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ABSTRACT There has been much recent work on fraud and Anti Money Laundering (AML) detection using 

machine learning techniques. However, most algorithms are based on supervised techniques. Studies show 

that supervised techniques often have the limitation of not adapting well to new irregular fraud patterns when 

the dataset is highly imbalanced. Instead, unsupervised learning can have a better capability to find anomalous 

and irregular patterns in new transaction. Despite this, unsupervised techniques also have the disadvantage 

of not being able to give state-of-the-art detection results. We propose a suite of unsupervised and deep 

learning techniques to implement an anti-money laundering and fraud detection system to resolve this 

limitation. The system leverages three deep learning models: autoencoder (AE), variational autoencoder 

(VAE), and a generative adversarial network. We preprocess the given dataset to separate the Transaction 

Date attribute into its base components to capture time-related fraud patterns. Also, Wasserstein Generative 

Adversarial Network (WGAN) is used to generate fraud transactions, which are then mixed with the base 

dataset to form a more balanced mixed dataset. These two datasets are used to train the AE and VAE models. 

We built two versions of the AE model (single-loss and multi-loss) besides a novel method of calculating the 

anomaly score threshold, called Recall-First Threshold (RFT), which helps enhance the model’s performance. 

Experimental results demonstrated that the False Positive Rate (FPR) drops down to as low as 7% in the 

proposed multi-loss AE model. In comparison, we achieved an accuracy of 93%, with 100% of the fraud 

transactions recalled successfully. 

INDEX TERMS Anti-money laundering (AML), Autoencoders, Anomaly detection, Deep learning, Fraud 

detection, GANs, Unsupervised learning.

I. INTRODUCTION 

Money laundering involves concealing or disguising the 

origin of illegal profits that have been generated from 

criminal acts [1]. Banking products or services can be 

exploited to transfer criminal proceeds for terrorist financing 

and money laundering. These institutions become a direct or 

indirect victim of money laundering activity, which 

undermines the integrity of the financial system [2]. In light 

of this, the pressure on financial institutions and banks to 

improve their measures to fight money laundering is 

increasing.  Similarly, central banks and finance-related laws 

have become stricter towards money laundering crimes such 

that banks need to follow specific rules; otherwise, they 

could be penalized or even closed [3]. One recent case 

includes the largest bank in Italy, Unicredit, which was fined 

$1.3 billion for using the US financial system to launder 

about $6.76 billion [4]. In another case, the UK-based 

banking giant, Standard Chartered, paid more than $1 billion 

in fines and settlements for helping in money laundering [5]. 

Lastly, as a result of compliance failures in the firm’s anti-

money laundering program, Morgan Stanley was fined $10 

million [6]. 

Nevertheless, most banks still adopt systems that comprise 

a set of predefined if-then-else rules called “Rule-based 

systems” to detect incoming and outgoing suspicious 

transactions. This system requires a manual process of 

checking for each transaction that has triggered the static 

rules. Human experts define rule-based systems; hence, they 

embed their own working experience into the automated 

decision process. In future updates, more exceptions and 

rules are necassary, which may impair system performance. 

Additionally, those systems have a minimal ability to detect 
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suspicious transactions by groups of people across different 

economic activities. This is because rule-based systems do 

not consider the economic activities of different people. 

Furthermore, acquiring economic knowledge about different 

groups of people can be tedious work on its own [7, 8]. 

While banks and financial institutions seek cost-effective 

means of complying with regulatory requirements, they face 

responsibility for evaluating larger, more complex, and 

faster-growing datasets, necessitating more powerful 

analytical tools to efficiently monitor the financial sector. 

Machine learning algorithms enable cheaper and more 

accessible tools that are increasingly powerful as they make 

sophisticated real-time insights on larger datasets possible. 

These algorithms and tools can be used in the anti-money 

laundering process by the anticipation and detection of fraud 

and suspicious transactions [9]. However, adopting machine 

learning to detect money laundering has long been in 

research, using different methods and techniques that will be 

covered in detail in the literature review section. 

The current performance of machine learning techniques 

in the anti-money laundering field is acceptable. However, a 

lot of work is still required to enhance and optimize those 

models in terms of performance, namely the so-called “false-

positive rate,” which indicates the regular transactions that 

have been identified as fraud. The system will decline these 

transactions or delay them for further investigation. In some 

cases, false positives might be costing vendors much more 

than the fraud transactions themselves. It has been reported 

that even rule-based systems still struggle with about 20% 

false-positive rates wherein only 1 in 5 transactions marked 

by the system as fraud is genuinely fraud [10]. 

Our main contributions can be summarized as follows: 
1.  We design and implement deep learning models with 

promising results in terms of the FPR, RFT, and AUC for 

fraud detection. 
2.  We present recent state-of-the-art deep learning and 

unsupervised learning techniques, namely, the 

autoencoder (AE), variational autoencoder (VAE), and 

generative adversarial network (GAN) to improve the 

anti-money laundering (AML) process.  
3.  For the first time, we demonstrate the applicability and 

effectiveness of combining AE/VAE with WGAN 

methods. Particularly, the WGAN generates realistic 

synthetic fraud transactions to solve the issue of 

imbalanced class labels, and such additional transactions 

are then used by the AE/VAE to train the model. The 

results indicate that this approach offers significant 

improvements for fraud detection. 
The rest of the article is organized as follows. Section 2 

presents the related literature. Various deep learning 

architectures used in this study are described in Section 3. 

Proposed methodology and experimental results are 

presented in Sections 4 and 5, respectively. Finally, Section 

6 concludes the article with a discussion of future work. 

 

  

II. RELATED WORK 

Decision Trees (DTs) are one of the common supervised 

learning algorithms that are used to identify money 

laundering cases. Rojas et al. [11] utilized DTs and Decision 

rules by selecting Random Forest (RF), Random-Tree, and 

J48graft from the DT algorithms group and decision table 

JRip from the Decision rules algorithms. MABS (Multi-

Agent-Based Simulation) was used to generate synthetic data 

that simulates mobile money transactions. JRip generated 

about 0.999 true positives and only 0.012 false positives, 

which was one of the best accuracies obtained. Despite this 

accuracy, the research was based on synthetic data that may 

not reflect real suspicious case situations. The accuracy 

results may differ when used on real transaction data. 

Sahin and Duman [12] proposed DT models such as C5.0, 

CART, and CHAID combined with SVM (Support Vector 

Machine), which utilizes various kernel functions, such as 

radial basis, linear, polynomial, and sigmoid. The proposed 

model was implemented in a credit card fraud detection 

system. These classification models were compared using a 

real dataset provided by a bank. However, due to the highly 

imbalanced records (i.e., a ratio of 20,000 normal 

transactions to 1 suspicious transaction), the author 

performed stratified sampling to under-sample the normal 

transactions. The result presented in the paper shows that 

both CART and C5.0 have the highest accuracy of detecting 

suspicious transactions at more than 90%. However, the 

research did not evaluate the false positive rate; furthermore, 

SVM offers 89% accuracy, but the author indicated that 

SVM tends to suffer from over-fitting. 

Bitmap Index-based DT (BIDT) algorithm was 

implemented by Jayasree and Balan [13] to evaluate the 

adaptability risk for money laundering. Results of false 

positive and true positive rates, alongside the adaptability 

rate and risk identification time, showed that the proposed 

approach outperformed other methods. Also, the authors in 

[14] used DT to assign a risk score to each customer profile 

that represents their tendency to perform money laundering, 

using four types of attributes: industry, location, business 

size, and product type to build the decision tree. Each 

attribute, including the class label, can accept three risk 

values (high, middle, low). However, changes in the 

predefined risk values will cause the decision tree model to 

become inaccurate. Moreover, each type of attribute value 

must be assigned with a risk rank, and this will require 

domain experts to label those attributes correctly. Otherwise, 

any changes to the training set will require the decision tree 

to be trained again. 

Recently, SVM [15] and ANN (artificial neural networks) 

[16] were used and compared against RF and other 

algorithms. Experimental results show that ANN performed 

better when compared to other algorithms. Radial-Basis 

function network (RBFN) is another approach that is used to 

examine suspicious transactions. Lin-Tao et al. [17] 

proposed an updated version of RBFN utilizing the APC-III 

algorithm to optimize parameter learning in the hidden layer. 

Additionally, RLS (Recursive Least Square) algorithm was 

introduced to improve model convergence. A real bank 
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dataset containing 70 suspicious instances was used to train 

the network. The experiment resulted in a low false-positive 

rate, close to 0%, and a detection rate higher than 80%. 

Although this implementation shows an excellent false 

positive rate, the model’s accuracy can further be enhanced. 

Benford’s Law and machine learning algorithms (ANN, 

DT, RF) were used to investigate money laundering patterns 

in real Spanish court cases [18]. The authors used Benford’s 

law to map accounting records for each supplier to 21-

dimensional space. Results showed that even more 

companies could be marked as a risk, but this approach still 

required a domain expert in accounting to do the feature 

engineering. Chouiekh and Haj [19] proposed a deep 

convolution neural network (DCNN) to detect fraud cases 

and obtained results outperforming the traditional machine 

learning techniques such as SVM and RF. 

Due to the lack of genuinely suspicious transaction data 

and the sensitivity of these data, many researchers have 

resolved to use synthetic data or simulated data in the 

training set to reduce the class imbalance issue. However, 

such an approach may not truly reflect real-world money 

laundering cases, potentially causing a generalization issue. 

Supervised techniques require a domain expert to label the 

data and to help in feature engineering. Therefore, more 

researchers have recently turned to unsupervised learning 

methods to deal with the money laundering implementation 

problem. 

