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Research Article
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In step with rapid advancements in computer vision, vehicle classification demonstrates a considerable potential to reshape
intelligent transportation systems. In the last couple of decades, image processing and pattern recognition-based vehicle
classification systems have been used to improve the effectiveness of automated highway toll collection and traffic monitoring
systems. However, these methods are trained on limited handcrafted features extracted from small datasets, which do not cater the
real-time road traffic conditions. Deep learning-based classification systems have been proposed to incorporate the above-
mentioned issues in traditional methods. However, convolutional neural networks require piles of data including noise, weather,
and illumination factors to ensure robustness in real-time applications. Moreover, there is no generalized dataset available to
validate the efficacy of vehicle classification systems. To overcome these issues, we propose a convolutional neural network-based
vehicle classification system to improve robustness of vehicle classification in real-time applications. We present a vehicle dataset
comprising of 10,000 images categorized into six-common vehicle classes considering adverse illuminous conditions to achieve
robustness in real-time vehicle classification systems. Initially, pretrained AlexNet, GoogleNet, Inception-v3, VGG, and ResNet
are fine-tuned on self-constructed vehicle dataset to evaluate their performance in terms of accuracy and convergence. Based on
better performance, ResNet architecture is further improved by adding a new classification block in the network. To ensure
generalization, we fine-tuned the network on the public VeRi dataset containing 50,000 images, which have been categorized into
six vehicle classes. Finally, a comparison study has been carried out between the proposed and existing vehicle classification
methods to evaluate the effectiveness of the proposed vehicle classification system. Consequently, our proposed system achieved
99.68%, 99.65%, and 99.56% accuracy, precision, and F1-score on our self-constructed dataset.

Hindawi
Complexity
Volume 2021, Article ID 6644861, 11 pages
https://doi.org/10.1155/2021/6644861

mailto:asad.khattak@zu.ac.ae
https://orcid.org/0000-0001-6949-3577
https://orcid.org/0000-0003-3448-9804
https://orcid.org/0000-0002-8366-3533
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/6644861


1. Introduction

With an exponential production of vehicles around the
world, vehicle classification systems can play a significant
role in the development of intelligent transportation sys-
tems, i.e., an automated highway toll collection, perception
in self-driving vehicles, and traffic flow control systems. In
the earlier times, laser and loop induction sensors-based
methods have been proposed for the vehicle type classifi-
cation [1–4]. -ese sensors have been installed under the
pavement of the roads to collect and analyse the data to
extract the relevant information regarding vehicles. How-
ever, the precision and stability of these methodologies are
significantly influenced due to undesired weather conditions
and impairment in the road pavement [5]. In step with the
advancement in computer vision, image processing and
pattern recognition-based vehicle classification systems have
been proposed [6, 7]. Basically, computer vision-based
classification system is a two-step procedure; in the first step,
handcrafted extraction methods are utilized to obtain visual
features from input visual frame. In the second step, ma-
chine learning classifiers are trained on the extracted features
to perform classification on group-based data. Hand-crafted
features are categorized into (i) global and (ii) local features
to describe and represent the image data simultaneously [8].
-ese features are combined in the training of traditional
machine learning classifiers to perform object recognition.
-ough these systems perform well in the specific controlled
environment and are more convenient in terms of instal-
lation and maintenance than the existing laser and induc-
tive-based schemes, these methods are trained on the limited
handcrafted features extracted from the small datasets,
whereas extensive prior knowledge is required to maintain
accuracy time environment [9].

Recently, deep learning-based feature extraction and
classification methods have been introduced, which dem-
onstrated better applicability and adaptability than the
traditional classification systems. Convolutional neural
network (CNN) based classification systems have achieved
significant accuracy on the large-scale image datasets due to
their sophisticated architecture [10–12]. -ough, the de-
velopment of the graphical processing unit (GPU) has
significantly increased the image processing capabilities of
the computing machines. But the matter of fact is that CNN
based classification system requires piles of data to sustain
accuracy and ensure generalization. Until recently, to the
best of our knowledge, no generalized benchmark dataset is
available for the development and evaluation of vehicle
classification systems. Consequently, available vehicle clas-
sification datasets are relatively small, based on limited
classes of the specific regions, i.e., CompCars [13] and
Stanford cars dataset [14]. Intelligent transportation systems
of these regions can achieve significant results with these
datasets; however, their performance is prejudiced in the
occurrence of nonregional classes. To address the above-
mentioned limitations in vehicle-classification systems, we
have made the following contributions.

