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a b s t r a c t

Aims: The transformation of the United Arab Emirates (UAE) from a semi-nomadic to a high income soci-
ety has been accompanied by increasing rates of obesity and Type 2 diabetes mellitus. We examined if
the AGE-RAGE (receptor for advanced glycation endproducts) axis is associated with obesity and diabetes
mellitus in the pilot phase of the UAE Healthy Futures Study (UAEHFS).
Methods: 517 Emirati subjects were enrolled and plasma/serum levels of AGE, carboxy methyl lysine
(CML)-AGE, soluble (s)RAGE and endogenous secretory (es)RAGE were measured along with weight,
height, waist and hip circumference (WC/HC), blood pressure, HbA1c, Vitamin D levels and routine che-
mistries. The relationship between the AGE-RAGE axis and obesity and diabetes mellitus was tested using
proportional odds models and linear regression.
Results: After covariate adjustment, AGE levels were significantly associated with diabetes status. Levels
of sRAGE and esRAGE were associated with BMI and levels of sRAGE were associated with WC/HC.
Conclusions: The AGE-RAGE axis is associated with diabetes status and obesity in this Arab population.
Prospective serial analysis of this axis may identify predictive biomarkers of obesity and cardiometabolic
dysfunction in the UAEHFS.
� 2017 The Authors. Published by Elsevier Inc. This is an open access article under theCCBY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction

The World Health Organization (WHO) reported that non-
communicable diseases (NCDs) result in the death of approxi-
mately 38 million people each year. According to the WHO report
[1], nearly three-quarters of the deaths from NCDs occur in coun-
tries with low- to middle income. Cardiovascular diseases (CVDs)
account for the greatest proportion of these deaths; important risk
factors include tobacco use, unhealthy diets, physical inactivity
and harmful consumption of alcohol [1]. The consequences of obe-
sity include insulin resistance and the development of Type 2 dia-
betes mellitus, which are major causes of morbidity and mortality,
on account of accelerated atherosclerosis, heart attacks and strokes
[2,3].

The United Arab Emirates (UAE) has rapidly evolved from a
semi-nomadic society to a flourishing high income society in
which consumption of high energy foods and reduced physical
activity have resulted in increasing rates of obesity and it sequelae
in adults, adolescents and children [4,5]. Hajat and colleagues
reported that in the Abu Dhabi Weqaya study, which screened
50,183 adults � 18 years of age, approximately 57% of the subjects
were overweight or had obesity; 18% had diabetes mellitus; and
27% had pre-diabetes [6]. These considerations underscore the
need to identify the underlying mediating mechanisms of car-
diometabolic disease and biomarkers to track individuals particu-
larly vulnerable to obesity and its side effects.

The receptor for advanced glycation endproducts (RAGE) trans-
duces the signals of a unique repertoire of ligands that accumulate
in NCDs, such as in obesity, hyperglycemia and aging [7]. Studies in
human subjects illustrated that RAGE is highly expressed in obese
adipose tissue, to a greater degree than that observed in the adi-
pose tissue of lean subjects; and in atherosclerotic plaques, partic-
ularly in the diabetic state [8,9]. This increased expression of RAGE
and its ligands in these tissues was mechanistically linked to dis-
ease, as mice devoid of Ager (gene encoding RAGE) were protected
from diet-induced obesity and from accelerated atherosclerosis in
diabetes [10,11].

RAGE ligand AGEs, such as carboxy methyl lysine (CML) AGEs,
are generated to accelerated degrees in obesity and diabetes mel-
litus in human cardiometabolic disorders. Two forms of soluble
RAGE have been detected in human serum/plasma. The first form,
soluble (s)RAGE, is a cell-surface cleaved form of the receptor that
results from the actions of matrix metalloproteinases (MMPs) or a
disintegrin and metalloproteinase domain-containing protein 10
or ADAM10 [12,13]. The second form, endogenous secretory or
esRAGE results from alternative splicing of the human AGER mRNA
leading to deletion of part of the RAGE transmembrane domain and
the cytoplasmic tail [14]. Multiple published studies, largely cross-
sectional in design, have reported on associations between the cir-
culating levels of AGE, CML-AGE, sRAGE and/or esRAGE and the
presence of obesity, Type 2 diabetes mellitus and its complications
[7,15,16]. Others have shown that therapeutic intervention in car-
diometabolic diseases may modulate levels of RAGE ligands and
the soluble RAGEs [17].

