned in Myers’ classification.

Combining the taxonomies developed by Myers [1] and
Burnett and Baker [2], we divide VPLs into four categories:
form-based languages, block-based languages, diagram-
based languages, and icon-based languages. All categories
(or subcategories), based on visual program representation,
presented in both [1] and [2] are assigned to a category under
our new categorization. For instance, block-based languages
represent jigsaw puzzle pieces in [1], while diagram-based
languages cover diagrammatic languages in [2], data flow
graphs and directed graphs in [1]. Further, we filtered out
the subcategories in [1] which apply to textual programming
languages.

We define the VPL categories as follows:
Block-based languages allow users to drag and drop

‘‘blocks’’ (program elements) from a predefined list of com-
mands into the development area. These blocks are pieced
together to make a program. This paradigm prevents syntax
errors, which reduces the mental load of end users allow-
ing them to focus on concepts rather than implementation

details. Many block-based languages such as Scratch [92]
and App Inventor [93] have made application development
accessible to numerous end users.
Icon-based or Iconic languages capitalize on the use of

icons, graphical symbols representing objects or action [14].
Chang [15] explained that icons can be classified as complex
and elementary icons. Elementary icons represent objects
(e.g., file) or actions (e.g., delete, edit), whereas com-
plex icons are composite object icons and visual sentences.
Composite object icons are the outcome of assembling ele-
mentary object icons. Visual sentences are spatial arrange-
ments of elementary icons. Recently iconic languages have
been used to enable end users without programming expe-
rience to create applications based on triggers and actions.
For instance, end users may specify an alert to be sent to
them when the indoor temperature is less than 40 ◦F. More
examples can be found in [16]–[18], and [94].
Form-based visual programming languages allow end-user

developers to configure a form, in which triggers and actions
are added by textual drop-down menus or visual drag-
and-drop [19]. Some form-based approaches are mostly
visual, whereas others use some textual specifications. The
textual form-based paradigm utilizes a declarative approach
to programming, that is based on a dependency-driven,
direct-manipulation model [20]. Users of form-based lan-
guages create or configure cells, and define formulas for those
cells [21]. These formulas reference values contained in other
cells and use them in calculations. Whenever a cell’s formula
is defined, the underlying evaluation engine calculates the
cell’s value, recalculates the values of cells that reference
recalculated cells, and displays new results on the screen.

Diagrams have been utilized as communication and think-
ing tools across many domains [22]–[24]. Diagram-based
visual programming languages, also known as diagrammatic
or data flow languages, are characterized by connecting
graphical objects (e.g., boxes) by arrows, lines, or arcs that
represent relations. To understand a diagram-based program,
users traverse the diagram. Such a diagram uses different
means of perceptual coding to represent the flow of the pro-
gram. For example, flowcharts use connectedness and direc-
tionality to represent how a piece of information is related to
one another, and how it flows from one to the other [25].

This study will classify several visual programming tools
according to the aforementioned VPL categories.

III. RELATED WORK
We divide the related work into two categories: end-user
development review studies, and visual programming review
studies.

A. END-USER DEVELOPMENT REVIEW STUDIES
There have been a few EUD review studies in the last decade.
Ko et al. [6] conducted a survey that focused on EUSE meth-
ods. The surveyed articles are relatively old (prior to 2010).
The study emphasized the need for software engineering
practices for programs created by end-user developers as they

VOLUME 9, 2021 14183

M. A. Kuhail et al.: Characterizing Visual Programming Approaches for End-User Developers: A Systematic Review

often contain errors that they are not aware of or unable to
track. The study highlighted several practices that help end
users to detect errors with testing, check for consistency, and
check the program against specifications. The study briefly
mentioned some visual programming tools applications, but
there was no systematic analysis of visual programming
approaches in the study. Moreover, the review presented in
the study has been performed and analyzed in the research
domain of their authors [12].

Paternò [26] conducted a survey of EUD that introduced
the motivations behind end-user development, discussed its
roots, and presented the state of art as of 2013. The author
discussed various approaches and classified them in terms
of their main features and the technologies and platforms for
which they have been developed. Further, the study provided
an indication of direction for further research. For instance,
a possible future research could be investigating how end
users could customize software compositions according to the
context of use. Despite mentioning visual programming as an
EUD field, Paternò did not provide a systematic analysis of
visual programming approaches. Further, the article cited less
than ten articles discussing novel visual programming tools,
eight of them were published prior to 2010.

Burnett and Scaffidi [12] discussed possible research areas
for EUD such as the need to help end-user developers produce
software with stronger guarantees of security and privacy, and
without interfering with the lightweight, iterative nature of
the EUD life cycle. Burnett and Scaffidi briefly discussed
only three examples representing three approaches of visual
programming languages (block-based, diagram-based, and
form-based). However, the examples are from industrial tools
such as LabView [100] andMicrosoft Word [101] as opposed
to research articles in the literature.

Another review study in [27] presented a literature review
study of EUD, covering the years between 2004 and 2013.
The study pointed to an increase interest in EUD
research. Further, the field is strongly dominated by the
engineering of systems and the evaluation of these systems in
a lab setting as opposed to a natural setting. Like the previous
studies, this study does not analyze visual programming
research in detail.

Hang and Zhao conducted a systematic review study to
examine activities and tools that support service composition
by end-user developers [28]. The study identified service
composition as a challenging task to end-users, requiring
further investigation to identify the impediments encountered
by end-users when composing services. Only a handful of
articles on visual programming were reviewed in the study
and they all were published prior to 2010.

A recent study [29] gave an overview of recent approaches
and techniques that support end-users in the three related
research areas discussed in the introduction, EUP, EUD, and
EUSE. The study investigated 165 articles between 2000 and
2017 to cover recent trends in EUP, EUD, and EUSE.
This research included proposed frameworks and approaches
in various domains and recognized research focus towards

supporting domain experts in business datamanagement, web
application, mashups, and smart technology environments.
The study revealed that most EUD tools are general purpose.
Further, the study identified component-based programming
as the most used interaction style among 14 classifications
proposed by the authors. Further, the authors suggested to
conduct comparative studies of EUD approaches and empha-
sized the need for further investigation of EUD activities to
guide the design of future tools. Despite the useful insights,
the study classified the articles based on broad EUD, EUP,
and EUSE techniques that do not cover all VPL classifica-
tions discussed earlier in the introduction. As such, the find-
ings are not specific to visual programming approaches.

Another recent study [7] reviewed the most recent trends
and classification of 21 end-user development tools devel-
oped between 2007 and 2017. According to the review,
the main direction in EUD is towards generalized tools facil-
itated on the web to support multi-platform accessibility. The
study outlined major limitations in the tools, for example
end-users are limited to customizing existing applications
as opposed to creating them from the ground up. Further,
the authors uncovered insufficient use of usability principles
in developing EUD tools. Based on the four interaction styles
attributed by Burnett and Scaffidi [12], visual programming
was identified as the most used interaction style to support
EUD. Nevertheless, the study did not cover all VPL classi-
fications discussed in the introduction. Further, the majority
of the articles surveyed in the study were conference articles,
and only a few journal articles were from journals relevant to
visual programming such as the Journal of Visual Languages
and Computing.

To sum up, despite the variety of review studies that tar-
geted EUD in general, none of these studies focused specifi-
cally on visual programming with all its classifications (e.g.
diagrammatic, iconic, block-based). Instead, it was partially
covered in some of the studies as a subset of EUD.

B. VISUAL PROGRAMMING REVIEW STUDIES
Only a handful of studies reviewed visual programming
related research. The studies reviewed how visual program-
ming tools were used in specific domains such as IoT,
robotics, and education.

As an example, the authors in [8] surveyed 16 visual pro-
gramming environments allowing end users to create appli-
cations involving robots with social capabilities. Only one
article out of the 16 articles was published in a journal. The
study shows that recent tools are adopting component-based
software engineering approaches, but the tools need to be
evaluated with real end users as opposed to university stu-
dents, and should be validated in a real setting as opposed
to a laboratory. The study mainly focused on the analy-
sis and challenges specific to robotics-related approaches
such as scripting-based, rule-based systems, state-based and
behavior-based systems.

Another example of a domain-specific visual program-
ming review study is the study in [10]. The author surveyed

14184 VOLUME 9, 2021

M. A. Kuhail et al.: Characterizing Visual Programming Approaches for End-User Developers: A Systematic Review

13 articles that use visual programming to support the cre-
ation of IoT-based applications. The vast majority of the
articles were conference articles. The study reported that
VPLsmake it easy for end users to visualize the programming
logic and eliminate the burden of handling syntactical errors.
However, significant time is spent on creating small-scale IoT
applications with visual programming. The study focused on
IoT-specific attributes such as the hardware platform (e.g.
Raspberry Pi, Arduino) and overlooked the broad VPL clas-
sifications (e.g. diagrammatic, iconic, block-based).

A recent study conducted a systematic literature review
to examine the role of visual and textual programming
languages in helping students learn how to program [30].
The study reported that the choice of textual program-
ming language is not a crucial one as languages are alike.
However, the use of visual programming to introduce students
to programming concepts is of utility as long as it is within a
short time frame.

To sum up, all the aforementioned review studies are
domain specific, and as such do not provide a generic view
of VPL approaches applied in multiple domains beyond the
domains of education, IoT and robotics.

Our study differs from the aforementioned reviews by
focusing on the articles related to visual programming tools
that represent several domains, closely examining the visual
programming approaches with all its classifications, and
identifying how such approaches are used to solve particu-
lar problems in several domains. Moreover, the study sheds
light on commonalities and differences between tools of the
same or different approaches or domains. Finally, the study
discusses only the approaches that are backed up by empir-
ical evidence. The details of the empirical evidence are
thoroughly discussed in the study.

IV. METHODOLOGY
This systematic literature review analyzes the literature
related to visual programming approaches, providing a back-
ground for new tools and methods, and identifying direction
for further investigation. This review follows the guidelines
described by Kitchenham and Charter [5]. The process con-
sists of these main phases: (1) defining the review protocol
including defining the research questions, methods to answer
them, search strategy, and inclusion and exclusion criteria.
(2) conducting the study by selecting the articles, evaluating
their quality, and analyzing the results. (3) reporting the
results.

A. RESEARCH QUESTIONS
We formulated two main research questions:

• RQ1: What visual programming tools have been pro-
posed in the literature to support end-user developers?

• RQ2: What evaluation methods have been used by the
authors of these tools?

We used several dimensions to answer the two research
questions. Tables 2 and 3 show the list of dimensions used

TABLE 2. Research question 1 (RQ1) dimensions.

TABLE 3. Research question 2 (RQ2) dimensions.

to answer the questions. The formulation of dimensions is
inspired by those proposed in [29] to obtain general infor-
mation of EUD, EUP, and EUSE tools.

We used five dimensions to answer the first research ques-
tion (RQ1). RQ1-D1 documents the VPL classification of the
tools. RQ1-D2 describes the specific interaction styles the
tools use. We used the interaction styles described in [81].
RQ1-D3 documents the type of users whom the tools are
targeting. RQ1-D4 describes the fields where the tools are
used. RQ1-D5 identifies the hardware environment in which
the tools live.

We used seven dimensions to answer the second research
question (RQ2). RQ2-D1 reports the existing empirical evi-
dence for the efficacy of the proposed tools. RQ2-D2 iden-
tifies the types of users who participated in the evaluation.

VOLUME 9, 2021 14185

M. A. Kuhail et al.: Characterizing Visual Programming Approaches for End-User Developers: A Systematic Review

RQ2-D3 reports the number of test participants, while
RQ2-D4 describes the level of the programming skills that
test participants have. RQ2-D5 states the evaluation methods
used to evaluate the proposed tools, while RQ2-D6 reports
the evaluation measures used to evaluate the tools. Finally,
RQ2-D7 reports whether the tools are accessible online. Tool
accessibility allows authors to receive feedback from a larger
community.

B. SEARCH PROCESS
We conducted our search in popular databases in the field of
end-user development, namely Scopus, IEEE Xplore, ACM
Digital Library, Springer Link, and Eric. The publications
covered are published between 2010 and 2020.