(i) Convolutional Neural Network (CNN) based gen-
eralized vehicle classification architecture is pre-
sented to improve robustness of vehicle
classification systems for Intelligent Transportation
Systems (ITS) in adverse illuminous conditions.

(ii) A local dataset comprising of 10,000 images based
on six classes (i.e., Car, Van, Truck, Motorbike,
rickshaw, and Mini-Van) has been collected from
traffic surveillance and driving videos. It is im-
portant to mention that these classes are unique in
design and shape, which are not covered in the
existing vehicle datasets.

(iii) Modified CNN has been employed and trained on
the VeRi dataset, containing 50,000 images over six
vehicle classes, to ensure generalization of the
network.

(iv) Finally, an extensive comparison study has been
carried out between the proposed and existing ve-
hicle classification methods to demonstrate the ef-
fectiveness of the proposed classification network.

-e rest of paper is organized as follows. In Section 2, the
existing handcrafted and deep learning feature-extraction
and vehicle-classification methods are discussed briefly. In
Section 3, network architecture along with the preprocessing
and dataset collection has been elaborated. -e results and
the comparison study are carried out in Section 4. Finally,
the article is concluded in Section 5.

2. Related Work

In step with the rapid advancement in artificial intelligence,
vision-based vehicle classification is considered as an im-
portant element in perception module of self-driving ve-
hicles. In the existing research work [5], vision-based vehicle
classification is categorized into two major categories: (i)
handcrafted features-based and (ii) deep features-based
methodologies.

In the early era of computer vision, handcrafted features-
based vehicle classification methods have been proposed for
intelligent transportation systems. In this regard, Ng et al.
[15] have proposed HOG-SVM based handcrafted features
method to train SVM classifier using HOG features with
Gaussian kernel function. -e proposed classifier has been
evaluated on 2800-image dataset of surveillance videos,
which classified the motorcycle, car, and lorries with 92.3%
accuracy. In another research work, Chen et al. [16] have
presented a classification method that extracts the texture
and HOG features and classifies the vehicles using a fuzzy
inspired SVM classifier. -e presented classifier has been
evaluated on dataset, comprising of 2000 images in which
the proposed systems classified the cars, vans, and buses with
92.6% accuracy. Matos et al. [17] have proposed two-neural
networks based combined method embedding the features,
i.e., height, width, and bounding borders of the vehicles.
Resultantly, the proposed classifier achieved 69% on the
dataset of 100 images. Furthermore, Cui et al. [18] have
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proposed Scale Invariant Feature Transform (SIFT) de-
scriptors and Bad of Words (BoW) based combined model
for the extraction of the features and utilized SVM to classify
the dataset consisting 340 images of cars, minibuses, and
trucks. In the results, it is shown that the proposed classifier
achieved 90.2% accuracy on the provided dataset. Wen et al.
[19] have proposed an AdaBoost based fast learning vehicle
classifier to distinguish the data into vehicle and nonvehicle
classes. Moreover, the authors have proposed an algorithm
to extract Haar-like features for the rapid learning of clas-
sifiers. -e presented classifier has been evaluated on the
public Caltech dataset, in which the system achieved 92.89%
accuracy.