Here, we measured levels of AGEs, CML-AGE, sRAGE and
esRAGE in 517 pilot study subjects of the UAEHFS and tested their
potential association with obesity, diabetes status (HbA1c) and
other risk factors and biomarkers of cardiometabolic disease.

Subjects

517 Emirati subjects were enrolled into the pilot study of the
UAEHFS from January 2015 to April 2015 from the Zayed Military
Primary Health Care Clinic (ZMH PHCC) and the Abu Dhabi Blood

Bank (ADBB), both of which are licensed for clinical research by
the Health Authority of Abu Dhabi (HAAD). In each location, indi-
viduals who visited the clinic either for bi-annual medical screen-
ing (at the ZMH PHCC) or to donate blood (at ADBB) were invited to
participate in the study. Inclusion criteria included: age � 18 years
and UAE national residents in the Abu Dhabi Emirate. Exclusion
criteria included: age < 18 years, inability to give informed consent
for the study, any acute medical illness (such as acute infection,
chest pain or breathlessness, etc.) and pregnancy. No subjects were
excluded on the basis of pre-existing chronic medical conditions,
such as diabetes, hypertension or ischemic heart disease. All partic-
ipants in the pilot study read and understood the information bro-
chure and signed informed consent prior to recruitment. Subjects
who agreed to participate and provided informed consent under-
went a variety of physical measurements and analysis of blood
samples. The percent missing data for each study variable is listed
in the Table 1 and includes 6.2% missing values for HbA1c. The
Institutional Review Boards (IRBs) of the Sheikh Khalifa Medical
City (SKMC), Zayed Military Hospital (ZMH), Zayed University
(ZU), New York University Abu Dhabi (NYUAD), NYU Langone Med-
ical Center, New York, and United Arab Emirates University (UAEU)
approved the protocols of the pilot study.

Materials and methods

Clinical measurements

Sitting and standing height was measured using a stadiometer
(Seca, Hamburg Deutschland) and waist circumference (WC) and
hip circumference (HC) were measured using a standard tape
(Wessex non-stretchable sprung tape) [18]. Body mass was mea-
sured using the Tanita TC (Tanita Inc., Tokyo, Japan) and body mass
index (BMI) was calculated according to the following formula:
body weight (kg)/height2 (meters).

Brachial blood pressure (systolic and diastolic) was recorded
twice on the upper left arm with appropriate cuff size with two-
minute interval between readings using a semi-automated sphyg-
momanometer (Omron M10-IT, Omron Corporation, Kyoto, Japan).

Biological samples

Study participants provided specimens including blood (8 ml
SST vacutainer and 8 ml plasma EDTA vacutainer). SST vacutainers
were subjected to centrifugation (3500 rpm, 4 �C, 15 min) 30 min
post-collection. All samples were refrigerated (4–8 �C) and then
transported to the NYU Abu Dhabi (NYUAD) research laboratory
in a temperature-controlled cooler where the SST samples were
aliquoted into 1.0 ml tubes. 2 mls of whole blood were removed
from the EDTA vacutainer and stored in 1 ml aliquots. The remain-
ing sample was centrifuged at 3500 rpm at 4 �C for 15 min and
plasma and red blood cells (RBCs) were aliquoted into 1.0 ml tubes.
All aliquots were stored at �80 �C until further testing (see below).

Standard chemistry assays

HbA1c was measured on EDTA-derived whole blood sample and
routine clinical chemistry per Table 1 was performed on SST
serum. All assays were performed on the Beckman Coulter UniCel
DxC 600 Synchron Clinical Systems (Beckman Coulter, USA)
according to the manufacturer’s instructions. Instrument results
were validated against the RIQAS external quality assessment pro-
grams for general clinical chemistry and HbA1c. HbA1c is reported
in NGSP units and then converted to IFCC (mmol/mol) according to
the following formula: IFCC = (10.93 � NGSP) � 23.5. Serum levels
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of Vitamin D were assayed using the Beckman Coulter Access 2
Immunoassay System (Beckman Coulter, USA) in accordance with
the manufacturer’s instructions. eGFR was calculated according
to the equation: eGFR = 175 � (Scr)�1.154 X (Age)�0.203X (0.742 if
a female subject).