To identify keywords for the search string, we analyzed
our research questions, goals, and previous related literature
review studies. Thereafter, we conducted a pilot study in
which we executed and refined the keywords and the search
string iteratively. The process was inspired by [31]. The
keywords we used for the search were ‘‘End-User Devel-
opment’’ and ‘‘Visual Programming’’. A correlated keyword
for ‘‘End-User Development’’ is ‘‘End-User Programming’’,
and one for ‘‘Visual Programming’’ is ‘‘Visual Language’’.
Further, we included keywords associated with the VPL clas-
sification such as ‘‘block’’, ‘‘diagram’’, ‘‘dataflow’’, etc. The
search string was defined using the Boolean operators as
follows:
(‘End-User Development’ OR ‘End-User Programming’)

AND (‘Visual Programming’ OR ‘Visual Language’) AND
(’block’ OR ’diagram’ OR ’diagrammatic’ OR ’dataflow’ OR
’data-flow’ OR ’icon’ OR ’iconic’)

In order to evaluate the articles according to their rele-
vance to our research questions, we defined the inclusion and
exclusion criteria shown in Tables 4 and 5. The inclusion and
exclusion criteria helped us to reduce the number of studies
that are not relevant to our research question. We excluded
articles such as tutorials, posters, technical reports, and PhD

TABLE 4. Inclusion criteria.

TABLE 5. Exclusion criteria.

TABLE 6. Quality criteria.

thesis reports as they are not peer reviewed. Therefore, they
may be less rigorous and mature than those that are peer
reviewed.

We executed our search after defining the inclusion
and exclusion criteria. We conducted our search in the
selected search databases (Scopus, IEEE Xplore, ACM Dig-
ital Library, Springer Link, and Eric) using our search query.
We restricted our search to article titles, abstract, and key-
words. We executed the same search string in the search
databases. However, some customization was needed. For
instance, in IEEE Xplore and ACM Digital Library, rather
than using the full textual search string, we broke the string
into three parts: (‘End-User Development’ OR ‘End-User
Programming’), (‘Visual Programming’ OR ‘Visual Lan-
guage’), and (’block’ OR ’diagram’ OR ’diagrammatic’ OR
’dataflow’ OR ’data-flow’ OR ’icon’ OR ’iconic’). There-
after, we combined them visually using an ‘‘AND’’ operator.

Our search process consists of the following steps:
1) Reading the article title, abstract and keywords, and

applying inclusion criteria IC-1 and IC-2.
2) Reading the publication information e.g. language,

publication type (e.g. journal, conference), publisher
and length (to determine if it’s full or short), titles, and
abstracts, and applying exclusion criteria EC-1, EC-2
and EC-3.

3) Reading the introduction, evaluation and conclusion,
and skimming through the other content of articles
included in step 2 to eliminate irrelevant articles which
do not meet the quality criteria QC-1, QC-2 and QC-3.

4) Reading all the content of the selected articles in step 3
and collecting data.

Figure 1 shows the flowchart of the article selection pro-
cess. 550 articles were returned by an automatic search in
the selected databases. After applying the inclusion criteria,
only 223 articles were included out of 550. After applying
the exclusion criteria, 91 articles were removed. Examining
the articles against the quality criteria listed in Table 6 caused
the removal of 102 articles. Finally, a total of 30 article were
selected for this article.

V. RESULTS
Table 7 shows an overview of the 30 articles selected in
this study. The articles were classified according to the
five dimensions we used to answer the first research ques-
tion (RQ1): VPL classification (RQ1-D1), interaction style
(RQ1-D2), target users (RQ1-D3), domain (RQ1-D4), and

14186 VOLUME 9, 2021

M. A. Kuhail et al.: Characterizing Visual Programming Approaches for End-User Developers: A Systematic Review

TABLE 7. The selected articles evaluated against first research question (RQ1) dimensions.

platform (RQ1-D5). Table 8 shows the same articles exam-
ined against the seven dimensions we used to answer
the second research question (RQ2): Empirical evidence
(RQ2-D1), test participants (RQ2-D2), number of test par-
ticipants (RQ2-D3), programming skills of test participants
(RQ2-D4), evaluation methods (RQ2-D5), evaluation mea-
sures (RQ2-D6), and accessibility (RQ2-D7).

Figure 2 shows a timeline of the selected articles. 50% (15)
of the selected articles were published in journals and
the other 50% (15) of the articles are conference papers.
66.67% (20) of the articles were published after 2015. Notice-
ably five journal articles were published in the Journal of
Visual Languages and Computing, a highly relevant journal
to visual programming articles. This journal has recently

VOLUME 9, 2021 14187

M. A. Kuhail et al.: Characterizing Visual Programming Approaches for End-User Developers: A Systematic Review

FIGURE 1. Flowchart of article selection process.

merged with the Journal of Computing Languages (COLA).
Interestingly, one of the selected article was published in
COLA. Two journal articles were published in the Journal
of Parallel and Distributed Computing. The remaining jour-
nal articles were published in several venues such as ACM
Transactions onComputing Education, ACMTransactions on
the Web, International Journal of Human-Computer Studies,
The Journal of Systems and Software, CAAI Transactions on
Intelligence Technology, Future Generation Computer Sys-
tems and Multimedia Tools and Applications. The majority
of these journals are ranked Q1 or Q2 according to Scimago
Journal and Country Rank [119].

Four conference articles were published in the Interna-
tional Symposium on End-User Development (IS-EUD). Two
conference articles were published in the IEEE Symposium
on Visual Languages and Human-Centric (VL/HCC). The
remaining conference articles were published in mostly ACM
or IEEE conferences.

Figure 3 shows a geographical mapping of the selected
articles. By far the majority of the selected articles were writ-
ten or co-written by researchers from European universities
predominantly British and Italian universities. The remaining
articles were written by researches from Asian and North
American universities.

VI. FIRST RESEARCH QUESTION DIMENSIONS
To answer the first research question, we analyzed the
selected articles against the five research question dimen-
sions discussed in the subsequent subsections. Furthermore,
we used examples from some of the selected articles to shed
light on details of interest.

A. RQ1-D1: VPL CLASSIFICATION
43.3% (13) of the articles used a block-based approach,
while 40% (12) of the selected articles used a diagram-based
approach. 13.3% (4) of the selected articles used a
form-based approach, whereas only 6.6% (2) articles used
an icon-based approach (Figure 4). Despite the differences
of the approaches, all the tools use high-level abstractions to
simplify the process of creating a program and hide imple-
mentation details. The abstractions are often represented as
visual components that end users can drag and drop. The
abstractions allow end users to incorporate into their appli-
cations: functions [32], [51], web services [43] or software
modules [41]. Abstractions are used to increase tool accessi-
bility though this may be at the cost of expressiveness as the
abstractions are often designed to operate in a restricted way.
Another common theme is the use of color to represent data
flowing between components [51], [60].

FIGURE 2. A timeline of the selected articles.

14188 VOLUME 9, 2021

M. A. Kuhail et al.: Characterizing Visual Programming Approaches for End-User Developers: A Systematic Review

FIGURE 3. Geographical mapping of the selected articles.

FIGURE 4. VPL Classification of the selected articles.

1) FORM-BASED TOOLS
Tools using the form-based approach empower users to con-
struct a functional user interface by dragging and dropping
visual components to a form. Often these visual compo-
nents represent services such as ’’weather condition’’ [48]
and ’’phone camera’’ [32]. Thereafter, the user can config-
ure these services visually to construct a program.

The tool, named as ‘‘GPE’’ [32], is intended for IoT appli-
cations. End users use a visual builder to build a user inter-
face. However, instead of dragging and dropping graphical
components as in conventional visual builders, users drag
and drop functionalities such as ‘‘Take Photo’’, ‘‘Starting a
motor’’, etc. Thereafter, the system suggests graphical com-
ponents (e.g. button, panel) to match the functionality.

Once an end user has selected the visual representation,
he/she may customize the link that is created between the
functionality component and the graphical component, thus
specifying the action that will be performed for the selected
graphical components. The authors call this approach the
‘‘inverted approach’’, which focuses on visually presenting
functionality. This approach allows for a strict separation of
concerns between GUI and business logic.

Another example of the form-based approach is explained
in [48]. End users compose services by simply graphically
adding and configuring elements to a form in a step-by-step
approach. For instance, end users may add a service that

allows users to book a seat in a library. Thereafter, end users
may add some logic for custom behavior. As an example, end
users may add a conditional that provides bike parking if the
weather condition is sunny.

Another tool that capitalizes on the form-based approach is
described in [34]. The tool helps end users to detect possible
patent infringement in the field of mechanical engineering.
The tool presents end users with visual blocks which allow
them to find various types of products. Once end users have
configured their search criteria, search results show up, and a
red color code is used in search results to highlight possible
infringement.

2) DIAGRAM-BASED TOOLS
Tools using the diagram-based approach empower users to
construct a program by connecting together visual compo-
nents where the output of a component serves as a data input
to another component. In some tools such as [41], the visual
components may represent data sets and algorithms, whereas
in other tools such as [42], the visual components simply
represent graphical components. Further, the user can con-
figure these services by setting its properties.

As an example, the tool in [41] uses a diagram-based
approach to building deep learning models. End users drag
and drop layers (available on the left menu), configure their
properties, and connect them to build a deep neural network
without writing code. The layers include data sets and activa-
tion functions. The tool provides initial default configuration
of the parameters of each layer which the end user can change.
Further, the tool displays error messages and suggestions on
the right side.

Another example of a diagram-based approach is described
in [42]. End users design 3D interactive graphics by dragging
and dropping blocks to the tool environment. Each block
represents a 3D object. The end-user can connect the objects
together using lines. Further, the end user can specify interac-
tivity by graphically configuring an object to do some logic
(e.g. when the user taps an object, another object can show
up or a sound segment is played).

The article in [45] uses a diagram-based approach to allow
the development of IoT and robotics-based applications. The

VOLUME 9, 2021 14189

M. A. Kuhail et al.: Characterizing Visual Programming Approaches for End-User Developers: A Systematic Review

tool uses Microsoft Visual Programming Language (MVPL)
which provides a graphical dataflow-based programming
model [95]. The program allows concurrent development as
it uses the metaphor of multiple workers on an assembly
line, who perform tasks as jobs arrive. The article presents
an example of building an application of a robot navigating
through a maze autonomously. The application is entirely
built with blocks such as variables, data items, and condition-
als that are connected visually to show the dataflow.

3) BLOCK-BASED TOOLS
Tools using the block-based approach allow users to con-
struct a program by combining together visual blocks that
fit together like a jigsaw puzzle. In some tools such as
[49] and [54], the blocks represent programming constructs
such as variable setting or loops, whereas in other tools such
as [60], the visual blocks represent interactive components
such as a map.

For example, the authors of [60] designed a tool, ‘‘Puzzle’’,
that allows end users to develop mobile IoT applications.
Puzzle environment has three components: start, develop-
ment, and execution of an application. The start compo-
nent allows users to create or access a previously created
application. The development component allows end users
to drag and drop jigsaw pieces to the canvas and combine
them together to obtain the desired functionality. Depending
on the data, each jigsaw piece has input and output that are
color coded so that end users combine with the pieces with
matching color codes. The execution component allows end
users to run the application.

As another example, the authors of [49] used a block-based
approach to teaching distributed computing topics such as
peer-to-peer communication. For instance, the tool has a
mechanism for communication with messages. End users can
specify one or more variables on the ‘‘send msg’’ block.
On the receiver side, these data itemswill appear in the ‘‘when
I receive’’ block header as variables with the appropriate
names.

The authors of [54] designed a block-based tool that allows
researchers to build Experience Sampling Method (ESM)
applications which record thoughts and feelings of par-
ticipants. Researchers drag and drop program components

(blocks). Blocks allow researchers to define variables, expres-
sions, actions, conditions, and triggers.

Another example of a block-based approach to application
is the tool explained in [50]. The tool allowsmuseum employ-
ees to build applications to engage visitors with museum
exhibits. The tool builds on the block-based diagram of
Scratch [92], but is event driven. For instance, end users can
decide images to display for certain exhibits, as well as play
an audio, and configure the styling of the exhibit.

4) ICON-BASED TOOLS
Tools using the icon-based approach allow users to construct
a program by connecting icons together to represent data flow.
Icons represent services such as determining user location or
saving a file.