Zhang et al. [20] utilized a clustering algorithm to detect 

money laundering. The authors extracted all the suspicious 

individuals (n) related to suspicious cases identified by an 

investigator. Then the author assembled the transactions that 

those individuals made in n+2 dimensional Euclidean space, 

where time represents the first dimension and transactions 

represent the second dimension.  Then, to reduce the 

clustering problem, the timeline was discretized into various 

time instances. By doing so, each transaction is viewed as a 

node in one-dimension time-space. To make the problem 

even more straightforward, the transaction frequency or the 

money amount was accumulated in each timeline instance. 

Finally, the histogram segmentation was conducted using a 

k-means algorithm where each segmented histogram 

represents a single cluster k. The abnormal hills in the 

histogram are used to identify suspicious cases. Using only 

the transactions data, the proposed method managed to 

match the different transactions with their peers without 

other features, such as occupation or business size. However, 

the segmented histograms are only limited to transactions 

that occurred on the same time instance. The histograms are 

not able to uncover activities of money laundering that may 

occur through multiple time instances. Capturing those time 

instances can be a difficult task in such an approach. 

Lune et al. [21] used the K-Nearest Neighbor (k-NN) 

approach, which has shown a good performance. A public 

domain dataset was used that was generated from a BTS 

(Banking Transaction Simulator) to simulate shell 

companies’ behavior. These are companies that seem to be 

genuine, while their primary objective is to launder money. 

The author assigned an anomaly score for each data point 

called LOF (Local Outlier Factor), which is the data point's 

ratio and its average density of the k-NNs. This approach 

assumes that an outlier would be significantly lower than its 

nearest neighbors while the genuine data point would have a 

similar density. Finally, they set the LOF threshold to 0.9, 

which will mark all data points above it as a shell company. 

The problem with this approach is the sensitivity to the 

outliers, where it can cause variation in density for the data 

points. 

Claudio and Balsa [22] chose to use numerical and 

nominal attributes in K-means cluster development despite 

K-means performance on nominal attributes being 

inefficient in its use of squared Euclidian-distance to 

calculate proximity. However, the data were clustered by 

customer attributes to build a customer profiles table, and 

then the PART algorithm was used for rule generation. The 

initial 3 month period produced unsatisfactory results. After 

expanding the client profiles to cover one year and including 

more attributes, the algorithm showed a better result. 

Nevertheless, the authors did not mention how they deal with 

the imbalanced data as k-NN does not perform well on an 

unbalanced dataset. Another research [23] tried to produce 

clusters that are more understandable. The authors attempted 

to add a meaningful description before clustering by 

following the Apriori and LINGO algorithm 

implementations to identify fraud in credit card transactions. 

Following this, they compared the results from both 

algorithms with other clustering algorithms such as k-NN. 

Using simulated test transactions, their results showed that 

the LINGO algorithm quickly generated more meaningful 

patterns that can be used in near real-time transactions. 

Using one-class SVM, Tang and Yin [24] proposed 

another unsupervised approach to recognize normal and 

suspicious human transaction behaviors. An improved RBF 

kernel-based function was implemented over 1.2 million 

records obtained from Wuhan Agriculture Bank, China, with 

30 simulated suspicious transactions. Results showed that 

the proposed RBF kernel enhanced the algorithm speed and 

accuracy. However, the proposed solution has only 69.13% 

accuracy in detecting doubtful cases, which may indicate 

impracticality when applied in the real world. Furthermore, 

the suspicious cases are synthetic records that may not fully 

reflect real suspicious cases. 

Recent research [25] tried to avoid the sensitivity of OC-

SVM (one-class SVM) for the noise and outliers existence in 

the dataset by introducing a sparse and robust methodology 

of fraud detection. The authors introduced the Ramp-loss 

function to the original OC-SVM. Hence, they called it 

Ramp-OCSVM. The advantage of implementing the ramp-

loss function's non-convexity nature and the concave-convex 

procedure was the proposed algorithm’s ability to solve non-

convex, non-differentiable optimization problems. When 

they compared the proposed approach against other methods, 

such as OC-SVM and ROCSVM, the results showed that 

their system presented the best performance within an 

acceptable false-positive rate. Another research [26] 
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proposed a special case that tried to overcome the OC-SVM 

shortcoming of ignoring the training data's inner-class 

structure. The proposed method attempted to minimize the 

scatteredness of the training points; hence, the points can be 

easily separated from the origin. The modified version is 

called OC-WCSSVM (within-class scatter OC-SVM), a 

typical OC-SVM except that it's β = 0. The result showed 

that the proposed method is more accurate for anomaly 

detection than other approaches such as PCA and 

Geometrical Driven Diagnosis (GDD). 

Wilson and Martinez [27] proposed the usage of an 

improved RBF (Radial Basis Function) kernel-based 

function that uses various distance metric functions. They 

introduced three distance functions: HVDM (Heterogeneous 

Value Difference Metric), IVDM (Interpolated Value 

Difference Metric), and WVDM (Windowed Value 

Difference Metric).  These functions can be used with k-NN 

for a wide range of implementations. Results showed that 

WVDM and IVDM produced higher accuracy than HVDMs. 

Chitra and Subashini [28] estimated the proportion for 

each bank customer using EM (Expectation Maximization) 

algorithm. They used the probability density function 

Gaussian-Mixture Model to model the previous transaction’s 

behavior for each bank customer and compare them against 

the current transaction’s behavior. The main issue with this 

method is that it requires the assumption that statistical 

distribution (i.e., Gaussian distribution) of the dataset is 

used. Furthermore, for the EM algorithm to work in the first 

place, we need to define the number of clusters required and 

estimate and maximize the different clusters’ data points. For 

instance, in the two clusters experiment, the EM algorithm 

assumed that every single cluster represents a different 

Gaussian distribution with its own function parameters. 

Cao and Do [29] attempted to attack money by moving 

money in a circular pattern between accounts. They used the 

CLOPE (clustering with sLOPE) algorithm to check small 

amounts of money distributed to various recipients. It also 

checks a single account for collecting money from different 

senders. Moreover, the CLOPE algorithm's main 

characteristic is the acceptance of nominal variables. Hence, 

continuous variables such as the transaction-amount need to 

be discretized and assigned to a meaningful label. The 

research used a dataset consisting of 12,350 normal records 

from an unspecified bank to measure CLOPE’s performance 

in detecting money laundering. Furthermore, 25 simulated 

suspicious records were inserted into the dataset to test the 

algorithm. The experimental result showed that the detection 

rate was about 100%, with only 25% of the false-positive 

rate. Despite this, each cluster produced by CLOPE must be 

thoroughly examined to determine which cluster belongs to 

which type of money laundering case, which would require 

intervention from domain experts. Furthermore, data 

discretization requires a user to provide the number of bins, 

and the author did not mention which method they used to 

get the optimal bin number. 

Zaslavsky and Strizhak [30] employed SOM (Self-

organizing map) to detect credit card fraud transactions. 

Specifically, the authors used SOM to create a customer 

behavior model on credit card transactions. The idea behind 

the proposed model is to detect suspicious transactions when 

a customer deviates from his usual transaction behavior. In 

this approach, two profiles are created from the SOM 

algorithm, namely the normal behavior model and the 

fraudster behavior model, Each incoming transaction is then 

compared with both models, and, subsequently, the 

transaction similarity score is calculated for both models. 

The issue here is that a predefined threshold must be set to 

compare it against the similarity score. Also, to keep the 

models updated, newly encountered behaviors (i.e., either 

suspicious or normal) are used to re-train both models. This, 

in turn, may cause over-fitting for these models. Another 

research [31] proposed an improved version of SOM to 

overcome the large presence of outliers in the dataset. The 

author then compared his proposed method result against the 

K-prototypes algorithm. The research concluded that the 

improved SOM is better than the K-prototypes algorithm as 

it gives better results, especially in handling the outliers. 

However, interpreting results from SOM is a complicated 

process as it is not transparent. 

To identify suspicious transactions, the authors in [32] 

proposed a sequence-matching algorithm. The idea of this 

algorithm is to extract a sequence of daily transactions within 

a certain peer group. Then, using a probabilistic model, it 

identifies the high-risk sequence within the extracted 

sequence. Later these sequences are compared against the 

transaction’s history for each account. Each high-risk 

sequence is given a similarity score by implementing 

Euclidean similarity distance. Those assigned scores are then 

separated based on manual threshold scores to extract the 

suspicious sequence. However, having a predefined 

threshold is not an optimal solution as it may vary between 

different accounts. Moreover, in the real world, the number 

of suspicious sequences is unidentified. Hence, having a high 

threshold value might lead to a low false positive rate and 

might miss some suspicious transactions. Alternatively, 

having a low threshold might increase compliance officers' 

workload to verify each case and increase the false positive 

rate. 

Another study [33] leveraged the semi-supervised 

learning approach, which uses both supervised and 

unsupervised algorithms. The proposed framework used 

artificial neural network (ANN) and k-NN clustering to 

investigate money laundering in an investment bank. The 

framework first consolidated the transactions on a monthly, 

weekly, and daily basis. By performing k-NN clustering over 

these transactions to locate the suspicious transactions, each 

suspicious transaction was labeled “suspicious” while others 

are marked as “normal.” Following this, the ANN is trained 

using these labeled transactions to generate the model. To 

obtain enough suspicious transactions, the author used a 

genetic algorithm to generate more synthetic suspicious 

transactions like those that were detected from the k-NN 

clustering process. Once the training phase is done using 

these suspicious transactions, the trained model is then used 
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to test any new transaction to determine whether it is 

suspicious or not. However, this approach still requires a 

domain expert to identify and label the suspicious 

transactions during the clustering phase. A heuristic 

approach is used to define the number of clusters during the 

clustering phase. 

Shabat et al. [34] proposed two algorithms: geometry-

based extraction, called Diffusion Maps (DM), and matrix 

decomposition. They deal with high-dimensional big data 

(HDBD), which is critical in cybersecurity. The result 

showed that the proposed approach could outperform the 

nearest neighbor-based (k-NN) and the clustering-based 

(uCBLOF) algorithms. However, a massive dataset is 

required for this approach to be efficient. 