Research assays

Soluble RAGE, esRAGE
Soluble (s) RAGE and esRAGE levels were assayed on plasma

obtained from blood in EDTA tubes on samples previously stored
at �80 �C using enzyme-linked immunosorbent assay (ELISA) kits
in accordance with the manufacturers’ protocol (R&D Systems
Quantikine Immunoassay, Minneapolis, MN, and B-Bridge ELISA,
B-Bridge International, Cupertino, CA, respectively). Reported
results represent the mean of the results from two distinct wells/
sample. Interassay variability for the measurement of sRAGE and
esRAGE was CV 8.02 and 7.75, respectively.

Protein-bound CML
Protein-bound CML in serum was quantified using liquid chro-

matography (LC)-mass spectrometry (MS) as previously published
[19,20]. Agilent 6538 Accurate-Mass Quadrupole Time-of-Flight
(Q-TOF) LC/MS system was used to measure CML in hydrolyzed
serum samples.

AGE detection by relative fluorescence
AGE fluorescence at 440 nm (excitation at 370 nm), was deter-

mined in the acid hydrolysates of serum, as previously published
[21] using a Fluorescence Microplate reader (BioTek Synergy H1
microplate reader). Relative fluorescence was determined in the
hydrolyzed samples after diluting 60 ll of each sample with
2.0 ml of distilled water. A control buffer was used as a blank to
subtract background fluorescence levels.

Statistical analysis

Descriptive analysis and the univariate proportional odds mod-
els on the effect of candidate variables, including the markers of
AGE-RAGE, obesity indices and other potential covariates on dia-
betes status are reported in Table 1. The normality of each candi-
date variable was checked by histogram and the Shapiro-Wilk
test [22] (Fig. S1). Since none of the variables passed the normality
test, the non-parametric correlation method was considered in the
following analyses. Pairwise Spearman correlation coefficient esti-
mates [23] among BMI, WC/HC, eGFR, systolic blood pressure
(SBP), diastolic blood pressure (DBP), cholesterol, triglycerides,
high density lipoprotein (HDL), high sensitivity C-reactive protein
(hs-CRP), Vitamin D and serum creatinine, as well as their p-
values, are reported in 1. Since DBP is strongly correlated with
SBP (correlation = 0.772, p < 0.001) and serum creatinine is
strongly correlated with eGFR (correlation = �0.862, p < 0.001),
we only fitted SBP and eGFR in the multiple regression models.
Proportional odds models [24] were fitted to survey if CML-AGE,
AGE, sRAGE, and esRAGE are associated with diabetes status, as
defined by HbA1c levels, with covariate adjustments (Table 2).
The diabetes status was coded for HbA1c (%) as 0 for normal
(HbA1c < 5.7 (37 mmol/mol)), 1 for prediabetes (HbA1c � 5.7
(37 mmol/mol) and <6.5 (48 mmol/mol)), and 2 for diabetes melli-
tus (HbA1c � 6.5 (48 mmol/mol)) and treated as ordinal. Pairwise
Spearman correlation coefficient estimates among CML-AGE,
AGE, sRAGE esRAGE, BMI and WC/HC, as well as their p-values,
were reported to determine if they are related to each other
(Table 3). Multiple linear regression models were used to survey
if CML-AGE, AGE, sRAGE, and esRAGE are associated with obesity
in terms of measures of BMI (Table 4) or WC/HC (Table 5), with
covariate adjustments.

Results

We determined HbA1c levels and measured BMI and WC/HC in
the subjects. Based on HbA1c levels (%), the cohort was divided

Table 1
Descriptive table on the effect of candidate variables, including the markers of AGE-RAGE axis, obesity indices and other potential covariates, on diabetes status (HbA1c levels) for
517 subjects. Note that the data include 6.2% missing values for HbA1c.

Continuous variables All individuals
(n = 517)

Normal
(HbA1c < 5.7)
(n = 331)

Prediabetic
(5.7 � HbA1c < 6.5)
(n = 121)

Diabetic
(6.5 � HbA1c)
(n = 33)

