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Sulforaphane (SFN) may hinder carcinogenesis by altering epigenetic events in the cells; however, its molecular mechanisms are
unclear. The present study investigates the role of SFN in modifying epigenetic events in human cervical cancer cells, HeLa. HeLa
cells were treated with SFN (2.5𝜇M) for a period of 0, 24, 48, and 72 hours for all experiments. After treatment, expressions
of DNMT3B, HDAC1, RAR𝛽, CDH1, DAPK1, and GSTP1 were studied using RT-PCR while promoter DNA methylation of
tumor suppressor genes (TSGs) was studied using MS-PCR. Inhibition assays of DNA methyl transferases (DNMTs) and histone
deacetylases (HDACs) were performed at varying time points. Molecular modeling and docking studies were performed to
explore the possible interaction of SFN with HDAC1 and DNMT3B. Time-dependent exposure to SFN decreases the expression of
DNMT3B and HDAC1 and significantly reduces the enzymatic activity of DNMTs and HDACs. Molecular modeling data suggests
that SFN may interact directly with DNMT3B and HDAC1 which may explain the inhibitory action of SFN. Interestingly, time-
dependent reactivation of the studied TSGs via reversal of methylation in SFN treated cells correlates well with its impact on the
epigenetic alterations accumulated during cancer development. Thus, SFN may have significant implications for epigenetic based
therapy.

1. Introduction

Genetic alterations, such as mutations and aberrant epi-
genetic regulation, lead to susceptibility to develop cancer
[1, 2]. Notably, reversible nature of epigenetic machinery
makes it an attractive molecular target for cancer prevention
and can be achieved by understanding the initiation and
maintenance of epigenetic gene silencing [3, 4]. Extensive
studies have shown that promoter hypermethylation is one
of the imperative mechanisms for epigenetic-mediated inac-
tivation of numerous tumor suppressor genes (TSGs) during

the development of cancer [4–6]. DNA methyltransferases
(DNMTs) facilitate hypermethylation of CpG islands in the
promoter region of TSGs leading to silencing of these genes
either by checking the binding of transcription factors or
by facilitating methylated DNA-binding proteins which fur-
ther recruit other transcriptional repressors such as histone
deacetylases (HDACs) and histone methyl transferases, sub-
sequently resulting in transcriptionally inactive chromatin
form [5, 7].

Synthetic epigenetic drugs (e.g., Aza-deoxycytidine, tri-
chostatin A) that regulate epigenetic patterns including DNA

Hindawi Publishing Corporation
Evidence-Based Complementary and Alternative Medicine
Volume 2015, Article ID 412149, 12 pages
http://dx.doi.org/10.1155/2015/412149



2 Evidence-Based Complementary and Alternative Medicine

methylation and histone modification, via key targeting
enzymes, namely, DNA methyltransferases and histone
deacetylases, are under clinical studies [8–10]. However, cer-
tain disadvantages such as lack of specificity, short duration of
action, and unpredicted effects on functional and structural
patterns of normal cells restrict the general use of these
synthetic epigenetic drugs [8–10]. Nowadays, research on
plant derived dietary factors is gaining more attention to
utilize them as epigenetic modifiers since these agents have
been found to revert the aberrant epigenetic patterns with the
least undesirable traits which are caused by available synthetic
epigenetic drugs.

Use of dietary phytochemicals including SFN, genistein,
curcumin, resveratrol, and EGCG provides a promising
prospect for the development of better and effective strategy
to prevent the cancer risk as these agents can block or reverse
cancer progression through variousmolecular targets includ-
ing epigenetic modulation [11–15]. SFN, an isothiocyanate,
is the main bioactive constituent of cruciferous vegetables
such as broccoli, cabbage, garden cress, cauliflower, and
Brussels sprouts. Many studies have shown its antibacte-
rial, antiproliferative, anti-inflammatory, antiangiogenic, and
antimetastatic effects, differentiation- or apoptosis-inducing
effect, and ability to arrest the cell cycle, inhibit DNA
adduct formation, and modulate phase I and II xenobiotic-
metabolizing enzymes and antioxidant activities [16–18].
Given this context of chemopreventive potential of SFN
as an epigenetic modifier, the present study was designed
to investigate inhibition of DNMTs and HDACs by SFN
and its effect on the expression of epigenetically modified
(hyper- or hypomethylated) genes including RAR𝛽, CDH1,
DAPK1, and GSTP1 in human cervical cancer cell line, HeLa.
To correlate the inhibition of DNMTs and HDACs activity
induced by SFN, we performed in silicomolecular modelling
and docking studies on DNMT3B and HDAC1.

2. Materials and Methods

2.1. Cell Line andCell Culture. Thehuman cervical carcinoma
cell line, HeLa, wasmaintained in DMEM (Sigma, USA) sup-
plemented with 10% heat inactivated fetal bovine serum and
100 𝜇g/mL penicillin-streptomycin (Sigma, USA) and main-
tained in a humidified atmosphere of 5% CO

2
in air at 37∘C.