For example, MicroApp is an icon-based tool, which
allows end users to create mobile applications [51]. The
applications use services that are represented by icons that
are connected to show data flow. The connectors use dif-
ferent color codes. Colors represent the type of data that
is transmitted between services. For instance, pink corre-
sponds to images whereas yellow represents email objects.
For instance, the end user would like to send pictures to
their contacts in conjunction with the address of the picture
locations. To that effect, the end user places the icon ‘‘Take’’,
connects it with ‘‘Save’’ so that the picture is saved on her
device. Thereafter, the end user chooses the contact (Static
icon). The Location service gets the geographical coordi-
nates and outputs them to the Address GeoLocation. Finally,
the end user selects the StaticMail and joins it to Save, Static,
and Address GeoLocation. This results in an email being
sent to the selected contact containing the saved picture and
location.

B. RQ1-D2: INTERACTION STYLE
Figure 5 shows the interaction styles of the selected arti-
cles. Since the articles present VPL-based tools, they all use
direct manipulation. For instance, all the presented tools use
a form of drag and drop of visual objects such as blocks
and GUI components. 73.3% (22) of the articles use menu
selection. Some of the menus are textual whereas others are
visual. Often the menus help end users find the correct visual
objects needed to build an application. For instance, the tool

FIGURE 5. Interaction styles of the selected articles.

14190 VOLUME 9, 2021

M. A. Kuhail et al.: Characterizing Visual Programming Approaches for End-User Developers: A Systematic Review

FIGURE 6. Target users of the selected articles.

discussed in [43] uses a menu of components organized in
two categories: input and output [43]. End users drag and drop
the components to build smart city applications, for instance,
monitoring city temperature as well as water consumption.
As an another example, the tool explained in [62] uses a menu
to help end users find visual objects representing components
in a smart home such as sensors and actuators.

56.6% (17) of the selected articles used form filling as an
interaction technique. Form filling can be used in a variety
of ways. It can be used to allow users to change applica-
tion settings, appearance, or behavior. For instance, the tool
discussed in [58] allows non-programmer domain experts to
model and deploy business processes by editing form-based
web services. Specifically, the tool allows the user to import
news data via a news web service. The form fields are high-
lighted with different color codes. For instance, the blue color
refers to unmapped fields whereas other colors represent
data mappings and static assignments. As another example,
the tool developed by Lizcano et al. [35] uses a form filling
to allow users to edit the properties of visual components
representing services.

C. RQ1-D3: TARGET USERS
Figure 6 shows the target users of the selected articles.
60% (18) of the tools presented in the selected articles do not

target a specific class of end users. These tools are intended
to be used by average end users who have basic IT skills, but
no formal training in any specific domain.

20% (6) of the tools are intended to be used in class for
students to teach them basic programming concepts such as
variables, loops, etc. Only one of these educational tools uses
a diagrammatic approach [45]. The remaining tools are block
based.

20% (6) of the tools are intended to be used by domain
experts. Two of the tools discussed in the articles are designed
to be used by engineers. One of the tools, discussed ear-
lier, helps engineers to detect possible patent infringement
in the field of mechanical engineering [34]. The other tool
[41] is designed for novice software engineers to help them
design deep learning models with a diagram-based approach.
The remaining tools target different classes of users. For
instance, the tool in [54] is intended to empower researchers
to build Experience Sampling Method (ESM) applications.
The tool discussed in [52] allows programmers familiar with
data science skills to develop distributed data analytical sys-
tems using a diagram-based approach. This approach facil-
itates the accessibility and efficiency of developing such
applications. Aimed atmuseum employees, the tool presented
in [50] uses a block-based tool to allow the development
of interactive exhibits to engaged museum visitors. The tool
discussed in [43] allows city operators to build smart-city
applications use a diagram-based approach.

D. RQ1-D4: DOMAIN
Figure 7 shows the target domain of the selected articles. All
the surveyed tools are domain specific, and not meant to be
used for multiple purposes. 23.3% (7) of the tools presented
in the selected articles fit in the category of IoT. Some of
these tools allow end users to utilize the resources of their
personal phones such as [32] and [51]. Others enable the
usage of sensors deployed in cities such as [43] or sensors
used in variety of contexts such as smart homes or available
for medical staff to monitor patients’ health [60].

FIGURE 7. Domains of the selected articles.

VOLUME 9, 2021 14191

M. A. Kuhail et al.: Characterizing Visual Programming Approaches for End-User Developers: A Systematic Review

While tools built for IoT applications use different VPL
approaches (form-based, diagram-based, and block-based),
a common theme among the tools is allowing end users to
access services such as sensors and phone resources bymeans
of visual abstractions. For instance, the tool presented in [46]
shows various types of sensors (such as motion and presence
sensors) as visual blocks. End users can define logic that is
related to the the states of such sensors. As a simple example,
end users may specify a welcoming message upon switching
on a certain light.

23.3% (7) of the tools are intended to be used in an edu-
cational setting. Some of these tools such as [38] and [39]
are utilized for teaching basic programming principles such
as loops and conditionals, whereas the tool in [44] aims at
teaching data science concepts to non-programmers, and the
tool in [45] is intended for teaching computing and engineer-
ing concepts and for programming robots.

Apart from one tool [45], all the tools built for educational
applications used a block-based approach. The block-based
educational tools use similar visual blocks to represent pro-
gramming constructs such as variable setting, control flow,
and conditionals. The tools aimed at teaching a specific topic
in computer science such as parallel programming repre-
sent related concepts (e.g. parallel blocks, message passing,
events) visually. For instance, the concept of events is repre-
sented by a ‘‘When’’ visual block in [37] and [49].

The tool explained in [45] uses a diagram-based approach
to programming education. For instance, a while loop is
represented by a sequence of connected boxes. Each box
represents a command, e.g. setting a variable. The first box
starts the loop, and the last one ends it.

Three of the surveyed articles present tools that specialized
in interactive displays. As discussed earlier, the tool in [50]
uses a block-based approach to help end users build interac-
tive museum exhibitions, while the tool presented in [42] uses
a diagram-based approach where end users connect objects
representing 3D models, configure the objects, and add some
logic to build 3D interactive exhibitions.

Two of the surveyed articles present tools that specialized
in artificial intelligence and data science. Both of the tools
use a diagram-based approach. For instance, the tool in [41]
allows end users to build a deep neural network. As discussed
earlier, the tool represents layers with visual components that
can be configured and connected to build a deep neural net-
work. The layers include data sets and activation functions.
The tool in [52] enables the construction of distributed data
analytical systems. Like [41], end users connect components
to build big data applications. The components can be data
sources and data sinks as well as Map, Filter, Reduce, Join,
and GroupBy operators.

The remaining articles target a variety of domains such
as robotics [53], research and psychiatry [54], museum
exhibits [50], report generation [61], mechanical engineer-
ing [34], geographical information [57], document man-
agement [55], information visualization [47], and business
process modelling [58].

FIGURE 8. Platforms of the selected articles.

E. RQ1-D5: PLATFORM
Figure 8 shows the platforms for which the tools presented
in the articles were developed. A high number (17) of the
tools were developed for web platforms (56.6%), followed
by 7 (23.3%) tools that were developed for mobile platforms,
and 6 (20%) desktop-based tools.

Most of the tools that were developed for desktop platforms
were built in or before 2013. This can be explained by the
fact that desktop-based tools are cumbersome to contem-
porary users. They must be downloaded and installed, are
operating-system dependent, and need frequent updates. Web
platforms, on the other hand, offer various advantages as
they are operating system independent, do not need to be
updated, downloaded or installed. Tools developed for mobile
platforms are on the rise. This can be explained by users
increasingly preferring to use mobile applications. According
to an App Annie report, users spent 120 billion dollars on
application stores [78].

VII. SECOND RESEARCH QUESTION DIMENSIONS
To answer the second research question, we analyzed the
selected articles against the seven research question dimen-
sions discussed in the subsequent subsections. Furthermore,
we used examples from some of the selected articles to shed
light on details of interest.

A. RQ2-D1: TYPE OF EMPIRICAL EVALUATION
Figure 9 shows the different types of empirical evaluation
performed to assess the learnability or efficiency of the tools
discussed in the surveyed articles. We classified the types
of empirical evaluation as follows: formal experiment, eval-
uation study, and informal evaluation. A formal experiment
is a scientific test performed under controlled conditions,
that is one factor is changed at a time, while all others are
kept constant. The purpose of the test is to support, refute,
or validate a hypothesis. Statistical analyses are carried out
to accept or reject the hypothesis. An evaluation study is a
test carried out to provide insights about certain parameters.
There is typically no hypothesis to prove, and the results
are often not statistically significant. Informal evaluation is a
form of collecting data regarding certain aspects of a product.
No test or hypotheses are established.

14192 VOLUME 9, 2021

M. A. Kuhail et al.: Characterizing Visual Programming Approaches for End-User Developers: A Systematic Review

FIGURE 9. Types of empirical evaluation mentioned in selected articles.

33.3% (10) of the tools presented in the selected articles
were evaluated by a formal experiment, while 56.6% (17) of
the articles used an evaluation study to assess the presented
tools. Additionally, only 10% (3) of the tools presented in the
selected articles were evaluated by informal evaluation.

1) STATISTICAL SIGNIFICANCE
Only the tools evaluatedwith a formal experiment had statisti-
cally significant results. For instance, GPE [32], a form-based
tool discussed earlier, was evaluated for task efficiency in
the context of GUI development. The authors conducted the
experiment with two groups. Participants used GPE in the
treatment group, and Android Studio in the control group.
The authors asked to participants to carry out three tasks.
The tasks were designed to cover a wide range of GUI
development ideas and components. The authors measured
the quality of the solution as well as the completion time to
obtain quantifiable data. The experiment concluded that GPE
is more accessible to new users and more efficient to use
than Android Studio. The authors used a t-test to determine
statistical significance of the results. The results from the first
two tasks were statistically significant (with p-values were
0.010, 0.009).

The tool discussed in [55] is a custom version of MIT
Open Blocks [96]. The authors set a controlled experiment
to test this hypothesis: the participants that received training
and those who did not would take an equal time, on average,
to perform each task. The participants were split into two
groups: those who received a five-minute training session,
and those who did not. The results did not point to a signifi-
cant difference in performance, and therefore, the hypothesis
could not be accepted.

The authors of the tool discussed in [33] conducted an
experiment with 12 participants to evaluate a diagram-based
tool that allows robotics applications with spatial visual pro-
gramming (Vipo). To compare Vipo with a popular VPL
tool (Blockly) [97], six participants used Vipo first and then
Blockly, whereas the other six participants used Blockly first
and then Vipo. One of the tasks given to the participants was
a programmed workflow, and asked to answer questions such
as identifying the optimal steps, conditionals, and number
of machines. A paired t-test was performed, and the results

suggest that participants spent less time on tasks with Vipo
compared to Blockly (p-value was 0.009).

The tool, discussed in [61], VisualTP, is a tool that allows
end users to generate reports using visual programming.
To evaluate the tool, the authors conducted an experiment that
compared VisualTPL with Microsoft Reporting Service. The
results showed that end users have comparable performance
with both tools when creating report layouts, but prefer Visu-
alTPL for custom layouts. Their perference of VisualTPL had
statistical significance (p-value < 0.05).

The authors of the tool discussed in [36] set up an exper-
iment with 36 students to explore the benefits of learning to
code for tangible computers, such as robots, in comparison
to programming for a desktop computer. For this purpose,
the authors used block-based visual programming environ-
ments, and measured engagement, attitudes, and learning
performance. An ANOVA test was performed, and the study
found out with statistical significance (p=.001) that students
had higher engagement and learning performance with the
visual programming tool geared for robotics as opposed to
the desktop computer.

2) EVALUATION STUDIES
56.6% (17) of the articles used an evaluation study to assess
the presented tools. For instance, the authors in [51] con-
ducted a study to evaluate the perceived enjoyment and
usefulness, behavioral control, intention to use, simplicity,
and subjective satisfaction of the tool, MicroApp, the tool
discussed earlier that allows end users to create mobile appli-
cations. 24 participants were recruited. The participants had
varying programming skills (end users and programmers).
The study involved a 20-minute training session, participants
working on tasks related to the tool, followed by a question-
naire. The participants successfully completed the tasks at
different times. Further, the participants appeared to have
enjoyed the tool. Four end-user participants expressed the
need of a technical person to use the system. The perceived
usefulness was higher for end-user participants. Further,
most participants found the system simple to use. They also
expressed their intent to use the tool, and were satisfied with
the tool.