To identify the relationship between different accounts 

involved in the money laundering process, Shaikh and Nazir 

[35] implemented clustering using social networks analysis 

(SNA) that determines specific relations among illegal 

transactions and suspicious customers. However, the authors 

used fixed conditions and criteria to identify various types of 

relationships, which may not be ideal for generalization. 

Therefore, these conditions will need to be modified and 

updated for each geo-social zone.  

Colladon and Remondi [36] proposed a similar approach 

to build a risk profile by using multiple networks during the 

experiment. However, they focused only on factories and the 

business sector, which may lead to less generalization when 

applied to personal bank networks. Also, they neglect certain 

features from their analysis, such as the size and the age of 

the firms. Another related approach proposed by Molloy et 

al. [37] used graph analytic and BIRCH (Balanced Iterative 

Reducing and Clustering using Hierarchies). The proposed 

method used the SCC (Strongly Connected Component) to 

reduce the false-positives and efficiently identify suspicious 

transactions. SCC theory assumes that transactions within an 

SCC are less likely to be fraudulent than the transactions that 

span two SCCs. Although the proposed method showed good 

discrimination between normal transactions and suspicious 

ones, the implementation still requires high computational 

cost. 

A powerful unsupervised deep learning approach was 

recently proposed based on variational autoencoders (VAE) 

for anomaly detection [38]. The VAE's main advantage over 

PCA and the standard autoencoder is that it delivers a 

probability measure as an anomaly score rather than a 

reconstruction error. The result showed that the proposed 

method performed better than PCA and standard 

autoencoder-based methods. Furthermore, given its 

generative nature, analyzing the anomaly's underlying cause 

is also possible through data reconstruction. However, 

reconstruction probability still requires a fixed threshold, and 

it can be easily affected by outliers. Furthermore, it still 

needs to be validated against real money laundering cases. In 

another similar effort [39], an autoencoder-based data 

augmentation technique was presented for unsupervised 

anomaly detection. Babaei et al. [40] proposed a prune-based 

outlier factor (PLOF) approach for the detection of point 

outliers which can significantly reduce the execution time of 

local outlier factor (LOF) while maintaining performance.   

Another research [41] proposed unary classification with 

deep autoencoder, which used the OCC (One Class 

Classification) to identify only one class among all data 

objects. Results showed better accuracy and performance 

over the other traditional machine learning algorithms. 

However, as it is only one class, it is hard to identify the 

attribute that contributes the most to the separation of 

positive and negative classes. 

Pumsirirat and Yan [42] used the Restricted Boltzmann 

Machine (RBM) and autoencoders to detect credit card 

fraud. By using RBM, the model can reconstruct the normal 

transactions to locate fraud. Having both algorithms enabled 

them to investigate the real-time transactions, the 

experiments were conducted over three datasets from 

Australia, Germany, and Europe. The results showed a low 

false-positive rate besides a good performance.  

Paula et al. [43] used autoencoders to investigate fraud and 

money laundering in Brazilian exports. The authors used a 

dataset containing 820 thousand records and conducted the 

experiments using PCA and autoencoders. Results showed 

that autoencoder could detect fraud even with high latent 

dimensions while PCA could not achieve the same effect. 

In conclusion, clustering approaches are simple but still 

require a domain expert to determine the number of clusters 

and analyze each cluster's members to determine the 

suspicious ones. However, clustering algorithms focus on 

grouping similar transactions based on each transaction's 

characteristics, so the imbalance dataset issue does not 

heavily impact it (e.g., a ratio of 20,000 normal transactions 

to 1 suspicious transaction). Additionally, recent advances in 

deep learning techniques such as autoencoders and their 

promising results in anomaly detection make it an excellent 

candidate for implementation in this research. 

III. DEEP LEARNING MODELS  

In this section, we describe autoencoders (AEs), 

Variational Autoencoders (VAEs), Generative Adversarial 

Networks (GANs), and Wasserstein GANs (WGANs). 

Autoencoders are an unsupervised learning method that is 

mainly used for feature extraction. They use a feedforward, 

non-recurrent neural network to perform representation 

learning. An autoencoder will learn the representation or 

code by trying to copy the input to output. However, using 

an autoencoder is not as simple as copying the input to 

output; otherwise, the neural network would not uncover the 

hidden structure in the input distribution. An autoencoder 

will encode the input distribution into a low-dimensional 

tensor, which usually takes the form of a vector. This will 

approximate the hidden structure that is commonly referred 

to as the latent representation, code, or vector. This process 

constitutes the encoding part. The decoder part will then 

decode the latent vector to recover the original input. As a 

result of the latent vector being a low-dimensional, 

compressed representation of the input distribution, it should 

be expected that the output recovered by the decoder can 
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only approximate the input. The dissimilarity between the 

input and the output can be measured by a loss function. 

A. AUTOENCODERS (AEs) 

An autoencoder consists of input, hidden (or bottleneck), and 

output layers. Although it is a single network, as Figure 1 

shows, it is a virtual composition of two components [44]: 

● Encoder: This transforms the input (x) into a low-

dimensional latent vector bottleneck,  z =ƒ (x). Since the 

latent vector is of low dimension, the encoder is forced 

to learn only the most important features of the input 

data. 
● Decoder: This tries to recover the input from the latent 

vector g(z)=x'. Although the latent vector has a low 

dimension, it has a sufficient size (m < n) to allow the 

decoder to recover the input data. Simultaneously, it 

restricts the encoder function to approximate x so that it 

is forced to learn only the most salient properties of x 

without copying it exactly. 
 

 

 

 

 

 

 

 

 

 

 

 
 

FIGURE 1. Representation of an autoencoder. 

 

The autoencoder can be trained by minimizing the loss 

function known as the reconstruction error, L=(x, x'). It 

measures the distance between the original input and its 

reconstruction. It can be minimized in the usual way with 

gradient descent and backpropagation. Popular loss 

functions such as mean square error (MSE) or binary cross-

entropy (like cross-entropy, but with only two classes) can 

be used as reconstruction errors, as in equation (1). 

 

                         𝐿(𝑥, 𝑥′) = 𝑀𝑆𝐸 =
1

𝑚
∑ (𝑥𝑖 − 𝑥𝑖

′)𝑚
𝑖=1                     (1) 

 

The reconstruction error in the equation above is used as 

an anomaly score for the autoencoders' fraud detection 

implementation, as will be explained later in the 

methodology. 

B. VARIATIONAL AUTOENCODERS (VAEs)  

By architecture, AEs tend to memorize the input, especially 

if the dimension of the latent code is significantly bigger than 

the number of features. To encourage the model to generalize 

better, various techniques can be used, such as Denoising 

AEs, Sparse AEs, or VAEs. 

VAEs are the stochastic version of AEs as they can 

describe the latent representation in probabilistic terms [45]. 

Instead of discrete values, there will be a probability 

distribution for each latent attribute, making the latent space 

continuous. This makes random sampling and interpolation 

easier. In terms of structure, VAEs bear a resemblance to an 

autoencoder; they are also made up of an encoder (also 

known as recognition or inference model) and a decoder 

(also known as a generative model). Both VAEs and 

autoencoders attempt to reconstruct the input data while 

learning the latent vector. However, unlike autoencoders, the 

latent space of VAEs is continuous, and the decoder itself is 

used as a generative model.  

VAEs can be expressed as follow: the encoder q_ϕ (z|x) 

where ϕ are the weights and biases of the network, x is the 

input, and z is the latent space representation. Here, instead 

of being a discrete value, the encoder output is a distribution 

(for example, Gaussian) over the possible values of z, which 

could have generated x. 

 

 

 

 

 

 

 

 

 
 

FIGURE 2. Variational autoencoder representation. 

 

The VAE stochastically (randomly) samples z from the 

distribution, then it sends the sample through the decoder p_θ 

(x|z) where θ is the decoder weights and biases. The decoder 

output, in turn, is a distribution over the possible 

corresponding values of x, as Figure 2 shows. 

By doing this kind of sampling from a distribution, VAEs 

have two different types of losses. The first of these is the 

Kullback-Leibler divergence (KL) between the probability 

distribution q_ϕ (z|x) and the expected probability 

distribution, p_θ (x|z). It measures how much information is 

lost when q_ϕ (z|x) is used to represent p_θ (x|z) (in other 

words, how close the two distributions are). It encourages the 

autoencoder to explore different reconstructions. The second 

is the reconstruction loss, which measures the difference 

between the original input and its reconstruction. The more 

they differ, the more it increases. Therefore, it encourages 

the autoencoder to reconstruct the data better. These two 

losses can be expressed as follows: 

 

𝐿(𝜃, 𝜙; 𝑥) = −𝐷𝐾𝐿(𝑞𝜙(𝑧|𝑥)||𝑝𝜃(𝑧)) + 𝐸𝑞𝜙(𝑥)[𝑙𝑜𝑔 𝑙𝑜𝑔 (𝑝𝜃(𝑧)) ]              

                                                                                                                 (2) 

 

To implement this, the bottleneck layer will not directly 

output the latent state variables. Instead, it will output two 
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vectors, which describe the mean and variance of each latent 

variable's distribution, as shown in Figure 3. 

Once the mean and variance distributions are obtained, a 

state z can be sampled from the latent variable distributions, 

and it can be passed through the decoder for reconstruction. 

However, this sampling process has one issue during training 

such that Backpropagation gradients do not work over 

random processes (stochastic layer) like the one described 

above [46].  

The solution to this problem is to push out the sampling 

process as the input, which can be done by using an innovat- 

 

FIGURE 3. VAE sampling process. 

 

ive technique, called the reparameterization trick. First, a 

random vector ε is sampled, with the same dimensions as z 

from a Gaussian distribution (the ε circle in the figure 

below). Then, it is shifted by the latent distribution's mean μ, 

and is subsequently scaled by the latent distribution's 

variance σ, as shown in Figure 4 [47]. 