2.2. Chemicals and Reagents. SFN, trichostatin A (TSA), and
5-Aza-deoxycytidine (5-Aza-dC) were obtained from Sigma
(Sigma, USA). Nuclear extraction kit, DNMTs, and HDACs
activity assay kit were purchased from Epigentek (Epigentek,
USA). DNA purification (GenElute Mammalian Genomic
DNA), total RNA purification (GenElute Mammalian
Genomic Total RNA), and DNA modification (Imprint
DNAModification) kits were purchased from Sigma (Sigma,
USA). RT-PCR (ProtoScriptM-MuLVTaq) kit was obtained
from New England Bio Labs (New England Bio Labs, USA).

2.3. Preparation of Drugs. A stock solution of SFN (10mM)
was prepared in DMSO (Sigma, USA). The solution was
stored in aliquots at −20∘C. Further dilution was made in

a complete medium (DMEM supplemented with 10% FBS)
to the required concentrations of 2.5 𝜇M for the treatment of
HeLa cells. A substock of 500𝜇M TSA was prepared from
5mM stock solution. A working concentration of 0.05𝜇M
was further used for the experiments. A stock solution of
219mM 5-Aza-deoxycytidine (5-Aza-dC) (Sigma, USA) was
prepared and further working concentration of 1.5 𝜇M was
made from 10mM substock.

2.4. DNMT Activity Assay. HeLa cells were treated with SFN
and 5-Aza-dC for 3 days. The cells were then harvested and
nuclear extracts were prepared from treated cells according
to various time points using EpiQuik nuclear extraction kit
(Epigentek, USA) as per the manufacturer’s protocol. DNMT
activity was then assayed using the EpiQuik DNMT activity
assay kit (Epigentek, USA) as per protocol instructions.

2.5. HDAC Activity Assay. The effect of SFN on HDAC
activity in HeLa cells was determined using the EpiQuik
HDAC activity assay kit (Epigentek, USA) according to the
manufacturer’s instructions. Briefly, HeLa cells were treated
with SFN and TSA for 3 days and harvested and nuclear
extracts were then prepared for the same using EpiQuik
nuclear extraction kit (Epigentek, USA) following the man-
ufacturer’s instructions.

2.6. In Silico Molecular Modeling Studies of DNMT3B and
HDAC1. To address the interaction of SFN with the epi-
genetic modulator enzymes DNMT3B and HDAC1, the 3D
structures of the proteins were required. Complete structure
of DNMT3B or its catalytic domain is currently not available
in structure databases [19]. Though a part of the DNMT3B
structure is solved, it comprises only the PWWP domain
that lies in the N-terminal region of the protein away from
the C-terminal catalytic domain. Hence, there was a need
to produce a homology model of the catalytic domain
of DNMT3B. The protein sequence of DNMT3B (UniProt
ID: Q9UBC3) was retrieved from UniProt Knowledgebase
(UniProtKB) [20]. The BLAST tool on NCBI was used to
identify the possible structural template for the catalytic
domain of DNMT3B [21]. The BLAST search was performed
with the full DNMT3B sequence as query and PDB as the
target database with default parameter. The top hit was the
catalytic domain of DNMT3A (RCSB Protein Data Bank;
PDB ID: 2QRV) which gave the best coverage (33%) for the
full DNMT3B sequence with an 𝑒-value of 5𝑒 − 169 and 80%
sequence identity. The template covered from residue 568 to
852 of DNMT3B which includes the full catalytic domain
[22]. The SWISS-MODEL homology modelling server was
used to model the catalytic domain of DNMT3B (henceforth
referred to as mDNMT3B) using 2QRV as the template
[23].

The estimated absolute model quality for mDNMT3B
in terms of 𝑄-mean 𝑍-score was −2.24, and this modelled
structure was subsequently used for docking studies [24].The
X-ray crystal structure ofHDAC1 in complex with a fragment
of metastasis-associated protein was recently solved at 3 Å
resolution and is available at RCSB Protein Data Bank (PDB
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Table 1: Residues defining the substrate binding pocket of HDAC1
and mDNMT3B. Active site residues are underlined.

Protein Residues lining the substrate binding cavity

mDNMT3B

C-651, E-605, F-581, D-582, G-583, T-586, S-604,
E-605, V-606, C-607, V-628
G-648, S-649, P-650, C-651, N-652, S-655, V-657,
N-658, P-659, L-671, E-697
V-699, V-700, A-701, R-731, A-732, R-733, R-773,
I-774, K-777, S-778, N-779, S-780
I-781, R-823, G-824, Q-827, K-828, G-831, R-832,
S-833, W-834

HDAC1
H-140, H-141, D-176, H-178, D-264, L-271, F-109,
W-135, A-136, G-137, L-139, G-149, C-151, F-205,
Zn ion

ID: 4BKX) [25]. The HDAC1 chain (chain B) was extracted
and used for the subsequent docking studies.