The authors in [56] discussed the need to make pro-
gramming Arduino-based single-board microcontrollers [98]
accessible to end users via VPL. The authors presented
a tool that takes a step in this direction (Modkit) using
a block-based approach. To evaluate the tool, the authors
conducted a think-aloud study with 11 participants using a
textual programming editor as well as Modkit. None of the
participants had prior experience with Arduino or Modkit,
and they were not professional programmers. The authors
first gave the participants a short tutorial on Arduino. Further,
participants worked on two tasks, completed an interview,
and filled out a background questionnaire. Only two partici-
pants out of eleven completed both tasks, and seven couldn’t
complete any task. Four participants who completed tasks
were more successful using Modkit. The authors noticed that

VOLUME 9, 2021 14193

M. A. Kuhail et al.: Characterizing Visual Programming Approaches for End-User Developers: A Systematic Review

TABLE 8. The selected articles evaluated against the second research question (RQ2) dimensions.

14194 VOLUME 9, 2021

M. A. Kuhail et al.: Characterizing Visual Programming Approaches for End-User Developers: A Systematic Review

participants were more successful in modification tasks as
opposed to creation tasks. Further, participants rated their
workload as higher in the textual environment, but they rated
Modkit as more physically demanding. The authors noticed
that participants carried outmore clicks andmousemovement
in Modkit. On the qualitative side, some participants found
Modkit ‘‘fun’’, and ‘‘easy to learn’’. Other participants found
Modkit confusing as it is like ‘‘a puzzle on top of a puzzle’’.
In the post-session interviews, most participants mentioned
that they were in favor of Modkit.

The authors of the tool described in [37] assessed their
tool (Snap!) which uses block-based visual programming at
the 18th Annual Women in Computing Day (WCD) in 2016.
The authors taught basic parallel programming topics using
the tool to middle school girls. They were divided into four
groups of 24-25 students. Thereafter, the students filled out
a survey as a form of assessment to the tool. As an exam-
ple of an interesting insight, 86% of the students indicated
that Snap! made their impression of computer science more
favorable.

3) INFORMAL EVALUATION
10% (3) of the tools presented in the selected articles were
evaluated by informal evaluation. For instance, the authors
of the tool presented in [45] collected informal feedback by
using the tool (VIPLE) in educational settings. For instance,
using the tool in a robotics summer camp allowed the authors
to focus on teaching computational thinking as opposed
to spending considerable time on teaching the syntax of
a textual language. Further, VIPLE was used in a course
that introduces engineering to students. Feedback from stu-
dents allowed the authors to improve the design of the tool.
VIPLE was also used to teach parallel and distributed com-
puting (PDC) topics to students in a course on advanced
software. The authors of Quando, the tool presented in [50]
presented a case studywhere they observed how end users use
Quando to create museum exhibits with the tool. The authors
observed that end users were able to add complexity to the
application by copying existing logic and modifying it. The
authors believe that copying may have happened because the
tool had a limited set of blocks, and end users needed to find
ways to overcome the limitations.

B. RQ2-D2: TYPE OF TEST PARTICIPANTS
Figure 10 shows an overview of the types of test subjects who
participated in the evaluation of the tools. Overwhelmingly
the authors evaluated their tools with students (25 articles
out of 30), while only 4 articles evaluated the tools with
domain experts. Some articles such as [46], [51], [59] and
[35] evaluated their tools with different types of users.

It is natural for tools that are aimed at computer science
education such as [38], [39], [44], [45] to be evaluated with
students. However, for tools aimed at other purposes such as
[32], [33], [41], [43], [51], [52], [57], [61], it would have be
ideal to evaluate the usability and learnability of the tools with

FIGURE 10. Types of users who participated in the evaluation of the tools
discussed in the articles.

typical users or domain experts as this would generate more
realistic feedback for the tool designers.

C. RQ2-D3: NUMBER OF TEST PARTICIPANTS
Figure 11 shows an overview of the number of test subjects
who participated in the evaluation of the tools. The vast
majority of the articles (27 out of 30) used 40 or less test
subjects for evaluating the tools.

The article that used the highest number of test participants
(180) for evaluation can be found in [35]. The authors set an
experiment to evaluate a tool named ‘‘FAST’’ that helps end
users compose services. The participant sample was diverse
in terms of age, gender, educational attainment, and employ-
ment. In conducting the experiment, the researchers wanted
to know if FAST indeed helps end users solve real-world
problems, and whether it outperforms similar industrial tools.
The results point to a positive outcome for FAST as signifi-
cantly more end users managed to complete test tasks with
FAST compared with the other tools. Further, participants
rated FAST higher than the other tools in terms of usability
and functionality.

Some authors such as [42] conducted formal experi-
ments with a relatively low number of participants (14).
Nevertheless, the results were statistically significant. Using
several tasks, the authors compared the completion time of
the visual tool they designed (Visual Scene Editor) against a
similar tool (Leap Embedder) [40]. The results showed that
participants were 51.58% faster on average with Visual Scene
Editor, and participants encounter 11% fewer errors.

On the lower end of the spectrum, the tool described in [39]
was evaluated with only 7 test participants. They were asked
to carry out tasks with pre-made programming tasks using
both a visual programming tool and MS Visual Studio. While
not statistically significant, the results show that participants
completed the tasks at a shorter time with the visual program-
ming tool and rated it more positively with respect to ease of
learning.

To sum up, determining the number of test participants
is not a straightforward task. An important consideration is
the purpose of the evaluation. For discovering the number of
usability problems, Macefield recommends between 3 and
20 participants, with 5 to 10 being a good baseline [82].

VOLUME 9, 2021 14195

M. A. Kuhail et al.: Characterizing Visual Programming Approaches for End-User Developers: A Systematic Review

FIGURE 11. Number of users who participated in the evaluation of the
tools discussed in the articles.

FIGURE 12. Programming skills of users who participated in evaluation of
the tools discussed in the articles.

Nielsen argues that generally 5 test participants can be suf-
ficient to discover most of the usability problems [85]. The
more users are added, the less can be learned.

According to Macefield, for comparative studies, group
sizes of between 8 and 25 participants typically provide valid
results, with 10 to 12 being a good baseline [82]. For statisti-
cally significant results, group sizes should be increased.

D. RQ2-D4: PROGRAMMING SKILLS OF TEST
PARTICIPANTS
We classify the programming skills into four categories:
Novice, beginner, intermediate, and advanced. Novices have
never studied programming. They never wrote any code and
they are not aware of basic programming concepts such as
variables, functions, etc. Beginners have basic programming
knowledge such as variables and functions. Their knowledge
corresponds to the programming concepts discussed in the
first programming course in an undergraduate program. End
users with intermediate programming skills have taken mul-
tiple programming courses, and they may have knowledge of
data structures such as queues, stacks, as well as algorithms.
Their knowledge corresponds to the programming skills of a
third or fourth-year undergraduate computer science student.
End users with advanced programming skills have profes-
sional programming experience. For instance, they may have
worked as developers, or they write code as part of their
profession.

Naturally, most of the articles (18 out of 30) presented eval-
uations with novice end users, whereas authors of 14 articles
evaluated their tools with beginners. A few articles included
intermediate and advanced users in their evaluation. Some

FIGURE 13. Evaluation methods used to evaluate the tools discussed in
the articles.

articles such as [47], [59] and [48] evaluated their tools with
users of various degrees of programming skills.

We believe it is ideal to evaluate visual programming tools
with novices or beginners as they are expected to encounter
more conceptual problems compared to intermediate and
advanced end users, thereby giving tool authors more valu-
able feedback.

E. RQ2-D5: EVALUATION METHODS
We classify the evaluation methods into three categories:
Task-based, survey-based, and interview-based. Tasks are
used as hands-on activities where participants are expected
to perform a certain functionality. Surveys are given to par-
ticipants to ask their opinions on how they perceive certain
qualities (such as usability, usefulness). Interviews are gener-
ally carried out after test participants perform tasks in order
to obtain qualitative data such as end users’ understanding of
certain concepts. With respect to visual programming tools,
the two most interesting metrics to measure are usability and
usefulness of the tool.

Figure 13 shows the evaluation methods used to evaluate
the tools discussed in the articles. Naturally, most of the
articles (23 out of 30) used tasks to assess the usability of the
tools, while the authors of 21 articles used surveys to evaluate
the perceived usability, usefulness, and workload. Only two
articles used interviews to obtain in-depth information about
the understandability of the tool.

Lauesen recommends using hands-on tasks to measure
certain factors of usability such as ease of learning, task
efficiency, surveys to measure the subjective qualities such as
usefulness and user experience, and interviews to evaluate the
understandability of the system [67]. As such, in the context
of visual programming tools, we believe it’s ideal to test the
usability of the tools with hands-on tasks, usefulness and user
experience with a survey, and understandbility of the tools
with an interview.

F. RQ2-D6: EVALUATION MEASURES
We classify the evaluation measures into five categories:
Completion Time, Number of errors, Perceived usability,
Perceived usefulness, and Perceived workload. Completion

14196 VOLUME 9, 2021

M. A. Kuhail et al.: Characterizing Visual Programming Approaches for End-User Developers: A Systematic Review

FIGURE 14. Evaluation measures used to evaluate the tools discussed in
the articles.

FIGURE 15. Accessibility of the tools discussed in the articles.

time is the time it takes participants to complete a task.
This metric measures ease of learning and task efficiency
[67], [86]. Number of errors affects ease of learning. The
more errors users or problems encounter, the harder the tool is
to learn [67], [86].Perceived usability and usefulness arewhat
participants feel about the usability and usefulness of the sys-
tem. Naturally, measuring perceived usability and usefulness
is not as accurate as measuring completion time and number
of errors, as it is subjective, but it gives some indications.
Perceived workload is the perception of participants of the
amount of work it requires to perform certain tasks with the
tool. This metric correlates with task efficiency.

Figure 14 shows the evaluation measures used to evalu-
ate the tools discussed in the articles. Most of the articles
(18 out of 30) measured perceived usability, while the authors
of 13 articles measured perceived usefulness and completion
time. Only 9 articles measured the number of errors, while
2 articles measured the perceived workload.

We strongly recommend measuring the usability factors of
ease of learning and task efficiency using completion time
and number of errors as they are objective and quantitative.
Measuring the perceived usability, usefulness, and work-
load using surveys provide some indication, but they remain
subjective [67].

G. RQ2-D7: ACCESSIBILITY
To better analyze the tools presented in the selected articles,
we attempted to find the tools to experiment with them and get
a feel for how they work in practice. 53.3% (16) of the tools

such as [41], [43] and [44] are available online. Most of these
tools are available on GitHub [99] with decent documentation
on how to run the tools. Others are available on the authors’
personal websites as binary files that can be installed. 14 tools
are unfortunately unavailable. It is imperative for authors
to make tools easily accessible coupled with documentation
beyond installation instructions. This would be beneficial for
authors in terms of receiving valuable feedback, researchers
to obtain an in-depth understanding of the tool approach,
and for users who could potentially use it in their domain.
We believe tool availability and documentation ensure its
sustainability.

VIII. CHALLENGES AND FUTURE RESEARCH DIRECTIONS
Despite the considerable interest in novel approaches to
visual programming, progress still needs to be achieved to
realize the potential of visual programming. In this section,
we provide a discussion of challenges in relation to the vari-
ous visual programming approaches presented in the articles.
We also provide an insight into future research directions.

A. USABILITY PRINCIPLES
Usability is a quality feature that assesses how easy a user
interface is to use. Usability can be broken into five elements:
learnability, efficiency, memorability, subjective satisfaction,
and error recoverability [64]. There is a plethora of usability
principles that can serve as guidance for designing user inter-
faces. For instance, Nielson identified ten general heuristics
that are broad rules of thumb [63]. Further, Shneiderman
listed eight golden rules of user interface design [65]. Another
example of general heuristics used to guide the design of
user interfaces is the framework of cognitive dimensions of
notations [66]. In terms of the design phase, it is recom-
mended to design user interfaces iteratively by involving
users during the design phase [67], [68].