To overcome the issues of the handcrafted features-based
classifiers, deep features-based systems have been proposed.
Dong et al. [20] have presented CNN based semisupervised
classification method for real-time vehicle classification. A
sparse-Laplacian filter-based method has been devised to
extract relative vehicle information, and the softmax layer
has been trained to calculate the class probability of the
belonging vehicle. -e presented method has been evaluated
on the Bit-Vehicle dataset and achieved 96.1% and 89.6%
accuracy in day and night images, respectively. In another
research work, Wang et al. [21] have presented a Fast
R–CNN based vehicle classification method for traffic sur-
veillance in a real-time environment. A crossroad dataset
consisting of 60,000 images has been collected and divided
into training and tested data, on which the proposed method
attained 80.051% accuracy. Cao et al. [22] have proposed
CNN and an end-to-end combined architecture for the
vehicle classification in the incontinent road environment.
-e proposed framework has been evaluated on the
CompCars view-aware dataset, in which the proposed
classifier achieved a 0.953 accuracy rate. Chauhan et al. [23]
have proposed CNN based vehicle classification framework
for vehicle classification and counting on highway roads.
Authors have claimed that the proposed framework
achieved 75% MAP on the collected dataset of 5562 CCTV
camera videos of highway traffic. Jo et al. [24] have proposed
a transfer learning-based GoogLeNet framework for vehicle
classification of road traffic.-e authors have shown that the
presented classifier has achieved a 0.983 accuracy rate while
experimenting on the ILSVRC-2012 dataset. Kim et al. [25]
have proposed the PCANeT-HOG-HU based combined
feature extraction method, which is provided to SVM as
input data to train the classification model. Moreover, the
authors have collected the dataset consisting of 13700 images
of vehicles considering six-categories of vehicles (i.e., mo-
torcycle, van, car, truck, mini-bus, and large-bus), extracted
from the surveillance videos for the training and testing of
the proposed classification network. Results demonstrated
that the proposed light-weight classifier achieved 98.34%
average accuracy on the provided dataset.

-ough the deep feature-based approaches can enhance
the accuracy of vehicle classification effectively, these
methodologies need a huge amount of data to achieve
significant accuracy in real-time ITS applications [26–29]. In
the recent era, extensive research has been carried out in this
field; however, the available public datasets for self-driving

vehicles/intelligent transportation systems comprise mod-
ern vehicle types, which are common in well developed
countries. Consequently, these classification systems are not
feasible for the intelligent transportation systems in Asian
countries, i.e., Pakistan, India, Bangladesh, and China. -e
above-mentioned issues are indication towards the need of a
novel vehicle classification system along with the dataset that
covers the common vehicles, i.e., traditional trucks, buses,
cars, rickshaws, and motorbikes of Asian countries.

3. The Proposed Method

To address the above-mentioned issues, we present a new
vehicle dataset comprising of 10,000 images having six
classes based on the common road traffic vehicles, as elu-
cidated in Figure 1. To enhance the performance of the
proposed classification in real-time ITS applications, ini-
tially, the existing pretrained AlexNet [30], VGG [31],
GoogleNet [32], Inception-v3 [33], and ResNet [34] are fine-
tuned on self-constructed dataset to obtain the final network.
Based on the performance of these models, the best per-
forming model is selected for the fine-tuning to increase the
classification accuracy of the network. To ensure general-
ization, the proposed network is further fine-tuned on public
VeRi dataset for robust performance in the intelligent
transportation system of different regions. -e whole pro-
cess is briefly discussed below in Figure 1.

3.1. Dataset. In deep learning-based classification systems,
dataset is a key input that helps the algorithms learn the
features to perform predictions based on the learned in-
formation. Currently, to the best of our knowledge, there is
no generalized public vehicle dataset available that contains
the images of the common vehicles to cater with the clas-
sification problems. For example, CompCars and Standford
car datasets only contain the classes of modern cars of
certain regions, which cannot be employed in the real-time
classification systems of the other regions. Moreover, the
proposed dataset is different from the existing datasets in
terms of features and representations. Additionally, the
existing vehicle classification systems are trained on rela-
tively small datasets containing limited classes, which does
not perform well in real-time intelligent transportation
systems applications [35]. To address these issues, road
surveillance and driving videos are collected from different
regions to extract the images of the vehicles. Based on an-
alyses, six common road vehicle classes are identified, and
the dataset is formed through manual labelling using win-
dows editing tool, as shown in Figure 2. -e dataset com-
prises 10,000 images that have been categorized into six
classes (i.e., car, bus, van, truck, motorbike, and rickshaw),
and each class consists of 1670 images.