2.7. Defining Substrate Binding Pocket of mDNMT3B and
HDAC1. In order to define the substrate binding site in
mDNMT3B, the protein was submitted to the CASTp server
[26]. The pocket containing both the active residue (Cys-
651) and cofactor binding site (Glu-605) was accepted as
the substrate binding pocket of mDNMT3B. The pocket
was further evaluated by docking of the inhibitor (5-Aza-
dC) on the protein structure. Table 1 lists all the residues
that constitute the substrate binding pocket of mDNMT3B.
Several of these residues match the active site residues as
described by another group [27].

The active site of HDAC1was defined by comparisonwith
histone deacetylase 8 (HDAC8) where the crystal structure
is solved with the inhibitor trichostatin A (TSA) at 1.9 Å
resolution (PDB ID: 1T64). The crystal structure contained
twomolecules of TSAandwehave considered theTSAbound
in the active site tunnel for our analysis. The interacting
residues of HDAC8 with ligand TSA were obtained from
LIGPLOT, which uses HBPLUS program to schematically
depict the interactions in terms of hydrogen bonds and non-
bonded contacts [28]. To identify the corresponding residues
of HDAC1, structural alignment of HDAC1 and HDAC8 was
performed using the protein structure comparison service
PDBeFold at the European Bioinformatics Institute [29].
Rootmean square deviation (RMSD) calculated between C𝛼-
atoms of matched residues at the best 3D superposition of
the structures provided a value of 1.1 Å. 𝑄-score (range 0-
1), which is a measure of the quality of the alignment and
takes into account both the RMSD value and the alignment
length, was observed to be 0.813 while the 𝑍-score was
18.58, both indicative of a high structural similarity. Table 2
shows the residues of HDAC8 that interacts with TSA in
the crystal structure and the equivalent residues of HDAC1
obtained after structural alignment with HDAC8. Binding
of SFN in the same cavity where inhibitor TSA binds will
be an indication that SFN produces its inhibitory effects
by a similar mechanism. The HDAC1 structure was further
submitted to CASTp server to identify its complete substrate
binding pocket [26]. The largest pocket identified by CASTp

Table 2: Comparison of substrate binding residues of HDAC8 and
HDAC1.

HDAC8 Y D H H G F D D H D D M Y
100 101 142 143 151 152 176 178 180 183 267 274 306

HDAC1 E D H H G F D D H D D L Y
98 99 140 141 149 150 174 176 178 181 264 271 303

included several of the predicted substrate binding residues
listed in Table 1 and was therefore defined as the substrate
binding pocket. The active site of class I HDAC family has
been equated to a tunnel bearing a catalytically pivotal zinc
ion towards its end [30]. A previous study on HDAC1 and
biarylalanine-containing hydroxamic acids has also referred
to a similar set of residues [31].

2.8. Docking. Three-dimensional structures of SFN, 5-Aza-
dC, and TSA in mol2 format were retrieved from the ZINC
database and their structures are depicted in Figure 3 [32].
Blind docking of ligands (SFN) with protein HDAC1 and
ligands (SFN and 5-Aza-dC) with protein mDNMT3B was
performed using SwissDock, which uses EADock algorithm
[33] to identify the binding sites of ligands on the respective
proteins. All the residues of the proteins were held fixed and a
binding pocket was not defined so as not to bias the docking
towards the active site. The parameters selected for docking
on the SwissDock server were “accurate” with no flexibility of
side chain of any amino acid of the target proteins. Each dock-
ing experiment results in many binding modes of the ligand,
which are clustered according to their FullFitness scores after
calculating their energies using CHARMM.Amore favorable
binding mode is indicated by a more negative FullFitness
score. Analyses of all docked poses were performed using the
molecular visualization software UCSF-Chimera [34].

2.9. Bisulfite Modification and Methylation-Specific PCR (MS-
PCR). DNA was extracted from HeLa cells after the treat-
ment with SFN at 0, 24, 48, and 72 h, respectively, by using
GenElute Mammalian Genomic DNA Miniprep kit (Sigma,
USA) as per the manufacturer’s instructions. Furthermore,
bisulphite modification and purification of DNA samples
were carried out by the Imprint DNA Modification kit
(Sigma, USA) protocol. The modified DNA was used as a
template for MSP (methylation-specific PCR), to distinguish
between methylated and unmethylated promoter regions
of RAR𝛽, CDH1, DAPK1, and GSTP1 genes by using spe-
cific primers sets as discussed previously (methylated and
unmethylated, resp.) [4, 35–37].MSPwas performed on 50 ng
of bisulfite-treated DNA under the following conditions:
initial denaturation at 95∘C for 5min, followed by 35 ampli-
fication cycles (denaturation at 94∘C for 30 s, annealing Tm
(RAR𝛽: 56∘C, CDH1: 56∘C, DAPK1: 57∘C, and GSTP1: 56∘C)
for 30 s, and extension at 72∘C for 45 s) with final extension at
72∘C for 7min.