% of missing yP-value

Mean SD Mean SD Mean SD Mean SD

CML-AGE (pmol/ml) 6853.91 13618.98 6068.87 12182.11 8980.72 17477.03 7192.74 10629.61 7.74 0.095
AGE (Arbitrary Units) 1318.15 1085.66 1417.17 1196.84 1042.72 628 1222.62 1012.27 5.42 0.003
sRAGE (pg/ml) 1093.15 513.41 1151.6 544.22 1002.96 433.74 851.33 363.24 5.61 <0.001
esRAGE (ng/ml) 0.22 0.16 0.23 0.17 0.21 0.12 0.17 0.08 5.61 0.034
BMI (kg/m2) 28.24 6.24 26.88 5.2 30.57 6.4 34.54 7.89 16.83 <0.001
WC/HC (ratio) 0.88 0.1 0.86 0.09 0.91 0.1 0.95 0.09 21.86 <0.001
Age (years) 31.78 10.48 29.08 8.45 36.41 10.5 43.84 13.03 9.09 <0.001
eGFR (ml/min/1.73m2) 102.71 26.63 105.15 26.91 97.79 21.5 98.75 35.7 14.31 0.008
Systolic blood pressure (SBP) (mm Hg) 116.86 15.59 113.8 13.86 121.51 16.21 131.29 19.18 17.41 <0.001
Diastolic blood pressure (DBP) (mm Hg) 77.49 9.94 76.01 9.02 79.49 11.23 85.6 9.44 17.41 <0.001
Cholesterol (mg/dL) 196.01 40.8 192.31 37.19 208.85 43.11 188.24 57 5.42 0.009
Triglycerides (mg/dL) 120.58 88.71 108.98 74.73 131.55 83.7 196.85 167.58 5.42 <0.001
HDL (mg/dL) 52.07 12.82 53.32 12.89 50.81 12.63 44.59 10.19 7.16 0.001
HS-CRP (mg/dL) 0.85 0.22 0.84 0.23 0.87 0.21 0.86 0.24 6 0.17
Vitamin D (ng/ml) 22.06 10.55 21.36 10.28 22.37 10.7 26.32 11.14 7.16 0.041
Serum creatinine (mg/dL) 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17

Categorical variables N % N % N % N % % of missing yP-value

Sex 473 304 173 31 8.51 0.142
Male 323 62.48 200 65.79 81 73.64 22 70.97
Female 150 29.01 104 34.21 29 26.36 9 29.03

y Univariate analyses: The P-values were estimated based on univariate proportional odds models for the effect of each candidate covariate on diabetes status. Diabetes status
was coded as 0 for normal (HbA1c < 5.7), 1 for prediabetic (5.7 � HbA1c < 6.5), and 2 for diabetic (6.5 � HbA1c). SD = standard deviation.
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into three subgroups: 331 subjects had HbA1c < 5.7 (37 mmol/-
mol) (normal); 121 subjects had HbA1c � 5.7 (37 mmol/mol) and
<6.5 (48 mmol/mol) (prediabetes); and 33 subjects had
HbA1c � 6.5 (48 mmol/mol) (diabetes mellitus) (Table 1). Within
these subgroups, the mean age ± SD was 29.08 ± 8.45 years,
36.41 ± 10.5 years and 43.84 ± 13.03 years, respectively, and the
proportion of male subjects was 65.79%, 73.64% and 70.97%,
respectively, and the proportion of female subjects was 34.21%,
26.36%, and 29.03%, respectively (Table 1). The mean BMI ± SD of
the subjects in the three subgroups by HbA1c levels was
26.88 ± 5.2, 30.57 ± 6.4 and 34.54 ± 7.89, (in kg/m2), respectively,
and the mean WC/HC ± SD in the three subgroups by HbA1c levels

was 0.86 ± 0.09, 0.91 ± 0.1 and 0.95 ± 0.09, respectively. These data
demonstrate a step-wise increase in BMI and WC/HC with markers
predictive of diabetes status (p < 0.001) (Table 1).

Table 1 reports the univariate analysis and related summary
statistics for the relationships between the measures of CML-
AGE, AGE, sRAGE and esRAGE, with the first major clinical param-
eter of this study, diabetes status, based on the HbA1c levels. AGE,
sRAGE and esRAGE were significantly associated with diabetes sta-
tus, but no significant relationship was observed for CML-AGE.
Other potential covariates, eGFR, SBP, DBP, total cholesterol,
triglyceride, HDL, hs-CRP, Vitamin D and serum creatinine, were
also surveyed and are reported in Table 1.