3.2. Data Augmentation. Equations data augmentation is
the easiest and most common technique to mitigate over-
fitting from network by artificially expanding the dataset
through label-preserving transformation methods [36]. To
increase the diversity of our dataset, we employed four
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distinct types of data augmentation: (i) Gaussian blur, (ii)
rotation, (iii) horizontal flip, and (iv) Gaussian noise, as
shown in Figure 3.

We utilized Gaussian blur with the 5× 5 kernel to reduce
the high-frequency noisy pixels while preserving the low
spatial frequency through convolving the Gaussian kernel
over the 224× 224 size image. In the second type of data
augmentation, i.e., rotation, we employed 10-degree rotation
on the original dataset images to generate a diverse view of
the original dataset. -e third type of data augmentation
includes the dataset generation through the horizontal
flipping of the original dataset, whereas we used Gaussian
noise as a fourth type of data augmentation to add some
random luminous factor in the dataset. It is important to
mention here that the horizontal flip, Gaussian blur, and

rotation are applied to the training dataset, whereas
Gaussian noise is applied to the test dataset, as shown in
Figure 3. -e main purpose of applying Gaussian noise-
based data augmentation to the test dataset is to validate the
efficacy of the proposed classification network on the noisy
data.

3.3. Convolutional Neural Network (CNN)Model. CNNs are
supervised feed-forward networks that proved considerably
significant performance on the large-scale object classifi-
cation applications. -e basic structure of the CNNs is
stimulated by the key visual cortex of the human brain,
which oversees the processing of visual information [37]. In
the image classification, compared with the traditional

Input images/labels

Pre-processing

Image
resizing

4× data
augmentation

VGG

Inception v3
ResNet

GoogleNet

AlexNet

CNN model selection

Modified convolutional neural network model

×3 ×3 New classification
block

×8 ×36

Convolution Max-pooling

ReLU Residual

Fully connected

Dropout

Average pooling

Vehicle type classification

Softmax

Bus Rickshaw Car Motorbike VanTruck

Figure 1: -e proposed method.
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handcrafted features extraction methods, the CNNs can
automatically extract the learnable visual features from the
large-scale dataset input images from the classes to perform
the classification. One of the main superiorities of the CNNs
over traditional classification methods is that, in CNNs,
representation of the features and the classifier are employed
in the same network to eliminate their dependencies. -e
architecture of the CNNs principally comprises three types
of layers, (i) convolution layers, (ii) pooling layers, and (iii)
the connecting layers, briefly discussed below.

3.4. Convolutional Layers. Convolutional layers are con-
sidered as one of the most important layers in the CNNs,
which consist of the defined set of learnable filters.-e filters
are spatially smaller than the input-size, which slides over
the input image data during the forward pass to produce the
two-dimensional activation map. -e activation map indi-
cates the location along with the strength of the detected
visual features in an input image. -e calculation of the
features of the convolutional layers is obtained using

y
l
n � fl  m⟶ l

n y
l−1
m , (1)

where yl
n is the nth feature map of l-layer, m⟶ l

n is the
C-kernel, while feature extraction from layer-l, and yl−1

m is
the Characteristic patterns linked to layer-l.

3.5.PoolingLayers. Pooling layer is commonly used between
consecutive convolution layers of the CNN structure to
gradually minimize the spatial representation size to reduce
computations while retaining useful information, which
helps in controlling overfitting during the learning process.
It is important to mention that there are two types of pooling
layers being used in the existing state-of-the-art CNNs, i.e., a
pooling layer having filter size� 2 along with stride� 3,
which is called overlapping pooling; the other pooling layer

with filter size� 2 is having stride of 2. Besides, some other
types of pooling, i.e., L2-norm pooling and average-pooling
functions, have also been used in the existing CNNs. -e
pooling function can be performed through

y
l
n � fl z

l−1
n x w

l
n + b

l
n , (2)

where zl−1
n is the value extracted from l - 1 convolution

features, wl
n is the map weight, and bl

n is the offset value.