2.10. Reverse Transcription-PCR. Total RNA isolation was
carried out as per themanufacturer’s protocol usingGenElute
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MammalianGenomic Total RNA kit (Sigma, USA) from SFN
treated and untreated HeLa cells at various time points (24,
48, and 72 h). Reverse transcription of RNA to synthesize
cDNAwas performed using the ProtoScriptM-MuLVTaqRT-
PCR Kit (New England Bio Labs, USA) from 5mg of total
RNA (at 42∘C for 60min) followed by RT-PCR using gene-
specific primers for 𝛽-actin, RAR𝛽, CDH1, DAPK1, GSTP1,
DNMTB, and HDAC1. The PCR cycle was as follows: initial
denaturation at 95∘C for 5min, followed by 35 amplification
cycles (denaturation at 94∘C for 30 s, annealing Tm (𝛽-actin:
56∘C, RAR𝛽: 56∘C, CDH1: 55.5∘C, DAPK1: 56∘C, GSTP1:
55∘C, DNMT3B: 56∘C, and HDAC1: 56∘C) for 30 s, and
extension at 72∘C for 45 s) with final extension at 72∘C for
7min. The primer sequences used were described previously
[4, 18, 38–42]. Amplified products were visualized on a 2%
agarose gel containing ethidium bromide.

2.11. Statistical Analysis. All data are expressed as means ±
SD of at least 3 experiments. Fisher’s exact test was adopted
for statistical evaluation of the results. Significant differences
were established at 𝑃 < 0.05.

3. Results

3.1. SFN Inhibits DNMTs Activity and Downregulates the
Expression of DNMT3B in HeLa Cells. DNA methyltrans-
ferase (DNMT) activity assay was performed in nuclear
extract, extracted from SFN treated HeLa cells at various
time points (24, 48, and 72 h). SFN was found to exert
significant time-dependent inhibition of DNMT activity (7%,
15%, and 23%) in HeLa cells compared with the untreated
control (Figure 1(a)). Time-dependent (24, 48, and 72 h)
exposure of HeLa cells with 1.5 𝜇M5-Aza-dC resulted in 10%,
21%, and 35% inhibition of DNMT activity in comparison
to untreated control. Furthermore, whether the activity of
DNMT correlated with the expression of DNMT3B induced
by SFN treatment in HeLa cells was determined. Untreated
HeLa cells exhibited the highest levels of DNMT3B mRNA
whereas SFN treated cells showed significant decrease in
the expression of DNMT3B in a time dependent-manner
(24, 48, and 72 h) (Figure 1(b)). Similarly, 5-Aza-dC treated
cell also showed time-dependent decrease in the expression
of DNMT3 B. 𝛽-actin was used as an internal control for
comparison of samples (Figure 1(b)).

3.2. SFN Inhibits HDACs Activity and Reduces the Expression
ofHDAC1 inHeLaCells. HDACs are an enzyme familywhich
is mainly involved in histone deacetylation and linked with
the increased levels of epigenetically silenced genes in cancer.
The activity of HDACs in HeLa cells was determined by
treating the cells with SFN at 24, 48, and 72 h, respectively.
It was observed that SFN treated HeLa cells showed a time-
dependent decline of 9%, 21%, and 39% in HDACs activity
(Figure 2(a)). It was also observed that the exposure of
HeLa cells to HDAC inhibitor (0.05 𝜇M TSA) showed time-
dependent decrease in the activity of HDACs and caused
24% inhibition after 24 h of exposure (Figure 2(a)).Moreover,
whether the decline in HDACs activity correlated with
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Figure 1: Effect of SFN and 5-Aza-dC on DNMT3B in human
cervical cancer cells (HeLa). (a) 2.5𝜇M of SFN and 1.5𝜇M 5-Aza-
dC treatments significantly inhibit the activity of DNMT in time-
dependent manner, respectively. Values are means ± SD of three
independent experiments. Symbol (∗) indicates significant (𝑃 <
0.05) difference of data between control and treated cells. (b) 2.5𝜇M
SFN treatedHeLa cells show significantly time-dependent reduction
in the mRNA expression of DNMT3B in comparison to untreated
cells. Panel A shows 𝛽-actin expression as an internal control, Panel
B shows the expression of DNMT3B on treatment with 5-Aza-dC,
and Panel C shows the expression of DNMT3B on treatment with
SFN. Lane 1 shows the expression of DNMT3B gene in untreated
HeLa cells; Lanes 2, 3, and 4 show the time-dependent alteration
in the expression of DNMT3B after treatment for 24, 48, and 72 h,
respectively; Lane 5 shows negative control for RT-PCR.

a decrease in HDAC1 expression was also investigated. It
was found that exposure of HeLa cells with SFN showed
a significant time-dependent decrease in the expression
of HDAC1 in comparison to untreated cells (Figure 2(b)).
Similar results were noticed after treatment of HeLa cells with
TSA and showed significant reduced expression of HDAC1 at
24, 48, and 72 h, respectively (Figure 2(b)).