 

FIGURE 4. VAE reparameterization trick. 

By doing this, the random generator is omitted from the 

backward pass, and the sampled data will have the properties 

of the original distribution. The updated sampling process 

now can be expressed as follows: 

𝑧 = 𝜇 + 𝜎⨀𝜀                                                (3) 

 

In the fraud detection domain, VAEs represent a powerful 

technique. The encoder would produce a distribution of 

possible encodings describing the transaction's essential 

characteristics, yet it will keep the generalization intact. 

C.  GENERATIVE ADVERSARIAL NETWORKS (GANS) 

GANs were introduced by Ian Goodfellow and his fellow 

researchers at the University of Montreal in 2014 [48]. A 

GAN consists of two neural networks, as Figure 5 shows 

[49]:  

● Generator: This is the generative model. It takes a 

probability distribution (random noise) as input from a 

latent space and tries to generate a realistic output 

sample. Its purpose is similar to the decoder part of the 

VAE. 
● Discriminator: This is sometimes known as a “critic,” 

which takes two alternating inputs: the real samples of 

the training dataset or the generated fake samples from 

the generator. It tries to determine whether the input 

sample comes from the real samples or the generated 

ones. 

 

FIGURE 5. The architecture of generative adversarial 

network. 

These two cooperating (and competing) networks are 

trained together as one system wherein the discriminator 

tries to get better at distinguishing between the real and fake 

samples. The generator tries to output more realistic 

examples to deceive the discriminator into thinking that the 

generated example is real. That’s why it is called 

“adversarial.” The system's ultimate goal is to make the 

generator so good that the discriminator would not be able to 

distinguish between the real and fake samples. Even though 

the discriminator does classification, a GAN is still 

unsupervised since it does not need labels for the samples. 

The discriminator is a classification neural network, and it 

can be trained the usual way by using gradient descent and 

backpropagation. However, the training set is composed of 

equal parts real and generated samples. Therefore, the loss 

function can be minimized as follows: 

 

𝐿(𝐷)(𝜃(𝐺), 𝜃(𝐷)) = −𝐸𝑥~𝑃𝑑𝑎𝑡𝑎
𝑙𝑜𝑔 𝑙𝑜𝑔 𝐷(𝑥) −  𝐸𝑧     

𝑙𝑜𝑔 𝑙𝑜𝑔 (1 − 𝐷(𝐺(𝑧)))                                                   (4) 

The equation is just the standard binary cross-entropy cost 

function. The loss is the negative sum of the expectation of 

correctly identifying real data, D(x), and the expectation of 

1.0 minus correctly identifying synthetic data, 1-D(G(z)). 

GAN considers the total of the discriminator and generator 

losses as a zero-sum game to train the generator. The 

generator loss function is simply the negative of the 

discriminator loss function [46]: 

 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3086359, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017) 

2 VOLUME XX, 2017 

𝑉(𝐺)(𝜃(𝐺), 𝜃(𝐷)) = −𝐿(𝐷)(𝜃(𝐺), 𝜃(𝐷))                                          (5) 

 

Thus, the GAN minimax loss objective function can be 

written as [50]: 

 
𝑚𝑖𝑛

𝐺
 𝑚𝑎𝑥

𝐷
 𝑉(𝐺, 𝐷) = 𝐸𝑥~𝑃𝑑𝑎𝑡𝑎

𝑙𝑜𝑔 𝑙𝑜𝑔 𝐷(𝑥) +  𝐸𝑧

𝑙𝑜𝑔 𝑙𝑜𝑔 (1 − 𝐷(𝐺(𝑧)))                                                              (6) 

 

The solution to the minimax game is called the Nash 

equilibrium. A Nash equilibrium happens when one of the 

actors does not change its action, regardless of what the other 

actor may do. A Nash equilibrium in a GAN framework 

happens when the generator becomes so good that the 

discriminator is no longer able to distinguish between the 

generated and real samples. However, the gradient descent 

algorithm is designed to find the minimum of the loss 

function rather than the Nash equilibrium. As a result, 

sometimes the training may fail to converge, but, due to the 

popularity of GANs, many improvements have been 

proposed. 

D.  WASSERSTEIN GANS (WGANS)  

GANs can be very difficult to train and are prone to mode 

collapse. Mode collapse is when the generator produces 

outputs that look the same even though the loss functions are 

already optimized. Wasserstein GAN [46, 51] proposed an 

implementation that can avoid a mode collapse issue; that is, 

by replacing the GAN loss function based on the Wasserstein 

1 or Earth-Mover distance (EMD). In our case, this is where 

the “critic” discriminator is calculating the Wasserstein 

distance between the real and fake samples. As the loss 

function decreases in the training process, the Wasserstein 

distance becomes smaller. Hence, the generator generates 

samples closer to the real ones. 

 

FIGURE 6. A pictorial representation of the Earth-Mover 

distance computation [46]. 

The intuition behind EMD is that it measures how much 

mass γ(x,y) should be transported by d = ‖x-y‖ for the 

probability distribution p_data to match the probability 

distribution p_g, as shown in Figure 6 [46]. Γ(x,y) is also 

known as a transport plan to reflect the strategy for 

transporting masses to match the two probability 

distributions, which can be expressed as the following 

equation: 

 

𝑊(𝑝𝑑𝑎𝑡𝑎, 𝑝𝑔) = 𝑖𝑛𝑓𝛾∈∏(𝑝𝑑𝑎𝑡𝑎,𝑝𝑔)𝐸(𝑥,𝑦)∼𝛾
[‖𝑥 − 𝑦‖]                (7) 

 

When using EMD or Wasserstein 1 as the loss function, the 

generator will try to minimize, while the discriminator tries 

to maximize, it can be expressed as follow: 

 

𝐿(𝐷) = −𝐸𝑥~𝑝𝑑𝑎𝑡𝑎
𝐷𝑤(𝑥) + 𝐸𝑧𝐷𝑤(𝐺(𝑧))                                   (8) 

 

𝐿(𝐺) = −𝐸𝑧𝐷𝑤(𝐺(𝑧))                                                                     (9)  

 

In the generator loss function L(G), the first term disappears 

since it is not directly optimizing with respect to the real data. 

Moreover, the discriminator is not trying to tell whether the 

samples are real or fake anymore. Instead, it is using K-

Lipschitz function to calculate the Wasserstein distance 

between the real and fake samples. As the loss function in 

the training process decreases, the Wasserstein distance 

becomes smaller. Hence, the generator generates samples 

closer to the real ones [52], which can be described by: 

 

𝑊(𝑝𝑑𝑎𝑡𝑎, 𝑝𝑔) = 𝑚𝑎𝑥
𝑤∈𝑊

 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎
[𝐷𝑤(𝑥)] − 𝐸𝑧[𝐷𝑤(𝐺(𝑧))]  (10) 

IV. METHODOLOGY 

This section explores the workflow that the research follows 

towards the model implementation. It describes different 

techniques and methods that have been used in each one of 

these steps, such as the data preparation and preprocessing 

techniques, model building, and performance evaluation.  

A. WORKFLOW  

As shown in Figure 7, once the raw data is obtained, some 

time is invested in understanding the data in order to describe 

it and discover any underlying relations. Following this, 

different data preprocessing techniques are used to prepare 

the data for model training and evaluation. The output from 

the data preprocessing is separated into two different 

datasets. The first dataset, called “base,” is used to train and 

test the autoencoder models (AE and VAE). AE has two 

different versions: single-loss function and multi-loss 

function. 

The second dataset, called “merged,” is used to train and 

test the WGAN model, which generates more fake fraud 

transactions. These transactions are then mixed with the 

merged dataset to produce the “mixed” dataset. Finally, the 

mixed dataset is used to train the autoencoder models one 

more time. The idea behind this approach is that by having 

more fraud transactions, the model performance is expected 

to increase, as will be explained later. All the models are then 

compared using the different evaluation techniques to obtain 

the best performing AE model. 
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B. DATASET DESCRIPTION 

1) RAW DATA 

The data is obtained from the research project that was 

undertaken in 2014 between the School of Computer 

Science, University of Nottingham (Malaysia campus) and a 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 7. The workflow of the model implementation. The raw data is split into two segments: merged and base 

datasets. The merged dataset is used as input for the WGAN model. The WGAN model produces and generates the 

mixed dataset which is then used to train the AE and VAE models. The base dataset is used as input to train both 

VAE and AE models. The AE model uses two loss functions, namely the multi-loss and single-loss function.

local Malaysian Bank. The original dataset that was obtained 

in 2014 contains about 30 million transactions (records) for 

the period from 2012 until 2013 [7]. However, for privacy 

reasons, the full dataset is not accessible anymore. Instead, 

this research obtained access to a subsection of the dataset as 

summarized in Table 1. 

 
TABLE I 

RAW DATASET DESCRIPTION. THE RAW FINANCIAL TRANSATIONS ARE 

PRE-PROCESSED ON DIFFERENT TIME HORIZONS, NAMELY DAY, WEEK, AND 

MONTH. 

Name Rec. Attr. Normal Fraud 
Null 

Values 
Duplicates 

Day 2706 69 2661 45 3 0 

Week 1490 71 1446 44 3 0 

Month 693 71 649 44 2 0 

 

The whole subsection dataset contains a total of 4889 

transactions that are consolidated based on the time intervals 

in 3 different files (Day, Week, and Month) and labeled 

under the class attribute by a domain expert to be either (0 = 

normal) or (1 = fraud). The number of attributes (or 

“features”) varies between these groups based on the time 

interval, as the Day group has 69 attributes including the 
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class as it is the base time interval. In contrast, the other two 

groups have two extra attributes with a total of 71 attributes. 

These two extra attributes are (tran_date_to and Week), in 

the case of the Week group, and (tran_date_to and Month), 

in the case of the Month group. 