The goal of the tools discussed in the selected articles is
to make application development accessible to end users.
Nevertheless, none of the tools explicitly articulated the
reliance on usability principles in the design phase. However,
it could be argued that some of the authors designed the tools
with usability in mind based on some design choices. For
instance, the tool presented in [32] uses a user interface that
is rather consistent with users’ expectations as it is based on a
typical visual builder [76] where users drag and drop objects.
The authors of [51] divided the mobile screen into columns to
allow the user sequential and parallel composition of actions.
This conforms with the Juxtaposability dimension described
in [66]. As another example, the authors of [33] and [50]
involved the users in the design phase, collected feedback,
and improved the design.

Despite not explicitly following usability heuristics during
the design phase, many of the authors of the selected arti-
cles conducted usability studies after building the tools. For
instance, a usability study is documented in [43]. The study
was conducted in the lab with potential users and real-world
use cases. Efficiency, usefulness, quality and satisfaction

VOLUME 9, 2021 14197

M. A. Kuhail et al.: Characterizing Visual Programming Approaches for End-User Developers: A Systematic Review

were measured, and the results were encouraging. Another
example can be found in [44]. The authors conducted a focus
group of 20 participants. Usefulness, ease of use and per-
ceived level of understanding were evaluated, and feedback
was collected from participants.

B. APPLICATION LIFE CYCLE
The tools surveyed in this study present solutions that could
meet computational needs of end-user developers. However,
none of the selected articles discussed the life cycle of
applications made with the tools. How are the applications
maintained, debugged, and extended? This area falls under
the umbrella of end-user development. Despite the signifi-
cant research in end-user development [69]–[71], more work
needs to be done with respect to applications developed with
visual programming languages. Further, future studies need
to investigate how such tools can be adopted in the work
environments of end-user developers. For instance, is it easy
to scale the solutions developed by the tools? Indeed, some
researchers such as [72] indicated that scaling applications
created with VPLs remains challenging.

One promising attempt towards providing support for the
application life cycle is allowing end users to debug applica-
tions built with MIT App Inventor [93]. End users can add
watches, comments, run blocks in isolation, collapse a few
blocks to keep the screen real-estate small.

C. EXPRESSIVENESS
Expressiveness can be defined as the breadth of ideas that can
be communicated with a language. Expressiveness is crucial
so that end users develop custom applications beyond the
textbook basic examples. Unfortunately, only one of the the
surveyed tools was evaluated for expressiveness [46]. Under-
standably highly expressive languages tend to be less acces-
sible to end users. As such, authors need to strike the balance
between usability and expressiveness by providing a usable
tool that is expressive enough that can solve the problems
of end-user developers in their work environments. There
are some attempts in that direction in the field of end-user
development. For instance, Aghaee and Pautasso proposed a
hybrid approach that balances expressiveness and usability
by combining several techniques such as natural language
programming, what-you-see-is-what-you-get, and live rec-
ommendations [18]. Further, Kuhail and Lauesen proposed
a tool that utilizes the expressiveness of spreadsheet-like
formulas and the accessibility of a visual builder to help
end-user developers build custom visualizations [73]. Future
tools using visual programming need to tackle the trade-off
between expressiveness and usability in its design and eval-
uation. Further, it would be helpful for end users to access
documentation that showcases the expressiveness of the tools
by providing several examples of the tool capabilities.

D. EVALUATION FRAMEWORK
The objective of this systematic literature review was to
characterize and analyze the current evidence-based visual

programming approaches, trends, interaction styles, and tech-
niques. To achieve this objective, we examined 30 articles
against 12 relevant dimensions. However, future researchers
may develop an evaluation framework that can be used to
compare visual programming tools. The research community
has contributed such frameworks to be used to compare
regular programming languages [84]. While the existing
framework of cognitive dimensions of notations [66] can be
used to compare tools in terms of their usability, a potentially
new evaluation framework is needed to evaluate other qual-
ity attributes such as extensibility, security, testability, and
portability.

E. TUTORIALS FOR LEARNABILITY IMPROVEMENT
Some articles such as [56] reported the use of a tutorial to
train end users prior to participation in an evaluation study.
However, none of the articles explored the impact of tutorials
on improving tool learnability. Most of the popular end-user
development tools such as Microsoft PowerApps [91] and
MIT App Inventor [93] have a large community of contribu-
tors who develop tutorials. In fact, typing ‘‘Microsoft Power-
App tutorial’’ in Google search engine yields 272,000 results.
Such tutorials contribute to the popularity and success of such
tools. With respect to visual programming, investigating the
impact of tutorials on learnability remains a topic for explo-
ration. Moreover, as video-based tutorials are on the rise, it is
imperative to investigate whether video-based tutorials are
preferred to text-based tutorials by end users to effectively
learn visual programming tools. Recent research suggests
the effectiveness of multi-media-based tutorials. For instance,
Dalal has shown that multi-media tutorials are effective in
teaching junior students operating system concepts [80].
Likewise, Some researchers such as [79] found out that
video-based tutorials were more effective than paper-based
ones in training users to use software.

Another related direction for future research could be using
gamification in conjunction with effective tutorials. Gamifi-
cation is the use of game elements such as leaderboards and
badges in non-game contexts such as education and market-
ing. There is plenty of evidence that suggests the effective-
ness of gamification in education, particularly for teaching
STEM-related topics [83]. Consequently, investigating the
combination of gamification and effective tutorials on tool
learnability could be a topic to explore by future researchers.

F. UTILIZATION OF MACHINE LEARNING
Recent advances in machine learning have paved the way for
new possibilities such as voice recognition and conversational
interactionwith computers. To explore the potential of natural
language for programming, Van Brummelen et al developed
a tool that uses a conversational agent to enable end users to
develop applications [74]. The tool receives and transcribes
users’ spoken input and responds using a dialog manager.
As another example, Paschoal et al proposed using conver-
sational agents to support software testing education [75].

14198 VOLUME 9, 2021

M. A. Kuhail et al.: Characterizing Visual Programming Approaches for End-User Developers: A Systematic Review

Machine learning algorithms are increasingly being used
in several aspects of software development. As an exam-
ple, Ubisoft [87], a video gaming industry utilizes machine
learning for code reviewing. It is estimated that 70% of the
bugs are caught by machine learning prior to testing [89].
As another example, Functionize, a recently founded com-
pany, uses machine learning to generate automatic test cases
that adapt to new scenarios [88]. However, in the context of
visual programming, more investigation is needed to identify
how machine learning can understand the intent of the code
and look for logical errors, thereby suggesting code fixes.

IX. LIMITATIONS OF THE STUDY
We identified a few limitations that affect our study. We
limited our research to the period January 2010 to
November 2020. We needed to limit our paper search to
November 2020, to be able to realistically proceed with the
analysis of articles, which required several months. There are
probably other published articles that could be of interest for
this study at the date of submission.

Our initial search resulted in a total of 550 articles. Exclu-
sion criteria were applied to identify relevant articles that
were practical to assess. As such, this decision might have
resulted in a bias: for instance, we could have excluded
original ideas in short papers not presenting evidence.

Article classificationmay have been inaccurate, as analysis
has been conducted by different researchers, who have differ-
ent experience in the research area discussed in this study.
To mitigate this risk, during the application of exclusion
criteria, the work done by each reviewer was crosschecked
in order to avoid that some relevant article was incorrectly
excluded. Further, after the analysis of each selected paper,
all gray areas and doubts were discussed at least by two
researchers.

We only selected articles that presented empirical evi-
dence; causing a bias towards selecting articles that were
empirically evaluated. Additionally, we decided to only ana-
lyze the most recent articles when multiple articles reported
on the same problem by the same authors.

Finally, it is possible that there are articles that report a
visual programming tool that could not be found in the search
databases we selected. In order to reduce this risk, we con-
ducted a manual search to find significant work beyond what
we found in the search databases. However, the articles found
by manual search were already included in our set of articles.

X. CONCLUSION
This study characterized how various visual programming
approaches empower end users to develop applications. The
study analyzed 30 VPL tools proposed in the literature.
To analyze the tools, the study examined how each tool
fares across 12 dimensions: VPL classification, interaction
style, target users, domain, platform, type of empirical eval-
uation, types of test participants, number of test participants,
programming skills of test participants, evaluation methods,

evaluationmeasures, and accessibility of visual programming
tools.

All the tools the study surveyed were domain specific. The
results show that the tools were proposed in various areas
including IoT, education, robotics, and more, and targeted
mostly general users as well as students and domain experts.

Despite the difference of VPL approaches, most tools uti-
lize high-level abstractions to hide implementation details,
and use similar interaction styles such as direct manipula-
tion (in the form of drag-drop) and menu selection. Some
commonalities have been observed among tools of the same
domain. For instance, tools that target IoT allow end users
to access services using visual abstractions, while tools built
for educational purposes mostly use a block-based approach,
and use similar visual abstractions representing programming
constructs.

Most of the tools produced some empirical evidence that
points to the success of their approaches with end users,
though only a few of the tools conducted a formal experiment.
Moreover, the test subjects were mostly students with little
to no programming skills in a university setting as opposed
to typical users in a real setting. To evaluate the tools, most
authors used tasks or surveys. Further, most of the tools
measured perceived usability using surveys, while fewer tools
measures usability factors such as ease of learning and task
efficiency using time completion and number of errors.

There are several challenges to be addressed by future
tools. None of the tool authors explicitly mentioned the
reliance of usability principles in designing the tools, though
a few authors performed usability tests to evaluate the tools.
Further, only one of the tools was evaluated the expressive-
ness of their tools. It is imperative for end users to understand
the limits of the tools. Finally, 53.3% (16) of the tools were
available publicly with some documentation. We strongly
recommend that future tools are made available for end users
as well as comprehensive documentation to ensure tool adop-
tion and sustainability.

This study identified several areas for further investigation.
Future tools should examine how end user developers extend,
debug, and deploy applications created with visual program-
ming tools throughout the application life cycle. Further,
future researchers may need to develop an evaluation frame-
work to conduct a comparative analysis of VPL tools, partic-
ularly for quality attributes such as security and extensibility.
Moreover, we recommend the study of the impact of tutorials
on improving visual programming tool learnability. Finally,
it is imperative to explore conversational agents and machine
learning algorithms to assist end-user developers to develop
and debug programs created with visual programming tools.

REFERENCES

[1] B. A. Myers, ‘‘Taxonomies of visual programming and program visual-
ization,’’ J. Vis. Lang. Comput., vol. 1, no. 1, pp. 97–123, Mar. 1990.

[2] M. M. Burnett and M. J. Baker, ‘‘A classification system for visual pro-
gramming languages,’’ J. Vis. Lang. Comput., vol. 5, no. 3, pp. 287–300,
Sep. 1994.

VOLUME 9, 2021 14199

M. A. Kuhail et al.: Characterizing Visual Programming Approaches for End-User Developers: A Systematic Review

[3] D.-Q. Zhang and K. Zhang, ‘‘On the design of a generic visual program-
ming environment,’’ in Proc. IEEE Symp. Vis. Lang., Sep. 1998, p. 88–89,
doi: 10.1109/VL.1998.706147.

[4] J. M. Mota, I. Ruiz-Rube, J. M. Dodero, and I. Arnedillo-Sánchez,
‘‘Augmented reality mobile app development for all,’’
Comput. Electr. Eng., vol. 65, pp. 250–260, Jan. 2018, doi:
10.1016/j.compeleceng.2017.08.025.

[5] S. Keele, ‘‘Guidelines for performing systematic literature reviews in
software engineering,’’ Keele Univ., Keele, U.K., Joint Rep. EBSE-2007-
01, 2007.

[6] A. J. Ko, R. Abraham, L. Beckwith, A. Blackwell, M. Burnett, M. Erwig,
C. Scaffidi, J. Lawrance, H. Lieberman, B. Myers, M. B. Rosson,
G. Rothermel, M. Shaw, and S. Wiedenbeck, ‘‘The state of the art in
end-user software engineering,’’ ACM Comput. Surveys, vol. 43, no. 3,
pp. 1–44, Apr. 2011, doi: 10.1145/1922649.1922658.