3.3. SFN Interacts with DNMT3B and HDAC1: An In Silico
Theoretical Molecular Modeling. In silico theoretical molecu-
lar modeling approach was used to investigate the possible
mechanism by which SFN inhibits DNMT3B and HDAC1.
Substrate binding site of DNMT3B was defined as that
predicted cavity which included the active site residue Cys-
651 and cofactor binding residue Glu-605. The cavity was
further evaluated by docking of a well-known DNMT3B
inhibitor 5-Aza-dC on mDNMT3B using SwissDock server.
Substrate binding site of HDAC1 was defined as that cavity
predicted by CASTp which included the HDAC1 residues



Evidence-Based Complementary and Alternative Medicine 5

Table 3: Docking results of ligands (SFN, TSA, and 5-Aza-dC) on receptors (HDAC1 and mDNMT3B).

Receptor Ligand Clusters within substrate
binding cavity/total clusters Cluster ranks Total elements

(out of 256)
FullFitness
(kcal/mol)

Estimated Δ𝐺
(kcal/mol)

HDAC1 SFN 6/41 0, 1, 2, 3, 16, 19 40 −2094.8 −7.9

mDNMT3B SFN 31/49 0–8, 10, 12–16, 18, 21–27,
29–31, 33–34, 43, 45 174 −1914.2 −7.5

mDNMT3B 5-Aza-dC 15/43 0–1, 3–5, 7, 17, 19, 24, 34,
36–37, 39, 42, 43 73 −2071.4 −9.5
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Figure 2: Effect of SFN and TSA on HDAC1 in human cervical
cancer cells (HeLa). (a) 2.5𝜇M of SFN and 0.05 𝜇M TSA treat-
ments significantly inhibit the activity of HDAC in time-dependent
manner, respectively. Values are means ± SD of three independent
experiments. Symbol (∗) indicates significant (𝑃 < 0.05) difference
of data between control and treated cells. (b) 2.5𝜇M SFN treated
HeLa cells show significantly time-dependent reduction in the
mRNAexpression ofHDAC1 in comparison to untreated cells. Panel
A shows 𝛽-actin expression as an internal control, Panel B shows the
expression of HDAC1 on treatment with TSA, and Panel C shows
the expression of HDAC1 on treatment with SFN. Lane 1 shows the
expression of HDAC1 gene in untreated HeLa cells; Lanes 2, 3, and 4
show the time-dependent decrease in the expression of HDAC1 after
treatment for 24, 48, and 72 h, respectively; Lane 5 shows negative
control for RT-PCR.

equivalent to those of HDAC8 interacting with its ligand
TSA in the crystal structure. This cavity also included the
active site His-141 and Zn ion. Using the same docking server,
SFN was docked on HDAC1 and mDNMT3B. In the docking
experiments by SwissDock, FullFitness andGibbs free energy
(Δ𝐺) of each run (256 runs) of the docking were evaluated.
Favorable binding modes were scored based on FullFitness

and cluster formation. The value of FullFitness was used to
rank clusters for further analysis.

3.4. SFN Interaction with mDNMT3B. Thedocking of 5-Aza-
dC, a well-known inhibitor of DNMT3B, was performed first
to define the substrate binding site of the protein.Thedocking
results produced 43 clusters of ligands around the modelled
catalytic domain of DNMT3B. Fifteen out of these 43 clusters
bind in the CASTp predicted cavity which includes the active
site Cys-651 and cofactor (S-adenosyl methionine) binding
residue, Glu-605. The ligand models in the top 2 clusters
(0 and 1) containing 15 elements were indeed very close
to these active site residues (Table 3). The distances of the
closest atoms of Cys-651 and Glu-605 to the most favorable
docked model of 5-Aza-dC are 1.86 and 2.34 Å, respectively.
Thus the substrate binding cavity of mDNMT3B predicted by
CASTp was found to be in agreement with the docking result
of 5-Aza-dC on the protein. Next, the docking of SFN was
performed on mDNMT3B to probe if SFN also binds to the
same substrate binding cavity.

The docking results produced 49 clusters of the ligand
SFN around the modelled catalytic domain of DNMT3B.
Analysis of these clusters showed that 31 of these 49 clusters
bind in the substrate binding cavity as defined by CASTp.
These clusters together contained a total of 188 elements
out of 256 predicted binding modes. Interestingly, the top 9
clusters (from 0 to 8) containing a total of 86 elements were
in this cavity. Table 3 shows the summary result of SwissDock
docking with the FullFitness and estimated Δ𝐺 values for the
most favorable interaction. Observation of themajority of the
clusters, including the top ranked ones in the cavity, strongly
suggests that the preferred binding of SFN on mDNMT3B is
within the substrate binding cavity and overlaps with binding
site of 5-Aza-dC. Figure 4 shows the visualization of the most
energetically favorable binding of SFN and 5-Aza-dC on the
protein mDNMT3B. Table 4 lists all the mDNMT3B residues
within 5 Å of the most energetically favorable docked model
of SFN.

3.5. SFN Interaction with HDAC1. The docking results pro-
duced 41 clusters of ligand SFN around the complete protein
HDAC1. Analysis of these clusters showed that 6 of these
clusters bind in the substrate binding cavity. These clusters
together contained a total of 40 elements out of 256 predicted
binding modes. Interestingly, these clusters included the top
ranked clusters 0, 1, 2, and 3 in addition to other clusters
with ranks 16 and 19. Table 3 shows the SwissDock docking
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Figure 3: Structures of the ligands used in the docking study. (a) 5-Aza-dC. (b) TSA. (c) SFN.