3.6. Drop-Out Layer. In CNNs, regularization is a common
way to avoid the effects of overfitting by adding a significant
amount of penalty to the utilized loss function. In this
regard, drop-out layer is added in the bottom of proposed
network, so that the system does not learn interdependent
weights of features.

3.7. FullyConnectedLayer. In the final section of structure of
CNNs, neurons of fully connected layer are linked with all
the activations of the previous layer to minimalize the
feature dimensions. -e final pooling layer of the CNNs
flattens the convolutional layer, which is forwarded to fully
connected nodes of the network. In the next step, the matrix
multiplication is applied to compute these activations fol-
lowed by a bias factor offset. Fully connected neurons can be
computed using

y
l
n � fl 

Nl−1

m�1
y

l−1
m w

l
m,n + b

l
n

⎛⎝ ⎞⎠, (3)

where Nl is the No. of neurons of output-layer, yl−1
m is them

characteristic pattern of layer l-1, and wl
m,n is the connected

weights.

3.8. Selection of CNN Model. In supervised learning, CNN
based networks have demonstrated outstanding classification

(a) (b) (c) (d) (e) (f )

Figure 2: Sample dataset images representing each class: (a) car, (b) van, (c) truck, (d) motorbike, (e) bus, and (f) rickshaw.
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performance on large-scale datasets [38–41]. To choose the
suitable CNN model, initially, we fine-tuned the existing state-
of-the-art AlexNet, Inception-v3, GoogleNet, VGG, and
ResNet models according to the classes of the collected dataset.
In the next step, transfer learning is applied to these models to
evaluate the self-constructed vehicle dataset. Resultantly,
ResNet demonstrated better applicability in terms of conver-
gence, response-time, and accuracy than the competitive
networks (briefly discussed in Section 4). Consequently, the
network architecture of the ResNet with 152 layers is improved
and employed in the proposed vehicle classification system.

4. The Architecture

In the proposed system, we have employed ResNet architecture
to perform vehicle classification, one of the most ground-
breaking CNN architectures proposed by He et al. [34], which
demonstrated outstanding performance in object recognition
and classification by securing first place in ILSVRC-15 with
3.57% Top 5 error-rate [34]. In the previous deep learning
networks, increasing network layers can cause a vanishing
gradient problem, due to which the model was unable to
converge at its best. In ResNet network architecture, a novel skip
connection-based technique was introduced, where each input
from the previous layer is accumulated to output of next layer.
Since network goes deeper, a bottleneck designwas also adopted
to mitigate time-complexity of this CNN architecture. We have
employed a transfer learning approach where a model trained
for some specific task can be tuned to perform another task by
simply learning new weights. -is approach can be effective if

we have a lower amount of data, which is insufficient for
training from scratch.

In this work, we have deployed a pretrained ResNet-152
network for vehicle classification, as shown in Table 1. -is
network has a depth of 152 layers, which was achieved by
replacing each 2-layer block in the original ResNet with the
3-layer bottleneck block [34].-e input layer of this network
takes an RGB colour image with a size of 224× 224 pixels. In
Table 1, it can be observed that the structure of the presented
method uses 64 convolution kernels of 7× 7 with the stride
of 2 in the first layer, and max-pooling layer of 3× 3 with the
stride of 2 is used to the first convention layer. Further,
convolutional blocks, i.e., 2–5, are organized in the form of
three-layer bottleneck blocks having several filters to 128,
256, 1024, and 2048 followed by an adaptive-average pooling
layer, respectively. To perform transfer learning, last fully
connected layer was removed from the network, which was
pretrained to perform the classification of 1000 natural
categories. Besides, we append a new classification block
consisting of a fully connected layer having a feature vector
of 1024 neurons superseded by the average-pooling layer
and the ReLU layer to learn new visual features from the
training dataset. In the bottom of network, drop-out layer is
in place to overcome vanishing gradient problem. Based on
the classification block, a new fully connected layer is
inserted to perform six types of vehicle classification, where
each unit in the last layer is linked to six-class output
probability by utilizing softmax function. To ensure that
these new layers learn higher-level visual features from the
dataset, we have increased the learning rate of these layers as

Input image

Rotation

Blur

Flip

Noise
Au

gm
en

ta
tio

n

Figure 3: Data augmentation performed on the dataset images.
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compared to the previous layers whose learn rate remains
unchanged. We have set batch-size and total epochs to 64
and 100, respectively. Network training was performed on a
heavy computing machine equipped with the RTX 2080TI,
11GB DDR5 GPU, core i9 – 9900k CPU along with 32GB
RAM, which took 8 hours to complete training.