[7] M. Santos, and M. Villela, ‘‘Characterizing end-user development solu-
tions: A systematic literature review,’’ in Human-Computer Interaction.
Perspectives on Design (Lecture Notes in Computer Science), vol. 11566,
M. Kurosu, Ed. Cham, Switzerland: Springer, 2019, doi: 10.1007/978-3-
030-22646-6_14.

[8] E. Coronado, F. Mastrogiovanni, B. Indurkhya, and G. Venture, ‘‘Visual
programming environments for end-user development of intelligent and
social robots, a systematic review,’’ J. Comput. Lang., vol. 58, Jun. 2020,
Art. no. 100970, doi: 10.1016/j.cola.2020.100970.

[9] B. Jost, M. Ketterl, R. Budde, and T. Leimbach, ‘‘Graphical programming
environments for educational robots: Open roberta-yet another one?’’
in Proc. IEEE Int. Symp. Multimedia, Dec. 2014, pp. 381–386, doi:
10.1109/ISM.2014.24.

[10] P. P. Ray, ‘‘A survey on visual programming languages in Internet of
Things,’’ Sci. Program., vol. 2017, May 2017, Art. no. 1231430, doi:
10.1155/2017/1231430.

[11] H. Lieberman, F. Paternò, M. Klann, and V. Wulf, ‘‘End-user devel-
opment: An emerging paradigm,’’ in End User Development (Human-
Computer Interaction Series), vol. 9. Dordrecht, The Netherlands:
Springer, 2006, doi: 10.1007/1-4020-5386-X_1.

[12] M. M. Burnett and C. Scaffidi, ‘‘End-user development,’’ in The
Encyclopedia Human-Computer Interaction, 2nd ed. Aarhus,
Denmark: Interaction Design Foundation, 2013. [Online]. Available:
https://www.interaction-design.org/literature/book/the-encyclopedia-of-
human-computer-interaction-2nd-ed

[13] A. Repenning, ‘‘Moving beyond syntax: Lessons from 20 years of blocks
programing in AgentSheets,’’ J. Vis. Lang. Sentient Syst., vol. 3, no. 1,
pp. 68–91, Jul. 2017, doi: 10.18293/vlss2017-010.

[14] S. K. Chang, ‘‘Visual languages: A tutorial and survey,’’ in Visualization
in Programming, InterdisciplinaryWorkshop on Informatics and Psychol-
ogy. Berlin, Germany: Springer-Verlag, 1987, pp. 1–23.

[15] S. K. Chang, ‘‘Icon semantics—A formal approach to icon system
design,’’ Int. J. Pattern Recogn. Artif. Intell., vol. 1, no. 1, Apr. 1987,
pp. 103–120, doi: 10.1142/S0218001487000084.

[16] U. Wajid, A. Namoun, and N. Mehandjiev, ‘‘Alternative representa-
tions for end user composition of service-based systems,’’ in Proc.
Int. Symp. End User Develop. (Lecture Notes in Computer Science),
vol. 6654. Berlin, Germany: Springer, 2011, doi: 10.1007/978-3-642-
21530-8_6.

[17] C. Ardito, M. Francesca Costabile, G. Desolda, R. Lanzilotti, M. Matera,
A. Piccinno, andM. Picozzi, ‘‘User-driven visual composition of service-
based interactive spaces,’’ J. Vis. Lang. Comput., vol. 25, no. 4,
pp. 278–296, Aug. 2014, doi: 10.1016/j.jvlc.2014.01.003.

[18] S. Aghaee and C. Pautasso, ‘‘End-user development of mashups with nat-
uralmash,’’ J. Vis. Lang. Comput., vol. 25, no. 4, pp. 414–432, Aug. 2014,
doi: 10.1016/j.jvlc.2013.12.004.

[19] M. R. Reisinger, J. Schrammel, and P. Frohlich, ‘‘Visual languages
for smart spaces: End-user programming between data-flow and
form-filling,’’ in Proc. IEEE Symp. Vis. Lang. Hum.-Centric Com-
put. (VL/HCC), Raleigh, NC, USA, Oct. 2017, pp. 165–169, doi:
10.1109/VLHCC.2017.8103464.

[20] A. L. Ambler, M. M. Burnett, and B. A. Zimmerman, ‘‘Operational ver-
sus definitional: A perspective on programming paradigms,’’ Computer,
vol. 25, no. 9, pp. 28–43, Sep. 1992, doi: 10.1109/2.156380.

[21] G. Rothermel, L. Li, C. DuPuis, and M. Burnett, ‘‘What you see is what
you test: A methodology for testing form-based visual programs,’’ in
Proc. 20th Int. Conf. Softw. Eng., Kyoto, Japan, 1998, pp. 198–207, doi:
10.1109/ICSE.1998.671118.

[22] K. Stenning and J. Oberlander, ‘‘A cognitive theory of graphical and
linguistic reasoning: Logic and implementation,’’ Cognit. Sci., vol. 19,
no. 1, pp. 97–140, Jan. 1995, doi: 10.1207/s15516709cog1901_3.

[23] J. H. Larkin and H. A. Simon, ‘‘Why a diagram is (Sometimes) worth ten
thousand words,’’ Cognit. Sci., vol. 11, no. 1, pp. 65–100, Jan. 1987, doi:
10.1111/j.1551-6708.1987.tb00863.x.

[24] J. M. Carroll, J. C. Thomas, and A. Malhotra, ‘‘Presentation and repre-
sentation in design problem-solving,’’ Brit. J. Psychol., vol. 71, no. 1,
pp. 143–153, Feb. 1980, doi: 10.1111/j.2044-8295.1980.tb02740.x.

[25] J. Chattratichart, ‘‘Exploring the effect of control-flow and traversal
direction on VPL usability for novices,’’ J. Vis. Lang. Comput., vol. 13,
no. 5, pp. 471–500, 2002, doi: 10.1006/jvlc.2002.0240.

[26] F. Paternò, ‘‘End user development: Survey of an emerging field
for empowering people,’’ ISRN Softw. Eng., vol. 2013, Jun. 2013,
Art. no. 532659, doi: 10.1155/2013/532659.

[27] D. Tetteroo and P. Markopoulos, ‘‘A review of research methods in
end user development,’’ in End-User Development (Lecture Notes in
Computer Science), vol. 9083. Cham, Switzerland: Springer, 2015, doi:
10.1007/978-3-319-18425-8_5.

[28] F. Hang and L. Zhao, ‘‘Supporting end-user service composition: A sys-
tematic review of current activities and tools,’’ in Proc. IEEE Int.
Conf. Web Services, New York, NY, USA, Jun. 2015, pp. 479–486, doi:
10.1109/ICWS.2015.70.

[29] B. R. Barricelli, F. Cassano, D. Fogli, and A. Piccinno, ‘‘End-user
development, end-user programming and end-user software engineering:
A systematic mapping study,’’ J. Syst. Softw., vol. 149, pp. 101–137,
Mar. 2019, doi: 10.1016/j.jss.2018.11.041.

[30] M. Noone and A. Mooney, ‘‘Visual and textual programming lan-
guages: A systematic review of the literature,’’ J. Comput. Educ., vol. 5,
pp. 149–174, 2018, doi: 10.1007/s40692-018-0101-5.

[31] H. Zhang, M. A. Babar, and P. Tell, ‘‘Identifying relevant studies in
software engineering,’’ Inf. Softw. Technol., vol. 53, no. 6, pp. 625–637,
Jun. 2011, doi: 10.1016/j.infsof.2010.12.010.

[32] B. A. Johnsson and B. Magnusson, ‘‘Towards end-user development
of graphical user interfaces for Internet of Things,’’ Future
Gener. Comput. Syst., vol. 107, pp. 670–680, Jun. 2020, doi:
10.1016/j.future.2017.09.068.

[33] G. Huang, P. S. Rao, M.-H. Wu, X. Qian, S. Y. Nof, K. Ramani,
and A. J. Quinn, ‘‘Vipo: Spatial-visual programming with functions for
robot-IoT workflows,’’ in Proc. CHI Conf. Hum. Factors Comput. Syst.,
Apr. 2020, pp. 1–13, doi: 10.1145/3313831.3376670.

[34] S. Sorce, A. Malizia, V. Gentile, P. Jiang, M. Atherton, and D. Harrison,
‘‘Evaluation of a visual tool for early patent infringement detection during
design,’’ in Proc. Int. Symp. End User Develop., in Lecture Notes in
Computer Science, vol. 11553. Cham, Switzerland: Springer, 2019, doi:
10.1007/978-3-030-24781-2_12.

[35] D. Lizcano, F. Alonso, J. Soriano, and G. López, ‘‘A component-
and connector-based approach for end-user composite Web applications
development,’’ J. Syst. Softw., vol. 94, pp. 108–128, Aug. 2014, doi:
10.1016/j.jss.2014.03.039.

[36] A. Merkouris, K. Chorianopoulos, and A. Kameas, ‘‘Teaching program-
ming in secondary education through embodied computing platforms:
Robotics and wearables,’’ ACM Trans. Comput. Edu., vol. 17, no. 2,
pp. 1–22, Jun. 2017.

[37] A. Feng, M. Gardner, and W.-C. Feng, ‘‘Parallel programming with
pictures is a snap!’’ J. Parallel Distrib. Comput., vol. 105, pp. 150–162,
Jul. 2017, doi: 10.1016/j.jpdc.2017.01.018.

[38] H. Kunimune, S. Kamijima, T. Yamamoto, and M. Niimura, ‘‘Trial to
increase motivation on programming by using hardware control functions
in the at visual programming environment,’’ in Proc. 2nd Int. Conf.
Edu. Technol. Manage. (ICETM). New York, NY, USA: Association for
ComputingMachinery, 2019, pp. 50–53, doi: 10.1145/3375900.3375917.

[39] K. Abe, Y. Fukawa, T. Tanaka, ‘‘Prototype of visual programming envi-
ronment for C language novice programmer,’’ in Proc. 8th Int. Congr.
Adv. Appl. Informat. (IIAI-AAI), Toyama, Japan, 2019, pp. 140–145, doi:
10.1109/IIAI-AAI.2019.00037.

[40] A. Sanna, F. Lamberti, F. Bazzano, L. Maggio, ‘‘Developing touch-less
interfaces to interact with 3D contents in public exhibitions,’’ in Proc.
Int. Conf. Augmented Reality, Virtual Reality Comput. Graph., 2016,
pp. 293–303.

[41] S. G. Tamilselvam, N. Panwar, S. Khare, R. Aralikatte, A. Sankaran, and
S. Mani, ‘‘A visual programming paradigm for abstract deep learning
model development,’’ in Proc. 10th Indian Conf. Hum.-Comput. Interact.
(IndiaHCI). NewYork, NY, USA: Association for ComputingMachinery,
2019, Art. no. 16, doi: 10.1145/3364183.3364202.

[42] A. Cannavò, F. D. Pace, F. Salaroglio, and F. Lamberti, ‘‘A visual edit-
ing tool supporting the production of 3D interactive graphics assets for
public exhibitions,’’ Int. J. Hum.-Comput. Stud., vol. 141, Apr. 2020,
Art. no. 102450, doi: 10.1016/j.ijhcs.2020.102450.