Figure 4: Predicted interaction between ligands (SFN and 5-Aza-dC) withmDNMT3B.ThemDNMT3B is depicted in ribbon representation
showing docked models of SFN in red and 5-Aza-dC in blue and the residues defining the pocket as light blue. Inset focuses on the binding
pocket shown in orange. Active site C-651 and cofactor binding E-605 are labeled and shown in purple solid bonds.

Table 4: Residues of HDAC1 and mDNMT3B within 5 Å of SFN.

Protein Residues within 5 Å of SFN

HDAC1
M-30, L-139, H140, H141, F150, C-151, D-176,
H-178, F-205, D-264, L271, G-300, G-301, Y-303,
Zn ion

mDNMT3B F-581, D-582, G-583, T-586, G-648, S-649, P-650,
C-651, E-697, V-699, R-733, R-832, S-833, W-834

result and the FullFitness and estimated Δ𝐺 values for the
most favorable interaction. The lowest energy model of
cluster rank zero is considered to be the most favorable
interaction. Observation of top clusters (0, 1, 2, and 3) in the
cavity strongly suggests that the preferred binding of SFN
on HDAC1 is within the substrate binding cavity. Figure 5
shows the visualization of the most energetically favorable
binding of SFN on the protein HDAC1.The figure also shows

the binding of TSA on the active site of HDAC1 which was
obtained after superimposition of the crystal structure of
HDAC8 bound to TSA on the structure of HDAC1. It can
be clearly seen that predicted binding of the most favorable
SFN and transposed TSA overlaps the same binding region
onHDAC1.The active siteHis-141 andZn ionwhich is known
to play crucial catalytic roles are lining the cavity and within
5 Å of the ligands. Table 4 lists all the HDAC1 residues within
5 Å of the most energetically favorable docked model of SFN.

3.6. SFN Mediated Methylation Reversal Reactivates or
Increases the Expression of RAR𝛽, CDH1, DAPK1, and GSTP1
Genes in HeLa Cells. To establish whether SFN induced
inhibition of DNMT3B and HDAC1 leads to reexpressing or
increasing the expression of RAR𝛽 (retinoic acid receptor
beta), CDH1 (cadherin 1), DAPK1 (death associated protein
kinase 1), and GSTP1 (glutathione S-transferase P1) genes,
expression studies of these genes were performed. Expression
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Figure 5: Predicted interaction between ligands (SFN and TSA) with HDAC1. The HDAC1 protein is depicted in ribbon representation
showing docked model of SFN in red and TSA in blue and the residues defining the pocket as light blue. The TSA structure was transformed
from HDAC8 by superimposition on HDAC1. Inset focuses on the binding pocket shown in orange. The active site H-141 and Zn ion are
labeled and highlighted in purple.
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Figure 6: Alterations of methylation status and mRNA expression levels of RAR𝛽, CDH1, DAPK1, and GSTP1 genes after treatment with
SFN. (a) mRNA expression levels before and after the treatment. Lane 1 shows the expression of these genes in untreated HeLa cells; Lanes 2,
3, and 4 show the time-dependent modulation in the expression of HDAC1 upon treatment for 24, 48, and 72 h, respectively; Lane 5 shows
negative control for RT-PCR. 𝛽-actin was used as an internal control. (b) Methylation-specific bands (M) and unmethylation-specific bands
(U). Lane 1 shows the methylation status of these genes in untreated HeLa cells; Lanes 2, 3, and 4 show the time-dependent modulation in
the methylation status of RAR𝛽, CDH1, DAPK1, and GSTP1 genes for 24, 48, and 72 h, respectively.

of these genes was further correlated with the changes in the
methylation of their promoter regions. It was observed that
time-dependent exposure (24, 48, and 72 h) of HeLa cells
with SFN resulted in a significant increase in the expression
of RAR𝛽, CDH1, DAPK1, and GSTP1 genes in comparison
to untreated cells (Figure 6(a)). Interestingly, it was observed
that the expression of these genes is associatedwith the 5CpG

dinucleotide island methylation or unmethylation of their
promoter regions. In this study, we analyzed the 5CpG island
methylation of RAR𝛽, CDH1, DAPK1, and GSTP1 genes by
usingMS-PCR in SFN treatedHeLa cells and compared them
with untreated cells.