The Day group has the most transactions, with a total of 

2706 transactions, where 45 of them are fraud and the rest 

are normal with only 3 Null values under the P2 attribute and 

no duplicates. While the Week group has 1490 transactions, 

44 of them are fraudulent ones, with three Null values under 

the P2 attribute and no duplicates. Finally, the Month group 

has 693 transactions, with 44 of them being fraud, two Null 

values under the P2 attribute, and no duplicates. In this 

research, the Day group is used as the base dataset, as it has 

the most normal transactions that will be required to train the 

autoencoders model and it requires less preprocessing work. 

2) MERGED DATA 

We notice from the dataset above that it does contain 

sufficient fraudulent transactions. However, training the 

WGAN model requires enough fraud transactions to produce 

more realistic fraud transactions in turn.  

Therefore, to obtain enough transactions to train the 

WGAN, the three groups of the dataset in Table 1 are merged 

into one dataset. However, two issues need to be solved to 

perform this merging successfully. The first issue is that 

different datasets have different numbers of attributes. The 

Week and Month datasets have two extra attributes - one 

attribute is the time interval, and the other attribute is the 

ending date for that interval, as mentioned above. To solve 

this issue, the time interval will be reconstructed into the base 

unit for all three datasets, which will require feature 

engineering for the transaction date tran_date attribute that 

will be discussed in the next section. Therefore, the 

(tran_date_from and Week) attributes will be dropped from 

the Week dataset. Also, the (tran_date_from and Month) 

attributes equally will be removed from the Month dataset 

while keeping the tran_date_to attribute  
 

TABLE II 

MERGED DATASET DESCRIPTION. THE NEW DATASET IS SORTED AND RE-

INDEXED AFTER THE DATASETS ARE MERGED. THE DATASET CONTAINS 133 

FRAUD TRANSACTIONS, AND, AS IT WAS EXPECTED, 7 DUPLICATES WERE 

FOUND. 

Name Rec. Attr. 
Nor
mal 

Fraud 
Null 

Values 
Duplicates 

Merged 4889 69 4756 133 8 7 

 

since it represents the end of the time interval for both 

datasets. Thus, the processed datasets will have equally 69 

attributes and can be merged.  

The second issue is the possibility of having duplicates. 

However, this issue will be discussed and solved in the next 

section. Table 2 summarizes the merged dataset. After the 

datasets are merged, the new dataset is sorted and re-indexed. 

The dataset now contains 133 fraud transactions, and as was 

expected, seven duplicates were found, which will be 

handled next. 

C. DATA PREPROCESSING 

Data preprocessing is one of the key steps towards any 

successful machine learning implementation. It helps to 

remove the noise data and irrelevant information from the 

dataset that prevents the knowledge discovery and can hurt 

the generalization. In the next sections, we will cover some 

of the data preprocessing techniques such as transformation, 

normalization, data cleaning, and feature extraction that were 

implemented in this research. 

1) FEATURE DROPPING 

This is the first technique that can help in dimension 

reduction. Keeping irrelevant attributes could hurt the model 

performance and cause overfitting, but by removing the 

unnecessary or redundant features, the model is expected to 

perform and generalize better. It will also help cut down the 

computing power required to train and run the model. In this 

research, two techniques were used to identify such features 

in the dataset: zero-sum and automatic generated.  

Attributes that have the same value for every record 

instance do not add any extra knowledge to the model as it 

cannot enhance the prediction; rather, it can hurt the model. 

Significantly, if the total value for that attribute for the whole 

dataset is zero, this attribute is dropped during the data 

preprocessing step. This is the case for some features in the 

dataset such as (rl0003, rl0012, rl0013, rl0014, etc.).  

There are two attributes directly related to the customer in 

the given dataset. These two features are customer identifier, 

cif_id, and account number, account_no. The bank system 

automatically generates both these attributes. Some fraud 

detection implementations are mainly built on such attributes 

as the graph analysis and the social network analysis, where 

the customer account number is considered to be a ‘node’ 

and his transaction an ‘edge’. Then certain weights and 

techniques are applied to evaluate whether this account is 

doing money laundering or not.  

However, these implementations require the account that 

the transaction was sent from and the account that the 

transaction will be sent to.  Unfortunately, the given dataset 

does not provide these attributes. Also, in terms of 

implementation for this research, including these customer-

related features will have a negative impact on the model 

performance. The model will be used as a real-time fraud 

detection system during the inference phase, where even a 

single transaction can be evaluated from a totally new 

customer. Therefore, during the model training no customer-

specific features will be included and both attributes are 

removed from the dataset. 

2) DUPLICATE DROPPING 

Even though the groups that were mentioned in Table 1 do 

not have duplicates, when these groups are combined 

together in the merged dataset, some duplicates were found. 

Hence, we check for duplicates in the merged dataset and 

drop them. 

However, it is worth pointing out that the duplicates that 

have been dropped from the dataset have occurred because 

of the merging process. In other cases where duplicates 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3086359, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017) 

VOLUME XX, 2017 9 

represent an original part of the dataset, it is still acceptable 

to keep them. 

3) BINARY ENCODING 

Categorical attributes need to be converted into numbers, 

so the model will be able to work with them, and there are 

different types of encoding techniques. Among the most 

popular ones are One Hot Encoding and Binary Encoding. 

We compare these two encoding techniques in terms of their 

impact on the model accuracy and the number of output 

attributes that each technique produces. Binary Encoding 

will have the same impact on the model accuracy as One Hot 

Encoding but with less attributes, which is sufficient for this 

research. Three attributes (account_type, product_type, 

business_type) in the dataset need to be encoded. The binary 

encoder will encode the categories in each one of these 

attributes into binary code then split it into columns. 

4) NULL VALUES 

Having null or missing values in the dataset can lead to 

wrong predictions or even issues during model training. 

Therefore, filling these values is an important step during the 

preprocessing phase. In the given dataset, eight null values 

were found under the P2 attribute. These null values were 

handled by filling them with the mean attribute value. 

5) LOG TRANSFORMATION 

Data skew represents another challenge that needs to be 

fixed. Three attributes in the given dataset (credit_amount, 

debit_amount, debitpluscredit_amount) show an extensive 

range of differences within their values because the vast 

majority of the values are skewed towards a certain direction 

while the remaining few are skewed in the other direction. 

By applying the common scaling techniques directly to such 

attributes, the scaled data will not preserve the original data 

representation. Therefore, log transformation is required to 

fix the data skew as it pulled in the extremely high values 

relative to the median while stretching the low values back 

further away from the median. Moreover, the log 

transformation respects the positivity of the attribute, which 

is essential for the scaling techniques that will be applied to 

the data. By applying log transformation on the attributes, 

their distribution takes a better shape. 

6) STANDARDIZATION 

As the dataset contains a wide range of values, the 

normalization or standardization of data prior to the training 

phase is favorable because it can reduce the estimation errors 

and calculation time. 

Normalization, which is also called Min-Max Scaling, can 

be achieved by scaling the attribute to a fixed range (0 and 

1) through this equation: 

                               𝑋𝑛𝑜𝑟𝑚 =
𝑋 – 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 – 𝑋𝑚𝑖𝑛
                                        (11) 

However, in fraud detection models, it is important to 

preserve the original distance between data points. 

Therefore, standardization will be much more appropriate 

for implementation. Standardization scales the data based on 

its mean (𝜇) and the standard deviation (𝜎) from the mean. 

Having 𝜇 =  0 and 𝜎 =  1 will center the data around 0 as 

in the following equation: 

                                     𝑍 =
𝑋 – 𝜇

𝜎
                                                             (12) 

The standardization technique was applied over all the 

non-binary attributes in the dataset (credit_amount, 

debit_amount, p2,…, etc.). 

7) FEATURE ENGINEERING ON DATES 

One reason for having the raw dataset divided into three 

groups is to enhance the model accuracy by grouping the 

transactions within a specific period. Although this is still a 

valid approach, it can be improved even further.  

This research introduces another approach that can better 

use the date attribute, engineering some new features based 

on the tran_date feature. Specifically, the tran_date feature is 

split into its base date components, then these new features 

are added into the dataset. These new features are described 

in Table 3. 

 
TABLE III 

 DATE-BASED NEW FEATURES 

Feature Description 

month Month of the transaction 

day Day of the transaction relative to the month 

quarter Quarter of the year (1~ 4) of the transaction 
dayofweek Day of the week of the transaction 

is_weekend 
Whether the transaction occurred during the 

weekend or not 

 

The idea behind introducing these features is to allow the 

model to capture any pattern within the data that is related to 

its date. As shown in Figure 8, transactions tend to have 

different data peaks from one feature to another, which the 

model may utilize to identify fraudulent behavior. 

 

FIGURE 8. Data distribution for the new date related 

features based on different time horizons (i.e., day, 

month, and quarterly). The y-axis represents the density 

and the x-axis represents the range of values. 

 

However, the given dataset does not provide any 

timestamp features. It could be instrumental in deducing 

even more information, such as whether the transaction 

occurred during daytime, night, morning, or afternoon, 

which may be useful for the model. 

It is worth mentioning that there is a popular deep learning 

implementation that can handle time-series data and 

sequence data better than the non-recurrent neural networks, 

which is called LSTM (Long Short-Term Memory). 

However, this approach is not useful for this research 
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because fraud behavior does not follow a particular 

sequence; one transaction cannot be used to predict the next 

one. Moreover, this research aims to build a real-time fraud 

detection application that may operate on one transaction 

rather than a batch of transactions. 

D. PREPROCESSED DATASET 

The preprocessing phase outputs two datasets; the base 

dataset will be used to train the autoencoder models, and the 

merged dataset used to train the WGAN. This section 

describes these two datasets as they are now ready to be used. 

Table 4 shows the description of these datasets. 