14200 VOLUME 9, 2021

http://dx.doi.org/10.1109/VL.1998.706147
http://dx.doi.org/10.1016/j.compeleceng.2017.08.025
http://dx.doi.org/10.1145/1922649.1922658
http://dx.doi.org/10.1007/978-3-030-22646-6_14
http://dx.doi.org/10.1007/978-3-030-22646-6_14
http://dx.doi.org/10.1016/j.cola.2020.100970
http://dx.doi.org/10.1109/ISM.2014.24
http://dx.doi.org/10.1155/2017/1231430
http://dx.doi.org/10.1007/1-4020-5386-X_1
http://dx.doi.org/10.18293/vlss2017-010
http://dx.doi.org/10.1142/S0218001487000084
http://dx.doi.org/10.1007/978-3-642-21530-8_6
http://dx.doi.org/10.1007/978-3-642-21530-8_6
http://dx.doi.org/10.1016/j.jvlc.2014.01.003
http://dx.doi.org/10.1016/j.jvlc.2013.12.004
http://dx.doi.org/10.1109/VLHCC.2017.8103464
http://dx.doi.org/10.1109/2.156380
http://dx.doi.org/10.1109/ICSE.1998.671118
http://dx.doi.org/10.1207/s15516709cog1901_3
http://dx.doi.org/10.1111/j.1551-6708.1987.tb00863.x
http://dx.doi.org/10.1111/j.2044-8295.1980.tb02740.x
http://dx.doi.org/10.1006/jvlc.2002.0240
http://dx.doi.org/10.1155/2013/532659
http://dx.doi.org/10.1007/978-3-319-18425-8_5
http://dx.doi.org/10.1109/ICWS.2015.70
http://dx.doi.org/10.1016/j.jss.2018.11.041
http://dx.doi.org/10.1007/s40692-018-0101-5
http://dx.doi.org/10.1016/j.infsof.2010.12.010
http://dx.doi.org/10.1016/j.future.2017.09.068
http://dx.doi.org/10.1145/3313831.3376670
http://dx.doi.org/10.1007/978-3-030-24781-2_12
http://dx.doi.org/10.1016/j.jss.2014.03.039
http://dx.doi.org/10.1016/j.jpdc.2017.01.018
http://dx.doi.org/10.1145/3375900.3375917
http://dx.doi.org/10.1109/IIAI-AAI.2019.00037
http://dx.doi.org/10.1145/3364183.3364202
http://dx.doi.org/10.1016/j.ijhcs.2020.102450

M. A. Kuhail et al.: Characterizing Visual Programming Approaches for End-User Developers: A Systematic Review

[43] S. Valtolina, F. Hachem, B. R. Barricelli, E. G. Belay, S. Bonfitto, and
M. Mesiti, ‘‘Facilitating the development of iot applications in smart city
platforms,’’ in End-User Development (Lecture Notes in Computer Sci-
ence), vol. 11553. Cham, Switzerland: Springer, 2019, doi: 10.1007/978-
3-030-24781-2_6.

[44] A. Rao, A. Bihani, and M. Nair, ‘‘Milo: A visual programming environ-
ment for data science education,’’ in Proc. IEEE Symp. Vis. Lang. Hum.-
Centric Comput. (VL/HCC), Lisbon, Portugal, Oct. 2018, pp. 211–215,
doi: 10.1109/VLHCC.2018.8506504.

[45] G. De Luca, Z. Li, S. Mian, and Y. Chen, ‘‘Visual programming language
environment for different IoT and robotics platforms in computer science
education,’’ CAAI Trans. Intell. Technol., vol. 3, no. 2, pp. 119–130,
Jun. 2018, doi: 10.1049/trit.2018.0016.

[46] N. Bak, B.-M. Chang, and K. Choi, ‘‘Smart Block: A visual block
language and its programming environment for IoT,’’ J. Comput. Lang.,
vol. 60, Oct. 2020, Art. no. 100999, doi: 10.1016/j.cola.2020.100999.

[47] H. Mei, W. Chen, Y. Ma, H. Guan, W. Hu, ‘‘VisComposer: A visual pro-
grammable composition environment for information visualization,’’ Vis.
Inform., vol. 2, no. 1, pp. 71–81, 2018, doi: 10.1016/j.visinf.2018.04.008.

[48] P. Valderas, V. Torres, I. Mansanet, and V. Pelechano, ‘‘A mobile-based
solution for supporting end-users in the composition of services,’’ Mul-
timedia Tools Appl., vol. 76, no. 15, pp. 16315–16345, Aug. 2017, doi:
10.1007/s11042-016-3910-4.

[49] B. Broll, Á. Lédeczi, H. Zare, D. N. Do, J. Sallai, P. Völgyesi, M. Maróti,
L. Brown, and C. Vanags, ‘‘A visual programming environment for intro-
ducing distributed computing to secondary education,’’ J. Parallel Distrib.
Comput., vol. 118, 2018, pp. 189–200, doi: 10.1016/j.jpdc.2018.02.021.

[50] A. Stratton, C. Bates, and A. Dearden, ‘‘Quando: Enabling museum and
art gallery practitioners to develop interactive digital exhibits,’’ in End-
User Development (Lecture Notes in Computer Science), vol. 10303.
Cham, Switzerland: Springer, 2047, doi: 10.1007/978-3-319-58735-6_7.

[51] R. Francese, M. Risi, and G. Tortora, ‘‘Iconic languages: Towards end-
user programming of mobile applications,’’ J. Vis. Lang. Comput., vol. 38,
pp. 1–8, Feb. 2017, doi: 10.1016/j.jvlc.2016.10.009.

[52] L. Thamsen, T. Renner, M. Byfeld, M. Paeschke, D. Schroder, and
F. Bohm, ‘‘Visually programming dataflows for distributed data ana-
lytics,’’ in Proc. IEEE Int. Conf. Big Data (Big Data), Washing-
ton, DC, USA, Dec. 2016, pp. 2276–2285, doi: 10.1109/BigData.2016.
7840860.

[53] S. Alexandrova, Z. Tatlock, and M. Cakmak, ‘‘RoboFlow: A flow-based
visual programming language for mobile manipulation tasks,’’ in Proc.
IEEE Int. Conf. Robot. Autom. (ICRA), Seattle, WA, USA, May 2015,
pp. 5537–5544, doi: 10.1109/ICRA.2015.7139973.

[54] D. Rough and A. Quigley, ‘‘Jeeves—A visual programming environment
for mobile experience sampling,’’ in Proc. IEEE Symp. Vis. Lang. Hum.-
Centric Comput. (VL/HCC), Atlanta, GA, USA, Oct. 2015, pp. 121–129,
doi: 10.1109/VLHCC.2015.7357206.

[55] F. CabitzaIade and G. Gesso, ‘‘Rule-based programming as easy as a
child’s play. A user study on active documents,’’ in Proc. Int. Conf. Inter-
face Hum. Comput. Interact. (IHCI IADIS), Lisbon, Portugal, Jul. 2012,
pp. 73–80.

[56] T. Booth and S. Stumpf, ‘‘End-user experiences of visual and textual pro-
gramming environments for Arduino,’’ in End-User Development (Lec-
ture Notes in Computer Science), vol. 7897. Berlin, Germany: Springer,
2013, doi: 10.1007/978-3-642-38706-7_4.

[57] T. N. Luong, P. Etcheverry, C. Marquesuzaà, and T. Nodenot, ‘‘A visual
programming language for designing interactions embedded in Web-
based geographic applications,’’ in Proc. ACM Int. Conf. Intell. User
Interfaces (IUI). New York, NY, USA: Association for Computing
Machinery, 2012, pp. 207–216, doi: 10.1145/2166966.2167003.

[58] I. Weber, H.-Y. Paik, and B. Benatallah, ‘‘Form-based Web service com-
position for domain experts,’’ ACM Trans. Web, vol. 8, no. 1, Dec. 2013,
Art. no. 2, doi: 10.1145/2542168.

[59] T. Turchi, A. Malizia, A. Dix, ‘‘TAPAS: A tangible end-user development
tool supporting the repurposing of pervasive displays,’’ J. Vis. Lang.
Comput., vol. 39, pp. 66–77, Apr. 2017, doi: 10.1016/j.jvlc.2016.11.002.

[60] J. Danado and F. Paternò, ‘‘Puzzle: A mobile application development
environment using a jigsaw metaphor,’’ J. Vis. Lang. Comput., vol. 25,
no. 4, pp. 297–315, Aug. 2014, doi: 10.1016/j.jvlc.2014.03.005.

[61] W.-K. Chen and P.-Y. Tu, ‘‘VisualTPL: A visual dataflow language
for report data transformation,’’ J. Vis. Lang. Comput., vol. 25, no. 3,
pp. 210–226, Jun. 2014, doi: 10.1016/j.jvlc.2013.11.003.

[62] Z. Drey and C. Consel, ‘‘Taxonomy-driven prototyping of home automa-
tion applications: A novice-programmer visual language and its evalua-
tion,’’ J. Vis. Lang. Comput., vol. 23, no. 6, pp. 311–326, Dec. 2012, doi:
10.1016/j.jvlc.2012.07.002.

[63] J. Nielsen, ‘‘Heuristic evaluation,’’ in Usability Inspection Methods,
J. Nielsen and R. L. Mack, Eds. New York, NY, USA: Wiley, 1994.

[64] J. Nielsen, Usability Engineering, 1st ed. San Mateo, CA, USA:
Morgan Kaufmann, Sep. 1993.

[65] B. Shneiderman, C. Plaisant, M. Cohen, S. Jacobs, N. Elmqvist, and
N. Diakopoulos, Designing the User Interface: Strategies for Effective
Human-Computer Interaction, 6th ed. London, U.K.: Pearson,May 2016.
[Online]. Available: http://www.cs.umd.edu/hcil/DTUI6

[66] T. R. G. Green, ‘‘Cognitive dimensions of notations,’’ in People and
Computers V, A. Sutcliffe and L. Macaulay, Eds. Cambridge, U.K.:
Cambridge Univ. Press, 1989, pp. 443–460.

[67] S. Lauesen, User Interface Design: A Software Engineering Perspective.
Reading, MA, USA: Addison-Wesley, 2004.

[68] J. Nielsen, ‘‘Iterative user-interface design,’’ Computer, vol. 26, no. 11,
pp. 32–41, Nov. 1993, doi: 10.1109/2.241424.

[69] M. Burnett, C. Cook, O. Pendse, G. Rothermel, J. Summet, and
C. Wallace, ‘‘End-user software engineeringwith assertions in the spread-
sheet paradigm,’’ in Proc. 25th Int. Conf. Softw. Eng., Portland, OR, USA,
2003, pp. 93–105.

[70] A. Koesnandar, S. Elbaum, G. Rothermel, L. Hochstein, C. Scaffidi,
and K. T. Stolee, ‘‘Using assertions to help end-user programmers
create dependable Web macros,’’ in Proc. 16th ACM SIGSOFT Int.
Symp. Found. Softw. Eng. (SIGSOFT/FSE), Atlanta, GA, USA, 2008,
pp. 124–134.

[71] C. Scaffidi, ‘‘Topes: Enabling end-user programmers to validate and
reformat data,’’ Inst. Softw. Res. (ISR), Carnegie Mellon Univ.,
Pittsburgh, PA, USA, Tech. Rep. CMU-ISR-09-105, 2009.

[72] R. Schaefer, ‘‘On the limits of visual programming languages,’’ ACM
SIGSOFT Softw. Eng. Notes, vol. 36, no. 2, pp. 7–8, Mar. 2011, doi:
10.1145/1943371.1943373.

[73] M. A. Kuhail and S. Lauesen, ‘‘Uvis: A formula-based end-user tool for
data visualization,’’ IEEE Access, vol. 8, pp. 110264–110278, 2020, doi:
10.1109/ACCESS.2020.3002591.

[74] J. Van Brummelen, C. Yeo, and K. Weng, ‘‘Learning to program conver-
sationally: A conversational agent to further democratize programming,’’
in Proc. 14th Annu. Int. Technol., Educ. Develop. Conf. (INTED), 2020,
p. 5.

[75] L. N. Paschoal, L. F. Turci, T. U. Conte, and S. R. S. Souza, ‘‘Towards a
conversational agent to support the software testing education,’’ in Proc.
33rd Brazilian Symp. Softw. Eng., New York, NY, USA, Sep. 2019, doi:
10.1145/3350768.3352456.

[76] B. Myers, S. E. Hudson, and R. Pausch, ‘‘Past, present, and future of user
interface software tools,’’ ACM Trans. Comput.-Hum. Interact., vol. 7,
no. 1, pp. 3–28, Mar. 2000.

[77] M. Burnett, ‘‘What is end-user software engineering and why does it mat-
ter?’’ in End-User Development (Lecture Notes in Computer Science),
vol. 5435, V. Pipek, M. B. Rosson, B. de Ruyter, V. Wulf, Eds. Berlin,
Germany: Springer, 2009, doi: 10.1007/978-3-642-00427-8_2.