Treated cells were subjected to MSP with methylation-
specific and unmethylation-specific sets of primers. Treated
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cells showing amplification only after using methylated
and unmethylated primers set were considered as hyper-
methylated and unmethylated, respectively, while treated
cells showing amplification using both sets of primers were
marked as hypomethylated. From the MSP results, it was
observed that RAR𝛽, CDH1, and DAPK1 genes were found
to be hypermethylated while GSTP1 gene was found to be
hypomethylated in untreated HeLa cells as RAR𝛽, CDH1,
and DAPK1 genes promoters were amplified only with the
methylation-specific primers set and GSTP1 was ampli-
fied with both methylated and unmethylated primers set.
However, upon treatment with SFN, the methylated state
was reversed, as this was evident from the decreased level
of amplimer intensity with methylation-specific primers,
whereas it was significantly increased with unmethylated
set of primers in a time-dependent manner (Figure 6(b)).
Hence, this confirms that treatment with SFN reverses the
expression of RAR𝛽, CDH1, and DAPK1 genes but increases
the expression of GSTP1 through the reversal in the 5-CpG
islandmethylation and by inhibiting the activity of epigenetic
modulators like DNMT3B and HDAC1 in HeLa cells.

4. Discussion

Epigenetic modulations such as DNA methylation and his-
tonemodifications are considered principal epigenetic events
and have been acknowledged for the silencing of many
genes including tumor suppressor genes (TSGs) that lead
to cancer development and progression. The dynamic and
reversible nature of the epigenetic processes makes them
a potential target to of reverse the process carcinogenesis
[8, 10, 15, 43–45]. Epigenetic regulation of TSGs expression
is meditated by key enzymes such as DNA methyltrans-
ferases (DNMTs) and histone deacetylases (HDACs). Use of
classical DNMTs and HDACs inhibitors induces reversal of
epigeneticmodifications via DNAdemethylation and histone
acetylation, respectively, leading to reactivation of silenced
genes; however, clinical efficacy of these inhibitors has been
somewhat limited due to the side effects. Consequently, in
searching of potential DNMTs andHDACs inhibitors, studies
on dietary phytochemicals are gaining interest to develop safe
epigenetic drugs. In the present study, we studied epigenetic
regulation by SFN, a potent isothiocyanate, and its anticar-
cinogenic, anti-inflammatory, and antioxidative effects have
been established in earlier and other studies [18, 46–48].

Previous studies in our lab indicated that SFN was found
to be selectively cytotoxic towards cancer cells and inhibit
the growth of cancer cells in a dose- and time-dependent
manner and EC

50
of SFNonHeLa cells was found to be 12 𝜇M

[18]. From these results, we selected a sublethal dose of SFN
(2.5 𝜇M) for the present study. Due to the integral cytotoxicity
of classical DNMTs and HDACs inhibitors, it is important
to identify novel therapeutic agents which can modulate the
epigenetic process through blocking theDNMTs andHDACs
without destabilizing the genome and possessing a safe ther-
apeutic profile. Pertinent to this exploration, it was observed
that SFN treated HeLa cells resulted in the inhibition of the
activity of DNMT and HDAC enzymes in a time-dependent

manner (Figures 1(a) and 2(a)). In addition, treatment of
HeLa cells with 5-Aza-dC (1.5 𝜇M), a well-known DNA
methylation inhibitor, and TSA (0.05 𝜇M), a well-recognized
HDAC inhibitor, was found to have almost similar inhibitory
effect on the enzyme activity of DNMT and HDAC, respec-
tively, in a time-dependent manner (Figures 1(a) and 2(a)).
Individual effect of 5-Aza-dC and TSA at various doses on
DNMTs and HDACs activity on HeLa cells is not shown
(unpublished). Interestingly, it was observed that SFN treated
HeLa cells showed significant time-dependent decrease in the
expression of mRNA transcripts of DNMT3B and HDAC1 in
comparison to untreated cells (Figures 1(b) and 2(b)). Our
study provides the first evidence that SFN induces epigenetic
modulation through the inhibition of DNMTs activity and
downregulation of DNMT3B in HeLa cells whereas many
studies have shown that 5-Aza-dC inhibits DNMT enzymatic
activity rather than expression of DNMTs [49–51]. Our
results are consistent with other studies in which SFN treat-
ment downregulates the expression of DNMT3B andHDAC1
[52, 53]. In vivo and in vitro studies have shown that SFN treat-
ment for breast cancer, normal, hyperplastic, and cancerous
prostate cells, human mesenchymal stem cells, nasopharyn-
geal carcinoma cells, colon cancer cells, and porcine satellite
cells was found to significantly inhibit the activity of HDACs
[9, 11, 46–48, 52–56]. Similarly, TSA treatment ofmany cancer
cells resulted in the loss ofHDACs enzymatic activity [57, 58].

To know whether SFN mediated enzymatic inhibition
of DNMTs and HDACs is due to direct binding of it with
these enzymes, in silico molecular modeling studies were
performed to identify the interaction of SFN with mod-
elled DNMT3B and HDAC1. Our analyses of the predicted
docking results indicate that SFN directly binds in the
substrate binding pocket of the enzymes. Computational
and knowledge-based approaches were used to define the
substrate binding pocket of DNMT3B. Docking of 5-Aza-dC
in conjunctionwith knowledge about active sites and cofactor
binding sites helped us to specify the substrate binding pocket
for DNMT3B. Table 4 lists these pocket lining residues which
included active sites E-605 and C-651 important for binding
to SAM (S-adenosyl methionine), which is critical for methyl
transferase activity. Figure 4 illustrates the best energetically
favoredmodels of SFN and 5-Aza-dC docked onmDNMT3B.
Interestingly, a very high proportion (31 out of 49, containing
188 out of 256 independent docking runs) of predicted top
ranked clusters for SFNwas observed in the defined substrate
binding pocket of mDNMT3B.