5. Experiments and Results

-e proposed vehicle classification method is assessed on the
dataset-based platform setup.-e experiments are performed
on the heavy computing machine equipped with the RTX
2080TI, 11GB DDR5 GPU, core i9 – 9900k CPU along with
32GB RAM having a 64 bit windows 10 operating system.

5.1. Training of the Proposed Classification System. -ewhole
training process is categorized into three steps: (i) data pre-
processing, (ii) training, and (iii) evaluation. In the first step, the
dataset images are distributed into training, validation, and
testing data, normalized to the size of 224× 224 according to
standard input size of CNN architectures. -e training and
testing images are randomly split by an 80–20% ratio of the
total dataset images, and the validation set is formed by a
random selection of 20% images from the training set. Pytorch
1.4.0 library and MATLAB 2019a are utilized for the imple-
mentation (i.e., data preprocessing and organization, training,
evaluation, and modification of the network) of the proposed
classification system. -e experiments have been categorized
into three types, (i) evaluation of the networks without fine-
tuning, (ii) evaluation of fine-tuned model on self-constructed
vehicle dataset, and (iii) evaluation of fine-tuned model on
public VeRi dataset, which are briefly discussed below.

5.2. Evaluation of the State-of-the-Art CNNs without Fine-
Tuning. To evaluate the CNNs, AlexNet, Inception-v3,
GoogleNet, VGG, and ResNet are loaded from Pytorch re-
sources.-e training of these networks is performed using the
Pytorch framework; a stochastic gradient descent (SGD)
optimizer is employed for the parameter learning with mo-
mentum, learning rate, and batch size of 0.9, 0.001, and 128,
respectively. Cross-entropy, a commonly used loss function,
is utilized to accumulate loss during the whole process, and
validation is performed after every epoch to evaluate the
learning while training the network. -e comparative accu-
racy of these networks is shown in Figure 4.

Discussion: It can be observed from Figure 4 that ResNet
with 152 layers demonstrated better accuracy than the 19-
layer VGG, 22-layer GoogLeNet, AlexNet having 25 layers,
and Inception-v3 with an average difference of 1.7%.
Consequently, it can be assumed that the ResNet can achieve
better accuracy after fine-tuning the architecture.

5.3. Evaluation of the Modified Network on Self-Constructed
Vehicle Dataset. Based on the performance of the networks,
discussed in the above section, the architecture of the ResNet
is improved by adding a new classification block in the base of
the network. -e new classification block comprises fully

connected layers, followed by an average-pooling and Relu
layers, respectively. However, to find the best fitting feature
vectors of fully connected layers, ResNet with 152 layers has
been evaluated on a self-constructed dataset with the multiple
combinations of the feature vectors of fully connected layers
in classification block to improve robustness of network.

To apply transfer learning, feature extraction is set to the
newly added classification block to learn the optimal weights
and biases from the input dataset. SGD optimizer along with
the same parameters, i.e., learning rate and momentum, is
utilized in the training and evaluation of the proposed clas-
sification system. It can be observed from Table 2 that the
proposed network with two fully connected containing higher
feature vectors achieved significantly higher accuracy among
other FC layers with the low feature vectors. Fully connected
layer-1 is passing 2048 features down the classification block.
Concurrently, the other FC layer with the higher feature vectors
has been added to the classification block of the network.

In the next step, the proposed network with the different
depth layers, i.e., 18, 34, 50, 101, and 152, has been evaluated,
and the performance of these networks in terms of accuracy
has been shown in Table 3.