The different number of attributes in the two datasets are 

due to one extra attribute, rl0030, that was dropped from the 

base dataset because it has a zero-sum value. However, this 

attribute holds some value for instances in the other two 

groups when the groups are merged together. Although the 

number of Fraud transactions is low compared to the normal 

transactions in the base dataset, the autoencoder 

implementation will overcome this issue. As the WGAN will 

need the fraud transactions for the training, the merged 

dataset is used as it has more fraud transactions than the base 

dataset. 

 
TABLE IV 

PROCESSED BASE AND MERGED DATASETS 

Name Rec. Attr. Normal Fraud 
Null 

Values 
Duplicates 

Base 2706 43 2661 45 0 0 

Merged 4882 44 4749 133 0 0 

 

 

FIGURE 9. Attributes distribution by class (Normal and Fraud). The y-axis represents the fraction of transactions, and 

the x-axis represents the time horizons (i.e., quarter, month, day, dayofweek etc.) 

 

 
FIGURE 10. Attributes distribution by class (Normal and Fraud). Normal transactions are represented as  ‘blue’ 

whereas fraud transactions are represented as ‘orange’
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In both datasets, fraud and normal transactions are 

overlapped in almost every feature, except in certain features 

such as credit_amount, debit_amount, and 

depitpluscredit_amount, where fraud and normal 

transactions can be slightly separable, as Figure 10 shows. 

Nevertheless, when these barely separable features are 

investigated further, their distribution shows a high level of 

mixing, as Figure 9 shows in the case of credit_amount. 

Therefore, a machine learning implementation is necessary 

for better normal-fraud class classification. 

E. MODEL IMPLEMENTATION 

1) AE 

The autoencoder is mainly used to learn the important 

features; then, it utilizes that knowledge to reconstruct the 

data to be as similar as possible to the original data. 

However, in fraud detection implementation, the 

autoencoder's output is not the focus. Instead, the most 

important part is the knowledge that the model gains in the 

latent vector. That knowledge can be evaluated through the 

reconstruction error, as mentioned earlier.   

In this implementation, the autoencoder will be only 

trained over the normal transactions. Thus, the model is 

expected to learn the normal transactions’ important features 

and then reconstruct these transactions. However, during the 

testing phase, the model will be tested against both normal 

and fraud transactions. That’s when the reconstruction error 

is used. If the tested transaction is normal the model will be 

able to reconstruct it with the minimum error. However, if 

the transaction is fraud, the reconstruction error will be 

relatively significant. Moreover, to determine whether the 

error is big or small, a predetermined threshold value is used, 

on which the anomaly score is given to each transaction. The 

threshold determination method will be discussed in the next 

sections. 

MODEL ARCHITECTURE 

The first component in the autoencoder implementation is 

the input layer, Model_Input, which has 42 neurons. Each 

neuron represents one attribute in the base dataset except the 

class attribute. No activation function is used for this layer as 

no prior weights exist; hence, it merely passes the values to 

the network's next component. 

 

 
FIGURE 11. Autoencoder model structure. 

 

The next component of the network is the encoder. It 

consists of 3 dense layers (Encode_1, Encode_2, Encode_3), 

and the number of neurons in each one is almost half of the 

number of its previous layer. Thus the autoencoder is forced 

to learn only the important features. The bottleneck layer is 

the next component; it has the minimum number of neurons, 

which is eight, that will hold the latent vector weights. 

Then, the network passes the values to the decoder, which 

in turn consists of three dense layers (Decode_1, Decode_2, 

Decode_3). However, the number of neurons in each dense 

layer in the decoder is almost double the number of its 

previous layer to build towards restoring the same number of 

features as the original data. The last component of the 

network is the Model_Output layer, which has 42 neurons 

representing the same number of neurons as the original 

input. Figure 11 shows the architecture of the AE model. 

The activation function in the first layer in both the 

encoder and the decoder is tanh as it will ensure the output 

values for neurons in these layers will always be between (-

1, 1). This fits nicely because of the data standardization in 

the preprocessing phase. The other layers in both of these 

components use the ReLU activation function, which will 

force the output to be positive, or else zero. Finally, a 

sigmoid activation function in the Model_Output layer will 

produce output within the range of (0, 1). 

The model uses Mean Squared Error (MSE) as a loss 

function as most of the input values are a spectrum rather 

than binary. The MSE computes the average of the square 

difference between the actual input value and the predicted 

value. Therefore, the objective of the optimizer is to 

minimize that loss function. The output of MSE is a positive 

value. However, as sigmoid was used as an activation 

function in the last layer of the autoencoder, it is expected to 

have a Binary Cross-Entropy (BCE) loss, which will be 

discussed in the next section. 

Lastly, the gradient-based optimization optimizer Adam is 

used by the model to minimize the loss function as it is 

invariant to the gradients' diagonal rescaling and capable of 

handling a wide range of nosiy data. 

MULTI-LOSS FUNCTION 

Given that the input features have both binary and non-

binary data, and sigmoid is used as the model output 

activation function, this paper implemented another variant 

of the AE model. Instead of having one loss function, this 

variant has two loss functions, MSE and BCE. BCE is 

capable of handling the binary values and has a bounded 

output of [0,1]. The idea of combining these two losses is to 

have a smooth and stable loss value that will handle both 

binary and non-binary values during the optimization. The 

implementation adds these two losses then returns their mean 

value. 

TRAINING AND HYPERPARAMETERS TUNING 

Several experiments have been undertaken to determine the 

values of the hyperparameters (such as the learning rate, 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3086359, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017) 

VOLUME XX, 2017 9 

number of epochs, etc.). After reaching a stable performance, 

the learning rate value, which determines the gradient 

optimizer's step size, is set to be (1e-3), and the number of 

epochs is set to be 300. To optimize the training process, an 

early stopping technique is used to terminate the training if 

the loss does not decrease beyond 1e-5. 

As the dataset is not large enough, we used a cross-

validation technique where 20% of the data is used for 

testing, and  80% is used in the training process. Each batch 

size is set to be 80, selected based on a random seed. Finally, 

to avoid the network’s tendency to memorize the training 

data and fail to generalize, the model uses an activity 

regularizer in the encoder's first layer. This allows the 

application of penalties over this layer during the 

optimization and adds those penalties to the loss function. 

2) VAE 

The variational autoencoder follows the same idea for 

implementation as for the AE. That is, only the normal 

transactions are used during the training phase. Then an 

anomaly score is assigned with each transaction during the 

test phase for both normal and fraud transactions by 

comparing the reconstruction loss against a predefined 

threshold. The difference between VAE and AE is the latent 

space; as in VAE, it is represented by a distribution rather 

than data values. 

MODEL ARCHITECTURE FOR VAE 

The model starts with the input layer Model_Input, which 

has 42 neurons with no activation function, and the encoder, 

consisting of two dense layers (Encode_1, Encode_2) where 

they have (22 and 12) neurons, respectively. The Encode_2 

layer, in turn, outputs two different vectors, Mean and Log 

Variance. Each one of these two vectors is mapped to its own 

layer. Log Variance here is used because of its more 

numerical stability than the standard deviation, which will be 

calculated later in the Sigma layer. 

However, before recovering the standard deviation in the 

Sigma-dense layer, both Mean and Log Variance are passed 

to a custom layer, KLDivergenceLayer. This layer calculates 

the distribution loss using a KL divergence function, then 

adds this loss to the total model loss. Finally, it returns the 

inputs (Mean and Log Variance) unchanged to the next layer. 

Next, the Sigma-dense layer receives the values from 

KLDivergenceLayer and recovers the Standard Deviation. 

Subsequently, we implemented the reparameterization trick 

by introducing a separate dense layer, Epsilon, which uses 

the Monte Carlo sampling technique to draw a random 

sample from a normal distribution with the same latent 

vector dimension.  This sample represents Noise, which is 

then multiplied by Sigma, and the product is forwarded to 

the next layer. 

The latent space Z-dense layer receives the sampled vector 

standard deviation multiplied by epsilon and also receives 

the Mean from KLDivergenceLayer. Then it adds them 

together and outputs the result to the model decoder. The 

decoder consists of two dense layers: (Decode_1, 

Decode_2), and the number of neurons in each of them is and 

12 and 22, respectively. Finally, the Model_Output layer 

receives the decoded values and outputs 42 features. In 

general, the model uses the ReLU activation function in both 

the encoder and the decoder layers. Figure 12 shows the 

architecture of the VAE model. 

 

 
FIGURE 12. VAE model architecture. 

TRAINING AND HYPERPARAMETERS TUNING FOR 
VAE 

The initial learning rate is set to be (1e-3), while the model 

will be trained for 300 epochs. Cross-validation is used 

where training and test datasets correspond to 80% and 20% 

of the original dataset, and batch size is set to be 128. 

The RMSprop optimizer is used to minimize the loss 

function because it limits the vertical direction fluctuations. 

This allows increasing the learning rate, allowing the 

gradient to take larger steps for faster convergence. 

3) WGAN 

The fraud detection models' problem is that their datasets are 

always unbalanced, given that the fraud behavior 

infrequently occurs. The same case applies to the merged 

dataset as it has only 133 fraud transactions. Therefore, 

WGAN will generate more fraud transactions, enhancing or 

solving the unbalanced dataset problem, hence enhancing the 

model’s performance. 

As the model will generate fraud transactions, the merged 

dataset is used to train the model. After the training is done, 

the model is used to generate new fraud transactions. These 

newly generated fraud transactions are mixed with the 

dataset to formulate the mixed dataset. 
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MODEL ARCHITECTURE FOR WGAN 

As training GANs is not easy in terms of stability [50], the 

model implementation considers that adding extra layers 

such as the Dropout layer and the LeakyReLU activation 

layer could make the model more stable. 

In general, the model starts with the Model_Input layer, 

which receives 43 features mapped to its 43 neurons. Then 

the model separated into two different networks: one is the  

 

 
FIGURE 13. WGAN model architecture. 