Table 2
The proportional odds models were fitted for the association between diabetes status and each of CML-AGE, AGE, sRAGE, and esRAGE. Separate models were fitted for different
covariate adjustments. Diabetes status was coded as ordinal: 0 for normal stat (HbA1c < 5.7), 1 for prediabetic state (5.7 � HbA1c < 6.5), and 2 for diabetic state (6.5 � HbA1c).
Each continuous predictor was standardized to have mean 0 and standard deviation 1.

yCovariate adjustment CML-AGE AGE sRAGE esRAGE

Estimate SE P-value Estimate SE P-value Estimate SE P-value Estimate SE P-value

1 0.099 0.103 0.334 �0.302 0.144 0.036 �0.287 0.132 0.029 �0.173 0.118 0.143
2 0.099 0.103 0.333 �0.31 0.145 0.033 �0.284 0.132 0.031 �0.17 0.118 0.15
3 0.073 0.112 0.515 �0.382 0.165 0.021 �0.063 0.138 0.649 �0.03 0.125 0.809
4 0.124 0.127 0.329 �0.308 0.159 0.053 �0.213 0.141 0.13 �0.126 0.126 0.318
5 0.061 0.115 0.597 �0.307 0.155 0.047 �0.235 0.141 0.094 �0.123 0.124 0.322
6 0.104 0.105 0.324 �0.273 0.144 0.058 �0.25 0.134 0.062 �0.15 0.12 0.212
7 0.09 0.103 0.378 �0.301 0.145 0.038 �0.181 0.133 0.173 �0.117 0.12 0.33
8 0.097 0.103 0.347 �0.367 0.154 0.017 �0.258 0.132 0.051 �0.159 0.118 0.178
9 0.098 0.103 0.343 �0.307 0.145 0.034 �0.284 0.132 0.031 �0.171 0.118 0.149
*10 0.058 0.117 0.618 �0.404 0.177 0.023 �0.009 0.145 0.95 <0.001 0.131 0.998
*11 0.095 0.131 0.465 �0.354 0.172 0.04 �0.087 0.146 0.549 �0.044 0.13 0.734

y Covariate adjustment: 1: Baseline (age + sex); 2: Baseline + eGFR; 3: Baseline + BMI; 4: Baseline + WC/HC; 5: Baseline + SBP 6: Baseline + total cholesterol + total triglyc-
erides + HDL; 7: Baseline + hs-CRP; 8: Baseline + Vitamin D; 9: Baseline + serum creatinine; 10: Baseline + eGFR + BMI + SBP + total cholesterol + total triglycerides + HDL
+ hs-CRP + Vitamin D; 11: Baseline + eGFR +WC/HC + SBP + total cholesterol + total triglycerides + HDL + hs-CRP + Vitamin D.

* Note: For the covariate adjustment, 10 and 11, the complete estimated models including all covariate estimates for AGE are addressed through Tables S2 and S3. SE:
standard error.

Table 3
Pairwise Spearman correlation coefficient estimates and their p-values among CML-AGE, AGE, sRAGE, esRAGE, BMI, and WC/HC. As the normality of each variable was not
satisfied visually and by the Shapiro-Wilk test (Fig. S1), the non-parametric method, Spearman’s rank test, was used (Table S1).

CML-AGE AGE sRAGE esRAGE BMI WC/HC

CML-AGE – �0.516, <0.001 0.043, 0.351 0.076, 0.096 �0.036, 0.466 0.001, 0.986
AGE �0.516, <0.001 – �0.08, 0.076 �0.037, 0.415 0.025, 0.609 �0.041, 0.42
sRAGE 0.043, 0.351 �0.08, 0.076 – 0.671, <0.001 �0.322, <0.001 �0.201, <0.001
esRAGE 0.076, 0.096 �0.037, 0.415 0.671, <0.001 – �0.194, <0.001 �0.093, 0.068
BMI �0.036, 0.466 0.025, 0.609 �0.322, <0.001 �0.194, <0.001 – 0.476, <0.001
WC/HC 0.001, 0.986 �0.041, 0.42 �0.201, <0.001 �0.093, 0.068 0.476, <0.001 –

Note: In each cell, the first number in the pair is the Spearman correlation coefficient estimate and the second number is the associated p-value based on the Spearman’s rank
test on whether it is significantly different from 0. For example, with respect to the correlation between sRAGE and BMI, the correlation estimate is �0.322 and its p-value is
<0.001.