[78] A. Annie. The State of Mobile in 2020: The Key Stats You Need to Know.
Accessed: Oct. 4, 2020. [Online]. Available: https://www.appannie.
com/en/insights/market-data/state-of-mobile-2020-infographic/

[79] H. van der Meij and J. van der Meij, ‘‘A comparison of paper-based
and video tutorials for software learning,’’ Comput. Educ., vol. 78,
pp. 150–159, Sep. 2014, doi: 10.1016/j.compedu.2014.06.003.

[80] M. Dalal, ‘‘Impact of multi-media tutorials in a computer science labo-
ratory course—An empirical study,’’ Electron. J. e-Learn., vol. 12, no. 4,
pp. 366–374, 2014.

[81] M. Soegaard, ‘‘Interaction styles,’’ in The Glossary of Human Computer
Interaction. Aarhus, Denmark: Interaction Design Foundation, 2020.
Accessed: Oct. 7, 2020. [Online]. Available: https://www.interaction-
design.org/literature/book/the-glossary-of-human-computer-
interaction/interaction-styles.

[82] R. Macefield, ‘‘How to specify the participant group size for usabil-
ity studies: A practitioner’s guide,’’ J. Usability Stud., vol. 5, no. 1,
pp. 34–45, 2009.

[83] M. Ortiz, K. Chiluiza, and M. Valcke, ‘‘Gamification in higher education
and stem: A systematic review of literature,’’ inProc. Conf., 8th Annu. Int.
Conf. Educ. New Learn. Technol. (Edulearn), Barcelona, Spain, Jul. 2016,
pp. 6548–6558, doi: 10.21125/edulearn.2016.0422.

[84] M. S. Farooq, S. A. Khan, F. Ahmad, S. Islam, and A. Abid,
‘‘An evaluation framework and comparative analysis of the widely used
first programming languages,’’ PLoS ONE, vol. 9, no. 2, Feb. 2014,
Art. no. e88941, doi: 10.1371/journal.pone.0088941.

[85] J. Nielsen. (2000).Why You Only Need to Test with 5 Users. Nielsen Nor-
man Group. Accessed: Nov. 25, 2020. [Online]. Available: https://www.
nngroup.com/articles/why-you-only-need-to-test-with-5-users/

VOLUME 9, 2021 14201

http://dx.doi.org/10.1007/978-3-030-24781-2_6
http://dx.doi.org/10.1007/978-3-030-24781-2_6
http://dx.doi.org/10.1109/VLHCC.2018.8506504
http://dx.doi.org/10.1049/trit.2018.0016
http://dx.doi.org/10.1016/j.cola.2020.100999
http://dx.doi.org/10.1016/j.visinf.2018.04.008
http://dx.doi.org/10.1007/s11042-016-3910-4
http://dx.doi.org/10.1016/j.jpdc.2018.02.021
http://dx.doi.org/10.1007/978-3-319-58735-6_7
http://dx.doi.org/10.1016/j.jvlc.2016.10.009
http://dx.doi.org/10.1109/BigData.2016.7840860
http://dx.doi.org/10.1109/BigData.2016.7840860
http://dx.doi.org/10.1109/ICRA.2015.7139973
http://dx.doi.org/10.1109/VLHCC.2015.7357206
http://dx.doi.org/10.1007/978-3-642-38706-7_4
http://dx.doi.org/10.1145/2166966.2167003
http://dx.doi.org/10.1145/2542168
http://dx.doi.org/10.1016/j.jvlc.2016.11.002
http://dx.doi.org/10.1016/j.jvlc.2014.03.005
http://dx.doi.org/10.1016/j.jvlc.2013.11.003
http://dx.doi.org/10.1016/j.jvlc.2012.07.002
http://dx.doi.org/10.1109/2.241424
http://dx.doi.org/10.1145/1943371.1943373
http://dx.doi.org/10.1109/ACCESS.2020.3002591
http://dx.doi.org/10.1145/3350768.3352456
http://dx.doi.org/10.1007/978-3-642-00427-8_2
http://dx.doi.org/10.1016/j.compedu.2014.06.003
http://dx.doi.org/10.21125/edulearn.2016.0422
http://dx.doi.org/10.1371/journal.pone.0088941

M. A. Kuhail et al.: Characterizing Visual Programming Approaches for End-User Developers: A Systematic Review

[86] J. Nielsen. (2001). Usability Metrics. Nielsen Norman Group. [Online].
Available: https://www.nngroup.com/articles/usability-metrics/

[87] Ubisoft. Accessed: Sep. 29, 2020. [Online]. Available: https://
www.ubisoft.com/

[88] Functionize: An Intelligent-Based Testing Company.
Accessed: Sep. 29, 2020. [Online]. Available: https://www.functionize.
com/

[89] PMI’s Report on Artificial Intelligence. Accessed: Sep. 29, 2020.
[Online]. Available: https://www.pmi.org/-/media/pmi/documents/
public/pdf/learning/thought-leadership/pulse/ai-innovators-cracking-
the-code-project-performance.pdf?v=acf03326-778f-4e64-925e-
70c1149f37ea&sc_lang_temp=en

[90] Amazon Honey Code. Accessed: Sep. 21, 2020. [Online]. Available:
https://www.honeycode.aws/

[91] Microsoft PowerApps. Accessed: Sep. 21, 2020. [Online]. Available:
https://powerapps.microsoft.com/en-us/

[92] M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk, E. Eastmond,
K. Brennan, A. Millner, E. Rosenbaum, J. Silver, B. Silverman, and
Y. Kafai, ‘‘Scratch: Programming for all,’’Commun. ACM, vol. 52, no. 11,
pp. 60–67, 2009.

[93] App Inventor. Accessed: Sep. 21, 2020. [Online]. Available:
https://appinventor.mit.edu/

[94] Atooma. Accessed: Sep. 22, 2020. [Online]. Available: https://atooma.
com/

[95] Microsoft Visual Programming Language. Accessed: Sep. 24, 2020.
[Online]. Available: https://docs.microsoft.com/en-us/previous-
versions/microsoft-robotics/bb483088(v=msdn.10)

[96] MIT Open Blocks. Accessed: Sep. 24, 2020. [Online]. Available:
http://web.mit.edu/mitstep/openblocks.html

[97] Blockly. Accessed: Sep. 24, 2020. [Online]. Available: https://developers.
google.com/blockly

[98] Arduino. Accessed: Sep. 24, 2020. [Online]. Available: https://www.
arduino.cc/

[99] GitHub. Accessed: Sep. 26, 2020. [Online]. Available: https://github.com/
[100] LabView. Accessed: Nov. 16, 2020. [Online]. Available: https:

//www.ni.com/en-lb/shop/labview.html
[101] Microsoft Word. Accessed: Nov. 16, 2020. [Online]. Available:

https://www.microsoft.com/en/microsoft-365/word
[102] The Forrester Wave: Low-Code Development Platforms For AD&D

Pros, Q1 2019. Accessed: Nov. 13, 2020. [Online]. Available:
https://www.outsystems.com/1/low-code-development-platforms-wave/

[103] Smart Block. Accessed: Nov. 20, 2020. [Online]. Available: https://
github.com/baknayeon/smartblock

[104] ThinkML. Accessed: Nov. 21, 2020. [Online]. Available: https://
goodboyanush.github.io/blogs/dlide.html

[105] Snap4City Platform. Accessed: Nov. 21, 2020. [Online]. Available:
https://www.snap4city.org/

[106] The Milo Project. Accessed: Nov. 21, 2020. [Online]. Available:
https://github.com/miloide

[107] Quando—Visual Programming for Digital Interactive Exhibits.
Accessed: Nov. 21, 2020. [Online]. Available: https://
github.com/andrewfstratton/quando.

[108] Flink Visual Programming. Accessed: Nov. 21, 2020. [Online]. Available:
https://github.com/citmp2015/flink-visual-programming

[109] RoboFlow. Accessed: Nov. 21, 2020. [Online]. Available: https://
github.com/sonyaa/roboflow

[110] Modkit. Accessed: Nov. 21, 2020. [Online]. Available: https://
modkit.com/

[111] NetsBlox. Accessed: Nov. 21, 2020. [Online]. Available: https://
netsblox.org/

[112] VisComposer. Accessed: Nov. 21, 2020. [Online]. Available: https://
github.com/lyt9304/viscomposer

[113] Enchanting. Accessed: Nov. 21, 2020. [Online]. Available: http://
enchanting.robotclub.ab.ca/tiki-index.php

[114] Snap! Accessed: Nov. 21, 2020. [Online]. Available: https://
snap.berkeley.edu/snap/snap.html

[115] TAPAS. Accessed: Nov. 21, 2020. [Online]. Available: https://
github.com/tommasoturchi/TAPAS

[116] Jeeves ESM Tool. Accessed: Nov. 21, 2020. [Online]. Available: https://
danielrough.net/jeeves-esm-tool/

[117] WS-BPEL Tool. Accessed: Dec. 20, 2020. [Online].
Available: https://www.oasis-open.org/committees/tc
_home.php?wg_abbrev=bpel4people

[118] VIPLE Tool. Accessed: Dec. 22, 2020. [Online]. Available:
http://neptune.fulton.ad.asu.edu/VIPLE/

[119] Scimago Journal and Country Rank. Accessed: Nov. 21, 2020. [Online].
Available: https://www.scimagojr.com/

MOHAMMAD AMIN KUHAIL (Member, IEEE)
received the M.Sc. degree in software engineering
from the University of York, in 2006, and the Ph.D.
degree in computer science from the IT Univer-
sity of Copenhagen, Denmark, in 2013. He has
served as an Assistant Teaching Professor with the
University of Missouri–Kansas City, USA, for six
years. He joined Zayed University, United Arab
Emirates, in 2019. He is currently a Computer
Scientist and a Software Engineer with a diverse

skill set that spans web development, object-oriented programming, algo-
rithms, usability, and data science. He also serves as an Assistant Professor
with Zayed University. His research interests include end-user development,
usability analysis, and computer science education.

SHAHBANO FAROOQ received the M.Sc.
degree in computer science from the University
of Calgary, Canada. She is currently an Instructor
with Zayed University, United Arab Emirates. Her
research interests include HCI and pedagogical
innovation. She also has professional experience
in full stack application development.

RAWAD HAMMAD received the M.Sc. degree
in cognitive computing from the Goldsmiths Uni-
versity of London, in 2010, and the Ph.D. degree
in software engineering from the University of the
West of England (UWE), in 2018. He is currently
the Programme Leader for M.Sc. degree in com-
puting and information communication technol-
ogy and a Senior Lecturer in computer science
and digital technologieswith theUniversity of East
London. Prior to coming to the University of East

London, he was a Senior Education Solutions Researcher/Analyst with the
King’s College London; a Researcher with the Centre for Complex Cooper-
ative Systems, UWE, the Manager of the E-Learning Centre, IUG Gaza Uni-
versity, and a Developer and the Team Lead of Logicteca Company, Canada.
He has extensive experience on software engineering, technology enhanced
learning (TEL), artificial intelligence, and smart health research and practice.
He has contributed and led various international projects, published research
articles, and has been involved in conference programme committees.
His research interests include artificial intelligence, software/requirement
engineering, TEL, analytics, the smart cities/IoT, semantics, and enterprise
architecture. He led numerous international initiatives, e.g., TRANSFER and
SmartTech (including Japan, Germany, Finland, and Middle East).

MOHAMMED BAHJA is currently a Lecturer in
computer science with the University of Birm-
ingham. Before joining the University of Birm-
ingham, he has served in the education sector at
several universities in U.K., including the Univer-
sity College London (UCL). His research interest
includes data science for e-learning applications,
including natural language processing for cap-
turing user experience and engagement behavior.
He has participated in a variety of multidisci-

plinary projects, including the EU funded projects of Policy Compass,
MINICHIP Decision Support System, and Green Datacentre. Apart from
academia, he has strong connections within the ICT industry for both the
public and private sphere. He provides robust data science solutions and
software consulting services for both the public (including NHS) and the
private sphere.

14202 VOLUME 9, 2021

	Characterizing Visual Programming Approaches for End-User Developers: A Systematic Review
	Recommended Citation

	Characterizing Visual Programming Approaches for End-User Developers: A Systematic Review