 

generator, and the other one is the discriminator. The 

generator network has three dense layers (Gen_1, Gen_2, 

Gen_3) plus the Gen_Out layer. Because the generator 

generates fake transactions, it does not need to follow a 

specific structure in each layer's neuron number. However, 

as almost all GANs literature is based on image processing, 

it follows a binary multiplication system. To follow that 

practice in this network, the number of neurons in the 

generator layers are 128, 256, and 512, respectively. 

However, for the Gen_Out layer, the number of neurons is 

43, as it will be the same number of features as the real 

transaction. 

After each layer in the generator except for Gen_Out, there 

is a LeakyReLu activation layer that replaces the standard 

layer activation and could handle values better than the 

standard ReLU. 

The discriminator network, on the other hand, starts with 

the Mixed_Input layer receiving input from both the 

generator, which will produce the fake transactions and also 

a randomly selected batch from the real transactions. These 

two sources are then mixed and passed to the next layers. The 

dimensions of the generated fake transactions and the real 

transactions are the same (i.e., 43 features). Hence, the 

number of neurons in this layer is 43 as well. 

 The discriminator consists of 3 dense layers (Disc_1, 

Disc_2, Disc_3) beside the Model_Output layer. The dense 

layers are based on the binary system where the number of 

neurons is 512, 256, and 128, respectively. The output layer 

will have only one neuron. The same technique of using 

LeakyReLu is used here, so each dense layer except the 

output is followed by the LeakyReLU activation layer. 

Moreover, to solve the problem of overfitting and stability 

issue, a Dropout layer is added after the first dense layer 

activation, which could help to regularize the network. 

Finally, the discriminator output layer, Model_Output, has 

no activation function as it is implementing the Wasserstein 

distance. It will use the single neuron in the layer to output 

the distance of which the transaction is considered real or 

fake, rather than outputting 0 or 1, using a classic activation 

function such as Sigmoid. Figure 13 shows the architecture 

of the WGAN model. 

TRAINING AND HYPERPARAMETERS TUNING FOR 
WGAN 

GANs require a relatively long time to converge. Hence the 

number of epochs is set to be 50,000. The optimizer is set to 

be Adam with a learning rate of about (1e-3). The batch size 

for the real transactions' random sample is set to be 64, which 

the discriminator will use. 

Moreover, a checkpoint is made to save the model and 

weights in every 100 epochs in addition to the loss values.  

Once training is done, an accuracy check iterates over all 

checkpoints to select the best version in terms of accuracy 

relative to its corresponding loss. 

 It is worth mentioning that the LeakyReLU layers have a 

hyper-parameter, called alpha, that determines the curve's 

negative slope. Here alpha is set to be 0.2, and the Dropout 

rate is set to be 0.1. 

F. Performance Evaluation Methods 

Various measures are used to evaluate the performance of 

proposed models. We start with a list of related terms that 

will be used in these measures. False positive (FP) refers to 

the number of normal transactions that are predicted as fraud. 

True positive (TP) is the number of fraud transactions that 

are predicted as fraud. False negative (FN) specifies the 

number of fraud transactions that are predicted as normal. 

Finally, true negative (TN) refers to the number of normal 

transactions that are predicted as normal. 

In this research, a confusion matrix is used to report the 

model performance by combining the indicators mentioned 

above. This will help visualize how the model confuses the 

true class. Moreover, some other performance measures will 

be calculated using the confusion matrix, such as FP rate 

(FPR), accuracy (ACC), precision, recall, F1 score, and 

Receiver Operating Characteristics (ROC) curve.  

FPR is highly important in fraud detection models, 

especially in this research, as it aims to minimize the value 

of FPR as much as possible. It is expressed as follows: 
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𝐹𝑃𝑅 =  
𝐹𝑃

𝑇𝑁 + 𝐹𝑃
                                                        (13) 

 

Accuracy indicates the overall correct predicted 

transactions, whether it is TP or TN relative to the total 

instances. Precision identifies the correct fraud transactions 

rate relative to all transactions that are predicted as fraud. 

The recall is the rate of the correctly predicted fraud 

transactions relative to all of the actual fraud transactions. To 

summarize the model with only one single score, the F1 

score is used as it considers both recall and precision in its 

formula as follow: 

𝐹1 =  2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
                             (14) 

 

It is worthwhile to mention that both the Precision and F1 

scores are relatively low in fraud detection models as the 

number of FPs is always more prominent than the TPs. 

Finally, ROC is used to visualize the True Positive Rate 

(TPR) and the FPR, and both are plotted on the y-axis and x-

axis, respectively. Hence, it shows how the model reacts 

under all different combinations of thresholds. 

An important indicator is calculated from ROC and called 

Area Under the Curve (AUC). AUC summarizes the whole 

model performance in one number, ranging from 0 to 1 with 

the best performance equal 1. 

The optimizer’s objective is to minimize the loss. 

However, this could lead to overfitting. Two model losses, 

such as Training Loss and Testing Loss, are reported to make 

sure that the model is not overfitting. Suppose the Training 

Loss is higher than the Testing Loss. In that case, the model 

is underfitting, and there is room for enhancement until the 

Training Loss is near or equal to the Testing Loss - which is 

perfect fitting. Once the Testing Loss exceeds the Training 

Loss, the model is overfitting, and it needs to be adjusted. 

THRESHOLD OPTIMIZATION 

As was mentioned before, fraud detection implementations 

require a predefined Threshold value to be able to assign an 

anomaly score to each transaction. However, given the 

business scope of these implementations, they should filter 

out all of the fraud transactions. Yet, they should maintain a 

good degree of efficiency by targeting a low FP rate.  

To automate the process of determining the Threshold, and 

at the same time, aligned with the business scope target, this 

research defines the Threshold to be Recall-First Threshold 

(RFT). The Recall-First Threshold (RFT), is the value that 

will allow the recall of all fraud transactions with the highest 

precision possible, as Figure 14 shows. This can be used 

perfectly as a Threshold for our fraud detection 

implementation as its required to filter out all of the fraud 

transactions; nevertheless, it should maintain a good degree 

of efficiency by targeting low FP rate.  

To calculate the RFT, precision-recall pairs for different 

probability thresholds are computed using the 

precision_recall_curve function in the sklearn library. Then 

the minimum value in the returned thresholds array is 

selected. 

 

Figure 14. Recall-First threshold. 

VI. RESULTS AND DISCUSSION 

This section presents the results from different 

experiments. Firstly, it describes the mixed dataset, which is 

the result of the WGAN model. Secondly, it compares the 

AE model (single-loss and multi-loss) and VAE model under 

both datasets (Base and Mixed). Finally, the section 

concludes with a discussion of each model’s performance 

using each dataset. 

A. WGAN 

WGAN training process is relatively tricky, and it often 

requires a significant number of epochs. Hence, the WGAN 

model with the configuration detailed in the previous section 

shows various accuracy levels during the training process, as 

Figure 15 shows. The accuracy refers to how much the 

generated samples are identical to the real samples. Thus, 

higher accuracy is an indication that the discriminator is no 

longer able to distinguish between the generated and real 

samples. During training, a checkpoint is saved for the 

model, and once the training is completed, an iteration is 

used to select the best version of the model based on its 

accuracy, which reached 99%. The optimal number of 

iterations is chosen when the accuracy has reached a plateau 

or degradation. 

After training, the best model is utilized to generate fraud 

transactions. Specifically, it is used to generate about the 

same number of real fraud transactions in the merged dataset; 

that is, about 132 fraud transactions. These fake fraud 

transactions are then mixed into the merged dataset to result 

in the mixed dataset, as Table 5 shows. 

 
TABLE V 

MIXED DATASET DESCRIPTION 

Name Rec. Attr. Normal Fraud 
Null 

Values 
Duplicates 

Mixed 
501

4 
44 4749 265 0 0 

 

Subsequently, the mixed dataset is re-indexed and sorted 

to be used during the autoencoder models training, and the 

final dataset is shown in Figure 16. 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3086359, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017) 

VOLUME XX, 2017 9 

B. AE SINGLE-LOSS (AE-S) 

The autoencoder model with a single loss function (MSE) 

training generally shows an acceptable fitting level. The 

Training Loss stayed above but near the Testing Loss using 

the base dataset. On the contrary, the Training Loss goes 

below but near the Testing Loss when the mixed dataset is 

used, indicating a sort of overfitting, as Figure 17 shows. 

When the base dataset is used, the Recall-First Threshold 

(RFT) was 0.216, which increased to reach 0.589 after the 

mixed dataset is used, as Figure 18 shows. The AUC was 

calculated to be 0.920 in the base dataset. However, it 

increased to reach about 0.963 once the mixed dataset is 

used, as shown in Figure 19.  

As the RFT is already calculated, the reconstruction error 

can be assigned an anomaly score, as Figure 21 shows. All 

of the reconstruction error values located above the RFT are 

considered fraud; else, it is considered normal. However, the 

different color represents the actual points class. 
 

 

FIGURE 15. WGAN classification accuracy at different epochs during training of the credit_amount attribute. The left 

side shows the distribution of the real dataset while the three remaining right sides show the distribution of the 

generated synthetic data for different epochs (i.e., 100, 200, and 300). It can be observed that the distribution of the 

synthetic data is very similar to the real dataset. 
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FIGURE 16. Credit_amount feature distribution in the mixed dataset by class (Normal and Fraud). 

 

FIGURE 17. AE-S model loss. 

 

FIGURE 18. AE-S recall-first threshold. The precision/recall value is between 0 and 1. 
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FIGURE 19. AE-S receiver operating characteristic curve and AUC.

Finally, the confusion matrix is depicted in Figure 20, 

based on the fraud scores assigned in the above step. All 

fraud transactions are identified correctly, which makes the 

recall 100% for the base dataset. The same goes for the 

mixed dataset, where all of the 43 fraud transactions are 

identified correctly. 