Table 4
The linear regression models fitted for the association between BMI and each of CML-AGE, AGE, sRAGE, and esRAGE. Separate models were fitted for different covariate
adjustments. Each continuous predictor was standardized to have mean 0 and standard deviation 1.

yCovariate adjustment CML-AGE AGE sRAGE esRAGE

Estimate SE P-value Estimate SE P-value Estimate SE P-value Estimate SE P-value

1 0.054 0.324 0.868 0.057 0.282 0.839 �1.675 0.284 <0.001 �1.182 0.283 <0.001
2 0.073 0.325 0.822 0.023 0.286 0.937 �1.667 0.286 <0.001 �1.169 0.286 <0.001
3 0.054 0.313 0.864 �0.027 0.273 0.922 �1.525 0.28 <0.001 �1.049 0.276 <0.001
4 0.058 0.321 0.856 0.157 0.275 0.567 �1.445 0.282 <0.001 �1.024 0.277 <0.001
5 �0.068 0.302 0.822 0.026 0.263 0.923 �1.315 0.274 <0.001 �0.896 0.268 0.001
6 0.067 0.325 0.836 0.029 0.285 0.919 �1.672 0.288 <0.001 �1.148 0.285 <0.001
7 0.062 0.326 0.849 0.044 0.287 0.877 �1.67 0.286 <0.001 �1.173 0.286 <0.001
8 �0.012 0.295 0.968 0.048 0.257 0.851 �0.979 0.273 <0.001 �0.661 0.261 0.012

*Note: For the covariate adjustment, 8, the complete estimated model including all covariate estimates for sRAGE and esRAGE are addressed through Tables S4 and S5
respectively. SE: standard error.
y Covariate adjustment: 1: Baseline (age + sex); 2: Baseline + eGFR; 3: Baseline + SBP; 4: Baseline + total cholesterol + total triglycerides + HDL; 5: Baseline + hs-CRP; 6:
Baseline + Vitamin D; 7: Baseline + serum creatinine; 8: Baseline + eGFR + SBP + total cholesterol + total triglycerides + HDL + hs-CRP + Vitamin D.
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We next performed multivariate analyses to assess if CML-AGE,
AGE, sRAGE and esRAGE are associated with diabetes status
defined by HbA1c levels, after adjusting for other confounding fac-
tors. Here, we report eleven different covariate adjustments, as
described in Table 2. We could not find any significant association
for CML-AGE with or without covariate adjustments (Tables 1 and
2). The significant univariate association of sRAGE and esRAGE
with diabetes status (Table 1) was due to other confounding fac-
tors, as their statistical significance was lost after adjusting for
the covariates investigated through models 1–11 (Table 2). In con-
trast, the significant and negative association between AGE and
HbA1c levels was retained after covariate adjustment except in
Model 4 and Model 6 with p-value = 0.053 and 0.058, respectively
(Table 2).

We next surveyed how the markers of the AGE/RAGE axis, CML-
AGE, AGE, sRAGE and esRAGE, and BMI and WC/HC within individ-
ual subjects may be related to each other. Our analyses revealed
(Table 3, Fig. 1) that 1) CML-AGE is significantly correlated with

AGE, but not with sRAGE, esRAGE, BMI or WC/HC; 2) AGE is signif-
icantly correlated with CML-AGE, but not with sRAGE, esRAGE, BMI
or WC/HC; 3) sRAGE is significantly correlated with esRAGE, BMI
and WC/HC, but not with AGE or CML-AGE; 4) esRAGE is signifi-
cantly correlated with sRAGE and BMI, but not with CML-AGE or
AGE or WC/HC; (5) BMI is significantly correlated with sRAGE,
esRAGE and WC/HC, but not with CML-AGE or AGE; and 6) WC/
HC is significantly correlated with sRAGE and BMI, but not with
CML-AGE, AGE or esRAGE. Hence, these data suggest an intra-
correlation structure between the markers of the AGE-RAGE axis
and BMI or WC/HC. We performed the following two analyses to
test the association between them.