These results show that SFN and 5-Aza-dC overlap the
same site in the protein and therefore may have a similar
mechanism of protein inhibition by preventing the entry of
the natural ligand into the active site. The proximity of SFN
and 5-Aza-dC to the active residue Cys-651 and the cofactor
binding residue Glu-605 adds emphasis to this hypothesis.
This leads us to propose that, given the better safety profile
of SFN in comparison to 5-Aza-dC, SFN is a better candidate
as a similarly functioning epigeneticmodulator.Other groups
have reported on the inhibition of DNMT3B by nanomycin
A following a similar pattern and involving the residues
Asp-697, Arg-731, and Arg-733 [27]. These residues are also
included in the pocket defining residues for our studies. In
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Table 4we list those residues ofDNMT3Bwhich interact with
the most energetically favorable docked model of SFN.

As shown in Figure 5, the best energetically favored
model of SFN docked on HDAC1 overlaps with the binding
site of TSA which was observed in the crystal structure
of HDAC8. As summarized in Table 3, several top scoring
docking clusters, containing many elements of independent
docking, predict binding of SFN in the same region. The
results suggest that HDAC1 activity could be inhibited
directly by SFN with the observed interactions which could
block the entry of the cognate substrate and its subsequent
catalysis. High sequence and structural similarity between
HDAC8 and HDAC1 strongly suggest that the substrate
binding region is very similar between the two HDACs.
As shown in Table 2, based on the conserved sequences
identified in HDAC8 which are involved in the catalytic
activity, we expect that equivalent residues of HDAC1 are
also important for its catalytic activity. Of note, His-141 and
Zn2+ are located at the end of the active site tunnel and have
been shown to play a crucial role in the catalytic activity
of HDAC8 by having interactions with its natural substrate
or inhibitor molecules such as SAHA during the catalytic
action [59]. An earlier study also indicates that Asp-176 and
Asp-183 may be important residues for the catalytic action of
HDAC8 [59]. The structurally equivalent residues important
for HDAC1 activity would be Asp-174 and Asp-181 [59].
Furthermore, we list other residues of HDAC1 interacting
with the most energetically favorable docked model of SFN
in Table 4. Our molecular modeling and docking studies not
only successfully explain the mechanism of action of SFN in
inhibiting the epigenetic modulating enzymes but also pave
the way to explore further avenues such as structure-guided
optimization studies and pharmacophore modeling.

The possible epigenetic effects of SFN on HeLa cells
to increase the expression or reactivation of epigenetically
silenced tumor suppressor genes (TSGs) including RAR𝛽,
CDH1, DAPK1, and GSTP1 expression were also correlated
with its ability to inhibit DNMTB and HDAC1 activity.
Probably, inhibition of DNMTs andHDACs favors a decrease
in the hypermethylation and silencing of these key genes
and, therefore, this inhibitory action of SFN may contribute
to cancer prevention. The aberrant promoter methylation
leads to reduced expression in various TSGs and results in
tumorigenesis [60–62]. Extensive studies have reported that
RAR𝛽, CDH1, DAPK1, andGSTP1 genes are transcriptionally
silenced not only throughmutation and genomic instabilities
(LOH,microsatellite instabilities, and homozygous deletions)
but also by lack of expression due to promoter hyperme-
thylation during the development of various human cancers
[60–71]. In the present study, it was observed that RAR𝛽,
CDH1, and DAPK1 genes were found to be hypermethylated
and correlated with their respective expression which was
found to be undetectable whereas GSTP1 gene was found
to be hypomethylated and its expression was significantly
detectable in untreated HeLa cells (Figures 6(a) and 6(b)).
However, after SFN treatment, HeLa cells showed time-
dependent changes in the methylation status of RAR𝛽 and
DAPK1 genes as indicated both by the reduction in the bands
of the methylation panel, and with significantly detectable

bands in the unmethylated panel. This change can be linked
with the restoration of the expression of RAR𝛽 and DAPK1
genes over the time exposure to SFN. Whereas, hypomethy-
lated GSTP1 genes were found to be unmethylated and their
expression increased in a time-dependent manner (Figures
6(a) and 6(b)). The result of our study is similar to several
other studies which have shown that a variety of dietary
agents including SFN reactivate many TSGs via modulation
of various epigenetic pathways [40, 44, 52, 72, 73].

In summary, it can be inferred that SFN may act as
potential chemopreventive agent and modulates epigenetic
events via inhibition of the activity of DNMTB and HDAC1
and may reactivate epigenetically silenced TSGs by altering
methylation status of these genes promoter regions. SFN can
be used as effective inhibitors of DNMTs and HDACs to pre-
vent cancer. Furthermore, use of SFN, as epigenetic modifier,
in animal models or humans remains to be demonstrated.
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