However, the number of normal transactions that are 

incorrectly predicted as fraud was about 94 transactions in 

the base dataset, while decreased to 69 transactions after 

using the mixed dataset. Moreover, these predictions 

impacted other measures, such as the FPR, which reached 

0.18 when the based dataset was used against 0.07 when the 

mixed dataset was used. In general, all of the measures are 

reported in Table 6. 

C. AE MULTI-LOSS (AE-M) 

As was proposed by this research, the AE-M uses both cross-

entropy and MSE loss functions to evaluate the model loss. 

Results show that the model has a perfect fitting in the base 

dataset case as Training Loss and Testing Loss 

 
FIGURE 20. AE-S confusion matrix. 

are positioned over each other. However, it was relatively 

over-fitted in the mixed dataset case, as Training Loss went 

below the Testing Loss, as Figure 22 shows. The RFT scored 

about 0.229 when the base dataset was used, while it scored 

0.554 when the mixed dataset was used, as Figure 23 shows. 

AUC was lower in the base dataset than the mixed dataset 

case, as it is reported to be 0.915 and 0.965, respectively, 

shown in Figure 24. 

 

 

FIGURE 21. AE-S reconstruction error fraud-score. The reconstruction error is between 0 and 25. 
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FIGURE 22. AE-M model loss. 

 

FIGURE 23. AE-M Recall-First threshold. The precision/recall value is between 0 and 1. 

 

 

FIGURE 24. AE-M receiver operating characteristic curve and AUC. 
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FIGURE 25. AE-M reconstruction error fraud-score. The reconstruction error is between 0 and 25. 

FIGURE 26. VAE model loss.  

  

FIGURE 27. AE-M confusion matrix 

When AE-M is used to classify the transactions based on 

their reconstruction error score against the calculated RFT 

value, results shows that the distribution of the error points 

was scattered in the base dataset compared to the mixed 

dataset case, as shown in Figure 25. After the fraud scores 

were assigned to the transactions, the confusion matrix in 

Figure 27 is constructed. In both datasets, all the fraud 

transactions were recalled correctly. In contrast, 100 

normal transactions were predicted as frauds in the base 

dataset case, and 67 normal transactions were incorrectly

 
FIGURE 28. VAE recall-first threshold. The precision/recall value is between 0 and 1. 
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.  

FIGURE 29. VAE receiver operating characteristic curve and AUC. 

 
FIGURE 30. VAE reconstruction error fraud-score.

classified for the mixed dataset as well, as Figure 27 shows. 

Among other performance measures that are detailed in 

Table 6, FPR scored about 0.19 in the base dataset case while 

it scored 0.07 in the mixed dataset case.  

D. VAE 

Variational autoencoder showed perfect fitting in the base 

dataset case, yet the Training Loss went below the Testing 

Loss when the mixed dataset was used. Hence, it is 

overfitting, as Figure 26 shows. The RFT was calculated to 

be 0.202 for the base dataset and 0.552 for the mixed dataset 

to assign fraud scores to the predicted transactions, as shown 

in Figure 28. 

As Figure 29 shows, AUC reached as high as 0.9645 when 

the mixed dataset was used, while it decreased to reach 

0.9057 when the base dataset was used. Based on the RFT 

computed value, the fraud score was assigned, showing that 

the reconstruction error points are more condensed under the 

threshold when the mixed dataset was used. In 

 
FIGURE 31. VAE confusion matrix. 

contrast, they were scattered under the threshold when the 

based dataset was used, as Figure 30 shows. 

Lastly, the confusion matrix was assembled based on the 

RFT, where it shows that all the fraud transactions were 

correctly predicted in both datasets. Moreover, the 

incorrectly predicted normal transactions decreased from 

101 transactions for the base dataset experiment to be 75 

transactions in the mixed dataset experiment, as depicted in 

Figure 31. 

Accordingly, FPR decreased from 0.19 in the base dataset 

to about 0.08 in the mixed dataset experiment. Table 6 shows 

a summary of all the performance results in the next section. 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3086359, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017) 

VOLUME XX, 2017 9 

E. DISCUSSIONS 

The mixed dataset shows a better performance in almost 

every measure, and Table 6 shows the overall indicators in 

percentage for comparison.  

The FPR dropped drastically from around 19% for the base 

dataset to around 8% for the mixed dataset. This was 

expected as the number of fraud class transactions in the 

mixed dataset is almost double. However, the interesting part 

is that the FP number itself decreased in nearly all 

experiments, which implies a better model's ability to 

separate the fraud class from the normal class. The reason for 

this is that the shape of the reconstruction error distribution 

that was nicely flattened under the threshold line. Moreover, 

the proposed threshold (RFT) proved to be a good estimate, 

as its value was almost doubled from around 0.2 for the base 

dataset, reaching approximately 0.5 in the mixed dataset 

case. This increased the model's ability to cover a broader 

range of the reconstruction error. 

In anomaly detection research, a highly unbalanced dataset 

is always the case, which impacts the performance of certain 

measures such as precision and accordingly F1 measure; that 

is, the precision considers the FP count relative to the true 

positive count. Thus, although the result shows a better 

precision and F1 measure in the mixed dataset, reaching 

around 39% and 56%, respectively, these values are still low 

compared to other studies that are not in the anomaly 

detection domain. The better alternatives to the F1 measure 

that can be used in the anomaly detection field are ROC and 

AUC as the TP/FP ratio issue does not impact them. 

Therefore, we obtained an AUC value of 96.50% in the 

mixed dataset, which is still comparable across different 

research domains. 

  
 

TABLE VI 

OVERALL PERFORMANCE RESULTS IN PERCENTAGE FOR BOTH 

DATASETS. THE RESULTS SHOW THE MEAN OF RETURNS AVERAGED 

OVER SIX RUNS. THE STANDARD DEVIATION IS NOT REPORTED SINCE THE 

VARIATION IS INSIGNIFICANT (STD LESS THAN 0.01). 

Name Acc. Precision Recall F1 AUC FPR 

Base 

AE-S 83 10 100 19 92.00 18 

AE-M 82 10 100 18 91.50 19 

VAE 81 10 100 18 90.57 19 

Mixed 

AE-S 93 38 100 55 96.30 7 

AE-M 93 39 100 56 96.50 7 

VAE 93 36 100 53 96.45 8 

 

The proposed approach of having a multi-loss function for 

the autoencoder model shows the best overall result with the 

mixed dataset, as its FPR went as low as 7%, while its AUC 

scored 96.50%. 

Although the proposed models' overall performance and 

results were good, some minor overfitting was reported in 

the mixed dataset even after applying cross-validation, 

regularization, and dropout techniques. Solving this issue 

may require access to a bigger dataset. However, in this 

research, the implementation is mainly focused on the latent 

vector and the reconstruction error rather than the actual 

output of the model. Hence, minor overfitting is not expected 

to have an impact on the model's overall performance. 

In this paper, we have designed and implemented a deep 

learning model that gives state-of-the-art results, in terms of 

the FPR, RFT, and AUC, for improving the anti-money 

laundering (AML) process. We also explored recent state-of-

the-art deep learning and unsupervised learning techniques 

such as autoencoder (AE), variational autoencoder (VAE), 

and generative adversarial network (GAN), and we showed 

that these techniques can enhance earlier results [7, 8].  

Recent works such as Pumsirirat and Yan [42] and Paula 

et al. [43] both used autoencoders (AEs) to investigate fraud 

and money laundering. However, for the first time, we 

demonstrate the applicability and effectiveness of combining 

AE and VAE with WGAN methods. We use WGAN to 

generate realistic synthetic fraud transactions to solve the 

issue of imbalanced class labels, and such additional 

transactions are then used by the AE/VAE to train the model. 

Our results indicate that this approach achieves significant 

improvements for fraud detection. 

VI. CONCLUSIONS AND FUTURE WORK 

Money laundering is a serious global issue that needs to be 

addressed, especially considering the fast-growing datasets 

that need to be evaluated and analyzed. This research 

attempted to extend the work previously started in 2014 by 

applying deep learning and unsupervised techniques to 

improve the anti-money laundering process. More 

specifically, our system leveraged AE and VAE models. 

However, as access to the whole dataset is not available 

anymore, the current study relied on another advanced 

technique in deep learning called GAN to generate more 

fraud transactions to produce more reliable models.  

To obtain a more balanced dataset, WGAN was used to 

generate more fraud transactions, which were mixed with the 

base dataset to produce the mixed dataset. This was then used 

to train the autoencoders. WGAN performance scored a very 

high accuracy, reaching about 99%. Hence, the generated 

fraud transactions were almost identical to the real fraud 

transactions. 

Experimental results show that even with the base dataset, 

the proposed models performed better than the original 

research as it helped decrease the FPR to reach around 18%. 

However, using the mixed dataset, the results were even 

better as the FPR was reduced to 7%. Other measures were 

enhanced, such as accuracy, which increased to 93%, and 

AUC, which reached 96.50%. Results also show that the 

proposed multi-loss function autoencoder performed better 

than the other models. 

It is worth mentioning that the model’s loss in the mixed 

dataset case was slightly over-fitted. Hence, additional data 

may be required to overcome this issue in the future. 

However, as this implementation mainly focused on the 

latent vector and the reconstruction error rather than the 
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actual output of the models, minor overfitting is not expected 

to impact the model's overall performance.  

Money laundering inherently possesses complicated 

characteristics, for example, the layering phase in which 

launderers distribute money between the different accounts 

while trying to hide their sources. Capturing such a pattern 

will require additional work such as the graph and social 

network analysis along with the deep learning and 

unsupervised techniques proposed by this study. 

Despite the promising results, there is still some space for 

enhancement. This could be achieved if access to a bigger 

dataset is secured along with an in-depth interpretation for 

the dataset attributes.  
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