First, we addressed the association of CML-AGE, AGE, sRAGE
and esRAGE with the second major clinical parameter of study,
BMI. In the univariate analyses, only sRAGE and esRAGE were
statistically significantly and negatively associated with BMI
(Table 3). Here, we report eight different covariate adjustments,
as described in Table 4, which revealed that the significant and

Table 5
The linear regression models fitted for the association between WC/HC and each of CML-AGE, AGE, sRAGE, and esRAGE. Separate models were fitted for different covariate
adjustments. Each continuous predictor was standardized to have mean 0 and standard deviation 1.

yCovariate adjustment CML-AGE AGE sRAGE esRAGE

Estimate SE P-value Estimate SE P-value Estimate SE P-value Estimate SE P-value

1 <0.001 0.005 0.993 �0.005 0.004 0.22 �0.016 0.004 <0.001 �0.009 0.004 0.029
2 <0.001 0.005 0.972 �0.004 0.004 0.282 �0.015 0.004 0.001 �0.008 0.004 0.051
3 0.001 0.005 0.874 �0.005 0.004 0.229 �0.015 0.004 0.001 �0.009 0.004 0.035
4 �0.001 0.005 0.884 �0.004 0.004 0.308 �0.013 0.004 0.003 �0.008 0.004 0.068
5 <0.001 0.005 0.975 �0.005 0.004 0.192 �0.014 0.004 0.001 �0.008 0.004 0.057
6 <0.001 0.005 0.971 �0.005 0.004 0.213 �0.016 0.004 <0.001 �0.009 0.004 0.029
7 <0.001 0.005 0.985 �0.005 0.004 0.24 �0.015 0.004 0.001 �0.008 0.004 0.051
8 �0.001 0.005 0.887 �0.003 0.004 0.486 �0.011 0.004 0.016 �0.006 0.004 0.189

*Note: For the covariate adjustment, 8, the complete estimated model including all covariate estimates for sRAGE are addressed through Table S6. SE: standard error.
y Covariate adjustment: 1: Baseline (age + sex); 2: Baseline + eGFR; 3: Baseline + SBP; 4: Baseline + total cholesterol + total triglycerides + HDL; 5: Baseline + hs-CRP; 6:
Baseline + Vitamin D; 7: Baseline + serum creatinine; 8: Baseline + eGFR + SBP + total cholesterol + total triglycerides + HDL + hs-CRP + Vitamin D.

Fig. 1. Pairwise scatter plots among CML-AGE, AGE, sRAGE, esRAGE, BMI, and WC/HC. Green circles are for normal individuals (HbA1c < 5.7), blue circles are for prediabetic
individuals (5.7 � HbA1c < 6.5), and red circles are for diabetic individuals (6.5 � HbA1c). As the normality of each variable was not satisfied by the Shapiro-Wilk test,
logarithm was taken to each variable. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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negative association for sRAGE and esRAGE with BMI remained
after any further covariate adjustment, but no significance was
observed for CML-AGE and AGE.

Second, we addressed the association of CML-AGE, AGE, sRAGE
and esRAGE with the third major clinical parameter of study, WC/
HC. In the univariate analysis, only sRAGE was significantly and
negatively associated with WC/HC (Table 3). Table 5, using the
covariate adjustments as shown in Table 4, reports that only sRAGE
is significantly and negatively associated with WC/HC after any
further covariate adjustment. No statistically significant differ-
ences were observed for AGE, CML-AGE or esRAGE.

Discussion

In the United Arab Emirates, the rising rates of excessive body
mass, metabolic dysfunction and Type 2 diabetes mellitus and
their cardiovascular consequences threaten the health and well-
being of its citizens. The UAEHFS aims to identify the causes of
these common metabolic diseases in a prospective manner and
to identify predictive biomarkers. In the context of RAGE, pub-
lished studies suggested that in subjects with Type 2 diabetes mel-
litus and obesity with BMI 30-35 undergoing bariatric surgery,
higher baseline levels of sRAGE predicted weight loss and remis-
sion from Type 2 diabetes mellitus at six months and three years
post-surgical intervention [25,26]. Hence, this pilot study served
to test the feasibility of this approach with respect to predictors
of obesity and metabolic disease in an Arab population.