Discussion: Table 3 demonstrates the influence of the
network depth on the performance in terms of the accuracy
of the self-constructed vehicle dataset. It can be seen that the
performance of the ResNet is increased with an increase in
the depth of the network. Consequently, ResNet with the 152
layers achieved better accuracy in overall classes of the
dataset as compared with the ResNet with lower depth
layers.-e detailed performance matrices of the ResNet with
152 layers are shown in Table 4.

5.4. Evaluation of the Modified CNN on VeRi Dataset.
Based on the performance of the fine-tuned networks
demonstrated in Table 4, the proposed classification network
has been fine-tuned on the public VeRi dataset [42, 43] to
ensure generalization. -e dataset involving 50,000 images
has been categorized into six classes, i.e., bus, MPV, pickup,
sedan, truck, and van, distributed into test and train set over
80 : 20 ratio. It is important to mention that these classes are
selected based on the variation in data. -e performance
matrices shown in Table 5 elaborate the effectiveness of the
presented classification system.

5.5. Comparison with Existing State-of-the-Art Vehicle Clas-
sification Methods. -e performance of the presented
classification method is compared with the traditional ve-
hicle classification methods to prove the applicability of the
proposed system in terms of class-wise and average accu-
racy, as shown in Table 6. -e existing classification systems
[11, 44–46] have been implemented in the MATLAB 2019a,
which has been trained and evaluated on the self-con-
structed vehicle dataset.

Discussion. -e proposed classification system has been
compared with the existing vehicle classification systems
[11, 44–46] to validate the efficacy of the proposed network.
-e existing networks have been reproduced on the pro-
posed dataset. Zhuo et al. [44] have presented the GoogleNet
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architecture-based vehicle classification method with having
22-layer depth network. On the other side, Gao et al. [45]
have introduced AlexNet based vehicle classification system
containing 5 convolutional and 3 fully connected layers in
the network. Shivai et al. [46] introduced a self-proposed
CNN based vehicle classification system having 13 con-
volutional layers and one fully connected layer, which is
followed bymax-pooling and dropout layers, whereas Zakria
et al. [11] have presented the inception architecture-based
classification system. -ough these systems demonstrated
good performance on their datasets, one of the main reasons

for the difference in the accuracy is that these existing
systems [11, 44–46] are comprised of the small depth net-
works which do not converge on the large-scale datasets.
Besides, the existing systems [11, 44–46] are trained on the
limited classes, which do not cover the common road traffic
vehicles. Resultantly, these systems do not perform well in
real-time classification applications. Moreover, it is im-
portant to mention here that these methods were trained on
unbalanced datasets, which is also an influential factor in
real-time performance of vehicle classification systems.
Consequently, the performance of these existing systems is

Table 1: Architecture of modified CNN.

Layer name Output size Layers
Conv 1 112×112 Kernel size� 7× 7, number of kernels� 64, stride� 2
Pooling 56× 56 Kernel size� 3× 3, stride� 2

Conv 2 56× 56
1x1 64
3x3 64
1x1 256

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ × 3

Conv 3 28× 28
1x1 64
3x3 64
1x1 256

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ × 3

Conv 4 14×14
1x1 64
3x3 64
1x1 256

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ × 3

Conv 5 7× 7
1x1 64
3x3 64
1x1 256

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ × 3

Pooling 1× 1 Adaptive-average-pooling 2d

Proposed classification block

fc1: In-features� 2048, out-feature� 1024
Relu (in-place)
drop-out(0.5)

fc2: In-features� 1024, out-features� 6
Softmax()

Classification output (cross entropy)

ResNet VGG GoogleNet AlexNet Inception

95.14

93.8
93.49
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91
91.5

92
92.5

93
93.5

94
94.5

95
95.5

Ac
cu

ra
cy

 (i
n 

pe
rc

en
ta

ge
)

Figure 4: Results of the state-of-the-art CNNs without fine-tuning on a self-constructed dataset.

Table 2: Classification accuracy of the proposed system with different dimensional feature vectors on self-constructed dataset.