Although there were no significant associations with levels of
sRAGE and diabetes status levels of sRAGE remained significantly
associated with BMI and WC/HC after all covariate adjustment.
The general directionality observed in this study was that as dia-
betes status progressed from normal to diabetes and as BMI and
WC/HC rose, levels of sRAGE declined. Associations between dia-
betes mellitus and obesity and sRAGE have been reported in other
populations but the results are discordant on whether higher or
lower sRAGE levels associated with overall cardiometabolic dis-
ease. Sebeková and colleagues reported in young to middle-aged
subjects free of diabetes mellitus or medications that levels of
sRAGE and RAGE ligands CML-AGE declined prior to the manifesta-
tion of metabolic syndrome [27]. These considerations highlight a
number of important points: First, Gaens and colleagues showed
that in obese individuals, lower levels of RAGE ligand CML-AGE
were identified in plasma compared to lean subjects and, thus,
the CML-AGEs were believed to be ‘‘trapped” in obese adipose tis-
sue, in which higher tissue levels of RAGE were noted [9]. Second,
with respect to the discordance between ‘‘high” vs. ‘‘low” levels of
sRAGE and status of metabolic disease, Thomas and colleagues
noted that studies of the general population cohorts revealed that
lower levels of sRAGE were associated with poor health outcomes
[28–30]. This point bears direct relevance to the design of the
UAEHFS, a population-based cohort study. Third, genetic variations
in the gene encoding AGER have been suggested to contribute to
the levels of sRAGE [31,32]. Of note, genetic factors are to be exam-
ined in the UAEHFS and the findings might provide novel insights
into AGER-specific variants linked to the AGE-RAGE axis, diabetes
mellitus and obesity; no such data exist at this time in this
population.

The present findings indicate a number of significant associa-
tions (negative) between levels of esRAGE and BMI and WC/HC,
even after covariate adjustment, but not with diabetes status. It
has been shown that lower levels of esRAGE were associated with
obesity and risk of metabolic syndrome [33–35]. Vazzana and col-
leagues showed that a weight loss program in five women with
obesity resulted in increases in levels of esRAGE [33]. Comparable
to findings with sRAGE, it has been reported that renal function,
genetic polymorphisms in AGER,medications and the study of pop-

ulations vs. known diseased subjects may affect esRAGE levels and
thus account for these disparate results [36–38]. These considera-
tions underscore the importance of measuring baseline levels and
prospective repeat measures of esRAGE in the UAEHFS subjects
with respect to associations with obesity and/or diabetes mellitus.

In this study, no significant associations were observed between
CML-AGEandBMI,WC/HCordiabetes status, butwedidobserve sig-
nificant associations between AGE and diabetes status, but not with
BMI or WC/HC. There are multiple possible reasons for these find-
ings, such as (1) the present pilot study was not designed to test
specific hypotheses regarding the form of AGE and diabetes or obe-
sity status and hence was insufficiently powered to detect signifi-
cant differences; (2) factors relevant to local dietary patterns or
exercise in the UAE might contribute to distinct effects on AGEs vs.
CML-AGE in this population, whichmight impact the overall detect-
able AGE or CML-AGE circulating burden in these subjects [39]; (3)
heretofore unknown polymorphisms in genes that regulate total
AGE or CML-AGE burden might be present in this population, such
as variations in the gene encoding glyoxalase 1 (GLO1), whose pro-
duct detoxifiesmethylglyoxal, a pre-AGE species [40–42] or in asso-
ciationwithvariations ingenes encodingAGE receptors [43]; and (4)
the overall low prevalence of diabetes mellitus in this pilot study
(n = 33/517 or 6.2%) suggests that frank diabetes mellitus, at least
in this population, may exert the greater impact on levels of CML-
AGE than prediabetes or normal states, with or without obesity. In
this context, it is important tonote that in obesity, as citedabove, cir-
culating AGE levels (such as CML-AGE) might be lower in obese vs.
lean subjects due to tissue trapping [9]. In contrast, multiple studies
have suggestedhigher levels of circulatingAGEs in subjectswithdia-
betes mellitus and its complications [44]. Irrespective of these
caveats, it will be important to prospectively follow levels of the
AGE-RAGE axis in this population to determine if levels of AGE or
CML-AGE reach significance with respect to diabetes status, BMI or
WC/HC, as cohort subjects age and as more subjects are expected
to develop Type 2 diabetes mellitus over time.

In conclusion, the results of this pilot of the UAEHFS suggest that
levels of AGE, but not CML-AGE, sRAGE or esRAGE were associated
with diabetes status, and that levels of sRAGE and esRAGE, but not
CML-AGE or AGE were associated with obesity status in the UAE
population. Hence, prospective and serial analysis of these end-
points in the UAEHFS subjects may identify predictive biomarkers
of obesity and cardiometabolic dysfunction, especially when ana-
lyzedwith the results of dietary and life-style surveys, genetic anal-
yses, microbiome factors and markers of cardiovascular disease.
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