No. of FCs fc1 out-features fc2 in-features fc2 out-features Accuracy
1 6 — — 95.14%
2 1536 1536 6 99.74%
2 1024 1024 6 99.68%
2 768 768 6 99.51%
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prejudiced while evaluating our proposed self-constructed
balanced dataset, whereas, on the other side, the proposed
vehicle classification system is trained on the self-con-
structed vehicle dataset comprising of 10,000 images, which
cover the common road traffic classes, and further fine-
tuned on the public VeRi dataset, which contains 50,000
images, to ensure the generalization of the proposed clas-
sification system. Consequently, our proposed classification
system achieved higher accuracy than the existing vehicle
classification systems.

6. Conclusion

In this paper, a CNN-based vehicle classification system is
proposed to improve the effectiveness of intelligent trans-
portation systems. A new dataset containing 10,000 images

of six classes is constructed to train classification system.
Initially, five state-of-the-art CNNs, i.e., AlexNet, Inception-
v3, GoogleNet, VGG, and ResNet, are trained on the col-
lected dataset to validate the performance. Based on the
effectiveness, ResNet with the 152 layers is improved by
adding a new classification block in the original network
through transfer learning. To ensure generalization, the
proposed classification system is fine-tuned on public VeRi
dataset. Results demonstrate that the proposed classification
system achieved higher accuracy, i.e., 99.68% and 97.66%, on
self-constructed and VeRi dataset, respectively, which is
significantly higher than that of the existing state-of-the-art
classification systems. In the future, we are aiming to extend
our work to develop fine-grained classification system to
improve the effectiveness of proposed method in intelligent
transportation systems.

Table 3: Class-wise accuracy of the fine-tuned network with different depth layers on our self-constructed dataset.

Depth
Accuracy (in percentage)

Overall accuracy
Bus Car Motorbike Rickshaw Truck Van

18 95.89 99.68 97.77 92.82 97.37 95.56 96.52
34 97.83 98.17 98.66 95.39 97.13 96.92 97.35
50 97.31 98.93 97.45 94.57 97.04 98.70 97.33
101 98.51 99.02 98.34 96.51 98.93 97.27 98.10
152 99.48 99.68 99.08 100 100 99.65 99.65

Table 4: Performance metrics of proposed system on self-constructed dataset.

Class Accuracy Error rate Specificity Precision Recall F1 score
Bus 99.48 0.52 99.90 99.4852 99.13 99.3072
Car 99.68 0.32 99.94 99.6832 99.68 99.6816
Motorbike 99.08 0.92 99.82 99.0832 99.08 99.0816
Rickshaw 100.0 0.00 100.0 100.000 99.83 99.9149
Truck 100.0 0.00 100.0 100.000 99.48 99.7393
Van 99.65 0.35 99.94 99.6525 99.65 99.6512
Total: 99.65 0.35 99.93 99.65 99.48 99.56

Table 5: Performance matrices of modified CNN on VeRi dataset.

Class Accuracy Error rate Specificity Precision Recall F1 score
Bus 100.0 0.00 100.0 100.000 98.60 99.29507
MPV 94.19 5.86 99.82 94.1914 96.87 95.51192
Pickup 92.76 7.24 99.53 92.7637 99.04 95.79916
Sedan 99.59 0.41 99.91 99.5971 91.52 95.38787
Truck 96.01 3.99 99.18 96.0118 93.64 94.81107
Van 93.79 6.21 98.73 93.7947 98.35 96.01835
Total: 96.06 3.95 99.53 96.06 96.34 96.14

Table 6: Comparison of the proposed method with existing state-of-the-art vehicle classification methods.

Method(s)
Accuracy (in percentage)

Total
Bus Car Motorbike Rickshaw Truck Van

Zhuo et al. [44] 95.76 94.70 96.67 95.11 95.45 92.25 95.49
Gao et al. [45] 91.78 95.28 97.03 98.77 93.35 91.43 92.61
Shivai et al. [46] 88.17 90.42 91.78 83.37 89.71 89.11 88.96
Zakria et al. [11] 90.55 91.26 97.73 93.36 94.76 88.99 92.77
Proposed method 99.48 99.68 99.08 100.0 100.0 99.65 99.68
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